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Abstract. In this paper, we study the propagation speeds of reaction-diffusion-advection fronts
in time-periodic cellular and chaotic flows with Kolmogorov—Petrovsky—Piskunov (KPP) nonlinear-
ity. We first apply the variational principle to reduce the computation of KPP front speeds to a
principal eigenvalue problem of a linear advection-diffusion operator with space-time periodic co-
efficient on a periodic domain. To this end, we develop efficient Lagrangian particle methods to
compute the principal eigenvalue through the Feynman-Kac formula. By estimating the conver-
gence rate of Feynman—Kac semigroups and the operator splitting method for approximating the
linear advection-diffusion solution operators, we obtain convergence analysis for the proposed nu-
merical method. Finally, we present numerical results to demonstrate the accuracy and efficiency
of the proposed method in computing KPP front speeds in time-periodic cellular and chaotic flows,
especially the time-dependent Arnold—Beltrami—Childress flow and time-dependent Kolmogorov flow
in three-dimensional space.
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1. Introduction. Front propagation in complex fluid flows arises in many sci-
entific areas such as turbulent combustion, chemical kinetics, biology, transport in
porous media, and industrial deposition processes (see [48] for a review). A funda-
mental problem is to analyze and compute large-scale front speeds in complex flows.
An extensively studied model problem is the reaction-diffusion-advection equation
with Kolmogorov—Petrovsky—Piskunov (KPP) nonlinearity [24]. To be specific, the
KPP equation is

(1) w=rAgu+ (vV-V)u+7 1 f(u), teRY, x=(z1,...,2q4)7 €RY,

where x is a diffusion constant, 7 is the time scale of reaction rate, v is an incom-
pressible velocity field (its precise definition will be discussed later), u is the con-
centration of reactant or population, and the KPP reaction term f(u) = u(l — u)
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satisfies f(u) < uf’(0). In our analysis and numerical examples, we will keep 7 and x
fixed, while changing the magnitude of the velocity field v, which equivalently means
changing the Péclet number.

Since the pioneering work of Kolmogorov, Petrovsky, and Piskunov [24] and Fisher
[14] on traveling fronts of the reaction-diffusion equations, this field has gone through
enormous growth and development. Reaction-diffusion front propagation in fluid flows
has been an active research topic for decades; see, e.g., [18, 46, 26, 47, 3, 34, 35, 48, 31]
and references therein. Significant amounts of mathematical analysis and numerical
works in this direction have been accomplished when the streamlines of fluid flow are
either well-structured (regular motion) or fully random (ergodic motion). Yet, the
often encountered less studied case is when the streamlines consist of both regular
and irregular motions, while neither one takes up the entire phase space, such as the
chaotic Arnold-Beltrami-Childress (ABC) flow [11, 4] and Kolmogorov flows [17, 8].

In recent years, much progress has been made in finite element computation of
the KPP front speeds in time-periodic cellular and chaotic flows based on a linearized
corrector equation. If the velocity field v = v(x) in the KPP equation (1) is time-
independent, the minimal front speed in direction e is given by the variational formula
[18]: c¢*(e) = infysop(N)/A, where p(A) is the principal eigenvalue of the elliptic
operator, A7, namely,

(2) AP = kALD + (—26de + V) - Vi@ + (KA — Av-e + 771 f/(0))® = pu(N)D.

In (2), ® € L?(T9), T = R/Z is the one-dimensional (1D) torus, and v is period 1
in all directions x;,1 < i < d. Accurate estimation of ¢*(e) boils down to computing
the principal eigenvalue of the operator A7 in (2). Adaptive finite element methods
(FEMs) were successfully applied to solve (2) in [41, 40]. If the velocity field v =
v(t,x) in the KPP equation (1) is periodic in time ¢, then the variational formula
c*(e) = infyso p(A)/A still holds [32], where u(A) is the principal eigenvalue [19] of
the time-periodic parabolic operator, A2, namely,

(3)
AP = kAP + (—26Xe + V) - Vi@ + (kA2 = Av e+ 771 f/(0))® — &, = u(\)®,

on the space-time domain T¢ x [0,7] (T is the period of v in t), subject to the
same boundary condition in x as (1) and periodic in t. An edge-averaged FEM with
algebraic multigrid acceleration was developed in [49] to study KPP front speeds in
2D time-periodic cellular flows with chaotic streamlines. Adaptive FEM methods
provide an efficient way to compute the KPP front speeds in time-periodic cellular
and chaotic flows. However, when the magnitude of the velocity field is large (the
problem becomes advection-dominated) and/or the dimension of spatial variables is
big (e.g., d = 3), it is extremely expensive to compute KPP front speeds by using the
FEM.

Recently, we have made significant progress in developing Lagrangian particle
methods for computing effective diffusivities in chaotic and random flows [43, 45, 25].
This motivates us to develop interacting particle methods to compute KPP front
speeds in time-periodic cellular and chaotic flows in this paper, especially in 3D flows
in the small diffusion regime.

In this paper, we first apply operator splitting methods to approximate the so-
lution operator of the linear advection-diffusion operator (see (4)), which is a non-
autonomous evolution equation and corresponding to the linearization of the KPP
equation. Then, we develop numerical methods to compute the KPP front speeds

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/16/22 to 128.195.69.42 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1138 J. LYU, Z. WANG, J. XIN, AND Z. ZHANG

through the Feynman—Kac formula, which establishes a link between parabolic PDEs
and SDEs. Direct approximation of the Feynman-Kac formula is unstable, since the
main contribution to the expectation comes from sample paths that visit maximal
points of the potential; see (9). Alternatively, we study a normalized version, i.e., the
Feynman-Kac semigroup. Specifically, the principal eigenvalue of A} and A3 can be
obtained by studying the convergence of Feynman-Kac semigroups for SDEs associ-
ated with operators A7 and A3 [9, 13]. We approximate the evolution of probability
measures by an interacting particle system and use the resampling technique to reduce
the variance. Moreover, we estimate the approximation of semigroups associated with
the solution operators of nonautonomous evolution equations and obtain convergence
analysis for our method in computing the KPP front speeds.

We point out that using Feynman—Kac semigroups to estimate the principal eigen-
value of differential operators has a long history. It was developed in large deviation
theory, where Feynman—Kac semigroups were used to calculate cumulant generating
functions [10]. They were also used in important practical applications, such as the
diffusion Monte Carlo method [15]. When the velocity field v of the flow is time-
independent, one can apply the backward error analysis approach to obtain the error
estimate of the principal eigenvalue [13]. However, when the velocity field v of the
flow is time-dependent, their method cannot be directly applied. There are several
novelties in our paper. First, we analyze the solution operator by an operator split-
ting method and estimate the error in the Lo operator norm. Second, we prove the
convergence of estimating principal eigenvalues by the Feynman-Kac semigroups for
nonautonomous periodic systems. Furthermore, we apply the N-interacting particle
system (N-IPS) method to calculate the principal eigenvalue, where several important
3D chaotic flows are investigated. Notice that when the magnitude of the velocity field
is large and/or the dimension of spatial variables is three, it is extremely expensive to
calculate the principal eigenvalue using the FEM and the spectral method, especially
when the flows are time-dependent.

Finally, we carry out numerical experiments to demonstrate the accuracy and
efficiency of the proposed method in computing KPP front speeds for time-periodic
cellular and chaotic flows. Most importantly, we investigate the dependence of KPP
front speeds on the chaos (disorder) and flow intensities. Let A denote the magnitude
of the velocity field. For space-time periodic shear flow, the speed ¢*(A) obeys a
quadratic enhancement law: ¢*(A) = co(1 + aA?) + O(A3), 0 < A < 1, where cg is
the KPP front speed in homogeneous media (A = 0) and « > 0 depends only on flow
v [33]. The study for complicated flows, e.g., 3D flows, remains largely open. At large
A, the solution of the principal eigenvalue problem (2) develops internal layers and
their locations are unknown a priori, which brings difficulties for the FEM and the
spectral method. We will study this issue in section 4.3. Numerical results show that
our interacting particle method is still very efficient when the magnitude of velocity
field A is large and computational cost linearly depends on the dimension d of spatial
variables in the KPP equation (1). Thus, we are able to compute the KPP front
speeds for time-dependent cellular and chaotic flows of physical interests, including
the ABC flows and Kolmogorov flows in 3D space. To the best of our knowledge, our
work appears to be the first in the literature to develop numerical methods to compute
KPP front speeds in 3D time-dependent flows. Furthermore, we numerically verify
that the relationship between the KPP front speed ¢*(A) and the effective diffusivity
DE(A), ie., ¢*(A) = O(/DE(A)), is true in 2D steady cellular flows and remains so
in the 3D Kolmogorov flows. We also compute the invariant measure of Feynman-Kac
semigroups by our interacting particle method.
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The rest of the paper is organized as follows. In section 2, we propose Lagrangian
interactive particle methods in computing KPP front speeds in time-periodic cellular
and chaotic flows. In section 3, we estimate the approximation of semigroups asso-
ciated with the solution operators of nonautonomous evolution equations and obtain
convergence analysis for our method. In section 4, we present numerical results to
demonstrate the accuracy and efficiency of our method. In addition, we investigate
the dependence of KPP front speeds on the chaos (disorder) and flow intensities, espe-
cially in 3D time-dependent chaotic flows. Concluding remarks are made in section 5.
Finally, we collect several fundamental results for abstract linear evolution equations
by semigroup theory in the appendix.

