
PHYSICAL REVIEW A 104, 042607 (2021)

Quantum simulation of second-quantized Hamiltonians in compact encoding

William M. Kirby ,1 Sultana Hadi ,1 Michael Kreshchuk ,1,2 and Peter J. Love 1

1Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 23 May 2021; revised 16 September 2021; accepted 17 September 2021; published 13 October 2021)

We describe methods for simulating general second-quantized Hamiltonians using the compact encoding, in
which qubit states encode only the occupied modes in physical occupation number basis states. These methods
apply to second-quantized Hamiltonians composed of a constant number of interactions, i.e., linear combinations
of ladder operator monomials of fixed form. Compact encoding leads to qubit requirements that are optimal
up to logarithmic factors. We show how to use sparse Hamiltonian simulation methods for second-quantized
Hamiltonians in compact encoding, give explicit implementations for the required oracles, and analyze the
methods. We also describe several example applications including the free boson and fermion theories, the
φ4-theory, and the massive Yukawa model, all in both equal-time and light-front quantization. Our methods
provide a general-purpose tool for simulating second-quantized Hamiltonians, with optimal or near-optimal
scaling with error and model parameters.

DOI: 10.1103/PhysRevA.104.042607

I. INTRODUCTION

We describe a framework for simulating second-quantized
Hamiltonians on quantum computers. Hamiltonians in
second-quantization are ubiquitous in quantum chemistry,
many-body physics, and quantum field theory, all of which are
target applications for quantum simulation. Fermionic Hamil-
tonians with fixed particle number admit simple encodings in
the Pauli basis [1–3], and these have been the focus of many
quantum simulation experiments to date [4–19]. However,
second-quantized Hamiltonians are sparse—they have only
polynomially many nonzero entries per row or column—as
long as they have polynomially many terms. This makes them
appropriate for simulation using methods developed for sparse
Hamiltonians [20–30].

The second-quantized Hamiltonians we consider are given
as polynomials in ladder operators acting on occupation num-
ber states (Fock states). The main idea is to extend the compact
encoding previously studied in [31–33], which stores only
information about occupied modes in a given Fock state.
The application of sparse simulation techniques to electronic
structure Hamiltonians was previously studied in [34,35], and
these papers use a special case of the compact encoding
(which they call “compressed representation”). In Sec. II B
we will compare the overall cost of simulation using our
algorithm to those of [34,35].

The compact encoding is to be contrasted with direct en-
codings, which store information about all physical modes,
whether they are occupied or not. The Jordan-Wigner and
Bravyi-Kitaev encodings commonly used in quantum al-
gorithms for quantum chemistry are examples of direct
encodings [1–3]. Compact encodings are suitable for Hamil-
tonians that are sparse in the occupation number basis. In a
sparse Hamiltonian, the number of nonzero elements in each
row or column scales polynomially with the problem size, and

therefore polylogarithmically with Hamiltonian dimension.
The compact encoding permits efficient sparsity-based state
preparation and time-evolution methods [31–33].

The methods we develop in this paper are motivated by
simulation of quantum field theory. In particular, we will focus
on the case of Hamiltonians expressed in the plane wave
momentum basis as our main example, since it illustrates
the key techniques of our method. We use the fact that such
Hamiltonians can be expressed as sums of interactions, where
an interaction is a sum of ladder operator monomials that
differ only in their momentum quantum numbers. The sum
within each interaction runs over all assignments of momenta
that conserve the total momentum (see Sec. III C for details).

In Secs. II–VII we choose to define multiparticle states
using the plane wave momentum basis, as is typically done
in quantum field theory, because this example is sufficiently
complex to capture the main considerations. However, our
method extends straightforwardly to Hamiltonians where the
sums within interactions run over quantum numbers other
than plane wave momenta, as long as the number of distinct
interactions in the Hamiltonian is polynomial in the system
parameters (such as momentum cutoffs). These cases include
a wide range of theories in quantum chemistry, condensed
matter physics, and quantum field theory, including basis
light-front quantization [36–38]. How to extend our meth-
ods beyond the plane wave momentum basis is explained in
Sec. VIII.

II. MAIN RESULTS FOR PLANEWAVE
MOMENTUM BASIS

Algorithms for simulating general sparse Hamiltonians ac-
cess the Hamiltonian via oracle unitaries that are queried
(applied) to provide the locations and values of the nonzero
Hamiltonian matrix elements [20–30]. If we want to apply

2469-9926/2021/104(4)/042607(21) 042607-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2778-1703
https://orcid.org/0000-0002-7594-7819
https://orcid.org/0000-0002-8037-3733
https://orcid.org/0000-0002-8344-0532
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.042607&domain=pdf&date_stamp=2021-10-13
https://doi.org/10.1103/PhysRevA.104.042607

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

TABLE I. Glossary of parameter definitions.

Number of spatial dimensions d
Max number of occupied modes I
Max occupancy of a single mode W
Momentum cutoff �

Max incoming lines in any interaction h
Max outgoing lines in any interaction g
Sparsity k
Max-norm of Hamiltonian ‖H‖max

Simulation time t

such algorithms to a second-quantized Hamiltonian in com-
pact encoding, then we have to provide two main additional
components. First, we need to explicitly construct the oracle
unitaries for the specific Hamiltonian of interest, as sequences
of primitive gates. We will show how to do this in Secs. V
and VI, decomposing the oracle unitaries into qubit operations
that are log-local in the problem parameters, which for us will
be momentum cutoffs, since we focus on the example of the
plane wave momentum basis. The log-local operations can
then themselves be decomposed into primitive gates from any
desired gate set with only polynomial overhead.

Second, the general sparse Hamiltonian methods assume
that the oracles act directly upon row and column indices
(encoded in qubit states) of the Hamiltonian [20–30]. We
instead want methods that act directly upon compact-encoded
Fock states, because the physical meaning of such states can
be directly read out, which ultimately permits efficient imple-
mentation of the oracle unitaries as well as of observables.
However, unlike simply labeling the rows and columns of
the Hamiltonian by sequential binary numbers, the set of
bitstrings corresponding to compact-encoded Fock states is
not simple to characterize or enumerate. These bitstrings label
computational basis states that span the subspace of qubit
Hilbert space that the Hamiltonian acts on. Therefore, we
need to show that when we implement oracle unitaries that
act directly on compact-encoded Fock states, the high-level
simulation algorithms [20–30] that use the oracles as their
building blocks will still work. This is explained in Sec. IV.

The overall asymptotic costs of our methods in both qubit
and gate counts are summarized in Table II (in terms of the
parameters defined in Table I), for the example of the plane
wave momentum basis. The details of the costs are as follows.
The number of qubits required to encode a Fock state in
compact encoding is derived in Sec. III A, resulting in the

TABLE II. Summary of qubit and gate count costs for our al-
gorithm, for a second-quantized Hamiltonian H in the plane wave
momentum basis. The parameters are defined in Table I.

Qubits to encode Fock state O(I log(W�d))

Log-local operations for oracle O(Ih + �dg)
Total log-local operations Õ(k‖H‖maxt (Ih + �dg))

expression in (21), which is asymptotically

Q = O

(
I logW + I

d∑
j=1

log
(
�max

j − �min
j

))
, (1)

where I is the maximum possible number of occupied modes
in a Fock state, W is the maximum possible occupation of
any mode, d is the number of spatial dimensions, and �min

j
and �max

j are lower and upper momentum cutoffs in each di-
mension j. Hence fixing |�max

j |, |�min
j | � � for some overall

cutoff� results in the scaling given in Table II. The expression
in (1) assumes that the number of qubits required to encode the
nonmomentum quantum numbers is constant.

In our implementations the cost in log-local gates of
the enumerator oracle [the oracle that gives the locations
of nonzero matrix elements, defined in (52)] asymptotically
dominates the cost of the matrix element oracle [defined in
(53)]. These costs are derived in Secs. V and VI, respectively,
and result in the expressions (92) and (101). The dominant
cost is the former, which is

O(Ih + �dg) (2)

exactly as in Table II, where h is the maximum number of
annihilation operators in any interaction in the Hamiltonian
and g is the maximum number of creation operators in any
interaction in the Hamiltonian.

Finally, if our Hamiltonian is time-independent, then by
using qubitization [29] the total number of oracle queries
required to simulate time evolution is

O

(
τ + log(1/ε)

log log(1/ε)

)
, (3)

where τ = k‖H‖maxt , k is the sparsity of the Hamiltonian H ,
t is the total evolution time, and ε is the error. Multiplying by
the oracle cost (2) gives the overall asymptotic scaling of the
number of log-local gates:

O

[(
τ + log(1/ε)

log log(1/ε)

)
(Ih + �dg)

]
. (4)

If instead our Hamiltonian is time-dependent, then by using
the method of [30] the total number of oracle queries required
to simulate time evolution is

O

(
τ

log(τ/ε)

log log(τ/ε)

)
, (5)

where now τ ≡ k
∫ t
0 ‖H‖maxdt (without loss of generality tak-

ing the starting time to be t = 0). Hence the overall log-local
gate count for our algorithm is

O

[(
τ

log(τ/ε)

log log(τ/ε)

)
(Ih + �dg)

]
. (6)

Suppressing the logarithmic components in either (4) or (6)
gives the expression in Table II.

A. Comparison to direct encoding

Recall that the goal of the compact encoding is to minimize
the number of qubits required to simulate a second-quantized

042607-2

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

Hamiltonian. Direct encodings, which explicitly store infor-
mation about every mode including the unoccupied modes,
will require more qubits but afford simpler operations, as
discussed in the introduction.

In direct encoding we store the occupation of every mode
in a Fock state. Hence each mode can be assigned to a specific
register of qubits, so it is not necessary to store the information
identifying the mode in the qubit state. Therefore, the number
of qubits required for a single mode is just O(logW), where
as above W is the single-mode occupation cutoff. This is
multiplied by the number of modes to give the total number of
qubits required for the direct encoding:

O

(
(logW)

d∏
j=1

(
�max

j − �min
j

))
, (7)

where the number of modes is O(
∏d

j=1(�
max
j − �min

j)) as-
suming the numbers of species and nonmomentum quantum
numbers are constant. In other words, compared to the number
(1) of qubits for the compact encoding, the direct encoding
has linear rather than logarithmic scaling with the number of
modes. Hence, when the maximum number I of distinct occu-
pied modes is much smaller than the total number of modes,
the compact encoding will be asymptotically advantageous in
number of qubits.

The costs of oracle implementations for the direct encoding
were evaluated in Sec. I.B of the Supplemental Material to
[39]. As with the compact encoding, the cost of the enumera-
tor oracle dominates, coming out to

O((h + g) logW) (8)

Toffoli gates (using our notation). As expected, in typical
cases this will be smaller than the cost (2) of the enumerator
oracle in compact encoding, since it could be of the same
order only if the maximum occupation W of a single mode
is exponentially larger than I , the number of distinct occupied
modes, and �, the momentum cutoff.

These comparisons confirm the expected relation between
direct and compact encodings: they form a space-time trade-
off, with the direct encoding using more space to obtain
shorter circuits, and the compact encoding saving space at
the expense of longer circuits. Note, however, that both are
efficient in the sense that their costs in both space and time
are at worst polynomial in the problem parameters. The dif-
ferences are in which scalings are logarithmic (or constant)
versus polynomial.

B. Comparison to prior work on
electronic-structure Hamiltonians

Previous work has demonstrated how to implement
sparsity-based simulation of the electronic-structure problem
in second quantization [34] and the configuration-interaction
(CI) representation [32,35]. These result in gate counts of
Õ(N5t) and Õ(η2N3t), respectively, where N is the number
of orbitals, η is the number of electrons, and t is the simu-
lation time. The dependence on error is suppressed in these
expressions but is polylogarithmic in the inverse error.

We can compare our method to [32,34,35] by applying it to
the electronic-structure problem. In this case, we can replace

I (the maximum possible number of occupied modes) by η.
The total number of modes in our method is O(�d), so we
may replace �d by N in our asymptotic expressions. If we
apply our method to the CI-matrix, Eq. (20) in [35] gives the
sparsity as O(η2N2), and the discussion following Eq. (73) in
[35] shows that ‖H‖max is polylogarithmic in N . Finally, g and
h are both two for the electronic-structure problem.Making all
of these replacements in (4) and suppressing polylogarithmic
factors gives

Õ(η2N2t (η2 + N2)) = Õ(η2N4t). (9)

This is better than the scaling for the second-quantized algo-
rithm of [34], but worse by a factor of N than the CI algorithm
of [35]. The extra factor of N essentially comes from the fact
that the algorithm of [35] uses the Slater rules directly, which
our algorithm does not take into account.

This is illustrative of what we expect to be a general pat-
tern: while our algorithm is applicable to a broad range of
second-quantized Hamiltonians, if special structure is known
about some particular Hamiltonian it may be possible to
design algorithms that are specific to that Hamiltonian and
outperform ours. An interesting question for future work is to
what extent it is possible to design general-purpose algorithms
that are able to naturally take advantage of such problem-
specific structure.

