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Abstract. We describe the application of the lattice covering problem to the

placement of templates in a search for continuous gravitational waves from the low-mass

X-Ray binary Scorpius X-1. Efficient placement of templates to cover the parameter

space at a given maximum mismatch is an application of the sphere covering problem,

for which an implementation is available in the LatticeTiling software library. In the

case of Sco X-1, potential correlations, in both the prior uncertainty and the mismatch

metric, between the orbital period and orbital phase, lead to complications in the

efficient construction of the lattice. We define a shearing coordinate transformation

which simultaneously minimizes both of these sources of correlation, and allows us to

take advantage of the small prior orbital period uncertainty. The resulting lattices

have a factor of about 3 fewer templates than the corresponding parameter space grids

constructed by the prior straightforward method, allowing a more sensitive search at

the same computing cost and maximum mismatch.
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1. Introduction

Scorpius X-1 (Sco X-1) is a compact object in a binary system with a low-mass

companion star. [1, 2] It is believed to be a rapidly spinning neutron star and a promising

source of continuous gravitational waves [3]. The signal received by an observatory

such as LIGO[4], Virgo[5] or KAGRA[6] depends on the parameters of the system,

and a search for that signal loses sensitivity if the incorrect values are used for those

parameters. Several of the parameters are uncertain, and one method to ensure that the

signal is not missed is to perform the search at each point in a template bank covering

the relevant parameter space. These include the projected semimajor axis ap = a sin i of

the neutron star’s orbit,‡ the orbital period Porb, and the time tasc at which the neutron

star crosses the ascending node as measured in the solar-system barycenter.

The loss of signal-to-noise ratio (SNR) associated with an incorrect choice of

parameters is, in a generic Taylor expansion, a quadratic function of the parameter

offsets. This allows us to write the fractional loss in SNR, also known as the mismatch,

as a squared distance using a metric on parameter space. In general, this metric will vary

over the parameter space (i.e., the associated geometry will have intrinsic curvature),

but we can divide the parameter space into small enough pieces that the space is

approximately flat, and the metric can be assumed to be constant. In that case, there

exists a transformation to Euclidean coordinates. The problem of placing templates

so that the mismatch of any point in parameter space from the nearest template is no

more than some maximum mismatch µ is then equivalent to the problem of covering the

corresponding Euclidean space with spheres of radius
√
µ. The most efficient covering

in n ≤ 5 dimensions is the lattice family A∗
n, which includes the hexagonal lattice A∗

2

and the body-centered cubic lattice A∗
3. For example, the density of lattice points for

A∗
4 is a factor of 2.8 lower than the corresponding hypercubic (Z4) lattice.

We use the LatticeTiling module in the LIGO Algorithms Library[7] (lalsuite)

to investigate efficient lattice coverings for the parameter space of a search for Sco X-1

using advanced LIGO data. We show how the search can be made more efficient by:

replacing a hypercubic grid with an A∗
n lattice; accounting for the elliptical boundaries

associated with the correlated prior uncertainties between orbital period and orbital

phase; defining a sheared coordinate change such that a particular combination of the

orbital period and orbital phase is unresolved, and explicitly searching only in the other

three dimensions of the parameter space. These improvements allow the search to be

carried out using fewer computational resources. Alternatively, since the search method

we use is tunable, with a trade-off between computational cost and sensitivity, the more

efficient lattice allows a more sensitive search to be done at the same computing cost.

The plan of this paper is as follows: In section 2.1, we briefly summarize the cross-

correlation search for continuous gravitational waves (GWs) as applied to Sco X-1. In

section 2.2 we describe the existing method of template placement “by hand” in a

‡ The angle i is the inclination of the binary orbit with respect to the line of site, not to be confused

with ι, which is in inclination of the neutron star spin to the line of site.
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rectangular grid. In section 2.3 we describe the application of the sphere covering

problem to generation of template lattices, which is implemented in the LatticeTiling

module in the lalsuite software library[7], as described in [8]. In section 3 we consider

the specific features of the parameter space for the Sco X-1 search which impact our

search: section 3.1 describes the orbital priors, especially the relationship between orbital

period and phase. In section 3.2 we consider the standard coordinates, where the time

of ascension describing the orbital phase has been propagated in time to the epoch of

the gravitational wave search, inducing prior correlations between the period and time

of ascension. In section 3.3 we show how a shearing transformation can be used to define

a modified period parameter whose prior uncertainty is independent of the uncertainty

on the propagated time of ascension. In section 4 we construct a number of lattices and

compare the numbers of templates and modelled computing costs. Finally section 6

contains conclusions and implications of this work.

2. Background

2.1. Cross-Correlation Search for Scorpius X-1

The model-based cross-correlation method [9] has been developed to search for

continuous GWs, most notably from the low-mass X-ray binary Sco X-1 [10] and applied

to mock data [11] as well as observational data from Advanced LIGO’s first and second

science runs [12, 13]. It is a semi-coherent method where the data are divided into short

segments of duration 200 s . Tsft . 2000 s, which we call “SFTs” because we construct

a Short Fourier Transform from each of them. A detection statistic is constructed

including correlations between pairs of segments separated by a coherence time Tmax or

less.§ The sensitivity of the search scales with the number of included pairs; when Tmax

is much less than the total observation time, the detectable GW strain is proportional to

T
−1/4
max . Since the search is computationally limited and the computing cost increases with

Tmax, the search can be tuned to trade computational cost for sensitivity. This tuning

can also be done across the parameter space, with different parameter space regions

being assigned different Tmax values. Typically, one uses more computing resources in

regions of parameter space which are more likely to contain the signal, where the search

is inherently more sensitive, and where it is inherently computationally cheaper.