2. Efficient Lagrangian methods in computing KPP front speeds.

2.1. Computing principal eigenvalue via the Feynman—Kac formula.
In this section, we develop Lagrangian interacting particle methods to compute KPP
front speeds via the Feynman—Kac formula. We consider the linearized corrector
equation of the KPP equation (1), where the velocity field v(¢,x) is space-time peri-
odic, mean zero, and divergence-free. To compute the KPP front speed c¢*(e) along
direction e, let w solve a linearized equation parameterized by A > 0:

(4)  wp=Aw = kAxw + (—26Xe + V) - Vixw + (kA* = Av-e+ 77 f/(0))w

with initial condition w(x,0) = 1. Then, the principal eigenvalue pu(\) is given by

t—oo t

.1
(5) w(A) = lim —In /Jl‘d w(t, x)dx.

The number p(\) is also the principal Lyapunov exponent of the parabolic equation
(4), which is convex and superlinear for large A [32, 49]. Finally, we compute the KPP
front speed using the variational formula c¢*(e) = infy~q p(A)/A.

To design Lagrangian particle methods, we decompose the operator A in (4) into
A= L+C, where

(6) L:=kAx + (—2kle + V) - Vg
and
(7) C:=c(t,x) = (kKA> = Av-e+ 7' f(0)).

To approximate the operator £, we define an SDE system as follows:
(8)
dXP20X =ty +t; — 5, X2 ds 4+ V2k dw(s), Xif’tl’x =x, to>8>t,

where the drift term b = —2xAe + v is determined by the advection field in the
operator £ and w(t) is a d-dimensional Brownian motion. The principal eigenvalue
1(A) of (4) can be computed via the Feynman-Kac formula [16] as follows:

t
(9) #(A) = lim 1lnE (exp (/ c(t — s, X5L0%) ds)) ,
t—oo t 0

where the expectation E(-) is over randomness induced by the Brownian motion w(t).
If we apply the formula (5) to compute the principal eigenvalue pu(\), we need
to solve a parabolic-type PDE (4) using numerical methods, such as FEM and the
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spectral method. When the magnitude of the velocity field is large and/or the di-
mension of spatial variables d is big (say, d = 3), the FEM and the spectral method
become extremely expensive. The Feynman—Kac formula (9) provides an alternative
strategy to design Lagrangian methods to compute the principal eigenvalue p(\) and
thus allows us to compute the KPP front speeds. As we will demonstrate in section
4, the proposed Lagrangian method is efficient for computing KPP front speeds in 3D
time-dependent chaotic flows.

Remark 2.1. When the velocity field in the KPP equation (1) is time-independent,
the construction of the Lagrangian method for computing KPP front speeds is straight-
forward. We simply replace the drift term b in (8) and the potential ¢ in (9) by their
time-independent counterparts.

2.2. Feynman—Kac semigroups. Directly using the Feynman-Kac formula
(9) and the Monte Carlo method to compute the principal eigenvalue p(\) is unstable
as the main contribution to E(exp( fot c(t—s,X59%)ds)) comes from sample paths that
visit maximal or minimal points of the potential function ¢, which leads to inaccurate
or even divergent results.

Accurate principal eigenvalue 11(\) can be obtained by studying the convergence of
the Feynman—Kac semigroup associated with the SDE system (8) and the potential
c. Specifically, let P(T9) denote the set of probability measures over T and S =
C>(T%). We define the evolution operator, denoted by P. ., associated with the process
(X0, S o>ty in (8) as

(10) () (Pia 1, 0) = B (9(X2"7)) Vv € P(TY), ¢ €S, t2 > 1.

Similarly, we define its weighted counterpart as

ta
(V) (P, 1,0) = By (9(X12") exp ( / olta +t1 — syx?’“”‘)> ds)

t1

(11) Yo e P(TY), €S, to >t.

In other words, the infinitesimal generators of P, ;, and Py, , with respect to ¢5 are
L(t1) and A(t1) = L(t1) + C(t1), respectively. Equipped with the definitions of the
evolution operators P, ¢, and Py, ; , we can define the Feynman—Kac operator ®f,
[5, 13] as follows:

(12)
Py (V)(¢) = (V)(Ptcz’tl ¢) _ B (QS(XEM’X) exp (fttf C(t2 +1t — s, XiQ,tl,x))d‘s)
ta,t1 . (V)(Ptcz,tl 1) ExNV(eXp (fttl? C(tg +t — s, X?’thx))ds))

One can easily verify that for all v € P(T%) and t; <ty <t3 € Ry, ®f, , (P5, ,,(v)) =
@7, 4, (v). Notice that we use 7' to denote the period of the velocity in time. For conve-
nience we denote ®7. = @7, ; and P = Py ;. Therefore, we consider the Feynman-Kac
semigroup for t = nT,n € N. Namely, we consider &7, = (®5)". One can easily
verify the Feynman-Kac semigroup ®¢, satisfies the following property, where the

proof is a direct conclusion of Theorem 3.7 and Theorem 3.8.

PROPOSITION 2.2. For any v € P(T?%) and ¢ € S, there exists C > 0 such that

(13) &1 (v)(0) — / odv,

where 0, = inf{pu(X) —R(2) : z € a(A)\ {(N)}} > 0 is the spectral gap of the operator
A, v. is the invariant measure of ®5..

< Cll¢l] exp(=benT),
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The exponential-decay property stated above ensures that we obtain an invariant
measure v, for % from any initial measure v. From the definition of v., we know
that ®%(v.) = v, which means that for any ¢ € S

1
(14) » pdve. = D5 (V) = </Td P%ldyc) /Td Pigdy,.

Therefore, we can find that the principal eigenvalue of Pf is just de P{ldv., which
provides a feasible way to compute the principal eigenvalue.

2.3. Numerical discretization and resampling techniques. Let M be the
number of time discretization intervals for each period and At = T/M. At the time
t; = iAt, we define a transform of random variable as follows:

(15) Y, =X, + b(ti, Xl)At + V2rkAtw;,

where w;’s are independent and identically distributed (i.i.d.) d-dimensional standard
Gaussian random variables, independent of X,;. It is the one step Euler-Maruyama
discretization for X1'%* at s = T — t; which follows the SDE (8). Then (15) defines
an evolution operator P! (also known as transition operator) as follows:

(16) PMo(@) = B(o(Y )X, =), d€ 8.

The evolution operator P~ describes how the values of a given function evolve
in the Lo sense over one time step At. One can easily verify that

(17) ||P2At _ eAtl:(ti)

|2 < C(AL)?,

where the operator L refers to (6) and C' is a positive constant [28]. Specially, when
b =0, PAt = eA£() for all . In addition, we can define the approximation operator
for Pf in (11). For instance, if we choose the right-point rectangular rule, we obtain
that for any v € P(T?) and ¢ € S

(18)  (v)(PAteAtCt ) = E((b(Yi)eXp (c(ts, Y3)At)|X; ~ u), i=1,2,..., M.

The time discretization for the Feynman—Kac semigroup (12) reads

At ALC(t;)
(W)(Pi e 9 i_19 ..M

C,At o
(19) o7 (v)(¢) = (0) (PR AT :

It is difficult to obtain a closed-form solution to the evolution of probability measure
in (19). Therefore, we approximate the evolution of probability measure in (19) by
an N-IPS [30]. Let us introduce the notation KAt = CAEMCALM =1 .. ]CALL wwhere
JCALE = pAteAtC(ti) At = T /M, and T is time period. We denote

(>ie)

T oA o e M
(I/)(ICAt721) ) ) ) )

(20) o (1) (9) =

)

the Feynman-Kac semigroup associated with the operator K£*%*. According to Lemma,
3.6, for any operators A, B in L(L?*(T%)), ®A8 = B4, Therefore, we have that

M-1
(21) @K:At _ H (I),CAt,Mﬂ' _ (I))CAt,l(I),CAt,z . q)K:At,JW.
=0
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Suppose the Markov process (0, (F)n>0, (§")n>0,P) is defined in the product space
(T4)N. For any initial probability measure my = v, we approximate it by an N-particle
system as

(22) P(&° € dz) o(dzP).

u’:]z

Then, according to [30] we evolve the N-particle system according to

N
P(¢" € dzl¢" !t =a) = [T o ( Z(sxl) (d=P)
]; M-—1 AL 1 N
(23) “TI( I e~ (NZ@ (dz?),

where £ = (2!,...,2V)T and n denotes the iteration number in the evolution of
probability measure by the Feynman—Kac semigroup (19).

Using (23), we can compute the evolution of the N-particle system from &m!
to £€*. It will be divided into M small steps. Let us denote & = £" for all n.
Within each iteration stage, we evolve the particles from s = 0 to s = T in the SDE
(8) by the evolution operator {PA*} ! and resample these particles according to
weights determined by the potential function. Specifically, at the i-step, i.e., s =
iAt, we evolve the particles in €71 = (&}, ... ,55\]’"_1) by the numerical scheme
(15) (¢ in (15) is replaced as M — i by recalling definition of (8)) and get Effl =

(5;.1’”_1, e ,EiN’”‘l). Namely, each particle is updated by

(24) Pl =P L bty 9T AL+ V2eAIWP™T!, p=1,2,..., N,

p,n—1,

where w; s are 1.i.d. d-dimensional standard Gaussian random variables.

