
J. Vis. Commun. Image R. 87 (2022) 103580

A
1

Z

r
A
s
s

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier.com/locate/jvci

Full Length Article

Self-supervisedmulti-scale pyramid fusion networks for realistic bokeh effect
rendering✩

hifeng Wang a, Aiwen Jiang a,∗, Chunjie Zhang b, Hanxi Li a, Bo Liu c

a School of Computer and Information Engineering, Jiangxi Normal University, No. 99, Ziyang Ave., Nanchang, 330022, Jiangxi, China
b School of Computer and Information Technology, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian District, Beijing, 100044, China
c Department of Computer Science and Software Engineering, Auburn University, 3101P Shelby Center for Engineering Technology, Auburn, 36849-5347, AL, USA

A R T I C L E I N F O

Keywords:
Bokeh rendering
Circle of confusion
Self-supervised
Multi-scale fusion
Structure consistency

A B S T R A C T

Images with visual pleasing bokeh effect are often unattainable for mobile cameras with compact optics and
tiny sensors. To balance the aesthetic requirements on photo quality and expensive high-end SLR cameras, syn-
thetic bokeh effect rendering has emerged as an attractive machine learning topic for engineering applications
on imaging systems. However, most of bokeh rendering models either heavily relied on prior knowledge such
as scene depth or were topic-irrelevant data-driven networks without task-specific knowledge, which restricted
models’ training efficiency and testing accuracy. Since bokeh is closely related to a phenomenon called "circle of
confusion", therefore, in this paper, following the principle of bokeh generation, a novel self-supervised multi-
scale pyramid fusion network has been proposed for bokeh rendering. During the pyramid fusion process,
structure consistencies are employed to emphasize the importance of respective bokeh components. Task-
specific knowledge which mimics the "circle of confusion" phenomenon through disk blur convolutions is
utilized as self-supervised information for network training. The proposed network has been evaluated and
compared with several state-of-the-art methods on a public large-scale bokeh dataset- the "EBB!" Dataset. The
experiment performance demonstrates that the proposed network has much better processing efficiency and
can achieve better realistic bokeh effect with much less parameters size and running time. Related source codes
and pre-trained models of the proposed model will be available soon on https://github.com/zfw-cv/MPFNet.
1. Introduction

‘‘Bokeh’’ is Japanese in origin and refers to a blurry quality. In pho-
tography, it is a very recognizable technique, which can lead pleasing
visual aesthetic photos, as shown in Fig. 1.

In practice, images with visual pleasing bokeh effect are often
produced through professional DLSR camera with large aperture and
long focal length. However, they are often unattainable for mobile
cameras with compact optics and tiny sensors. To balance the aesthetic
requirements on photo quality and expensive high-end SLR cameras,
bokeh effect has to be simulated computationally. Therefore, synthetic
bokeh effect rendering has emerged as an attractive machine learning
technology [1,2] for engineering applications on imaging systems.

During the past years, many methods on synthetic bokeh effect
endering relied heavily on prior knowledge such as scene depth.
mong these depth-based methods, some methods adopted to estimate
cene depth through utilizing hardwares like the dual-pixel autofocus
ystem [3] on Google Pixel devices, the dual-lens on iPhone7+ and
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the Time-of-Flight (TOF) lens on Huawei P30+ smartphones. However,
since these specialized hardwares are expensive, they are often not sup-
ported on low-end commercial systems. Moreover, for images already
captured using monocular cameras, the accurate depth information
are not available either. Therefore, many other methods proposed to
employ pre-trained models such as MegaDepth [4] to estimate the
depth.

To some degree, incorporating prior knowledge to simulate realistic
bokeh blur has potentials to improve visual effect of the final gen-
erated image. However, every thing has the pros and the cons. The
typical limitations of prior-based methods are: (1) the depth sensor
related hardwares are not always available on mobile devices; (2) pre-
processing prior information by software is generally time-consuming;
(3) when the prior information estimated does not work, unexpected
out-of-focus blurriness conversely deteriorates the quality of ultimate
synthetic image.