The output of the search is a detection statistic, which is normalized to have

unit variance. The value of ρ can then be seen as a SNR for the search. In the

presence of a signal of intrinsic amplitude h0, the expectation value E [ρ] ∝ h20, with the

proportionality constant being a measure of the sensitivity of the search. Because the

model-based statistic is constructed using signal parameters such as intrinsic frequency

and parameters influencing the Doppler modulation of the signal, such as sky position

§ In this paper we describe the original “demod” implementation of the search. At low frequencies,

the search can be made more efficient by using resampling to reimplement the loop over data and the

search over frequencies, as described in [14], but the considerations for the template bank in the orbital

parameters are similar.
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and the binary orbit of the neutron star, the expected SNR in the presence of a signal

will be reduced if the template model parameters differ from those of the signal. For

parameters which are unknown or insufficiently constrained, the search is run repeatedly

at different points in parameter space to try to find a point close to the true signal. If

the parameter values for a search point are {λi} and the corresponding true values of

the signal are {λsi}, we can define the mismatch µ as the fractional loss in expected

SNR:

µ = 1−
E [ρ]{λi}

E [ρ]{λs
i
}

. (2.1)

A Taylor expansion in the n parameters {λi} gives‖

µ ≈
n∑

i=1

n∑

j=1

gij(λi − λsi )(λj − λsj), (2.2)

where the matrix with elements {gij} acts as a metric on parameter space, thereafter

referred to for brevity as “the metric {gij}”. The general form of the metric for the

cross-correlation search is [10]

gij ≈
1

2
〈∆Φα,i∆Φα,j〉α , (2.3)

where α represents a pair of SFTs, ∆Φα is the difference in modelled signal phase

between the SFTs in the pair, 〈·〉α is an average over SFT pairs weighted by the antenna

patterns and sensitivity of the detectors involved, and ,i =
∂
∂λ i

is a partial derivative

with respect to the parameter λi.

2.2. Simple Rectangular Template Placement

The cross-correlation analyses run to date examined a parameter space divided up into

rectangular regions, small enough to assume a constant metric. Then, a set of discrete

points is placed over the parameter space which lie on a rectangular grid with spacing

δλi in the λi direction, using what we refer to as the “by hand” method. The number

of points used is

Ni =

⌈
λmax
i − λmin

i

δλi
,

⌉

(2.4)

where ⌈·⌉ indicates rounding to up to the next integer. The spacing δλi is chosen to be

δλi =

√
µi

gii
(2.5)

so that the mismatch between adjacent points¶ in the λi direction is gii(δλi)
2 = µi. If

the metric is approximately diagonal, gij = giiδij, then the point in the parameter space

‖ This assumes that the expected SNR E [ρ] is a local maximum at the true signal point λi = λs
i . This

is not quite true, as shown in Section IV.A of [10], but it is a good starting point.
¶ Note that for historical reasons, µi is defined as the mismatch between adjacent points in the grid,

rather than the maximum mismatch between some point in the parameter space and the nearest grid

point. This is the origin of the factor of 1
4
appearing in (2.6).



Template Lattices for Sco X-1 Cross-Correlation 5

A

C D

B

P

dAB =

√

µ1 =

√

µ2

dA
P

=

√

µm
a
x

d
B
P
=

√

µ
m
a
x

A

C D

B

P

dAB =

√

µ1 =

√

µ2

dA
P

=

√ µm
ax

d
B
P
=

√

µ
m
ax

Q

Figure 1. Illustration of maximum mismatch of the by-hand grid of section 2.2 when

the metric is not diagonal. Specializing to the case of n = 2 and µ1 = µ2, we transform

to Euclidean coordinates as described in section 2.3. Left: If the metric is diagonal, this

is just a scaling which transforms the rectangle defined by four grid points ABDC into

a square with sides of length
√
µ1 =

√
µ2. The point in parameter space farthest from

any grid point is the center P of the square, with dAP = dBP = dCP = dDP =
√

µ1/2.

Right: If the metric is not diagonal, this square becomes a rhombus ABDC. Defining

AD to be the long diagonal, the point farthest from any vertex is not the center, but

a point P on the long diagonal with dAP = dBP = dCP . (There is an equivalent point

Q on the other side of the center with dDQ = dBQ = dCQ.) We see that APB (or

equivalently APC or DQB or DQC) is an isoceles triangle with dAP = dBP =
√
µmax

and dAB =
√
µ1. In the case of a non-diagonal metric, ∠APB is an obtuse angle, and

dAP = dBP < dAB/
√
2, so µmax > µ1/2 = (µ1 + µ2)/4.

farthest (in the sense of the metric) from any grid point is δλi

2
away in the λi direction,

and has a total mismatch of

µmax =
n∑

i=1

gii

(
δλi

2

)2

=
1

4

n∑

i=1

µi (2.6)

If the metric is not diagonal, the procedure described above will lead to a maximum

mismatch greater than that given in (2.6), as illustrated in figure 1. This approach is

conservative and can result in much larger template banks if the metric contains large

correlations. The number of templates could be reduced by accounting for the metric

correlations, which will be discussed later in section 3.3.

2.3. Covering Lattices

The general problem of choosing a set of template points with a prescribed maximum

mismatch distance µmax between any point in the parameter space and the nearest

template is an application of the sphere covering problem [15]. Since we treat the

metric {gij} as approximately constant, there is always a linear transformation of the
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parameters {λi} into Euclidean coordinates {xi}; the mismatch between two points

separated by parameter differences {∆λi} is then

n∑

i=1

n∑

j=1

gij(∆λi)(∆λj) =
n∑

i=1

(∆xi)
2 . (2.7)

The template placement problem is then simplified to one of placing (hyper-)spheres of

radius
√
µmax in the {xi} space so that every point of the region of interest is covered by

at least one sphere. To efficiently cover the space, the overlap between spheres should

be minimized. This is quantified using the normalized thickness or center density θ,

which is the average number of templates per unit volume for the unit sphere.

A sphere covering based on a repeating pattern is known as a lattice. The number

of templates required to cover the space will be at a minimum when the lattice has the

smallest thickness θ. A perfect lattice has a thickness of 1.

The simplest lattice is the cubic lattice Zn, which has points equally spaced in each

of the (Euclidean) coordinate directions. The “by hand” lattice of section 2.2 is an

example of a Z
n lattice, if the metric {gij} is diagonal and all of the mismatches µi

are chosen to be equal. A more efficient lattice is A∗
n, which is a general analogue of

the hexagonal lattice. For the sphere covering problem, the thinnest lattice is the A∗
n

lattice, which in two dimensions has a hexagonal principal cell. The principal cell is

the set of points closest to given point in a lattice, and the vertices are locations where

covering spheres intersect. It has been shown for n ≤ 5 that A∗
n is the most efficient

covering lattice, i.e., has the smallest thickness θ [15], and for higher dimensions it is

typically close to the most efficient covering [16]. Since a more efficient lattice allows

the same volume of parameter space to be covered with fewer templates, it can reduce

the necessary computing cost at a given sensitivity.+

Construction of Zn and A∗
n lattices in physical coordinates {λi} given a constant

mismatch metric {gij} is implemented by the LatticeTiling module in the lalsuite

software library[7], as described in [8]. A particular challenge is ensuring that the area

within the boundaries of a search region is completely covered, which sometimes requires

retaining templates whose parameters lie outside the search region. We shall see that

this can necessitate some care in choosing coordinates to take advantage of underresolved

directions in parameter space.

