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Entanglement Dynamics From Random Product
States: Deviation From Maximal Entanglement

Yichen Huang

Abstract— We study the entanglement dynamics of quantum
many-body systems and prove the following: (I) For any geomet-
rically local Hamiltonian on a lattice, starting from a random
product state the entanglement entropy is bounded away from
the maximum entropy at all times with high probability. (II) In
a spin-glass model with random all-to-all interactions, starting
from any product state the average entanglement entropy is
bounded away from the maximum entropy at all times. We also
extend these results to any unitary evolution with charge conser-
vation and to the Sachdev-Ye-Kitaev model. Our results highlight
the difference between the entanglement generated by (chaotic)
Hamiltonian dynamics and that of random states, for the latter
is nearly maximal.

Index Terms— Chaos, dynamics, entropy, quantum entangle-
ment, quantum mechanics.

I. INTRODUCTION
NTANGLEMENT, a concept of quantum information
theory, has been widely used in condensed matter and
statistical physics to provide insights beyond those obtained
via “conventional” quantities. A large body of literature is
available on the static [2]-[15] and dynamical [16]-[22]
behavior of entanglement in various systems. The scaling
of entanglement [23] reflects the classical simulability of

quantum many-body systems [24]-[40].

The dynamics of chaotic (not necessarily geometrically)
local Hamiltonians is of high current interest. Since these
models are almost by definition not exactly solvable, heuristic
descriptions of the universal aspects of the dynamics have been
developed. It is important to understand the extent to which
the heuristic descriptions reflect reality.

In this paper, we study the entanglement dynamics
[41], [42] starting from a random product state, which is
typically a “massive” superposition of energy eigenstates [43].
The time evolution under a chaotic local Hamiltonian is so
complex that heuristically, one might expect that the state at
long times behaves like a random state. Therefore,

Conjecture 1: For chaotic (not necessarily geometrically)
local Hamiltonians, starting from a random product state the
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entanglement entropy approaches that of a random state at
long times.

This conjecture is not mathematically precise because
“chaotic” is not defined. We do not attempt to define it here,
for there is no clear-cut definition of quantum chaos.

Recall that the entanglement entropy of a random state is
nearly maximal [44]-[47]. However, we prove the following
results.

« For any geometrically local Hamiltonian on a lattice,
starting from a random product state the entanglement
entropy is bounded away from the maximum entropy at
all times with high probability.

« In a spin-glass model with random all-to-all interactions,
starting from any product state the average entanglement
entropy is bounded away from the maximum entropy at
all times.

We also extend these results to any unitary evolution with
charge conservation and to the Sachdev-Ye-Kitaev (SYK)
model [48]-[50]. Our results highlight the difference between
the entanglement generated by (chaotic) Hamiltonian dynam-
ics and that of random states. The difference is a consequence
of energy conservation, which prevents the time-evolved state
from behaving like a completely random state [51]. For chaotic
Hamiltonian dynamics at long times, if our upper bounds on
the entanglement entropy are tight, then the difference is a
subleading correction, and Conjecture 1 holds to leading order.

II. PRELIMINARIES

Throughout this paper, standard asymptotic notations are
used extensively. Let f, g : RT — RT be two functions. One
writes f(z) = O(g(x)) if and only if there exist constants
M,zy > 0 such that f(r) < Mg(z) for all z > =z
f(z) = Q(g(x)) if and only if there exist constants M, zp > 0
such that f(z) > Mg(z) for all z > xq; f(z) = O(g(x)) if
and only if there exist constants My, M2, ¢ > 0 such that
Mig(z) < f(z) < Mag(x) for all =z > xp.

Definition 1 (Entanglement Entropy): The entanglement
entropy of a bipartite pure state psp is defined as the von
Neumann entropy

S(pa) == —tr(palnpa) (€D

of the reduced density matrix py = trg pap.
We briefly review the entanglement of random states.
Theorem 1 (Conjectured and Partially Proved by Page [44];
Proved in Refs. [45]-[47]): For a bipartite pure state pap
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chosen uniformly at random with respect to the Haar measure,

dadp

1 dy—1 da  O(1)
E S(pa) = = —Indy — — + :
PAB (PA) k=dg+1k 2d5 e 2d5 dAdB

()

where d4 < dp are the local dimensions of subsystems
A and B, respectively.

