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A SEMI-LAGRANGIAN COMPUTATION OF FRONT SPEEDS OF
G-EQUATION IN ABC AND KOLMOGOROV FLOWS WITH

ESTIMATION VIA BALLISTIC ORBITS\ast 

CHOU KAO\dagger , YU-YU LIU\ddagger , AND JACK XIN\S 

Abstract. The Arnold--Beltrami--Childress (ABC) flow and the Kolmogorov flow are three-
dimensional periodic divergence-free velocity fields that exhibit chaotic streamlines. We are inter-
ested in front speed enhancement in G-equation of turbulent combustion by large intensity ABC and
Kolmogorov flows. First, we give a quantitative construction of the ballistic orbits of ABC and Kol-
mogorov flows, namely, those with maximal large time asymptotic speeds in a coordinate direction.
Thanks to the optimal control theory of G-equation (a convex but noncoercive Hamilton--Jacobi
equation), the ballistic orbits serve as admissible trajectories for front speed estimates. To study the
tightness of the estimates, we compute front speeds of G-equation based on a semi-Lagrangian scheme
with Strang splitting and weighted essentially nonoscillatory interpolation. The Semi-Lagrangian
scheme is stable when the ratio of time step and spatial grid size is smaller than a positive constant
independent of the flow intensity. Numerical results show that the front speed growth rate in terms
of the flow intensity may approach the analytical bounds from the ballistic orbits.

Key words. chaotic flows, ballistic orbits, front speeds, G-equation

AMS subject classifications. 34C25, 65M25, 70H20, 76F25

DOI. 10.1137/20M1387699

1. Introduction. The study of transport phenomena in three-dimensional fluid
flows is a challenging problem, due in part to the presence of chaos and the high
computational costs in resolving small scales; see [23, 16, 19, 25, 26] and references
therein. In this paper, we consider the Arnold--Beltrami--Childress (ABC) flow [2, 8]

(1.1) V1(x, y, z) = \langle sin z + cos y, sinx+ cos z, sin y + cosx\rangle 

and the Kolmogorov flow [7] (or Archontis flow [1])

(1.2) V2(x, y, z) = \langle sin z, sinx, sin y\rangle .

While periodic in (2\pi \BbbT )3, these flows are well known for exhibiting chaotic streamlines.
They have been studied in many contexts, including the electromagnetic conductivity
in kinematic dynamo problem, the traveling wave speed in reaction-diffusion-advection
equation, and the eddy diffusivity [4, 7, 12, 13, 22, 24].

Denote by X : \BbbR \rightarrow \BbbR 3 a Lagrangian trajectory of ABC or Kolmogorov flow
satisfying: \.X(\cdot ) = V(X(\cdot )). In search of the ballistic orbits in say x-direction (y- and
z- directions are similar), let the trajectory start from yz-plane and evaluate its large
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108 CHOU KAO, YU-YU LIU, AND JACK XIN

time asymptotic speed in x-direction as (e1 = \langle 1, 0, 0\rangle ):

(1.3) \=x = lim
t\rightarrow \infty 

X(t) \cdot e1
t

, X(0) = \langle 0, y, z\rangle .

See Figure 1. The orbits X(t) are generated on a 800\times 800 mesh of \langle y, z\rangle \in (2\pi \BbbT )2
by ODE solver in MATLAB (ode113), and the propagation speeds \=x are evaluated
at t = 1000. For ABC flow, \=x reaches maximum when X(0) \approx \langle 0, 5.942, 1.571\rangle 
(accurate to three decimal places); for Kolmogorov flow, \=x reaches maximum when
X(0) \approx \langle 0, 0.029, 1.571\rangle . It turns out that these orbits with maximum asymptotic
speeds are periodic (modulo 2\pi ) in x-direction; that is, there exists \tau > 0 such that
X(\cdot + \tau ) = X(\cdot ) + 2\pi \cdot e1. See Figure 2. Also the orbits with minimum asymptotic
speeds are periodic in negative x-direction: X(\cdot + \tau ) = X(\cdot ) - 2\pi \cdot e1.