3. Parameter Space for Sco X-1 Search

3.1. Observational Priors

The GW signal produced by a spinning neutron star is the system is nearly periodic

in the neutron star’s rest frame, and Doppler shifted as a result of the motion of the

detector as the Earth rotates and moves in its orbit and, in the case of a low-mass X-ray

binary such as Sco X-1, of the neutron star in its own orbit with its binary companion.

+ But see [17].
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For an accreting neutron star in approximate spin equilibrium, the frequency f0 of the

system can be approximated as constant.∗ The Doppler shift from detector motion is

primarily affected by sky position, which for Sco X-1 is well enough known[19] that its

uncertainty does not affect the search. The Doppler shift from the binary motion is

affected by five orbital parameters: eccentricity, orientation, projected orbital speed,

orbital period, and orbital phase[20]. The orbit of Sco X-1 is believed to be nearly

circular[21], and the orientation parameters, inclination ι and polarization angle ψ, are

averaged out through time-dependent antenna functions [9]. Thus the search needs to

cover only three orbital parameters: projected speed, period, and phase.

The best constraints on these come from [22]. The constraint on orbital period Porb

is Gaussian, with a mean of P0 = 68023.86 s and a standard deviation of σPorb
= 0.043 s.

The orbital phase is described by time of ascension tasc, which is the time at which

the neutron star crosses the plane of the sky moving away from the observer (i.e.,

crosses the ascending node). The constraint on this is also Gaussian, with a mean

of tasc,0 = 974416624 GPS (2010–Nov–21 23:16:49UTC) and a standard deviation of

σtasc = 50 s. These estimates are uncorrelated, as shown in the left panel of figure 2, but

if we convert the time of ascension to a subsequent equivalent time t′asc = tasc+norbPorb,

a correlation is induced, as described in section 3.2 and shown in the right panel of

figure 2. The constraints on the orbital velocity of the neutron star in [22] are described

in terms of the amplitude of the component of velocity along the line of sight, known

as K1, and consist of constraints that 40 km/s ≤ K1 ≤ 90 km/s, but without a well-

determined probability density between those limits. Searches for GWs from Sco X-1

typically use a uniform prior distribution on this parameter. The parameter used is

also typically written as the line-of-sight component of the semimajor axis of the orbit,

ap =
K1Porb

2π
. Since the relative uncertainty on Porb is much less than on K1, one assumes

a uniform prior on ap for 1.44 lt-s ≤ ap ≤ 3.25 lt-s, where the units on ap are given in

light-seconds.

3.2. Standard Search Coordinates

The phase derivatives {∆Φα,i} appearing in (2.3) are computed in [10] for the standard

search coordinates {λi} ≡ {f0, ap, t′asc, Porb}. Here we introduce the t′asc as the time of

ascension at a given point in the propagated 2019 coordinates, indicated by the prime.

For long searches which evenly sample the orbital phase of the binary, the non-negligible

∗ In practice, this equilibrium will be imperfect, leading to some “spin wandering”, but the impact of

deviations from equilibrium was shown in [10] to be limited when the coherence time is not too long,

especially with the levels of spin wandering predicted by [18].
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Figure 2. Orbital parameter constraints from [22]. If the time of ascension tasc is

quoted in 2010 (left panel) its uncertainty is uncorrelated with the orbital period Porb.

If we propagate forward by norb orbits to determine an equivalent time of ascension

t′asc = tasc + norbPorb, this introduces correlations. In each case the level surfaces of

the probability distribution are shown, for which χ2, defined in (3.7) and (3.8) equals

11, 22 and 32. We refer to these as at normalized distances of 1σ, 2σ, and 3σ, and they

correspond to cumulative probabilities of 39.3%, 86.5%, and 98.9%, respectively.

metric elements have the approximate form♯

gf0f0 ≈ 2π2
〈
∆t2α

〉

α
≈ 2π2

3
T 2
max, (3.1a)

gapap = 4π2f 2
0

〈

sin2 π∆tα
Porb

〉

α

≈ 2π2f 2
0

(

1− sinc
2Tmax

Porb

)

, (3.1b)

(

g′t′asct′asc g′t′ascPorb

g′Porbt′asc
g′PorbPorb

)

≈




1

−(t′asc−〈tα〉α)
Porb

−(t′asc−〈tα〉α)
Porb

〈(t′asc−tα)2〉
α

Porb




16π4f 2

0a
2
p

P 2
orb

〈

sin2 π∆tα
Porb

〉

α

, (3.1c)

where ∆tα is the difference between the timestamps of the two SFTs in pair α, and

tα is their mean. Note that the implementation in lalsuite [7] uses the exact metric

elements, which include additional (generally small) off-diagonal elements.

If we define the midpoint of the run (according to the weighted average 〈·〉α) to

be µobs = 〈tα〉α and the variance as σ2
obs = 〈(tα − µobs)

2〉α The metric elements on the

t′asc, Porb subspace become

g′t′asct′asc ≈
16π4f 2

0a
2
p

P 2
orb

〈

sin2 π∆tα
Porb

〉

α

, (3.2a)

g′t′ascPorb
≈
(−(t′asc − µobs)

Porb

)

g′t′asct′asc , (3.2b)

g′PorbPorb
≈
(
(t′asc − µobs)

2 + σ2
obs

P 2
orb

)

g′t′asct′asc . (3.2c)

♯ Note that the original formula for g′t′
asc

Porb
–(4.20h) in [10]–contains a sign error which has not been

relevant previously because approximate form of g′t′
asc

Porb
has only been used to set it to zero.
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Note that, as shown in [10], if we ignore any data gaps and the noise and antenna pattern

weighting, for an observing run of duration Tobs and coherence time Tmax, σ
2
obs ≈

T 2

obs

12
,

and
〈

sin2 π∆tα
Porb

〉

α
≈ 1

2

(

1− sinc 2Tmax

Porb

)

.

If we choose norb so that

t′asc,0 = tasc,0 + norbP0 (3.3)

is as close as possible to µobs, we can minimize the magnitude of

g′t′ascPorb
≈
(
tasc,0 + norbP0 − µobs

P0

)

g′t′asct′asc . (3.4)

This achieved by taking

norb =

⌊
µobs − tasc,0

P0

⌉

(3.5)

where ⌊·⌉ indicates rounding to the nearest integer.