Let v = 0.577216 be the Euler-Mascheroni constant. The
second step of Eq. (2) uses the formula

dp
k=1

The distribution of S(p4) is highly concentrated around
the mean E,, , S(pa) [52]. This can be seen from the exact

formula [53], [54] for the variance of S(pa).
Consider a system of N qubits labeled by 1,2,..., N. Let

g 8 Ty o, f0i-3Y 5 {1 0
Jf_(lﬂ’gi-‘_z‘o > %5=\0 -1) @

be the Pauli matrices for qubit j.

Definition 2 (Haar-Random Product State): Let |U) =
®j.v=1 |¥;) be a Haar-random product state, where each | V)
is chosen independently and uniformly at random with respect
to the Haar measure.

—Inds +7+ oo + O(1/dB).

245 3

el

III. RESULTS

This section consists of four independent subsections, which
can be read without consulting each other.

A. Geometrically Local Hamiltonians

For notational simplicity and without loss of generality,
we present the results for geometrically local Hamiltonians
in one spatial dimension. (It is easy to see that the same result
holds in higher dimensions.) Consider a chain of N qubits
governed by a local Hamiltonian

N
H]al _ ZH:??
j=1

where H; represents the nearest-neighbor interaction between
qubits at positions j and j + 1. For concreteness, we use
periodic boundary conditions, but our argument also applies to
other boundary conditions. Assume without loss of generality
that tr H; = 0 (traceless) so that the mean energy of H' is 0.
We do not assume translational invariance. In particular, || H||
may be site dependent but should be ©(1) for all j.

Let A be a contiguous subsystem of n qubits and A be
the rest of the system. Assume without loss of generality that
n < N/2. Let E|4—, denote averaging over all contiguous
subsystems of size n. There are N such subsystems.

Theorem 2: Initialize the system in a Haar-random product
state |U) (Definition 2). Let

)

pa(t) = tr(eH L) (T[T (6)

3201

be the reduced density matrix of subsystem A at time ¢. For
sl

Pr (sup E S(pa(t)) =nln2-— Q(R/N)) >l =0y ()
¥ \icR |Al=n

where 0 > 0 is an arbitrarily small constant.
Corollary 1: Using the notation of Theorem 2, if H'™ is
translationally invariant, then for n > 1,

supE S(pa(t)) =nln2 - Q(n/N). (8)
ter ¥
Proof: Since the ensemble of Haar-random product states

is translationally invariant, averaging over subsystems is not
necessary if we average over this ensemble. [ ]

For 1 < n = O(1), the bound (8) is saturated by
any translationally invariant H'® whose spectrum has non-
degenerate gaps.

Definition 3 (Non-Degenerate Gap): The spectrum {E;}
of a Hamiltonian has non-degenerate gaps if the differences
{E; — Ex};j= are all distinct, i.e., for any 7 # k,

Ej—Ex=FEjy—Ey — (j=j)and (k=FK). (9)

Theorem 3: Using the notation of Theorem 2, if H'™
is translationally invariant and if the spectrum has non-
degenerate gaps, then for 1 < n = O(1) and sufficiently
large T,

_ _ — 1 _ e~ fUN)

Er (I{E}S(pA(t)) —nln2 O(I/N)) =1 ),

(10)

where t is uniformly distributed in the interval [0, 7].

B. Unitary Evolution With Charge Conservation

Consider a system of N qubits without an underlying lattice
structure (of course, Theorem 4 below remains valid in the
presence of a lattice).

Let m,n be positive integers such that n < N/2 and that
mn is a multiple of N. Let A, As,...,A,, be m possibly
overlapping subsystems, each of which has exactly n qubits.
Suppose that each qubit in the system is in exactly mn/N out
of these m subsystems. For each j, let A; be the complement
of A; so that A%V@J Aj; defines a bipartition of the system.

Let 0* := }°._, o7 be the total charge operator and U(%)
be a unitary operator such that [U(t), %] = 0. Note that U(t)
need not be generated by a time-independent Hamiltonian.
It can be the time evolution operator of a quantum circuit
with charge conservation [55]-[58].

