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ABSTRACT search must accommodate queries containing single symbols up to

In Mathematical Information Retrieval (MIR), formulae can be used
in a query to match other similar formulae in documents. However,
due to the structural complexity of formulae, specialized processing
is needed for formula matching. Formulae may be represented by
their appearance in Symbol Layout Trees (SLTs) or by their syntax
in Operator Trees (OPTs). Previous approaches for formula retrieval
used one or both of these representations and used unification to
improve search results for inexact matches (e.g., allowing different
variable names to match). On these representations, models for
matching full expressions (trees), subexpressions, and paths have
been used. Recently embedding models were used to represent
formulae as vectors. In this paper, the effectiveness of retrieval
models and formula representations are studied to identify their
relative strengths and weaknesses. Then, a learning to rank model
is proposed, using SVM-rank over similarity scores from different
formula retrieval models as features. Experiments on the ARQMath
formula retrieval task results show that the proposed learning to
rank model is effective, producing new state-of-the-art results.
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1 INTRODUCTION

In Mathematical Information Retrieval (MIR), user information
needs concern mathematical concepts. A common way to express
mathematical information needs is mathematical formulae [17].
Some existing search engines such as SearchOnMath [21] and Math-
Deck [18] provide facilities for users to insert a formula query.
Most commonly formulae are represented using KTEX, but some ac-
cept formula images and handwriting as input (e.g., [18]). Formula
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complex structures that include operators, numbers, and variables
organized on multiple writing lines (e.g., for superscripts) and in
grid structures (e.g., matrices). As a result, traditional text retrieval
systems are ineffective for formula search due to the structural com-
plexity of formulae [31]. Instead of using KIgX strings to represent
formulae, current systems use the underlying trees represented by
BTEX. Symbol layout trees (SLTs) and operator trees (OPTs) are com-
mon tree-based representations, where the first captures formulae
appearance and the second captures formula syntax. Figure 1 shows
these representations for the Pythagorean theorem, a® + b? = ¢,

Formula retrieval has previously been studied in a number of
shared tasks, including tasks at NTCIR 10, 11, and 12 [2, 3, 30], and
ARQMath at CLEF 2020 [33]. In both the NTCIR-12 and ARQMath
tasks, the most effective systems used both SLT and OPT formula
tree representations, and supported inexact matching through unifi-
cation of variables, identifiers, numbers, and operators. Also, previ-
ous works have shown that combining representations and models
can improve the retrieval results. The best performing system in
the ARQMath formula retrieval task (Tangent-S [5]) matches paths
in both representations to obtain initial retrieval results. Another
participating system at ARQMath (Tangent-CFTED) [15] achieved
similar results by first selecting candidates with a formula embed-
ding model, and then re-ranking candidates by tree edit distance
to obtain a matching score for the full formula tree. The results
from participating system [20], combines TF-IDF with unsupervised
word embeddings to produce representations for math formulae
which provided better results than each system in isolation.

Three main approaches have been applied for formula retrieval
in previous models that yielded stronger retrieval results: sub-tree
matching [5, 10, 34], full-tree matching [9, 15] and embedding mod-
els [6, 11, 16, 25]. Models can make use of both representations
[5, 10, 15], or use only SLTs [9] or OPTs [34]. Despite the existence
of these models, how different models and representations should
be combined has not been studied before. In this paper, we aim to
answer the following research questions:

e (RQ1): What is the effectiveness of each type of retrieval
model (sub-tree, full-tree and embedding)?

e (RQ2): Which formula representation(s) work best with each
type of retrieval model?

¢ (RQ3): Can evidence from multiple retrieval models and/or
formula representations be combined to further enhance
retrieval results?

To answer our research questions, we used these systems for
each matching model: (1) sub-tree matching: Tangent-S scores
for initial ranking via tuple matching, maximum sub-tree similarity
(a measure of structural similarity), and matching symbols by both
exact values and types, (2) full-tree matching: unweighted, and
weighted tree edit distances between formula trees, (3) embedding
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models: Tangent-CFT formula embedding model. After analyzing
the behavior of each retrieval model and formula tree representa-
tion, we introduce a Learning to Rank (LtR) model for mathematical
formulae, using SVM-rank [8]. We use SVM-rank because of its
speed, the effectiveness of SVMs on small samples (ARQMath has
only 29 training queries), and the stability of SVM training, making
replication easier.