The periodic orbit of ABC flow was first proved to exist in [28]. The authors
found an orbit that starts from the line segment \{ x =  - \pi /2, y = 0, z \in [0, \pi /2]\} 
and passes through the line segment \{ x = 0, y \in [ - \pi /2, 3\pi /2], z = \pi /2\} . Thanks
to the symmetries of ABC flow, such an orbit also inherits certain symmetries and
therefore is periodic in the x-direction. For Kolmogorov flow, we found numerically
that the periodic orbit starts from line segment \{ x = 0, y \in [0, \pi /2], z = \pi /2\} and
passes through line segment \{ x = \pi /2, y = \pi , z \in [\pi , 3\pi /2]\} . See Proposition 2.1 and
Proposition 2.3 for precise statements.

In turbulent combustion theory, G-equation is a front propagation model of thin
flames [23, 19]:

(1.4)
\partial G

\partial t
+V(x) \cdot \nabla G+ | \nabla G| = 0.

Formulated by level set method, the flame front \{ G(x, t) = 0\} moves in the laminar
velocity n = \nabla G/| \nabla G| due to fuel combustion along with the flow velocity V(x)
due to fuel convection. In three-dimensional space, let the initial flame front be the
yz-plane:

(1.5) G(x, 0) = x \cdot e1, x \in \BbbR 3.

Fig. 1. Approximate asymptotic speeds of Lagrangian orbits in x-direction evaluated by ( 1.3).
Left: ABC flow. Right: Kolmogorov flow.
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FRONT SPEEDS IN ABC AND KOLMOGOROV FLOWS 109

Fig. 2. Ballistic orbits periodic (modulo 2\pi ) in x-direction. Left: ABC flow. Right: Kolmogorov
flow.

Eventually the flame front propagates in x-direction at the so called turbulent flame
speed:

(1.6) sT := lim
t\rightarrow \infty 

 - G(x, t)

t
,

where convergence holds for all x and sT is independent of x. One fundamental issue
in turbulent combustion theory is front speed enhancement due to fluid convection.
In G-equation model, let the flow velocity be ABC flow (1.1) with intensity A > 0:

(1.7) V(x) = A \cdot V1(x) = A \cdot \langle sin z + cos y, sinx+ cos z, sin y + cosx\rangle 

or Kolmogorov flow (1.2): V(x) = A \cdot V2(x) = A \cdot \langle sin z, sinx, sin y\rangle . We would
like to study the growth rate of turbulent flame speed with respective to the flow
intensity: sT (A) as a function of A. In the case of two-dimensional cellular flow
V(x, y) = A \cdot \langle  - sinx cos y, cosx sin y\rangle , the growth rate of turbulent flame speed is
given by sT (A) = O(A/ logA) [17, 27]. Using the optimal control theory of Hamilton--
Jacobi--Bellman equation, the ballistic orbits are chosen as admissible trajectories to
obtain the upper and lower bounds of turbulent flame speeds. See Theorem 3.1.

Discretized as a monotone and consistent numerical Hamiltonian, finite difference
computation of G-equation has been quite successful in two-dimensional space [18, 15].
When it comes to three-dimensional space, however, the computational cost increases
considerably in large flow intensity regime. Specifically, the Courant number as well
as the constraint of time step size (CFL condition, assuming \Delta x = \Delta y = \Delta z) reads

(1.8)
(6A+

\surd 
3) \cdot \Delta t/\Delta x \leq 1 (ABC flow),

(3A+
\surd 
3) \cdot \Delta t/\Delta x \leq 1 (Kolmogorov flow).

Therefore it is desirable to consider other numerical methods when the flow intensity
A is large.

