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ABSTRACT
In Mathematical Information Retrieval (MIR), formulae can be used

in a query to match other similar formulae in documents. However,

due to the structural complexity of formulae, specialized processing

is needed for formula matching. Formulae may be represented by

their appearance in Symbol Layout Trees (SLTs) or by their syntax

in Operator Trees (OPTs). Previous approaches for formula retrieval

used one or both of these representations and used unification to

improve search results for inexact matches (e.g., allowing different

variable names to match). On these representations, models for

matching full expressions (trees), subexpressions, and paths have

been used. Recently embedding models were used to represent

formulae as vectors. In this paper, the effectiveness of retrieval

models and formula representations are studied to identify their

relative strengths and weaknesses. Then, a learning to rank model

is proposed, using SVM-rank over similarity scores from different

formula retrieval models as features. Experiments on the ARQMath

formula retrieval task results show that the proposed learning to

rank model is effective, producing new state-of-the-art results.
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1 INTRODUCTION
In Mathematical Information Retrieval (MIR), user information

needs concern mathematical concepts. A common way to express

mathematical information needs is mathematical formulae [17].

Some existing search engines such as SearchOnMath [21] and Math-

Deck [18] provide facilities for users to insert a formula query.

Most commonly formulae are represented using LATEX, but some ac-

cept formula images and handwriting as input (e.g., [18]). Formula
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search must accommodate queries containing single symbols up to

complex structures that include operators, numbers, and variables

organized on multiple writing lines (e.g., for superscripts) and in

grid structures (e.g., matrices). As a result, traditional text retrieval

systems are ineffective for formula search due to the structural com-

plexity of formulae [31]. Instead of using LATEX strings to represent

formulae, current systems use the underlying trees represented by

LATEX. Symbol layout trees (SLTs) and operator trees (OPTs) are com-

mon tree-based representations, where the first captures formulae

appearance and the second captures formula syntax. Figure 1 shows

these representations for the Pythagorean theorem, 𝑎2 + 𝑏2 = 𝑐2.

Formula retrieval has previously been studied in a number of

shared tasks, including tasks at NTCIR 10, 11, and 12 [2, 3, 30], and

ARQMath at CLEF 2020 [33]. In both the NTCIR-12 and ARQMath

tasks, the most effective systems used both SLT and OPT formula

tree representations, and supported inexact matching through unifi-

cation of variables, identifiers, numbers, and operators. Also, previ-

ous works have shown that combining representations and models

can improve the retrieval results. The best performing system in

the ARQMath formula retrieval task (Tangent-S [5]) matches paths

in both representations to obtain initial retrieval results. Another

participating system at ARQMath (Tangent-CFTED) [15] achieved

similar results by first selecting candidates with a formula embed-

ding model, and then re-ranking candidates by tree edit distance

to obtain a matching score for the full formula tree. The results

from participating system [20], combines TF-IDFwith unsupervised

word embeddings to produce representations for math formulae

which provided better results than each system in isolation.

Three main approaches have been applied for formula retrieval

in previous models that yielded stronger retrieval results: sub-tree

matching [5, 10, 34], full-tree matching [9, 15] and embedding mod-

els [6, 11, 16, 25]. Models can make use of both representations

[5, 10, 15], or use only SLTs [9] or OPTs [34]. Despite the existence

of these models, how different models and representations should

be combined has not been studied before. In this paper, we aim to

answer the following research questions:

• (RQ1): What is the effectiveness of each type of retrieval

model (sub-tree, full-tree and embedding)?

• (RQ2): Which formula representation(s) work best with each

type of retrieval model?

• (RQ3): Can evidence from multiple retrieval models and/or

formula representations be combined to further enhance

retrieval results?

To answer our research questions, we used these systems for

each matching model: (1) sub-tree matching: Tangent-S scores

for initial ranking via tuple matching, maximum sub-tree similarity

(a measure of structural similarity), and matching symbols by both

exact values and types, (2) full-tree matching: unweighted, and
weighted tree edit distances between formula trees, (3) embedding

https://doi.org/10.1145/3404835.3462956
https://doi.org/10.1145/3404835.3462956
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models: Tangent-CFT formula embedding model. After analyzing

the behavior of each retrieval model and formula tree representa-

tion, we introduce a Learning to Rank (LtR) model for mathematical

formulae, using SVM-rank [8]. We use SVM-rank because of its

speed, the effectiveness of SVMs on small samples (ARQMath has

only 29 training queries), and the stability of SVM training, making

replication easier.

In our evaluation, we first rank all formulae in the ARQMath

collection to observe how our LtR model behaves, and obtain new

state-of-the-art results for the task. We then apply LtR to the sub-

mitted runs from the ARQMath formula retrieval task and obtain

higher effectiveness for all runs. All data and source code used for

our paper is publicly available.
1

In the next section, we review related work on formula retrieval;

we then present the retrieval models and formula representations

used in our LtR models in Section 3. We then introduce our ranking

models in Section 4, followed by our experimental results in Section

5. Finally, we conclude and identify future directions in Section 6.

2 RELATEDWORK
In this section, we first review how mathematical formulae are

represented, and discuss existing collections for math information

retrieval. Finally, we review existing formula retrieval models.

2.1 Formula Representations
Mathematical formulae are represented for retrieval by their mathe-

matical (operational) syntax in operator tree (OPT) encodings such

as Content MathML, or by their appearance in symbol layout tree

(SLT) encodings such as LATEX [31]. Figure 1 shows the OPT and

SLT representation for the Pythagorean formula: 𝑎2 + 𝑏2 = 𝑐2.

In this work, we use the OPT and SLT representations from the

Tangent family of retrieval models [5, 32]. Nodes in OPTs and SLTs

represent symbols and explicit aggregates (e.g., function arguments)

in the form: (Type!value). More precisely, nodes can be numbers

(N!n), identifiers such as variable names (V!v), text fragments, such

as ‘lim’ and ‘such that’ (T!t), fractions (F!), radicals (R!), explicitly
specified white-space (W!) and finally, matrices, tabular structures,

and parenthesized expressions (M!f rxc); with f showing fence char-
acters such as parentheses, r the number of rows, and c the number

of columns. In the SLTs, operators do not have a type attribute,

but for OPTs commutative and non-commutative operators have

type (U!) and (O!), respectively. Commutative operators ignore the

order of their arguments (e.g., equality) while the position/order of

non-commutative operators is important (e.g., subtraction).

