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Abstract—The center of mass (COM) plays a fundamental
role in human ambulation, but the redundant nature of the
human body adds complexity to mathematically modeling its
dynamics. Template models like the Bipedal Spring Loaded
Inverted Pendulum (B-SLIP) and the Virtual Pivot Point (VPP)
address this complexity by removing the redundancy while
retaining desired salient characteristics, such as the COM evo-
lution. However, template models for the COM during human
walking have mostly been used for qualitative analysis due to
issues such as overestimation of COM vertical displacement.

This paper considers a quantifiable template-based analysis
of human walking by using an optimization framework to
set the model parameter values for matching both explicitly
and implicitly considered gait characteristics. Furthermore, it
is shown that allowing the leg stiffness of the B-SLIP and
VPP model to vary throughout the gait cycle better matches
vertical COM trajectories with 54%-63% error reduction.
These optimized template models show promise in retaining
ground reaction force (GRF) information, which is not explicitly
considered during the optimization process. Future work looks
to incorporate these optimized trajectories as a reference for
control of a lower-limb knee-ankle prosthesis.

I. INTRODUCTION

Ambulation underlies many activities in daily life. In-
dividuals with a lower-limb amputation can experience a
significant reduction in their ability to navigate surroundings
and have higher risk of balance issues, negatively impacting
quality of life [1]. Prostheses can help restore the mobility
and capabilities that an individual had prior to amputation.

Passive prostheses harness mechanical design to repli-
cate the missing limb. These devices see higher adoption
rates among users due to higher affordability and easier
adjustment [2]. However, these devices cannot actively react
to perturbations (e.g., rough terrain) or inject work into
the walking gait cycle, which is critical for ankle push-
off [3]. Powered devices look to address these shortcomings
through motorized joints. These devices require a robust
controller that provides appropriate motor commands. The
best controller for prostheses is still an open research topic,
with two forms having been studied the most.

Position control focuses on joint progression while walk-
ing, commanding motors to match a reference trajectory [2].
High-fidelity joint angle tracking requires high stiffness to
avoid oscillations, which can feel unnatural to the user [4].
Impedance control focuses on joint torques while walking,
and is usually implemented via a finite state machine with
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Fig. 1. Depiction of Virtual Pivot Point (VPP) model overlayed on top of
a human walking with an Open Source Leg (OSL) prosthesis.

tunable stiffness, damping, and equilibrium parameters for
each state [2]. This method may feel more natural to the
user, however it can require tedious parameter tuning [4].

While both frameworks have seen successful use for walk-
ing, most implementations isolate the control and sensing
to the instrumentation on the device itself. Sensors that are
not isolated to the prosthesis can provide more information
about the state of the user to enable greater synergy of
control between user and device. Previous work has analyzed
the importance of Center of Mass (COM) regulation for
balance during walking [5], as well as its potential role in
perturbation response [6]. External sensors would allow for
explicit consideration of balance through COM kinematic
feedback. However, the COM can only be estimated via
methods like motion capture suits [7]. Likewise, the highly
redundant nature of the human body adds complexity for
modeling COM dynamics.

This complexity motivates template models, reduced-order
mathematical models designed to eliminate the complexity
and redundancy in a system while retaining the desired
salient characteristics of it. For the COM during human walk-
ing, two popular template models are the Bipedal Spring-
Loaded Inverted Pendulum (B-SLIP) [8] and Virtual Pivot
Point (VPP) [9]. Previous work with these models has
highlighted their qualitative agreement with COM trajectory
and ground reaction force (GRF) profiles during walking
when tuning parameters to generate stable cyclic gaits [10].

A common critique for the quantitative accuracy of these
models is the overestimation of vertical COM displacement
throughout the gait cycle [10]. The B-SLIP and VPP are
energetically conservative without control input, however
walking is not an energetically conservative task [3]. The
overestimation of the vertical COM trajectory seen in these
template models may be influenced by the use of a constant



leg stiffness. Previous work has looked at varying the stiff-
ness of the B-SLIP model via control inputs [11], however
that work focused on expanding the space of stable walking
gaits for the model, rather than fitting human walking data.

In this work, it is demonstrated that these models may
be pushed toward quantitative analysis of human locomotion
through incorporation of actuation via varying leg stiffness
and the use of optimization methods. The contributions of
this paper include a quantitative analysis of fitting the COM
trajectory for the B-SLIP and VPP models to human walking
data, as well as quantifying GRF profile matching and gait
phase timings between the models and human data. This
quantification framework is envisioned to enable the future
use of optimized template models to track COM progression
for balance during walking, while mapping the resulting GRF
profile to appropriate torque commands for a lower-limb
prosthesis like the Open Source Leg [12], (Fig. 1).