III. COMPACT ENCODING AND HAMILTONIANS

In this section, we define the compact encoding, which
maps Fock states to qubit states, and the input model for our
second-quantized Hamiltonians. After this section, we will of-
ten say “Fock state” when we really mean “compact-encoded
Fock state,” since the latter is cumbersome. There will usually
be no ambiguity in this, since qubit operators can act only
upon compact-encoded Fock states, but whenever there is
ambiguity we will explicitly state which we are talking about.

A. Compact encoding of Fock states

Throughout, when we refer to momenta we will mean
dimensionless momenta, denoted by n. These are related to
the dimensionful momenta p as

p j = 2π

Lj
n j, (10)

where Lj is the box size for each component j and we take
h̄ = 1. We also impose cutoffs � on the momenta, i.e., each
component n j must satisfy

�min
j � nj � �max

j (11)

for some cutoffs

� = ((
�min

1 ,�max
1

)
,
(
�min

2 ,�max
2

)
, . . . ,

(
�min

d ,�max
d

))
,

(12)

where d is the number of spatial dimensions. In equal-time
quantization, it is generally the case that each �min

i < 0 and
each �max

i > 0, while in light-front quantization there is some
particular axis z such that �min

z > 0 (see Sec. III B for details
of light-front quantization).

042607-3

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

A Fock state in compact encoding has the form

|F〉 = |(q1,n1,w1), (q2,n2,w2), . . . , (qJ ,nJ ,wJ)〉, (13)

where each wi is the occupancy of the mode qi with momen-
tum ni [33]. qi is a collective label that specifies the particle
up to its momentum; for example, qi might determine whether
the particle is a boson or a fermion [40], what species of
boson or fermion it is (if multiple are present in the theory),
and whether it is a particle or an antiparticle, in addition to
properties like spin, flavor, color, etc. We store only occupied
modes, so each occupancy wi � 1.

Example III.1. Suppose we have a 1 + 1D theory contain-
ing bosons and fermions whose only quantum number is
momentum. We can let qi = 0 label bosons, and qi = 1 label
fermions (and qi = 2 label antifermions, but for simplicity we
will not include these in the examples below). Then a few
examples of compact-encoded Fock states are

|(0, 2, 1)〉, (14)

which encodes one boson with momentum 2;

|(0, 2, 2)〉 (15)

encodes two bosons with momentum 2;

|(0, 2, 3), (1, 5, 1)〉 (16)

encodes three bosons with momentum 2 and one fermion with
momentum 5; and

|(0, 2, 3), (0, 3, 2), (1, 5, 1)〉 (17)

encodes three bosons with momentum 2, two bosons with mo-
mentum 3, and one fermion with momentum 5. If our theory
also contained spin, for example, then we would expand the
qi labels to include this: e.g., qi = {1,↑} means fermion with
spin up, so

|({1,↑}, 2, 1), ({1,↓}, 2, 1)〉 (18)

encodes one fermion with momentum 2 and spin up, and one
fermion with momentum 2 and spin down.

We compact-encode a Fock state (13) in a qubit register of
the form

|X1,X2, . . . ,XI〉, (19)

where I is the maximum possible number of occupied modes,
and each Xi is a mode register capable of encoding a single
mode (qi,ni,wi). For a Fock state containing J � I occupied
modes we use the first J of the Xi to encode the modes. The
encoded modes are ordered primarily by qi, and secondarily
by momentum. Note that in equal-time quantization the actual
number of occupied modes can be unbounded, so we would
have to impose a cutoff I by hand. In light-front quantization
I is finite and determined by the harmonic resolution [33]. In
chemistry, the particle number (i.e., the total occupation) is
generally fixed, so I is equal to the particle number.

Given some maximum number I of occupied modes, ei-
ther fixed by the theory or imposed by hand, we have to
encode I mode registers. Each mode register must encode
occupation of the mode (which we take to be upper bounded
by some cutoff W), the nonmomentum quantum numbers of
the mode (which we assume to take a constant number of

possible values, and hence to require some fixed number Nq

of qubits), and the momentum of the mode. For d spatial di-
mensions indexed by j, each component of momentum takes
�max

j − �min
j + 1 values, so the momentum of a mode can be

encoded in
∑d

j=1 �log2(�max
j − �min

j + 1)� qubits. Hence the
total number of qubits required to encode a mode is

Nq + �log2W � +
d∑
j=1

⌈
log2

(
�max

j − �min
j + 1

)⌉
, (20)

so the total number of qubits to encode a Fock state that
contains at most I occupied modes is

Q = I

(
Nq + �log2W �

+
d∑
j=1

⌈
log2

(
�max

j − �min
j + 1

)⌉)
. (21)

If for some dimension j, �max
j and �min

j are both posi-
tive (or both negative), the number of occupied modes I is
bounded by some fraction of the total momentum in that
dimension. If this is true only for a single dimension (i.e., all
other dimensions can have both positive and negative momen-
tum), then this case corresponds to light-front quantization
[33]. Without loss of generality, suppose �min

1 > 0. Let K de-
note the total momentum in dimension 1. In this case, the max-
imum total number I of occupied modes in any Fock state is

I =
⌊

K

�min
1

⌋
, (22)

since every particle must have momentum at least �min
1 in

dimension 1. The Fock state satisfying (22) is one containing
	K/�min

1
 modes, all with momentum �min
1 or �min

1 + 1 in
dimension 1 such that the total momentum in dimension 1
is K , but with distinct other quantum numbers [33]. In the
special case where �min

1 = 1, (22) simplifies to show that the
maximum number of occupied modes is identical to the total
momentum along axis 1.

B. Special case: Light-front quantization

Although the compact encoding is agnostic to the form of
the theory to which it is applied, it turns out to be particularly
advantageous for relativistic field theories in the light-front
(LF) formulation [33,37,41–43]. Here we review light-front
quantization and explain how compact encoding applies in
this case. We will later return to the light-front example to
illustrate the methods.

We can think of LF quantization as taking the perspective
of a massless observer moving at the speed of light in some
direction, which we take to be the −z direction. Thus the di-
mensionless discretized momenta along this axis take strictly
positive values nz ∈ [1,K], where K is the total dimensionless
LF momentum of the Fock state (also called the harmonic
resolution). Importantly, this is also true for massless particles
[43]. In other words,

�min
1 = 1, �max

1 = K, (23)

where we take axis 1 to correspond to the z direction. Also,
since it is the total LF momentum, K automatically imposes

042607-4

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

a cutoff on the number of excitations in a mode (W = K),
as well as on the number of occupied modes in a Fock state
(I = √

2K for d = 1 and I = K for d � 2) [33]. The momenta
along axes transverse to the light-front direction have the same
properties as in equal-time quantization.

The above points mean that for light-front quantization the
general expression (21) for qubit count in compact encoding
specializes to

QLF,d = 1
compact =

√
2K (Nq + 2�log2 K�) (24)

for one spatial dimension, or

QLF,d � 2
compact =K

(
Nq + 2�log2 K�

+
d∑
j=2

⌈
log2

(
�max

j − �min
j + 1

)⌉)
(25)

for d > 1 spatial dimensions.
We can compare this to the number of qubits required for

the direct encoding, as a special case of the general compari-
son between the two encodings given above. The total number
of modes is

K

(
d∏
j=2

(
�max

j − �min
j + 1

))
q, (26)

where q = O(2Nq) is the number of possible values of the
intrinsic quantum numbers, the number of possible values of
the light-front momentum is K , and the number of possible
values of the transverse momenta is

∏d
j=2 (�

max
j − �min

j + 1).
In a direct encoding we would encode the occupancy of each
of these modes in �log2 K� qubits (since K is an upper bound
on the occupancy), so the total number of qubits for the direct
encoding is

QLF
direct = K

(
d∏
j=2

(
�max

j − �min
j + 1

))
q �log2 K�. (27)

In other words, for �⊥ an upper bound on the transverse
momentum cutoffs, up to constant and logarithmic factors the
number of qubits for the direct encoding is �̃(K (�⊥)d−1),
while the number of qubits for the compact encoding is �̃(K).
This explains why LF quantization motivates development of
compact encoding methods. In Sec. VII, we will analyze our
oracle constructions for a number of field theories in both
equal-time and light-front quantization.

C. Hamiltonian

A normal-ordered, second-quantized Hamiltonian is com-
posed of terms with the form

βa†i a
†
j · · · a†kalam · · · an, (28)

where β is a coefficient, a† and a are fermionic or bosonic cre-
ation and annihilation operators, and i, j, . . . , k, l,m, . . . , n
are labels for the particles being created and annihilated.
In the remainder of this paper, we will write creation and

FIG. 1. Diagram of the example three-point interaction (30),
which describes annihilation of a pair of particles of type ‘1’ to form
a single particle of type ‘2’ (we read time from left to right).

annihilation operators as

a(†)qi (ni), (29)

where ni is the momentum of the created or annihilated par-
ticle and qi is a collective label for its remaining quantum
numbers (including species), as in the previous section.

We may visualize a term like (28) as a diagram with an
incoming line for each annihilation operator and an outgoing
line for each creation operator. We define an interaction to
be a sum of such terms, with the momenta varying over all
momentum-conserving combinations, but the other properties
of the incoming and outgoing particles fixed. Thus we can
visualize an interaction as a diagramwithout momentum spec-
ifications. An interaction whose diagram contains f external
lines is called an f -point interaction. In the remainder of
the paper, when we refer to incoming or outgoing particles,
we will mean the incoming or outgoing lines of the diagram
of an interaction, which represent annihilation or creation
operators, respectively. Note that although a diagram of this
kind resembles a Feynman diagram, it does not represent a
matrix element calculation, but instead is just a visualization
of a collection of ladder operator monomials.

Example III.2. In a 1 + 1D theory consider the three-point
interaction ∑

n1,n2,n3

a†2(n3)a1(n2)a1(n1), (30)

where the sum varies over all momenta such that n1 + n2 =
n3. This interaction describes annihilation of a pair of particles
of type ‘1’ to form a single particle of type ‘2’, and is repre-
sented by the diagram shown in Fig. 1. So, for example, one
possible instance of the interaction would map two particles
of type ‘1’, both with momentum 2 (i.e., n1 = n2 = 2), to a
particle of type ‘2’ with momentum (i.e., n3 = 4). We can
represent these as Fock states in compact encoding as in (13):

|(‘1’, 2, 2)〉 → |(‘2’, 4, 1)〉, (31)

where we recall that the first entry in each tuple encodes qi (in
this case ‘1’ or ‘2’), the second entry encodes the momentum,
and the third entry encodes the occupation. If instead the in-
coming momenta were n1 = 1 and n2 = 3, then the incoming
and outgoing Fock states would instead be represented as

|(‘1’, 1, 1), (‘1’, 3, 1)〉 → |(‘2’, 4, 1)〉. (32)

If another, noninteracting mode were present (say, two parti-
cles of type ‘2’ with momentum 5), then we would have

|(‘1’, 1, 1), (‘1’, 3, 1), (‘2’, 5, 2)〉 → |(‘2’, 4, 1), (‘2’, 5, 2)〉,
(33)

042607-5

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

where the additional mode (‘2’, 5, 2) representing the nonin-
teracting particles is present on both sides. Note that since all
momenta are positive in the above examples, they represent
possible interaction instances in a 1 + 1D light-front field
theory.

We can formally define an interaction as follows:
Definition 1. An interaction is specified by the set

{(q1, q2, . . . , qg), (qg+1, qg+2, . . . , q f)}, (34)

together with a coefficient function β that maps sets of mo-
menta for the incoming and outgoing particles to coefficient
values. The q1, q2, . . . , qg specify the outgoing particles, and
qg+1, qg+1, . . . , q f specify the incoming particles, up to their
momenta.

For an interaction as in Definition 1, the corresponding
interaction Hamiltonian is

HI ≡
∑
{ni}

β({ni})
(

g∏
i=1

a†qi (ni)

)(
f∏

i=g+1

aqi (ni)

)
, (35)

where the sum runs over all sets {ni} that conserve total mo-
mentum, i.e., such that

g∑
i=1

ni =
f∑

i=g+1

ni. (36)

Any second-quantized Hamiltonian may be expressed as a
sum of interaction Hamiltonians HI of the form (35).

Notice that since the Hamiltonian must be Hermitian, for
each interaction the Hamiltonian must also contain its Her-
mitian conjugate. For example, a Hamiltonian containing the
interaction in Example III.2 [Eq. (30)] must also contain the
interaction ∑

n1,n2,n3

a†1(n1)a
†
1(n2)a2(n3), (37)

where again the sum varies over all momenta such that n1 +
n2 = n3.

In this paper, we will assume that the Hamiltonian, and
thus the interactions included in it, are fixed up to momentum
cutoffs. Each interaction sets particular values of f and g, so f
and g can be treated as constants. We will focus on the scaling
of our algorithms with momentum cutoffs, which specify the
resolution at which we study the given Hamiltonian.