Edge labels in OPTs indicate argument position. For commutative

operators edges are unlabelled. For non-commutative operators,

edge labels are indexed from 0. In SLTs, edge labels give the spatial

arrangement of symbols on writing lines. There are nine types of

edge labels representing the spatial relationships between symbols

(nodes): next (‘n’) indicates that a symbol appears to the right on

the same writing line; within (‘w’) references the argument in

a radical or the first element appearing in row-major order in a

matrix/grid of type M!, element (‘e’) references the next element

appearing in row-major order inside a structure represented by M!,

above (‘a’) indicates a new writing line in the superscript position,

1
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Figure 1: 𝑎2 + 𝑏2 = 𝑐2 represented as an (a) Operator Tree
(OPT) and a (b) Symbol Layout Tree (SLT). OPTs represent
operations, with edge labels ordering arguments: arguments
for commutative operators all have edges labeled ‘0’ (unla-
beled in (a)). SLTs represent appearance by the placement of
symbols on writing lines, with edge labels indicating spatial
relationships (e.g., superscript (𝑎), next on writing line (𝑛)).

below (‘b’) references a new writing line in the subscript position,

pre-above (‘SUP’) indicates a prescripted superscript, pre-below
(‘SUB’) indicates a prescripted subscript, Under (‘U’) indicates a
writing line appearing below a node (e.g., a fraction’s denominator),

and finally Over indicates a writing line above an node (e.g., a

fraction’s numerator). For instance, edge label a in Figure 1 shows

‘2’ is superscripted above ‘b,’ and edge label n shows that ‘=’ is

located next to ‘b’.

2.2 Formula Retrieval Test Collections
Formula retrieval involves retrieving a set of relevant formulae for

a given formula query. The task was first visited at NTCIR 10-12

[2, 3, 30], with a variety of settings, including the use of wildcards

and constraints on symbols or sub-expressions [1] (e.g., requiring

matched argument symbols to be variables or constants).

ARQMath 2020 uses Mathematics Stack Exchange posts for the

collection to be searched [33]. Formula Retrieval was one task in

ARQMath 2020, with some similarities in design to the NTCIR-12

Wikipedia Formula Browsing task. Some key differences were in

how queries were defined, and how evaluation was performed. In

particular, for evaluation ARQMath uses the visually distinct for-
mulae in a ranked result set, rather than all (possibly identical)

formula instances, as done for NTCIR-12. The primary evaluation

measure was nDCG

′
whereas for NTCIR-12 Precision@k measures

were used to compare systems. The NTCIR-12 formula retrieval

test collection also had a smaller number of queries, with 20 fully

specified formula queries, plus 20 variants of these queries with

sub-expressions replaced by wildcards. NTCIR-11 also had a for-

mula retrieval task, with 100 queries, but in that case, systems

searched only for exact matches and were evaluated using recipro-

cal rank. The ARQMath formula retrieval dataset contains 45 test

queries, along with an additional 29 training queries. All queries

are complete formulas, without wildcards.

Another important difference between ARQMath and the NTCIR

tasks is how relevance is defined. For ARQMath relevance is scored

using four ratings: high, medium, low, and non-relevant. Here are

the definitions of each level of relevance:

(0) Non-relevant: Not expected to be useful.

(1) Low: There is some chance of finding something useful.

https://github.com/BehroozMansouri/LtRMathIR
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(2) Medium: Useful but not as good as the original formula

would be.

(3) High: Just as good as finding an exact match to the query

formula would be.

ARQMath annotators were shown the question where a formula

query appeared, along with the question or answer post in which

retrieved formulae appeared. Therefore, formulae were annotated

in context, whereas in NTCIR-12 the annotators were shown the

formulae without surrounding text. In this way, the ARQMath

evaluation reflects both lexical and mathematical context in its

annotations. We note here though, that the NTCIR-12 formula re-

trieval test collection may be particularly well suited for evaluating

tasks where the lexical context may be absent, such as formula

query auto-completion.

2.3 Math Formula Retrieval
Previous approaches for formula retrieval can be categorized as

text-based, tree-based or embedding models. In text-based models,

formulae are converted to a string such as LATEX and then the same

search method is used for both formulae and text. For instance,

systems such as MIaS [28] or WikiMirs [7] used Term Frequency

and Inverse Document Frequency (TF-IDF) for indexing XHTML

documents. In another work, Lin et al. [13] adapt TF-IDF retrieval

for SLTs by using vectors of subexpressions, considering canon-

icalization to simplify expressions and to identify commutative

operators and equivalences. Text-based approaches lose the hier-

archical nature of formulae and may fail to characterize formula

structure well.

In tree-based models, formulae are represented directly as trees,

often with sub-trees to support partial matching. Kristianto et

al. [10] proposed the MCAT system that encodes path and sib-

ling information from Presentation MathML (SLT) and Content

MathML (OPT) representations, where paths act as the retrieval

units. They also made use of a hashing-based formula structure

encoding scheme, and text information at three levels of granu-

larity. Approach0 [34], by contrast, retrieved formulae using only

paths from operator trees generated by parsing LATEX with a rel-

atively small expression grammar. Candidates were scored based

on up to three best-matching sub-trees. Like MCAT, Tangent-S

[5] combined retrieval over both SLTs and OPTs. Candidates were

first retrieved and scored using tuples representing relative paths

between pairs of symbols. The top-k candidates were then aligned

with the query to produce formula similarity scores (the Maximum

Sub-tree Similarity, MSS). SLT results and OPT results were next

combined via linear regression over alignment measures from each

representation to produce final similarity scores.

While sub-tree matching is one common approach (e.g., using

path-based retrieval models), another uses matching of complete

formula trees. For example, the SimSearch system [9] calculated

the Tree Edit Distance (TED) between SLT representations, with

the distance normalized by tree sizes. Edit operation costs were

adjusted in some conditions (e.g., a node being a leaf or internal

node). While full tree-based approaches yielded strong results for

near-exact matches, they were less effective for inexact matches.