Semi-Lagrangian (SL) scheme was first introduced as first-order approximation of
scalar convection equation (also called the Courant--Isaacson--Rees scheme [5]). Fur-
ther developed with many techniques such as dimensional splitting or higher order in-
terpolation, SL scheme has been very popular in weather forecast modeling and many
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110 CHOU KAO, YU-YU LIU, AND JACK XIN

other multidimensional atmospheric problems [21]. As the SL scheme being applied on
the advection term in G-equation, it remains to discretize the laminar term. In [3], the
solution is considered smooth, and the laminar velocity is incorporated into the flow
velocity for higher order approximation. In [10], the laminar term is discretized by the
Hopf--Lax formula, and the solution is evaluated through function minimization. In
our present work, thanks to operator splitting, the flow velocity is discretized by SL
scheme, and the function is evaluated by weighted essentially nonoscillatory (WENO)
interpolation [6, 11]; the laminar velocity is discretized by finite difference method,
and the derivatives are evaluated by Hamilton--Jacobi WENO scheme [14, 18, 20].

The rest of paper is organized as follows. In section 2, we find the ballistic
orbits of ABC and Kolmogorov flows numerically and verify that these orbits are
periodic (modulo 2\pi ) in x-direction. In section 3, we present the control formulation
of G-equation and obtain the estimates of turbulent flame speeds. In section 4, we
provide the SL discretization of G-equation and the numerical results of turbulent
flame speeds. In section 5, we conclude the paper with comments and future works.

2. Ballistic orbits of ABC and Kolmogorov flows. We restate the periodic
orbit of ABC flow in [28] with more numerical description and the symmetry argu-
ment; then we present the periodic orbit of Kolmogorov flow in the same fashion.
Recall \odot denotes the Hadamard (elementwise) product of vectors.

Proposition 2.1. There exists an orbit X1 of the ABC flow such that

X1(0) = \langle 0, - a1, \pi /2\rangle , X1(\tau 1/4) = \langle \pi /2, 0, \pi /2 + b1\rangle ,

where a1 \approx 0.341, b1 \approx 0.341 and \tau 1 \approx 3.235. Then X1 is a ballistic orbit of the ABC
flow in x-direction with period \tau 1.

Also the orbit X - 1 with X - 1(0) = \langle 0, \pi + a1, - \pi /2\rangle is a ballistic orbit periodic in
negative x-direction.

Proof. (a) See left of Figure 3. If X1(0) = \langle 0, - 0.342, \pi /2\rangle , then X1(t) passes
through the face \{ x = \pi /2, y < 0, z \in [\pi /2, \pi ]\} ; if X1(0) = \langle 0, - 0.341, \pi /2\rangle , then
X1(t) passes through the face \{ x = \pi /2, y > 0, z \in [\pi /2, \pi ]\} . Therefore there exists
a1 \in (0.341, 0.342) such that if X1(0) = \langle 0, - a1, \pi /2\rangle , then X1(t) passes through the
edge \{ x = \pi /2, y = 0, z \in [\pi /2, \pi ]\} between the two faces.

(b) Observe the symmetry of the flow about axis \{ x = \pi /2, y = 0, z \in \BbbR \} :

V1(\pi  - x, - y, z) = \langle 1, 1, - 1\rangle \odot V1(x, y, z).

Since X1(\tau 1/4) lies on the axis, we have the symmetry of the orbit

X1(\tau 1/2) - X1(\tau 1/4) = \langle 1, 1, - 1\rangle \odot (X1(\tau 1/4) - X1(0)),

and therefore X1(\tau 1/2) = \langle \pi , a1, \pi /2\rangle .
Observe the symmetry of the flow about axis \{ x = \pi , y \in \BbbR , z = \pi /2\} :

V1(2\pi  - x, y, \pi  - z) = \langle 1, - 1, 1\rangle \odot V1(x, y, z).

Since X1(\tau 1/2) lies on the axis, we have the symmetry of the orbit

X1(\tau 1) - X1(\tau 1/2) = \langle 1, - 1, 1\rangle \odot (X1(\tau 1/2) - X1(0)),

and therefore X1(\tau 1) = \langle 2\pi , - a1, \pi /2\rangle = X1(0) + 2\pi \cdot e1.
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FRONT SPEEDS IN ABC AND KOLMOGOROV FLOWS 111

Fig. 3. Numerical validation of ballistic orbits periodic (modulo 2\pi ) in x-direction. Left: ABC
flow. Right: Kolmogorov flow.

