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Abstract. We describe the application of the lattice covering problem to the
placement of templates in a search for continuous gravitational waves from the low-mass
X-Ray binary Scorpius X-1. Efficient placement of templates to cover the parameter
space at a given maximum mismatch is an application of the sphere covering problem,
for which an implementation is available in the LatticeTiling software library. In the
case of Sco X-1, potential correlations, in both the prior uncertainty and the mismatch
metric, between the orbital period and orbital phase, lead to complications in the
efficient construction of the lattice. We define a shearing coordinate transformation
which simultaneously minimizes both of these sources of correlation, and allows us to
take advantage of the small prior orbital period uncertainty. The resulting lattices
have a factor of about 3 fewer templates than the corresponding parameter space grids
constructed by the prior straightforward method, allowing a more sensitive search at
the same computing cost and maximum mismatch.
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1. Introduction

Scorpius X-1 (Sco X-1) is a compact object in a binary system with a low-mass
companion star. [1, 2] It is believed to be a rapidly spinning neutron star and a promising
source of continuous gravitational waves [3]. The signal received by an observatory
such as LIGO[4], Virgo[5] or KAGRA[6] depends on the parameters of the system,
and a search for that signal loses sensitivity if the incorrect values are used for those
parameters. Several of the parameters are uncertain, and one method to ensure that the
signal is not missed is to perform the search at each point in a template bank covering
the relevant parameter space. These include the projected semimajor axis a, = asini of
the neutron star’s orbit,I the orbital period P,,, and the time t... at which the neutron
star crosses the ascending node as measured in the solar-system barycenter.

The loss of signal-to-noise ratio (SNR) associated with an incorrect choice of
parameters is, in a generic Taylor expansion, a quadratic function of the parameter
offsets. This allows us to write the fractional loss in SNR, also known as the mismatch,
as a squared distance using a metric on parameter space. In general, this metric will vary
over the parameter space (i.e., the associated geometry will have intrinsic curvature),
but we can divide the parameter space into small enough pieces that the space is
approximately flat, and the metric can be assumed to be constant. In that case, there
exists a transformation to Euclidean coordinates. The problem of placing templates
so that the mismatch of any point in parameter space from the nearest template is no
more than some maximum mismatch p is then equivalent to the problem of covering the
corresponding Euclidean space with spheres of radius /u. The most efficient covering
which includes the hexagonal lattice Aj

*
n?

in n < 5 dimensions is the lattice family A
and the body-centered cubic lattice A3. For example, the density of lattice points for
A is a factor of 2.8 lower than the corresponding hypercubic (Z?*) lattice.

We use the LatticeTiling module in the LIGO Algorithms Library[7] (1alsuite)
to investigate efficient lattice coverings for the parameter space of a search for Sco X-1
using advanced LIGO data. We show how the search can be made more efficient by:
replacing a hypercubic grid with an A} lattice; accounting for the elliptical boundaries
associated with the correlated prior uncertainties between orbital period and orbital
phase; defining a sheared coordinate change such that a particular combination of the
orbital period and orbital phase is unresolved, and explicitly searching only in the other
three dimensions of the parameter space. These improvements allow the search to be
carried out using fewer computational resources. Alternatively, since the search method
we use is tunable, with a trade-off between computational cost and sensitivity, the more
efficient lattice allows a more sensitive search to be done at the same computing cost.

The plan of this paper is as follows: In section 2.1, we briefly summarize the cross-
correlation search for continuous gravitational waves (GWs) as applied to Sco X-1. In
section 2.2 we describe the existing method of template placement “by hand” in a

1 The angle ¢ is the inclination of the binary orbit with respect to the line of site, not to be confused
with ¢, which is in inclination of the neutron star spin to the line of site.
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rectangular grid. In section 2.3 we describe the application of the sphere covering
problem to generation of template lattices, which is implemented in the LatticeTiling
module in the lalsuite software library|7], as described in [8]. In section 3 we consider
the specific features of the parameter space for the Sco X-1 search which impact our
search: section 3.1 describes the orbital priors, especially the relationship between orbital
period and phase. In section 3.2 we consider the standard coordinates, where the time
of ascension describing the orbital phase has been propagated in time to the epoch of
the gravitational wave search, inducing prior correlations between the period and time
of ascension. In section 3.3 we show how a shearing transformation can be used to define
a modified period parameter whose prior uncertainty is independent of the uncertainty
on the propagated time of ascension. In section 4 we construct a number of lattices and
compare the numbers of templates and modelled computing costs. Finally section 6
contains conclusions and implications of this work.

2. Background

2.1. Cross-Correlation Search for Scorpius X-1

The model-based cross-correlation method [9] has been developed to search for
continuous GWs, most notably from the low-mass X-ray binary Sco X-1 [10] and applied
to mock data [11] as well as observational data from Advanced LIGO’s first and second
science runs [12, 13]. It is a semi-coherent method where the data are divided into short
segments of duration 200s < Ty < 2000s, which we call “SFTs” because we construct
a Short Fourier Transform from each of them. A detection statistic is constructed
including correlations between pairs of segments separated by a coherence time T},,, or
less.§ The sensitivity of the search scales with the number of included pairs; when T,
is much less than the total observation time, the detectable GW strain is proportional to
Tmal®. Since the search is computationally limited and the computing cost increases with
Thax, the search can be tuned to trade computational cost for sensitivity. This tuning
can also be done across the parameter space, with different parameter space regions
being assigned different T,,,, values. Typically, one uses more computing resources in
regions of parameter space which are more likely to contain the signal, where the search
is inherently more sensitive, and where it is inherently computationally cheaper.