IV. SPARSE HAMILTONIANS

A Hamiltonian written as a matrix in a particular basis
is said to be sparse if the number of nonzero elements in
each row (or column) is polylogarithmic in the total Hilbert
space dimension. Similarly, the maximum number of nonzero
elements in any row (or column) is called the sparsity of
the Hamiltonian. In this section, we first review methods for
simulating sparse Hamiltonians, then describe how we can use
these methods to act on Fock states in the compact encoding
as described in Sec. III A, and finally analyze the sparsity of
interaction Hamiltonians of the form (35).

A. Sparse Hamiltonian simulation review

Aharonov and Ta-Shma presented the first quantum algo-
rithm for simulating sparse Hamiltonians in 2003 [20], while
the same year Childs et al. demonstrated quantum advantage
with respect to an oracle in a similar setting [21]. Subsequent
works have extended and improved these results [22–30].
These methods are based on accessing the sparse Hamilto-
nians via oracle input models.

Early results in sparse Hamiltonian simulation were based
on product formulas [20,22,25,26] or quantum walks [23,24].
The product formula-based methods ultimately achieved op-
timal dependence on the error ε of the simulation [25,26],
while the quantum walk based methods achieved optimal
dependence on the sparsity and simulation time [24] (these
optimal scalings are discussed below). Then Berry et al. used
a quantum walk structure with techniques borrowed from the
product formula approaches to obtain near optimal depen-
dence on all parameters [27], and a subsequent paper extended
and improved these results for time-dependent Hamiltonians
[30]. In specific cases, related methods that depend only on the
interaction picture or off-diagonal norms of the Hamiltonian
may be advantageous, but may also require extra work to cast
the Hamiltonian from the sparse oracle input model to the
required forms [44–46]. Finally, Low and Chuang developed
a technique based on quantum signal processing called qubiti-
zation that achieved fully optimal scaling with all parameters
for the time-independent case [28,29].

Recent works on sparse Hamiltonian simulation specify the
Hamiltonian via a pair of oracles, which may be expressed as
unitary operations. The first oracle is typically defined in the
quantum walk based approaches as follows:

OF |x, i〉 = |x, yi〉, (38)

where for a Hamiltonian H with sparsity k, i ∈ [k] ≡
{0, 1, 2, . . . , k − 1}, and yi is the index of the ith nonzero entry
in row x of H . We refer to OF as the “enumerator oracle.”
The basic quantum walk step developed in [23,24] underlies
the near-optimal algorithms of [27,30] as well as the optimal
algorithm obtained by qubitization [29], so these algorithms
use the form of the enumerator oracle given in (38).

The product formula based methods [20,22,25,26], on the
other hand, typically define the enumerator oracle as follows:

O′
F |x, i, 0〉 = |x, i, yi〉, (39)

i.e., the index i is saved rather than being uncomputed on the
way to computing yi. This distinction between uncomputing
or saving the index i appears harmless, but we will see shortly
that for the variant of the oracles we will require, some care
is needed to properly employ OF in order to obtain the opti-
mal scaling offered by qubitization [29] or the near-optimal
algorithm for time-dependent Hamiltonians [30].

The second oracle (which is common to all of the methods)
calculates matrix elements of the Hamiltonian given indices
for entries in the Hamiltonian:

OH |x, y, 0〉 = |x, y,Hxy〉. (40)

The 0 on the left-hand side above denotes a register contain-
ing the number of qubits necessary to store the value of the
entry Hxy in binary form with the desired precision. Note that
although OH is defined for arbitrary matrix elements, it is

042607-6

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

typically applied only to pairs of indices (x, yi) corresponding
to nonzero matrix elements (i.e., generated by the enumerator
oracle), and this will always be the case for us, which simpli-
fies the construction (see Sec. VI, and the proof of Lemma 1
in the next subsection). We refer to OH as the “matrix element
oracle.”

To simulate evolution for time t under a time-independent
Hamiltonian H with sparsity k, qubitization uses

O

(
τ + log(1/ε)

log log(1/ε)

)
(41)

oracle queries [29, Corollary 15], where

τ ≡ k‖H‖maxt (time-independent H) (42)

and ‖H‖max (the max-norm of H) is defined to be the max-
imum magnitude of any entry in H . This scaling is optimal
in the error ε [25, Theorem 2.2], and in the simulation time
t and sparsity k [24]. The optimal scaling with the simulation
time is set by the no fast-forwarding theorem, which states that
evolution under a general Hamiltonian for a time t cannot be
simulated using a number of operations that is sublinear in t
[22, Theorem 3] (this can be violated for some special types
of Hamiltonians [47]).

To simulate evolution for a time T under a time-dependent
Hamiltonian H (t), the method of [30] requires

O

(
τ

log(τ/ε)

log log(τ/ε)

)
(43)

oracle queries (note that (43) is a product, whereas (41) is a
sum), with τ now defined by

τ ≡ k
∫ T

0
‖H (t)‖max dt (time-dependent H), (44)

where without loss of generality we take the initial time to
be t = 0. In other words, the dependence on H (t) obtained
in [30] is given by the L1-norm of ‖H (t)‖max over the time
interval [0,T]. This satisfies the intuitive notion that the cost
of simulating H (t) should depend instantaneously only on
the value of H at the current time. For comparison, previ-
ous works on the time-independent case can generalize to
time-dependent Hamiltonians, but with query complexity that
scales instead according to maxt∈[0,T]‖H (t)‖max (i.e., with the
L∞-norm of ‖H (t)‖max over the time interval [0,T]) [30].

The method of [30] uses a rescaling of the Hamiltonian
depending on its instantaneous max-norm, which is accessed
via two additional oracles:

Onorm|t, z〉 = |t, z ⊕ ‖H (t)‖max〉,
(45)

Ovar|σ, z〉 = |σ, z ⊕ f −1(σ)〉,
where

f (t) ≡
∫ T

0
�(t) dt (46)

and �(t) is any efficiently computable tight upper bound on
‖H (t)‖ (see [30, Sec. 4]). As noted in [30, Sec. 4.2], f −1 can
be computed to precision δ using O(log(T/δ) queries to f , so
as long as ‖H‖max(t) is efficiently computable for any t , we
can efficiently implement the oracles (45).

These best known methods for simulation of sparse Hamil-
tonians have in common the basic step that they use to access
the Hamiltonian. This step is implementation of an isometry
typically labeled T , which was originally proposed in [23] as
a component of a quantum walk, and first used explicitly in a
Hamiltonian simulation technique in [24]. In our notation, T
may be written

T =
2n∑
x=1

|x〉a|φx〉b,c〈x|a, (47)

where

|φx〉b,c ≡
√

r

‖H‖1
2n∑
y=1

√
H∗
xy|y〉b|0〉c

+
√
1 − rσx

‖H‖1 |ζx〉b|1〉c,
(48)

and a and b label registers of the same number of qubits, and
c labels a single ancilla qubit (we will typically suppress these
subscripts when doing so leads to no ambiguity). Here r ∈
(0, 1] is a parameter,

σx ≡
2n∑
y=1

|Hxy|, (49)

and |ζx〉 is some linear combination of the |y〉. A careful reader
may note that T as defined in (47) is not unitary. This is
resolved by letting (47) define only the action on a state of
the form |x〉|0〉,

|x〉a|0〉b,c T−→ |x〉a|φx〉b,c, (50)

and the action on states not of this form can be anything as
long as the overall operation is unitary [24].

The final, single ancilla qubit in (48) (i.e., the qubit labeled
c) is present in order to ensure that the last term (proportional
to |ζx〉|1〉) is orthogonal to any of the first set of terms for any
x, which is required by Eq. (25) in [23]. Note that the final
terms need not be orthogonal to each other for distinct values
of x, even though a superficial reading of [23] might suggest
otherwise. In fact, it is the final term in |x〉|φx〉 (rather than just
|φx〉) that corresponds to the state |⊥ j〉 in [23]: this term must
therefore take orthogonal values for distinct values of x [see
Eq. (24) and the corresponding discussion in [23]], but this is
trivially satisfied, since the final term in |x〉|φx〉 is proportional
to |x〉|ζx〉|1〉.

A complete description of the various ways that the isom-
etry T can be used to construct Hamiltonian simulation
algorithms is beyond the scope of this paper, but it was
originally introduced in order to construct the quantum walk
operator

U = iS(2TT † − 1) (51)

in [23], where S is the operator that swaps registers a and
b, and also swaps the ancilla qubit c with an additional an-
cilla qubit initially in the |0〉 state. Repeatedly applying the
quantum walk step U yields a discrete approximation of the
Hamiltonian evolution, up to unitary equivalence [23,24].

042607-7

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

B. Sparse Hamiltonian simulation for compact-encoded
Fock states

In the sparse simulation methods above, the oracles act
upon states that encode row and column indices of the Hamil-
tonian. We instead want to use oracles that act upon Fock
states (recall that throughout, when we say “Fock states”
we mean “compact-encoded Fock states”). The best sparse
Hamiltonian simulation methods access the Hamiltonian via
the operator T [defined in (47)], as discussed in Sec. IVA.
Therefore, we want to use our new oracles to implement a
version of T that acts on Fock states rather than on row
indices. This will allow the sparse simulation methods to be
implemented directly on Fock states.

One complication is the fact that for a k-sparse Hamilto-
nian, there are at most k nonzero entries in any row or column,
but in general there can be fewer than k in some rows and
columns. In such a row, some of the values of i, which runs
from 0 to k − 1 and is supposed to index the nonzero entries
in a given row, cannot actually index nonzero entries, because
there aren’t enough nonzero entries in the row. There is no ob-
vious natural mapping from these unused values of i to matrix
entries. We will see that this situation arises very commonly
for interaction Hamiltonians. We will define oracles that act
on Fock states in a way that resolves this issue, and show that
we can use these to recover the desired building blocks for the
sparse simulation algorithms described above. In Secs. V and
VI, we will then explicitly construct implementations of these
oracles.

Let |F〉 be a Fock state, and let H be a k-sparse Hamilto-
nian. Then there are at most k states |F ′

i 〉 whose Hamiltonian
matrix elements with |F〉 are nonzero: assume that they are
indexed by elements of some set IF ⊆ [k]. Let OF and OH

now define oracles that act as follows:

OF |F〉|0〉|i〉 = |F〉| ′(F, i)〉|a(F, i)〉, (52)

OH |F〉|F ′〉 = |F〉|F ′〉|〈F ′|H |F〉〉, (53)

where i ∈ [k] and the functions ′(F, i) and a(F, i) are de-
fined by

 ′(F, i) =
{
F ′

i if i ∈ IF ,

F if i /∈ IF ,
(54)

a(F, i) =
{
0 if i ∈ IF ,

i if i /∈ IF .
(55)

Without loss of generality, let F ′
0 = F whenever the matrix

element of F with itself is nonzero.
Thus the enumerator oracle OF may be alternatively ex-

pressed as

OF |F〉|0〉|i〉 =
{|F〉|F ′

i 〉|0〉 if i ∈ IF ,

|F〉|F〉|i〉 if i /∈ IF .
(56)

Next, we define an analog of |φx〉 (48) in terms of Fock
states:

|φF 〉 ≡
√

r

‖H‖1
∑
|F ′〉

√
〈F ′|H |F〉|F ′〉|a(F,F ′)〉|0〉

+
√
1 − rσF

‖H‖1 |ζF 〉|1〉,
(57)

where a(F,F ′) is some binary number that is zero when
〈F ′|H |F〉 �= 0, σF is defined analogously to σx,

σF ≡
∑
|F ′′〉

|〈F |H |F ′′〉|, (58)

and |ζF 〉 is a linear combination of states of the form

|F ′′〉|b〉, (59)

where |b〉 is some binary number encoded in the same
register as a(F,F ′). All of these components will be deter-
mined precisely by the algorithm for constructing |φF 〉 below.
The fact that a(F,F ′) = 0 whenever 〈F ′|H |F〉 �= 0 ensures
that for

Q(F) ≡ {|F ′〉 | 〈F ′|H |F〉 �= 0}, (60)

we may rewrite (57) as

|φF 〉 =
√

r

‖H‖1
∑

|F ′〉∈Q(F)

√
〈F ′|H |F〉|F ′〉|0〉|0〉

+
√
1 − rσF

‖H‖1 |ζF 〉|1〉. (61)

Using |φF 〉, we define a version of T for Fock states:

T ≡
∑
|F〉

|F〉|φF 〉〈F |. (62)

In Lemma 1 below we show how T can be constructed using
O(1) queries to the oracles OF and OH as defined by (52) and
(53). First, however, we will show that T as defined by (62)
may replace the original version of T in (47), and the resulting
operator acts on Fock states but otherwise reproduces all of the
properties of the basic step used in [24].

The terms in the first line of (61) are exact analogs of the
corresponding terms in (48), the definition of |φx〉 used to
construct the standard operator T as used in [24,27,29,30].
The only difference is the inclusion of an additional ancilla
register in state |0〉 instead of just the single ancilla qubit in
state |0〉.

The second line in (61) is also analogous to the correspond-
ing term in (48), but here |ζF 〉 includes the ancilla register
|b〉 [see (59)] in addition to the register encoding Fock states,
whereas |ζx〉 in (48) is a linear combination of row indices
only. However, in order to satisfy the orthogonality conditions
discussed in the final paragraph of Sec. IVA, we require
only that for any F , F ′, and F ′′, |ζF 〉|1〉 is orthogonal to
|F ′′〉|a(F ′,F ′′)〉|0〉; this is satisfied because of the final single
qubit. These are the only conditions that T must satisfy [24].

