ScanSSD-XYc: Faster Detection for Math
Formulas

Abhisek Dey[OODD—OODI—SSSB—SZTQ] and Richard Zanibbi E[OODO—OODI—SQZI—Q?SO]

Rochester Institute of Technology, Rochester NY 14623, USA
{ad4529,rxzves}@rit.edu

Abstract. Detecting formulas offset from text and embedded within
textlines is a key step for OCR in scientific documents. The Scanning
Single Shot Detector (ScanSSD) detects formulas using visual features,
applying a convolutional neural network within windows in a large doc-
ument image (600 dpi). Detections are pooled to produce page-level
bounding boxes. The system works well, but is rather slow. In this work
we accelerate ScanSSD in multiple ways: (1) input and output routines
have been replaced by matrix operations, (2) the detection window stride
(offset) can now be adjusted separately for training and testing, with
fewer windows used in testing, and (3) merging with non-maximal sup-
pression (NMS) in windows and pages has been replaced by merging
overlapping detections using XY-cutting at the page level. Our fastest
model processes 3 pages per second on a Linux system with a GTX
1080Ti GPU, Intel i7-7700K CPU, and 32 GB of RAM.

Keywords: math formula detection - Single-Shot Detector (SSD)

1 Introduction

ScanSSD[4] by Mali et. al detects math formula regions as bounding boxes
around formulas embedded in text or offset using a Convolutional Neural Net-
work (CNN). It was based on the original SSD [2] which is a single pass network
with a VGG-16 [8] backbone to locate and classify regions. Unlike SSD which was
made to detect objects in the wild, a number of modifications allowed ScanSSD
to obtain strong performance for math formula detection.

Figure 1 shows an overview of the detection process in ScanSSD. To miti-
gate the issue of low recall on large PDF images and non-square aspect ratios,
ScanSSD uses a sliding window detection strategy. A 1200x1200 window was
used to stride across the PDF images generated at 600dpi to generate sub-images
resized to 512x512 as the input to the network. A stride of 10% or 120 pixels
across and down was used as the striding factor. Detections from these windows
are passed through a second stage, comprised of a page-level pixel-based vot-
ing algorithm to determine the page-level predictions. Pixels vote based on the
number of detection boxes they intersect, after which pixel scores are binarized,
with formula detections defined by connected components in the binarized vot-
ing grid. Initial detections are then cropped around connected components in
the original page image that they contain or intersect.

2 Dey et al.

Shiding
Window

Fig. 1. Sliding window-based formula detection in ScanSSD.

ScanSSD obtains state-of-the-art results with a 79.6 F-score (IoU 0.5) on
the TFD-IDCDAR2019v2 dataset, but is quite slow. In this work we have made
changes to ScanSSD that allow us to retain comparable accuracy, while decreas-
ing execution times by more than 300 times. Details are provided below.

2 ScanSSD-XYc

ScanSSD-XYc streamlines detection and eliminates redundant operations in
ScanSSD, leading to decreases in execution and training times. Substantial
changes were made across the pre-processing, windowing and pooling stages,
as discussed below.

Pre-Processing. A major bottleneck in ScanSSD was the pre-processing stage,
where all windows were generated as separate files. Furthermore, inefficient load-
ing and parallelization resulted in the GPU waiting for batches. To address this,
the I/O framework was completely revised. Windows for a page are now gen-
erated using a single tensor operation applied to the page image. Ground-truth
regions that wholly or partially fall within windows are also identified by another
tensor operation. This decreased execution times by 28% over ScanSSD, before
incorporating the additional modifications discussed below.

In the original ScanSSD windowing algorithm, many windows used in training
contain no ground-truth regions. SSD detects objects at multiple scales, using
a grid of initial detection regions at each scale. This leads to thousands of SSD
candidate predictions in a single window. Even where target formulas are present
in a window, the vast majority of candidate detections are true negatives. To
reduce this imbalance for negative examples, in addition to hard negative mining
windows without ground-truth regions are ignored in training. Page images are
also padded at their edges to be an even multiple of 1200 pixels high and wide,
matching the area covered by the fixed-size sliding window.