In our evaluation, we first rank all formulae in the ARQMath
collection to observe how our LtR model behaves, and obtain new
state-of-the-art results for the task. We then apply LtR to the sub-
mitted runs from the ARQMath formula retrieval task and obtain
higher effectiveness for all runs. All data and source code used for
our paper is publicly available.!

In the next section, we review related work on formula retrieval;
we then present the retrieval models and formula representations
used in our LtR models in Section 3. We then introduce our ranking
models in Section 4, followed by our experimental results in Section
5. Finally, we conclude and identify future directions in Section 6.

2 RELATED WORK

In this section, we first review how mathematical formulae are
represented, and discuss existing collections for math information
retrieval. Finally, we review existing formula retrieval models.

2.1 Formula Representations

Mathematical formulae are represented for retrieval by their mathe-
matical (operational) syntax in operator tree (OPT) encodings such
as Content MathML, or by their appearance in symbol layout tree
(SLT) encodings such as KTEX [31]. Figure 1 shows the OPT and
SLT representation for the Pythagorean formula: a® + b? = ¢,

In this work, we use the OPT and SLT representations from the
Tangent family of retrieval models [5, 32]. Nodes in OPTs and SLTs
represent symbols and explicit aggregates (e.g., function arguments)
in the form: (Type!value). More precisely, nodes can be numbers
(N!n), identifiers such as variable names (V!v), text fragments, such
as ‘lim’ and ‘such that’ (T't), fractions (F!), radicals (R!), explicitly
specified white-space (W!) and finally, matrices, tabular structures,
and parenthesized expressions (M!f rxc); with f showing fence char-
acters such as parentheses, r the number of rows, and ¢ the number
of columns. In the SLTs, operators do not have a type attribute,
but for OPTs commutative and non-commutative operators have
type (U!) and (O!), respectively. Commutative operators ignore the
order of their arguments (e.g., equality) while the position/order of
non-commutative operators is important (e.g., subtraction).

Edge labels in OPTs indicate argument position. For commutative
operators edges are unlabelled. For non-commutative operators,
edge labels are indexed from 0. In SLTs, edge labels give the spatial
arrangement of symbols on writing lines. There are nine types of
edge labels representing the spatial relationships between symbols
(nodes): next (‘n’) indicates that a symbol appears to the right on
the same writing line; within (‘w’) references the argument in
a radical or the first element appearing in row-major order in a
matrix/grid of type M!, element (‘e’) references the next element
appearing in row-major order inside a structure represented by M!,
above (‘a’) indicates a new writing line in the superscript position,

!https://github.com/BehroozMansouri/LtRMathIR
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Figure 1: a> + b? = ¢? represented as an (a) Operator Tree
(OPT) and a (b) Symbol Layout Tree (SLT). OPTs represent
operations, with edge labels ordering arguments: arguments
for commutative operators all have edges labeled ‘0’ (unla-
beled in (a)). SLTs represent appearance by the placement of
symbols on writing lines, with edge labels indicating spatial
relationships (e.g., superscript (a), next on writing line (n)).

below (‘b’) references a new writing line in the subscript position,
pre-above (‘SUP’) indicates a prescripted superscript, pre-below
(‘SUB’) indicates a prescripted subscript, Under (‘U’) indicates a
writing line appearing below a node (e.g., a fraction’s denominator),
and finally Over indicates a writing line above an node (e.g., a
fraction’s numerator). For instance, edge label a in Figure 1 shows
‘2’ is superscripted above ‘b, and edge label n shows that ‘=" is
located next to ‘b’.

2.2 Formula Retrieval Test Collections

Formula retrieval involves retrieving a set of relevant formulae for
a given formula query. The task was first visited at NTCIR 10-12
[2, 3, 30], with a variety of settings, including the use of wildcards
and constraints on symbols or sub-expressions [1] (e.g., requiring
matched argument symbols to be variables or constants).