Lemma 1 (Construction of T). Given an input state |F〉,
the operator T as defined in (62) can be implemented using
O(1) queries to the oracles OF and OH as defined in (52) and
(53). (This Lemma closely follows Lemma 4 in [24]).

Proof. The operator T maps a Fock state |F〉 to |F〉|φF 〉,
for |φF 〉 as defined by (61). Explicitly including ancillas, we
assume an input state of the form

|F〉|0〉|0〉|0〉. (63)

042607-8

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

We map this to |F〉|φF 〉 as follows:
(1) Prepare a uniform superposition of the indices i =

1, 2, . . . , d as

1√
d

d∑
i=1

|F〉|0〉|i〉|0〉. (64)

(2) Apply OF as defined in (52) to the first three registers,
obtaining

1√
d

d∑
i=1

|F〉| ′(F, i)〉|a(F, i)〉|0〉. (65)

(3) Controlled on a(F, i) = 0, apply OH as defined in
(53) to the first two registers, to calculate 〈F ′

i |H |F〉 in an
ancilla register that is initially |0〉 [recall that a(F, i) = 0 if
and only if 〈F ′

i |H |F〉 �= 0]. Then, controlled on the result-
ing value 〈F ′

i |H |F〉, rotate the single ancilla qubit (the final
register) as

|0〉 �→
√
d
r〈F ′

i |H |F〉
‖H‖1 |0〉 +

√
1 − d

r|〈F ′
i |H |F〉|

‖H‖1 |1〉. (66)

Finally, uncompute the ancilla register encoding 〈F ′
i |H |F〉

using another controlled query to OH . This step is identical
to the corresponding step in the method described in the proof
of Lemma 4 in [24].

To obtain the full state after these steps are complete, we
insert (66) into (65), giving

d∑
i=1

√
r〈F ′

i |H |F〉
‖H‖1 |F〉| ′(F, i)〉|a(F, i)〉|0〉

+
d∑
i=1

√
1

d
− r|〈F ′

i |H |F〉|
‖H‖1 |F〉| ′(F, i)〉|a(F, i)〉|1〉.

(67)

Using the fact that when 〈F ′
i |H |F〉 �= 0, we have ′(F, i) =

F ′
i and a(F, i) = 0 [see (54) and (55)], we can rewrite the

above expression as

|F〉
(√

r

‖H‖1
∑

|F ′〉∈Q(F)

√
〈F ′|H |F〉|F ′〉|0〉|0〉

+
d∑
i=1

√
1

d
− r|〈F ′

i |H |F〉|
‖H‖1 | ′(F, i)〉|a(F, i)〉|1〉

)
.

(68)

Thus as noted in [24], the expression in parentheses in (68) is
equal to |φF 〉 as given by (61), for |ζF 〉 given by

|ζF 〉 = 1√
1 − rσF

‖H‖1

×
d∑
i=1

√
1

d
− r|〈F ′

i |H |F〉|
‖H‖1 | ′(F, i)〉|a(F, i)〉. (69)

Hence, we have implemented T using one query to OF and
two queries to OH , as in [24]. �

In Secs. V and VI we describe how to implement OF and
OH , respectively, in the compact mapping, for general inter-
actions as described in Definition 1. These implementations,
together with the construction in Lemma 1, give us access to
the optimal sparse Hamiltonian simulation technique afforded
by qubitization [29], as well as the other nearly optimal tech-
niques [27,30].

In this paper, we focus on the application to simulating time
evolution, which is the goal of all of the sparse simulation
papers we have cited [20–30]. A recent paper by some of the
authors of the present work [39] demonstrated how to approx-
imate ground state energies of sparse Hamiltonians using an
extension of the variational quantum eigensolver (VQE), a
hybrid quantum-classical algorithm that requires shorter cir-
cuits and is more noise-resilient than quantum algorithms for
simulating time-evolution [6]. Fock state oracles of the forms
given in (52), (53) apply in this setting, which would allow
us to implement VQE for second-quantized Hamiltonians in
compact encoding. The measurement scheme is given in [39],
and for an ansatz we could for example implement a version of
Unitary Coupled Cluster [48] via oracle-based time evolutions
generated by the Hamiltonian terms.

Because of the complexity of implementing the oracles,
which we will present below in Secs. V and VI, the circuit
depths required for such an algorithm will be substantially
longer than those used in VQE implementations appropriate
for existing quantum computers. Hence, they will require at
least heavily error-mitigated or hardware-improved devices,
and possibly fault-tolerance. However, sparse VQE will still
become possible before simulation of time-evolution, because
it requires only a constant number of oracle queries (at most
six [39]) per variational circuit, whereas simulation of time-
evolution requires numbers of oracle queries that scale with
the problem parameters, such as in (41) or (43).

C. Sparsity of general interactions in the Fock basis

For the simulation methods described above to be effi-
cient, we require the interactions to be sparse. Consider an
interaction specified as in (34), in d dimensions with cut-
offs as in (12). The corresponding interaction Hamiltonian is
given by (35).

To obtain an upper bound on the sparsity we may as-
sume that the f − g incoming particles in the interaction may
be taken from any of the modes in the input state (recall
that f is the total number of external lines in the interaction,
and g is the number of outgoing lines). In general, this up-
per bound is not tight, because it requires all modes in the
input state to be the same up to momentum and to match all
incoming lines in the interaction, but it will suffice to show
that the sparsity is polynomial in the momentum cutoffs. For
I the maximum number of modes in the input state (as in
Sec. III A), this upper bound is((

I
f − g

))
= O(I f−g), (70)

where the left-hand side denotes I choose f − g with re-
placement. As discussed in Sec. III C, the intrinsic quantum
numbers of the outgoing particles are fixed by the interac-

042607-9

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

tion, but their momenta can take any values consistent with
total momentum conservation. For simplicity, we may upper
bound this by counting all outgoing momentum assignments
consistent with the cutoffs, of which there are

O

(
d∏
j=1

(
�max

j − �min
j

)g−1

)
, (71)

since we assign a momentum to each of the g outgoing parti-
cles, but one of these is fixed by momentum conservation.

Hence, an upper bound on the total number of connected
states to any given initial state under the interaction, and thus
on the sparsity, is the product of (70) and (71):

k � O

(
I f−g

d∏
j=1

(
�max

j − �min
j

)g−1

)
� O

(
�d (f−1)

max

)
. (72)

The second upper bound is obtained by replacing I with the
total number of modes as a function of �max, the maximum
momentum cutoff. This illustrates that even in this worst case,
the sparsity is polynomial in the momentum cutoffs, for fixed
dimension d and number f of external lines in the interaction.
The number of qubitsQ is linear in I up to logarithmic factors,
so assuming I is polynomial in the momentum cutoffs, Q
is also polynomial in the momentum cutoffs, and thus the
sparsity is also polynomial in Q.

V. ENUMERATOR ORACLE

In this section, we describe how to efficiently implement
the oracle OF , whose action is given by (52). In the first
subsection, we describe some examples that illustrate all of
the main techniques required for the general method. In the
second subsection, we describe the general method. This de-
scription refers extensively to the details explained in the
examples in the first subsection, so we strongly encourage the
reader to begin with these. Finally, in the third subsection we
analyze the general method.

A. Examples

For an input state |F〉|i〉, where |F〉 is some (compact-
encoded) Fock state and i ∈ [k] for sparsity k, the enumerator
oracle’s action should be as follows: in an ancilla register,
compute |F ′

i 〉, the ith Fock state whose matrix element with
|F〉 is nonzero, and also uncompute |i〉. Note that this action
is assuming that i does in fact index a nonzero matrix element
(see Sec. IV); the later examples will illustrate the possible
situations where this may not be the case.

Example V.1. Consider a boson field on which our interac-
tion is the number operator,

HI =
∑
n

a†(n)a(n). (73)

In the notation of Definition 1, if we let ‘0’ denote “boson,”
we would express this interaction as {(‘0’), (‘0’)} (meaning
one boson in, one boson out), and the coefficient function
is just β(n) = 1. The interaction Hamiltonian HI maps any
Fock state to itself, rescaled by a coefficient given by the
total number of particles. Hence, this interaction is diagonal
and one-sparse (it maps each Fock state to at most one other

Fock state). Therefore, for any input |F〉|i = 0〉 (since i takes
only one value for a one-sparse interaction), the output of the
enumerator oracle is just |F〉,

OF |F〉|0〉 = |F〉|F〉. (74)

Comparing this expression to (52), the reader will notice that
we are suppressing the output |a(F, i)〉, but for the current
example a(F, i) is always 0.

Example V.2. Let us still consider a boson field, but now
with the three-point interaction

HI =
∑
n1,n2

a†(n1 + n2)a(n2)a(n1), (75)

i.e., two incoming bosons annihilate to form a single outgoing
boson whose momentum is the sum of the incoming momenta.
In the notation of Definition 1, we would express this interac-
tion as {(‘0’), (‘0’, ‘0’)} (meaning two bosons in, one boson
out), and the coefficient function is still just β(n1,n2) = 1.
Even though this example appears only slightly more compli-
cated than the number operator in Example V.1, it in fact will
introduce almost all of the considerations we will require for
completely general interactions. We break the implementation
of OF up into steps.

Step 1 (identify incoming modes). Given the input Fock
state |F〉, we need to use the input index |i〉 to determine the
output Fock state |F ′

i 〉. The way we do this is to use i to choose
the two modes in |F〉 that will contribute the incoming bosons
in the interaction (they could come from the same mode). For
I the maximum possible number of occupied modes (as in
Sec. III A), we let i index all pairs Ji of mode indices:

{Ji | i = 1, 2, . . . , I2} = {{ j1, j2} | j1, j2 = 1, 2, . . . , I}.
(76)

So the first step in implementing OF is to compute Ji in an
ancilla register, as a function of i.

Step 2 (remove incoming bosons). Next, we find the mo-
menta of the two modes indexed by Ji, and make sure that they
have sufficient occupation to provide the incoming particles.
We can combine this with decrementing the occupation of
those modes, as the first step towards constructing |F ′

i 〉. So,
prior to beginning this step, we copy |F〉 to a second qubit
register that will become the output register containing |F ′

i 〉 at
the end of the implementation. Note that this copying of |F〉
is allowed because it is just copying in the (compact-encoded)
Fock basis, which can be implemented via qubitwise CNOTs
from the input |F〉 to the new copy register assuming this is
initially in the all-zeros state.

On the copy of |F〉, we first find the j1th mode [where
Ji = (j1, j2)], and check whether it has nonzero occupation.
If it does not, then we need some way to record the fact that i
does not index a valid nonzero matrix element. The way we do
this is to maintain an ancilla register called the “flag” register,
whose value is initially zero and should remain zero at the
end of the implementation of OF if and only if i indexes a
valid nonzero matrix element. So, to check whether the j1th
mode has nonzero occupation, we add one to the flag register
controlled on j1th mode having zero occupation. Now we
may proceed as if the mode does have nonzero occupation,
knowing that if the flag register is nonzero at the end of the
implementation we will simply reverse the whole procedure.

042607-10

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

Next we decrement the occupation of the j1th mode by one,
and record its momentum in an ancilla register that encodes
n1, the momentum of the first incoming boson. If the occupa-
tion of this mode is now zero, we should also set the remaining
qubits encoding the mode to all zeros (which we can do by
applying CNOTs controlled on the corresponding qubits in the
original version of |F〉; recall that we are currently operating
on the copy). Also controlled on the occupation of the current
mode being zero, we store its index in the first entry of an
ancilla register E , which we will use later.

We now repeat this whole procedure (including checking
the occupation) for the j2th mode, recording its momentum
in another ancilla register that encodes n2. If this mode is left
empty, we store its index in the second entry of the ancilla
register E . Note that if both modes are the same, i.e., j1 = j2,
then at this second step we will add one to the flag register if
the initial occupation of that mode was not at least two, since
one boson has already been removed from the mode.

Step 3 (reorder modes). Once we are done with steps 1
and 2, we have n1 and n2 recorded in ancilla registers, and
we have decremented the corresponding mode occupations
in the copy of |F〉. However, it is possible that up to two
modes in the copy of |F〉 may have been left empty after their
occupations were decremented. Since the compact encoding
stores only occupied modes, and encodes them in the first
J mode registers Xi [see (19)], we need to move any empty
modes to the end of the encoding.

To do this, we use the ancilla register E that we introduced
above. This contains two entries E1 and E2; E1 = j1 if the j1th
mode was left empty after removing the incoming particles
to the interaction, and otherwise E1 remains in its initial state
(which should be chosen to be different from any of the values
encoding indices). E2 was similarly set according to the j2th
mode.