To capture the full context of a tree while avoiding the issues

associated with ranking by TED, we can use embedding models

that convert trees to vectors. Early research on formula embed-

ding was carried out by Thanda et al. [29] where a variant of the

doc2vec algorithm, the distributed bag of words (PV-DBOW) [12]

was introduced. They used binary expression trees and assigned

each formula a real-valued vector such that formulae with sim-

ilar structures are close to each other in the vector space. Gao

et al. [6] introduced embeddings for both symbols (symbol2vec)

and formulae (formula2vec). Symbol2vec was based on a Continu-

ous Bags-of-Words (CBOW) architecture using negative sampling,

while formula2vec used a distributed memory model of paragraph

vectors [12]. The method proposed by Krstovski and Blei [11] gen-

erates embeddings for both words and equations, with a larger

context window size for equations than words. They also proposed

equation unit embedding, treating equations as sentences where

the words are symbols, variables, and operators, each referred to as

a “unit.”

Pfahler and Morik [25] proposed embedding formula images

using graph convolutional neural networks and improved their

representations using two self-supervised tasks (contextual simi-

larity, and a masking task) to preserve information about the raw

input symbols. Using Bit Position Information Table (BPIT) [23]

and Term-Document matrix [22], the proposed system in [4], trans-

forms formulae into variable-sized weight vectors, with each weight

indicating the occurrence count of a particular formula entity and

its position in a BPIT. In another work, [20] combines TF-IDF and

word embeddings to produce embedding representations of math

documents and math formulae.

Tangent-CFT [16] is an n-gram embedding model for OPT and

SLT representations. This model currently yields state-of-the-art re-

sults for partial matching on the NTCIR-12 formula task. However,

the embedding loses some structural information, making it less

effective for nearly exact matches, in direct contrast to TED-based

methods. For instance, for the query 𝑂 (𝑚𝑛 log𝑚), Tangent-CFT
gives a higher rank to formulae such as𝑂 (𝑚𝑛) compared to formu-

lae such as 𝑂 (𝑛𝑘 log𝑘), as the model is based on n-grams and the

first formula shares more common characters with the query.

Each of these different approaches to formula retrieval has ben-

efits and drawbacks. In this work, we study how to combine the

strengths of these approaches using a learning to rankmodel. To the

best of our knowledge, using formula matching scores as features

for learning to rank has not been attempted before.

3 RETRIEVAL MODELS AND FORMULA
REPRESENTATIONS

In this section, we first discuss the formula retrieval models whose

rank scores are used as features in our learning to rank model. We

then define the formula representations used to construct features.

3.1 Similarity Features
As mentioned above, there are three main approaches to formula

retrieval: sub-tree matching, full-tree matching, and formula em-

bedding, each with its benefits and limitations. We first explain our

use of these models, and then demonstrate their benefits.

Sub-treematching features. To do sub-tree matching, we used

the initial candidate selection method from the Tangent-S system.

Using the tree representation of a formula, a list of tuples is created
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Table 1: Tuples for 𝑎2 + 𝑏2 = 𝑐2. Tuples represent paths be-
tween symbols as (parent, child, path, path-from-root[PFR]).
V!, N!, O!, and U! are node types (operators like ‘+’ have no
SLT node type), ‘eob’ end-of-baseline, and ‘-’ an empty path.

SLT Tuples OPT Tuples

( Parent, Child, Path, PFR) ( Parent, Child, Path, PFR)

(V! a, N! 2, a, -) (U! eq, U! plus, 0, -)

(N!2, eob, n, a) (U! plus, O! SUP, 0, 0)

(V! a, +, n, -) (O! SUP, V!a, 0, 00)

.

.

.
.
.
.

from a tree using a depth-first traversal. Each tuple has 4 elements:

(parent, child, path, path-from-root [PFR]). Parent and child are the

node values, path is showing the edge labels seen when traversing

from parent to child, and PFR shows edges labels visited when

moving from the root node to the parent node. Considering the

example from Figure 1, the first few tuples created for SLT and OPT

representations are shown in Table 1. The first SLT tuple indicates

that a node with type Variable and value ‘a’ is connected to a node

with type Number and value ‘2’, and when moving from the first

node to the second the edge label ‘a’ is visited. As the first node is

the root of the tree, the path-from-root is empty. The second tuple

is showing that the node with type Number and value ‘2’ has no

children and we have end of baseline (eob). The default edge label

for the eob is ‘n’. The path from the root of the tree to the ‘2’ is a

single edge labeled ‘a’. Finally, the third SLT tuple shows the root

of the tree connected to a node with the value ‘+’ along with an

edge label ‘n’. After the tuples are generated, the harmonic mean of

the ratio of query tuples matched (recall) and the ratio of candidate

tuples matching the query (precision) is used for ranking.

Another feature that we use to compare sub-trees is the Maxi-

mum Sub-tree Similarity (MSS) score introduced in the Tangent-3

system [32]. MSS is computed from the largest connected match

between a query and candidate formula obtained using a greedy

algorithm, evaluating pairwise alignments between trees using

unified node values. Another two re-ranking features used in this

system are query node matching after alignment, both with unifi-

cation and without.

Full-treematching features. Another approach computes sim-

ilarity using full formula trees, making the matching criterion more

strict. We use tree-edit distance as a full-tree matching feature. Tree

Edit Distance (TED) is defined as the minimum-cost sequence of

node (or possibly node and edge) edit operations to transform one

tree into another. In this study, three kinds of edit operations are

considered:

• Insertion: If a node is inserted between a parent and its

children, the new node becomes the parent of the child node.

• Deletion: If a deleted node has children, they will be con-

nected to the deleted node’s parent.

• Substitution (i.e., relabeling): a single operation combin-

ing a deletion and an insertion.

In [15], ignoring the edge labels yielded better retrieval results and

so we ignore them here.

Once the tree-edit distance is calculated, the similarity score can

be calculated as [9]:

𝑠𝑖𝑚(𝑇1,𝑇2) = 1 − 𝑇𝐸𝐷 (𝑇1,𝑇2)
|𝑇1 | + |𝑇2 |

(1)

where |𝑇𝑖 | is the number of nodes in tree 𝑇𝑖 . With this formula, the

tree size is taken into consideration as a normalization factor, also

mapping the similarity score to the range of 0 to 1.