ARQMath 2020 uses Mathematics Stack Exchange posts for the
collection to be searched [33]. Formula Retrieval was one task in
ARQMath 2020, with some similarities in design to the NTCIR-12
Wikipedia Formula Browsing task. Some key differences were in
how queries were defined, and how evaluation was performed. In
particular, for evaluation ARQMath uses the visually distinct for-
mulae in a ranked result set, rather than all (possibly identical)
formula instances, as done for NTCIR-12. The primary evaluation
measure was nDCG whereas for NTCIR-12 Precision@k measures
were used to compare systems. The NTCIR-12 formula retrieval
test collection also had a smaller number of queries, with 20 fully
specified formula queries, plus 20 variants of these queries with
sub-expressions replaced by wildcards. NTCIR-11 also had a for-
mula retrieval task, with 100 queries, but in that case, systems
searched only for exact matches and were evaluated using recipro-
cal rank. The ARQMath formula retrieval dataset contains 45 test
queries, along with an additional 29 training queries. All queries
are complete formulas, without wildcards.

Another important difference between ARQMath and the NTCIR
tasks is how relevance is defined. For ARQMath relevance is scored
using four ratings: high, medium, low, and non-relevant. Here are
the definitions of each level of relevance:

(0) Non-relevant: Not expected to be useful.
(1) Low: There is some chance of finding something useful.
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(2) Medium: Useful but not as good as the original formula
would be.

(3) High: Just as good as finding an exact match to the query
formula would be.

ARQMath annotators were shown the question where a formula
query appeared, along with the question or answer post in which
retrieved formulae appeared. Therefore, formulae were annotated
in context, whereas in NTCIR-12 the annotators were shown the
formulae without surrounding text. In this way, the ARQMath
evaluation reflects both lexical and mathematical context in its
annotations. We note here though, that the NTCIR-12 formula re-
trieval test collection may be particularly well suited for evaluating
tasks where the lexical context may be absent, such as formula
query auto-completion.

2.3 Math Formula Retrieval

Previous approaches for formula retrieval can be categorized as
text-based, tree-based or embedding models. In text-based models,
formulae are converted to a string such as KX and then the same
search method is used for both formulae and text. For instance,
systems such as MIaS [28] or WikiMirs [7] used Term Frequency
and Inverse Document Frequency (TF-IDF) for indexing XHTML
documents. In another work, Lin et al. [13] adapt TF-IDF retrieval
for SLTs by using vectors of subexpressions, considering canon-
icalization to simplify expressions and to identify commutative
operators and equivalences. Text-based approaches lose the hier-
archical nature of formulae and may fail to characterize formula
structure well.

In tree-based models, formulae are represented directly as trees,
often with sub-trees to support partial matching. Kristianto et
al. [10] proposed the MCAT system that encodes path and sib-
ling information from Presentation MathML (SLT) and Content
MathML (OPT) representations, where paths act as the retrieval
units. They also made use of a hashing-based formula structure
encoding scheme, and text information at three levels of granu-
larity. Approach0 [34], by contrast, retrieved formulae using only
paths from operator trees generated by parsing IKIEX with a rel-
atively small expression grammar. Candidates were scored based
on up to three best-matching sub-trees. Like MCAT, Tangent-S
[5] combined retrieval over both SLTs and OPTs. Candidates were
first retrieved and scored using tuples representing relative paths
between pairs of symbols. The top-k candidates were then aligned
with the query to produce formula similarity scores (the Maximum
Sub-tree Similarity, MSS). SLT results and OPT results were next
combined via linear regression over alignment measures from each
representation to produce final similarity scores.

While sub-tree matching is one common approach (e.g., using
path-based retrieval models), another uses matching of complete
formula trees. For example, the SimSearch system [9] calculated
the Tree Edit Distance (TED) between SLT representations, with
the distance normalized by tree sizes. Edit operation costs were
adjusted in some conditions (e.g., a node being a leaf or internal
node). While full tree-based approaches yielded strong results for
near-exact matches, they were less effective for inexact matches.