Windowing. ScanSSD uses a fixed 10% stride for training and inference; we
instead use a smaller 5% stride in the training stage to see more examples

ScanSSD-XYec 3

Fig. 2. Left: blue lines show regions for 100% strides of a 1200 x 1200 window, with
each sub-region seen once by the network. Right: red lines illustrate regions at left
split into four by 50% strides of the same 1200 x 1200 window (shown in blue). Except
for cells around the border, each sub-region indicated by the red lines is seen four times.

of the same target formula alongside other page contents, and then run test-
ing/inference using large strides (e.g., 75%) for faster detection. A stride of 60
pixels (5%) was used for training, and differing strides from 10% to 100% were
used for execution. As shown in Figure 2, smaller strides enable the network
to see sub-regions multiple times, and improve network convergence. The page
edge regions are seen only once, but predominantly consist of white margins.

XY-Cutting to Merge Window-Level Predictions. ScanSSD filters pre-
dicted regions twice: once at the window-level and again at the page level.
Window-level predictions undergo non-maximal suppression (NMS), and are
then stitched together at the page level. Window-level regions vote pixel-wise,
producing a vote map over the image which is binarized. Remaining connected
components are treated as the final detections. A post-processing step then fits
detections tightly around the connected components in the original page image
that they intersect. This is an expensive process, illustrated in Figure 1.

As shown in Figure 3, ScanSSD-XYc simply filters window-level detections
with less than 50% confidence and then pools detections at page level (Figure 3
left). XY-cutting [1, 5] segments documents into axis-aligned rectangular regions
using pixel projections. We use XY-cutting as a partitioning algorithm over
detected formula boxes, recursively segmenting the page until regions contain
only one set of overlapping boxes. Finally, overlapping boxes are merged to
predict the final formula regions (Figure 3 right). Although the worst case time
complexity (all overlapping boxes) with n boxes is O(n?) for both NMS and

4 Dey et al.

S Merge Connected

A Lids |19} NLI} Boxes A reluod madal for inmcct popalations was dscusned by Usids in (18] See aba Oster @ of [14, 19],

—_—

Thess madels are hoghty simpbied vel even Thi ammareeth samel mvtion. (7] sar bave
- mic bebavin. See Figwe | e ippunch hee cquiioms woh b
o < cililiorn of corash ot b

sulicicmty wopPutic
& Lorces (124 ok i priat o view in stadying matnicas bekavist
coain campicaid it faa ¢

Fig. 3. Left: XY-cutting of Pooled Window-Level Predictions. Orange horizontal lines
show splits along the y-axis, and blue vertical lines show splits in the x-direction.
Cutting is performed only on detection boxes, and stops when all detection boxes in a
region overlap. Right: Final page-level predictions after merging overlapping boxes.

XY-Cuts [7], for XY-cut the worst case is rare. XY cuts recursively groups boxes
based on spatial positions, and successive splits may be checked independently
of one other. In ScanSSD-XY¢, cropping is used only for computing evaluation
metrics, as blank space at detection borders may be ignored in our applications,
but unfairly penalizes detections when using IoU detection metrics.

3 Results

We present preliminary results for ScanSSD-XYc on the TFD-ICDAR2019v2 [3]
dataset, which fixes some missing annotations in TFD-ICDAR2019. There are
446 training page images, and 236 testing images taken from 48 PDFs for math
papers. Page images are document scans (600 dpi). Experiments were run using
a Core i7-77T00K CPU with a GTX 1080Ti GPU and 32 GB of RAM.

Table 1 compares ScanSSD-XYc with systems that participated in the IC-
DAR 2019 CROHME competition [3] and ScanSSD. ScanSSD-XYc performs
comparably to the original ScanSSD at 72.4 F-score (IoU of 0.5). RIT 1 was a
default implementation of YoloV3, and RIT 2 was an earlier version of SSD [6].
To diagnose the lower recall scores observed for ScanSSD-XYc, we studied the
effect of stride size at test-time on accuracy and speed. Table 2 breaks down
results by stride size: a smaller stride produces more windows for a page image.

While 100% strides had the smallest number of windows and fastest execution
time (3.1 pages/second), a 75% stride gave us the highest accuracy, while still

ScanSSD-XYec 5

Table 1. Comparison of Preliminary Results from ScanSSD-XY¢ (using 75% stride)

Model N IoU 0.5 N IoU 0.75
Precision Recall F-score|Precision Recall F-score
TFD-ICDAR2019 (Original)
ScanSSD 85.1 75.9 80.2 77.4 69.0 73.0
RIT 2 83.1 67.0 T5.4 75.3 62.5 68.3
RIT 1 74.4 68.5 T1.3 63.2 58.2 60.6
Mitchiking 36.9 27.0 31.2 19.1 13.9 16.1
TFD-ICDAR2019v2