An alternative to using editing operations with the same cost is

the weighted TED, where operation costs may differ. Many related

mathematical formulae share the same structure, but have differ-

ent variable or function names. Therefore, we assume that even

related formulae may require multiple substitutions to match a

query, and so using a lower weight for substitutions could produce

better retrieval results. While Kamali and Tompa [9] designed such

weights by hand, we have learned weights using the 29 ARQMath

train queries. Using values from 0 to 1 with a step size of 0.05, the

weights are learned for each editing operation averaged over 29

training queries. We calculate TED using the “apted” python library

implementation of the APTED TED algorithm [24].

Embedding features. While the features described above use

exact tree representations, embedding features provide dense vector

representations for each formula that can provide better matching

scores for partially relevant formulae [16]. For the embedding fea-

tures, we trained the n-gram embedding model used in the Tangent-

CFT system.

We make a minor improvement to the original Tangent-CFT

model in this work. In the original version, three n-gram embedding

models are trained separately on SLT, OPT, and SLT Type trees

(a unified SLT representation). The final representation was the

sum of the 3 embedding vectors. In this study, we instead produce

similarity scores separately for each of the three representations,

and combine these using a learning-to-rank model.

Other tree and symbol features (OTS). This is an additional

set of simple features to compare formulae directly. These include:

(1) Ratios of matching variables, numbers, and operators be-

tween the query and candidate formula.

(2) Difference between the number of nodes in query and can-

didate in SLT and OPT.

(3) Difference between OPT depth.

(4) Difference between SLT variation from the baseline, defined

as the maximum number of edge labels visited when moving

from a node to the root of the tree which do not have ‘next’

as their edge label. For instance, for the example in Figure 1,

this value is one.

3.2 Formula Representations
Both SLT and OPT representations can capture different aspects of

similarities between formulae. On one hand, SLTs can capture the

appearance of formulae, but the OPT representation captures the

operator syntax. For example, for query𝐴2 +𝐵2 = 𝐶2 +𝐷2
, formula

𝐴2 + 𝐵2 +𝐶2 + 𝐷2
has a very similar appearance to the query, and

will have a higher similarity using an SLT representation than an

OPT representation (where the ‘=’ is at the root).

Unification makes matching less strict and can improve search

results by finding inexact, but relevant matches. We provide exam-

ples from the ARQMath dataset on why we need all these different
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representations. For all the examples, we use the tuple matching

strategy. To illustrate why we need both SLTs/OPTs with (Full) and

without (Type) symbol values, consider the formula

lcm(𝑛1, 𝑛2) =
𝑛1𝑛2

gcd(𝑛1, 𝑛2)
.

By ignoring the variable names, relevant formulae such as

lcm(𝑎, 𝑏) = 𝑎𝑏

gcd(𝑎, 𝑏) .

can be easily found. While in this example unification helped, for

the formula

sin(𝑥), sin(2𝑥), sin(3𝑥), ..., sin(𝑛𝑥)

using the unified type representation, non-relevant formulae like

𝑓 (𝑥), 𝑓 (2𝑥), 𝑓 (3𝑥), . . .

obtain a high similarity score. Therefore, having similarity scores

for both type (unified) and full tree representations is important.

As illustrated by these examples, SLT and OPT representations,

in both their full and their unification-based type variants, can help

find similar formulae. Our experiments use all four representations.

4 LEARNING TO RANK FOR FORMULA
RETRIEVAL

To train our learning to rank model, we used SVM-rank [8] with a

linear kernel because of its effectiveness with small samples (ARQ-

Math has only 29 training queries), the stability of SVM training

making replication easier, and the resulting combination can be

computed relatively quickly (e.g., using a map-reduce framework).

Because we use a linear kernel SVM, the weights of the features

can also be examined.

We used SVM-rank trained on the 29 queries with relevance

judgments for 3,909 formula instances that are provided in ARQ-

Math. The penalty for misclassification during training (C) was 0.01,

and the tolerance for termination criterion (epsilon) was 0.001.

The following feature sets were used in training (names in paren-

theses are used to refer to that feature set):

• 4 Tuple matching scores (Tuple)

• 2 Maximum Sub-tree Similarity (MSS)

• 4 Node Matching scores (Node Matching)

• 4 Unweighted tree edit distance scores (UTED)

• 4 Weighted tree edit distance scores (WTED)

• 4 Cosine similarity from Tangent-CFT model (CFT)

• 7 Other tree and symbol features (OTS)

For feature sets other than the ‘OTS’ and ‘MSS’, one feature is

calculated for each of the four tree representations (SLT, OPT, SLT

TYPE, OPT TYPE). As ‘MSS’ features use unification, the full and

type representations would have the same scores, so we have only

two features in that set. All feature values are MinMax normalized

to be in the range [0,1]. For the sub-tree features, we are using the

same Tangent-S parameters as were used for ARQMath 2020.

The learned weights for deletion, substitution and insertion op-

erations in our weighted TED are respectively: SLT (0.43, 0.20, 0.41),

OPT (0.31, 0.21, 0.29), SLT TYPE (0.37, 0.29, 0.33), and OPT TYPE

(0.34, 0.25, 0.32).

Table 2: ARQMath Formula Retrieval Task test queries. An
example for each complexity level is provided.

Count Complexity Example

21 Low 𝑖 =
√
−1

16 Medium

∑
1

𝑛2+cos𝑛

8 High

(𝑠
𝑠

)
+
(𝑠+1
𝑠

)
+ ... +

(𝑛
𝑠

)
=
(𝑛+1
𝑠+1

)

5 EXPERIMENTS
In this section, we first study the ranking results on the whole

ARQMath collection using each feature. Then, we study if a single

model can benefit from having different formula representations.

Finally, we explore how the learning to rank model works over

the entire ARQMath formula collection and then when re-ranking

previously reported runs. All our results are calculated with the

same evaluation protocols as described in [33], but we used the

visual ids provided for ARQMath2 [14] as more formulas have been

successfully converted.