The rest of this paper is structured as follows: Sec. II
details the dynamics of the B-SLIP and VPP models, with
Sec. III outlining the optimization framework applied to these
models. The optimization results are provided in Sec. IV,
with discussion regarding these results in Sec. V. Implica-
tions and limitations of this work are summarized in Sec. VL.

II. MODEL DYNAMICS

The B-SLIP and VPP models used in this paper draw
heavy inspiration from [8] and [9], respectively. This work
uses a different axis for measuring leg and torso angles,
which alters trigonometric conventions for the dynamics. A
gait cycle for this work consists of two instances of both legs
supporting the body (double support, DS) and two instances
of the body vaulting over a single leg (single support, SS).
A full gait cycle begins with touchdown of one leg and ends
with the subsequent touchdown of that same leg.

In the B-SLIP model, a point mass, m, is located at the
hip and balanced on massless Hookean springs with spring
coefficient, k, and nominal length, ¢y, as depicted in Fig. 2.
The compression of the leg generates a spring force, Fi,
acting along the leg and through the point mass. This force
represents the total ground reaction force (GRF), Frr.

In the VPP model, the point mass is replaced with a rigid
body trunk has a moment of inertia, .J, as depicted in Fig. 3.
The COM is offset from the hip by a distance, r},. To regulate
trunk orientation, ¢, a hip torque, 7, is applied to generate a
reactionary force, Fy, that is normal to the leg. Combining
Fy and Fj results in Fgrr whose line of action intersects
a virtual point (VP) a distance, ryp, above the COM. The
hip, COM, and VP all lie along the axis aligned with ¢.

A. Dynamic Formulation

The state variables of both models include the fore/aft and
vertical position, (z, z) and velocity, (z, 2), of the COM, as
well as the stiffness coefficient, (k;, k¢), where (), and (-);
denotes rear and front leg, respectively. The VPP model also
tracks the orientation and angular velocity, (¢, (Z)), of the
trunk. The stiffness coefficients are included as states such
that the rates of change of the stiffness coefficients, /’;:r and kf,

Fig. 2. The B-SLIP model with pertinent variables and parameters noted.

Fig. 3. The VPP model with pertinent variables and parameters noted.

become control variables. This extension effectively prevents
discrete jumps in leg stiffness between time instances, which
results in a smoother GRF profile. The state vector is then
s=[wziih k] ands=[rz¢izdhk ki forthe
B-SLIP and VPP model, respectively.

The spring force for a given leg is calculated as

Fyi=ki(lo — ;) )

where ¢; is the current length of the leg and i € {r, f}. Leg
length is geometrically calculated based on foot position, p;,
and hip position. Hip position coincides with COM position
for the B-SLIP model, and is found for the VPP using

Tn = x — 1 8in(Q)

zn = z — 1 cos(¢).

The B-SLIP fore/aft and vertical forces are determined using
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Fyi = Fy;sin(0;) = Fy; Th — bi
o 3)
Fz,i = Fs,i COS(QZ') = Fs,i?~
With gravity, g, the B-SLIP dynamics are
T % 21 Fx,i
dt | ky ky
kf k?f

where only one force is present in SS and two in DS.

The VPP model dynamics require a few more calculations.
By defining the angle between the leg and the trunk axis as
1; = 0; + ¢, the desired hip torque is found using

7 = Fy il; tan(53;)
__(utrve)singay) ®
tan(ﬁi) - ei + (Th + TVP) COS(wi) .




The VPP fore/aft and vertical forces are determined using

Fx.i = Fs.i sm(é)l) — E COS(Gi) = FS ixh — D — Tii;l
’ ’ Ki ’ fi Ez (6)
F,; = Fs;cos(0;) + T sin(6;) = F; iz—h -7 h ;pi
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In total, the VPP model dynamics are then given by
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ITII. OPTIMIZATION FRAMEWORK

A public data set of subjects walking on a treadmill
was used for this work [13]. The subjects were tracked
with a motion capture system, with force plates integrated
into the treadmill. The COM data was fitted to a high
order polynomial (order 20 and 25 for fore/aft and vertical,
respectively) to interpolate values during the optimization.
Since GRF data was only used post-optimization, spline
interpolation using the optimized time values was conducted.

An optimization framework was designed to determine
the variables of the template model that would fit the
COM trajectory of the template models to walking data as
closely as possible. Trajectory optimization is the process of
optimizing control variables of a dynamic system relative
to some cost function and constraints [14]. The primary
goals of the optimization formulation were to a) best fit
the template models to human COM walking data while
b) maintaining a highly generalized formulation to mitigate
solution overshaping. The optimization formulation used in
this work was implemented in Matlab R2020b leveraging the
CasADi and IPOPT frameworks [15], [16].