(c) Observe the symmetry of the flow:

V1( - x, \pi  - y, - \pi + z) = \langle  - 1, - 1, 1\rangle \odot V1(x, y, z).

Since X1(0) and X - 1(0) satisfy the symmetry condition, we have the symmetry of
the orbit

X - 1(\tau 1) - X - 1(0) = \langle  - 1, - 1, 1\rangle \odot (X1(\tau 1) - X1(0)),

and therefore X - 1(\tau 1) = \langle  - 2\pi , \pi + a1, - \pi /2\rangle = X - 1(0) - 2\pi \cdot e1.
Remark 2.2. The symmetry condition

V1(\pi /2 - x, \pi /2 - z, \pi /2 - y) = \sigma \circ V1(x, y, z)

with \sigma : (x, y, z) \mapsto \rightarrow (x, z, y) further implies a1 = b1.

Proposition 2.3. There exists an orbit X2 of the Kolmogorov flow such that

X2(0) = \langle 0, a2, \pi /2\rangle , X2(\tau 2/4) = \langle \pi /2, \pi , \pi + b2\rangle ,

where a2 \approx 0.029, b2 \approx 0.602, and \tau 2 \approx 15.156. Then X2 is a ballistic orbit of the
Kolmogorov flow in x-direction with period \tau 2.

Also the orbit X - 2 with X - 2(0) = \langle 0, - a2, - \pi /2\rangle is a ballistic orbit periodic in
negative x-direction.

Proof. (a) See right of Figure 3. If X2(0) = \langle 0, 0.029, \pi /2\rangle , then X2(t) passes
through the face \{ x > \pi /2, y = \pi , z \in [\pi , 3\pi /2]\} ; if X2(0) = \langle 0, 0.03, \pi /2\rangle , then
X2(t) passes through the face \{ x < \pi /2, y = \pi , z \in [\pi , 3\pi /2]\} . Therefore there exists
a2 \in (0.029, 0.03) such that if X2(0) = \langle 0, a2, \pi /2\rangle , then X2(t) passes through the
edge \{ x = \pi /2, y = \pi , z \in [\pi , 3\pi /2]\} between the two faces.

(b) Observe the symmetry of the flow about axis \{ x = \pi /2, y = \pi , z \in \BbbR \} :

V2(\pi  - x, 2\pi  - y, z) = \langle 1, 1, - 1\rangle \odot V2(x, y, z).
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112 CHOU KAO, YU-YU LIU, AND JACK XIN

Since X2(\tau 2/4) lies on the axis, we have the symmetry of the orbit

X2(\tau 2) - X2(\tau 2/4) = \langle 1, 1, - 1\rangle \odot (X2(\tau 2/4) - X2(0)),

and therefore X2(\tau 2/2) = \langle \pi , 2\pi  - a2, \pi /2\rangle .
Observe the symmetry of the flow about axis \{ x = \pi , y \in \BbbR , z = \pi /2\} :

V2(2\pi  - x, y, \pi  - z) = \langle 1, - 1, 1\rangle \odot V2(x, y, z).

Since X2(\tau 2/2) lies on the axis, we have the symmetry of the orbit

X2(\tau 2) - X2(\tau 2/2) = \langle 1, - 1, 1\rangle \odot (X2(\tau 2/2) - X2(0)),

and therefore X2(\tau 2) = \langle 2\pi , a2, \pi /2\rangle = X2(0) + 2\pi \cdot e1.
(c) Observe the symmetry of the flow about point \langle 0, 0, 0\rangle :

V2( - x, - y, - z) = \langle  - 1, - 1, - 1\rangle \odot V2(x, y, z).