Witnessed the impressive success on image-to-image translation
tasks, in recent years, many researchers started to consider bokeh
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Fig. 1. The examples of bokeh-free and bokeh images. The left are bokeh-free images.
The right are with bokeh effects which highlight object of interest in focus.

simulation as a subtask of image translation [5–7]. Therefore, rou-
tines based end-to-end multi-scale encoder–decoder architecture are
commonly adopted as camera-independent solutions. The nonlinear
mappings between the low- and high-aperture photos captured with
high-end DSLR camera are directly modeled in data-driven way. How-
ever, though much progress has been achieved, the majority of these
models are topic-irrelevant networks. In other words, it means in
these cases, task-specific knowledges like the intrinsic mechanism of
bokeh generation are often neglected without fully utilization for more
effective solutions.

According to the principle of optical imaging [8,9], bokeh gener-
tion is closely related to a phenomenon called ‘‘circle of confusion
CoC)’’. The ‘‘CoC’’ approximately brings different sizes of disk blurs
n out-of-focus areas. Therefore, following the task-specific knowledge,
e propose a novel self-supervised multi-scale pyramid fusion network
or bokeh rendering. In the proposed network, blurred images after
isk convolution kernels of different radius provide self-supervised
nformations for bokeh component learning. The final bokeh image is
weighted combination of the learned factorized bokeh components.
herefore, different from existing heavy prior-dependent algorithms,
he proposed network does not have to preprocess time-wasting priors
uring training and testing in practice. At the same time, in contrary
o some topic-irrelevant end-to-end networks, the proposed network
mploys task-specific knowledge as training guidance. With more clear
raining purpose, it can effectively boost network training’s efficiency
nd accuracy.
The proposed network has been evaluated and compared with

everal state-of-the-art methods on a public large-scale bokeh dataset-
he ‘‘EBB!’’ Dataset [5]. The experiment performance demonstrates that
he proposed network has much better processing efficiency and can
chieve better realistic bokeh effect with much less parameters size and
unning time.
The contributions of this paper are summarized as followings:

• An effective multi-scale pyramid fusion network is proposed
for realistic bokeh effect rendering. The proposed network can
achieve new state-of-the-art performance on a large-scale bokeh
benchmark dataset with relatively small parameter size and real-
time processing speed.

• Task-specific knowledge which mimics the ‘‘circle of confusion’’
phenomenon through disk blur convolutions is utilized as self-
supervised information for network training. Structure consisten-
cies are employed to emphasize the importance of respective
bokeh components. With more clear training purpose, it can
effectively boost network training’s efficiency and accuracy.

In the following sections, related work will be summarized in Sec-
ion 2. Details on the proposed network will be described in Section 3.
hen experiment results and analysis are demonstrated in Section 4.
inally, conclusions will be given in Section 5.
2

Fig. 2. Illustrations on depth of field.

2. Related work

2.1. Bokeh and depth-of-field

The bokeh effect is optically called ‘‘circle of confusion’’. According
to the principle of optical imaging [8,9], as illustrated in Fig. 2, for
a specific aperture and focal length, only object points at focus plane
(also refers to focus object) can be ideally projected to corresponding
points on image plane. Any other object points before or after the ideal
plane are out of focus and form circles of confusion when they are
projected onto image plane.

The ‘‘circle of confusion’’, such as the C1 and C2 illustrated in
Fig. 2, can be in various size, depending on the distances between their
respectively captured objects and the focus object. Generally, the nearer
the distance, the smaller the size of the circle. If the diameter size
of a circle is at the edge of the perception limitation of human eyes,
the circle is called ‘‘permissible circle of confusion’’. On image plane,
objects with circle of confusion smaller than the ‘‘permissible circle of
confusion’’ have similar clarity to the focus object, otherwise they will
suffer varying degrees of blurs. In photography, the maximum distance
between the objects having ‘‘permissible circle of confusion’’ before and
after the focused object is call ‘‘depth of field’’.

Besides the objects distance away from image plane, ‘‘depth-of-
field’’ is also closely correlated to aperture and focal length. The larger
the aperture or the longer the focal length, the shallower the depth-
of-field. Generally, proper shallow depth-of-field is the precondition to
obtain good bokeh effect.

2.2. Automatic bokeh effect rendering

Automatic bokeh effect rendering has developed for several years.
In this section, we are mainly concentrated on introducing its recent
developments on modeling strategies and bokeh content.

