
Variational Quantum Eigensolvers for Sparse Hamiltonians

William M. Kirby 1,* and Peter J. Love1,2
1Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA

2Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 7 January 2021; revised 24 May 2021; accepted 14 July 2021; published 9 September 2021)

Hybrid quantum-classical variational algorithms such as the variational quantum eigensolver (VQE) and
the quantum approximate optimization algorithm (QAOA) are promising applications for noisy,
intermediate-scale quantum computers. Both VQE and QAOA variationally extremize the expectation
value of a Hamiltonian. All work to date on VQE and QAOA has been limited to Pauli representations of
Hamiltonians. However, many cases exist in which a sparse representation of the Hamiltonian is known but
there is no efficient Pauli representation. We extend VQE to general sparse Hamiltonians. We provide a
decomposition of a fermionic second-quantized Hamiltonian into a number of one-sparse, self-inverse,
Hermitian terms linear in the number of ladder operator monomials in the second-quantized representation.
We provide a decomposition of a general d-sparse Hamiltonian into Oðd2Þ such terms. In both cases, a
single sample of any term can be obtained using two ansatz state preparations and at most six oracle
queries. The number of samples required to estimate the expectation value to precision ϵ scales as ϵ−2 as for
Pauli-based VQE. This widens the domain of applicability of VQE to systems whose Hamiltonian and
other observables are most efficiently described in terms of sparse matrices.
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Introduction.—The leading applications for noisy, inter-
mediate-scale quantum (NISQ) computers are the varia-
tional quantum eigensolver (VQE) [1] and the quantum
approximate optimization algorithm (QAOA) [2]. VQE
estimates the ground state energy (and other properties) of a
Hamiltonian by optimizing an ansatz for an energy eigen-
state [1,3–15]. QAOA approximately optimizes a classical
objective function using a parametrized quantum state [2].
Methods such as VQE and phase estimation, which
compute energy eigenstates, rely on efficient representa-
tions of the Hamiltonian. Two such representations are
widely used: local Hamiltonians and sparse Hamiltonians.
For simplicity, we will restrict our discussion henceforth to
systems of qubits; generalizations to tensor factors of
arbitrary dimension are straightforward.
First, we describe the efficient representation of

Hamiltonians based on locality. For this representation, a
convenient basis for qubit operators is given by the Pauli
operators Pi, which are tensor products of Pauli matrices
and the identity. The Hamiltonian is written

H ¼
Xm
i¼1

αiPi; ð1Þ

where the αi are real coefficients. This representation of a
Hamiltonian is efficient if the number of terms m grows
only polynomially with the number of qubits. The locality k
of the Hamiltonian (1) is the maximum locality of any term
Pi, which refers to the number of nonidentity tensor factors

in Pi. Note that locality here does not necessarily refer to
geometric locality. For qubits, the Hamiltonian is a sum of
one-qubit terms, two-qubit terms, and so on. This repre-
sentation was first used for quantum simulation by Lloyd
[16], and all VQE algorithms to date make use of this
Hamiltonian representation.
A second efficient representation of a Hamiltonian is

based on sparsity, which refers to the maximum number of
nonzero entries in any row or column of the Hamiltonian.
For example, in a Hamiltonian of the form (1) the number
of nonzero entries in any row or column in the computa-
tional basis is bounded above by m, so we refer to the
Hamiltonian as m-sparse. This follows because the Pauli
operators are one-sparse: They each have only one nonzero
entry in each row and column. However, not every sparse
Hamiltonian is local, and many sparse Hamiltonians do not
admit a Pauli decomposition (1) with a polynomial number
of terms. A simple example is the number operator for a
bosonic mode encoded as a binary number in qubit
computational basis states, which is one-sparse but has
an exponential number of Pauli terms.
Quantum simulation of sparse Hamiltonians has under-

gone extensive study [17–27], culminating in algorithms
with optimal (for time-independent Hamiltonians) [25,26]
or near-optimal (for time-dependent Hamiltonians) [27]
scaling with all parameters. In these algorithms, a d-sparse
Hamiltonian is accessed via a pair of oracle unitaries OF
and OH. OF returns the location of the ith nonzero entry in
a given row x.OH returns the value of the entry in row x and
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column y to a given precision. The actions of OF and OH
are given by

