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a b s t r a c t

We study the fluctuations of eigenstate expectation values in a
microcanonical ensemble. Assuming the eigenstate thermaliza-
tion hypothesis, an analytical formula for the finite-size scaling
of the fluctuations is derived. The same problem was studied by
Beugeling et al. (2014). We compare our results with theirs.
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1. Introduction

As an explanation for the emergence of statistical mechanics from the unitary evolution of
solated quantum many-body systems, the eigenstate thermalization hypothesis (ETH) [1–6] is of
igh current interest. A large body of literature is available on testing the ETH [7–13] and exploring
ts implications [14–29] in various systems.

The ETH states that eigenstates that are close in energy have similar local expectation values,
.e., the fluctuations of eigenstate expectation values (EEV) in a microcanonical ensemble vanish
n the thermodynamic limit. What is the asymptotic behavior of EEV fluctuations as the system
ize diverges? The answer to this question depends on how EEV fluctuations are defined. Assuming
he ETH, we rigorously derive an analytical formula for the finite-size scaling of some definitions
including the one in Ref. [30]) of EEV fluctuations.

The rest of this paper is organized as follows. Section 2 sets the stage and introduces some
definitions of EEV fluctuations. Section 3 presents the main results. Section 4 compares our results
ith those of Beugeling et al. [30] for the same problem. The main text of this paper should be easy
o read, for most of the technical details are deferred to Appendix.
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. Definitions

Throughout this paper, standard asymptotic notations are used extensively. Let f , g : R+
→ R+

be two functions. One writes f (x) = O(g(x)) if and only if there exist constants M, x0 > 0 such that
f (x) ≤ Mg(x) for all x > x0; f (x) = Ω(g(x)) if and only if there exist constants M, x0 > 0 such that
f (x) ≥ Mg(x) for all x > x0; f (x) = Θ(g(x)) if and only if there exist constants M1,M2, x0 > 0 such
that M1g(x) ≤ f (x) ≤ M2g(x) for all x > x0.

Consider a system of N spins on a hypercubic lattice in D = Θ(1) spatial dimensions, where
each lattice site has a spin. The dimension of the Hilbert space is d = dNloc, where dloc = Θ(1) is the
local dimension of each spin. The system is governed by a (not necessarily translation-invariant)
local Hamiltonian

H =

∑
i

Hi. (1)

The sum is over Θ(N) lattice sites. Each term Hi has operator norm ∥Hi∥ = Θ(1) and is supported
in a small neighborhood of site i. Assume without loss of generality that trHi = 0 (traceless) so that
the mean energy of H is trH/d = 0.

Let {|j⟩}dj=1 be a complete set of eigenstates of H with corresponding energies {Ej}. Let J := {j :
−Nδ1 ≤ Ej ≤ Nδ2} be a microcanonical ensemble in the middle of the energy spectrum, where
δ1, δ2 = Θ(1) are arbitrary positive constants. Let A be a traceless local operator with ∥A∥ = 1 and
Ajj := ⟨j|A|j⟩ be the EEV so that

∑d
j=1 Ajj = tr A = 0.

In this paper, we consider three definitions of EEV fluctuations. The first

∆A :=
1
d

d∑
j=1

|Ajj|
2 (2)

s simply the variance of Ajj in all eigenstates. The second

∆AJ :=
1
|J|

∑
j∈J

⏐⏐⏐⏐⏐⏐Ajj −
1
|J|

∑
k∈J

Akk

⏐⏐⏐⏐⏐⏐
2

=
1
|J|

∑
j∈J

|Ajj|
2
−

1
|J|2

⏐⏐⏐⏐⏐⏐
∑
j∈J

Ajj

⏐⏐⏐⏐⏐⏐
2

(3)

is the variance of Ajj in J . The third definition [30] is slightly more complicated. Let Kj = {k :

|Ej − Ek| ≤ Nδ3}, where δ3 = Θ(1) is an arbitrary positive constant. Let

∆′AJ :=
1
|J|

∑
j∈J

⏐⏐⏐⏐⏐⏐Ajj −
1
|Kj|

∑
k∈Kj

Akk

⏐⏐⏐⏐⏐⏐
2

. (4)

3. Results

In the thermodynamic limit N → +∞, the fluctuations ∆AJ , ∆′AJ depend weakly on the
hyperparameters δ1, δ2, δ3, and are approximately equal to ∆A up to exponentially small additive
errors.