Then, we resample the particles in 5;7*1 according to the multinomial distribution
with the weights

tar—i, EPTTH AL
(25) wrn—t — _oxP (e, & )AL) p=1,2,...,N,

! Z;V:l exp (c(tM_i, §f’n_l)At) ’

and obtain £} ‘11 - The evolution of N-IPS from (n —1)T" to nT can be represented as
follows:

T B S T B
Nyn— n 7 N,
(26) &t =G =8 =T 8.

After obtaining the empirical distribution of the particles £, we can compute the
principal eigenvalue. At the iteration stage n, we first define the change of the mass
as follows:

N
(27) eN, = N1 exp(e(tar—i, ) AL).

p=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Then, we compute the approximation of the principal eigenvalue by

N
(28) Wk, (\) = (MAt)~ Z log (N*l 3 exple(tar—i, gfv")m)).

p=1

We know that the empirical distribution of the particles £f will weakly converge to
the distribution @,’fm (mo) as N — oo. Therefore, we can use pk,(A\) to approximate
the principal eigenvalue pi(\).

Finally, we give the complete algorithm in Algorithm 1. The performance of our
method will be demonstrated in section 4.

Algorithm 1 Algorithm for computing the principal eigenvalues of parabolic equa-
tions

Input: velocity field v(x,t), potential ¢(x,t), number of N-IPS system (i.e., N),
initial probability measure vy, iteration number n, time period T, time step At =
T/M and t; = iAt,0 << M.

1: Generate N ii.d. vp-distributed random variables on [0, 1]%: €3 = (&,°,.. ., (I)V’O),
the N-particle system.
2: fork=1:ndo
fori=0:M—-1do
Generate i.i.d. standard Gaussian random variables (wil’k_l, - ,wZN’k_l)

and compute Ef—l = (E}’H, . ,EZN*’H) according to Ef‘l by (24).

5: Compute the pointwise value S = (ecl, ol eCN), where CP =
c(tar—i, EPF Y AL

6: Compute weights w = (w!,...,w") = S/sum(S) and Ej;,
+;log(mean(S)). -

7 Resample ﬁf ~1 according to multinomial distribution with weight w (25),
and get £z+1

8: end for

9: Compute pk,(\) = ZM Y(Ey.;) and define £f = £57 Aot

10: end for

Output: The approximate invariant distribution CIDSN (v)-distributed N-particle sys-
tem & and approximate the principal eigenvalue p’%, () using (28).

Remark 2.3. When the flow is time-independent, we can view it as a periodic flow
with any given period T'. Then, we can still use Algorithm 1 to compute the principal
eigenvalue. Hence the numerical schemes and the convergence analysis proposed in
time-dependent flow can be applied by assigning T'= At and M = 1.

3. Convergence analysis of the Lagrangian particle method. In this sec-
tion, we will prove the convergence of the Lagrangian particle method in computing
the KPP front speed. We divide the analysis into two parts. The first part studies
the approximation of the evolution of parabolic operators by using an operator split-
ting method. The second part studies the error estimate of the Lagrangian particle
method in computing the principal eigenvalue of parabolic operators.

3.1. Approximation of the evolution of parabolic operators. We first
rewrite the linearized corrector equation of the KPP equation (4) into the following
nonautonomous parabolic equation:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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(29)
w; = KA w +b(t,x) - Vew + c(t, x)w, x=(21,...,24)7 € T¢=[0,1]¢, te[0,T],

where the initial condition w(0,x) = wo, b(t,x) = —2kXe+Vv, c(t,x) = kA2 = Av-e+
771f7(0), and T is final computational time. Since the velocity v = v(t,x) is space-
time periodic, so are b(t,x) and ¢(t,x). We assume the period of b(t,x) and ¢(¢,x)
is one in each dimension and they are smooth functions. For notational simplicity, we
define

(30) At) = L(t) +C(b),

where L(t) := kAx + b(t,x) - Vx and C(t) = ¢(t,x). The operator A(t) has a real
isolated principal eigenvalue p(A) [19]. We aim to obtain error estimates of our La-
grangian method in approximating the principal eigenvalue p(A). To this end, we
study the approximation of the solution operator for the parabolic equation (29) by
using an operator splitting method.

We define the solution operator U(t, s) : U(t, s)w(s, ) = w(t,-) corresponding to
the parabolic equation (29), mapping the solution in time s to the solution in time ¢,
which satisfies the following properties:

1. U(s,s) = Id for any s > 0;

2. U(t,r)oU(r,s) =U(t,s) for any t > 1 > s > 0;

3. %Zx{(t, s)wg = A(t)U(t, s)wg for any t > s > 0,wg € L%(]0,1]%).
The solution operator U(t, s) enables us to study the evolution of the parabolic op-
erator in (29), e.g., the principal eigenvalue of U(T',0) gives the principal eigenvalue
of the parabolic operator A(t). It has been proven that the principal eigenvalue of
U(T,0) exists and is real [19]. Tt is difficult to obtain a closed-form for the solution
operator U(T,0). Therefore, we approximate the solution operator U(7T,0) by using
an operator splitting method.

We set t; = iAt with At = % and consider the following parabolic equation with
freezing time coefficients:

(31) wy = KAxw + b(t;,x) - Vew + c(t;, x)w, t; <t <tj1, ©>0.

The corresponding solution operator can be formally represented as

i—1
(32) w(t) = e(t=t)(L+C)(t:) H eAt(£+c)(t’“)w0, ti <t <tip.
k=0

Furthermore, we can apply the first-order Lie-Trotter operator splitting method to
approximate the solution operator defined in (32) and obtain

1—1
(33) w(t) = e(E=t) L(E:) (E—1:)C(¢:) H eAtc(tj)eAtC(tj)w()’ ti <t <tipi.
k=0

We will prove the solution operator Hj]\/igl eALL(E) eAC(t) obtained by the Lie—
Trotter operator splitting method converges to the solution operator U(T, 0) in certain
operator norm as At approaches zero. As a consequence of this convergence result,
we can further prove the convergence of the principal eigenvalue associated with these
two solution operators.

To make our paper self-contained, we collect several fundamental results for ab-
stract linear evolution equations by semigroup theory in A. We begin with the follow-
ing lemma, which is as a special case of Theorem 1 in [42].
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LEMMA 3.1. For any fized t, if b(t,x) and c(t,x) are smooth and bounded, then
the operator A(t) defined in (30) is a strongly elliptic operator on T¢. Moreover, A(t)
generates an analytic semigroup et in LP(T?) for all 1 < p < oo.

We will prove that, in our nonautonomous parabolic equation setting, the as-
sumptions made in A are all satisfied, so we can obtain the error of the operator
splitting method in approximating the nonautonomous parabolic operator.

We first prove that the operator A defined in (30) satisfies a Holder continuous
condition.

LEMMA 3.2. Suppose b(t, x) and c(t, ) in the operator A(t) are bounded, smooth,
and periodic in each component of x, and uniformly Holder continuous in t, i.e., for
any t,s € RT,

(34) Hb(t, x) — b(s, a:)H < Chlt — s|’8, |c(t, x) — c(s, :1:)| < Ch|t — s|’8,
for some positive Cy and (3. Let v € D(A(:)) = H*(T?) be periodic. Then, for any
0 < s <, there exists y1 > 0 such that

(35) |[AT)w — A(s)o|| 12 < Calr — 8)2||(AE) = 7)o |[v]| 1o
for any t € R, Specifically, if b(t,x) =0, then
(36) H.A(T)U—.A(S)’UHL2 < 03(7'—8)6||'UHLQ.

Proof. For the operator A(t), we claim that there exists v; > 0 such that
(37) [[(A®t) = 71)v[| 2 = Clr, b, c) ([[Axvllz2 + [[v][z2) Vo € D(A(),

where the constant C(k, b, c) depends on &, b(t,x), and c¢(t, x).

We prove the statement in (37) before moving to the main results. Let ¢, = c—m
and assume ||[b(t,x)|| < M, [¢(t,x)| < M3, and Hch(t,x)H < M3. We know that
(KAx 4+ b(t,x) - Vi + ¢y, (£, %)) |L2

(38) > |[(kAx + cv, (8, x))vHL2 . Hb(t,x) . va||L2.

For the term ||(kAx + ¢y, (t,%))v] ‘LQ, the periodic condition of v implies that

H(IQAX + ¢y, (t,x))v| ’2L?
(39)
=[|kAxv||[32 + Hc71 (t,x)v‘ |iQ — 2(kVxv, ¢y, (£, X)Vx0) 2 — 2(kVx0, 0V xe(t, X)) 2.

2M?