To give a concrete example, we consider the LIGO-Virgo O3 data run [23]

which began on 2019–Apr–01 00:00:00UTC (GPS 1238112018), continued until a

commissioning break at 2019–Oct–01 00:00:00UTC (GPS 1253923218), resumed

on 2019–Nov–01 15:00:00UTC (GPS 1256655618), and ended on 2020–Mar–27

17:00:00UTC (GPS 1269363618). Neglecting variability of antenna patterns and noise

spectra, as well as any data gaps other than the commissioning break, we find an

average time of µobs = GPS 1253589161 ≡2019–Sep–27 03:12:23UTC. This translates

into an optimal norb = 4104, corresponding to t′asc,0 = GPS 1253586547 ≡2019–Sep–27

02:28:49UTC.††
The joint prior on t′asc and Porb will remain a multivariate Gaussian, but now with a

non-diagonal variance-covariance matrix. The marginal prior on t′asc will be a Gaussian

with mean t′asc,0 and variance

σ2
t′asc

= σ2
tasc + n2

orbσ
2
Porb

. (3.6)

The joint prior can be illustrated by plotting level curves of the quantity

χ2 =

(
tasc − tasc,0

σtasc

)2

+

(
Porb − P0

σPorb

)2

, (3.7)

whose prior distribution is a chi-squared with two degrees of freedom (figure 2, right

panel). A bit of algebra shows that

χ2 =
σ2
t′asc

σ2
tasc

[(
Porb − P0

σPorb

)2

− 2norbσPorb

σt′asc

(
t′asc − t′asc,0

σt′asc

)(
Porb − P0

σPorb

)

+

(
t′asc − t′asc,0

σt′asc

)2
]

.

(3.8)

††The actual values for O3 including duty cycle, noise weighting and antenna patterns, and using the

exact form of the metric, will be slightly different, but we will use the values above for illustration in

this paper.
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Figure 3. Left: rectangular search region boundaries cover the entire t′asc, Porb region,

as used in O1 CrossCorr [12]. The darker region bounded by one-sigma in the tasc
direction indicates a higher likelihood of finding the signal in that region of parameter

space. Right: Rectangular regions more closely concentrated on the uncertainty ellipses

than the O1 search regions. The areas in t′asc, Porb have been “chopped” to eliminate

extra parameter space area where a signal is not likely to be found.

In previous searches, rectangular boundaries have been used in all coordinate directions

in the parameter space. For the O1 search, these regions covered out to 3σ of the

marginal priors on t′asc and Porb, as shown in Figure 1 of [12]. If we use a similar

approach in O3 (figure 3, left panel), the search regions cover a large area of t′asc, Porb

parameter space with negligible prior probability. Since the middle third of the t′asc
range is searched separately (at a higher coherence time Tmax, since the prior probability

density is higher there), a simple approach can reduce the over-coverage of the search

region. The Porb search range is different for each of the rectangular regions covering

different ranges of t′asc, discarding regions in which the prior χ2 & 32. These “chopped”

regions are shown in the right panel of figure 3. The chopped regions can be achieved

without significant modification to the previously existing search code.

To further improve the efficiency of the parameter space coverage, we can define

an elliptical boundary function which sets the range of Porb continuously as a function

of t′asc. This function can be used in the LatticeTiling module to restrict template

placement to those needed to cover the prior ellipse corresponding to χ2 ≤ k2 for a

particular k:

Porb − P0

σPorb

∈ norbσPorb

σt′asc

(
t′asc − t′asc,0

σt′asc

)

± σtasc
σt′asc

√

k2 −
(
t′asc − t′asc,0

σt′asc

)2

. (3.9)

This is used to define a search region, together with a constant boundary on t′asc:

t′asc,0 − kσt′asc ≤ t′asc,min ≤ t′asc ≤ t′asc,max ≤ t′asc,0 + kσt′asc , (3.10)

and illustrated in the left panel of figure 4. Note that we choose k = 3.3 rather than

k = 3 as the boundary, since the former encloses 99.6% of the prior probability, while

the latter would enclose only 98.9%.
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Figure 4. Left: Search region boundaries in t′asc, Porb now define a boundary function,

where the range of Porb is computed as a function of t′asc, defined in (3.9). We choose

k = 3.3 for the boundary. For reference, the colored ellipses are level surfaces at 1σ,

2σ, and 3σ, i.e., χ2 = 12, 22, and 33, as defined in (3.8). The darker shaded region lies

within ±1σ of the marginal distribution on t′asc, where the signal is more likely to be

found, and the lighter-shaded region is between ±3σ and ±1σ. Dividing up the search

regions based on t′asc rather than χ2 is more efficient since t′asc is always resolved, and

Porb may not be. Right: the same search regions in a “sheared” set of coordinates

t′asc, P̃ , where P̃ is a linear combination of Porb and t′asc, defined in (3.11), which aligns

the constant-χ2 ellipses with the coordinate axes.

3.3. Sheared Coordinates

The joint prior uncertainty in t′asc,Porb space complicates the placement of lattice points

neatly in coordinate directions. The fact that the semimajor axis of the uncertainty

ellipses does not lie in a coordinate direction forces rows of lattice points calculated

from a diagonal metric to be placed over a complicated area in parameter space. This

difficulty in placing points is illustrated in the figures shown in section 4. A coordinate

transformation can be performed that preserves the diagonal metric and shears the

coordinates from (t′asc, Porb) to (t′asc, P̃ ), aligning the semimajor axis of the uncertainty

ellipses with the coordinate directions, as shown in the right panel of figure 4. The

lattice points are then chosen in a straightforward way, before a transformation is then

performed back to the physical coordinates. In particular, this simplifies the question of

whether multiple templates are necessary to cover the period direction. Looking at the

right panel of figure 2 or the left panel of figure 4, we see that the marginal uncertainty

in Porb is considerably larger than the conditional uncertainty at a particular value of

t′asc. Changing coordinates to P̃ , which is observationally uncorrelated with t′asc, allows

us to cover a range of period values corresponding to this smaller marginal uncertainty.

We can accomplish this coordinate transformation by subtracting from Porb the

centerline of the observational uncertainty ellipse and defining

P̃ = Porb −
norbσPorb

σt′asc

(
t′asc − t′asc,0

σt′asc

)

σPorb
, (3.11)
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so that

χ2 =

(
t′asc − t′asc,0

σt′asc

)2

+

(

P̃ − P0

σP̃

)2

, (3.12)

and the priors on t′asc and P̃ are once again independent Gaussians. Note that

σP̃ =

(
σtasc
σt′asc

)

σPorb
, (3.13)

so the area of the uncertainty ellipse is the same in all three sets of coordinates:

(tasc, Porb), (t
′
asc, Porb), and (t′asc, P̃ ).