Using these, we reorder the modes as follows. Iterate over
j = 1, 2, . . . , I − 1 (the mode indices). For each j, swap the
jth register and the (j + 1)th register controlled on E1 � j
(and on E1 actually encoding a valid mode index). If the j1th
mode is emptied, the first time the above control condition
will be satisfied is when j = E1 = j1, so this will swap the
emptied j1th mode register with the (j1 + 1)th mode register.
Next we move to j = j1 + 1 � E1, so the (j1 + 1)th mode
register (which now contains the empty mode) gets swapped
with the (j1 + 2)th mode register, and so forth until the empty
mode has been moved to the last mode register.

We now repeat this procedure for E2 in order to move the
j2th mode to the end of the mode registers if it was emptied.
The only caveat with this step is that, if both the j1th and j2th
modes were emptied and j1 < j2, then after the first swapping
sequence (for E1 = j1), the empty mode that was initially in
position j2 is now in position j2 − 1, since the j1th mode was
swapped out from before it. Therefore, before repeating the
procedure for E2, we should subtract one from E2 controlled
on E1 < j2.

Step 4 (insert outgoing boson).After we have completed all
of the above steps, the copy of |F〉 has had the two incoming
bosons to the interaction removed, and the modes have been
reordered if necessary so that the J occupied modes are en-
coded in the first J mode registers. The momenta n1,n2 of the

incoming bosons are also recorded in ancilla registers. All that
remains is to insert the new boson with momentum n1 + n2.

To do this, we first iterate over the already occupied modes,
checking whether each one has momentum n1 + n2 and incre-
menting its occupation if so. We also flip a single ancilla qubit
from |0〉 to |1〉 if we find such a mode, to record the fact that
we have inserted the new boson. If at the end of the iterations,
this ancilla qubit is still |0〉, then the new boson needs to be
inserted as a new mode (so the following operations should
be controlled on this). In this case, we first find the location
where the new mode should be inserted: to do this, we iter-
ate over j = 1, 2, . . . , I , checking whether n1 + n2 is greater
than the momentum of the (j − 1)th mode and less than the
momentum of the jth mode. This will be true only for a single
value of j, which we can call j′, so we record j′ in an ancilla
register.

Then we iterate over the mode indices in reverse order, i.e.,
j = I − 1, . . . , 1, for each j swapping the jth and (j + 1)th
mode registers controlled on j′ � j. Since the maximum pos-
sible number of occupied modes is I and we are about to
insert a new mode, prior to this sequence of swaps the Ith
mode register is guaranteed to be unencoded. Hence, when
j = I − 1, we swap the (I − 1)th and Ith mode registers,
moving the unencoded register to location I − 1. We then
proceed to j = I − 2, swapping the (I − 2)th and (I − 1)th
mode registers and thus moving the unencoded register to
location I − 2, and so forth. The last swap we perform is when
j = j′, so once we are done with the full sequence of swaps
the unencoded register is in location j′. Therefore, we can
simply set its momentum to n1 + n2 and set its occupation
to one, and we are done.

Step 5 (uncompute ancillas). Once all of the above opera-
tions are complete, the copy of |F〉 has been transformed into
the desired output Fock state |F ′

i 〉, so all that remains is to
uncompute the ancillas. This could be done simply by copying
|F ′

i 〉 (in the Fock basis) and then exactly reversing all of the
prior operations, but we also want to uncompute |i〉, the input
index. In order to accomplish this, we uncompute |i〉 using the
register encoding Ji. But now we cannot uncompute Ji using
i, since this value has been uncomputed, so we instead need
to uncompute Ji using the registers it was used to compute.
The details of this are tedious, but since |F〉 and |F ′

i 〉 together
contain enough information to determine the values of all
of the ancillas that were used to compute |F ′

i 〉, we can use
those values to uncompute the ancillas via similar operations
to those used to compute |F ′

i 〉.
Also, if we reach the end of the procedure and the flag

register is nonzero, then we know that the index i did not in
fact correspond to a valid matrix element. In this case, the
desired output as given in (52) is |F〉|F〉|i〉. Hence, we want
to keep |i〉 (which is |a(F, i)〉 in this case), completely reverse
the rest of the computation, and then just copy |F〉 itself to the
output Fock state register.

This completes the implementation of OF for this
example.

Example V.3. Let us again consider a boson field, but now
with the four-point interaction

HI =
∑

n1,n2,n3,n4

a†(n4)a†(n3)a(n2)a(n1), (77)

042607-11

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

where the sum runs over all momentum conserving combina-
tions, i.e., n1 + n2 = n3 + n4. Many of the steps to implement
the OF oracle for this interaction are the same as in Example
V.2, so instead of going through the entire procedure again,
we will just describe what needs to change.

Steps 1 through 3, in which we identify the incoming
modes, decrement their occupations, and reorder the modes
if some of them are left empty, are the same as in Example
V.2. However, the incoming momenta no longer uniquely
determine the outgoing momenta, since for a given value of
n1 + n2 there are multiple values of n3 and n4 that satisfy
momentum conservation. Therefore, our input index i needs
to do more work than just to specify Ji (the incoming mode
indices). In particular, after the total incoming momentum

Q ≡ n1 + n2 (78)

has been determined, we need to use i to determine how this
momentum should be split up between the outgoing bosons.

To do this, we use a classically precomputed lookup table
A(Q, i) that maps any possible value of the total momentumQ
together with an index value i to a partition of the momentum
among the outgoing particles. For example, if we are in a 1 +
1D light-front field theory (see Sec. III B) with momentum
cutoffs �min = 1, �max = K = 5, then we could take A(Q, i)
to be

A = {(2, 0) �→ {1, 1},
(3, 0) �→ {2, 1},
(4, 0) �→ {3, 1},
(4, 1) �→ {2, 2},
(5, 0) �→ {4, 1},
(5, 1) �→ {3, 2}}.

(79)

In other words, for each fixed value of Q, i indexes the pos-
sible partitions of Q into two parts satisfying the momentum
cutoffs, and A(Q, i) returns these values. So, for example, if
Q = 4 and i = 1, then

A(Q, i) = A(4, 1) = {2, 2}. (80)

So, given the actual value of Q, which is stored in some
ancilla register, and the value of i, which is one of the quantum
inputs, we need to compute A(Q, i) in an ancilla register.
To do this, we classically iterate over the possible values
(Q′, i′), for each one setting the ancilla register to A(Q′, i′)
controlled on (Q, i) = (Q′, i′). When this iteration is com-
plete, we will have the outgoing momenta stored in this ancilla
register.

Since we are now using i both to specify Ji and A(Q, i), we
need to keep these independent. To do this, if A(Q, i) requires
at most a distinct values of i, then we can let A(Q, i) be a
function of i mod a and Ji be a function of 	i/a
. For example,
the instance of A(Q, i) given in (79) requires only two distinct
values of i, so for this case we could let

A(Q, i) �→ A(Q, i mod 2) (81)

and

Ji �→ J	i/2
. (82)

The only additional consideration is that, as illustrated in
(79), depending on the value of Q not all of the values of
i mod a may be used to specify outgoing momentum assign-
ments via A(Q, i). If i mod a takes one of these unused values,
then this is just another instance of i not indexing a valid
matrix element, so we should add one to the flag register. This
would happen, for example, if we obtained the inputs Q = 2,
i mod 2 = 1 for A(Q, i mod 2) as given in (79).

Once we have specified the two outgoing momenta n3 and
n4, inserting them in the outgoing Fock state just requires
applying step 4 in Example V.2 twice. Step 5 is then also the
same as for Example V.2, and that completes the implementa-
tion of OF for this example.

Example V.4. Let us now, finally, consider an interaction
including fermions as well as bosons:

HI =
∑

n1,n2,n3,n4

a†1(n4)a
†
0(n3)a1(n2)a0(n1), (83)

where subscript 0 indicates boson and subscript 1 indicates
fermion, and the sum runs over all momentum-conserving
combinations, i.e., n1 + n2 = n3 + n4. Hence this interaction
is an incoming boson and fermion, and an outgoing boson and
fermion.

Many of the elements of the implementation of OF are
the same as in the previous two examples. One change is
that the orders of the values of Ji and A(Q, i) now matter,
since the two incoming modes are now distinguishable, as are
the two outgoing modes. Also, we must now check that for
Ji = (j1, j2), the j1th mode is bosonic and the j2th mode is
fermionic, adding one to the flag register if either is not. The
remainder of identifying and removing the incoming particles,
reordering the modes, and computing the outgoing momenta
are the same as in the prior examples.

When inserting the outgoing fermion we must also alter
the procedure. When we iterate over the modes to check
whether any match the new fermion to be inserted, instead of
incrementing its occupancy if we find a mode that matches (as
we would for a boson), we add one to the flag register, because
fermionic modes cannot have occupancy greater than one. We
then proceed with inserting the fermion as a new mode in
exactly the same way as for bosons, and complete the rest
of the procedure exactly as in Example V.2. Note that when
computing the matrix element oracle OH , we will have to
additionally treat fermions and bosons differently because of
their different commutation relations, but for the enumerator
oracle this is not relevant.

B. General method

We assume that the input is in the form |F〉|i〉, where
|F〉 is some compact-encoded Fock state, and i ∈ [k] where
k is the sparsity. The f -point interaction is specified as in
Definition 1, i.e., as a set of g outgoing lines identified by
(q1, q2, . . . , qg), and a set of f − g incoming lines identified
by (qg+1, qg+2, . . . , q f). The momentum cutoffs are as in (12):

042607-12

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

FIG. 2. Schematic of the circuit to implement the enumerator oracle. Labeled wires are input and output registers, and unlabeled wires
are ancilla registers (each initially in the all zero state). The inputs and outputs are |F〉 (the incoming Fock state), |i〉 (the sparsity index), and
|F ′

i 〉 (the outgoing Fock state), all as in (52). The intermediate quantities computed are Ji [the list of modes in |F〉 from which the incoming
particles are taken, as in (85)], Q (the total incoming and outgoing momentum), and A(Q, i) [the list of momenta of the outgoing particles, as
in (86)]. The circuit hides some additional ancillas, does not show uncomputation of the ancillas, and shows the action when i is a valid index
for an outgoing state. At the points marked by red dashed lines we have to check whether this is true, as described in detail in the paper.

for each momentum n, each component nj must satisfy

�min
j � nj � �max

j , (84)

where j runs over the dimensions. All of the main ideas for
the implementation of OF were introduced by the examples in
Sec. VA, mostly in Example V.2, so we simply indicate how
to appropriately generalize these ideas in order to describe the
method for arbitrary interactions.

Step 1 (identify incoming modes). This step is the same
as in Examples V.2 and V.3, except that the possible sets of
incoming modes now have size f − g:

Ji ∈ {1, 2, . . . , I} f−g. (85)

We therefore have to check that for Ji = (j1, j2, . . . , j f−g), the
jkth mode in |F〉 matches the identifying information qg+k of
the kth incoming line in the interaction. This generalizes the
step in Example V.4 where we check that the j1th mode is
bosonic and the j2th mode is fermionic.

Step 2 (remove incoming particles and reorder modes).
This step is implemented exactly as in the examples, just with
more repetitions of the removal procedure as we decrement
the occupation in modes j1, j2, through j f−g. We store the
momenta ng+1,ng+2, . . . ,n f of the incoming lines in ancilla
registers, and compute their sum Q. Reordering modes is also
exactly as in the examples; the list E of emptied modes must
now contain f − g entries.

Step 3 (compute outgoing momenta). The classical lookup
table A(Q, i) maps values of Q and i to ordered sets of g
outgoing momenta:

A(Q, i) = (n1,n2, . . . ,ng) (86)

such that
g∑

k=1

nk = Q. (87)

As in Example V.3, we classically iterate over the possible
values Q′ and i′ of Q and i, and implement a quantum opera-
tion that encodes A(Q′, i′) in an ancilla register controlled on
(Q′, i′) = (Q, i).

The only difference is that now Q and i can take more
values. Q can be any momentum that is the sum of f − g
momenta consistent with the cutoffs �min

j ,�max
j in each di-

mension j. For a given Q, outgoing momenta can be any set
satisfying (87), so i must provide enough distinct values to
distinguish these assignments for whichever value of Q gives
the most of them. We will provide a detailed analysis of this
later.

Step 4 (insert outgoing particles). This step is the same as
in the examples in Sec. VA, except that we must now repeat
the insertion procedure g times, once for each of the g outgo-
ing modes. The momenta of the outgoing modes are given
by n1,n2, . . . ,ng, which we computed in step 3, and their
identifying information (particle types and quantum numbers)
is given by q1, q2, . . . , qg in the interaction specification.

Step 5 (uncompute ancillas). This step is the same as in the
examples in Sec. VA.

This completes the implementation of OF for a general
interaction. A schematic for the circuit is shown in Fig. 2.

C. Analysis

We will analyze the above algorithm in terms of the num-
ber of log-local operations required. The specific log-local

042607-13

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

operations of interest are actions on constant numbers of
mode registers Xj , either in encoded states or in ancilla regis-
ters. These are log-local because each mode register contains
logarithmically many qubits in the momentum and occupa-
tion number cutoffs [see (20)]. The log-local operations we
used are all controlled arithmetic operations. The problem
of compiling such operations into primitive gates can be ad-
dressed independently, and is well studied (see, for example,
[49]). The choice of primitive gate set to compile into is also
hardware-specific. Hence, we express our gate counts in terms
of the log-local operations.