Lemma 1. For any traceless local operator A with ∥A∥ = 1,

|∆AJ − ∆A| = e−Ω(N), (5)

|∆′AJ − ∆A| = e−Ω(N). (6)

Proof. See Appendix A.1. □
It suffices to assume the ETH for eigenstates in the middle of the energy spectrum.
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ssumption 1 (Eigenstate Thermalization Hypothesis in the Middle of the Spectrum [31,32]). Let ϵ be
n arbitrarily small positive constant. For any traceless local operator A with ∥A∥ = 1, there is a

function fA : [−ϵ, ϵ] → {z ∈ C : |z| ≤ 1} such that

|Ajj − fA(Ej/N)| ≤ 1/poly(N) (7)

for all j with |Ej| ≤ Nϵ, where poly(N) denotes a polynomial of sufficiently high degree in N . We
assume that fA(x) is smooth in the sense of having a Taylor expansion to some low order around
x = 0.

In quantum chaotic systems, it was proposed analytically [33] and supported by numerical
simulations [7] that the right-hand side of (7) can be improved to e−Ω(N). For our purposes, however,
a (much weaker) inverse polynomial upper bound suffices.

Lemma 2. For a traceless local operator A with ∥A∥ = 1, Assumption 1 implies that

∆A =
|tr(HA)|2

d tr(H2)
+ O(1/N2). (8)

For generic A, tr(HA) is non-zero, and hence the first term on the right-hand side of Eq. (8) is
(1/N) (see Eq. (11)).
Eq. (8) was derived in Refs. [31,34], neither of which has rigorously bounded the approximation

rror in the derivation. In Appendix A.2, we follow Ref. [31] and present a complete proof of
Lemma 2 with rigorous error analysis.

To understand Lemmas 1, 2 quickly without going into technical details, it is instructive to
onsider the special case where the Hamiltonian (1) is translation invariant and where A = Hi
is a term in the Hamiltonian. In this case, Lemma 2 is trivially true since (Hi)jj = Ej/N . Lemma 1
follows directly from the fact that Ej’s approach a normal distribution in the thermodynamic limit
N → +∞ [14,35].

Combining Lemmas 1 and 2, we obtain

Theorem 1. For a traceless local operator A with ∥A∥ = 1, Assumption 1 implies that

∆AJ =
|tr(HA)|2

d tr(H2)
+ O(1/N2), ∆′AJ =

|tr(HA)|2

d tr(H2)
+ O(1/N2). (9)

. Discussion

The finite-size scaling of the EEV fluctuation ∆′AJ was studied by Beugeling et al. [30]. For
3 = 0.025 and J being the middle 20% of the spectral range, they presented numerical evidence
hat ∆′AJ scales as d−1/2

= e−Θ(N) in generic non-integrable systems, where d is the dimension
f the Hilbert space. Furthermore, a heuristic ‘‘typicality argument’’ was given to explain the d−1/2

ehavior. This result is different from ours. Recall that Eq. (9) states that for generic A, ∆′AJ scales
as Θ(1/N).

In fact, the typicality argument has already been proved to be problematic in a different but
related setting [36]. Using the equivalence of ∆AJ and ∆′AJ (Lemma 1), the proof can be extended
to ∆′AJ . This requires some work, and we do not present the extension here.

For a constant δ3
1 and J being the middle 10% of the spectral range, Sugimoto et al. [13] found

numerically that

∆′′AJ = e−Ω(N), ∆′′AJ := max
j∈J

⏐⏐⏐⏐⏐⏐Ajj −
1
|Kj|

∑
k∈Kj

Akk

⏐⏐⏐⏐⏐⏐
2

(10)

1 I have confirmed by personal communication with the authors of Ref. [13] that δ3 is set as a constant in their
numerical study.
3
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n generic translation-invariant and generic disordered spin chains. Since ∆′′AJ ≥ ∆′AJ , Eq. (10) is
inconsistent with Eq. (9).