ScanSSD 84.8 749 T79.6 78.1 69.0 73.3
ScanSSD-XYc| 84.8 63.1 724 7.2 57.4 65.9

Table 2. ScanSSD-XYec¢ Results on TFD-ICDAR2019v2 for Different Strides

IoU 0.5 IoU 0.75

Stride (%) Precision Recall F-score|Precision Recall F-score Secs/Page
10 41.6 63.1 50.2 36.4 553 43.9 28.4

25 79.1 626 69.9 71.5 56.6 63.1 4.8

50 83.0 63.4 71.9 75.3 57.6 65.2 1.3

75 84.8 63.1 724 77.2 574 65.9 0.6

100 80.7 614 69.7 71.0 540 61.3 0.3

processing 1.56 pages/second. ScanSSD-XYc using the smallest stride (10%) is
over three times (300%) faster than ScanSSD using the same stride, which takes
90 seconds/page.

As seen in Table2, the 75% stride produces the best balance between speed
and accuracy, roughly matching the precision of the original ScanSSD, with some
reduction in recall (10.8% for IoU of 0.5, 11.6% for IoU of 0.75). Opportunities to
increase recall are described in the next Section. In Table 2 we see little change
in recall for different strides, while precision varies. Furthermore, the presence of
figures in the evaluation set impacted precision, as these were detected as math
(i.e., false positives). The training set contains 9 of 36 documents with at least
one figure, while the test set contains 4 of 10 documents with at least one figure.
Non-text regions such as figures and tables are often detected wholly or in part
by ScanSSD-XYc (see Figure 3), and we plan to address this in future work.

We expected the smallest stride to perform best, but smaller strides produce
more partial predictions, which are fit less tightly around targets at page level,
and result in more false positives.

6 Dey et al.

4 Conclusion

We have presented an accelerated version of the Scanning Single Shot Detector
in this paper. Combining window and page level operations, and eliminating
NMS and post-processing led to much shorter execution times with some loss in
recall. The entire system was refactored to facilitate faster, scalable tensorized
I/0 operations. Our long-term goal is to improve the usability of SSD-based de-
tection for use in formula indexing for retrieval applications. We hope to improve
detection effectiveness by exploring causes of low recall for small formulas, and
issues with over-merging across and between text lines.

We think that setting a relative threshold in the page level XY-cuts based on
the sizes of the boxes and detection confidences can mitigate the issue of low re-
call due to over-merging. We will also attempt to use additional training (beyond
two epochs) and different weight initializations and other tuning parameters to
better optimize the detector parameters.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments, along with Alex Keller, Ayush Shah, and Jian Wu for assistance with the
design of ScanSSD-XYec. This material is based upon work supported by grants
from the Alfred P. Sloan Foundation (G-2017-9827) and the National Science
Foundation (IIS-1717997 (MathSeer) and 2019897 (MMLI)).

References

1. Ha, J., Haralick, R., Phillips, I.: Recursive x-y cut using bounding boxes
of connected components. In: Proceedings of 3rd International Conference
on Document Analysis and Recognition. vol. 2, pp. 952-955 vol.2 (1995).
https://doi.org/10.1109/ICDAR.1995.602059

2. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) Computer Vision —- ECCV 2016. pp. 21-37. Springer International Publishing,
Cham (2016)

3. Mahdavi, M., Zanibbi, R., Mouchere, H., Viard-Gaudin, C., Garain, U.: ICDAR
2019 CROHME + TFD: Competition on recognition of handwritten mathemat-
ical expressions and typeset formula detection. Proceedings of the International
Conference on Document Analysis and Recognition, ICDAR pp. 1533-1538 (2019).
https://doi.org/10.1109 /ICDAR.2019.00247

4. Mali, P., Kukkadapu, P., Mahdavi, M., Zanibbi, R.: SeanSSD: Scanning single shot
detector for mathematical formulas in PDF document images. arXiv (2020)

5. Nagy, G., Seth, S.: Hierarchical Representation of Optically Scanned Documents.
Proceedings - International Conference on Pattern Recognition pp. 347-349 (1984)

6. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement (2018),
http://arxiv.org/abs/1804.02767

7. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Series on
Computer Graphics and Geometric Modeling, Morgan Kaufmann, San Francisco,
CA, USA (2005), (XY-cut described in Section 2.1.2)

8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: International Conference on Learning Representations (2015)