To capture the full context of a tree while avoiding the issues
associated with ranking by TED, we can use embedding models
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that convert trees to vectors. Early research on formula embed-
ding was carried out by Thanda et al. [29] where a variant of the
doc2vec algorithm, the distributed bag of words (PV-DBOW) [12]
was introduced. They used binary expression trees and assigned
each formula a real-valued vector such that formulae with sim-
ilar structures are close to each other in the vector space. Gao
et al. [6] introduced embeddings for both symbols (symbol2vec)
and formulae (formula2vec). Symbol2vec was based on a Continu-
ous Bags-of-Words (CBOW) architecture using negative sampling,
while formula2vec used a distributed memory model of paragraph
vectors [12]. The method proposed by Krstovski and Blei [11] gen-
erates embeddings for both words and equations, with a larger
context window size for equations than words. They also proposed
equation unit embedding, treating equations as sentences where
the words are symbols, variables, and operators, each referred to as
a “unit”

Pfahler and Morik [25] proposed embedding formula images
using graph convolutional neural networks and improved their
representations using two self-supervised tasks (contextual simi-
larity, and a masking task) to preserve information about the raw
input symbols. Using Bit Position Information Table (BPIT) [23]
and Term-Document matrix [22], the proposed system in [4], trans-
forms formulae into variable-sized weight vectors, with each weight
indicating the occurrence count of a particular formula entity and
its position in a BPIT. In another work, [20] combines TF-IDF and
word embeddings to produce embedding representations of math
documents and math formulae.

Tangent-CFT [16] is an n-gram embedding model for OPT and
SLT representations. This model currently yields state-of-the-art re-
sults for partial matching on the NTCIR-12 formula task. However,
the embedding loses some structural information, making it less
effective for nearly exact matches, in direct contrast to TED-based
methods. For instance, for the query O(mnlogm), Tangent-CFT
gives a higher rank to formulae such as O(mn) compared to formu-
lae such as O(nklogk), as the model is based on n-grams and the
first formula shares more common characters with the query.

Each of these different approaches to formula retrieval has ben-
efits and drawbacks. In this work, we study how to combine the
strengths of these approaches using a learning to rank model. To the
best of our knowledge, using formula matching scores as features
for learning to rank has not been attempted before.

3 RETRIEVAL MODELS AND FORMULA
REPRESENTATIONS

In this section, we first discuss the formula retrieval models whose
rank scores are used as features in our learning to rank model. We
then define the formula representations used to construct features.

3.1 Similarity Features

As mentioned above, there are three main approaches to formula
retrieval: sub-tree matching, full-tree matching, and formula em-
bedding, each with its benefits and limitations. We first explain our
use of these models, and then demonstrate their benefits.
Sub-tree matching features. To do sub-tree matching, we used
the initial candidate selection method from the Tangent-S system.
Using the tree representation of a formula, a list of tuples is created
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Table 1: Tuples for a® + b?> = c?. Tuples represent paths be-
tween symbols as (parent, child, path, path-from-root[ PFR]).
VI, NI, O!, and U! are node types (operators like ‘+’ have no
SLT node type), ‘eob’ end-of-baseline, and ‘-’ an empty path.

SLT TupLES OPT TupPLES
(PARENT, CHILD, PaTH, PFR) | (ParReNT, CHILD, PaTH, PFR)
V!a, Nt 2, a, - U! eq, Ul plus, 0, -
q p
(N!2, eob, n, a) (U!plus, O!SUP, o0, 0)

(V!a, +, n, -) (O!SUP, Vla, 0, 00)

from a tree using a depth-first traversal. Each tuple has 4 elements:
(parent, child, path, path-from-root [PFR]). Parent and child are the
node values, path is showing the edge labels seen when traversing
from parent to child, and PFR shows edges labels visited when
moving from the root node to the parent node. Considering the
example from Figure 1, the first few tuples created for SLT and OPT
representations are shown in Table 1. The first SLT tuple indicates
that a node with type Variable and value ‘a’ is connected to a node
with type Number and value ‘2’, and when moving from the first
node to the second the edge label ‘a’ is visited. As the first node is
the root of the tree, the path-from-root is empty. The second tuple
is showing that the node with type Number and value ‘2’ has no
children and we have end of baseline (eob). The default edge label
for the eob is ‘n’. The path from the root of the tree to the 2’ is a
single edge labeled ‘a’. Finally, the third SLT tuple shows the root
of the tree connected to a node with the value ‘+” along with an
edge label ‘n’. After the tuples are generated, the harmonic mean of
the ratio of query tuples matched (recall) and the ratio of candidate
tuples matching the query (precision) is used for ranking.