OFjx; ii ¼ jx; yii; ð2Þ

OHjx; yijzi ¼ jx; yijz ⊕ Hxyi; ð3Þ

where x is a row index of H (i.e., a computational basis
state), and for 0 ≤ i ≤ d − 1, yi is column index of the ith
nonzero entry in row x of H. The Hamiltonians are given
via these oracle unitaries for the sake of modularity: Sparse
Hamiltonians are very general, so oracle queries provide a
standardized formalism for accessing them.
A VQE algorithm comprises two main components: a

quantum subroutine for estimating the expectation value of
a Hamiltonian of interest for some parametrized ansatz
state, and a classical outer loop that updates the parameters
of the ansatz in order to minimize the expected energy [1].
The quantum subroutine is implemented by separately
estimating the expectation value of each term in the
Hamiltonian under some decomposition, most commonly
the Pauli decomposition (1).
In this Letter, we extend VQE to sparse Hamiltonians, the

possibility of which was briefly discussed in the appendix of
Ref. [1]. We decompose sparse Hamiltonians into linear
combinations of self-inverse one-sparse Hermitian matrices.
We then show how to estimate expectation values of these
one-sparse terms using two ansatz state preparations and
calls to the oracle unitaries defining the Hamiltonian terms.
We will show that our algorithm requires at most six oracle
queries per measurement circuit.
The class of sparse Hamiltonians that admit description

by oracles of the forms (2) and (3) is much broader than the
class of local Hamiltonians, which admit efficient Pauli
decompositions and are thus suitable for standard VQE.
To prove that local Hamiltonians are a subset of sparse
Hamiltonians with efficient oracle descriptions, it is enough
to give oracle descriptions of the Pauli operators, which we
do explicitly in the Supplemental Material [28]. Hence for
any local Hamiltonian, we could first decompose it into
Pauli operators [33–35] and then simulate each Pauli
operator using sparse VQE. All electronic structure
Hamiltonians that can be simulated using standard VQE
can be simulated using sparse VQE in this way. This also
provides an example of oracles with simple implementa-
tions that are appropriate for NISQ devices.
However, when a Hamiltonian has an efficient Pauli

decomposition, it is not a good candidate for sparse VQE,
because the measurement scheme in the next section
requires an extra qubit and an extra ansatz preparation
compared to measuring the Pauli terms directly. The cases
of real interest for sparse VQE are Hamiltonians that are
sparse and admit efficient oracle implementations but do
not admit efficient Pauli decompositions.

One such case is a Hamiltonian that includes bosons and
is represented in a direct encoding [36], in which the
occupation of each mode is stored in binary in its own
register of qubits. Bosonic creation and annihilation oper-
ators in this encoding are naturally represented in terms of
Weyl-Heisenberg shift operators but not as Pauli operators,
because the occupations of modes can be larger than one. In
the Supplemental Material [28], we give explicit imple-
mentations of oracles for this case. These implementations
can be combined with the oracles for Pauli operators to
handle Hamiltonians that act on both fermions and bosons.
The class of sparse Hamiltonians is very large, and we

will not attempt to give an exhaustive list of all theories that
can be addressed within it. However, two more examples
are as follows. The first is quantum field theory in compact
encoding [36,37], in which only the occupations of
occupied modes are stored, providing asymptotically opti-
mal space efficiency. Oracles for field theories in compact
encoding are explicitly constructed in Ref. [37]. The second
example is the CI-matrix representation of quantum chemi-
stry, for which oracles are explicitly constructed in
Ref. [38].
The number of gates and depth of circuits required by the

oracles in Refs. [37,38] are larger than those required for
Pauli operators or for quantum field theory in the direct
encoding. Implementation of these oracles in the NISQ era
would require extensive error mitigation or significantly
improved physical gates and qubits. However, sparse VQE
will become possible before other sparsity-based simula-
tion algorithms [19,21–27], because these require more
coherent queries to the same oracles.
First, we describe the basic structure of VQE for

Hamiltonians that can be decomposed into self-inverse
one-sparse Hermitian terms that possess efficient circuit
representations. Next, we describe methods for obtaining
such decompositions. Then, we explain how to construct
efficient circuit representations of the resulting terms.
These methods permit the implementation of efficient
VQE procedures for sparse Hamiltonians. We close the
paper with some discussion and directions for future
work.
Sparse VQE.—VQE was first used to estimate expect-

ation values of the Hamiltonian [1]. However, many other
quantities are of interest given an ansatz state that is a good
approximation to the ground state or other energy eigen-
state. For example, Refs. [15,36,39] study various proper-
ties of composite particles in interacting quantum field
theory. Properties such as the invariant mass, mass radius,
parton distribution function, and form factor are expect-
ation values of corresponding operators, whereas quantities
such as the decay constant are matrix elements between
different states [39]. We will therefore consider estimation
of quantities hϕjÔjψi for sparse operators Ô between
ansatz states jϕi ¼ Vj0i and jψi ¼ Uj0i prepared by
quantum circuits U and V.