The output of the search is a detection statistic, which is normalized to have
unit variance. The value of p can then be seen as a SNR for the search. In the
presence of a signal of intrinsic amplitude hg, the expectation value E [p] oc h2, with the
proportionality constant being a measure of the sensitivity of the search. Because the
model-based statistic is constructed using signal parameters such as intrinsic frequency
and parameters influencing the Doppler modulation of the signal, such as sky position

§ In this paper we describe the original “demod” implementation of the search. At low frequencies,
the search can be made more efficient by using resampling to reimplement the loop over data and the
search over frequencies, as described in [14], but the considerations for the template bank in the orbital
parameters are similar.
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and the binary orbit of the neutron star, the expected SNR in the presence of a signal
will be reduced if the template model parameters differ from those of the signal. For
parameters which are unknown or insufficiently constrained, the search is run repeatedly
at different points in parameter space to try to find a point close to the true signal. If
the parameter values for a search point are {\;} and the corresponding true values of
the signal are {\7}, we can define the mismatch p as the fractional loss in expected

SNR:
Elplpng

b [P]{,\f}

A Taylor expansion in the n parameters {\;} gives||

p=1- (2.1)

e YD g = A = X)), (2.2)
i=1 j=1
where the matrix with elements {g;;} acts as a metric on parameter space, thereafter
referred to for brevity as “the metric {g;;}”. The general form of the metric for the
cross-correlation search is [10]

1
gij = §<A(I)a,iAq)a,j>a ) (2-3)

where « represents a pair of SFTs, Ad, is the difference in modelled signal phase
between the SFTs in the pair, (-), is an average over SF'T pairs weighted by the antenna
patterns and sensitivity of the detectors involved, and ; = %i is a partial derivative

with respect to the parameter ;.

2.2. Simple Rectangular Template Placement

The cross-correlation analyses run to date examined a parameter space divided up into
rectangular regions, small enough to assume a constant metric. Then, a set of discrete
points is placed over the parameter space which lie on a rectangular grid with spacing
0)\; in the \; direction, using what we refer to as the “by hand” method. The number
of points used is

max )\min
N; = | +—7—"—, 24
[ OA; -‘ (24)
where [-] indicates rounding to up to the next integer. The spacing d)\; is chosen to be
i
Yii

so that the mismatch between adjacent pointsq in the \; direction is g;;(d\;)% = py. If

the metric is approximately diagonal, g;; = ¢,;0;;, then the point in the parameter space

iJ
|| This assumes that the expected SNR E [p] is a local maximum at the true signal point A; = A{. This
is not quite true, as shown in Section IV.A of [10], but it is a good starting point.

€ Note that for historical reasons, p; is defined as the mismatch between adjacent points in the grid,
rather than the maximum mismatch between some point in the parameter space and the nearest grid
point. This is the origin of the factor of % appearing in (2.6).
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Figure 1. Illustration of maximum mismatch of the by-hand grid of section 2.2 when
the metric is not diagonal. Specializing to the case of n = 2 and u; = uo, we transform
to Euclidean coordinates as described in section 2.3. Left: If the metric is diagonal, this
is just a scaling which transforms the rectangle defined by four grid points ABDC' into
a square with sides of length /i1 = /2. The point in parameter space farthest from
any grid point is the center P of the square, with dap = dpp = dop = dpp = \/p11/2.
Right: If the metric is not diagonal, this square becomes a rhombus ABDC'. Defining
AD to be the long diagonal, the point farthest from any vertex is not the center, but
a point P on the long diagonal with dap = dgp = dep. (There is an equivalent point
@ on the other side of the center with dpg = dpg = dcg.) We see that APB (or
equivalently APC or DQB or DQC) is an isoceles triangle with dap = dpp = \/limax
and dap = \/f11. In the case of a non-diagonal metric, ZAPB is an obtuse angle, and
dap =dpp < dap/V2, 50 fmax > p1/2 = (p1 + p2)/4.

farthest (in the sense of the metric) from any grid point is % away in the \; direction,

and has a total mismatch of

n ) 2 n
Hmax = Zgii (%) = }LZM (2.6)
i=1 i=1

If the metric is not diagonal, the procedure described above will lead to a maximum
mismatch greater than that given in (2.6), as illustrated in figure 1. This approach is
conservative and can result in much larger template banks if the metric contains large
correlations. The number of templates could be reduced by accounting for the metric
correlations, which will be discussed later in section 3.3.

2.3. Covering Lattices

The general problem of choosing a set of template points with a prescribed maximum
mismatch distance pn,.x between any point in the parameter space and the nearest
template is an application of the sphere covering problem [15]. Since we treat the
metric {g;;} as approximately constant, there is always a linear transformation of the
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parameters {\;} into Euclidean coordinates {z;}; the mismatch between two points
separated by parameter differences {A\;} is then

n n

DY g(AN)(AN) =D (Az)? . (2.7)

i=1 j=1 i=1

The template placement problem is then simplified to one of placing (hyper-)spheres of
radius \/fimax in the {z;} space so that every point of the region of interest is covered by
at least one sphere. To efficiently cover the space, the overlap between spheres should
be minimized. This is quantified using the normalized thickness or center density @,
which is the average number of templates per unit volume for the unit sphere.

A sphere covering based on a repeating pattern is known as a lattice. The number
of templates required to cover the space will be at a minimum when the lattice has the
smallest thickness 0. A perfect lattice has a thickness of 1.

The simplest lattice is the cubic lattice Z™, which has points equally spaced in each
of the (Euclidean) coordinate directions. The “by hand” lattice of section 2.2 is an
example of a Z" lattice, if the metric {g;;} is diagonal and all of the mismatches p;

*
no

are chosen to be equal. A more efficient lattice is A%, which is a general analogue of
the hexagonal lattice. For the sphere covering problem, the thinnest lattice is the A
lattice, which in two dimensions has a hexagonal principal cell. The principal cell is
the set of points closest to given point in a lattice, and the vertices are locations where
covering spheres intersect. It has been shown for n < 5 that A’ is the most efficient
covering lattice, i.e., has the smallest thickness ¢ [15], and for higher dimensions it is
typically close to the most efficient covering [16]. Since a more efficient lattice allows
the same volume of parameter space to be covered with fewer templates, it can reduce
the necessary computing cost at a given sensitivity.™

Construction of Z™ and A} lattices in physical coordinates {\;} given a constant
mismatch metric {g;;} is implemented by the LatticeTiling module in the lalsuite
software library[7], as described in [8]. A particular challenge is ensuring that the area
within the boundaries of a search region is completely covered, which sometimes requires
retaining templates whose parameters lie outside the search region. We shall see that
this can necessitate some care in choosing coordinates to take advantage of underresolved
directions in parameter space.