Another feature that we use to compare sub-trees is the Maxi-
mum Sub-tree Similarity (MSS) score introduced in the Tangent-3
system [32]. MSS is computed from the largest connected match
between a query and candidate formula obtained using a greedy
algorithm, evaluating pairwise alignments between trees using
unified node values. Another two re-ranking features used in this
system are query node matching after alignment, both with unifi-
cation and without.

Full-tree matching features. Another approach computes sim-
ilarity using full formula trees, making the matching criterion more
strict. We use tree-edit distance as a full-tree matching feature. Tree
Edit Distance (TED) is defined as the minimum-cost sequence of
node (or possibly node and edge) edit operations to transform one
tree into another. In this study, three kinds of edit operations are
considered:

e Insertion: If a node is inserted between a parent and its
children, the new node becomes the parent of the child node.

e Deletion: If a deleted node has children, they will be con-
nected to the deleted node’s parent.

o Substitution (i.e., relabeling): a single operation combin-
ing a deletion and an insertion.

In [15], ignoring the edge labels yielded better retrieval results and
so we ignore them here.
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Once the tree-edit distance is calculated, the similarity score can
be calculated as [9]:

TED(T3, Ty) "
IT1| + T3]

where |T;| is the number of nodes in tree T;. With this formula, the
tree size is taken into consideration as a normalization factor, also
mapping the similarity score to the range of 0 to 1.

An alternative to using editing operations with the same cost is
the weighted TED, where operation costs may differ. Many related
mathematical formulae share the same structure, but have differ-
ent variable or function names. Therefore, we assume that even
related formulae may require multiple substitutions to match a
query, and so using a lower weight for substitutions could produce
better retrieval results. While Kamali and Tompa [9] designed such
weights by hand, we have learned weights using the 29 ARQMath
train queries. Using values from 0 to 1 with a step size of 0.05, the
weights are learned for each editing operation averaged over 29
training queries. We calculate TED using the “apted” python library
implementation of the APTED TED algorithm [24].

Embedding features. While the features described above use
exact tree representations, embedding features provide dense vector
representations for each formula that can provide better matching
scores for partially relevant formulae [16]. For the embedding fea-
tures, we trained the n-gram embedding model used in the Tangent-
CFT system.

We make a minor improvement to the original Tangent-CFT
model in this work. In the original version, three n-gram embedding
models are trained separately on SLT, OPT, and SLT Type trees
(a unified SLT representation). The final representation was the
sum of the 3 embedding vectors. In this study, we instead produce
similarity scores separately for each of the three representations,
and combine these using a learning-to-rank model.

Other tree and symbol features (OTS). This is an additional
set of simple features to compare formulae directly. These include:

sim(Ty,Tp) =1-—

(1) Ratios of matching variables, numbers, and operators be-
tween the query and candidate formula.

(2) Difference between the number of nodes in query and can-
didate in SLT and OPT.

(3) Difference between OPT depth.

(4) Difference between SLT variation from the baseline, defined
as the maximum number of edge labels visited when moving
from a node to the root of the tree which do not have ‘next’
as their edge label. For instance, for the example in Figure 1,
this value is one.

3.2 Formula Representations

Both SLT and OPT representations can capture different aspects of
similarities between formulae. On one hand, SLTs can capture the
appearance of formulae, but the OPT representation captures the
operator syntax. For example, for query A? + B> = C% + D?, formula
A? + B2 + C? + D? has a very similar appearance to the query, and
will have a higher similarity using an SLT representation than an
OPT representation (where the ‘=’ is at the root).