A multishooting method with Runge-Kutta 4th Order
numerical integration and a 4th Order Gauss-Radau collo-
cation method were considered for the transcription [14].
Ultimately, collocation was used due to its generally faster
convergence and comparable results to multishooting. Each
phase of the gait cycle was discretized into N = 25
finite elements with M = 4 collocation points per finite
element. The optimization was run over a four-phase gait
cycle (4N M total points) with respect to the state variables,

S = |s;185... S4NM], and non-state control variables,
U= |uu ... wy M] The mathematical formulation
for the optimization is
ANM
. 2
min Y; — Yhum,;
gy 2 s
s.t. hCO](S7 U) =0, (3
g(s,U) <0,

WL S gb(SaU) S WU

T T .
where y = [z 2] and ynum = [Thum Znum| at each time
instant, h., are equality and collocation constraints, g are

inequality constraints, and gy, is used to set bounds on the
variables. The collocation constraints ensure the propagation
of each element/collocation point aligns with the subsequent
element/point, and enforces consistent transitions between
phases that respect the dynamics (e.g., foot position of leg
at the start of SS is at the foot position of lead leg at the
end of DS). The inequality constraints ensure that variables
maintain expected behaviors (e.g., COM vertical velocity is
negative at the start of DS, vertical GRF magnitudes are
never negative). The objective is simply a running sum of the
squared residuals between the optimized and experimental
fore/aft and vertical positions of the COM.

The non-state control variables, u, consist of variables
chosen once per gait phase as well as some that are chosen
continuously across each gait phase. For DS and SS, each
gait phase includes a variable for its time duration, ¢¢, and
the starting positions, p;, of each stance foot (enforcing no
foot slip). The rate of change in spring stiffness, k;, is chosen
independently at each collocation point. For the DS phase,
the touchdown angle, fp, of the front leg is optimized as
an initial condition for the phase. The nominal leg length,
Ly, is the same across all phases.

The highly nonlinear model dynamics prevent global opti-
mum guarantees. To help mitigate convergence to unwanted
local optima, several variables were seeded with data from
the walking experiments as initial guesses. This was done
for the COM position and velocity at each time instant, the
gait phase durations, and the nominal leg length.

IV. RESULTS

Three metrics were created to analyze how each template
model variation fit subject data. The root mean squared error
(RMSE) between the COM of the optimized template model
and subject data at each time instance, ec, directly correlates
to the objective function, and is non-dimensionalized with the
measured leg length of the subject. The RMSE between the
vertical GRF of the optimized template model and subject
data at each time instance, €, measures retention of salient
characteristics not explicitly considered in the optimization,
and is non-dimensionalized with the bodyweight of the
subject. The RMSE between the phase durations of the op-
timized template model and subject data, €., also measures
salient characteristic retention with units of seconds.

The optimization framework was run for three sets of
analysis. The first analysis focused on which template model
variation best fit explicitly and implicitly considered gait
characteristics. This process optimized four template vari-
ations for three separate gait cycles at a subject’s preferred
walking speed. The first two variations were the B-SLIP and
VPP model with an optimized constant stiffness, analogous
to previous work in literature. This was accomplished by
constraining k; = 0. The third and fourth variations were
the B-SLIP and VPP model with varying stiffness. Models
appended with (C) and (V) denote constant and varying
stiffness, respectively. Table I lists the preset parameters for
the VPP model. The VP parameter was based on previous
work that suggested its presence during SS but not DS [17].



TABLE I
TEMPLATE MODEL PARAMETERS

Parameter Definition Preset Value
rn,  Distance between 0.1 m
COM and Hip
[DS SS] ryp  Distance between [O 0.15] m
COM and VP
J  moment of inertia 4.58 kg m?
g gravity constant 9.81 m/s?

All template model variations were optimized for Subject
04 from [13]. Subject 04 was chosen because their preferred
walking speed is in the middle of preferred walking speeds
for all available subjects, and is close to average human
walking speed [5]. Table II contains the measured leg length,
preferred walking speed, and bodyweight for Subject 04.

The second analysis used walking data from Subject 04
not at their preferred walking speed. This analysis focused on
the effect walking at slower (0.71 m/s) and faster (1.69 m/s)
speeds had on model fitting. This analysis was conducted
for three separate gait cycles, and only used the model that
performed best in the first analysis.