To compare the effectiveness of the systems, we consider 3 mea-

sures: Precision@5 (P

′
@5), Mean Average Precision (MAP

′
), and

nDCG

′
@5. For P

′
@5 and MAP

′
we binarize the graded relevance

judgments by treating only high and medium as relevant (i.e., ‘HM’

binarization). Following the ARQMath evaluation protocols, all

these measures are calculated on visually distinct formulae (after

removal of duplicates, based on the duplicate list provided by ARQ-

Math). Post-hoc use of a test collection raises the risk that unjudged

formulae may be retrieved; we mitigate this effect by reporting the

‘prime’ version of each metric, as defined by Sakai [26], in which

unjudged formulae are removed from all ranked listed before com-

puting the evaluation measure. This is the same process that was

used for the official ARQMath scoring.
2
All evaluation measures in

this paper are computed using trec_eval.
3

The ARQMath Formula Retrieval test collection has 29 train

and 45 test queries, all of which were constructed using the same

process after run submission and are now available for post-hoc

use [33]. Each query has a complexity tag which indicated the

organizers’ a priori estimate of query difficulty. This annotation

was initially intended to help balance the degree of difficulty of the

queries in the test collection and it was not available to participating

systems at the time; it is now available for post-hoc use to support

analysis or system training. For instance, the complexity level of

‘Low’ indicates that the organizers were expecting this to be a

comparatively easy query for the state of the art systems. Table 2

illustrates and provides statistics for these three complexity levels.

For baselines, we considered two systems [5, 15] from the 2020

ARQMath Formula Retrieval task that had the highest nDCG

′
and

P

′
@5 values. To provide a further basis for comparison, we also

show results for the most effective run from each of two other

2
In ARQMath, the pooling process ensured that no participating run had unjudged

documents in the top 5 so the P@5 reported by ARQMath is numerically equal to

P

′
@5 for those runs. The same may not be true for post-hoc runs, so P

′
@5 is a

proper measure for post-hoc runs. We use the same process explained in the Errata at

https://www.cs.rit.edu/~dprl/ARQMath.

3
https://github.com/usnistgov/trec_eval

https://www.cs.rit.edu/~dprl/ARQMath
https://github.com/usnistgov/trec_eval
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Table 3: ARQMath results, average over 45 Test topics. Mean
(𝜇) and standard deviation (𝜎) are shown for each measure.

𝜇 (𝜎)
System P

′
@5 map

′
nDCG

′
@5

Tangent-S [5] 0.51 (0.30) 0.45 (0.22) 0.58 (0.27)
Tangent-CFTED [15] 0.53 (0.36) 0.39 (0.27) 0.56 (0.26)

SCM [20] 0.09 (0.22) 0.06 (0.14) 0.10 (0.22)

FormulaEmbedding [4] 0.04 (0.09) 0.02 (0.03) 0.06 (0.13)

Table 4: ARQMath results for formula representations
(columns) used in different retrieval models (rows).

Precision@5
′ 𝜇 (𝜎)

System SLT OPT SLT Type OPT Type

Sub-tree
Tuple 0.56 (0.29) 0.51 (0.32) 0.45 (0.33) 0.39 (0.27)

MSS 0.47 (0.28) 0.49 (0.33) 0.47 (0.28) 0.49 (0.33)
Node Matching 0.56 (0.32) 0.52 (0.33) 0.36 (0.34) 0.40 (0.33)

Full Tree
UTED 0.61 (0.32) 0.56 (0.32) 0.52 (0.33) 0.43 (0.27)

WTED 0.59 (0.29) 0.55 (0.32) 0.50 (0.32) 0.43 (0.29)

Embedding
CFT 0.58 (0.32) 0.59 (0.30) 0.45 (0.35) 0.44 (0.31)

participating teams, SCM [20] and Formula embedding [4]. Table 3

shows the effectiveness measures for these systems.

5.1 Models with One Representation
To answer RQ1, we first look at retrieval results for each feature.

The whole ARQMath collection is ranked with each feature, and

unjudged formulae are removed. This is essentially re-ranking only

the annotated formulae. This analysis provides insight into the

limitations and strengths of each model and representation.

Table 4 shows P

′
@5 for each feature. (due to space limitations,

nDCG

′
@5 and MAP

′
are not shown, but they yield similar com-

parisons). The main findings are: (1) ranking with the Full SLT

representation using the UTED model yields the highest P

′
@5, (2)

full representations work better than type representations, and (3)

SLTs provide better retrieval results than OPTs.

Detailed analysis. Table 4 shows that unification cannot pro-

vide better retrieval results than full representation. Considering

the SLT representation, moving from the UTED model to the MSS

model, P

′
@5 drops from 0.61 to 0.47. There are formulae for which

the symbols should not be ignored, and unification leads to higher

ranks for non-relevant formulae. For the query lim𝑢→∞ 𝑢𝑚

𝑒𝑢 = 0,

a relevant formula such as lim𝑡→∞ 𝑡𝑘

𝑒𝑡
= 0 and a non-relevant for-

mula like lim𝑦→∞
𝑦𝛼−1

𝑒𝑦 = 0 get similar matching scores. Another

example is the CFT model for which there is 15% drop in P

′
@5

moving from full to type OPT representation. Table 5 shows the

top-5 results returned for query

∫ ∞
𝑥=0

sin(𝑥)
𝑥 by OPT full and type

representations using the CFT model. As this illustrates, unification

cannot distinguish the non-relevant symbols in retrieved formulae.

Table 5: CFT Top-5 assessed hits for query
∫ ∞
𝑥=0

sin(𝑥)
𝑥 using

OPT and OPT Type representations.

Rank OPT Relevance OPT Type Relevance

1

∑∞
𝑥=1

sin(𝑥 )
𝑥

Low

∑∞
𝑛=0

sin(𝑛)
𝑛

Low

2

∫ ∞
0

sin𝑥
𝑥

Medium

∑∞
𝑛=1

sin(𝑛)
𝑛

Low

3

∞∫
𝑥=0

sin𝑥
𝑥

𝑑𝑥 Medium

∑∞
𝑛=0

cos(𝑛)
𝑛

Non-relevant

4

∫ ∞
−∞

sin𝑥
𝑥

High

∑∞
𝑥=1

sin(𝑥 )
𝑥

Low

5

∞∫
−∞

sin(𝑥)
𝑥

High

∑∞
𝑛=1

sin(𝑛)
𝑛!