This transformation affects the metric:

g̃t′asct′asc = g′t′asct′asc + 2

(
∂Porb

∂t′asc

)

P̃

g′t′ascPorb
+

(
∂Porb

∂t′asc

)2

P̃

g′PorbPorb
, (3.14a)

g̃t′ascP̃ = g′t′ascPorb
+

(
∂Porb

∂t′asc

)

P̃

g′PorbPorb
, (3.14b)

g̃P̃ P̃ = g′PorbPorb
, (3.14c)

where (
∂Porb

∂t′asc

)

P̃

= norb

(
σPorb

σt′asc

)2

= norb

σ2
Porb

σ2
tasc + n2

orbσ
2
Porb

. (3.15)

In order to make the metric as close to diagonal as possible in these coordinates,

we should choose a different norb from that defined in (3.5). Instead we make

(substituting (3.4), (3.15), and (3.2c) into (3.14b) and looking at the most likely point

tasc = tasc,0, Porb = P0)

g̃t′ascP̃ ≈
(

norb −
µobs − tasc,0

P0

+ norb

(
σPorb

σt′asc

)2 (t′asc,0 − µobs)
2 + σ2

obs

P 2
0

)

g′t′asct′asc (3.16)

close to zero. If we set this to zero and solve algebraically for norb, we get

norb ≈ µobs − tasc,0

P0

(

1 +

(
σPorb

σt′asc

)2 (t′asc,0 − µobs)
2 + σ2

obs

P 2
0

)−1

. (3.17)

Since the definitions of t′asc,0 and σt′asc depend on norb as well, we need to solve iteratively

for the optimal norb to minimize the metric correlation in these sheared coordinates.

This converges quickly, giving, for the reference values used in this paper, norb = 4108,

corresponding to t′asc,0 = GPS 1253858643 ≡2019–Sep–30 06:03:45UTC.† With this

choice, we have coordinates t′asc and P̃ with no prior correlation and negligible correlation

in the search metric.

† Again, the actual best value using the data with gaps, antenna patterns and variable noise level,

as well as the exact metric, will be slightly different, but the relationship between the choices of norb

optimized for sheared and unsheared coordinates is illustrative.
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Figure 5. Cells of t′asc, ap space for sample lattice construction. Each rectangular

cell has its own coherence time Tmax, corresponding to a coherence time used in [12],

and we construct a lattice in each of these cells. The range of orbital period values

for each cell is a function of t′asc, as illustrated in figure 3 or figure 4. We construct

the lattice in all 9 of these regions, and include the template counts in the computing

cost estimate. For the three shaded regions, we also include the templates in the

corresponding t′asc, Porb or t′asc, P̃ plot of the lattice.

4. Example Lattices and Results

To quantify the reduction in number of search templates and computing costs at a

given mismatch, we construct sample lattices of each type for a variety of representative

regions in parameter space. For each choice of coordinate system and lattice type, we

construct 9 × 14 lattices, corresponding to the nine regions of orbital parameter space

(t′asc, Porb, ap) or (t
′
asc, P̃ , ap) shown in figure 5 and fourteen frequency bands beginning

at 25Hz and ending at 2000Hz. Each of these regions has its own Tmax value taken

from the search in [12]. In that search, the frequency f0 was split into ranges of width

0.05Hz, and a search job covered that range of frequencies along with one of the orbital

parameter space regions. Rather than constructing the full set of 9 × 39500 lattices

covering all the bands from 25Hz to 2000Hz, we choose one 0.0005Hz range from the

middle of each band, construct the nine lattices (one for each orbital parameter cell)

corresponding to that range, and scale up the number of templates by the number of

such ranges in the band. Since the computing cost scales roughly with the number of



Template Lattices for Sco X-1 Cross-Correlation 14

−600 −400 −200 0 200 400 600
t
′

asc
− 1253586547 (s)

−0.2

−0.1

0.0

0.1

0.2

P
o
r
b
−
6
8
0
2
3
.8
6
(s
)

2019 By Hand

−600 −400 −200 0 200 400 600
t
′

asc
− 1253586547 (s)

−0.2

−0.1

0.0

0.1

0.2

P
o
r
b
−
6
8
0
2
3
.8
6
(s
)

2019 LatticeTiling - Z4

Figure 6. Left: Lattice setups that most closely resemble what was done in previous

CrossCorr searches, but with the inclusion of “chopped” search regions in t′asc, Porb.

The lattice points are placed by computing the spacing in each direction given the

mismatch and the metric (section 2.2). Points are then placed to cover the uncertainty

ellipses in each of the three rectangular search regions, where the darker region bounded

by one-sigma in t′asc represents the region where we are most likely to find a signal if

it is present.The total number of templates for this setup is 1.060 × 1012. Right:

Implementing the elliptical boundary function and using LatticeTiling to place a

cubic lattice changes where the points are placed. The total number of templates for

this setup is 1.682× 1012.

templates times the number of SFT pairs, we approximate the computing cost for each

band i and cell c as Npair
ic N

tmplt
ic . We estimate the number of SFT pairs for data from

Ndet detectors as in [10] by

N
pair
ic ≈ N2

det

TobsT
max
ic

T SFT
i

, (4.1)

where we show explicity that the SFT duration depends on the frequency band i while

the coherence time depends on the frequency band i and orbital parameter space cell c.

Note that this is an overestimate of the absolute number of pairs, because we computed

the Tobs using the start and end times of the two parts of O3 rather than an actual set

of data segments reflecting the true duty cycle. In addition to the total computing cost
∑

i

∑

cN
pair
ic N

tmplt
ic for each lattice, we also plot the lattice points projected onto the

t′asc, Porb or t′asc, P̃ plane, limiting attention for the plots to the shaded cells in figure 5.

Figure 6 shows two implementations of cubic (Z4) lattices, both using the original

by hand method described in section 2.2 and using the LatticeTiling module. The

main difference between the two methods is in how they handle the boundaries of the

elliptical search region. The by-hand method uses the chopped regions illustrated in the

right panel of figure 3, while the LatticeTiling method uses the elliptical boundaries

of figure 4. Note that while LatticeTiling uses a smaller region of parameter space, it

actually requires more templates (a total over the whole parameter space of 1.682×1012

versus 1.060 × 1012 for the by-hand method) for the cubic (Z4) lattice because of its

conservative approach to covering the boundaries. Ordinarily this would be a small

effect, but since only two or three templates are required in the Porb direction, it is



Template Lattices for Sco X-1 Cross-Correlation 15

−600 −400 −200 0 200 400 600
t
′

asc − 1253586547 (s)

−0.2

−0.1

0.0

0.1

0.2

P
o
r
b
−
6
8
0
2
3
.8
6
(s
)

2019 LatticeTiling - A∗

4

−600 −400 −200 0 200 400 600
t
′

asc
− 1253586547 (s)

−0.2

−0.1

0.0

0.1

0.2

P̃
−
6
8
0
2
3
.8
6
(s
)

Sheared LatticeTiling - A∗

4

Figure 7. Left: Implementing the elliptical boundary function discussed in section 3.2

requires the use of LatticeTiling [8] for template placement. This setup shows a

use of an A∗

4 lattice with the elliptical boundary function and lattice template points

placed by LatticeTiling. Note that the density of templates is increased in the

one-sigma region. The total number of templates used here (across four-dimensional

parameter space) is 6.006×1011. Right: After performing the shearing transformation

discussed in section 3.3, we use LatticeTiling to place templates in t′asc, P̃ space.