Since X2(0) and X - 2(0) are symmetric about the point, we have the symmetry of
the orbit

X - 2(\tau 2) - X - 2(0) = \langle  - 1, - 1, - 1\rangle \odot (X2(\tau 2) - X2(0)),

and therefore X - 2(\tau 2) = \langle  - 2\pi , - a2, - \pi /2\rangle = X - 2(0) - 2\pi \cdot e1.
Remark 2.4. The symmetry of the flow

V2(x, \pi + y, z) = \langle 1, 1, - 1\rangle \odot V2(x, y, z)

implies X2(0) = \langle 0, \pi + a2, \pi /2\rangle gives another ballistic orbit periodic in x-direction,
and X - 2(0) = \langle 0, - \pi  - a2, - \pi /2\rangle gives another ballistic orbit periodic in negative
x-direction.

3. Estimates of turbulent flame speeds. The solution of G-equation (1.4) is
given by the control representation formula

G(y, t) = inf
\bfa (\cdot )

G(x\bfy ,\bfa (t), 0),

where the infimum is over all admissible controls a : (0, t) \rightarrow \BbbR 3 and the corresponding
trajectories x = x\bfy ,\bfa : (0, t) \rightarrow \BbbR 3 satisfying

(3.1) \.x(\cdot ) = V(x(\cdot )) + a(\cdot ), | a(\cdot )| \leq 1, x(0) = y.

Given the initial condition (1.5), the turbulent flame speed (1.6) is equivalent to

(3.2) sT = lim
t\rightarrow \infty 

sup
\bfa (\cdot )

x\bfy ,\bfa (t) \cdot ( - e1)

t
.

As a dynamical programming problem, finding the supremum among all admissible
controls in large time will suffer from the ``curse of dimensionality."" By finding an
admissible trajectory that traces in negative x-direction as far as possible, its propa-
gation speed gives a lower estimate of turbulent flame speed.

Theorem 3.1. Consider the G-equation ( 1.4) where the flow velocity is the ABC
flow or Kolmogorov flow and the flow intensity is A > 0 ( 1.7). Let sT be the turbulent
flame speed in x-direction ( 3.2); then

(3.3)
2\pi 

\tau i
\cdot A+

2\pi 

\tau i \cdot \| Vi\| \infty 
\leq sT (A) \leq \| Vi \cdot e1\| \infty \cdot A+ 1,

where \tau i is the period of the ballistic orbit of the flow Vi, i = 1, 2.
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FRONT SPEEDS IN ABC AND KOLMOGOROV FLOWS 113

Proof. For any admissible trajectories, the x-component of (3.1) implies

\.x \cdot ( - e1) \leq \| V \cdot e1\| \infty + 1 = \| Vi \cdot e1\| \infty \cdot A+ 1.

Therefore the upper bound follows immediately. Recall X - i denotes the ballistic
orbit of flow Vi periodic in negative x-direction. In (3.1), denote x - i the admissible
trajectory by choosing the initial position same to the ballistic orbit and the control
to be the unit tangent of flow V = A \cdot Vi at present position:

x - i(0) = X - i(0), a - i(\cdot ) =
V(x - i(\cdot ))
| V(x - i(\cdot ))| 

=
Vi(x - i(\cdot ))
| Vi(x - i(\cdot ))| 

.

Then x - i is identical to X - i but traced with different speed:

\.x - i = A \cdot Vi(x - i) + a - i =
A \cdot | Vi(x - i)| + 1

| Vi(x - i)| 
Vi(x - i) =

A \cdot | Vi(X - i)| + 1

| Vi(X - i)| 
\.X - i.

When a particle traces along the ballistic orbit X - i, the period is \tau i and the average
speed is 2\pi /\tau i. For ballistic orbit x - i, the period becomes

\tau \prime i =

\int \tau i

0

| Vi(X - i(t)| 
A \cdot | Vi(X - i(t)| + 1

dt \leq \| Vi\| \infty 
A \cdot \| Vi\| \infty + 1

\tau i,

and the average speed

2\pi /\tau \prime i \geq (2\pi /\tau i) \cdot (A+ 1/\| Vi\| \infty )

gives a lower bound of turbulent flame speed.

Remark 3.2. (a) For ABC flow, \| V1 \cdot e1\| \infty = 2, \| V1\| \infty =
\surd 
6, and \tau 1 \approx 3.235.