3. Parameter Space for Sco X-1 Search

3.1. Observational Priors

The GW signal produced by a spinning neutron star is the system is nearly periodic
in the neutron star’s rest frame, and Doppler shifted as a result of the motion of the
detector as the Earth rotates and moves in its orbit and, in the case of a low-mass X-ray
binary such as Sco X-1, of the neutron star in its own orbit with its binary companion.

* But see [17].
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For an accreting neutron star in approximate spin equilibrium, the frequency fy of the
system can be approximated as constant.* The Doppler shift from detector motion is
primarily affected by sky position, which for Sco X-1 is well enough known[19] that its
uncertainty does not affect the search. The Doppler shift from the binary motion is
affected by five orbital parameters: eccentricity, orientation, projected orbital speed,
orbital period, and orbital phase[20]. The orbit of Sco X-1 is believed to be nearly
circular[21], and the orientation parameters, inclination ¢ and polarization angle 1, are
averaged out through time-dependent antenna functions [9]. Thus the search needs to
cover only three orbital parameters: projected speed, period, and phase.

The best constraints on these come from [22]. The constraint on orbital period Py,
is Gaussian, with a mean of P, = 68023.86s and a standard deviation of op , = 0.043s.
The orbital phase is described by time of ascension t,s., which is the time at which
the neutron star crosses the plane of the sky moving away from the observer (i.e.,
crosses the ascending node). The constraint on this is also Gaussian, with a mean
of tasco = 974416624 GPS (2010-Nov-21 23:16:49 UTC) and a standard deviation of
0t,.. = 90s. These estimates are uncorrelated, as shown in the left panel of figure 2, but
if we convert the time of ascension to a subsequent equivalent time ¢/ . = tasc + Torb Porb,
a correlation is induced, as described in section 3.2 and shown in the right panel of
figure 2. The constraints on the orbital velocity of the neutron star in [22] are described
in terms of the amplitude of the component of velocity along the line of sight, known
as K7, and consist of constraints that 40km/s < K; < 90km/s, but without a well-
determined probability density between those limits. Searches for GWs from Sco X-1
typically use a uniform prior distribution on this parameter. The parameter used is
also typically written as the line-of-sight component of the semimajor axis of the orbit,
a, = Kg—]:frb. Since the relative uncertainty on P, is much less than on K7, one assumes
a uniform prior on a, for 1.441t-s < a, < 3.251t-s, where the units on a, are given in
light-seconds.

3.2. Standard Search Coordinates

The phase derivatives {A®,, ;} appearing in (2.3) are computed in [10] for the standard

search coordinates {\;} = {fo, ap, ths: sc

ascension at a given point in the propagated 2019 coordinates, indicated by the prime.

P,1}. Here we introduce the ¢ . as the time of

For long searches which evenly sample the orbital phase of the binary, the non-negligible

* In practice, this equilibrium will be imperfect, leading to some “spin wandering”, but the impact of
deviations from equilibrium was shown in [10] to be limited when the coherence time is not too long,
especially with the levels of spin wandering predicted by [18].
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Figure 2. Orbital parameter constraints from [22]. If the time of ascension t.g. is
quoted in 2010 (left panel) its uncertainty is uncorrelated with the orbital period Po,p.
If we propagate forward by n.,1, orbits to determine an equivalent time of ascension
ti/iSC
the probability distribution are shown, for which x?2, defined in (3.7) and (3.8) equals
1', 22 and 32. We refer to these as at normalized distances of 10, 20, and 3¢, and they

correspond to cumulative probabilities of 39.3%, 86.5%, and 98.9%, respectively.

= tasc + MorbPorb, this introduces correlations. In each case the level surfaces of

metric elements have the approximate formf

2/ A42 2% o
ngfO ~ 2T <Ata>a ~ TTmaXJ (31&)
At, - 2T hax
Gapa, = AT f3 <sin2 7T_> ~ 21 f2 (1 — sinc = ) , (3.1b)
orb / o Porb
7(t;scf<¥0¢> ) 4 r£2 2
o ’ 1 —= ) L2} 167 fFa At,
g,tasctasc g,tascPOYb ~ , _ , Por,b 9 5 07p Sin2 T , (310)
9Pt 9P, P, _(tasc_<ta>a) <(tasc_ta) >0‘ Porb Porb o
orblasc orb4 orb Porb Porb

where At, is the difference between the timestamps of the two SFTs in pair «, and
to is their mean. Note that the implementation in lalsuite [7] uses the exact metric
elements, which include additional (generally small) off-diagonal elements.

If we define the midpoint of the run (according to the weighted average (-),) to
be piobs = (ta)a and the variance as 0% = ((ta — fobs)?)a The metric elements on the

t! s Porb subspace become
1674 f2a? At,,
92/‘ v~ — 05 0P <sin2 T > , (32&)
asclasc Porb ) b N
_(tgxsc - :u’ObS)
gzéscporb ~ ( P gégsctgsca (32b)
(t,asc — /JJObS)2 + O-(Q)bs
g})orbporb ~ ( P2 gé/asct;sc . (32C)
orb

f Note that the original formula for gj, p —(4.20h) in [10]-contains a sign error which has not been
relevant previously because approximate form of g;, p,,, has only been used to set it to zero.
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Note that, as shown in [10], if we ignore any data gaps and the noise and antenna pattern
2

. . . . T
weighting, for an observing run of duration 7,5 and coherence time T, agbs Ry —obs

12
and <s.in2 ’f#> ~ % (1 — sinc %)
orb a orb

If we choose ng1, so that
t;sc,o = taSC,O + noerO (33)

is as close as possible to s, Wwe can minimize the magnitude of

taSC»U + nObeO — Hobs
gzgscporb ~ ( PO gzlfgsctgsc . (34)
This achieved by taking
obs T tasc
Norb = \‘%—‘ (35)
0

where |-] indicates rounding to the nearest integer.