This figure shows an A∗

4 lattice over the sheared uncertainty ellipses using the elliptical

boundary function. Note that the primary axes of the uncertainty ellipses are aligned

with the coordinate axes in this area-preserving transformation, and that template

density is again greater in the one-sigma region. The total number of templates here

is 5.931× 1011.

significant in this case, which motivates the special handing of the Porb coordinate which

follows.

If we change the lattice from Z
4 to A∗

4, we obtain the lattice shown in the left panel

of figure 7. The use of a more efficient lattice has reduced the total number of templates

to 6.006×1011, but we can see from the figure that the templates extend well beyond the

boundaries of the search region. In the right panel, we construct the lattice in the sheared

coordinates t′asc, P̃ defined in section 3.3, which simplifies the boundaries of the search

region, but produces lattices with comparable numbers of templates (5.931×1011 total).

In these coordinates, the mismatch metric has a non-negligible off-diagonal component

g̃t′ascP̃ , so the template lattice is constructed using a basis which looks “slanted” in these

coordinates.

We can make the metric approximately diagonal, as described in section 3.3 by

choosing a different value of norb derived from (3.17); for the example considered, this

means changing norb from 4104 to 4108. The resulting lattice is shown in the left panel of

figure 8. Note that the total number of templates is comparable to the other A∗
4 lattices, a

total 5.918× 1011 across the whole parameter space. The fact that all of the A∗
4 lattices

have comparable numbers of templates indicates that the LatticeTiling module is

behaving consistently, even when the coordinates being used have metric correlations or

oddly-shaped boundaries. However, it is clearly not taking full advantage of the narrow

range of plausible P̃ values. The underlying issue is that LatticeTiling, by the nature

of its boundary-covering algorithm [8], uses a minimum of two templates in a coordinate
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Figure 8. Left: The number of orbits used to propagate tasc into 2019 coordinates

was chosen based on what would diagonalize the standard/ 2019 metric. This is what

introduced the slant in the template rows seen in figure 7. Choosing a different norb

eliminates the slant, to produce this figure, showing a lattice covering using an A∗

4

lattice, LatticeTiling to place the templates, and the sheared coordinates with a

diagonalized metric to align the uncertainty ellipses with the primary axes of the

parameter space. The total number of templates is 5.918 × 1011. Right: Noticing

that the spacing between template rows in t′asc, P̃ seemed to be larger than the cross-

section of the uncertainty ellipse, we perform a calculation described in section 3.3 to

determine whether the orbital period needs to be resolved in the sheared coordinates.

After finding that it does not, for our search, we fix P̃ = P0, forcing LatticeTiling to

place a single row of lattice templates along the centerline of the sheared uncertainty

ellipse. Note that the template density is still greater in the one-sigma region. Here,

the total number of templates is 3.867 × 1011, our best result for template count and

an improvement from the original setup by a factor of about 3.

direction, even if a single template would be sufficient to cover the space at the desired

minimum mismatch.

The change to t′asc, P̃ coordinates, in which both the prior uncertainty and mismatch

metric are approximately uncorrelated, allows us to take advantage of the small prior

uncertainty in P̃ . If we limit attention to lattices with all their templates on the

hypersurface P̃ = P0, the mismatch between a signal with parameters {λsi} and a

template point {λi} will be

µ = g̃P̃ P̃ (P̃
s−P0)

2+2
∑

α

gαP̃ (λ
s
α−λα)(P̃ s−P0)+

∑

α

∑

β

gαβ(λ
s
α−λα)(λsα−λα), (4.2)

where {λα} = {t′asc, f0, ap} are the other three coordinates of the parameter space

and g̃P̃ P̃ is the sheared metric element for orbital period. If we assume the metric

is approximately diagonal, this becomes

µ ≈ g̃P̃ P̃ (P̃
s − P0)

2 + µ‖, (4.3)

As shown in the Appendix, the general expression is

µ ≈ (P̃ s − P0)
2

g̃P̃ P̃
+ µ‖ (4.4)
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Table 1. Comparing Estimates of Raw Computing Cost: we display the chosen

coordinates, the number of orbits needed to propogate t′asc to obtain a diagonal metric,

the type of search region boundary used, and the type of lattice structure. Then, we

show the number of templates required to cover all of parameter space using a given

lattice and estimate the computing cost by multiplying the number of lattice templates

by the number of SFT pairs.

Coordinates norb Boundary Type
∑

i,cN
tmplt
ic

∑

i,cN
pair
ic N

tmplt
ic

t′asc, Porb, ap, f0 4104 Chopped Z
4 1.060× 1012 1.434× 1018

t′asc, Porb, ap, f0 4104 Elliptical Z
4 1.682× 1012 2.085× 1018

t′asc, Porb, ap, f0 4104 Elliptical A∗
4 6.006× 1011 7.439× 1017

t′asc, P̃ , ap, f0 4104 Elliptical A∗
4 5.931× 1011 7.352× 1017

t′asc, P̃ , ap, f0 4108 Elliptical A∗
4 5.918× 1011 7.316× 1017

t′asc, ap, f0; P̃ = P0 4108 Elliptical A∗
3 3.867× 1011 4.928× 1017

Same with reallocated mismatch 3.431× 1011 4.483× 1017

Since the prior uncertainty ellipse with χ2 ≤ k2 (see (3.12) and figure 4) has (P̃ −P0)
2 ≤

k2σ2
P̃
, we can obtain a lattice with µ < µmax everywhere if we construct a three-

dimensional lattice with

µ‖
max ≤ µmax −

k2σ2
P̃

g̃P̃ P̃
(4.5)

A conservative approach is to allocate a mismatch of µmax

4
to the P̃ direction and 3µmax

4

to the other three directions. Then we proceed as follows:

• If
k2σ2

P̃

g̃P̃ P̃
> µmax

4
, we construct an A∗

4 lattice covering the full four-dimensional

parameter space as usual.