Non-relevant

SLT representations can provide a slightly better result than

OPT representation, except for the CFT model. However, the re-

trieval results confirm our assumption in Section 3.2 that both

representations are useful for retrieval. For example, for the query

𝐴2 + 𝐵2 = 𝐶2 + 𝐷2
(from examples in Section 3.2), with the tuple-

based model, non-relevant formulae such as 𝐷 = 𝐴2 + 𝐵2 +𝐶2
get

higher ranks with OPT. For this query (with tuple-based features)

P
′
@5 for OPT is 0 and for SLT P

′
@5 is 0.6. In contrast to this, for

queries such as (1 + 𝑖
√
3)1/2 (from the examples in Section 3.2) the

P
′
@5 for SLT and OPT are 0 and 0.4, respectively. The SLT gave

higher ranks to low-relevance formulae such as (1 + 𝑖
√
3)/2 that

share a common appearance.

Finally, we focus on OTS (Other Tree and Symbol) features, some

of which cannot be computed for some representations. These fea-

tures yield weak similarity scores compared to tree or embedding

matching. Three of these features compare the symbols between

the query and the candidate using their operators, variables, and

numbers. The other 4 features compare the general tree structure

of two formulae. Ranking with these four features had less effec-

tiveness with the average P

′
@5 of 0.02 for each feature. However,

the matching features could achieve P

′
@5 of 0.32 for operator, 0.27

for number, and 0.26 variable matching. For example, for the query

(𝑥 + 𝑦)𝑘 ≥ 𝑥𝑘 + 𝑦𝑘 , the P

′
@5 for operator matching is 1. With

operator matching, formulae with nearly the same operators and

different variable names such as (𝑥 + 𝑦)𝑎 ≥ 𝑥𝑎 + 𝑦𝑎 get high sim-

ilarity scores. For our next analysis, we just keep the three OTS

matching features (matching variables, numbers, and operators),

ignoring the other four OTS features.

5.2 Models with Multiple Representations
After looking at different representations, we focus on RQ2 by

training SVM-rank for each model using all representations: SLT,

SLT Type, OPT, and OPT type. Our goal is to study if one model

can provide better retrieval results using multiple representations.

Overall, the experiment results show that some models have

strengths that other models do not. Table 6 shows the P

′
@5, MAP

′
,

and nDCG

′
@5 for each of the models. Using an ANOVA followed

by a Tukey HSD (Honest Significance Difference) test, OTS features

yielded results that were significantly worse than all other models

except MSS (𝑝 < 0.01), but the differences between other pairs of
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Table 6: ARQMath results (45 topics) for SVM-rank over
rank scores from retrieval models applied to four formula
representations (SLT, SLT Type, OPT, and OPT Type).

𝜇 (𝜎)
Feature Set P

′
@5 MAP

′
nDCG

′
@5

Sub-tree
Tuple 0.56 (0.30) 0.52 (0.24) 0.64 (0.25)

MSS 0.50 (0.32) 0.53 (0.26) 0.54 (0.30)

Node Matching 0.60 (0.29) 0.57 (0.24) 0.67 (0.25)
Full Tree
UTED 0.55 (0.33) 0.54 (0.26) 0.62 (0.29)

WTED 0.57 (0.33) 0.56 (0.26) 0.63 (0.30)

Embedding / Other
CFT 0.57 (0.33) 0.52 (0.24) 0.64 (0.26)

OTS 0.36 (0.32) 0.34 (0.26) 0.39 (0.33)

systems are not statistically significant. Comparing Tables 4 and 6,

we see that MSS and Node Matching benefit from LtR over all four

representations. For other models, using a single representation

would be just as good or better, but only if the best representation

were known a priori.

Formula Complexity vs. Retrieval Model. There are signs

that each set of features may do better for different formula com-

plexities. We recalculated the P

′
@5 values for each set of features

per complexity category (see Table 7). For formulae with low com-

plexity, ranking with CFT works best, for formulae with medium

complexity the full-tree features are more effective, and for for-

mulae with high complexity, ranking with sub-tree features does

better.

We initially assumed that ranking with CFT features would pro-

vide better results for simpler formulae, where approximately simi-

lar formulae can be informative. However, we did not expect tuple

features to outperform TED features for complex formulae, where

it seemed whole-tree matching would be best. There are two pos-

sible reasons for this. First, most formulae identified as complex

are larger than many other formulae. Therefore, finding partial

matches can provide better retrieval results. Second, what has been

annotated as medium complexity in the ARQMath collection might

be misleading; a formula that seems complex from a human per-

spective might not be complex for a machine. For the 16 queries

that have medium complexity, on average, there are 23 formulae

considered as relevant with an average of 13 formulae having high

or medium relevance. These numbers increase for the 8 formulae

with high complexity, with an average of 30 relevant formulae per

query and 19 formulae that have high or medium relevance.

Feature Weights. One useful property that SVM-rank provides

is the weights for each feature. Table 8 shows the weights for each

of the matching scores with different representations. Overall, in all

the matching features, the full representations have higher weights

compared to type representations, with OPT type being the less

informative feature. This aligns with the finding in [16] where the

OPT type representation was ignored.

Missing Features. There are some ARQMath queries that per-

form poorly for all of the models. For instance, for

𝐸𝑚𝑝𝑡𝑦 (𝑥) ⇐⇒ �𝑦 (𝑦 ∈ 𝑥)

Table 7: Results from Table 6 broken down by query com-
plexity (see Table 2) for different feature sets.

P

′
@5 𝜇 (𝜎)

Feature Set Low (21) Medium (16) High (8)

Sub-tree
Tuple 0.66 (0.32) 0.48 (0.28) 0.55 (0.26)
MSS 0.54 (0.34) 0.48 (0.29) 0.45 (0.37)

Node Matching 0.71 (0.26) 0.49 (0.32) 0.55 (0.23)
Full Tree
UTED 0.58 (0.35) 0.56 (0.32) 0.45 (0.32)

WTED 0.66 (0.36) 0.55 (0.29) 0.40 (0.26)

Embedding / Other
CFT 0.72 (0.28) 0.49 (0.29) 0.35 (0.35)

OTS 0.51 (0.33) 0.24 (0.26) 0.22 (0.27)

Table 8: SVM-rank weights for retrieval models using four
formula tree representations (OPT, SLT, OPT Type, and SLT
Type). Weight comparisons should be made within rows.