Unification makes matching less strict and can improve search
results by finding inexact, but relevant matches. We provide exam-
ples from the ARQMath dataset on why we need all these different
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representations. For all the examples, we use the tuple matching
strategy. To illustrate why we need both SLTs/OPTs with (Full) and
without (Type) symbol values, consider the formula

ning
1 JNp) = —————.
em{m, ) ged(n1, n2)
By ignoring the variable names, relevant formulae such as
ab
1 b)) = ———.
em(@b) = i b

can be easily found. While in this example unification helped, for
the formula

sin(x), sin(2x), sin(3x), ..., sin(nx)
using the unified type representation, non-relevant formulae like

f(x), f(2x), f(3x), . ..

obtain a high similarity score. Therefore, having similarity scores
for both type (unified) and full tree representations is important.
As illustrated by these examples, SLT and OPT representations,
in both their full and their unification-based type variants, can help
find similar formulae. Our experiments use all four representations.

4 LEARNING TO RANK FOR FORMULA
RETRIEVAL

To train our learning to rank model, we used SVM-rank [8] with a
linear kernel because of its effectiveness with small samples (ARQ-
Math has only 29 training queries), the stability of SVM training
making replication easier, and the resulting combination can be
computed relatively quickly (e.g., using a map-reduce framework).
Because we use a linear kernel SVM, the weights of the features
can also be examined.

We used SVM-rank trained on the 29 queries with relevance
judgments for 3,909 formula instances that are provided in ARQ-
Math. The penalty for misclassification during training (C) was 0.01,
and the tolerance for termination criterion (epsilon) was 0.001.

The following feature sets were used in training (names in paren-
theses are used to refer to that feature set):

e 4 Tuple matching scores (Tuple)

e 2 Maximum Sub-tree Similarity (MSS)

e 4 Node Matching scores (Node Matching)

e 4 Unweighted tree edit distance scores (UTED)

o 4 Weighted tree edit distance scores (WTED)

e 4 Cosine similarity from Tangent-CFT model (CFT)
e 7 Other tree and symbol features (OTS)

For feature sets other than the ‘OTS’ and ‘MSS’, one feature is
calculated for each of the four tree representations (SLT, OPT, SLT
TYPE, OPT TYPE). As ‘MSS’ features use unification, the full and
type representations would have the same scores, so we have only
two features in that set. All feature values are MinMax normalized
to be in the range [0,1]. For the sub-tree features, we are using the
same Tangent-S parameters as were used for ARQMath 2020.

The learned weights for deletion, substitution and insertion op-
erations in our weighted TED are respectively: SLT (0.43, 0.20, 0.41),
OPT (0.31, 0.21, 0.29), SLT TYPE (0.37, 0.29, 0.33), and OPT TYPE
(0.34, 0.25, 0.32).
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Table 2: ARQMath Formula Retrieval Task test queries. An
example for each complexity level is provided.

CounT COMPLEXITY EXAMPLE

21  Low i=v-1
16  Medium Y o
8 High @+ D+ -+ () = ()

5 EXPERIMENTS

In this section, we first study the ranking results on the whole
ARQMath collection using each feature. Then, we study if a single
model can benefit from having different formula representations.
Finally, we explore how the learning to rank model works over
the entire ARQMath formula collection and then when re-ranking
previously reported runs. All our results are calculated with the
same evaluation protocols as described in [33], but we used the
visual ids provided for ARQMath2 [14] as more formulas have been
successfully converted.

To compare the effectiveness of the systems, we consider 3 mea-
sures: Precision@5 (P/@S), Mean Average Precision (MAP/), and
nDCG/@S. For P/@S and MAP’ we binarize the graded relevance
judgments by treating only high and medium as relevant (i.e., HM’
binarization). Following the ARQMath evaluation protocols, all
these measures are calculated on visually distinct formulae (after
removal of duplicates, based on the duplicate list provided by ARQ-
Math). Post-hoc use of a test collection raises the risk that unjudged
formulae may be retrieved; we mitigate this effect by reporting the
‘prime’ version of each metric, as defined by Sakai [26], in which
unjudged formulae are removed from all ranked listed before com-
puting the evaluation measure. This is the same process that was
used for the official ARQMath scoring,? All evaluation measures in
this paper are computed using trec_eval.?