Therefore the estimate (3.3) reads

1.942 \cdot A+ 0.793 \leq sT (A) \leq 2 \cdot A+ 1.

(b) For Kolmogorov flow, \| V2 \cdot e1\| \infty = 1, \| V2\| \infty =
\surd 
3, and \tau 2 \approx 15.156. Therefore

the estimate (3.3) reads

0.414 \cdot A+ 0.239 \leq sT (A) \leq A+ 1.

4. SL scheme for G-equation. Let G-equation (1.4) be written in the operator
form

\partial G

\partial t
+ \scrL xG+ \scrL yG+ \scrL zG+ \scrL eG = 0,

where \scrL x,\scrL y,\scrL z are the convection terms in x, y, z-direction respectively and \scrL e is
the laminar term; then the solution is presented in the semigroup form

G(\cdot , t) = e(\scrL x+\scrL y+\scrL z+\scrL e)tG(\cdot , 0).

Due to Strang splitting, its temporal approximation is given by

G(\cdot , t+\Delta t) \approx e\scrL x
\Delta t
2 e\scrL y

\Delta t
2 e\scrL z

\Delta t
2 e\scrL e\Delta te\scrL z

\Delta t
2 e\scrL y

\Delta t
2 e\scrL x

\Delta t
2 G(\cdot , t).

Therefore it suffices to consider the convection equation in x-direction (y- and z-
directions are similar)

(4.1)
\partial G

\partial t
+ c(x)

\partial G

\partial x
= 0
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114 CHOU KAO, YU-YU LIU, AND JACK XIN

and the eikonal equation

(4.2)
\partial G

\partial t
+ | \nabla G| = 0.

For scalar convection equation (4.1), its first-order SL discretization is given by

Gn+1
i,j,k = \scrI [Gn](xi  - ci,j,k\Delta t, yj , zk),

where \scrI [\cdot ] denotes the interpolation of the function. For example, if

xi  - ci,j,k\Delta t \in [xi\prime , xi\prime +1], i
\prime \in \BbbZ ,

then the function value between the grid points is evaluated by

\scrI [Gn](xi\prime + \lambda \Delta x, yj , zk) \approx (1 - \lambda )Gn
i\prime ,j,k + \lambda Gn

i\prime +1,j,k, \lambda \in [0, 1].

To improve the numerical results, the characteristic curves are obtained by high ac-
curacy solvers, and the function values are evaluated by WENO interpolation [6, 11].

For the eikonal equation (4.2), its first-order finite difference forward Euler dis-
cretization is given by

Gn+1
i,j,k  - Gn

i,j,k

\Delta t
+
\sqrt{} 
(DxGn

i,j,k)
2 + (DyGn

i,j,k)
2 + (DzGn

i,j,k)
2 = 0,

where the spatial derivatives are evaluated by the Godunov flux of one-side derivatives:

(DxG
n
i,j,k)

2 = max

\biggl( 
max

\Bigl( 
Gn

i,j,k - Gn
i - 1,j,k

\Delta x , 0
\Bigr) 2

,min
\Bigl( 

Gn
i+1,j,k - Gn

i,j,k

\Delta x , 0
\Bigr) 2

\biggr) 
,

(DyG
n
i,j,k)

2 = max

\biggl( 
max

\Bigl( 
Gn

i,j,k - Gn
i,j - 1,k

\Delta y , 0
\Bigr) 2

,min
\Bigl( 

Gn
i,j+1,k - Gn

i,j,k

\Delta y , 0
\Bigr) 2

\biggr) 
,

(DzG
n
i,j,k)

2 = max

\biggl( 
max

\Bigl( 
Gn

i,j,k - Gn
i,j,k - 1

\Delta z , 0
\Bigr) 2

,min
\Bigl( 

Gn
i,j,k+1 - Gn

i,j,k

\Delta z , 0
\Bigr) 2

\biggr) 
.

To achieve higher order accuracy, the one-side spatial derivatives are evaluated by
Hamilton--Jacobi WENO scheme, and the time steps are iterated by TVD (total
variation diminishing) Runge--Kutta scheme [14, 18, 20].