Theorem 4: Initialize the system in a Haar-random product
state |U) (Definition 2). Let

pa;(t) = trg, (U0 L) (LU (2) (11)
be the reduced density matrix of subsystem A; at time ¢. Then,
1 m
Pr | sup — S(pa, ) =nln2—-Q(n/N) | >1-4,
7 (s 22 56,0 (n/N) | >
(12)

where d > 0 is an arbitrarily small constant.
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C. Spin-Glass Model

Consider a system of N qubits. Let J =
{ij;m}i";ﬂfé:éyl’\f} be a collection of dy := IN(N — 1)/2
independent real Gaussian random variables with zero mean

Jjkim = 0 and unit variance J;,?Mm = 1. The Hamiltonian of
the spin-glass model is [59]

o, 2

1<j<k=<N I,me{z,y,z}

B Jikmosor.  (13)

1
Vdn

Let A C {1,2,..., N} so that AUA defines a bipartition of
the system. Assume without loss of generality that |A| < N/2.
Let Ej4)—, denote averaging over all subsystems of size n.
There are (7)) such subsystems.

Theorem 5: Initialize the ﬁe!stcm in an arbitrary (determin-
istic) product state [¢) = @);_; |¢;). Let

paa(ts) = tra(e™ I g (pletHIt)

be the reduced density matrix of subsystem A at time ¢ ;. For
n> 1,

(14)

Esup E S(psa(ts)) =nln2-Q»*/N?). (15
Jtyer|Al=n :
D. SYK Model
Consider a system of N Majorana fermions x1, x2,..., X~

with {x;,xx} = 26;%, where N is an even number. Let K :=
{Kjkim }1<j<k<i<m<n be a collection of (') independent
real Gaussian random variables with zero mean Kxm = 0
and unit variance Kj?km = 1. The Hamiltonian of the SYK
model is [48]-[50]

HEYK = 1 Z

({D 1<j<k<l<m<N

KjximXxjixxXixm-  (16)

Let A C {1,2,...,N} with |A| even so that A U A
defines a bipartition of the system. Assume without loss of
generality that [A| < N/2. Let E|4)—,, denote averaging over
all subsystems of size n. There are (1: ) such subsystems.

Theorem 6: Initialize the system in a state |[i)
such that a constant fraction of the expectation values

{{dIxixexixm|¥) h1<j<k<i<m<n are non-vanishing, i.e.,
K, k, L, m) : |[($xxexaxm|¥)] = ©1)} = O(NY). (17)
Let

pic.a(tic) = trg(e”HR K | (R ) (18)

be the reduced density matrix of subsystem A at time tx. For
n >4,

nln?2

Esup E S(pk,a(ik)) = — Q(n*/N?).

Kikerl|Al=n

Unfortunately, not all product states satisfy Eq. (17). It is
not difficult to see that the product states defined in Ref. [60]
are counterexamples. One might expect that a Haar-random
product state, if properly defined, satisfies Eq. (17) with
overwhelming probability.

In fermionic systems, defining a Haar-random product state
is tricky. Since the Hamiltonian (16) conserves fermion parity,

(19)
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the Hilbert space is split into an even sector and an odd
sector, which do not interact with each other. It is contro-
versial whether to allow the superposition of states from both
sectors. While being compatible with the axioms of quantum
mechanics, such a superposition is widely believed to be
unphysical. On the other hand, it is not clear how to define
a Haar-random product state with definite fermion parity. The
statement of Theorem 6 avoids the controversy and related
technical difficulties by introducing the condition (17) instead
of claiming |¢') to be a Haar-random product state.

IV. PROOFs

This section consists of four subsections. Subsections IV-A,
IV-B, IV-C, IV-D use the notations of Subsections III-A,
I1-B, II-C, III-D, respectively.

A. Proof of Theorem 2

Lemma 1: For a (possibly mixed) density matrix p, let
pa = trzp be the reduced density matrix of subsystem A.
Forn > 1,

E S(pA)sglAE S(pa). (20)

|A]=n =2

Proof: Using the subadditivity [61] of the von Neumann
entropy,

E § < E &S + E § A 21
y.: (pa) < B & (pa) s (pa) (21
1
s :

JE 5(a)25 E S(pa) @)

Using the strong subadditivity [62],

< = 1

LS <2 E Spa)— E S(pa)  @3)
Combining these inequalities, we obtain (20). o

Lemma 2 [63]: Let p; be a density matrix of qubits at
positions j and j 4 1 such that

|tr(piH;)| = €| Hjll (24)
for some €; > 0. Then,
S(p;) < 2In2—€5/2. (25)

Proof: We include the proof of this lemma for complete-
ness. Let I; be the identity matrix of order 4. Let | X||; :=
tr VXTX denote the trace norm. Since H; is traceless, €;
provides a lower bound on the deviation of p; from the
maximally mixed state:

& < |tr(psHy)l/|Hjll = [tr((py; — La/4)Hy)| /|| Hjll

4
<llps —Ia/Alli =) |h — 1/4], (26)

i=1
where A1, A2, Az, A4 are the eigenvalues of p;. An upper bound
on S(p;) is max{— E:-l=1 piInp;} subject to the constraints

4 4
dom=1, Y Ip—1/4>¢;. 27)
i=1 i=1
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Since the Shannon entropy is Schur concave, it suffices to
consider the following three cases:
e pr=p2=1/4+¢;/4, p3=ps=1/4—¢€;/4;
e p1=1/4+¢€j/2, pp=p3=ps=1/4—¢€;/6;
o (ife; <1/ p1=1/4—¢€/2, po=p3=ps=1/4+
ijﬁ.
In all these cases, by Taylor expansion we can prove

4
—Zpgl_npg < 2]_112—6?/2

i=1

(28)

for €; < 1. We have checked numerically that this inequality
remains valid for any €; < 1. u

Lemma 3: For a Haarrandom product state |U)
(Definition 2),

Pr(|(W|H™|)| = Q(VN)) >1-6. 29

Proof: For j =2,3,...,N, we assume that the expansion

of H; in the Pauli basis does not contain any terms acting
only on the qubit at position j (this is without loss of
generality since such terms can be included in H;_;). Under
this assumption, it is easy to see that

B (W;9;11|H;|V;¥;541) =0 (30)
Uit
for any |U;). Thus, {(¥;9;,1|H;[¥;9;,1)} 5" is a martin-
gale difference sequence, and (29) follows from the martingale
central limit theorem. ]
We are ready to prove Theorem 2. Let

p=e T OV, ¢ = |te(pHy)| /I Hll  (3D)
so that
N N N
3 e =" 6(ltr(pHy)) = 1) Y tr(pH;)
j=1 j=1 j=1
= Q(| tr(pH™)|) = Q(|(Z|H™|T))). (32)

Note that p,e; are functions of time and should carry ¢
as an argument, which is omitted for notational simplicity.
Using Lemmas 1, 2, the RMS-AM inequality, and Eq. (32)
sequentially,

N
T Tt 2
= £ g
EAE|E=n Sloa) = 2 tAIF=2 Slpa) = 2N ;(2 g/
2
N
n nQ((U|H'3|0)2)
thl2—m ZEJ :ﬂ]ILQ—T
Jj=1

(33)

We complete the proof of Theorem 2 by combining this
inequality with Lemma 3.

B. Proof of Theorem 4

The following lemmas are analogues of Lemmas 1, 2, 3,
respectively.

3203

Lemma 4: For a (possibly mixed) density matrix p, let
pa; = trz, p be the reduced density matrix of subsystem
Aj, and py be that of qubit k. Then,

1 m N
— " S(pa,) < 5 . S(pe)- (34)
j=1 k=1

Lemma 5: Let p; be a density matrix of qubit j. Then,

S(pj) < In2 — tr?(p;0})/2. (35)
Lemma 6: For a Haar-random product state | V),
Pr(|(Z]o*|T)| = AVN)) > 1-4. (36)

Let p = U(t)|¥)(¥|U*(t). Theorem 4 can be proved in
almost the same way as Theorem 2 by replacing H;, H'™ with
o, 0", respectively.

C. Proof of Theorem 5

1) Proof Overview: We observe that all product states
satisfy the energy condition (50), which is preserved under
time evolution. To obtain an upper bound on the left-hand
side of Eq. (15), we maximize the average subsystem entropy
subject to the energy constraint (50). Since the thermal state
maximizes the von Neumann entropy for a given energy,
we assign a temperature to each subsystem for each disor-
der realization of the Hamiltonian (13). Lemma 11 implies
that in order to maximize the average subsystem entropy,
all these temperatures must have the same absolute value.
Finally, we upper bound the average subsystem entropy using
the thermodynamic relation (Lemma 9) between energy and
entropy.

2) Complete Proof: We start with the spectral and thermo-
dynamic properties of the spin-glass model (13).