The ARQMath Formula Retrieval test collection has 29 train
and 45 test queries, all of which were constructed using the same
process after run submission and are now available for post-hoc
use [33]. Each query has a complexity tag which indicated the
organizers’ a priori estimate of query difficulty. This annotation
was initially intended to help balance the degree of difficulty of the
queries in the test collection and it was not available to participating
systems at the time; it is now available for post-hoc use to support
analysis or system training. For instance, the complexity level of
‘Low’ indicates that the organizers were expecting this to be a
comparatively easy query for the state of the art systems. Table 2
illustrates and provides statistics for these three complexity levels.

For baselines, we considered two systems [5, 15] from the 2020
ARQMath Formula Retrieval task that had the highest nDCG’ and
P’ @5 values. To provide a further basis for comparison, we also
show results for the most effective run from each of two other

2In ARQMath, the pooling process ensured that no participating run had unjudged
documents in the top 5 so the P@5 reported by ARQMath is numerically equal to
P’@S for those runs. The same may not be true for post-hoc runs, so P’@S is a
proper measure for post-hoc runs. We use the same process explained in the Errata at
https://www.cs.rit.edu/~dprl/ARQMath.
3https://github.com/usnistgov/trec_eval
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Table 3: ARQMath results, average over 45 Test topics. Mean
(1) and standard deviation (o) are shown for each measure.

e
SYSTEM P @5 MAP NDCG @5
Tangent-S [5] 0.51(0.30)  0.45(0.22) 0.58 (0.27)
Tangent-CFTED [15] | 0.53(0.36)  0.39(0.27)  0.56 (0.26)
SCM [20] 0.09 (0.22)  0.06 (0.14)  0.10 (0.22)
FormulaEmbedding [4] | 0.04 (0.09) 0.02 (0.03)  0.06 (0.13)

Table 4: ARQMath results for formula representations
(columns) used in different retrieval models (rows).

PRrECISION@5” p(0)

SYSTEM SLT OPT SLT TypE OPT TypE
Sub-tree

Tuple 0.56 (0.29)  0.51(0.32)  0.45(0.33)  0.39(0.27)
MSS 047 (0.28)  0.49(0.33)  0.47 (0.28)  0.49 (0.33)
Node Matching | 0.56 (0.32)  0.52(0.33)  0.36 (0.34)  0.40 (0.33)
Full Tree

UTED 0.61(0.32) 0.56 (0.32)  0.52(0.33) 0.43(0.27)
WTED 0.59(0.29)  0.55(0.32) 050 (0.32)  0.43 (0.29)
Embedding

CFT 0.58 (0.32)  0.59 (0.30)  0.45(0.35)  0.44 (0.31)

participating teams, SCM [20] and Formula embedding [4]. Table 3
shows the effectiveness measures for these systems.

5.1 Models with One Representation

To answer RQ1, we first look at retrieval results for each feature.
The whole ARQMath collection is ranked with each feature, and
unjudged formulae are removed. This is essentially re-ranking only
the annotated formulae. This analysis provides insight into the
limitations and strengths of each model and representation.

Table 4 shows P’ @5 for each feature. (due to space limitations,
nDCG @5 and MAP' are not shown, but they yield similar com-
parisons). The main findings are: (1) ranking with the Full SLT
representation using the UTED model yields the highest P @5, (2)
full representations work better than type representations, and (3)
SLTs provide better retrieval results than OPTs.

Detailed analysis. Table 4 shows that unification cannot pro-
vide better retrieval results than full representation. Considering
the SLT representation, moving from the UTED model to the MSS
model, P’ @5 drops from 0.61 to 0.47. There are formulae for which
the symbols should not be ignored, and unification leads to higher
ranks for non-relevant formulae. For the query limy,— e 'é—:l =0,
a relevant formula such as lim; Z—l; = 0 and a non-relevant for-

o—1
mula like limy_wo yey = 0 get similar matching scores. Another

example is the CFT model for which there is 15% drop in P’ @5
moving from full to type OPT representation. Table 5 shows the

o
top-5 results returned for query /x -0 w by OPT full and type
representations using the CFT model. As this illustrates, unification
cannot distinguish the non-relevant symbols in retrieved formulae.
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Table 5: CFT Top-5 assessed hits for query /xojo Smxﬂ using
OPT and OPT Type representations.