OPT SLT

Model Full Type Full Type

Sub-tree
Tuple 2.78 0.05 3.19 1.53

Node Matching 1.74 -0.09 2.32 1.17

Full Tree
UTED 5.89 4.62 5.78 5.03

WTED 3.74 2.28 5.23 3.45

Embedding
CFT 1.94 -0.98 4.98 3.40

only tuple matching features had a P

′
@5 greater than 0. There are

seven relevant formulae in the collection for that query, but some

would require symbolic manipulation based on mathematical rules

to find. For instance, the formula ‘⊢ ∃𝑥∀𝑦 (𝑦 ∉ 𝑥)’ is highly relevant,
but none of the feature sets will be able to capture the similarity of

these two formulae. Therefore, canonicalization of mathematical

formulae may improve results [19, 27].

There are also formulae in ARQMath where the proper inter-

pretation is shaped by associated query text, which we have not

used. Other formulae that may be similar to the query in terms

of SLT and/or OPT may come from a different context, in which

symbols refer to different operations or values (e.g., sets vs. real

numbers), and so are annotated as non-relevant. For instance, the

query
𝑑𝑓

𝑑𝑥
= 𝑓 (𝑥 + 1), appeared in a question where someone was

asking for solving “differential equations”. There are formulae such

𝑑𝑦

𝑑𝑥
= 𝑓 (𝑥) in the collection that are annotated as non-relevant.

Additional Analysis. Ranking with SVM-rank trained on CFT

features, we see that for the query 𝑝𝑛 = 1

2
𝑝𝑛−1, P

′
@5 is 0.8. By

contrast, P

′
@5 is 0 for both full-tree features, and 0.2 for each set of

sub-tree features. In this query, 𝑝𝑛 represents a probability, but for

example with TED features formulae such as 𝑏𝑛 = 1

2
𝑏𝑛−1 are found

because a substituting 𝑝 for 𝑏 yields a match. However, we can see

by looking at the post in which it appears that 𝑏𝑛 in that retrieved

formula refers to an element in a sequence and not a probability,
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Table 9: Ranking with Other Tree and Symbol features
(OTS): Top-5 hits for query: 𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐.

Rank Formula Relevance Score

1 𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐 High

2 𝑎3 + 𝑐3 = 3𝑎𝑏𝑐 − 𝑏3 Medium

3 𝑎3 + 𝑏3 + 𝑐3 = 3𝑎𝑏𝑐 Medium

4 𝑎3 + 𝑏3 + 𝑐3 − 𝑎𝑏𝑐 High

5 𝑎3 + 𝑏3 + 𝑐3 − 6𝑎𝑏𝑐 High

and therefore this formula was correctly annotated as non-relevant.

CFT features, by contrast, are capable of finding similar formulae

by prioritizing formulae that share common symbols.

Sub-tree matching features can also do well. There are large and

complex formula queries such as:∬
𝑉

𝑓 (𝑥,𝑦)𝑑𝑥 𝑑𝑦 =

∬
𝑄

𝑓 (Φ(𝑢, 𝑣)
����� 𝜕Φ𝜕𝑢 × 𝜕Φ

𝜕𝑣

�����
for which sub-tree matching can be more effective. The P

′
@5 for

ranking with tuple features is 0.8, whereas for CFT P

′
@5 is 0 and

0.2 for UTED and WTED, respectively. The first retrieved formula

by CFT features is:∬
𝐷

𝑓 (𝑥,𝑦)𝑑𝑥𝑑𝑦 =

∬
𝐷∗

∥ 𝛿 (𝑥,𝑦)
𝛿 (𝑢, 𝑣) ∥ 𝑓 (𝑥 (𝑢, 𝑣), 𝑦 (𝑢, 𝑣)𝑑𝑢𝑑𝑣

which is annotated as non-relevant. As can be seen, the same prop-

erty of CFT features, giving high rank to formulae with common

symbols, provides a better ranking for the previous formula but not

this one.

Sub-tree matching cannot always provide relevant results. For

instance, for the query:

¬𝑃 → 𝐴1 → ... → 𝐴𝑛 → 𝑃

with the sub-tree matching feature tuple, a non-relevant formula

¬𝐴 → 𝐴 → 𝐵

is the first retrieved formula. For some of the queries, partial match-

ing provides less relevant results. TED features can overcome this

issue by looking at the whole tree. For the above query, ranking

with tuple features results in P

′
@5 of 0.2 whereas with TED features

P

′
@5 is 0.8.

As Table 6 shows, WTED features can slightly improve P

′
@5.

For query (1 + 𝑖
√
3)1/2, ranking with UTED features has P

′
@5 of

0; for WTED features P

′
@5 is 0.4. As operation costs learned from

training queries tend to give lower weight to substitutions, formula

(1 +
√
3𝑖)1/2 is in the top-5 results for WTED features, whereas

for UTED features in which all operations have the same weight a

non-relevant formula such as (1 + 𝑖
√
3)8 gets a higher rank.

Ranking with other tree and symbol (OTS) features can also find

relevant formulae for some of the queries. For four low-complexity

queries, using this set of features P

′
@5 was 1. Table 9 shows the

top-5 results returned when ranking with other-tree features for

the query 𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐 . As these results indicate, for some

queries, simple features such as the number of matching operators,

variable names, and numbers can provide effective results.

Table 10: ARQMath results for SVM-rank using different
feature subsets.

𝜇 (𝜎)
Features from Table 8 P

′
@5 map

′
nDCG

′
@5

All features 0.61 (0.31) 0.57 (0.24) 0.68 (0.26)

Top-6 Weights 0.61 (0.30) 0.58 (0.24) 0.67 (0.25)

All features: no OTS 0.64 (0.27) 0.58 (0.23) 0.69 (0.21)

5.3 Multiple Models with Multiple
Representations

Finally, we look at whether our learning to rank model can further

improve retrieval results by using multiple retrieval models with

multiple formula representations (RQ3). As noted before, our OTS

features are less informative than the similarity scores from the

retrieval models, so although we do train a LtR model with all

features and retrieval models, we also train a LtR model without

the OTS features. Because running a large number of retrieval

models concurrently can be costly, we also create a third LtR model

using only the retrieval models with the highest learned linear

weights (in this case, with absolute weight ≥ 0.3) to see whether a

smaller model can perform similarly.