The third analysis optimized the same model as the second
analysis for subjects whose preferred walking speeds were
different from Subject 04. The parameters for these subjects
are listed in Table II. This analysis focused on the effect
slower and faster preferred walking speeds had on model
fitting, and was completed for three separate gait cycles.

Fig. 4-7 visualize the results of the first analysis. Since
overestimation of vertical COM displacement is a common
critique of these template models, the vertical COM tra-
jectories for each template model optimized for Subject 04
were graphed with the experimental vertical COM trajectory
in Fig. 4. Markers to denote the instances of gait phase
transitions are included. Since the main form of optimized
control is via leg stiffness, the stiffness profile for each
template model is graphed in Fig. 5. To analyze the retention
of important walking features such as vertical GRF profiles,
the post-optimization calculation of the vertical GRFs for
each model are overlayed on the experimental vertical GRF
data in Fig. 6. The quantifiable assessment of the template
model fitting to human data is illustrated in Fig. 7, with data
regarding solve times and status provided in Table III.

Based on the quantification metrics, the optimized VPP
(V) model best captured explicit and implicit characteristics
of human walking, and was chosen for conducting the second
and third analyses. For these analyses, the resulting quantifi-
cation metrics were averaged across the three optimized gait
cycles for sake of brevity in reporting. Table IV provides
the resulting averaged metric performances of the VPP (V)
model at different walking speeds for Subject 04. Table V
provides the resulting averaged metric performances of the
VPP (V) model at preferred walking speeds for multiple
subjects in order of increasing preferred walking speed.

V. DISCUSSION

The overestimation and overall fit of vertical COM dis-
placement is significantly improved for both models when

TABLE 11
SUBJECT PARAMETER DATA

Subject Leg Length [m]  Weight [kg] Preferred Speed [m/s]
04 0.94 61.05 1.30
12 0.78 48.80 1.05
13 0.85 95.40 1.02
15 0.92 89.30 1.54
18 0.86 59.30 1.26
21 091 61.50 1.42

optimized with varying leg stiffness. These results are evident
qualitatively in Fig. 4 and quantitatively in Fig. 7. This
finding suggests that models require some form of non-
conservative energy component to agree quantitatively with
human data. The work in [18] agrees with this conclusion,
where a damper was incorporated to modulate the apparent
leg stiffness in a spring-mass model.

From Fig. 5, it appears that the constant stiffness models
chose an average value from the stiffness profile of the
varying models. These stiffness values tend to be smaller
than what has been reported from other work, [10]. However,
in [10] the gait-event timings and fore-aft distance for the B-
SLIP model were shorter than observed in human data. These
results align with what is expected for higher leg stiffness,
suggesting that the smaller values reported here may better
capture these aspects of human walking behavior.

It is important to note that the optimized leg stiffness is
a low-complexity linear abstraction of biomechanical prop-
erties of human walking. Energy absorption and injection
from the coordinated firing of leg muscles and actuation
of joints, [3], is essentially lumped into the single stiffness
component. While these leg stiffness values do not have a
direct correlation to specific aspects of human biomechanics,
the abstraction does appear to highlight the importance of
including some non-conservative component to these models.

The improvement to human data fitting appears to expand
beyond explicitly considered characteristics. The varying
stiffness models better fit to GRF profiles than the constant
stiffness models, seen qualitatively in Fig. 6 and quantita-
tively in Fig. 7. The retention is particularly notable in the
ability to capture the asymmetry of the second M-profile,
suggesting that joint-level variables (i.e., torques) can be
predictably realized when focusing on task-level variables
such as COM. This observation aligns with the task-level
perturbation response suggested in [6]. The ability to work
with task-level parameters without sacrificing joint-level in-
formation supports the inclusion of sensors not isolated to
the device into the control of lower extremity prostheses.

Similar results arise for gait phase durations as seen
in Fig. 7. The constant stiffness models consistently saw
larger disparity in the gait phase durations, further aligning
with the results in [18]. The VPP (V) model performed
the best in all three trials, suggesting that the combination
of some non-conservative component with incorporation of
trunk dynamics may retain more characteristics of human
walking. The results hint at trade-offs between complexity
of the models and available information in the models.

Optimizing the VPP (V) model for gait speeds away
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Fig. 4. Vertical COM trajectory with respect to time for each template
variation compared to the experimental COM data for a single gait cycle of
Subject 04 at their preferred walking speed. The (C) and (V) denote models
with constant and varying leg stiffness, respectively.
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Fig. 5. Leg stiffness with respect to time for each template model variation
for a single gait cycle of Subject 04 at their preferred walking speed. The (C)
and (V) denote models with constant and varying leg stiffness, respectively.

from the preferred walking speed of Subject 04 showed
mixed results. A good fit to COM data is maintained, while
increased eg for slower walking and increased €, for faster
walking optimization is observed in Table IV. The increase in
ec may be due to a more irregular vertical COM trajectory at
slower walking for Subject 04. A plateau before peak vertical
COM height during SS resulted in leg stiffness oscillations
that propagated into oscillations in the GRFs. The increase
in €;, may be due to the shorter DS duration for the human
data. The VPP model favors a longer DS phase, which is
inherently more stable than SS phase [17].