We analyze each of the steps outlined in the previous sec-
tion. Step 1 requires controlling on the possible values of Ji,
leading to a number of log-local operations that scales with
the number of possible values of Ji. By (85), the number of
possible values of Ji is upper bounded by I f−g (recall that I is
the maximum possible number of occupied modes), so

O(I f−g) (88)

is an upper bound on the number of log-local operations
required to implement step 1. Recall that f and g are constant,
so (88) is polynomial in I .

Step 2 requires finding the modes whose indices match
indices in Ji, decrementing their occupations, and reordering
the modes: these are implemented via a constant number of
simultaneous iterations over the f − g entries in Ji, and over
the I modes in the copy of |F〉. Thus

O(I (f − g)) (89)

is an upper bound on the number of log-local operations
required to implement step 2.

Step 3 requires controlling on the pairs of possible values
of Q and i that give distinct values of A(Q, i). The number
of such pairs is the same as the number of possible distinct
values of A(Q, i). These values have the form (86), so the
number of possible values is upper bounded by the number of
possible values for each entry, raised to power g. Each entry
is the momentum of a single particle, so if we take �max to
be the maximum momentum cutoff (in magnitude) over all
dimensions, the number of possible values for each entry in
A(Q, i) is O(�d

max) (recall that d is the spatial dimension).
Hence,

O
(
�dg

max

)
(90)

is an upper bound on the number of distinct values of A(Q, i),
and thus also an upper bound on the number of log-local
operations required to implement step 3.

Step 4 requires a constant number of simultaneous itera-
tions over the g outgoing modes (determined by the value of
A(Q, i) and q1, q2, . . . , qg as specified by the interaction), and
over the I modes in the copy of |F〉. Thus

O(Ig) (91)

is an upper bound on the number of log-local operations
required to implement step 4.

Step 5, uncomputing the ancillas, at worst doubles the cost
of the full algorithm, so we may ignore it in the scaling. The
costs of steps 2 and 4 are subsumed by the costs of steps 1
and 3, so the total number of log-local operations required to

implement the enumerator oracle and compute the inputs to
the matrix element function is

O
(
I f−g + �dg

max

)
. (92)

Hence, the number of log-local operations required to im-
plement the enumerator oracle and compute the inputs to
the matrix element function is polynomial in the momentum
cutoff �max, the number I of mode registers, and the number
of qubits [since this is linear in I and logarithmic in the other
parameters; see (21)].

VI. MATRIX ELEMENT ORACLE

The oracle OH defined in (53) calculates a matrix element
of the interaction Hamiltonian HI [given by (35)] to some
desired precision. The quantum input is a pair of compact-
encoded Fock states |F〉 and |F ′〉, taken to be the incoming
and outgoing states in the interaction, respectively. As de-
scribed in the proof of Lemma 1 above, OH is implemented
only when |F ′〉 = |F ′

i 〉 for some i (recall that |F ′
i 〉 is the ith

connected state to |F〉), so we may assume that the matrix
element of |F〉 and |F ′〉 is nonzero [or that it is zero and
that fact is recorded by the register a(F, i) being nonzero;
see (55)].

The value of the matrix element is given by its coefficient
β({ni}) as in (35) multiplied by any factors coming from the
ladder operators. As usual, applying a creation operator to a
mode containing w particles contributes a factor of

√
w + 1,

while applying an annihilation operator contributes a factor
of

√
w. In order to enforce antisymmetrization of fermions

and antifermions, each (anti)fermionic ladder operator also
contributes a factor of ±1 determined by the parity of the
number of particles of the same type encoded in mode reg-
isters preceding the mode register acted upon by the ladder
operator (in the canonical ordering established in Sec. III A).

Consider a general interaction, with incoming lines
qg+1, qg+2, . . . , q f and outgoing lines q1, q2, . . . , qg. This
interaction connects Fock states |F〉 and |F ′〉 when there
is some assignment of momenta {ni} to the incoming and
outgoing lines that conserves momentum, i.e.,

∑g
i=1 ni =∑ f

i=g+1 ni, such that

〈F ′|
(

g∏
i=1

a†qi (ni)

)(
f∏

i=g+1

aqi (ni)

)
|F〉 �= 0. (93)

This is the case if and only if {(qi,ni) | i = 1, 2, . . . , g} are
the extra particles in |F ′〉 (and not in |F〉), and {(qi,ni) | i =
g+ 1, g+ 2, . . . , f } are the extra particles in |F〉 (and not in
|F ′〉). When this condition holds,

〈F ′|
(

g∏
i=1

a†qi (ni)

)(
f∏

i=g+1

aqi (ni)

)
|F〉

= ±
√√√√(

g∏
i=1

w′
i

)(
f∏

i=g+1

wi

)
, (94)

where the ± is set by fermion-antifermion antisymmetriza-
tion, each wi (for i = g+ 1, g+ 2, . . . , f) is the occupation

042607-14

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

of the mode (qi,ni) in(
f∏

j=i+1

aqj (n j)

)
|F〉, (95)

and eachw′
i (for i = 1, 2, . . . , g) is the occupation of the mode

(qi,ni) in (
g∏
j=i

a†q j
(n j)

)(
f∏

j=g+1

aqj (n j)

)
|F〉. (96)

In other words, if multiple creation or annihilation operators
act on the same mode, for each the corresponding wi or w′

i
should be the occupation of the mode immediately before the
annihilation or after the creation.

Example VI.1. Consider a0(2)†a0(1)2, i.e., annihilation of
two identical bosons with momentum one followed by cre-
ation of a boson with momentum two. If the input state is

|F〉 = |(0, 1, 5)〉, (97)

i.e., five bosons of momentum one and nothing else, then the
output state is

|F ′〉 = |(0, 1, 3), (0, 2, 1)〉, (98)

i.e., three bosons of momentum one and one boson of momen-
tum two. Hence w′

1 = 1 (since the created momentum-two
boson is in its own mode), w2 = 4, and w3 = 5 (since the
momentum-one mode has occupation 5 when the first boson
is annihilated and occupation 4 when the second boson is
annihilated). Thus for this example, (94) becomes

〈F ′|a(2)†a(1)2|F〉 =
√

w′
1w2w3 =

√
20. (99)

Similarly, the value of the parity factor ±1 in (94) is the
product of the parity factors due to the ladder operators at the
times when they are applied. The coefficient β is a function of
the ni, so the complete value of the matrix element is

±β({ni})
√√√√(

g∏
i=1

w′
i

)(
f∏

i=g+1

wi

)
. (100)

Recall that this is all assuming that |F ′〉 is connected to
|F〉 by the interaction, and that {ni} is the corresponding
assignment of momenta to the external lines in the interaction.
But as pointed out in the first paragraph of this section, we
may assume that we only have to evaluate the matrix element
for pairs of states that are the output of the enumerator oracle,
and hence are connected. Therefore, computing the matrix
element of |F〉, |F ′〉 requires two steps:

(1) Find the momenta of the extra particles in each state,
the occupations of the corresponding modes (accounting for
the case when multiple bosons in the same mode are created
or annihilated), and the parities of the preceding modes for
particles of the same type (for fermions and antifermions).

(2) Evaluate (100).
When we apply the enumerator oracle to determine |F ′

i 〉
given |F〉 and i〉, we can obtain the first step above along the
way. In particular, the set of indices Ji (85) identifies the set
of extra particles in |F〉, and A(Q, i) is the set of momenta

of the extra particles in |F ′
i 〉. The occupations of the corre-

sponding modes in |F ′
i 〉 are identified when the new particles

are inserted to construct |F ′
i 〉. The parities for fermions and

antifermions can be obtained by simply counting the numbers
of preceding modes with the same particle type (the particle
types are defined by the interaction), since the positions of
the modes that the ladder operators act on are specified ex-
plicitly by Ji (for the incoming particles), and in the course
of inserting the outgoing particles. Therefore, by the time we
have obtained |F ′

i 〉 in the course of implementing OF , we can
also complete step 1 of implementing OH above. Thus we can
execute OH as many times as desired by implementing step 2
above, as long as we do so prior to uncomputing the ancillas
used to compute OF .

In order to implement the quantum walk operator T [see
(62)], we require two applications of OH , one to compute the
matrix element, and another to uncompute the matrix element
after performing a rotation controlled on it (see step 3 in the
proof of Lemma 1 above). There is no problem in putting
off uncomputing the ancillas used in the computation of OF

until after the controlled rotation has been executed. Thus,
we can perform both applications of OH simply by executing
step 2 above, with the inputs given by these ancillas. In other
words, we can include all necessary applications of OH in our
implementation ofOF , without needing to recompute the extra
particles in each state |F〉, |F ′〉.

The implementation of step 2 above, i.e., the actual evalua-
tion of the matrix element as in (100), depends on the specific
functional form of β({ni}). However, we can make some
general statements. The matrix element expression (100) is
a function of 2 f variables, {ni} and w′

i,wi. Each of the ni is
a d-dimensional vector whose entries are constrained by the
cutoffs (12), so if �max is the maximum magnitude of any cut-
off, ni takes O(�d

max) values and is encoded in O(d log�max)
qubits for each i. Each of the wi and w′

i is a positive integer
upper bounded byW , whereW is the occupation number cut-
off, so each can be encoded in O(logW) qubits. Elementary
arithmetic operations can be implemented as sequences of
NOT, CNOT, and Toffoli gates with depth polynomial in the
number of qubits of the inputs [49,50].

Thus, assuming that the matrix element can be expressed
as a fixed combination of elementary arithmetic operations,
evaluating it requires

O(d f polylog(�max) + f polylog(W)) (101)

NOT, CNOT, and Toffoli gates. In other words, for fixed
interactions in fixed dimension, the entire OH can be executed
by using the ancilla values computed during implementation
of OF , with gate count overhead that is polylogarithmic in the
momentum and occupation number cutoffs.

VII. ANALYSIS AND APPLICATIONS

In this section, we explain how to simulate several example
models in 1 + 1D using the tools we have described above.
For each model, we also provide a comparison of the number
of gates required for equal-time versus light-front formula-
tions of relativistic quantum field theory.

The gates we are counting are log-local operations, i.e.,
operations on constant numbers of registers encoding single

042607-15

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

modes. As noted above, we do not compile these operations
all the way into primitive gates, because optimizing such
compilation is an independent problem and is itself the sub-
ject of extensive study (see, for example, [49]), as well as
being hardware-specific. The gate counts we provide are also
only for implementing the enumerator oracle and obtaining
the inputs to the coefficient function, since as explained in
Sec. VI, once these steps are complete computing the value of
the matrix element requires a number of additional gates that
is polylogarithmic in the momentum and occupation cutoffs
[see (101)].

A. Free boson and fermion theory

We begin by examining free theories for bosons or
fermions before moving on to interacting theories. The Hamil-
tonians we consider are linear combinations of number
operators, and thus diagonal and 1-sparse. More general free
fermion and boson Hamiltonians can be cast into this diago-
nal form. An oracle call entails only computing the diagonal
matrix element given the initial state |F〉. Clearly, applying
sophisticated quantum simulation methods to free theories
is overkill. However, we discuss these theories because they
are the simplest examples, and because these terms occur in
interacting theories where nontrivial methods are necessary.

The enumerator oracle for a diagonal Hamiltonian simply
copies any input Fock state to the output register:

OF : |F〉|0〉 → |F〉|F〉. (102)

Thus it can be implemented by a single layer of CNOTs, one
to copy the state of each qubit (in the computational basis).

In light-front quantization, the Hamiltonian for a free bo-
son of mass mB in 1 + 1D is

H = m2
B

K∑
n=1

1

n
a†nan, (103)

where the different values of n are light-front momenta, and
K is the total light-front momentum (harmonic resolution; see
Sec. III B). The coefficient function for the Hamiltonian is
therefore

β{(0),(0)}(n) = m2
B

n
, (104)

where ‘0’ denotes boson. Thus in this case the operations
required to compute the matrix element are just those to com-
pute a reciprocal.

Recall that our interactions as in (34) (in Definition 1) are
specified as a pair of lists {(q1, . . . , qg), (qg+1, . . . , q f)},
where (q1, . . . , qg) are the outgoing particles and
(qg+1, . . . , q f) are the incoming particles: thus in the present
example {(0), (0)} means one incoming boson and one
outgoing boson. The Hamiltonian can be rewritten in terms
of (104) as

H =
K∑

n=1

β{(0),(0)}(n)a†nan. (105)

The matrix element oracle for the free boson field
Hamiltonian is

OH :|F〉|F〉 → |F〉|F〉
∣∣∣∣∣

K∑
n=1

β{(0),(0)}(n)wn

〉
,

OH :|F〉|F ′〉 → |F〉|F ′〉|0〉,
(106)

where wn is the occupation of the mode with light-front mo-
mentum n in |F〉, and |F ′〉 �= |F〉.