To give a concrete example, we consider the LIGO-Virgo O3 data run [23]
which began on 2019-Apr-01 00:00:00 UTC (GPS 1238112018), continued until a
commissioning break at 2019-Oct—01 00:00:00 UTC (GPS 1253923218), resumed
on 2019-Nov-01 15:00:00UTC (GPS 1256655618), and ended on 2020-Mar—27
17:00:00 UTC (GPS 1269363618). Neglecting variability of antenna patterns and noise
spectra, as well as any data gaps other than the commissioning break, we find an
average time of s = GPS 1253589161 =2019-Sep—27 03:12:23 UTC. This translates
into an optimal nep, = 4104, corresponding to .., = GPS 1253586547 =2019-Sep-27
02:28:49 UTC.171

The joint prior on ¢/

ase and Py, will remain a multivariate Gaussian, but now with a

/

"< Will be a Gaussian

non-diagonal variance-covariance matrix. The marginal prior on ¢
with mean /., and variance

2 2

_ 2 2
Oy =0, T No0p (3.6)

tasc

The joint prior can be illustrated by plotting level curves of the quantity

2 2
tasc - tasc Por - P
O-tasc O-Porb

whose prior distribution is a chi-squared with two degrees of freedom (figure 2, right
panel). A bit of algebra shows that

2 / / / / 2
(Porb - PO) . 2n0rbUP0rb (tasc - tasc,O) (Porb - PO) + (tasc - tasc,())
UPOrb O-t;sc O-t;sc UPOrb O-tésc

(3.8)

2 asc
X =5

tasc

11 The actual values for O3 including duty cycle, noise weighting and antenna patterns, and using the
exact form of the metric, will be slightly different, but we will use the values above for illustration in
this paper.
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Figure 3. Left: rectangular search region boundaries cover the entire t/ ., Py}, region,

as used in O1 CrossCorr [12]. The darker region bounded by one-sigma in the ¢4
direction indicates a higher likelihood of finding the signal in that region of parameter
space. Right: Rectangular regions more closely concentrated on the uncertainty ellipses
than the O1 search regions. The areas in ¢/, Po;p have been “chopped” to eliminate
extra parameter space area where a signal is not likely to be found.

In previous searches, rectangular boundaries have been used in all coordinate directions
in the parameter space. For the O1 search, these regions covered out to 3o of the
marginal priors on ¢/ . and Py, as shown in Figure 1 of [12]. If we use a similar
approach in O3 (figure 3, left panel), the search regions cover a large area of t ., Pop
parameter space with negligible prior probability. Since the middle third of the ¢/ .
range is searched separately (at a higher coherence time Ty,.y, since the prior probability
density is higher there), a simple approach can reduce the over-coverage of the search
region. The P, search range is different for each of the rectangular regions covering
different ranges of t,.., discarding regions in which the prior x* 2 32. These “chopped”
regions are shown in the right panel of figure 3. The chopped regions can be achieved
without significant modification to the previously existing search code.

To further improve the efficiency of the parameter space coverage, we can define
an elliptical boundary function which sets the range of P, continuously as a function
of t/ .. This function can be used in the LatticeTiling module to restrict template

placement to those needed to cover the prior ellipse corresponding to x? < k? for a
particular k:

/ / / / 2
Porb - PO NorbO P4, tasc " lasc,0 Otasc tasc ~ lasc,0
c 4 go (Lme Zlae0 ) g g
UPOrb O-t'l O-t;sc o-tgxsc o-tgxsc

asc

This is used to define a search region, together with a constant boundary on /.

toseo — Koy <, <t . <t < thseo + Fou (3.10)

asc,0 asc,min asc — “asc,max

and illustrated in the left panel of figure 4. Note that we choose £ = 3.3 rather than
k = 3 as the boundary, since the former encloses 99.6% of the prior probability, while
the latter would enclose only 98.9%.
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where the range of Py, is computed as a function of ¢, defined in (3.9). We choose

asc)

Figure 4. Left: Search region boundaries in t/., P,1, now define a boundary function,

k = 3.3 for the boundary. For reference, the colored ellipses are level surfaces at 1o,
20, and 30, i.e., x2 = 12, 22, and 33, as defined in (3.8). The darker shaded region lies

!/
asc?

found, and the lighter-shaded region is between £30 and +1o. Dividing up the search

/ 2 . . . /
asc rather than y* is more efficient since ¢,

P, may not be. Right: the same search regions in a “sheared” set of coordinates
t &

! s P, where P is a linear combination of P, and t,.., defined in (3.11), which aligns

within +10 of the marginal distribution on ¢/ ., where the signal is more likely to be

regions based on ¢ is always resolved, and

the constant-y? ellipses with the coordinate axes.

3.3. Sheared Coordinates

/

The joint prior uncertainty in ¢/,

P, space complicates the placement of lattice points
neatly in coordinate directions. The fact that the semimajor axis of the uncertainty
ellipses does not lie in a coordinate direction forces rows of lattice points calculated
from a diagonal metric to be placed over a complicated area in parameter space. This
difficulty in placing points is illustrated in the figures shown in section 4. A coordinate
transformation can be performed that preserves the diagonal metric and shears the

coordinates from (t. ., Py) to (¢,

asc? asc?

P), aligning the semimajor axis of the uncertainty
ellipses with the coordinate directions, as shown in the right panel of figure 4. The
lattice points are then chosen in a straightforward way, before a transformation is then
performed back to the physical coordinates. In particular, this simplifies the question of
whether multiple templates are necessary to cover the period direction. Looking at the
right panel of figure 2 or the left panel of figure 4, we see that the marginal uncertainty

in P, is considerably larger than the conditional uncertainty at a particular value of

!/
asc)

t' .. Changing coordinates to P, which is observationally uncorrelated with ¢, allows
us to cover a range of period values corresponding to this smaller marginal uncertainty.
We can accomplish this coordinate transformation by subtracting from P, the

centerline of the observational uncertainty ellipse and defining

/ /
~ NorbO Py, asc ~ ‘asc,0
P = Py — = P, (3.11)

g (7

asc asc
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b —thoo)> (P-P\
X2 _ < asc asc,O) + ( 0) , (312)
Othge Op

and the priors on . and P are once again independent Gaussians. Note that

op = (%) P, (3.13)

so the area of the uncertainty ellipse is the same in all three sets of coordinates:

(tasm Porb)> (tgsca Porb)7 and (tgsm ﬁ)
This transformation affects the metric:

so that

OF, b 0P, b 2
~ 7 or / or /
gt;sctgsc - gt;sctésc _|_ 2 (W/asc) P gte’iscporb + (W;‘SC ﬁ gPorbporb’ (3 148’)
N OPup
gt/ascﬁ = gé/ascPOrb _'_ < 8tlo ) S g;DOTbPorb7 (314b)
asc P
9pp = 9Py P (3.14c)
where , ,
GPorb) (Up b) O'Pb
= Norb = = TNorb > . 3.15
( 8{:215(3 P ° O-t;usc ° O-L?asc + n(z)l‘bo-%’orb ( )

In order to make the metric as close to diagonal as possible in these coordinates,
we should choose a different ngyp from that defined in (3.5). Instead we make
(substituting (3.4), (3.15), and (3.2¢) into (3.14b) and looking at the most likely point
tase = tasc,0s Porb = Fo)

2 / 2 2
~ Hobs — tasc, OP,, (zfasc7 - ,Uobs) T Oobs
gt/ p ~ (norb — TO + Norb < b) 0 > g;’ t! (316)

asc O-t, P02 ascrasc

asc

close to zero. If we set this to zero and solve algebraically for ng.,, we get

2 / 2 2 -1
obs — lasc tas — Hobs +00 S
Mgy 7 Hob: - 0 (1 n (Uporb) ( c,0 — H bs) b > ' (3.17)
0

gy P02

asc

Since the definitions of ;.. , and o, depend on n,y, as well, we need to solve iteratively

for the optimal 7., to minimize the metric correlation in these sheared coordinates.

This converges quickly, giving, for the reference values used in this paper, ng, = 4108,
corresponding to ¢! = GPS 1253858643 =2019-Sep—-30 06:03:45 UTC.1+ With this

asc,0
/

' . and P with no prior correlation and negligible correlation

choice, we have coordinates ¢
in the search metric.
1 Again, the actual best value using the data with gaps, antenna patterns and variable noise level,

as well as the exact metric, will be slightly different, but the relationship between the choices of ngp
optimized for sheared and unsheared coordinates is illustrative.
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Figure 5. Cells of t/ ., a, space for sample lattice construction. Each rectangular
cell has its own coherence time Tax, corresponding to a coherence time used in [12],
and we construct a lattice in each of these cells. The range of orbital period values
as illustrated in figure 3 or figure 4. We construct

the lattice in all 9 of these regions, and include the template counts in the computing

for each cell is a function of ¢’

asc)

cost estimate. For the three shaded regions, we also include the templates in the
P, or t' ., P plot of the lattice.

asc)

corresponding t, .,

4. Example Lattices and Results

To quantify the reduction in number of search templates and computing costs at a
given mismatch, we construct sample lattices of each type for a variety of representative
regions in parameter space. For each choice of coordinate system and lattice type, we
construct 9 x 14 lattices, corresponding to the nine regions of orbital parameter space
(;

asc?

Pow, ap) or (..., P,a,) shown in figure 5 and fourteen frequency bands beginning
at 25 Hz and ending at 2000 Hz. Each of these regions has its own T},,, value taken
from the search in [12]. In that search, the frequency fy, was split into ranges of width
0.05 Hz, and a search job covered that range of frequencies along with one of the orbital
parameter space regions. Rather than constructing the full set of 9 x 39500 lattices
covering all the bands from 25 Hz to 2000 Hz, we choose one 0.0005 Hz range from the
middle of each band, construct the nine lattices (one for each orbital parameter cell)
corresponding to that range, and scale up the number of templates by the number of
such ranges in the band. Since the computing cost scales roughly with the number of
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Figure 6. Left: Lattice setups that most closely resemble what was done in previous
CrossCorr searches, but with the inclusion of “chopped” search regions in t/ ., Pob.
The lattice points are placed by computing the spacing in each direction given the
mismatch and the metric (section 2.2). Points are then placed to cover the uncertainty
ellipses in each of the three rectangular search regions, where the darker region bounded
by one-sigma in ¢, . represents the region where we are most likely to find a signal if
it is present.The total number of templates for this setup is 1.060 x 10'2. Right:
Implementing the elliptical boundary function and using LatticeTiling to place a
cubic lattice changes where the points are placed. The total number of templates for
this setup is 1.682 x 1012,

templates times the number of SF'T pairs, we approximate the computing cost for each
band i and cell ¢ as NP*" N We estimate the number of SFT pairs for data from
Nyet detectors as in [10] by

TobsT'c ax

i
SFT
T;

Niiair ~ Ni, (4.1)
where we show explicity that the SFT duration depends on the frequency band ¢ while
the coherence time depends on the frequency band ¢ and orbital parameter space cell c.
Note that this is an overestimate of the absolute number of pairs, because we computed
the Typs using the start and end times of the two parts of O3 rather than an actual set
of data segments reflecting the true duty cycle. In addition to the total computing cost
SO, 50, NPEENIPE for each lattice, we also plot the lattice points projected onto the
t! o, Pop, or .., P plane, limiting attention for the plots to the shaded cells in figure 5.

Figure 6 shows two implementations of cubic (Z?) lattices, both using the original
by hand method described in section 2.2 and using the LatticeTiling module. The
main difference between the two methods is in how they handle the boundaries of the
elliptical search region. The by-hand method uses the chopped regions illustrated in the
right panel of figure 3, while the LatticeTiling method uses the elliptical boundaries
of figure 4. Note that while LatticeTiling uses a smaller region of parameter space, it
actually requires more templates (a total over the whole parameter space of 1.682 x 10*2
versus 1.060 x 102 for the by-hand method) for the cubic (Z?*) lattice because of its
conservative approach to covering the boundaries. Ordinarily this would be a small

effect, but since only two or three templates are required in the P, direction, it is
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Figure 7. Left: Implementing the elliptical boundary function discussed in section 3.2
requires the use of LatticeTiling [8] for template placement. This setup shows a
use of an A} lattice with the elliptical boundary function and lattice template points
placed by LatticeTiling. Note that the density of templates is increased in the
one-sigma region. The total number of templates used here (across four-dimensional

parameter space) is 6.006 x 10'!. Right: After performing the shearing transformation

discussed in section 3.3, we use LatticeTiling to place templates in t;sc,f? space.