Notice that if we choose 71 = =

+ Ms, then we obtain
(40)  —2(KVxv, ¢y, (£, X) Vi) 2 > 4k(y1 — My)||Viv|| 2 > 4| |b(t,x) - V|| -
In addition, we have

1 3
(41) 2(kVxv, vVyxe(t, X)) 2 < 26M3||Vxv||p2||v]| 2 < 26 M3C||Axv|| 72|02

1 1
Here, we use the fact that ||Vyv||r2 < C||Axv||7.||v||72, which is the moment in-
equality in interpolation theory; see Theorem 5.34 of [12]. If we take v, large enough
such that 4(’“%%)%.%% > 2kM3C, we get that

2 1 3
(42) ||I€Ax’UH2L2+||C»y1 (t,x)v||L2 > 26 M3C||Axv||2]|v]|f2 > 2(kVxv, vV xe(t, X)) 2.
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Substituting the estimates (40)—(42) into (39), we obtain

(43) H(,%Ax + ¢y (t,x))v‘ |L2 > 2| ’b(t,x) . va‘ |L2.
Similarly, we can prove that for v; large enough,

(44) (kA% + ey, (8,3)0]] L2 = C([ A0l 22 + [[v]]2)-

Thus, from (38) we get that

C
5 (1Axvllzz + [fvl]z2).

(45) (1AW — ol 2 > 5158 + e, (100 2 2

We first consider the case when b(t,x) # 0. By using the uniformly Holder continuous
conditions for b(t,x) and ¢(t,x), we have

||A(7)v - A(s)v| |L2 :H(b(T, x) —b(s,x)) - Vxv + (c(1,%x) — c(s,x))v‘ |L2
(46) <Ci(t = 5)([[Vxvll 22 + [JvllL2)-
To see (35), we apply ||[Vxv||r2z < CHA,&)H%QHUH%Z and moment inequality when

multiplying [|v||z2 to (45) and comparing with (46).
The case when b(¢,x) = 0 is simple since we have

(47) ||A(T)v — A(s)vHL2 = H(C(T, x) — c(s,x))v“L2 < Cs(t — S)BHUHLz. O

LEMMA 3.3. Suppose b(t,x) and c(t,x) in the operator A satisfy the same as-
sumption as that in Lemma 3.2. Then, there exists o > 0 such that, for any periodic
v € L%(T%), the commutator of L and C acting on v follows

(48) £, Ol |, < Call(2(E) — 2ol EllollE Ve >0
Proof. We first observe that, for any v periodic in L2(T9),
[I£@®),CO]v]| . = [[LE)(C(H)) = CO(LEV)]]

=||(kAxc(t, x) + b(t,x) - Vxc(t,x))v + 26Vxe(t, x) - Vo ’LQ
(49) S(KM4+M1M3)||’UHL2 +2nM3\|va||L2,

where ||b(t,x)|| < My, ||[Vxc(t,x)|| < Mg, and |Axc(t,x)| < My. Following the same
procedure as in the proof of Lemma 3.2, i.e., taking ¢ = 0 , we have

(50) [[(£(t) = 2)v[| 2 = Cr, D) (|| Axv] L2 + [l L2)-

1 1
Using the fact that [|[Vxv||r2 < C[|Axv]|7.|[v]|72, we finally prove the assertion in
(48). O

Now we are in position to present the main result in approximating the solution
operator U(t, s) for the parabolic equation (29).

THEOREM 3.4. The solution operator (32) has the following error in approximat-
ing the solution operator U(T,0) in the L* operator norm:

M
(51) HZ’I(T, 0) - H eAtA(kAt) | ‘LQ (T4) S Cl (T) (At)ﬁ7%>
k=1
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where T' > 0, M is an integer, and At = % In addition, the Lie—Trotter operator
splitting method has the following error in approzimating the solution operator (32):

< Co(T)(Ab)2.
L?(Td)_CQ( )(At)

M M
(52) H T eaeatan — ] ebtatsan amctean
k=1 k=1

Proof. We take 4 = max(y1,72), where 1 and 7, are defined in Lemmas 3.2 and
3.3, respectively. Let v = 4 4+ My where |c(t, )| < M as assumed in Lemma 3.2. Let
Uy (t,s) = e~ 7= (t, s) be the solution operator that corresponds to the parabolic
equation (29) with A, (t) = A(t) — v, L5(t) = L(t) — 7, and Cp, (t) = C(t) — Mo.
Then, we have

M M
(53) U(T,0) — H CAtARAL) _ AT (UW(T, 0) — H eAtAw(kAt)> .
k=1 k=1

The statement in (51) is proved according to Theorem A.9.
For the Lie-Trotter operator splitting method, we know that

M M
(54) H pAtA(kAL) _ H GAL(kAL) JAC(kAL)
k=1 k=1

M M
— T <H oALA, (RAL) _ H eAtL:,(kAt)eAtCMz(kAt)> .
k=1 k=1

Now according to Lemmas 3.2 and 3.3, L5 and Cyy, satisfy the assumptions A.10 and
A.11. Thus, applying Theorem A.13, we can prove the estimate (52). d

The convergence of K% in the operator norm £(L?, H') has been proved in [2]. In
Theorem 3.4, we obtain the convergence of X% in the operator norm £(L?). Finally,
we can obtain the error estimate for the principal eigenvalue.

THEOREM 3.5. Let N and etarNT denote the principal eigenvalue of the so-
lution operatorU(T,0) and the approzimated solution operator Hiw:l eAtL(EAL) pALC(kAL)
respectively. Then, we have the error estimate as follows:

(55) |eHONT — erarNT| < Oy(T) (A1)~ + Co(T)(AL)E.

Moreover, we can obtain that |u(X) — par(N)| = O((At)min(ﬁ_%’%)).

Proof. According to the standard spectral theorem [23], the principal eigenvalue
e"N) of the solution operator U (T,0) and the principal eigenvalue eratN) of the ap-

proximated solution operator Hi\il eAtL(RAL) oAIC(RAL) gatisfy

M
(56) |t NT — erarNT| < Col|U(T,0) — [ eAtetaneActan]| 19"
k=1

By using the triangle inequality for the right-hand side of (56) and the estimated

results from Theorem 3.4, we can get the error estimate (55). The error estimate for
|e(A) — pae(A)] can be obtained accordingly. |

In this paper, we assume that b(¢,x) and ¢(¢,x) in the operator A are uniformly
Lipschitz. Thus, the error of the principal eigenvalue obtained by the Lie-Trotter
operator splitting method is at least O((At)z).
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3.2. Analysis of the Lagrangian particle method. We consider the Feynman—
Kac semigroup ®# associated with an arbitrary operator A. The action of the
Feynman-Kac semigroup ®* on a probability measure v is defined by

(v)(Ag) 2 md
(57) A(w)(9) = A Ve € LA(TY).

(v) (A1)
Moreover, we denote q)ﬁ = (@A)". The Feynman—Kac semigroup operation satisfies
the following property.

LEMMA 3.6. For any operators A, B in L(L*(T?)), ®A8 = ¢BpA.

Proof. Let v be a probability measure and ¢ be a function in L?(T%). Then, we
can easily verify that

(W)(AB)  (n)(ABS) (v)(A1)
*00) = ) aB) = )(AD) ) (ABY
A 1%
(58) — A = PR o) :

Recall that the operator @fm defined in (21) is a composition of the Feynman—
Kac semigroup K" associated with the operator KA%%; see (20). In what follows,
. KAt . . . . .
we will prove the operator ®;  satisfies the uniform minorization and boundedness
condition, which guarantees the existence of an invariant measure.

THEOREM 3.7. There exists a probability measure n so that the operator KAt
satisfies a uniform minorization and boundedness condition as follows:

(59) en(¢) < K2 (¢)(z) < (), VxeT! Vpe L*(T7),

where 0 < e < v are independent of At. Moreover, when At — 0 the limit operator
is the exact solution operator U(T,0), which also satisfies this uniform minorization
and boundedness condition.

Proof. We first define an operator P2t = Hf\il Ptf’f7 which corresponds to the
case when ¢(t,x) = 0 in (29). Since c¢(¢,x) is bounded (i.e., ¢; < ¢(t,x) < ¢3), one
can easily obtain the following estimate based on the Feynman-Kac formula:

(60) PR ()™ < K2 (¢) < PR (g)e™T.

Thus, to estimate the bounds for K2, we only need to study the operator P2
Moreover, it is sufficient to prove that there exist a probability measure n and a
constant € > 0 so that for any indicator function of a Borel set S C T? the following
result holds:

(61) P(XM S S‘Xo = X) > 677(5),

where X; are defined in the scheme (15) as the numerical solution to the SDE (8).
The idea of the proof is to explicitly rewrite X, as a perturbation of the reference
evolution corresponding to b = 0. According to the numerical scheme (15), we have

(62) Xy =Xog+ Gy + Fuy,

where
M-1 M-1

(63) Gy =V2:At Y w; and Fy =At Y b(T —iAt,X,).
=0 =0
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We know that |Fys| < T||b||L~ and G is a Gaussian random variable with covari-
ance matrix 2kT1;, where I is the d-dimensional identity matrix. Therefore

]P’(XMES|X0::B) ZP(GM ES—:L‘—FM)

d/2 2

1 Y|
4 = = | dy.
®) () [ oo (2o

Since the state space T? is compact, we can find R > 0 such that | + Fy/| < R for
all x € T?. Thus, we define the probability measure 7 as

2
65 S) = 275" inf _llE dy VS cT?
(65) 0(s) = 7; 5“§R/5+Qexp( W) ay vs o1

where Zp is the normalization constant. Setting e = Zr(47nxT)~ %2, we can eas-
ily verify that n(S) > Zp' exp(—%ﬂs |, which satisfies a uniform minorization
condition.