PHYSICAL REVIEW LETTERS 127, 110503 (2021)

110503-2



We begin with a Hermitian operator that we assume has
an efficient decomposition into a sum of Hermitian, self-
inverse, one-sparse terms Gj:

Ô ¼
Xt

j¼1

αjGj; ð4Þ

where αj are real coefficients and the number of terms t is
polylogarithmic in the dimension of the Hilbert space on
which Ô acts. If Ô can be efficiently decomposed into Pauli
operators, then the Pauli decomposition of Ô is an example
of Eq. (4), because the Pauli operators are self-inverse and
one-sparse. The terms Gj are both Hermitian and unitary,
and we further assume that an efficient quantum circuit for
eachGj is known. Circuits for sparse unitaries were studied
in Ref. [40].
Any operator Ô of the form (4) is sparse, and the number

of one-sparse terms t is an upper bound on the sparsity. In
the next section, we will explicitly show how to construct a
decomposition as in Eq. (4) for any arbitrary sparse
Hermitian operator. However, for the purpose of this
section, it is enough to assume that this is possible, because
the actual VQE implementation is agnostic to the method
used to obtain the decomposition.
Given Eq. (4), we perform M Hadamard tests of the

operators V†GjU via the circuit shown in Fig. 1. This
circuit has a state register of n qubits initialized in the all-
zero state j0ni and a single ancilla register initialized in the
state jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

. The first operation is applica-
tion of V†GjU controlled on the ancilla qubit. The second
operation is a single-qubit Hadamard gate applied to the
ancilla qubit. After application of this circuit, the proba-
bility of observing zero on the ancilla qubit is

pð0Þ ¼ 1

2
ð1þ Reh0njV†GjUj0niÞ: ð5Þ

To replace the real part by the imaginary part of V†GjU in
Eq. (5), replace the initial jþi state of the ancilla by the
state j − ii ¼ ðj0i − ij1iÞ= ffiffiffi

2
p

.
AfterM repetitions of the circuit in Fig. 1, one obtains n0

zeros and n1 ones from the measurement outcomes of the
ancilla qubit. The quantity ðn0 − n1Þ=M is an estimate of
Reh0njV†GjUj0ni. We can therefore interpret ancilla

outcome b as determining a random variable with value
ð−1Þb. The analysis of the variance of these estimates and
hence the scaling ofM for given Ô and precision ϵ proceeds
exactly as for Pauli decompositions (given in
Refs. [41,42]), so the required M for precision ϵ scales
as ϵ−2.
In this section, we have given the extension of VQE to

matrices that can be efficiently decomposed into self-
inverse one-sparse Hermitian terms described by efficient
quantum circuits. Estimation of a matrix element of a self-
inverse term Gj between two ansatz states Uj0ni and Vj0ni
is accomplished by controlled application of the ansatz
circuits U† and V as well as Gj. For estimation of
expectation values, we have U ¼ V, and twice as many
ansatz preparations are required as for Pauli decomposition
VQE. The necessity of these extra preparations is apparent
when one notes the capability to also estimate matrix
elements between distinct states. In the remainder of the
Letter, we will focus on Hamiltonians for easier comparison
to prior literature on sparse Hamiltonian simulation, but all
of our results will apply to general sparse, Hermitian
observables. We will discuss obtaining the necessary sparse
decompositions in the next section and efficiently applying
the resulting operators in the following section.
Obtaining sparse decompositions.—Access to a d-sparse

Hamiltonian is provided by the oracles OF and OH as
defined in Eqs. (2) and (3). In the case thatH is one-sparse,
we can simplify the action of OF:

OFjx; 0i ¼ jx; yxi; ð6Þ

where yx is defined to be the column index of the single
nonzero entry in row x (corresponding to i ¼ 0).
Given a d-sparse Hamiltonian, we wish to decompose it

into a polynomial number of one-sparse self-inverse
Hermitian terms. In some cases of interest, most notably
fermionic Hamiltonians in second-quantized form, we
already have a decomposition into one-sparse Hermitian
terms. A Hamiltonian expressed in second-quantized form
is a polynomial of some set of ladder operators for various
particles or modes. The basis for the Hilbert space is given
by the occupation number (Fock) representation for each of
the modes. Each term in the Hamiltonian is a monomial of
ladder operators, which for fermions in the Fock basis is
one-sparse, since its action as a linear transformation is to
map each single Fock state to some scaling of a single Fock
state. Therefore, the fermionic Hamiltonian in the occupa-
tion number basis is at most d-sparse if it contains d terms,
so assuming the number of terms is polynomial in the
number of qubits, so is the sparsity.
Ladder operator monomials are in general not self-

inverse, nor are they Hermitian. However, for each ladder
operator monomial present in the fermionic Hamiltonian,
its Hermitian conjugate must also be present, and each such
pair together is one-sparse and Hermitian. One-sparseness