We suspect that the discrepancy between Eq. (9) and the numerical results of Refs. [13,30] is
due to finite-size effects in the simulations.
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Appendix. Proofs

Lemma 3 (Moments [31]). For any integer m ≥ 0,
1
d

∑
j

E2m
j =

1
d
tr(H2m) = Θ(Nm), (11)

1
d

⏐⏐⏐⏐⏐⏐
∑

j

E3
j

⏐⏐⏐⏐⏐⏐ = 1
d
|tr(H3)| = O(N). (12)

Proof. Expanding H in the generalized Pauli basis, we count the number of terms that do not vanish
upon taking the trace in the expansion of H2m. There are Θ(Nm) such terms, the trace of each of
which is Θ(d). Therefore, we obtain Eq. (11). Eq. (12) can be proved in the same way. □

Almost all eigenstates have vanishing energy density:

Lemma 4 (Concentration of Eigenvalues [37]). For any ϵ > 0,

|{j : |Ej|≥ Nϵ}|/d = e−Ω(Nϵ2). (13)

This lemma allows us to upper bound the total contribution of all eigenstates away from the
middle of the spectrum. Let C = O(1) be a sufficiently large constant such that

1
d

∑
j:|Ej|≥Λ

1 ≤
1
d

∑
j:|Ej|≥Λ

|Ej| ≤ q, Λ := C
√
N logN, q := 1/poly(N), (14)

where poly(N) denotes a polynomial of sufficiently high degree in N .
Lemma 4, Eq. (11), and (14) are related to the fact that Ej’s approach a normal distribution in

he thermodynamic limit N → +∞ [14,35]. Indeed, |Ej| = Θ(
√
N) for almost all j.

.1. Proof of Lemma 1

roof of Eq. (5). By definition,

∆AJ − ∆A =
1
|J|

∑
j∈J

|Ajj|
2
−

1
|J|2

⏐⏐⏐⏐⏐⏐
∑
j∈J

Ajj

⏐⏐⏐⏐⏐⏐
2

−
1
d

∑
j

|Ajj|
2

=

(
1
|J|

−
1
d

)∑
|Ajj|

2
−

1
|J|2

⏐⏐⏐⏐⏐⏐
∑

Ajj

⏐⏐⏐⏐⏐⏐
2

−
1
d

∑
|Ajj|

2. (15)

j∈J j̸∈J j̸∈J

4



Y. Huang Annals of Physics 438 (2022) 168761

S

F

F

A

L

|

P

i
‘

ince δ1, δ2 = Θ(1) are positive constants, Lemma 4 implies that 1− |J|/d = e−Ω(N). Therefore,

|∆AJ − ∆A| ≤ (1/|J| − 1/d)|J| + (d− |J|)2/|J|2 + (d− |J|)/d = e−Ω(N). □ (16)

Proof of Eq. (6). Let δ′ := min{δ1, δ2, δ3/2} = Θ(1) and J ′ := {j : |Ej| ≤ Nδ′} ⊆ J . By definition,

∆′AJ − ∆A =
1
|J|

∑
j∈J

⏐⏐⏐⏐⏐⏐Ajj −
1
|Kj|

∑
k∈Kj

Akk

⏐⏐⏐⏐⏐⏐
2

−
1
d

∑
j

|Ajj|
2

=
1
|J|

∑
j∈J ′

⎛⎜⎝ A∗jj
|Kj|

∑
k̸∈Kj

Akk +
Ajj

|Kj|

∑
k̸∈Kj

A∗kk +
1

|Kj|
2

⏐⏐⏐⏐⏐⏐
∑
k̸∈Kj

Akk

⏐⏐⏐⏐⏐⏐
2
⎞⎟⎠

+

(
1
|J|

−
1
d

)∑
j∈J ′

|Ajj|
2
+

1
|J|

∑
j∈J\J ′

⏐⏐⏐⏐⏐⏐Ajj −
1
|Kj|

∑
k∈Kj

Akk

⏐⏐⏐⏐⏐⏐
2

−
1
d

∑
j̸∈J ′

|Ajj|
2. (17)

or any j ∈ J ′,

Kj = {k : |Ej − Ek| ≤ Nδ3} ⊇ {k : |Ek| ≤ Nδ3/2}. (18)

or such j, Lemma 4 implies that 1− |Kj|/d = e−Ω(N). Therefore,

|∆′AJ − ∆A| ≤
3
|J|

∑
j∈J ′

d− |Kj|

|Kj|
+

(
1
|J|

−
1
d

)
|J ′| +

4(|J| − |J ′|)
|J|

+
d− |J ′|

d
= e−Ω(N). □ (19)

.2. Proof of Lemma 2

emma 5 ([32]). For a traceless local operator A with ∥A∥ = 1, Assumption 1 implies that

|fA(0)| = O(1/N), (20)

|f ′A(0)− N tr(HA)/tr(H2)| = O(1/N). (21)

We include the proof of this lemma for completeness. For notational simplicity, let x δ
= y denote

x− y| ≤ δ.

roof of Eq. (20).