The Hamiltonian for the Dirac field in 1 + 1D light-front
quantization is

H = m2
F

K∑
n=1

1

n
(b†nbn + d†

n dn), (107)

wheremF is the fermion and antifermion mass. The coefficient
function for each interaction is

β{(1),(1)}(n) = β{(2),(2)}(n) = m2
F

n
, (108)

where ‘1’ denotes fermion and ‘2’ denotes antifermion.
Rewriting the Hamiltonian in terms of these gives

H =
K∑

n=1

(β{(1),(1)}(n)b†nbn + β{(2),(2)}(n)d†
n dn). (109)

The matrix element oracles for the two interactions in the
Dirac field Hamiltonian are thus identical to the matrix ele-
ment oracle for the free boson field, replacing the coefficient
functions and occupation numbers with those corresponding
to fermions and antifermions for the first and second interac-
tions, respectively.

In equal-time quantization, the free Hamiltonian in second-
quantized form looks similar to that in light-front quan-
tization. The only difference is that the sum runs over
positive and negative momenta, and the coefficient function is
given by

β{(i),(i)}(n) = 1√
m2 + n2

= 1

ωn
, (110)

where i = 0, 1, or 2 for the boson, fermion, or antifermion
interactions, and m is the mass of the particle (scaled by
the box size L). Thus in this case the operations required to
compute the matrix element are a square, a sum, a square root,
and a reciprocal.

B. λφ4 theory

In light-front quantization, the λφ4 theory in 1 + 1D has
the Hamiltonian [42]

H = H0 + HI , (111)

where

H0 =
∑
n

1

n
a†nan

(
m2 + λ

4π

1

2

∑
k

1

k

)
(112)

and

HI = 1

4

λ

4π

∑
klmn

a†ka
†
l aman√
klmn

δm+n,k+l

+ 1

6

λ

4π

∑
klmn

(
a†kalaman + a†ka

†
l a

†
man√

klmn

)
δk,m+n+l , (113)

042607-16

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

where λ is the coupling constant, and H0,HI are the free and
interacting parts of the Hamiltonian, respectively. The sums
are over light-front momenta in the range [1,K]. We can
treat the free part of the Hamiltonian with the methods of
Sec. VII A. In this section we focus on the interacting part
of the Hamiltonian, given in (113).

HI is composed of three interactions, corresponding to the
ladder operator monomials a†kalaman, a

†
ka

†
l aman, and a

†
l a

†
ma

†
nak

(summed over the momenta). In our interaction notation as in
Definition 1, these are written {(0), (0, 0, 0)}, {(0, 0), (0, 0)},
and {(0, 0, 0), (0)}, respectively. Reading off from (113), the
coefficient functions are given by

β{(0,0),(0,0)}(k, l,m, n) = λ

16π
√
klmn

, (114)

β{(0),(0,0,0)}(k, l,m, n) = λ

24π
√
klmn

, (115)

and

β{(0,0,0),(0)}(k, l,m, n) = λ

24π
√
klmn

. (116)

Note that the δ functions that enforce momentum conservation
are not included in the coefficient functions, because momen-
tum conservation is enforced at an earlier step in the algorithm
than computation of matrix elements. These are the entirety
of the inputs needed to specify our oracle implementations.
Rewriting the Hamiltonian in terms of the coefficient func-
tions gives

HI =
∑
klmn

β{(0,0),(0,0)}(k, l,m, n)a†ka
†
l aman

+
∑
klmn

β{(0,0,0),(0)}(k, l,m, n)a†kalaman

+
∑
klmn

β{(0),(0,0,0)}(k, l,m, n)a†ka
†
l a

†
man, (117)

where the sums run over momentum-conserving combina-
tions of k, l,m, n ∈ {1, 2, . . . ,K} for total light-front momen-
tum K .

In equal-time quantization, the interacting part of the λφ4

Hamiltonian in 1 + 1D is

HI = λ

4!

∑
k,l,p, f

1√
16ωpωlωkω f

× [apakala f δ− f−l,k+p + a†pa
†
ka

†
l a

†
f δl+ f ,−k−p

+ 4a†f apakalδ f ,k+l+p + 6akalδ f ,pδk,−l

+ 6a†l a
†
f apakδl+ f ,k+p

+ 6a†ka
†
l δ f ,pδk,−l + 4a†ka

†
l a

†
f apδl+ f+k,p]. (118)

From this, we can read off the coefficient functions:

β{(0,0,0,0),()}(k, l, f , p) = 1√
16ωpωlωkω f

,

β{(),(0,0,0,0)}(k, l, f , p) = 1√
16ωpωlωkω f

,

β{(0,0,0),(0)}(k, l, f , p) = 4√
16ωpωlωkω f

,

FIG. 3. Gate counts (in log-local operations) to implement ora-
cles for λφ4 theory in 1 + 1D. The equal-time cutoffs are [−�, �],
for � defined in terms of K by (120). The exact gate counts for
light-front and equal-time quantization are given by the points and
crosses, respectively. The solid line K3 and dashed line K4/5 are in-
cluded to illustrate that the data points are indeed converging to their
expected asymptotic scalings of O(K3) for light-front and O(K4) for
equal-time.

β{(0,0),()}(k, l) =
∑
f ,p

6√
16ωpωlωkω f

δ f ,p,

β{(0,0),(0,0)}(k, l, f , p) = 6√
16ωpωlωkω f

,

β{(),(0,0)}(k, l) =
∑
f ,p

6√
16ωpωlωkω f

δ f ,p,

β{(0),(0,0,0)}(k, l, f , p) = 4√
16ωpωlωkω f

. (119)

Note that the coefficient functions for the interactions having
only two external lines (β{(),(0,0)} and β{(0,0),()}) are only func-
tions of the momenta of those lines (k and l). For the sake of
brevity, we will omit rewriting the Hamiltonian explicitly in
terms of the coefficient functions going forward, as we hope
this correspondence has been made clear from the examples
above. As before, the coefficient functions together with their
associated interactions are the inputs required to define the
Hamiltonian oracles.

The log-local gate counts for an explicit implementation
of the oracles for λφ4 in both light-front and equal-time
quantization are given in Fig. 3. The gate counts are given
as a function of K . The equal-time counts are obtained by
choosing single-particle momentum cutoffs [−�,�] for � =
�K/2� − 1, so that the total number of lattice points in the
equal-time simulation would be

2� + 1 = 2�K/2� − 1 =
{
K − 1 for even K ,
K for odd K , (120)

for a fair comparison to K lattice points in the light-front
simulation. For the equal-time counts, we also have to impose
a cutoff on the number I of distinct occupied modes (which is
a priori arbitrary), which we choose to be K , again to provide
a conservative comparison to the light-front simulation (in
which the number of distinct occupied modes is in fact smaller
still at O(

√
K) [33]).

042607-17

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

The number of log-local operations to implement the enu-
merator oracle is given by (92): O(I f−g + �

dg
max). Since the

matrix-element oracle requires only logarithmically many ad-
ditional gates, implementing it does not change the asymptotic
scaling, as noted above. Since I = K for equal-time, this
number of log-local operations becomes O(K4) due to the
interactions that have four incoming particles (f − g = 4) in
(118). For light-front, I = √

K so the term I f−g no longer
dominates, but the second term gives O(K3) due to the in-
teractions that have three outgoing particles (g = 3) in (113)
(since �max = K in this case).

These costs are indeed what we see in the log-log plot
Fig. 3, which shows the exact log-local gate counts for light-
front and equal-time. To illustrate the asymptotic behaviors,
Fig. 3 also plots K3 and K4/5. Since we expect the light-front
cost to be O(K3) and the equal-time cost to be O(K4), as
discussed above, the slopes of the data should approach those
of the plotted lines on the log-log plot, which is what we see.

The extra operations required to compute the matrix el-
ements for light-front quantization are those required to
evaluate (114)–(116), namely, products, square-roots, and re-
ciprocals. The extra operations required to compute the matrix
elements for light-front quantization are those required to
evaluate (119) for the frequencies ωn defined as in (110).
Hence they require squares, sums, products, square roots, and
reciprocals.

C. Massive Yukawa model

For the massive Yukawa model in 1 + 1D light-front quan-
tization, we write only the interaction Hamiltonian [41]. This
is composed of the so-called vertex, seagull, and fork terms:

HI = HV + HS + HF . (121)

The first term, HV , is

HV = gmF

∑
k,l,m

[
2

(k + l)
√
l
(b†kbma

†
l + b†mbkal)

+ 2

(k + l)
√
l
(d†

k dma
†
l + d†

mdkal)

+ 2

(k − m)
√
m
(bkdla

†
m + d†

l b
†
kam)

]
δk+l,m, (122)

where the a(†) are boson ladder operators, b(†) are fermion
ladder operators, and d (†) are antifermion ladder operators.
The resulting coefficient functions for HV are

β{(1),(1,0)}(k, l,m) = β{(1,0),(1)}(k, l,m)

= β{(2,2),(0)}(k, l,m)

= β{(2,0),(2)}(k, l,m) = 2gmF

(k + l)
√
l
, (123)

β{(1,2),(0)}(k, l,m) = β{(0),(1,2)}(k, l,m)

= 2gmF

(k − m)
√
m

, (124)

where in the subscripts, ‘0’ denotes boson, ‘1’ denotes
fermion, and ‘2’ denotes antifermion.

The second term in (121), HS , is

HS = g2
∑

k,l,m,n

[
1

m − k
(dkbla

†
ma

†
n + b†l d

†
k anam)

+ 2

k − n
b†kbla

†
man

+ 2

k − n
d†
k dla

†
man

]
δk+l,m+n√

mn
, (125)

resulting in the following coefficient functions:

β{(1,0),(1,0)}(k, l,m, n)

= β{(2,1),(2,1)}(k, l,m, n) = 2g2

(k − n)
√
mn

, (126)

β{(2,1),(0,0)}(k, l,m, n)

= β{(0,0),(2,1)}(k, l,m, n) = g2

(m − k)
√
mn

. (127)

The third and final term in (121), HF , is

HF = g2
∑

k,l,m,n

[
1

(k + l)
√
lm

(b†kbna
†
l a

†
m + b†nbkamal)

+ 1

(k + l)
√
lm

(d†
k dna

†
l a

†
m + d†

n dkamal)

+ 2

(k − n)
√
ln
b†kd

†
ma

†
l an

+ 2

(k − n)
√
ln
dmbka

†
nal

]
δk+l+m,n, (128)

resulting in the following coefficient functions:

β{(1)(0,0,1)}(k, l,m, n)

= β{(0,0,1),(1)}(k, l,m, n)

= β{(2)(0,0,2)}(k, l,m, n)

= β{(0,0,2),(2)}(k, l,m, n) = g2

(k + l)
√
lm

, (129)

β{(0),(0,1,2)}(k, l,m, n)

= β{(0,1,2),(0)}(k, l,m, n) = 2g2

(k − n)
√
ln

. (130)

In 1 + 1D equal-time quantization, the interacting part of
the Yukawa Hamiltonian with free field expansion is

HI =
∑
l,k,p

1√
2ωk

1√
2ωp

1√
2ωl

×
∑
γ ,s

[
cs†l c

γ

k apμ̄
s(l)μγ (k)δl,k+p

+ cs†l d
γ †
k apμ̄

s(l)νγ (k)δl+k,p

+ ds
l c

γ

k apν̄
s(l)μγ (k)δl+k+p,0

− dγ †
k ds

l apν̄
s(l)νγ (k)δk,l+p

+ cs†l c
γ

k a
†
pμ̄

s(l)μγ (k)δk,l+p

042607-18

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

+ cs†l d
γ †
k a†pμ̄

s(l)νγ (k)δl+k+p,0

+ ds
l c

γ

k a
†
pν̄

s(l)μγ (k)δl+k,p

− dγ †
k ds

l a
†
pν̄

s(l)νγ (k)δl,k+p
]
, (131)

where μ is the fermion spinor, ν is the antifermion spinor,
and s and γ are the spin indices. This leads to the following
coefficient functions:

β{(0,1),(1}(k, l, p, s, γ)

= β{(1),(0,1)}(k, l, p, s, γ) = 1√
8ωkωpωl

μ̄s(l)μγ (k),

(132)

β{(0),(1,2)}(k, l, p, s, γ)

= β{(),(0,1,2)}(k, l, p, s, γ) = 1√
8ωkωpωl

μ̄s(l)νγ (k),

(133)

β{(1,2),(0)}(k, l, p, s, γ)

= β{(0,1,2),()}(k, l, p, s, γ) = 1√
8ωkωpωl

ν̄s(l)μγ (k),

(134)

β{(0,2),(2)}(k, l, p, s, γ)

= β{(2),(0,2)}(k, l, p, s, γ) = 1√
8ωkωpωl

ν̄s(l)νγ (k).

(135)

Note that we have expanded our set of arguments of the coef-
ficient functions to include the spin indices s, γ . If we instead
wished to obtain interactions exactly as defined in Definition
1, we could let each of the above coefficient functions split
into four functions, one for each of the pairs of values for the
spin indices, but this would just become unwieldy, and there
is no harm in including the spin indices as arguments.