The uniform boundedness condition is automatically satisfied since n has a posi-
tive density with respect to Lebesgue measure.

The situation when the exact solution operator is considered can be proved by
changing (62) into an Ito integration form

(66) XT0x = XT0X 4 / b(T — 5, XT0%)dr + / Vardw(r)
0 0

and then go through the same procedure. 0

We now represent an important result that ensures the existence of the limiting
measure for the discretized Feynman—Kac dynamics. The detailed proof of Theorem
3.8 can be found in [27] or Corollary 2.5 in [29].

THEOREM 3.8. Suppose the minorization and boundedness conditions (59) hold

true. Then, CI)T’fM admits an invariant measure va;, whose density function is the
eigenfunction of the operator (KKAY)*, the adjoint operator of the solution operator
KCAt. Moreover, for any initial distribution vy € P(T?), we have

n
At €
(67) 85 (o) — vae |y <2 (1 - 7) ,
where || - ||rv is the total variation norm and 0 < € < 7 are the parameters defined in

the minorization and boundedness conditions in (59). The estimate (67) is also true
when changing K2t to the evact solution operator U(T,0).

COROLLARY 3.9. The principal eigenvalue pa; of KAt satisfies the following re-
lation:
(68) e 2T =y kAL = @ (1) KA1 +
where vy is any bounded nonnegative initial probability measure, T is the period of the
time parameter, and p, = O(1 — 5)"

Proof. Theorem 3.8 implies that for any bounded nonnegative measure vy, the
At . . . .
measure ®X (1g) converges to an invariant measure va; in the weak sense, that is,

(09 vand= /T Gdvar = B (10)(6) + O = 2",
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for any bounded nonnegative measurable function ¢. Then, we take ¢ = K2t1. From
the fact that the density function of va, is the eigenfunction of the operator (KX2)*,
we get that

(70) var(KA1) = (KA a1l = etatNT (pp,1) = eracVT,
Thus, we finish the proof. ]

Now we compute the principal eigenvalue pa¢(\).

LEMMA 3.10. Let vk, =] 2) @Y "ua,, 1<k <M. Let e = (vk,)(KAHM k1)
denote the changing of mass. Then, we have

M | Mo
(71) ehatMNT — H er and par(A) = VAL Z log(eg).
k=1 k=0
Proof. Tt is easy to verify that
(72) V]A\/{f = Vgt = VAt, (’CAt’J\/lik) Vgt - ek”ﬁi_la

for some positive numbers e;’s. Thus, we have (K2)*1Q, = (Hiw:gl ex)V,;, which
means etatMNT — HQ/I:Bl ex. By taking the logarithm, we obtain the formula for
par(A) in (71), where MAt =T. |

Finally, we show the error estimate of the Lagrangian particle method in com-
puting the principal eigenvalue of parabolic operators as follows.

THEOREM 3.11. Suppose b(t, z) and c(t, x) in A(t) in (30) are bounded, smooth,
and periodic in each component of  and uniformly Hélder continuous in t. Let

M-1
(73)  pA() = (MADT Y log <N Zexp (tar—r, €077 1>At>>

k=0 p=1

denote the approzimate principal eigenvalue obtained by the N-IPS method, where
fk’"fl, k=0,....M—1,p=1,...,N, n is the iteration number, and At are defined
in Algorithm 1. Let u(\) denote the principal eigenvalue of (4) defined in (9). Then,
we have the following convergence result:

Jim (MAD)” Z log (N_lpij:lexp(c(tM—k, ~£’”‘1)At)) =u(N)+0 ((1 — ;>n>

(74) +O0((Aat)?),
where 0 < € < v are the parameters defined in the minorization and boundedness
conditions in (59).

Proof. By the convergence property of the N-IPS, we know that the empirical
distribution of the particles {¢& k’" 1},, 1,...~ will weakly converge to the distribution

Hk Lot L¢>KA1VO,1<I<;<M when N — oo. Letekn—N 12 _, exp(c(tar—r,

£ k’" 1)At) denote the increasing of the mass for each small step K2**. Then, we can

get that H LM lCI)’CAll/O, 1 <k < M, satisfy
At,M—1i At
(75) Jim ey, = (H VAN 11/0) (CA5F1).
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According to Theorem 3.8, we have that ‘I’Efil/o = var + Op, where ||0,||7v < 2(1 —
£)". This implies that

(76) Jim e, = (H R t) (KA4F1) + 0 ((1 - ;>n>

Combining Lemma 3.10, we conclude that

M 1 n
€
A}lm (MAt)™ E log( ekn (MAt)~ E log(ex) +O<<1—> )

k=0 v
€ n
(77) —uAt(A)+o<(1—7) )
From Theorem 3.5, we know that |u(\) — pag(A ‘ =0((A ) Therefore, the esti-
mate in (74) can be obtained by using the triangle inequality. O

4. Numerical results. In this section, we first present numerical examples to
verify the convergence analysis of the proposed method in computing eigenvalues.
Then, we compute the KPP front speeds in 2D and 3D chaotic flows. In addition,
we investigate the dependence of the KPP front speed on the magnitude of velocity
fields and the evolution of the empirical distribution of the N-IPS. To be consistent
with the setting of numerical experiments in the literature, e.g., [41, 40], we choose
the torus space T¢ = [0, 27]?, d = 2,3.

4.1. Convergence tests in computing principal eigenvalue. We first ver-
ify the convergence of the operator splitting method in approximating solution the
operator. Let x = (x1,72)”. We consider a 2D nonautonomous equation on [0, 27]?
as follows:

(78) ue = L)+ C(t)u,

where L(t) = Ax + (sin(z2) cos(27t), sin(z1) cos(27t)) - Vi, and C(t) = (sin(z1 +x2) +
cos(zq + x2)) sin(2mt).

We use spectral method to discretize (78), in order to obtain an accurate ap-
proximation in the physical space of the solution operator of (78). Specifically, let
Vu = span{ei(klzﬁk”?) : —H < ky,ko < H} denote a finite dimensional space
spanned by Fourier basis functions, where H is a positive integer. First, we compute
the approximations of the operators L£(¢) and C(¢) in the space V. Let matrices
L (t) and CH(t) € CCHHD*X2H+D® {enote the approximations of £(t) and C(t),
respectively [39].

Then, We use the matrix exponential functions eAtL" () and eAtC"®) to approx-

imate eAw and e2€(®) | respectively. Thus, we get an approximation formula for
KA as
T/At—1
(79) KHAt _ H eAtLH(tj)eAtMH(tj)'
=0

For the reference solution, we choose a much finer time step At,.; and compute the
approximation formula

T/Atyer—1
) [T | )
7=0
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10°

10

Fic. 1. Numerical errors for ||[KH:At — KHAbrer|| 5,

* n=400
+ n=200
Reference
— Fitted line for n=400

102k

10° L
102 10" 10°
At

Fi1c. 2. In the Lagrangian method, iteration number n = 200 and n = 400. The reference
principle eigenvalue is obtained by the spectral method.

In this experiment, we choose H = 24, At =271,272 ... 279 and Atlyes = 2-12,
Then, we compute ||[K7AF — KHAbes |r2 to verify our result. Figure 1 shows the
convergence results for the splitting method. The convergence rate is (At)!-05. This
numerical result suggests that the convergence analysis in Theorem 3.5 is not sharp.
More studies on the convergence analysis of our method will be reported in our future
work.

Then, we test the convergence of the Lagrangian method, i.e., Algorithm 1, in
computing principal eigenvalues of parabolic-type equations. We still consider the
problem (78) with the same L£(¢) and C(t). In this experiment, we choose At =
271,272 973 974 275 N =200,000 in the N-IPS system and iteration number n =
200 and n = 400 in the Lagrangian method. Figure 2 shows the convergence of
principal eigenvalues with respect to At by the spectral method and our Lagrangian
method, where the reference solution is computed from spectral method with a finer
grid Aty = 271% So given sufficiently large N and n, the error in calculating
principal eigenvalues of a linearized KPP operator A via our proposed Lagrangian
approach only comes from the error of operator splitting. Also as the Lagrangian
method will eventually converge to some invariant measure approximating the ground
truth invariant measure, there is no error accumulation for long-time integration.
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’
- ¥ ~ — Fitted )
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At At

(a) 2D convergence test, fitted slope =~ (b) 3D convergence test, fitted slope =
1.51 1.60.

F1G. 3. Errors of the principal eigenvalue computed by using different time steps.

4.2. Computing KPP front speeds in different flows. We first compute the
KPP front speeds in two different time-independent flows, i.e., a 2D steady cellular
flow and a 3D ABC flow. Let x = (z1,...,74)T € [0,27]¢ with d = 2,3. We use
the Lagrangian method to compute the following principal eigenvalue problem with
periodic boundary condition:

(81) KAX® + (26X + V) - Vi@ + (KA* — Xe - v+ 771 f/(0))® = pu(N)®,

where f(u) = u(1 —u) and (u(A), @) are the principal eigenvalue of (81) and its asso-
ciated eigenfunction, respectively. The velocity field v = (— sin 21 cos x2, cos 1 sin x3)
in the 2D steady cellular flow and v = (sin x5 + cos x2, sin x; + cos x3, sin g + cos x1)
in the 3D ABC flow, respectively.