FIG. 1. Hadamard test circuit realizing estimation of the real
part of the matrix element h0jV†GjUj0i.
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follows because, for a fermionic ladder operator monomial,
any given state is mapped to zero by either the monomial or
its conjugate (or both); this in fact extends to any
Hamiltonian that contains fermionic ladder operators with
nonidentity action in every term, even if bosonic operators
are also present. To obtain a decomposition into one-sparse
terms that are also self-inverse, we use the follow-
ing lemma.
Lemma 1.—Any one-sparse Hamiltonian Hð1Þ may be

expressed up to L bits per real and imaginary part of each
entry as a linear combination of

4L ¼ 4⌈log2
� ffiffiffi

2
p kHð1Þkmax

γ

�
⌉ ð7Þ

one-sparse, self-inverse Hamiltonians Gj, where γ is the
resulting error in max-norm. The OF oracles for the Gj are
the same as the OF oracle for Hð1Þ, and the OH oracle for
any Gj may be computed using two queries to the OH

oracle for Hð1Þ.
The proof may be found in the Supplemental Material

[28]. Note that kHð1Þkmax denotes the max-norm of Hð1Þ,
defined to be the maximum magnitude of any entry inHð1Þ,
which is upper bounded by kHð1Þk∞ [43].
Lemma 1 is constructive, so we can use the proof to

decompose each Hermitian conjugate pair of ladder oper-
ator monomials into one-sparse, self-inverse terms. If N is
the number of ladder operator monomials in the second-
quantized fermionic Hamiltonian, the number of conjugate
pairs is at mostN=2, so Lemma 1 provides a decomposition
of H into a linear combination of at most

2N⌈log2
� ffiffiffi

2
p kHkmax

γ

�
⌉ ð8Þ

one-sparse, self-inverse Hermitian terms, since the max-
norm of each monomial is upper bounded by kHkmax.
Beyond the case of fermionic second-quantized

Hamiltonians, we consider an arbitrary d-sparse
Hamiltonian that we only have oracle access to. This
includes the case of second-quantized Hamiltonians with
both fermionic and bosonic modes. In order to apply
Lemma 1, we first decompose the Hamiltonian into one-
sparse terms.
Lemma 2 (see [22], Lemma 4.4).—If H is a d-sparse

Hamiltonian, there exists a decomposition H ¼ P
d2
j¼1Hj

where each Hj is Hermitian and one-sparse. An OF query
to any Hj can be simulated with two OF queries to H, and
anOH query to anyHj can be simulated with oneOH query
to H.
The proof (in Ref. [22]) is again constructive, so we can

use Lemma 2 to obtain Hermitian one-sparse terms Hj and
then use Lemma 1 to approximately decompose each of

these into Hermitian one-sparse, self-inverse terms. The
resulting total number of one-sparse, self-inverse terms in
the decomposition of H is at most

4d2⌈log2
� ffiffiffi

2
p kHkmax

γ

�
⌉: ð9Þ

Comparing Eqs. (8) and (9), we see that in cases where
either decomposition could be used, which one is prefer-
able depends on half the number of ladder operator
monomials (N=2) versus the squared sparsity (d2). For
example, the light-front Yukawa model studied in Ref. [36]
leads to a second-quantized Hamiltonian whose sparsity
scales as ΘðN2=3Þ. This is sublinear because each ladder
operator monomial maps a large number of Fock states to
zero in this model. However, even though the sparsity is
asymptotically smaller than N, the squared sparsity is
d2 ¼ ΘðN4=3Þ, so for this example it is still better to
separately decompose each Hermitian conjugate pair of
ladder operator monomials into one-sparse, self-inverse
terms using Lemma 1.
We use the decomposition provided by Lemmas 1 and 2

because it results in terms that are one-sparse and unitary,
and as we will see below, have entries �1 or �i; the cost is
that the decomposition itself is approximate. However, the
resulting terms can be implemented exactly using at most
six oracle queries (see the next section). Alternative
decompositions exist that avoid approximations in the
decompositions themselves (e.g., Ref. [44]), so it is
possible that in the future the method given above can
be improved if the terms in such a decomposition can be
implemented using few oracle queries.
Evolution under one-sparse unitary operators.—The