2.2.1. Modeling strategies
From the aspect of modeling strategies, in the past, many works

on bokeh effect rendering have involved capturing depth information
with dual-cameras. Typically, Busam et al. [10] proposed to use high-
quality vision disparity map to refocus images through stereo depth
estimation. Luo et al. [11] proposed to generate high-definition dispar-
ity maps through wavelet synthesis neural network based on a pair of
calibrated stereo images. Liu et al. [12] presented a bokeh simulation
method based on depth map which was obtained with stereo matching.
Jeong et al. [13] presented a real-time bokeh rendering technique that
splats pre-computed sprites but takes dynamic visibilities and intrinsic
appearances into account at runtime. However, when dealing with
monocular camera or post-processing already captured images, these
dual-cameras based methods often become invalid.

Therefore, single image based bokeh effect simulation emerges as a
machine learning hot-topic in recent years. Typically, Xu et al. [14]
exploited both depth estimation network and portrait segmentation
network to conduct blur rendering on input image with a conditional
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random field [15]. Purohit et al. [16] proposed a depth guided dy-
namic filtering dense network for bokeh rendering. Pre-trained depth
estimation and salient segmentation maps are concatenated with in-
put image along channel dimension before being propagated through
their proposed densely connected encoder–decoder network. Dutta [17]
proposed to blend original image and different versions of smoothed
images to generate bokeh effect with the help of a monocular depth
estimation network. Wang et al. [18] proposed a light field refocusing
method to improve the imaging quality of camera arrays.

In these depth-map based models, depth estimation [19] is an
indispensable step, since different levels of blurring are generally intro-
duced depending on the depth variations in scene content. Therefore,
the quality of estimated depth maps is critically important to final
rendering effect. Godard et al. [20] proposed a self-supervised learning
model to perform monocular depth estimation. Minimum re-projection
loss and auto-masking loss were designed to improve the estimation
quality of depth maps. Zuo et al. [21] proposed a deep residual dense
network to progressively reconstruct high-resolution depth map guided
by the intensity image. Song et al. [22] proposed a scene-aware con-
textualized convolution neural network for intrinsic exploitation of
context-dependent depth association, including inner-object continuous
depth and inter-object depth change priors nearby.

Witnessed the impressive success on image-to-image translation
tasks, such as image deblur [23,24], super-resolution [25,26], style
transfer [27,28], image enhancement [29–31], image dehazing [32,33],
etc., in recent years, researchers consider bokeh synthetic as a kind
of image translation task. Typically, on the AIM 2019 Challenge on
bokeh effect synthesis [1], XMU-VIPLab team (Yang et al.) employed
selective kernel networks (SKNet) [34] for bokeh effect simulation. Two
bokeh-nets were trained to generate local and global features before
being concatenated as input into the SKNet. VIDAR team (Xiong et al.)
use an ensemble of five U-Net based models with residual attention
mechanism to achieve final bokeh image. Qian et al. [6] proposed a
GAN-based method solves the synthetic bokeh effect rendering prob-
lem. On the AIM 2020 Challenge [2], both CET-CVLab and CET-SP
teams use the same U-Net based dilated wavelet CNN model [35] for
generating bokeh images. In their networks, standard down-sampling
and up-sampling operations are replaced by decomposition based on
discrete wavelet transform (DWT) to minimize information loss in these
layers. Moreover, Ignatov et al. [5] proposed a multi-scale end-to-end
PyNet structure for image rendering. Dutta et al. [7] proposed a deep
multi-scale hierarchical network (DMSHN) for bokeh effect rendering.
Under the ‘‘coarse-to-fine’’ scheme, their model synthesized bokeh
effect by exploiting multi-scale input images at different processing
levels. Each lower level acts in the residual manner by contributing
its residual image to the higher level. Luo et al. [36] proposed a multi-
stage network to learn shallow depth-of-field from a single bokeh-free
image through defocus estimation.

In this paper, the proposed model no longer requires to estimating
the depth-map of bokeh-free image. It puts forward a lightweight and
fast network for efficient end-to-end bokeh effect rendering.

2.2.2. Bokeh contents
From the aspect of image content processed, in early stage, portrait

images were mainly considered only. Saliency detection [37–39] is
an indispensable step in the portrait-only methods. Typically, Shen
et al. [40] proposed to employ fully convolution network for por-
trait segmentation. Then their model simulated shallow depth-of-field
image through uniformly blurring segmented background. Wadhwa
et al. [3] combined person segmentation network and dense dual-pixel
auto-focus hardware to render a defocused image.