We choose the parameters kK =1 and 7 = 1 in (81). We use the spectral method
to obtain an accurate reference solution for the principal eigenvalue of (81). Figure 3
shows the convergence results of the Lagrangian method in computing the principal
eigenvalue, where A = 0.35 for the 2D cellular flow and A = 0.55 for the 3D ABC flow.
We find the convergence rate of the Lagrangian method is (At)!?! for the 2D steady
cellular flow and (At)*7 for the 3D ABC flow. Thus, we can use the Lagrangian
method to compute the KPP front speeds in both 2D and 3D flows.

After getting the principal eigenvalue, we compute the KPP front speed ¢* through
the formula ¢* = infy< @ We only show the numerical results for the 3D ABC
flow here since the results for the 2D steady cellular flow are quantitatively similar.
We choose the velocity field v = A(sinxzs + cosxg,sinx; + cosxs,sinze + coszy),
where A is the strength of the convection. In Figure 4, we show the results of @
for ABC flows with A = 1 and A = 10. The amplitude of the principal eigenvalue
increases fast and the convergence speed becomes slower. Notice that in this case, the
flow becomes very unstable since the convection becomes dominant compared to the
diffusion. This issue will be studied in subsection 4.3.

Next, we compute the KPP front speed in a 2D unsteady (time-dependent) cellu-
lar flow. Let x = (21, 22)”. We use the Lagrangian method to compute the following
principal eigenvalue problem with periodic boundary condition:

(82) KAX® + (—2kAe+ V) - Vi® + (kA% —Xe v+ 7 1f(0)® — & = p(\)®,
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F1G. 5. Numerical results for a 2D unsteady cellular flow.

where (t,x) € [0,7] x [0,27]?, T is the period of v in ¢, f(u) = u(l — u), and
(11(A), @) are the principal eigenvalue of (82) and its associated eigenfunction, respec-
tively. The velocity field of the 2D unsteady cellular flow is v = ( —sinzy coszo(1 +
§ cos 2mt), cos zy sin@a(1 + & cos 27t) ), where 6 > 0 is a parameter.

We choose the parameters k = 1 and 7 = 1 in (82) and § = 0.5 in the velocity
field v. We use the spectral method to obtain an accurate reference solution for
the principal eigenvalue of (82). For Figure 5(a), we choose A = 0.57. Figure 5(a)
shows the convergence results of the Lagrangian method in computing the principal
eigenvalue, where the convergence rate is (At)*3!. Figure 5(b) shows the numerical
results of @ for different A’s, from which we can compute the KPP front speed in the
2D unsteady cellular low. We can see that @ is convex within the computational
d(()rglain of A\. Thus, we can compute the KPP front speed by finding the minimizer of
(X
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4.3. Investigate the dependence of front speed on the strength of the
flows. To further test the performance of the Lagrangian method, we study the
dependence of the KPP front speeds on the strength of different flows. Moreover,
we study the relationship between the KPP front speeds in the chaotic flows and the
effective diffusivity of the passive tracer model in the same chaotic flows. We refer
the interested reader to [43, 45, 25] for recent developments in computing effective
diffusivities in chaotic and random flows. We set the diffusion constant x = 1 and the
time scale of reaction rate 7 = 1.

Let us first consider this issue in KPP front speeds of time-independent flows. If
we scale v — Av, (81) can be rewritten as the following form:

(83) Ax® + (—2Xe + AV) - Vi@ + (A? — e - Av + £/(0))® = p(N)®.

The KPP front speed is ¢* = inf~q @ Notice that the KPP front speed ¢* depends
on A, ie., ¢* = c*(A). Therefore, we consider the equivalent equation
(84)

ATIAD + (—247 " Ne + V) - Vi@ + (AN — e v+ A7 f(0))® = i(\)D,

where i(A) = A7 1u()\). Let ¢* denote the KPP front speed of the rescaled equation
(84). We have that

o BN
(85) A S
We denote 0 = A~L. For the 2D steady cellular flow v = (— sin x1 cos 9, cos x1 sin z3),
it has been proved that c*(A) = O(AY4) [1, 36]. Let D¥(A) denote the effective
diffusivity corresponding to the passive tracer model in the same 2D steady cellular
flow v. It has been proved by a boundary layer analysis that DF(A) = O(A'/?) in
[1, 7]. By scaling analysis, we obtain that for the 2D steady cellular flow the following
result holds:

(36) *(A) = O(/ DE(A)).

To the best of our knowledge, the above relationship between the KPP front speeds
and the effective diffusivity was only proved in 2D steady cellular flows; see [36,
37]. The result (86) implies that ¢* (o) = 0O(c~/*) = O(c®/*), which provides a
theoretical guidence for our numerical experiments. Figure 6(a) shows the numerical
results of ¢*(0) in the 2D steady cellular flow obtained by our method. From the
numerical results, we compute regression and obtain ¢*(o) = O(c% ™), which agrees
with the theoretical result (86).

For other flows, such as unsteady flows and 3D chaotic flows, the understanding
of ¢*(A) for large A’s (or ¢*(o) for small ¢’s) remains open. We will study these
flows here. In our previous work [45], we computed the effective diffusivity of the
passive tracer model in the 3D Kolmogorov flow, where v = (sinz1,sin x2,sinz3),
and obtained that DF(A) = O(A'1?). Notice that in [45] the effective diffusivity
is represented in terms of the diffusion and we have converted the result in terms
of the strength of the flows here, which are equivalent. The result (86) implies that
(o) = 00(c7956) = O(c%4). Using our method, we compute ¢*(o) for o in 3D
Kolmogorov flow and show the numerical results in Figure 6(b). We obtain that
¢*(0) = O(c%*3), which means that the result (86) also holds in the 3D Kolmogorov
flow. We conjecture that the result (86) also holds true in other 3D chaotic flows. We
will study this issue in future works.
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(a) Numerical results of ¢"(0) in 2D cel- (b) Numerical results of ¢*(o) in 3D Kol-
lular flow. The fitted slope is ~ 0.74. mogorov flow. The fitted slope is ~ 0.43.

F1G. 6. Numerical results of ¢*(o) in different flows.
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F1G. 7. Numerical results of ¢*(c) in a 3D time-dependent Kolmogorov flow.

Next, we study the dependence of the KPP front speeds on the strength of time-
dependent flows. Specifically, we will consider two 3D flows. The first one is a time-
dependent Kolmogorov flow with v = ('sin(z3+6sin(27t)), sin(z1+6 sin(2nt)), sin(zo+
fsin(27t))), and the second one is a time-dependent ABC flow with v = (sin(z3 +
sin(2wQt)) + cos(xz + sin(2wQt)), sin(z1 + sin(2702t)) + cos(zs + sin(27Qt)), sin(as +
sin(27Qt)) + cos(zq + sin(27))).

For the 3D time-dependent Kolmogorov flow, we choose iteration time n = 256,
time step At = 272 and particle number N = 400,000. Figure 7 shows the result of
¢* (o) for small o’s and different 6’s. Again, we find the KPP front speed ¢*(o) is not
very sensitive to the parameter §. When 6 = 1, we obtain that ¢* (o) = O(c%39).

In Figure 8, we plot out procedure searching for the A when the minimum in (85)
was reached. We use a\+bA~1 +c to fit a curve, then find the minimum of the curve.
When o is large, the relative fluctuation is small and the minimum is easily found.
When o is small, the relative fluctuation becomes strong enough, so we decide to fit
the curve, then find the minimum point.

For the 3D time-dependent ABC flow, we choose the iteration time n = 2048
(since the ABC flow is more chaotic), time step At = 27, and particle number
N =400,000. Figure 9(a) shows the KPP front speeds ¢* (o) for different Q’s, where
ranges from 277 to 2°. Figure 9(b) shows the slope of each approximation line for each
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F1c. 9. Numerical results for the time-dependent ABC flows.

Q) in Figure 9(a). If we assume ¢* (o) = O(c®) is true, the slope values in Figure 9(b)
give the power value s for different 2’s. We find that when € is near 0.1, the power
value « is large. When €2 is away from 0.1, say, Q < 274 or > 272, the power value
« is small. A similar sensitive dependence on the frequency of time-dependent ABC
flows was reported in [4], where the Lyapunov exponent of the deterministic time-
dependent ABC flow problem was studied as the indicator of the extent of chaos; see
Figures 2 and 3 of [4].

We compare the computational time of the interacting particle method and the
spectral method in the 2D cellular flow example. The numerical experiments are
carried out on the same core of the HPC2015 system at HKU with 10-core Intel
Xeon E5-2600 v3 (Haswell) processors and 96 GB physical memory. We compute the
front speed using the spectral method mentioned in section 4.1. We set the Fourier
modes H = 2* and k is a positive integer. When o = 272, for the spectral method,
H = 23 is enough and it spends 1.13 seconds to calculate the front speed, while for our
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F1G. 10. Empirical distributions for the 2D steady cellular flow with o varies from 20 to 275,
First row from left to right: 0 = 2°, 0 =271, and o = 272. Second row from left to right: ¢ = 273,
oc=2"% and o = 275.

interacting particle method, the computational time is about 45.01 seconds. When
o = 275, for the spectral method, H = 2% is enough and it spends 42.35 seconds to
calculate the front speed, and the interacting particle method costs 172.76 seconds.
When o = 278, for the spectral method, H = 2% is needed and it costs 1203.12 seconds
to calculate the front speed; on the other hand, our interacting particle method costs
676.23 seconds. When o becomes extremely small, the spectral method becomes
very expensive; however, our interacting particle method is still very efficient. For
instance, when ¢ = 27'2, the spectral method may need several days to calculate
the front speed, but our interacting particle method only costs 5378.24 seconds. We
remark that the spectral method becomes very expensive in computing front speeds
for 3D chaotic flows. However, the computational time of the interacting particle
method only weakly depends on the dimension of the physical space. Thus, we can
compute KPP front speeds in 3D chaotic flows.