This figure shows an A} lattice over the sheared uncertainty ellipses using the elliptical
boundary function. Note that the primary axes of the uncertainty ellipses are aligned
with the coordinate axes in this area-preserving transformation, and that template
density is again greater in the one-sigma region. The total number of templates here
is 5.931 x 10!,

significant in this case, which motivates the special handing of the P,;, coordinate which
follows.

If we change the lattice from Z* to A}, we obtain the lattice shown in the left panel
of figure 7. The use of a more efficient lattice has reduced the total number of templates
t0 6.006 x 10!, but we can see from the figure that the templates extend well beyond the
boundaries of the search region. In the right panel, we construct the lattice in the sheared

coordinates t._, P defined in section 3.3, which simplifies the boundaries of the search

asc)
region, but produces lattices with comparable numbers of templates (5.931 x 10! total).
In these coordinates, the mismatch metric has a non-negligible off-diagonal component
Gy p+ SO the template lattice is constructed using a basis which looks “slanted” in these
coordinates.

We can make the metric approximately diagonal, as described in section 3.3 by
choosing a different value of ny, derived from (3.17); for the example considered, this
means changing n;, from 4104 to 4108. The resulting lattice is shown in the left panel of
figure 8. Note that the total number of templates is comparable to the other A} lattices, a
total 5.918 x 10! across the whole parameter space. The fact that all of the A} lattices
have comparable numbers of templates indicates that the LatticeTiling module is
behaving consistently, even when the coordinates being used have metric correlations or
oddly-shaped boundaries. However, it is clearly not taking full advantage of the narrow
range of plausible P values. The underlying issue is that LatticeTiling, by the nature
of its boundary-covering algorithm [8], uses a minimum of two templates in a coordinate



Template Lattices for Sco X-1 Cross-Correlation 16

Sheared, Diagonalized (A}) Sheared, Unresolved P (A%)

021 0.2 1

=]
=
=]
=

|
B
.

P — 68023.86 (s)
o
(=]

P — 68023.86 (s)
(=}
f=}

|
<
=

—0.2 1 —0.2 4

—600  —400  —200 0 200 400 600 —600  —400  —200 0 200 400 600
tho — 1253858643 (s) t. — 1253858643 (s)

Figure 8. Left: The number of orbits used to propagate t,s. into 2019 coordinates
was chosen based on what would diagonalize the standard/ 2019 metric. This is what
introduced the slant in the template rows seen in figure 7. Choosing a different nq.p
eliminates the slant, to produce this figure, showing a lattice covering using an A}
lattice, LatticeTiling to place the templates, and the sheared coordinates with a
diagonalized metric to align the uncertainty ellipses with the primary axes of the
parameter space. The total number of templates is 5.918 x 10'!. Right: Noticing
that the spacing between template rows in ¢/, P seemed to be larger than the cross-
section of the uncertainty ellipse, we perform a calculation described in section 3.3 to
determine whether the orbital period needs to be resolved in the sheared coordinates.
After finding that it does not, for our search, we fix P = Py, forcing LatticeTiling to
place a single row of lattice templates along the centerline of the sheared uncertainty
ellipse. Note that the template density is still greater in the one-sigma region. Here,
the total number of templates is 3.867 x 10'!, our best result for template count and
an improvement from the original setup by a factor of about 3.

direction, even if a single template would be sufficient to cover the space at the desired
minimum mismatch.

The change to t.., P coordinates, in which both the prior uncertainty and mismatch
metric are approximately uncorrelated, allows us to take advantage of the small prior
uncertainty in P. If we limit attention to lattices with all their templates on the
hypersurface P = P, the mismatch between a signal with parameters {\;} and a

template point {\;} will be

H= gﬁP(PS_PO)Q”‘QZgaﬁ(/\z_)‘a)(ps_PO)"‘ZZQ@BO‘Z_)‘CV)O‘Z_A&): (4.2)
ot a B

where {A\,} = {tl. fo.a,} are the other three coordinates of the parameter space
and gpp is the sheared metric element for orbital period. If we assume the metric
is approximately diagonal, this becomes

R Gpp(P* = Po)* 4+l (4.3)
As shown in the Appendix, the general expression is

(P* — Ry)?

~ I
n = gfj,]s + 1% (44)
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Table 1.

Comparing Estimates of Raw Computing Cost:

17

we display the chosen

coordinates, the number of orbits needed to propogate t/. to obtain a diagonal metric,
the type of search region boundary used, and the type of lattice structure. Then, we
show the number of templates required to cover all of parameter space using a given
lattice and estimate the computing cost by multiplying the number of lattice templates
by the number of SF'T pairs.

Coordinates nom, | Boundary | Type | >, . NPTt > i Vi pair pimplt
t' s Porb, @p, fo | 4104 | Chopped | Z* | 1.060 x 10'2 1.434 x 1018
t' . Povsay, fo | 4104 | Elliptical | Z* | 1.682 x 102 | 2.085 x 10%
t;sc, Posay, fo | 4104 | Elliptical | A | 6.006 x 1011 | 7.439 x 10'7
' P.ay, fo | 4104 | Elliptical | A% | 5.931 x 107 | 7.352 x 10"
t' . P.ayfo | 4108 | Elliptical | A; | 5.918 x 10'' | 7.316 x 1077
t' ay, fo; P =Dy | 4108 | Elliptical | A% | 3.867 x 10" | 4.928 x 10'7
Same with reallocated mismatch 3.431 x 101 | 4.483 x 107

Since the prior uncertainty ellipse with x? < k2 (see (3.12) and figure 4) has (P — P,)?
k:20125, we can obtain a lattice with g < pmax everywhere if we construct a three-
dimensional lattice with

| _ lid

finax < Hmax — —54- (4.5)
gPP

A conservative approach is to allocate a mismatch of #%e= to the P direction and ?”ﬂ%

to the other three directions. Then we proceed as follows:

k?o% . . . .
o If ~P}f > fmex - we construct an A} lattice covering the full four-dimensional
parameter space as usual.
k2 Z . . . . .
o If < Bmxwe construct a three-dimensional A3 lattice with maximum

mlsmatch ullnax = S‘ﬂ% and P = P, at all lattice points.

accomplish this by setting the search region to have zero width in the P direction.)