Heavily relying on portrait segmentation often failed to give good
rendering effects for generic scenes. Therefore, with the aim of improv-
ing the adaptivity and quality of simulated bokeh effects, challenges
competitions [1,2] were successively organized as computer vision
3

workshops to gauge and push the state-of-the-art in synthetic shallow
Table 1
The convolution details of sub-blocks in decoder 𝐅𝐄𝑖. All convolutions are with kernel
size 𝑘 = 3 × 3 and padding size 𝑝 = 1. ‘‘s𝑘_𝑚_𝑛’’ means stride size 𝑠 = 𝑘, the number of
input channels is 𝑚, and the number of output channels is 𝑛.

block1 block2 block3 block4

𝐶𝑜𝑛𝑣1 s1_3_32 s2_32_64 s2_64_128 s2_128_256
𝐶𝑜𝑛𝑣2 s1_32_32 s1_64_64 s1_128_128 s1_256_256
𝐶𝑜𝑛𝑣3 s1_32_32 s1_64_64 s1_128_128 s1_256_256

depth-of-field rendering. In the challenge workshop, a large scale bokeh
dataset -‘‘EBB!’’ dataset was distributed. The dataset contained more
than 10 thousand images collected in the wild on generic scenes.

In this paper, the proposed model does not rely on saliency de-
tection, therefore, has widely applicabilities on scenes with generic
contents.

3. Methodology

In this section, we describe the proposed method in details. The
architecture of the proposed network is illustrated in Fig. 3. Multi-
scale information fusions on three pyramid levels are considered in this
network.

Specifically, original image is first pyramidally downsampled into
three variants of different resolutions. The downsampling factor is
2. Each variant is encoded by respective feature extraction module
𝐅𝐄𝑖, 𝑖 = {1, 2, 3}, where 𝑖 is pyramid level index. The encoded features
are denoted as 𝐟𝑖.

With the aim to maximumly utilize information from neighboring
scales, a kind of cyclic fusion is performed on each pyramid level.
Therefore, the corresponding feature 𝐭𝑖,𝑗 is then generated, which rep-
esents enhancing information at level 𝑖 by the information from level
. Decoders 𝐆𝐞𝐧𝑖,𝑗 are then responsible for generating respective image
with bokeh component of certain blur radius from 𝐭𝑖,𝑗 .

Preprocessing modules 𝐑𝐨𝐮𝐠𝐡𝐏𝐫𝐞[𝑖], 𝑖 = {1, 2, 3} are employed on
each pyramid level, mimicking depth-of-field images with different
extent of blurriness and of various resolutions. They can supply self-
supervision information for effectively boosting network training’s ef-
ficiency and accuracy. Finally, based the structural similarities be-
tween herein self-defined blurred ‘‘ground-truths’’ and the generated
image components, adaptive importances are emphasized on each gen-
erated components. The ultimate image with expected bokeh effect
is then produced through weighted combinations of these generated
components.

In the following, the structure details of each proposed modules are
described.

3.1. Encoders ‘‘𝐅𝐄𝑖’’

Encoder ‘‘𝐅𝐄𝑖’’ plays a role of feature extraction for original image
at each pyramid level 𝑖. All ‘‘𝐅𝐄𝑖, 𝑖 = {1, 2, 3}’’ share the same network
structure but with respective parameters. The structure details are
shown in Fig. 4. The network of 𝐅𝐄𝑖 consists of four successive sub-
blocks with similar inner structures. As shown in Fig. 4, the sub-block
is composed of three convolutions in residual way, which is formulated
as in Eq. (1). Details of the convolution structures are illustrated in
Table 1.

𝑋𝑡𝑚𝑝 = Conv1(𝑋𝑖𝑛)

𝑋𝑜𝑢𝑡 = 𝐼𝑖𝑛 + Conv3(ReLU(Conv2(𝑋𝑡𝑚𝑝)))
(1)

where, 𝑋𝑖𝑛 represents input feature map of the sub-block in 𝐅𝐄𝑖 net-
work. 𝑋𝑜𝑢𝑡 represents corresponding output of the sub-block. For sim-
plicity, we omit the index 𝑖 for each pyramid level.
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Fig. 3. The architecture of the proposed multi-scale pyramid fusion networks.
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Fig. 4. The structure of the encoder module 𝐅𝐄𝑖.

Fig. 5. The structure of the decoder module 𝐆𝐞𝐧𝑖,𝑗 .