Lemma 7: For any positive integer k,

1
92N
Proof: The first step follows from the RMS-AM inequal-
ity. The second step can be proved in the same way as (35)
of Ref. [64]. [ |

Let

i3
Etr?((HF)") < o5 B ((HF)™) < 2k - DI (37)

es(B) = e_ﬁHng/ tre—PHT (38)

be the thermal state of H at inverse temperature /3. Define
a measure on RV such that

/dJ:Pr(JeJ), VJ C R, (39)
]

For an arbitrary bipartition of RN = 7+ 11 7, let

£@) = [ e @HF)AI ~ [ wles-mHF)aI
(40)

so that £(0) =
decreasing.
Lemma 8: For —¢ < 3 < 0 with a small constant ¢ = ©(1),

E(B) < —B+0(B%). (41)

0 and that £ is strictly monotonically
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Proof: Since H is traceless,

tre PHI >N vJ. 42)

Using (42), Lemma 7, and the RMS-AM inequality,
[ wesmymar- / tr(os(~BHE) AT
J+ o

_ [ uEPTEE [ a(THS)
. T+ 9N aN

7-
+oo k sgyk41
_ B t((HF)™) 45
_kZ=O o .UQN

S e

— J7- k12N

+00 a2k Sg\2k+2
_ BEES tr((Hy)™ ™)
__’BZ (2k+1)f2N

(/ / )t (HP)* 1) dJ
<~ B /2+Z(2k)12N J =i~

< pertin 3PV I

(2k)!

dJ

+oo

2k
+ﬁ

(2&)12N

=—-B+0(8%). 43)

k=1
Let

S@) = [ Sesenar+ [ Ses-A)d
J+ =

so that S(0) = NIn2 and that S is strictly monotonically

increasing (decreasing) for negative (positive) 3.
Lemma 9: For [3 such that 0 < £(3) = O(1),

(44)

S(B) = NIn2 - Q((£(8))*). (45)
Proof: Lemma 8 implies that
B =—QEB))- (46)
Combining this with the thermodynamic relation
dS(B)/dB = BdE(B)/dB = dS(B)/dE(B) = B, (47)

we obtain Eq. (45). |
We are ready to prove Theorem 5. Recall that |¢) =
®j.\'r=1 |1;) is an arbitrary (deterministic) product state. Let

T ={J: (Y|HF|$) >0}, J_:={J: (Y|HF|¢$) <0}.
(48)
J+ and J_ have the same volume as J € 7, if and only if

—J € J_. Moreover, the complement of 7, L17_ has measure
zero. Hence,

1
B o “9)
Lemma 10:
@I(?ﬂlff}gl@ﬂ)l =6(1). (50)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 5, MAY 2022

Proof: 1t follows from observation that
(IHFIY) =1/Vdn
= By D

1<j<k<NiIme{z,y,z}

Jjkim (5|05 105) (elog k) - (51)

is the sum of ©(N?) independent Gaussian random variables
divided by ©(N). [ |
Let

L (R

= (52)

I _m
ij;mff Uk .

1 Z Z
\/ﬁ j.kEA <k I me{z,y,z} ’

Since \/d|s/dvHY, is the restriction of HF to

subsystem A,
=+/dn/dn IAIIE:— HffA ® Iz,

where [z is the identity operator on A. Combining Eq. (53)
with Eq. (49) and Lemma 10,

(33)

JEI% v tl“(PJA(fJ)HJA)
—Jg%, y tT(PJA(tJ)H 1) =O(n/N). (54)

An upper bound on the left-hand side of Eq. (15) can be
obtained as follows. For each tuple (J, A), we introduce a
density matrix o 4 supported on A. Since ps a(ts) and pj 4
are not related to each other, we use different fonts for rho to
avoid confusion. We maximize E; E|4—, S(ps,4) subject to
the constraint

tr(gJAHJA)
=O(n/N).

tr(E'J AH_] A) =

E
JeJy |A| JeJ |A |

(35)
Lemma 11 below implies that the maximum is achieved when

= e¥PH 4 [ tr FFHI A (56)

£J.A
is the thermal state of H}, at inverse temperature +3 for
J € Jy, respectively. ,

Lemma 11: Let M be a positive integer and E be a real
number. For i« = 1,2,..., M, let G; be a Hamiltonian on
the Hilbert space H;, and p; be a density matrix on H;.
The maximum average entropy Zfil S(e:)/M subject to the
constraint

1M
=5 ; tr(eiGi) = E (57)
is achieved when every o; = e P%i/tre A% is a thermal
state at the same temperature, and the inverse temperature 3
can be obtained by solvm% the constraint (57).