4.4. Evolution of the empirical distribution of the particles. As stated
in Theorem 3.8, the empirical distribution converges to the invariant measure of the
Feynman—Kac semigroup as n approaches infinity. Our Lagrangian method cannot
only calculate the principal eigenvalue but also compute the evolution of the distri-
bution. In this subsection, we study the empirical distribution of the N-IPS system
moduled to the torus space T¢. We choose the particle number N = 200,000 in all
the numerical experiments.

Figure 10 shows the invariant distribution generated by the N-IPS system in the
2D steady cellular flow, where v = (—sinz; cos 22, coszy sinzy). The parameter o
varies from 20 to 27°. The strength of the convection is then proportion to 1/c.
We can see that when we increase the strength, the invariant measure concentrates
in smaller domains and its gradient becomes sharper near these domains, which is a
common phenomenon in fluid dynamics. In addition, by comparing to the pattern
at the boundary of the plot, one can find that the invariant measure is periodic in
physical space.

Next, we study the evolution of invariant distribution generated by our N-IPS sys-
tem in a 2D time-periodic mixing flow, where v = (— cos z2 — 6 sin 1 cos(27t), cos x1 +
0 sin x5 cos(2nt)). Figure 11 shows the empirical distribution of the N-IPS system at
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Fic. 11. Empirical distributions for the 2D time-periodic mizing flow with 0 = 1, o = 1, in
different phase of one period: t varies from 0 to 1 with time interval equal to 1/9.

different times within one period when the iteration time n = 400. From these
numerical results, we can see the invariant distribution varies at different times within
one period. The first subfigure and the last subfigure are identical. These results are
consistent with our analysis obtained in Lemma 3.10, where we proved that the in-
variant measure changes periodically with the same period as the flow.

Finally, we let the parameter o vary from 2° to 27° and study the evolution of
invariant distribution generated by our N-IPS system in the 2D time-periodic mixing
flow. Figure 12 shows that with the increasing of the strength of the convection, the
invariant measure becomes compactly supported with a sharp gradient.

From these numerical results, we get two conclusions. First, the invariant measure
of the Feynman—Kac semigroup associated with the KPP operator is no longer uniform
distribution. This is due to the effect from the potential function c(t,x). Second, the
invariant measure converges to a limiting measure as ¢ — 0. Notice that when o is
small, the invariant measure develops sharp gradients, which requires more particles
to compute. Moreover, it may take more time steps to converge. Developing effective
sampling methods to compute the invariant measure for the KPP operator with small
diffusion constant will be studied in our future works; see, e.g., [44].

5. Conclusion. In this paper, we developed efficient Lagrangian particle meth-
ods to compute the KPP front speeds in time-periodic cellular and chaotic flows and
provided rigorous convergence analysis for the numerical schemes. In the convergence
analysis, we first obtained the error of the operator splitting methods in approximat-
ing the solution operator corresponding to the linearized KPP equation. Then, we
proved the convergence of the Lagrangian particle method in computing the principal
eigenvalue based on the Feynman—Kac semigroup theory. Finally, we presented nu-
merical results to verify the convergence rate of the proposed method for computing
the principal eigenvalues. In addition, we computed the KPP front speeds in several
typical chaotic flow problems of physical interests, including the ABC flow and the
Kolmogorov flow. Compared with spectral methods and FEM methods, our method
has several striking advantages in computing the principal eigenvalue of the linear
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Fic. 12. Empirical distributions for the 2D time-periodic mizing flow with 6 = 1, o varies from
20 to 275, First row from left to right: 0 = 20, ¢ = 271, and 0 = 22. Second row from left to
right: 0 =273, 0 =274, and ¢ = 275.

reaction-diffusion-advection operator: (1) it is scalable with respect to dimension d of
spatial variables and is quite cheap to compute 3D problems, and (2) it is meshfree
and self-adaptive. Thus, it is still very efficient when the diffusion is small and/or
the strength of the flows is large. It has been proved that the KPP front speed and
the effective diffusivity satisfy the relation ¢*(A4) = O(y/DF(A)) in 2D cellular flows
[36, 37]. We numerically verified this relation and found that this relation still holds
in 3D Kolmogorov flows and ABC flows.

There are three directions we plan to explore in our future work. First, we will ex-
tend the Lagrangian particle method to compute KPP front speeds in time-stochastic
and space-periodic flows. Second, we will develop Lagrangian particle methods to
compute KPP fronts speeds in more complex fluid flows, where the computational
domain is not compact. This type of problem is more challenging both analytically
and numerically. As stated in the introduction, there is limited literature on study-
ing the existence of KPP front speeds in complex flows. In the aspect of numerical
computation, our current method cannot be adapted to noncompact domains. We
shall adopt some relaxation techniques to address this problem. In addition, we shall
develop adaptive sampling methods for our Lagrangian particle methods in order
to resolve the sharp gradients in the invariant measure when the magnitude of the
velocity field is very large.

Appendix A. Error bounds for exponential operator splitting in non-
autonomous evolution equations.

A.1. Euler methods for nonautonomous evolution equations. In this sec-
tion, we review the fundamental results for abstract linear evolution equations by
semigroup theory; see, e.g., [12, 6] for more details. We consider the nonautonomous
Cauchy problem (NCP) as follows:

(87) %“(t) = A)u(t), t>seR,

u(s) =z € X,
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where X is a Banach space and (A(t), D(A(t)))ter is a family of linear operators on
X.

DEFINITION A.1. A continuous function u : [s,00) — X is called a classical
solution of (87) if u € CY([s,00); X),u(t) € D(A(t)) for all t > s, u(s) = z, and
%u(t) = A(t)u(t) for all t > s.

DEFINITION A.2. For a family (A(t), D(A(t)))ier of linear operators on a Banach
space X , the NCP (87) is well-posed with regularity subspace (Ys)ser and exponentially
bounded solutions if

(i) (Emistence) for all s € R the subspace
(88)
Y, = {y € X : there exists a classical solution for the NCP (87)} C D(A(s))

s dense in X;

(ii) (Uniqueness) for every y € Ys, the solution us(-,y) is unique;

(iii) (Continuous dependence) The solution continuously depends on s and vy, i.e.,
if sp = s € R,|lyn —yllx — 0 with y, € Y,,, then we have ||is, (t,yn) —
Us(t,y)||x — 0 uniformly for t in compact subsets of R, where

R ue(ty) if r <t
st y) = {y if m>t.

(iv) (Exponential boundedness) there exists a constant w € R such that

st 9)llx < e lyl|x
forally € Yy and t > s.

DEFINITION A.3. A family {U(t,s),t > s} of linear, bounded solution operators
on Banach space X is called an exponentially bounded evolution family if
(1) U(t,mU(r,s) =U(L,s) and U(t,t) = Id hold for allt > r > s € R,
(ii) the mapping (t,s) — U(L, s) is strongly continuous,
(i) |[U(t,s)||x < e?t=%) for somew € R and allt > s € R.
In contrast to the behavior of Cyp-semigroups, the algebraic proposition of an

evolution family does not imply any differentiability on a dense subspace. Therefore,
we need extra assumptions in order to solve an NCP.

DEFINITION A.4. An evolution family {U(t, s),t > s} is called an evolution family
solving NCP (87) if for every s € R the regularity space

Yi={ye X :[s,00) 3t~ Ut )y solves NCP (87)}
is dense in X.

In this case, the unique classical solution of the NCP (87) is given by u(t) =
U(t, s)x. The well-posedness of the NCP (87) can now be characterized by the exis-
tence of solving an evolution family {U(¢,s),t > s}.

PROPOSITION A.5. Let X be a Banach space and (A(t), D(A(t)))ier be a family
of linear operators on X. The following assertions are equivalent [12]:
(i) The NCP (87) is well-posed.
(ii) There exists a unique evolution family {U(t,s),t > s} solving the NCP (87).

>
In addition, if ||e™®)||x < e“T for any T > 0,t € R, then we have |[U(t,s)||x <
w(t—s)
e .
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The well-posedness of nonautonomous evolution equations is complicated and
there is no general theory describing it. Conditions implying well-posedness are gen-
erally divided into parabolic-type assumptions and hyperbolic-type ones. Due to the
property of the KPP equation, we only study the parabolic-type conditions in this
paper, where the domain (D(A(t)) is independent of t € R. We refer the interested
reader to [38] for more general cases.