3.2. Cyclic fusion

Cyclic fusion plays a role of information reutilization and interpo-
lation between neighboring pyramid levels. Just as shown in Eq. (2),
𝐳𝑖,𝑗 represents downward information fusion from neighboring scale of
higher resolution. 𝐭𝑖,𝑗 represents upward fusion from neighboring scale
of lower resolution after 𝐳𝑖,𝑗 is obtained. Herein, we briefly denote 𝐭𝑖,𝑗
s 𝐭𝑖 in case of 𝑖 = 𝑗.

32 = 𝑓3 ↓ +𝑓2

21 = 𝑓2 ↓ +𝑓1

𝑡3 = 𝑓3 + 𝑧32 ↑

𝑡23 = 𝑧32
𝑡21 = 𝑧21 ↑ +𝑓2
𝑡1 = 𝑧21

(2)

erein, ↓ means downscale sampling and ↑ means upscale sampling.
The cyclic manipulations may introduce some information distur-

ance on sub-pixels through successive downward and upward fusion,
hich are expected to enhance model’s robustness on different scales.
4

T

Fig. 6. The visual illustrations of defocus blurs.

Table 2
The convolution details of sub-blocks in decoder 𝐆𝐞𝐧𝑖,𝑗 . All convolutions are with kernel
size 𝑘 = 3× 3 and padding size 𝑝 = 1. All DeConvolutions are with kernel size 𝑘 = 4× 4
and padding size 𝑝 = 1. ‘‘s𝑘_𝑚_𝑛’’ means stride size 𝑠 = 𝑘, the number of input channels
is 𝑚, and the number of output channels is 𝑛.

block1 block2 block3 block4

𝐶𝑜𝑛𝑣1 s1_256_256 s1_128_128 s1_64_64 s1_32_32
𝐶𝑜𝑛𝑣2 s1_256_256 s1_128_128 s1_64_64 s1_32_32
DeConv3 s2_256_128 s2_128_64 s2_64_32 s2_32_3

3.3. Decoders ‘‘𝐆𝐞𝐧𝑖,𝑗 ’’

𝐆𝐞𝐧𝑖,𝑗 are decoders that generate images with bokeh components
of different resolutions from corresponding encoded features 𝐭𝑖,𝑗 , 𝐼𝑖,𝑗 =
𝐞𝐧𝑖,𝑗 (𝑡𝑖,𝑗 ). The structure of 𝐆𝐞𝐧𝑖,𝑗 is illustrated in Fig. 5. It has similar
everse structure when compared with encoders 𝐅𝐄𝑖.
The network of 𝐆𝐞𝐧𝑖,𝑗 consists of four successive sub-blocks with

imilar inner structures. Each sub-block is composed of two convolu-
ions followed by a deconvolution, which is formulated as in Eq. (3).

𝑡𝑚𝑝 = 𝑌𝑖𝑛 + Conv2(ReLU(Conv1(𝑌𝑖𝑛)))
̂𝑜𝑢𝑡 = DeConv3(𝑌𝑡𝑚𝑝)

(3)

here, 𝑌𝑖𝑛 represents input feature map of the sub-block in 𝐆𝐞𝐧𝑖,𝑗
etwork. 𝑌𝑜𝑢𝑡 represents corresponding output of the sub-block. For
implicity, we omit the indexes 𝑖, 𝑗 at respective pyramid level.
The inner convolution details of the sub-blocks are described in

able 2.
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Fig. 7. Samples of visual comparisons among the proposed network and some representative state-of-the-art methods. Images predicted by the proposed methods have more
realistic bokeh effects with less artificial defects, such as the road plates in the third row.
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g

3.4. DefocusBlur module ‘‘𝐑𝐨𝐮𝐠𝐡𝐏𝐫𝐞[𝑖]’’

‘‘𝐑𝐨𝐮𝐠𝐡𝐏𝐫𝐞[𝑖], 𝑖 = {1, 2, 3}’’ are preprocessing modules for bokeh
lurs. They provide self-supervised ground-truth for bokeh components
earning.
As explained in Fig. 2, the bokeh blurs are in fact resulted by

ircles of confusion. In the field of graphics, there are many methods to
imulate the bokeh blurs. Typically, circular scatter is the most standard
ssumption. It is a kind of disk blur. The visual effects of disk blurs are
llustrated in Fig. 6.
The bokeh blur algorithm implemented is denoted as DefocusBlur.