0 =
1
d
tr A =

1
d

∑
j

Ajj
O(q)
=

1
d

∑
j:|Ej|<Λ

Ajj
1/poly(N)

=
1
d

∑
j:|Ej|<Λ

fA(Ej/N)

≈
1
d

∑
j:|Ej|<Λ

(
fA(0)+

f ′A(0)Ej
N

)
O(q)
=

1
d

∑
j

(
fA(0)+

f ′A(0)Ej
N

)
= fA(0), (22)

where we used (14), the ETH (7), and the Taylor expansion

fA(Ej/N) = fA(0)+ f ′A(0)Ej/N + f ′′A (0)E
2
j /(2N

2)+ O(|Ej|3/N3) (23)

n the steps marked with ‘‘O(q)’’, ‘‘1/poly(N)’’, and ‘‘≈’’, respectively. The approximation error in the
‘≈’’ step is

1
d

∑
j:|Ej|<Λ

O(E2
j /N

2) ≤
1
d

∑
j

O(E2
j /N

2) = O(1/N), (24)
where we used Eq. (11) with m = 1. We obtain Eq. (20) by combining (22), (24). □

5
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roof of Eq. (21).
1
d
tr(HA) =

1
d

∑
j

EjAjj
O(q)
=

1
d

∑
j:|Ej|<Λ

EjAjj
1/poly(N)

=
1
d

∑
j:|Ej|<Λ

EjfA(Ej/N)

≈
1
d

∑
j:|Ej|<Λ

(
EjfA(0)+

f ′A(0)E
2
j

N
+

f ′′A (0)E
3
j

2N2

)

O(q)
=

1
d

∑
j

(
EjfA(0)+

f ′A(0)E
2
j

N
+

f ′′A (0)E
3
j

2N2

)
O(1/N)
=

f ′A(0) tr(H
2)

Nd
, (25)

here we used (14), (7), the Taylor expansion (23), and Eq. (12) in the steps marked with ‘‘O(q)’’,
‘‘1/poly(N)’’, ‘‘≈’’, and ‘‘O(1/N)’’, respectively. The approximation error in the ‘‘≈’’ step is

1
d

∑
j:|Ej|<Λ

O(E4
j /N

3) ≤
1
d

∑
j

O(E4
j /N

3) = O(1/N), (26)

where we used Eq. (11) with m = 2. We obtain Eq. (21) by combining (25), (26). □

We are ready to prove Lemma 2:

∆A =
1
d

∑
j

|Ajj|
2 O(q)
=

1
d

∑
j:|Ej|<Λ

|Ajj|
2 1/poly(N)

=
1
d

∑
j:|Ej|<Λ

|fA(Ej/N)|2

≈
1
d

∑
j:|Ej|<Λ

⏐⏐⏐⏐fA(0)+ f ′A(0)Ej
N

⏐⏐⏐⏐2 O(q)
=

1
d

∑
j

⏐⏐⏐⏐fA(0)+ f ′A(0)Ej
N

⏐⏐⏐⏐2

= |fA(0)|2 +
|f ′A(0)|

2

d

∑
j

E2
j

N2 = |fA(0)|2 +
|f ′A(0)|

2 tr(H2)
N2d

O(1/N2)
=

|tr(HA)|2

d tr(H2)
, (27)

where we used (14), (7), and Lemma 5 in the steps marked with ‘‘O(q)’’, ‘‘1/poly(N)’’, and ‘‘O(1/N2)’’,
respectively. In the ‘‘≈’’ step, we used (23) with the approximation error upper bounded by

O(1/d)

⏐⏐⏐⏐⏐⏐
∑

j:|Ej|<Λ

E3
j

N3

⏐⏐⏐⏐⏐⏐+ O(1/d)
∑

j:|Ej|<Λ

(
|fA(0)|E2

j

N2 +
E4
j

N4

)

≤ O(1/d)

⏐⏐⏐⏐⏐⏐
∑

j

E3
j

N3

⏐⏐⏐⏐⏐⏐+ O(q)+ O(1/d)
∑

j

(
E2
j

N3 +
E4
j

N4

)
= O(1/N2), (28)

where we used Lemma 3. We complete the proof of Lemma 2 by combining (27), (28).
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