The log-local gate counts for implementing the oracles
for the Yukawa interaction in both light-front and equal-time
quantization are given in Fig. 4, with the equal-time cutoff
� = �K/2� − 1 as for the φ4 theory above. Recall that (92)
gives the scaling of the number of log-local operations re-
quired to implement the oracles. Since � = O(K) as we just
discussed, and I < O(K) in both light-front and equal-time,
from (92) we see that in both light-front and equal-time the
most costly interactions to simulate are those with three out-
going particles. This gives a cost in log-local operations of
O(K3), which is indeed what we see in Fig. 4.

VIII. BEYOND THE PLANEWAVE MOMENTUM BASIS

We have demonstrated how, given a second-quantized
Hamiltonian in the plane wave momentum representation of a
field theory, we can implement the oracle unitaries necessary
to apply sparsity-based simulation methods. Our methods ex-
tend to any second-quantized Hamiltonian containing a fixed
number of interactions, even if it is not expressed in the plane
wave momentum basis. All that is required is that for each
interaction, it is possible to efficiently enumerate all possible
sets of outgoing particles given a particular set of incoming

FIG. 4. Gate counts (in log-local operations) to implement or-
acles for the massive Yukawa model. The equal-time cutoffs are
[−�, �], for � defined in terms of K by (120). The exact gate counts
for light-front and equal-time quantization are given by the points
and crosses, respectively. The line K3 is included to illustrate that
the data points are indeed converging to their expected asymptotic
scaling of O(K3).

particles, and to efficiently compute the matrix element given
the incoming and outgoing particles. In the plane wave mo-
mentum representation, we used momentum conservation for
the former task: given a set of incoming particles, we can add
up their momenta to obtain the total transferred momentum,
and then enumerate all possible allocations of this momentum
among the outgoing particles.

However, more generally the sets of outgoing particles
can always be enumerated in polynomial time as long as
the number of outgoing particles is fixed and there are only
polynomially many possible states for each particle. Here
polynomial means polynomial in whatever problem parameter
governs the asymptotic scaling. If g is the number of outgoing
particles and P is an upper bound on the number of states
that each outgoing particle may take, then Pg is an upper
bound on the number of distinct sets of outgoing particles
from a particular set of incoming particles. We could apply
this argument to the plane wave momentum basis case, and it
would lead to an efficient algorithm, but with worse scaling
than the one we presented above, since it would overcount the
possible outgoing states. This illustrates that using momentum
conservation at the level of enumerating outgoing states was
really an additional constraint that we imposed in order to
save resources, rather than an intrinsically necessary part of
the algorithm.

Hence there is no problem with extending our algorithm to
a nonmomentum basis as long as it is possible to efficiently
calculate the matrix element between two Fock states. If there
is no conserved quantity that constrains the outgoing particles,
then we can enumerate all of the possible sets of outgoing
particles as described above. If there is a conserved quantity
(or more than one), then just as for momentum conservation
we can compute its value for the incoming particles and then
only enumerate sets of outgoing particles that conserve it. But
to reiterate, either of these approaches is efficient; choosing
whether or not to exploit a conserved quantity simply changes
the details of the scaling. Hence, although our main presen-
tation focused on the plane wave momentum basis, we can
apply our methods to a wide variety of theories expressed in

042607-19

KIRBY, HADI, KRESHCHUK, AND LOVE PHYSICAL REVIEW A 104, 042607 (2021)

other bases, in quantum chemistry, condensed matter physics,
and quantum field theory, including basis light-front quantiza-
tion [36–38].

IX. CONCLUSION

In this paper, we presented implementations of the Hamil-
tonian oracles for second-quantized Hamiltonians of theories
including bosons and fermions. We focused on the plane wave
momentum basis, but the methods we described generalize
to any second-quantized Hamiltonian as long as it contains
only polynomially many terms (monomials in the creation and
annihilation operators), and as long as the coefficients of the
terms can be computed efficiently. These oracle implementa-
tions are the necessary inputs to any of the large collection
of simulation techniques for sparse Hamiltonians [20–30].
The generality of our algorithms means that for some specific

field theories, it is likely possible to develop algorithms that
are tailored to the structure of the theories and outperform
our methods (see Sec. II B, for example). However, our goal
was to provide a general-purpose tool, and thus to establish
that for second-quantized Hamiltonians satisfying only the
modest constraints stated above, efficient quantum simulation
by optimal sparsity-based methods is possible.

ACKNOWLEDGMENTS

W.M.K. acknowledges support from the National Science
Foundation, Grant No. DGE-1842474. M.K. acknowledges
support from DOE HEP Grant No. DE-SC0019452. This
work was supported by the NSF STAQ project (PHY-
1818914) and by the U.S. Department of Energy, Office of
Science, National Quantum Information Science Research
Centers, Quantum Systems Accelerator (QSA).

[1] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
[2] S. B. Bravyi and A. Y. Kitaev, Ann. Phys. 298, 210 (2002).
[3] J. T. Seeley, M. J. Richard, and P. J. Love, J. Chem. Phys. 137,

224109 (2012).
[4] J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu, Phys. Rev.

Lett. 104, 030502 (2010).
[5] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P.

Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell,
M. Barbieri, A. Aspuru-Guzik, and A. G. White, Nat. Chem. 2,
106 (2010).

[6] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, Nat. Commun.
5, 4213 (2014).

[7] Y. Wang, F. Dolde, J. Biamonte, R. Babbush, V. Bergholm, S.
Yang, I. Jakobi, P. Neumann, A. Aspuru-Guzik, J. D. Whitfield,
and J. Wrachtrup, ACS Nano 9, 7769 (2015).

[8] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R.
McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding,
B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G.
Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus et al.,
Phys. Rev. X 6, 031007 (2016).

[9] R. Santagati, J. Wang, A. A. Gentile, S. Paesani, N. Wiebe,
J. R. McClean, S. Morley-Short, P. J. Shadbolt, D. Bonneau,
J. W. Silverstone, D. P. Tew, X. Zhou, J. L. O’Brien, and M. G.
Thompson, Sci. Adv. 4, eaap9646 (2018).

[10] Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, and K.
Kim, Phys. Rev. A 95, 020501(R) (2017).

[11] S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P.
Tew, J. L. O’Brien, and M. G. Thompson, Phys. Rev. Lett. 118,
100503 (2017).

[12] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Nature (London) 549, 242
(2017).

[13] C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H.
Shen, P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush, A.
Aspuru-Guzik, R. Blatt, and C. F. Roos, Phys. Rev. X 8, 031022
(2018).

[14] E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen,
T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P.
Lougovski, Phys. Rev. Lett. 120, 210501 (2018).

[15] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E.
Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and
I. Siddiqi, Phys. Rev. X 8, 011021 (2018).

[16] Y. Nam, J.-S. Chen, N. C. Pisenti, K. Wright, C. Delaney,
D. Maslov, K. R. Brown, S. Allen, J. M. Amini, J. Apisdorf,
K. M. Beck, A. Blinov, V. Chaplin, M. Chmielewski, C. Collins,
S. Debnath, K. M. Hudek, A. M. Ducore, M. Keesan, S. M.
Kreikemeier et al., npj Quantum Inf. 6, 33 (2020).

[17] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P.
Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P.
Zoller, Nature (London) 569, 355 (2019).

[18] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M.
Chow, and J. M. Gambetta, Nature (London) 567, 491 (2019).

[19] F. ARUTE et al. (Google AI Quantum and Collaborators),
Science 369, 1084 (2020).

[20] D. Aharonov and A. Ta-Shma, in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, STOC
’03 (Association for Computing Machinery, New York, 2003),
pp. 20–29.

[21] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and
D. A. Spielman, in Proceedings of the Thirty-Fifth Annual ACM
Symposium on Theory of Computing, STOC ’03 (Association for
Computing Machinery, New York, 2003), pp. 59–68.

[22] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Commun.
Math. Phys. 270, 359 (2007).

[23] A. M. Childs, Commun. Math. Phys. 294, 581 (2010).
[24] D. W. Berry and A. M. Childs, Quantum Inf. Comput. 12, 29

(2012).
[25] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.

Somma, in Proceedings of the 46th Annual ACM Symposium on
Theory of Computing (Association for Computing Machinery,
New York, 2014), p. 283.

[26] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.
Somma, Phys. Rev. Lett. 114, 090502 (2015).

[27] D. W. Berry, A. M. Childs, and R. Kothari, in 2015 IEEE
56th Annual Symposium on Foundations of Computer Science,
Berkeley, CA (IEEE, Piscataway, NJ, 2015), pp. 792–809.

[28] G. H. Low and I. L. Chuang, Phys. Rev. Lett. 118, 010501
(2017).

[29] G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).

042607-20

https://doi.org/10.1007/BF01331938
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1063/1.4768229
https://doi.org/10.1103/PhysRevLett.104.030502
https://doi.org/10.1038/nchem.483
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1021/acsnano.5b01651
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1126/sciadv.aap9646
https://doi.org/10.1103/PhysRevA.95.020501
https://doi.org/10.1103/PhysRevLett.118.100503
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevX.8.031022
https://doi.org/10.1103/PhysRevLett.120.210501
https://doi.org/10.1103/PhysRevX.8.011021
https://doi.org/10.1038/s41534-020-0259-3
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1126/science.abb9811
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1007/s00220-009-0930-1
https://doi.org/10.26421/QIC12.1-2-4
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.22331/q-2019-07-12-163

QUANTUM SIMULATION OF SECOND-QUANTIZED … PHYSICAL REVIEW A 104, 042607 (2021)

[30] D. W. Berry, A. M. Childs, Y. Su, X. Wang, and N. Wiebe,
Quantum 4, 254 (2020).

[31] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, andM. Head-Gordon,
Science 309, 1704 (2005).

[32] B. Toloui and P. Love, arXiv:1312.2579 [quant-ph] (2013).
[33] M. Kreshchuk, W. M. Kirby, G. Goldstein, H. Beauchemin, and

P. J. Love, arXiv:2002.04016 [quant-ph] (2020).
[34] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love,

and A. Aspuru-Guzik, New J. Phys. 18, 033032 (2016).
[35] R. Babbush, D. W. Berry, Y. R. Sanders, I. D. Kivlichan, A.

Scherer, A. Y. Wei, P. J. Love, and A. Aspuru-Guzik, Quantum
Sci. Technol. 3, 015006 (2017).

[36] J. P. Vary, H. Honkanen, J. Li, P. Maris, S. J. Brodsky, A.
Harindranath, G. F. de Teramond, P. Sternberg, E. G. Ng, and
C. Yang, Phys. Rev. C 81, 035205 (2010).

[37] M. Kreshchuk, S. Jia, W. M. Kirby, G. Goldstein, J. P. Vary, and
P. J. Love, Entropy 23, 597 (2021).

[38] M. Kreshchuk, S. Jia, W. M. Kirby, G. Goldstein, J. P. Vary, and
P. J. Love, Phys. Rev. A 103, 062601 (2021).

[39] W. M. Kirby and P. J. Love, Phys. Rev. Lett. 127, 110503
(2021).

[40] We leave consideration of exotic particle statistics to future
work.

[41] H.-C. Pauli and S. J. Brodsky, Phys. Rev. D 32, 1993 (1985).
[42] A. Harindranath and J. P. Vary, Phys. Rev. D 36, 1141

(1987).
[43] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rep. 301,

299 (1998).
[44] G. H. Low and N. Wiebe, arXiv:1805.00675 [quant-ph] (2018).
[45] A. Kalev and I. Hen, Quantum 5, 426 (2021).
[46] Y.-H. Chen, A. Kalev, and I. Hen, PRX Quantum 2, 030342

(2021).
[47] Y. Atia and D. Aharonov, Nat. Commun. 8, 1572 (2017).
[48] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J.

Love, and A. Aspuru-Guzik, Quantum Sci. Technol. 4, 014008
(2018).

[49] A. Javadi Abhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T.
Chong, and M. Martonosi, in Proceedings of the 11th ACM
Conference on Computing Frontiers, CF ’14 (Association for
Computing Machinery, New York, 2014), pp. 1–10.

[50] V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147
(1996).

042607-21

https://doi.org/10.22331/q-2020-04-20-254
https://doi.org/10.1126/science.1113479
http://arxiv.org/abs/arXiv:1312.2579
http://arxiv.org/abs/arXiv:2002.04016
https://doi.org/10.1088/1367-2630/18/3/033032
https://doi.org/10.1088/2058-9565/aa9463
https://doi.org/10.1103/PhysRevC.81.035205
https://doi.org/10.3390/e23050597
https://doi.org/10.1103/PhysRevA.103.062601
https://doi.org/10.1103/PhysRevLett.127.110503
https://doi.org/10.1103/PhysRevD.32.1993
https://doi.org/10.1103/PhysRevD.36.1141
https://doi.org/10.1016/S0370-1573(97)00089-6
http://arxiv.org/abs/arXiv:1805.00675
https://doi.org/10.22331/q-2021-04-08-426
https://doi.org/10.1103/PRXQuantum.2.030342
https://doi.org/10.1038/s41467-017-01637-7
https://doi.org/10.1088/2058-9565/aad3e4
https://doi.org/10.1103/PhysRevA.54.147