It involves using circular convolution kernel for bokeh simulation.
Since the variations of bokeh radius are controlled by the variations of
blur radius, 𝐑𝐨𝐮𝐠𝐡𝐏𝐫𝐞[𝑖] employs different kernel size for DefocusBlur
n pyramid levels, 𝐺̂𝑖 = 𝐷𝑒𝑓𝑜𝑐𝑢𝑠𝐵𝑙𝑢𝑟(𝐼𝑖, 𝑘𝑖), where 𝑘𝑖 = {7, 5, 3}
espectively represents the kernel size of defocus blur at corresponding
yramid level.
In order to supply self-supervision information, structural similar-

ties 𝛼𝑖,𝑗 = SSIM(𝐺̂𝑖, 𝐼𝑖,𝑗 ) are computed on each 𝑖th pyramid level
etween the blurred ‘‘ground-truths’’ 𝐺̂𝑖 and the predicted image com-
ponents 𝐼𝑖 from 𝐆𝐞𝐧𝑖,𝑗 . The similarity 𝛼𝑖,𝑗 indicates the quality of
respective bokeh component learning. We jointly normalized them into
range [0, 1] to emphasize their importances, as shown in Eq. (4).

𝑤𝑖,𝑗 =
𝛼𝑖,𝑗

∑

𝑚 𝛼𝑚,𝑗
(4)

here 𝑤𝑖,𝑖 are briefly denoted as 𝑤𝑖, and 𝛼𝑖,𝑖 as 𝛼𝑖.
The final predicted bokeh output 𝐼𝑏 is generated through fusing

he bokeh components predicted at each pyramid levels, as formulated
n Eq. (5). The jointly normalized similarities 𝑤∗ adaptively control
he importance of information from respective pyramid level during
ombination.

1 = 𝑤1 ∗ 𝐼1

2 = 𝑃1 ↑ +𝑤21 ∗ 𝐼21 +𝑤23 ∗ 𝐼23
𝐼𝑏 = 𝑃2 ↑ +𝑤3 ∗ 𝐼3

(5)

here 𝐼∗ represents the bokeh image generated from 𝐆𝐞𝐧∗. ‘‘↑’’ repre-
ents upsampling operation. 𝑃 is intermediate map.
5

∗

.5. Training loss

For comprehensively parameters learning, training losses both on
lobal and component levels are considered.
The first loss 𝐿𝑜𝑠𝑠𝐵 is globally implemented on output bokeh image.

𝐿1 loss is employed, as shown in Eq. (6). The 𝐿1 loss benefits pixel-wise
reconstruction of synthesized bokeh image.

𝐿𝑜𝑠𝑠𝐵 = |𝐼𝑏 − 𝐺𝑇 |1 (6)

The second loss 𝐿𝑜𝑠𝑠𝑝𝑦𝑟 is locally implemented on pyramid image
components. A linear combination of 𝐿1 Loss and SSIM Loss is em-
ployed, as shown in Eq. (7). The SSIM loss improves perceptual quality
of the generated image components, since it focuses on the similarity
of local structures.

𝐿∗ = |𝐼∗ − 𝐺̂∗|1 + 0.1 ∗ (1 − SSIM(𝐼∗, 𝐺̂∗)),

𝐿𝑜𝑠𝑠𝑝𝑦𝑟 = 𝑤3 ∗ 𝐿3 +𝑤23 ∗ 𝐿23 +𝑤21 ∗ 𝐿21 +𝑤1 ∗ 𝐿1
(7)

where, 𝐿∗ represents loss on respective pyramid component. 𝑤∗ are the
normalized weights the same as the ones defined in Eq. (5)

Therefore, the proposed network is trained with a total loss defined
in Eq. (8).

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐵 + 𝐿𝑜𝑠𝑠𝑝𝑦𝑟 (8)

4. Experiment

In this section, we comprehensively describe the experiment set-
tings and results. The proposed network is implemented in PyTorch,
and trained on workstation with NVIDIA GeForce RTX 3090 GPU.
Adam [41] is employed as optimizer, with initial learning rate set
0.0001. The batch size is set to be 2.