Table 10 shows results for these three conditions. Removing OTS

features improves all measures, and produces the highest P

′
@5,

MAP

′
, and nDCG

′
@5 values yet reported for this test collection.

Moreover, the LtR model using fewer ranking models as features

yields results that are nearly as good at roughly half the compu-

tational cost. Using a one-way ANOVA followed by Tukey HSD

tests on P

′
@5 values, all three of these models are significantly

different from the ARQMath baseline systems (𝑝 < 0.01) in Table

3, but differences between models in Table 10 are not statistically

significant.

For some queries, a single ranking model performs better than

combining multiple ranking models, but such cases are rare in

ARQMath. For instance, for query ¬𝑃 → 𝐴1 → ... → 𝐴𝑛 → 𝑃 ,

sub-tree matching finds some formulae matching small parts of the

expression that were assessed as not relevant. As a result, P

′
@5

decreases from 0.8 using UTED alone to 0.4 when using all features.

However, more commonly the SVM-rank model using all ranking

models performed better for complex formulae, where sub-tree

matching often proved beneficial.

Feature Computation Times. For each retrieval model, we cal-

culated the average time needed to compute the similarity between

a query and a single candidate formula in milliseconds, averaging

over formulae in all representations (SLT, OPT, SLT Type, OPT

Type). The times shown in Figure 2 were computed using a single

thread on an Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz with

528GB RAM. Note that MSS and node matching features are com-

puted together in one pass by Tangent-S. As can be seen, calculating

similarity features for a large collection is impractical, particularly

for tree edit distances. Given this, we next look at how our learning

to rank model can be applied for re-ranking rather than ranking

the whole collection.

Re-RankingARQMathRuns.To further validate our learning-
to-rank model, we applied our best model (All features: no OTS) to
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Figure 2: Per-query feature calculation time for a single for-
mula tree in milliseconds, aggregated over 45 queries using
OPT, SLT, OPT Type, and SLT Type representations.

Table 11: Re-ranking ARQMath Task 2 runs using the best
SVM-rank model. All mean scores improve in every metric.

𝜇 (𝜎)
System P

′
@5 map

′
nDCG

′
@5

Original Runs
Tangent-S 0.51 (0.30) 0.45 (0.22) 0.58 (0.27)
Tangent-CFTED 0.53 (0.36) 0.39 (0.27) 0.56 (0.26)

SCM 0.09 (0.22) 0.06 (0.14) 0.10 (0.22)

FormulaEmbedding 0.04 (0.09) 0.02 (0.03) 0.06 (0.13)

Re-ranked Runs
Tangent-S 0.62 (0.30) 0.52 (0.22) 0.69 (0.23)
Tangent-CFTED 0.58 (0.32) 0.42 (0.27) 0.65 (0.26)

SCM 0.18 (0.29) 0.10 (0.16) 0.21 (0.20)

FormulaEmbedding 0.15 (0.21) 0.05 (0.11) 0.22 (0.25)

the best runs from participating teams in the ARQMath formula

retrieval task. Each original run contained up to 1000 formulae per

query. Table 11 compares submitted runs against our re-ranked

results. Using the same system settings, on average, the time to re-

rank the top-1000 results for a query is 3.10 seconds (time-averaged

over 45 queries). The SVM-rank could be run using a map-reduce

architecture, with each retrieval model executed in parallel. With

the parallel execution, the retrieval time drops to an average of

1.53 seconds per query with tree-edit distance being the most time-

consuming model.

The average value for all effectiveness measures improves after

re-ranking. T-tests on both 𝑃
′
@5 and 𝑛𝐷𝐶𝐺

′
@5 scores between

each original and re-ranked result show a significant difference,

except for Tangent-CFTED (𝑝 < 0.01). Providing examples on the

results, Tangent-S uses sub-tree features for ranking, shown earlier

to produce better results for complex formulas (see Table 7). With re-

ranking P

′
@5 for low-complexity queries improves for this system.

For example, 𝑃
′
@5 for query (ℳ2×2 (Q),×) increases from 0 to 0.8,

and non-relevant formulae such as 𝑇 : M2×2 (R) → M2×3 (R) are
pushed down in the results after re-ranking. The re-ranked Tangent-

CFTED results also improved, by incorporating features other than

full-tree matching; for the query

∫ ∞
0

sin𝑥
𝑥𝑎 , after re-ranking the

P

′
@5 score for the query increases from 0.4 to 0.8.

6 CONCLUSION
Prior methods in which hand-engineered combinations across two

or more representations (e.g., Symbol Layout Trees and Opera-

tor Trees, with or without unification) have pointed the way to

the gains in ranking quality that can be achieved by combining

evidence. In this paper, we have shown that combining evidence

from multiple similarities computed on the same representation(s)

provides complementary evidence that can yield further improve-

ments. Moreover, we have shown that with relevance judgments

for a modest number of training queries that it is possible to learn

to combine that evidence in ways that yield a new state of the art

for the formula retrieval task.

Our work opens several new directions that we plan to pursue.

First, we can generate additional features that could lead to fur-

ther improvements. As one simple example, we might measure the

potential of using query complexity features of the type that are

available in the ARQMath test collection. If that proves produc-

tive, we might then draw on the literature from query performance

prediction to automatically generate informative features for char-

acterizing query difficulty. We are also interested in exploring the

use of graph and visual formula embeddings [25] for similar rea-

sons. A second line of future work would be to explore alternative

learning to rank frameworks, including techniques such as Lamb-

daMART that are designed for robust results with limited training,

or—for some settings—data-hungry neural techniques.

Unlike the formula retrieval task, the ARQMath community

question answering answer retrieval task includes both text and

math. The learning to rank framework that we have demonstrated

in this paperwould clearly be applicable to that task aswell, with the

presence of text (and the potential presence of multiple formulae)

offering even greater scope for feature design. This is the third clear

line of future work that we plan to explore.

What makes all of this possible is the existence of a sufficiently

large test collection for the task. There is a synergy between system

building and collection building; better systems can better target

the effort invested in creating relevance judgments, which in turn

can yield better training data for building better systems. We are

still early in that process, but the first step along that path is to

place formula retrieval on a firm foundation as a learning to rank

task, as we have sought to do in this paper.
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