• If
k2σ2

P̃

g̃P̃ P̃
≤ µmax

4
, we construct a three-dimensional A∗

3 lattice with maximum

mismatch µ
‖
max = 3µmax

4
and P̃ = P0 at all lattice points. (In LatticeTiling we

accomplish this by setting the search region to have zero width in the P̃ direction.)

Following this approach produces the most efficient lattice, with 3.867 × 1011 total

templates, illustrated in the right panel of figure 8. A slightly more agressive approach

would be to “reallocate” any unused mismatch if
k2σ2

P̃

g̃P̃ P̃
< µmax

4
, and set to the maxiumum

mismatch of the A∗
3 lattice to

µ‖
max = µmax −

k2σ2
P̃

g̃P̃ P̃
. ; (4.6)

This leads to a slightly smaller number of templates (3.431× 1011).

The properties of the different lattices are summarized in table 1. In addition to

the total number of templates
∑

i,cN
tmplt
ic across all of the parameter space cells, we

also show the sum
∑

i,cN
pair
ic N

tmplt
ic which should roughly scale with the computing cost.

Roughly speaking, replacing the by-hand cubic lattice with an A∗
n lattice reduces to

overall computing cost by a factor of 2, while enforcing unresolved P̃ when possible
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Figure 9. A comparison of the recovered values of SNR ρ at various parameter space

points for a representative simulated signal. We compare the “by hand” hypercubic

grid in the original coordinates {t′asc, Porb, ap, f0} to an A∗

3 lattice generated in the

coordinates t′asc, ap, f0 with the sheared period coordinate P̃ set to P0. We plot ρ

versus the theoretical fraction of E [ρ] from the metric mismatch µ; see (2.1). The

dashed line is ρ = ρtarg(1 − µ). We see that the points approximately follow that

line for small mismatch, but the quadratic metric approximation breaks down farther

away. Each template placement method is guaranteed to have at least one point with

µ ≤ µmax = 0.25, but since the A∗

3 lattice has fewer and more efficiently placed points,

its closest point to the true signal parameters is not likely to be as close as the closest

point in the grid. Note that the highest ρ value in the grid or lattice need not be the

closest to the true signal, due to noise fluctuations.

reduces the cost by a further factor of 1.5, for an overall improvement of a factor of 3

resulting from the enhancements described in this paper.

5. Recovery of Simulated Signals

To test that our improved lattice is as sensitive to signals with unknown parameters

as the original grid search method, we generated data containing simulated signals and

analyzed them with the lattices and grids considered in section 4. The data generated

were Gaussian white noise with a power spectral density of 5.14× 10−24Hz1/2. In order

to generate data with similar parameter-space metric components {gij} to the O3 run,

but with a smaller volume of data, we generated a set of 24-hour stretches of data

separated in time by three weeks, over the entire duration of O3a and also of O3b. It

was necessary to do this, rather than generating a single contiguous stretch of data, to

obtain a similar σobs.

The frequencies of the signals were chosen between 300 and 400Hz, and the
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Figure 10. Recovered SNR ρ for each signal as a fraction of targeded SNR ρtarg from

searching with the true signal parameters. As in figure 9, we compare the by-hand

hypercubic grid to the A∗

3 lattice with P̃ = P0. At left is the SNR from the point in the

grid or lattice with the smallest mismatch distance to the true signal parameters. At

right is the maximum SNR in the lattice or grid, which we see from figure 9 need not

be for the template closest to the true signal parameters. For reference, we plot the

theoretical curve ρ/ρtarg = 1 − µ. The lattice does indeed recover the signals with a

fractional SNR loss less than the designed maximum mismatch µmax = 0.25, although

the grid, which requires more points to obtain the same maximum mismatch, generally

finds points with slightly higher SNR because of this redundancy.

parameters ap, tasc and Porb were randomly chosen according to the astrophysical

priors described in section 3.1, i.e., ap ∼ Uniform(1.44 lt-s, 3.25 lt-s) and Porb and

tasc from a bivariate normal distribution with means P0 = 68023.86 and tasc,0 =

974416624 GPS (2010–Nov–21 23:16:49UTC), and standard deviations σPorb
= 0.043 s

and σtasc = 50 s, and t′asc generated by propagating tasc to the middle of the data set,

using the Porb value generated for the signal. The initial phase of the GW signal was

drawn from a uniform distribution, and the orientation angles of the neutron star spin

were drawn from an isotropic distribution. The signal amplitude h0 was generated to

give an estimated expected SNR between 9.0 and 11.0. This amplitude depends on the

randomly chosen value of the neutron star inclination, as detailed in [10].

The data were generated using lalapps Makefakedata v5 from the lalsuite

library [7]. For each signal a targeted search was run using a single template at the

injected parameter values {λsi} to find the actual SNR ρtarg of the signal in the simulated

data. We then conducted searches using different template placement methods. These

were each conducted in small parameter space regions containing, but not centered on,

the point {λsi} at which the signal was injected. The regions typically covered a search

range equivalent to 6 or 7 grid points in the f0, ap and tasc directions, and the full prior

range in Porb out to P0 ± 3σPorb
, or the appropriate elliptical boundary. For simplicity
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in comparisons, we use the same coherence time Tmax = 2550 s.

We performed the search using the template placement methods described in

section 4. Here we report on the comparison between the original grid (or “by hand”)

method shown in e.g., the left panel of figure 6, and the A∗
3 lattice in sheared coordinates

with P̃ unresolved, as shown in the last line of table 1. In figure 9 we show, for a single

representative signal, the SNR ρ at various points in the grid or lattice of each search.

The search methods tend to recover the signal with comparable SNRs although the

lattice has fewer “redundant” points close to the true signal parameter values.

For the full ensemble of 80 signals, we can look at the distribution of either the

highest SNR ρ in each search (the “best” template), or the ρ of the template in each

search with the lowest mismatch µ, which we refer to as the “closest” template. We

show in figure 10 the fraction of the targeted-search SNR ρtarg recovered in each search

for the closest or best template in each of the two searches considered. We see that the

grid method from previous searches, and the improved method with and A∗
3 lattice and

unresolved P̃ both recover signals with an SNR loss of less than the nominal maximum

mismatch of µmax = 0.25. The grid method generally obtains slightly higher SNRs due

to the extra templates, which increase the chance of catching an upward fluctuation or

a point significantly closer than the maximum mismatch would indicate. However, the

lattice method achieves the specified maximum mismatch with fewer templates and less

computing cost.