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM) [42]
and Learned Perceptual Image Patch Similarity metrics (LPIPS) [15] are
employed as metrics for performance evaluation. The PSNR and SSIM
emphasize objective evaluation on image’s pixel quality. The LPIPS
focuses more on the perceptual judgments of image quality.
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Fig. 8. Finer visual comparisons among the proposed network and some representative state-of-the-art methods. The proposed method achieves clear in-focus objects and
structure-preserved out-of-focus backgrounds, as the regions compared in bounding boxes.
4.1. Dataset

‘‘Everything is Better with Bokeh!’’ (EBB!) dataset [5] is a large-
scale dataset that is specially for bokeh effect learning. It contains 5094
pairs of Bokeh-free and Bokeh images which were collected in the wild
with the Canon 7D DSLR camera by controlling the aperture size of
the lens. In each pair, the normal sharp image was captured with a
narrow aperture (f/16), corresponding bokeh image was shot using
high aperture (f/1.8). All the captured image pairs are aligned, cropped
and downscaled to a final height equal to 1024 pixels. Therefore, the
average image resolution is 1024 × 1536.

In the EBB! Dataset, the available training set consists of 4694 image
pairs. Similar to work [17], during experiments, it is divided into two
parts, in which 294 pairs are taken for evaluation and the rest 4400
pairs are for training.

4.2. Experiment results and analysis

4.2.1. Ablation study I: The selections of kernel size for DefocusBlur
In order to verify the selection of kernel sizes for DefocusBlur, an

ablation study is conducted. Since the size selection is a combination
problem, we greedily conduct the study as followings. We respectively
perform disk blurs on original clear images with different combinations
of kernel sizes. SSIM and LPIPS are evaluated between the generated
6

Table 3
The similarity qualities of the generated images with different kernel size
combinations.
Kernel combination SSIM↑ LPIPS↓

3, 5, 7 0.8806 0.2255
3, 5, 9 0.8784 0.2376
3, 5, 11 0.8756 0.2468
3, 5, 15 0.8672 0.2638
3, 7, 9 0.8712 0.2542
3, 7, 11 0.8694 0.2486

images and bokeh ground-truths. The similarity qualities are demon-
strated in Table 3. From the ablation experiments, the combination
of {3,5,7} achieves the best results. Therefore, in consideration of
performance and computation burden, we select it throughout the
experiments in this paper.

4.2.2. Ablation study II: The effectiveness of training losses
To demonstrate the effectiveness of the self-supervised pyramid loss

𝐿𝑜𝑠𝑠𝑝𝑦𝑟, an ablation study is conducted. The experiment results are
shown in Table 4. With the help the self-supervised information, the

performances achieve great improvements.
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Fig. 9. Visual examples of normalized weights for each image components. Images from 𝐆𝐞𝐧1, 𝐆𝐞𝐧2,1, and 𝐆𝐞𝐧2,3 are upsampled to the same resolution with 𝐆𝐞𝐧3 for observation
convenience.
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Table 4
The ablation study on the effectiveness of training losses.

𝐿𝑜𝑠𝑠𝐵 𝐿𝑜𝑠𝑠𝐵+𝐿𝑜𝑠𝑠𝑝𝑟𝑦
PSNR↑ 24.32 24.74
SSIM↑ 0.8524 0.8806
LPIPS↓ 0.2415 0.2255

Table 5
The ablation study on pyramid structure and self-supervision training.

PSNR↑ SSIM↑ LPIPS↓

MPFNet𝑤∕𝑜𝑆𝑆 24.18 0.8746 0.2458
MPFNet 24.74 0.8806 0.2255

4.2.3. Ablation study III: Multi-scale pyramid structure vs. Self-supervised
augmentation

In order to highlight both the effectiveness of the proposed multi-
scale pyramid structure and the promoted self-supervised training aug-
mentation, an ablation study is further conducted. All DefocusBlur
branches are removed from the training architecture shown in Fig. 3.
All the importance weights 𝑤∗ in Eq. (5) are equally set to be 1.
The resulted network is therefore denoted as ‘‘MPFNet𝑤∕𝑜𝑆𝑆 ’’. The
experiment results are shown in Table 5.