expectation value estimation method in the second section
requires controlled applications of one-sparse, self-inverse,
Hermitian operators; let G be such an operator. In practice,
G will be one of the operators Gj obtained from Lemma 1.
There is an extensive body of methods for simulating sparse
Hamiltonians [17–27], any of which could be used to
implement the controlled application of G. However,
because G is one-sparse and self-inverse, we can use a
simpler method similar to the construction of the quantum
walk operator in Ref. [21] (see the proof of Lemma 4 in
Ref. [21]). The fact that methods for simulation of time
evolution generated by sparse Hamiltonians can also be
used for simulation of sparse unitaries was first noted
in Ref. [40].
Using the oracles OF and OH for G, we can apply G as

follows: Let jxis be any input computational basis state, and
let j0ia1 j0ia2 be ancilla registers. The steps to apply G are:
first,

jxisj0ia1 j0ia2⟶
OF jxisjyxia1 j0ia2 ð10Þ

⟶
OH jxisjyxia1 jGxyxia2 ; ð11Þ
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where yx is the column index of the single nonzero entry in
row x ofG, as in Eq. (6). From the proof of Lemma 1 (in the
Supplemental Material [28]), it follows that Gxyx ¼
�1 ∀ x; y or Gxyx ¼ �i ∀ x; yx. Whether the entries
are �1 or �i is determined by j (where G ¼ Gj for some
Gj resulting from Lemma 1), which is evaluated in classical
preprocessing. Therefore, jGxyxia2 need only be a single
qubit determining the sign, and as our next step we can
apply the entry Gxyx exactly as a phase controlled by
jGxyxia2 and then complete the implementation of G as
follows:

⟶
controlled phase

Gxyx jxisjyxia1 jGxyxia2 ð12Þ

⟶
O−1

H Gxyx jxisjyxia1 j0ia2 ð13Þ

⟶
swap s;a1 Gxyx jyxisjxia1 j0ia2 ð14Þ

⟶
O−1

F Gxyx jyxisj0ia1 j0ia2 ; ð15Þ

where the last step follows because for a one-sparse,
Hermitian operator, Eq. (6) implies

OFjyx; 0i ¼ jyx; xi: ð16Þ

The effect of these operations is to map

jxis ↦ Gxyx jyxis ¼ Gjxis; ð17Þ

i.e., we have appliedG to jxis. This required four queries to
the oracles: one query each to OF, OH, and their inverses.
For ancillas, we required copying the computational
register s in the register a1 to apply the OF oracle and
one additional qubit in the register a2 to represent the sign
ofGxyx ¼ �1;�i. In both queries and ancillas, these are the
minimum requirements to apply the oracle unitaries at all.
Finally, recall that the one-sparse, self-inverse terms that

we are estimating expectation values of were obtained via
Lemma 1, above. However, the full Hamiltonian is first
decomposed into one-sparse terms Hð1Þ—either conjugate
pairs of ladder-operator monomials or via Lemma 2—
which form the inputs to Lemma 1. From Lemma 1, we
know that the OF oracle for any of the Gj is identical to the
OF oracle for Hð1Þ. Also, from the proof of Lemma 1, we
know that the OH oracle for any of the Gj can be
implemented by first applying the OH oracle for Gj and
then performing a single controlled operation (we would
later undo both of these steps to apply O−1

H ). Hence, the
number of queries to each Hð1Þ is still four, each of which
will either be implemented directly (in the ladder operator
monomial decomposition) or via one (for OH) or two (for

OF) queries to the full Hamiltonian using Lemma 2. This
gives a total of at most six oracle queries.
Conclusion.—In existing studies, the only Hamiltonian

input model used in VQE has been decomposition into
Pauli operators. In this Letter, we have extended VQE to
the case of sparse Hamiltonians. We accomplished this by
employing a variant of techniques previously considered
applicable to future fault-tolerant quantum computers
[22]. For sparse Hamiltonians, we have demonstrated
how VQE can be implemented via a decomposition into
one-sparse, self-inverse Hermitian terms. As discussed
in the introduction, simulation of second-quantized
Hamiltonians in condensed matter, high energy, and
nuclear physics and in compact representations of quan-
tum chemistry are natural candidates for this sparse VQE
method [15,36–39,45].
This Letter focused on VQE, but the results may also

be used in the context of QAOA [2]. QAOA to date treats
classical objective functions that are sums of local
clauses, of which 3-SAT and MAXCUT are canonical
NP-complete examples. Classical objective operators are
diagonal in the computational basis and hence naturally
one-sparse. The techniques here would allow extension to
the case where the diagonal entries are given by more
complicated classical functions. This broadens the space
of examples within which to search for quantum advan-
tage and also may provide practical advantages for
problems with large locality such as the traveling sales-
man problem. We leave the investigation of these ideas
for future work.
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