(In LatticeTiling we

Following this approach produces the most efficient lattice, with 3.867 x 10! total
templates, illustrated in the right panel of figure 8 A slightly more agressive approach

o7 If < Bmexand set to the maxiumum

would be to “reallocate” any unused mismatch if
mismatch of the A} lattice to

/”Lﬂnax Hmax — §p§~ ; (4.6)

This leads to a slightly smaller number of templates (3.431 x 10*!).
The properties of the different lattices are summarized in table 1. In addition to
N‘tmplt

the total number of templates )., across all of the parameter space cells, we

also show the sum ), . NP NP which should roughly scale with the computing cost.
Roughly speaking, replacing the by-hand cubic lattice with an A? lattice reduces to
overall computing cost by a factor of 2, while enforcing unresolved P when possible
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Figure 9. A comparison of the recovered values of SNR p at various parameter space
points for a representative simulated signal. We compare the “by hand” hypercubic
grid in the original coordinates {t,.., Porb,ap, fo} to an Aj lattice generated in the
coordinates t,..,ap, fo with the sheared period coordinate P set to Py. We plot p

asc?

versus the theoretical fraction of F [p] from the metric mismatch p; see (2.1). The
dashed line is p = p**8(1 — ). We see that the points approximately follow that
line for small mismatch, but the quadratic metric approximation breaks down farther
away. Each template placement method is guaranteed to have at least one point with
1 < pmax = 0.25, but since the Aj lattice has fewer and more efficiently placed points,
its closest point to the true signal parameters is not likely to be as close as the closest
point in the grid. Note that the highest p value in the grid or lattice need not be the
closest to the true signal, due to noise fluctuations.

reduces the cost by a further factor of 1.5, for an overall improvement of a factor of 3
resulting from the enhancements described in this paper.

5. Recovery of Simulated Signals

To test that our improved lattice is as sensitive to signals with unknown parameters
as the original grid search method, we generated data containing simulated signals and
analyzed them with the lattices and grids considered in section 4. The data generated
were Gaussian white noise with a power spectral density of 5.14 x 1024 Hz'/2. In order
to generate data with similar parameter-space metric components {g;;} to the O3 run,
but with a smaller volume of data, we generated a set of 24-hour stretches of data
separated in time by three weeks, over the entire duration of O3a and also of O3b. It
was necessary to do this, rather than generating a single contiguous stretch of data, to
obtain a similar ogs.

The frequencies of the signals were chosen between 300 and 400 Hz, and the



Template Lattices for Sco X-1 Cross-Correlation

. 1Lowest—misrnautch template for each signal

. Highest-SNR template for each signal

19

. * /, /,
grid it % //
+  lattice + y .7 ’ ¥ + g
1.0 Rl 1.07 SR A RO e i
4 7 thy 200
-ﬂ'#+¥-: );g';-' T + ’ + i +# ++¥:)£$+’,
+

0.9 " +++£+ '1;-" 0.91 . + -:‘_"t :++*|- +¥?++'E
o0 +#+ +
EQ + 4-//): *-;h_ %ﬂ + "'/7-:
>=08 S § 0.8 o
¢ : .,
| ’ +T"'+ 5 //
h 0.7 < E 0.7 i

' //’ ++ . ///
/’,, l///
0.6 1 /,' 0.6 1 /,’ orid
// ,/' +  lattice
7/ 4
0.5 T T T T T 0.5 T T - T .
0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.5 0.6 0.7 0.8 0.9 1.0 1.1
1—p 1—p

Figure 10. Recovered SNR p for each signal as a fraction of targeded SNR p'3® from
searching with the true signal parameters. As in figure 9, we compare the by-hand
hypercubic grid to the A% lattice with P = P,. At left is the SNR from the point in the
grid or lattice with the smallest mismatch distance to the true signal parameters. At
right is the maximum SNR in the lattice or grid, which we see from figure 9 need not
be for the template closest to the true signal parameters. For reference, we plot the
theoretical curve p/p'®® = 1 — . The lattice does indeed recover the signals with a
fractional SNR loss less than the designed maximum mismatch pmax = 0.25, although
the grid, which requires more points to obtain the same maximum mismatch, generally
finds points with slightly higher SNR because of this redundancy.

parameters a,, tasc and Py were randomly chosen according to the astrophysical
priors described in section 3.1, i.e., a, ~ Uniform(1.441t-s,3.251t-s) and P, and
t.sc from a bivariate normal distribution with means B, 68023.86 and tusco =
974416624 GPS (2010-Nov—21 23:16:49 UTC), and standard deviations op,, = 0.043s
and oy, . = 50s, and t,,. generated by propagating ... to the middle of the data set,

using the P, value generated for the signal. The initial phase of the GW signal was
drawn from a uniform distribution, and the orientation angles of the neutron star spin
were drawn from an isotropic distribution. The signal amplitude hy was generated to
give an estimated expected SNR between 9.0 and 11.0. This amplitude depends on the
randomly chosen value of the neutron star inclination, as detailed in [10].

The data were generated using lalapps_Makefakedata v5 from the lalsuite
library [7].
injected parameter values {\{} to find the actual SNR p'8 of the signal in the simulated

For each signal a targeted search was run using a single template at the

data. We then conducted searches using different template placement methods. These
were each conducted in small parameter space regions containing, but not centered on,
the point {A{} at which the signal was injected. The regions typically covered a search
range equivalent to 6 or 7 grid points in the fy, a, and ¢, directions, and the full prior
range in Py, out to Py £ 30p,,, or the appropriate elliptical boundary. For simplicity
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in comparisons, we use the same coherence time T,,,, = 2550s.

We performed the search using the template placement methods described in
section 4. Here we report on the comparison between the original grid (or “by hand”)
method shown in e.g., the left panel of figure 6, and the Aj lattice in sheared coordinates
with P unresolved, as shown in the last line of table 1. In figure 9 we show, for a single
representative signal, the SNR p at various points in the grid or lattice of each search.
The search methods tend to recover the signal with comparable SNRs although the
lattice has fewer “redundant” points close to the true signal parameter values.