Proof: Let p := @3 1 @i be a density matrix on the
Hilbert space H := ®,~, H;, and

M
G:=Y 1961 @ G; ® [OM-)

(58)
i=1
be a Hamiltonian on H so that
M
tr(eG@) = Y _ tr(e:Gi) = ME. (59)
i=1
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The von Neumann entropy is additive: S(p) = E‘:’i] S(e:).
To maximize S(g), ¢ must be a thermal state of G [65]:

M
o= e_’sc/tr e PG = ®e‘ﬁci/tr e PG,
i=1

(60)

Thus, each p; is a thermal state of G; at the same inverse
temperature £3. [ |

Since H®, is traceless, tr(e PHi.4H,) is positive (neg-
ative) for ﬂegative (positive) 3. Substitilting Eq. (56) into
Eq. (55), we see that the solution 3 is negative. Since H},
is a spin-glass Hamiltonian for a system of n spins, Lemma 9
implies that

E E S(esa)=nln2—Q((n/N)?).

(61)

We complete the proof of Theorem 5 by noting that
the left-hand side of Eq. (61) is an upper bound on
E_} ]E|Al=n S(pJ,A(tJ)) for any {t_} c R}_}

D. Proof of Theorem 6

Theorem 6 can be proved in almost the same way as
Theorem 5. As an analogue of Lemma 10,

E |(g|HER™ )| = 6(1) (62)
follows from Eq. (17). Moreover, “n/N” in

Egs. (54), (55), (61) and “nln2” in Eq. (61) should be
modified to n2/N? and n(In2)/2, respectively.

APPENDIX
PROOF OF THEOREM 3

Let {| j)}?:l be a complete set of eigenstates of H'® and
0j.4 = trz|j)(j| be the reduced density matrix of subsys-
tem A. The energy basis {|7)} is unambiguously defined. This
is because the non-degenerate gap condition (9) implies that
all eigenvalues of H'* are distinct. Recall that n is the number
of qubits in A.

Lemma 12: For n = O(1),

oN

QLN 3" S(05,4) = nln2 — O(1/N).

=1

(63)

Proof: Using the monotonicity of the Rényi entropy and
Theorem 1 in Ref. [7],

1 2 i &
v D S(es.4) = —5x5 D Intr(e 4)
j=1 j=1

e 1 o
> —In| 5% tr(efa) z—h(Q—HJrF)
j=1

=nln2—- O(1/N). (64)
|
The effective dimension of |V) is defined as
2N
1/DF =" |GIw)[* (65)
j=1

3205

Lemma 13 [43]:
%I‘(D%ﬂ =My =1 — M), (66)
Let
]. d : pylat : priat
p*:= lim — [ p(t)dt, p(t):=e "1 |0) (|
T— oo T 0

(67)

be the infinite time average and p% := tr 1 p° be the reduced
density matrix of subsystem A. Expanding |¥) in the energy
basis, it is easy to see that

2N

pe = i)l ps= G

j=1

(68)

is the so-called diagonal ensemble. Since the spectrum of H'at
has non-degenerate gaps,
Lemma 14 ([66], [67]):

1 " o0
. =5 _ < 9n eff'
lim T/O lpa(®) — p¥l dt < 27/1/ DSt

Lemma 15 (Continuity of the Von Neumann Entropy
[68], [69]): Let T := ||p — p'||1/2 be the trace distance
between two density matrices p, o’ on the Hilbert space CP.
Then,

1S(p) — S(p)| < Tln(D —1) = Tl T — (1 - T)In(1 — T)).
(70)

(69)

Since by definition 0 < T" < 1, the right-hand side of this
inequality is well defined.

We are ready to prove Theorem 3. Lemmas 13, 14 imply
that

. 1 8
lim_~ [ Elpat) = p¥ldt =™, 1)
0

T—4oo T

Markov’s inequality implies that

— p%0, — —R(N)) _ 7 _ —N)
Lo (Elpa® = pZlh =) =1-c (72)

for sufficiently large 7. Due to the continuity of the von
Neumann entropy (Lemma 15),

Ellpa(®) — pxlls = e )
= |ES(pa(®)) —ES(pX)| < E[S(pa(®)) — S(p2)|
= e W), (73)

Using the concavity of the von Neumann entropy and
Lemma 12,

b 2N
ES(pF) =ES > piesa | 2D Ep;S(es.a)
j=1 j=1
i B
= > " S(eja) =nIn2-O(1/N).  (74)
j=1

Equation (10) follows from (72), (73), and (74).
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