6. Conclusions

In this paper we have discussed changes to the lattice used in the template-based cross-

correlation search for continuous gravitational waves from Scorpius X-1. We detailed

the setup of our parameter space and explained how previous searches used lattices

in the same parameter space. We then gave four major improvements to improve the

lattice setup, using fewer templates for a given computing cost. We first showed that

there is a reduction in template count by switching from a hypercubic lattice to an A∗
n

lattice in section 2.2. Then, we defined an elliptical boundary function in section 3.2

to improve the shape of the search region in t′asc and Porb to be more focused on the

section of parameter space within the prior ellipses. In section 3.3 we defined an area-

preserving shearing transformation that aligned the axes of the prior ellipses with the

coordinate axes. This simplifies the task of using LatticeTiling to place a horizontal

row of templates in parameter space. Finally, we compared the cross-section of the prior

ellipses in t′asc and P̃ to determine whether P̃ needed to be resolved, and determined

that it did not in section 3.3. This allowed us to use an A∗
3 lattice, and reduced the

template count by an overall factor of ∼ 3 compared to the original grid search.

The improvements described in this paper are being incorporated into the LIGO-

Virgo-KAGRA data analysis infrastructure [7] and may be used for GW searches in O3

and beyond. Note that the sheared period coordinate P̃ is likely to remain unresolved

in future searches, even though the original orbital period Porb would not be. For future
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observations with observation epoch µobs even further from tasc,0, the uncertainty σt′asc
in time of ascension will grow, and the uncertainty σP̃ in P̃ will shrink as shown in

(3.13). This is unlikely to be offset by finer resolution due to increased coherence time

(see (3.1c)) since the sinc function in (3.1b) saturates at Tmax ∼ 0.7Porb. This level was

reached using resampling below 180Hz in [13] but it is unlikely to be practical at higher

frequencies.

The reduction in template count allows for a more sensitive search in two ways.

First, since the search is computationally limited, reducing the number of templates

needed at a given coherence time will allow us to use longer coherence times at the

same computational cost. The quantitative benefit of this is somewhat limited, since

the cost of searching a three-dimensional parameter space scales, for smaller coherence

times, like T 4
max, and the amplitude sensitivity on h0 scales as T

1/4
max, so a factor of 3

in computing time nominally translates to a 7% improvement in sensitivity. However,

there are other benefits not captured in this number; for instance, the use of the sheared

period coordinate and unresolved P̃ allows the parameter space to remain effectively

three- rather than four-dimensional. Second, the reduction in template numbers reduces

the trials factor on parameter space and therefore the expected loudest background

outliers[24], enabling the use of a lower threshold for followups.
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Appendix A. Fixing the Sheared Period Coordinate

Consider how we handle the mismatch when P̃ is underresolved. Let the search region

be contained within the range P0 − ∆P̃ ≤ P̃ ≤ P0 + ∆P̃ and let {λα} = {f0, ap, t′asc}
be the other three search coordinates. If we construct a template lattice in {λα} with
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a maximum mismatch µ
‖
max, we can ask what is the mismatch between a point in that

lattice and a point on the P̃ boundary, with P̃ = P0 + ∆P̃ . If ∆λα is separation from

a grid point, the total mismatch will be

µ = g̃P̃ P̃ (∆P̃ )
2 + 2

∑

α

gαP̃ (∆λα)(∆P̃ ) +
∑

α

∑

β

gαβ(∆λα)(∆λβ)

︸ ︷︷ ︸

µ‖

. (A.1)

If the metric is approximately diagonal, this becomes

µ = g̃P̃ P̃ (∆P̃ )
2 + µ‖. (A.2)

One conservative approach is to say that as long as g̃P̃ P̃ (∆P̃ )
2 < µmax

4
, we will set P̃

to P0 and define a template lattice in the other three coordinates with µ
‖
max = 3

4
µmax.

More generally, we could choose

µ‖
max = µmax − g̃P̃ P̃ (∆P̃ )

2 (A.3)

which will work as long as g̃P̃ P̃ (∆P̃ )
2 < µmax.

In general, though, the metric might not be diagonal, and in particular g̃t′ascP̃ might

be non-negligible. To see how the mismatch for a point on the P̃ boundary changes,

consider the case of a two-dimensional lattice in t′asc and P̃ , so that the mismatch is

µ = g̃P̃ P̃ (∆P̃ )
2 + 2g̃t′ascP̃ (∆t

′
asc)(∆P̃ ) + g̃t′asct′asc(∆t

′
asc)

2. (A.4)

Suppose the spacing in the t′asc direction is

δt′asc = 2

√

µ‖

g̃t′asct′asc
. (A.5)

Consider two adjacent lattice points separated by δt′asc, and a point in between them,

which has ∆t′asc = t > 0 from one point and ∆t′asc = t− δt′asc < 0 from the second one.

A point with this t′asc value and P̃ = P0+∆P̃ will have the maximum possible mismatch

if it is the same mismatch distance away from the two nearest grid points. This means

we’re looking for the t which solves

g̃P̃ P̃ (∆P̃ )
2+2g̃t′ascP̃ (∆P̃ )t+g̃t′asct′asct

2 = g̃P̃ P̃ (∆P̃ )
2+2g̃t′ascP̃ (∆P̃ )(t−δt

′
asc)+g̃t′asct′asc(t−δt′asc)2.

(A.6)

A bit of cancellation gives us

0 = −2g̃t′ascP̃ (∆P̃ )(δt
′
asc)− 2g̃t′asct′asc(δt

′
asc)t+ g̃t′asct′asc(δt

′
asc)

2, (A.7)

or

t =
δt′asc
2

−
g̃t′ascP̃

g̃t′asct′asc
(∆P̃ ) . (A.8)
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As a quick sanity check, we see that this reduces to t = δt′asc
2

when g̃t′ascP̃ = 0, as we

expect. Plugging this back into the mismatch equation gives

µmax = g̃P̃ P̃ (∆P̃ )
2 + 2g̃t′ascP̃ (∆P̃ )

(
δt′asc
2

−
g̃t′ascP̃

g̃t′asct′asc
(∆P̃ )

)

+ g̃t′asct′asc

(
δt′asc
2

−
g̃t′ascP̃

g̃t′asct′asc
(∆P̃ )

)2

= g̃t′asct′asc

(
δt′asc
2

)2

+
g̃P̃ P̃ g̃t′asct′asc − g̃2

t′ascP̃

g̃t′asct′asc
(∆P̃ )2 = µ‖

max +
(∆P̃ )2

g̃P̃ P̃

(A.9)

where g̃ij is the inverse matrix to g̃ij.
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