For the full ensemble of 80 signals, we can look at the distribution of either the
highest SNR p in each search (the “best” template), or the p of the template in each
search with the lowest mismatch p, which we refer to as the “closest” template. We
show in figure 10 the fraction of the targeted-search SNR p'®® recovered in each search
for the closest or best template in each of the two searches considered. We see that the
grid method from previous searches, and the improved method with and A} lattice and
unresolved P both recover signals with an SNR loss of less than the nominal maximum
mismatch of pip.c = 0.25. The grid method generally obtains slightly higher SNRs due
to the extra templates, which increase the chance of catching an upward fluctuation or
a point significantly closer than the maximum mismatch would indicate. However, the
lattice method achieves the specified maximum mismatch with fewer templates and less
computing cost.

6. Conclusions

In this paper we have discussed changes to the lattice used in the template-based cross-
correlation search for continuous gravitational waves from Scorpius X-1. We detailed
the setup of our parameter space and explained how previous searches used lattices
in the same parameter space. We then gave four major improvements to improve the
lattice setup, using fewer templates for a given computing cost. We first showed that
there is a reduction in template count by switching from a hypercubic lattice to an A7

lattice in section 2.2. Then, we defined an elliptical boundary function in section 3.2

/

'sc and Py, to be more focused on the

to improve the shape of the search region in ¢
section of parameter space within the prior ellipses. In section 3.3 we defined an area-
preserving shearing transformation that aligned the axes of the prior ellipses with the
coordinate axes. This simplifies the task of using LatticeTiling to place a horizontal
row of templates in parameter space. Finally, we compared the cross-section of the prior
ellipses in ¢’ and P to determine whether P needed to be resolved, and determined
that it did not in section 3.3. This allowed us to use an Aj lattice, and reduced the
template count by an overall factor of ~ 3 compared to the original grid search.

The improvements described in this paper are being incorporated into the LIGO-
Virgo-KAGRA data analysis infrastructure [7] and may be used for GW searches in O3
and beyond. Note that the sheared period coordinate P is likely to remain unresolved

in future searches, even though the original orbital period P4, would not be. For future
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observations with observation epoch i even further from .40, the uncertainty oy
in time of ascension will grow, and the uncertainty op in P will shrink as shown in
(3.13). This is unlikely to be offset by finer resolution due to increased coherence time
(see (3.1c)) since the sinc function in (3.1b) saturates at Tyax ~ 0.7Py,. This level was
reached using resampling below 180 Hz in [13] but it is unlikely to be practical at higher
frequencies.

The reduction in template count allows for a more sensitive search in two ways.
First, since the search is computationally limited, reducing the number of templates
needed at a given coherence time will allow us to use longer coherence times at the
same computational cost. The quantitative benefit of this is somewhat limited, since
the cost of searching a three-dimensional parameter space scales, for smaller coherence
times, like 7

max’

and the amplitude sensitivity on hgy scales as Tr;{;l(, so a factor of 3
in computing time nominally translates to a 7% improvement in sensitivity. However,
there are other benefits not captured in this number; for instance, the use of the sheared
period coordinate and unresolved P allows the parameter space to remain effectively
three- rather than four-dimensional. Second, the reduction in template numbers reduces
the trials factor on parameter space and therefore the expected loudest background
outliers[24], enabling the use of a lower threshold for followups.
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Appendix A. Fixing the Sheared Period Coordinate

Consider how we handle the mismatch when P is underresolved. Let the search region
be contained within the range Py — AP < P < Py+ AP and let {\o} = {fo, ap, t'..}
be the other three search coordinates. If we construct a template lattice in {\,} with



Template Lattices for Sco X-1 Cross-Correlation 23

a maximum mismatch uﬂnax, we can ask what is the mismatch between a point in that
lattice and a point on the P boundary, with P = Py + AP. If A\, is separation from
a grid point, the total mismatch will be

1=3pp(AP) 423 g, p(AN)(AP) + D D gap(Ara)(ANg) (A1)
a a B
‘ b
If the metric is approximately diagonal, this becomes
p=3pp(AP)" + pl. (A.2)

One conservative approach is to say that as long as gp,s(Aﬁ)Q < Pz we will set P
to Py and define a template lattice in the other three coordinates with ,ulrlnax = %,umax.
More generally, we could choose

:ul"‘nax = Mmax — gﬁP(Ap)2 (A3)

which will work as long as §pp(AP)? < fimax.
In general, though, the metric might not be diagonal, and in particular g, 5 might
be non-negligible. To see how the mismatch for a point on the P boundary changes,

consider the case of a two-dimensional lattice in ¢/ and P, so that the mismatch is

asc

H= gﬁP<Ap>2 + Qgt’agcfj<At;‘sc)<Ap> + gt' Lhse (At/asc)Q' <A4)

asc

/

'sc direction is

Suppose the spacing in the ¢

st —o M (A.5)
asc ~ : °
gt;sct/asc

Consider two adjacent lattice points separated by 0t.., and a point in between them,

which has At/ .. =1t > 0 from one point and At/ =1t — dt’ . < 0 from the second one.

asc asc asc

A point with this /. value and P = Py+ AP will have the maximum possible mismatch
if it is the same mismatch distance away from the two nearest grid points. This means
we're looking for the ¢ which solves

Tpp(APY 427, p(AP)t+Gy, . t* = Gpp(AP) 427, p(AP) (=0t )+u,.u.. (1=0th)*.

ascrasc

(A.6)
A bit of cancellation gives us
0= _2§tgbcﬁ'<Ap) (5t;sc) - 2§tgsctgsc (6t;sc)t + gt;sctgsc (6t;sc)27 (A7)
or s .
t 1P ~
t:ﬂ_gtai(Ap)_ (A.8)

2 Gyt
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St ~
= —5= when g, p =0, as we

As a quick sanity check, we see that this reduces to t = =3
expect. Plugging this back into the mismatch equation gives

s = G (PP + 23, p(AP) (%

gt;sct/asc
~ (St/ )2 gﬁﬁgt;sct{dbc gt’ p ~ (AP)Q
= g ’ / asc + = 2ne AP — ‘I“IlaX + DT
tasctasc ( 2 gt’asctésc ( ) /,L gPP

where % is the inverse matrix to g;;.

(5th0 g ' p s 5t;sc
ﬂkC@H)Wm@(Q—

9y

asc

gt’asct

san)

(A.9)
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