.2.4. The comparisons with state-of-the-art methods
The proposed network is compared with several representative

tate-of-the-art methods. They are Selective Kernel networks (SKN) [1],
tacked Deep Multi-Scale Hierarchical Network(Stacked DMSHN) [7],
Depth-guided Dense Dynamic Filtering network(DDDF) [16], Bokeh-
Glass Generative Adversarial Network(BGGAN) [6], PyNet [5], Depth-
ware Blending of Smoothed Images (DBSI) [17].
7

p

Table 6
The comparisons with state-of-the-art methods on ‘‘EBB!’’ Bokeh Dataset. ↑ means the
higher the value, the better the performance. ↓ means the smaller the value, the better
the performance.
Method PSNR↑ SSIM↑ LPIPS↓ MOS↑

SKN [1] 24.66 0.8521 0.3323 4.1
Stacked DMSHN [7] 24.72 0.8793 0.2271 4.3
DDDF [16] 24.14 0.8713 0.2482 3.4
BGGAN [6] 24.39 0.8645 0.2467 3.8
PyNet [5] 24.93 0.8788 0.2219 4.2
DBSI [17] 23.45 0.8657 0.2463 3.5
MPFNet (ours) 24.74 0.8806 0.2255 4.5

Since the evaluation of bokeh effects is subjective, besides the
objective metrics like PSNR, SSIM and LPIPS, a user study with MOS
(Mean Opinion Scores) metric [2] is conducted to rank perceptual
qualities of the predicted images. Specifically, we recruited 30 people
with certain photographic knowledge to participate in the evaluation.
Participants were asked to rate the image quality by selecting a score
of 1–5 levels (5 - comparable perceptual quality, 4 - slightly worse, 3
- notably worse, 2 - poor perceptual quality, 1 - completely corrupted
image) in comparison with the original Canon images exhibiting bokeh
effect. The expressed preferences are then averaged per each test image
and then per each method to obtain the final MOS.

The comparison results on EBB! dataset are shown in Table 6. The
omparisons with some SOTA methods on network’s parameters size
nd efficiency are shown in Table 7 based on available open source
odes.
From the experiment results in Tables 6 and 7, it is not difficult

o observe that the proposed network can obtain more superior per-
ormances with much less parameter size and running time. Therefore,
he proposed network achieves the best when considering the overall
rocessing efficiency and effectiveness.
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Fig. 10. The weights, intermediately predicted bokeh results on sampling training epochs.
Table 7
The comparison of network’s parameters size (in millions) and running time (in second)
for processing single image in 1024 × 1536 resolution.
Method Parameters (M) Running time (s)

SKN [1] 5.37 0.055
Stacked DMSHN [7] 10.84 0.040
DDDF [16] N/A 2.5
PyNet [5] 47.5 0.27
DBSI [17] 5.36 0.048
MPFNet (ours) 6.12 0.046

It should be noted that, the MOS score of the BGGAN we obtained
eviates a bit from its behavior performance in AIM2020 [2]. The
easons can be explained in two aspects. The first one owes to different
valuation dataset used, since herein the experiments were performed
n val294 subset, not on the test set. The second one is that there
xist a certain proportion of images that BGGAN generated with severe
rtifacts in the val294 dataset, especially in case of large blurs, whose
ow scores directly lowered the overall average.
For better understanding the advantages of the proposed network

n bokeh rendering, samples of visual comparisons are demonstrated
n Fig. 7. More finer visual comparisons are illustrated in Fig. 8. From
he visual comparisons, we can observe that the proposed network can
8

Fig. 11. The training curves of normalized weights.

achieve more visually realistic bokeh effect, with clear in-focus objects
and structure-preserved out-of-focus backgrounds.
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For better illustrating the contribution of each pyramid branch
during bokeh components learning, some of visual examples and corre-
sponding generated pyramid components together with their respective
normalized weights are shown in Fig. 9. We can observe each pyramid
omponent contributes final bokeh image in different extent. Moreover,
e can also easily find that the weights 𝑤∗ on respective components

stably converge. Even in case of different examples, the weights have
similar importance distributions on each components. The details of
training curves and intermediately predicted bokeh results for a specific
example are shown in Figs. 11 and 10.

. Conclusion

In this paper, an effective multi-scale pyramid fusion network has
een proposed for realistic bokeh effect rendering. Structure consis-
encies are employed as importance weights for pyramid information
usion. Task-specific knowledge which mimics the ‘‘circle of confu-
ion’’ phenomenon through disk blur convolutions is utilized as self-
upervised information for network training. The proposed network has
een experimented on a public large-scale bokeh dataset. Compared
ith state-of-the-art methods, it can achieve more satisfied superior
erformance with less parameters and with realtime processing speed.
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