We would like to solve G-equation (1.4) with planar initial condition (1.5) in
whole space. If we write G(x, t) = x \cdot e1 + U(x, t), thanks to V(x) being periodic on
(2\pi \BbbT )3, then U(x, t) satisfies the initial value problem on periodic domain:

(4.3)

\left\{   
\partial U

\partial t
+V(x) \cdot (\nabla U + e1) + | \nabla U + e1| = 0,

U(x, 0) = 0, x \in (2\pi \BbbT )3, t > 0.

Numerical computation of (4.3) is performed on a cubic domain with mesh size
160\times 160\times 160. Note that the SL scheme is unconditionally stable; therefore the con-
straint of time-step size comes from the eikonal equation (4.2) only:

(4.4)
\surd 
3 \cdot \Delta t/\Delta x \leq 1.

For the convection equation with variable velocity (4.1), the local truncation error
increases as the flow intensity increases [9]. Therefore we shall reduce \Delta t with respect
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Fig. 4. Level surfaces of G-equation at t = 10. Left: ABC flow with A = 4. Right: Kolmogorov
flow with A = 16.

to increase of A. For a balance between computational efficiency and accuracy, we
choose the time-step size as the intermediate of (1.8) and (4.4) by

\surd 
A+ 3 \cdot \Delta t/\Delta x \leq 1.

See Figure 4 for the level surfaces propagating in ABC flow (left) and Kolmogorov
flow (right). Notice that while the flame front moves forward along the ballistic orbits
of the flow in x-direction, there are tails close behind due to the flame front being
dragged backward by the ballistic orbits in negative x-direction. The level surfaces
contain sophisticated structures as a result from interaction with the flow.

See Figure 5 for the plot of the turbulent flame speed sT with respect to the flow
intensity A using (1.6). Observe that the computed sT (A) for ABC flow indeed lies
between the narrow gap of the upper and lower bounds. This indicates good accuracy
of the proposed numerical scheme and that the numerical diffusion is well reduced
by higher order WENO schemes. For Kolmogorov flow, we see that the sT (A) curve
almost attaches to the upper bound when A is small. As the flame front is weakly
corrugated in weak convection, front speed enhancement is driven by the shear speed
V2 \cdot e1 = sin z = 1 along plane z = \pi /2. When A is large, the sT (A) curve tends to
be parallel to the lower bound. As the flame front is severely corrugated in strong
convection, front speed enhancement is driven by the ballistic orbitX2 of the flow with
asymptotic speed 2\pi /\tau 2 \approx 0.414 which appears in the lower bound of Theorem 3.1.

5. Concluding remarks and future works. While periodic orbits exist for
both ABC flow and Kolmogorov flow, they are quite different qualitatively. The ABC
flow is known for existence of ``vortex tubes"" as bundled trajectories in axial directions
[8]. In fact the positive and negative regions in Figure 1 refer to the cross section of the
vortex tubes in \pm x-direction respectively. For Kolmogorov flow, however, there are
two vortex tubes in each direction. Also the vortex tubes of Kolmogorov flow are much
``thinner"" and more ``twisted"" than the vortex tubes of ABC flow. This structural
difference contributes to the maximal (submaximal) growth of eddy diffusivity in
the ABC (Kolmogorov) flow as the molecular diffusivity tends to zero [24]. The
streamlines are chaotic outside the vortex tubes, suggesting that the Kolmogorov
flow is more disordered.
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Fig. 5. Plots of turbulent flame speeds sT (A) evaluated by ( 1.6). The dash lines refer to the
upper and lower bounds in ( 3.3). Top: ABC flow. Bottom: Kolmogorov flow.

Much more remains to be investigated in these two prototypical chaotic flows. For
G-equation, we plan to develop a semi-Lagrangian scheme to compute the laminar
term yet still efficient in computation and accessible with WENO method. Also we
shall develope an SL computation of other G-equation models [19, 15] where flame
stretching or mean curvature of the level surface appears as a nonconstant laminar
speed.
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