Assumption A.6 (parabolic-type conditions).
(P1) The domain D = D(A(t)) is independent of ¢ € R.
(P2) For each t € R the operator A(¢) is sectorial and generates an analytic semigroup
e A Forall t € R, the resolvent R(y1,A(t)) exists for all v; € C with Realy; >
0 and there is a constant M > 1 such that

M
(89) 1ROu Ay < oy

for Realy; > 0 and ¢t € R. The semigroups e (") satisfy ||e7A®)||x < e“7 for
some constant w € R.
(P3) There exist constants L > 0 and 0 < 6 < 1 such that

(90) |[(A(t) = A(s))A0) || < LIt — s|?,Vt,s € R.
To obtain a convergence estimate for the operator in a certain norm, we need an
additional assumption on A(t) as follows.
Assumption A.7. The operator A(t) satisfies a Holder continuous condition. Namely,
there exists 0 < a < 3 such that for any = € D(A),
(91) |[(A(#) = A())z|[ < Clt = sI7[JA(T)l|% |||l

for any s <7 < t.

For forward Euler—type discretization, Assumption A.7 can be relaxed to 7 = s
only. The backword Euler-type discretization needs 7 = ¢, and other discretization
methods need different 7’s instead. For analytic semigroups, the following estimate
holds true; see Theorem I1.4.6 in [12].

LEMMA A.8. Let e be an anlytical semigroup on X. Let A be the infinitesimal
generator. There is a constant C > 0 such that

Q

(92) [Aelx < >, t>0, 0<a<l

Now we state the first result, which gives the approximation error of the freezing
time coeflicients methods for solving the NCP (87).

THEOREM A.9. Suppose assumptions A.6 and A.7 hold true. Let U(T,0) be the
solution operator associated with the NCP (87). Then the solution operator obtained

by the freezing time coefficients methods has the following approximation error to
U(T,0):

M—1
(93) u(T,0) — ] e2A4*20|| < C(T) (At~
k=0

where T > 0, M is an integer, and At = %
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Proof. First we refer to [38] for the abstract version of the method of freezing
coefficients,

(94) L“ts):e@_QA@)+:/¢u@,ﬂ(A@ﬁ—n4®D€h_QA“%hv

which immediately gives us that, for every x € X,

@2, 5) = =2 4D)al|

t
t
(95) S/ |[eh(t,7)| | (7 = )P || A(5)e T A || % | [T A z| | “dr.

In (95), we have used the fact that e("=9A()z € D(A) for any = € X. Notice
that A(s) generates an analytic semigroup e(*). According to, (A.8) we have the
following estimate:

(96) HA(s)e(Tfs)A(s) | |; <C(r—s)~“
Substituting (96) into (95), we obtain that, suppose w > 0,
| |(Z/[(t, S) - e(tis)A(S)):d ‘X

_¢
1+8 -«
When w < 0, we only need to modify e“(~*) in the right-hand side to e(!=®)«(t=5)
and in the following proofs we will choose the same trick. Thus, we get the estimate
for the operator in the norm || - ||x

(97)
t
S/ Cew(tf'r)(T _ S)ﬁfaew('rfs)dTHxHX — ew(tfs)(t _ 3)1+[57a”1,||x'

I e — g1

) -

We denote U(T,0) = ,]CM:Bl U((k+1)At, kAt). Using the telescoping sum argument,
we obtain

M-1
||u(T’ 0) o H eAt.A(kAt) | |X
k=0
M-1 M-1 ‘ Jj—1
:H 3o T U+ D)ALRA) U + 1) AL, jAL) — AHATAD) T eAtAAD
J=0 k=j+1 1=0 *
(99)
M-1
- C - CewT
< w(N—j—1)At wAt At 1+B—a wjAt _ At ﬂfa.
__gég e T35 (A1 e o5 oA
The statement in (93) is proved. |

For higher-order operator splitting methods, in some specific situation the higher-
order convergence has been proved in [20, 21]. In their works, Assumption A.7 was
largely strengthened, for both the operator A(t) and the initial condition, and the
convergence largely depends on the graph norm ||v||, := || A(£)%v||x. The convergence
in norm || - ||x is still open and will be our future research work.
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A.2. Operator splitting methods for solving nonautonomous evolution
equations. We study the approximation error of operator splitting methods in solv-
ing nonautonomous evolution equations. To be specific, we consider an abstract NCP,

4y
(100) dt
u(s) =z € X,

() = (A(t) + B())u(t), t=>s€eR,

on a Banach space X, where A(t) and B(t) are linear operators, D(A(t)) is indepen-
dent of ¢ and dense in X, and for each t € R, A(t), B(t), and A(t) + B(t) generate
strongly continuous semigroups e A®) | ¢ B®) and e (AMO+B®)  regpectively.

We will study the NCP (100) based on the perturbation theory. We assume A(t) is
a sectorial operator, which generates an analytical semigroup e *®*), and assume B(t)
is bounded, thus A(t) + B(t) is also sectorial and generates an analytical semigroups
e (AMO+B®) - where D(A(t) + B(t)) = D(A(t)). In addition, we assume that the
operator A(t) 4+ B(t) satisfies Assumptions A.6 and A.7. Therefore, the corresponding
evolution family U(¢,s) solves the NCP problem (100) and admits an Euler-type
approximation, i.e.,

M—1
(101) (T, 0) — ] e2ABERD|| < C(T)(At),
k=0

where T'= M At, «, 3 are constants defined in Assumptions A.6 and A.7.

In what follows, we analyze the error between Hiw:?)l eAUATB)(RAL) 51
chVf:BI eAt.A(kAt)eAtB(kAt).

First, we list all the assumptions as follows.

Assumption A.10. 1. A(t),~, and B(t),~ are all linear operators (may be
unbounded) on X, - a
2. D(A(t)) are the same for all ¢ and dense in X,
3. [|B(t)||x < C for all t >0,
4. A(t) satisfies Assumption A.6 and A(t) 4+ B(t) satisfies Assumptions A.6 and
AT,
5. ||e™A®||x < 1,||eTB(t)HX < 1,||eT(A(t)+B(t))HX <1 for all 7 > 0.

To obtain a convergence theorem, we need an extra assumption in A and B.

Assumption A.11. For the commutator [A(t), B(t)] = A(t)B(t) — B(t).A(t), we
assume that there is a nonnegative v with

(102) LA, B(t))z| | < eal|A)a] [ ll2lli ™ ¥ = € D(A).

Next is a standard result from [22], and we prove it here.

THEOREM A.12. Suppose Assumptions A.10 and A.11 are satisfied. We have the
following error estimate for the operator splitting method:

(103) H(eTA(t)eTB(t) - eT(A(tHB(t)))xHX < Cy 7|z |x Vo € X,

where Cy depends only on c1, v, and ||B||x.

Proof. We use the freezing coefficient formula and obtain

(104) eTADHBD) , _ TAW®) | / " sA() B(t)em = AWHBD) 1.
0
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Expressing the term e("=)(AM+B®) ysing the integral form (104), we have

(105) cTADHBD) , _ TAW®) | /T AN B(#)eTDAW 1 s 4+ Rz,
0
where
(106) R, = / eSADB() / 7AW B(t)eT73 =) ABFB®) (g s,
0 0

We can easily verify that the term R; is bounded, i.e., ||R1]|x < 372||B(t)||%-

B(

On the other hand side, we express the term e™3(*) exponential series and obtain

(107) eTAW B g — 7AW g 4 7T AOB(H)x + Ry,

where ||Ro||x < 37%(|B(t)|%-

Denoted by f(s) = 2O B(1)e™=)AW z we have
(108) eTAM B g _ oT(AMFBMO)y — 7 5(7) — / f(s)ds+r=d+r,
0

where d = 7f(7) — [ f(s)ds = 72 fol 0f(67)df and r = Rox — Ry
Since f'(s) = e*AM[A(t), B(t)]e"*)A® z Assumption A.11 implies

(109)
| ’es.A(t) [.A(t), B(t)]e(T_S)A(t)$| ’X <c | ‘es.A(t) | |X | ‘A(t)e(T_S)A(t)Z‘| |’}Y( ‘ ‘E(T_S)A(t)x| ‘;—’Y.

By using the property of analytic semigroup Lemma A.8, we know that
(110) [[A@)e 940 z|| < C(r — 5)7|2||x.

Thus, we have

1 1
ldl|x = ||72/ 0f (6r)db| | < |T2/ CO(r — 0r) a8 ||| x
0 0
C
111 S —
Notice that ||r||x < 72||B||%||z||x. We finish the proof. d

Using the one step estimate obtained in Theorem A.12, we finally obtain the error
estimate for the operator splitting method.

THEOREM A.13. Suppose Assumptions A.10 and A.11 hold true. We have the
following error estimate for the operator splitting method in solving the NCP (100):

M M
(112) H H GAHA+B) (kAE) _ H eAt.A(kAt)eAtB(kAt)HX < Oy (AT,
k=1 k=1

where Cy is a constant independent of ~y.

Proof. We take t = jAt and s = (j—1)At for j =1,...,M —1 in Theorem A.12,
and by using the telescoping sum argument, we obtain that for any x € X,
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M M
| | oAHA+B) (kAL) . H At A(kAL) AtB(kAt)$| |
k=1 k=1 X

MM
:HZ H CAHATE KAL) ((AHATB)GA _ ALAGAD AB(AY)

j=1k=j+

j—1
AtA(IAL)  AtB(IAL) H
X H e e €
=1 X
M Jj—1
<3 cu(aer | TS| <5 Al
i=1 =1 =
(113) = C1(At) [z |x- -
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