Optimizing the VPP (V) model for subjects at different
preferred walking speeds aligned with results for Subject 04
at their preferred walking speed, as reported in Table V. The
overall quantification metric results for all subjects suggest
that the optimization framework is applicable to a range of
preferred walking speeds. The potential degradation seen in
Table IV may be due to amplified irregularity in gait when
not walking at one’s preferred speed, a trend reported in [19].

As anticipated, the variable stiffness models require more
iterations and time to complete their optimization compared
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Fig. 6. Vertical GRF profile with respect to normalized time for each

template variation compared to the experimental GRF data for a single gait
cycle of Subject 04 at their preferred walking speed. The (C) and (V) denote
models with constant and varying leg stiffness, respectively.
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Fig. 7. Quantification metrics for each template variation based on three

separate gait cycles for Subject 04 at their preferred walking speed. The (C)
and (V) denote models with constant and varying leg stiffness, respectively.

to their constant stiffness counterparts (Table IIT). All except
one constant stiffness B-SLIP gait cycle terminated with
at least Acceptable status. While the solve times rule
out on-line considerations, the off-line optimized models
can be used as reference trajectories to track how real-time
COM data compares to expected behavior. This provides
a baseline for determining if the GRF profile from the
optimized model is appropriate to replicate with a powered
lower-limb prosthesis. Future work will focus on developing
the mapping between GRF and joint torque commands to be
implemented on the Open Source Leg (OSL), which can be
commanded to imitate impedance behavior [20].

The current framework does have some limitations. While
trends for each template variation have held for most op-
timized gait cycles, irregularities in an isolated gait cycle
can cause issues. This sensitivity is being addressed in
ongoing work by optimizing over an averaged gait cycle for
a subject. The end points of the gait cycle show the largest
disparity in model fitting. This disparity is being mitigated by
optimizing over multiple gait cycles and analyzing the middle
gait cycle(s). The highly nonlinear characteristic of these



TABLE III
OPTIMIZATION SOLVER STATISTICS FOR SUBJECT 04 AT PREFERRED
WALKING SPEED

B-SLIP
V)
888
449
432
115.55
18.98
18.13
Optimal
Acceptable
Optimal

VPP
©
369
340
358

14.88
13.77
12.63
Failed
Optimal
Optimal

©
194
183
187
16.19
14.15
14.67
Optimal
Optimal
Optimal

V)
355
296
263
26.51
2291
17.99
Acceptable
Acceptable
Acceptable

Iterations

Time [s]

Status

TABLE IV
VPP FIT QUANTIFICATION AT VARIOUS GAIT SPEEDS FOR SUBJECT 04

Fast
1.69 m/s
0.0098
0.1096
0.0176

Preferred
1.30 m/s
0.0080
0.0848
0.0076

Slow
0.71 m/s
0.0076
0.1726
0.0098

€c
€G
etp [s]

template models may result in the solver converging to a
local optimum that is not an acceptable fit to the human data.
Future work looks to incorporate a perturbation method to
adjust the seeded initial guesses to avoid these local optima.

VI. CONCLUSION

In this work, it was shown that template models have the
capability to improve quantifiable fit to human COM data
during human walking via trajectory optimization. By vary-
ing the leg stiffness of the models throughout the gait cycle,
a more accurate fit of the COM trajectory was achieved.
Both the B-SLIP and VPP models were able to retain salient
characteristics of human walking like GRF profiles that were
not explicitly accounted for in the optimization framework.
The VPP model showed more initial promise in retaining
phase duration information than the B-SLIP model, and
demonstrated that quantifiably fitting to walking speeds away
from a person’s preferred speed may be feasible.

Future work will look to address the limitations of unde-
sired local optima, gait cycle endpoint disparity, and single
vs. average gait cycle data. This work will also continue to
expand the analysis of different preferred walking speeds to
understand the range of speeds this optimization framework
may work for. Continued analysis of performance for gait
cycles away from preferred walking speed will be helpful for
determining the robustness of the models to various walking
conditions. Finally, this work will be used in the next steps
of task-level control by using the GRF profiles obtained from
the optimized template models and mapping those forces to
individual joint torques of a lower-limb prosthesis.
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