Rank | OPT RELEVANCE OPT TyPE RELEVANCE

1 Zj::l sin)((x) Low Z:’:o smr(ln) Low

2 /000 % Medium Yt Lﬂ'(z") Low

3 / Sigx dx  Medium Yo W Non-relevant

x=0
4 [ siix  High o, ) ow
5 Sin(x) High Z(x) sin(n) Non-rel t
. ig =l T on-relevan

SLT representations can provide a slightly better result than
OPT representation, except for the CFT model. However, the re-
trieval results confirm our assumption in Section 3.2 that both
representations are useful for retrieval. For example, for the query
A? + B? = C? 4+ D? (from examples in Section 3.2), with the tuple-
based model, non-relevant formulae such as D = A% + B2 + C?% get
higher ranks with OPT. For this query (with tuple-based features)
P’@5 for OPT is 0 and for SLT P’@5 is 0.6. In contrast to this, for
queries such as (1 + iV3)1/2 (from the examples in Section 3.2) the
P’@5 for SLT and OPT are 0 and 0.4, respectively. The SLT gave
higher ranks to low-relevance formulae such as (1 + iv3)/2 that
share a common appearance.

Finally, we focus on OTS (Other Tree and Symbol) features, some
of which cannot be computed for some representations. These fea-
tures yield weak similarity scores compared to tree or embedding
matching. Three of these features compare the symbols between
the query and the candidate using their operators, variables, and
numbers. The other 4 features compare the general tree structure
of two formulae. Ranking with these four features had less effec-
tiveness with the average P’ @5 of 0.02 for each feature. However,
the matching features could achieve P’@5 of 0.32 for operator, 0.27
for number, and 0.26 variable matching. For example, for the query
(x + y)k > xk + yk, the P'@5 for operator matching is 1. With
operator matching, formulae with nearly the same operators and
different variable names such as (x + y)? > x% + y¢ get high sim-
ilarity scores. For our next analysis, we just keep the three OTS
matching features (matching variables, numbers, and operators),
ignoring the other four OTS features.

5.2 Models with Multiple Representations

After looking at different representations, we focus on RQ2 by
training SVM-rank for each model using all representations: SLT,
SLT Type, OPT, and OPT type. Our goal is to study if one model
can provide better retrieval results using multiple representations.

Overall, the experiment results show that some models have
strengths that other models do not. Table 6 shows the P/@S, MAP/,
and nDCG @5 for each of the models. Using an ANOVA followed
by a Tukey HSD (Honest Significance Difference) test, OTS features
yielded results that were significantly worse than all other models
except MSS (p < 0.01), but the differences between other pairs of
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Table 6: ARQMath results (45 topics) for SVM-rank over
rank scores from retrieval models applied to four formula
representations (SLT, SLT Type, OPT, and OPT Type).

, p(o) )

FEATURE SET P @5 MAP NDCG @5
Sub-tree

Tuple 0.56 (0.30)  0.52(0.24)  0.64 (0.25)
MSS 0.50 (0.32)  0.53(0.26)  0.54 (0.30)
Node Matching 0.60 (0.29)  0.57 (0.24)  0.67 (0.25)
Full Tree

UTED 0.55(0.33)  0.54(0.26)  0.62 (0.29)
WTED 057 (0.33)  0.56 (0.26)  0.63 (0.30)
Embedding / Other

CFT 0.57 (0.33)  0.52(0.24)  0.64 (0.26)
OTS 036 (0.32)  0.34(0.26)  0.39 (0.33)

systems are not statistically significant. Comparing Tables 4 and 6,
we see that MSS and Node Matching benefit from LtR over all four
representations. For other models, using a single representation
would be just as good or better, but only if the best representation
were known a priori.

Formula Complexity vs. Retrieval Model. There are signs
that each set of features may do better for different formula com-
plexities. We recalculated the P’ @5 values for each set of features
per complexity category (see Table 7). For formulae with low com-
plexity, ranking with CFT works best, for formulae with medium
complexity the full-tree features are more effective, and for for-
mulae with high complexity, ranking with sub-tree features does
better.

We initially assumed that ranking with CFT features would pro-
vide better results for simpler formulae, where approximately simi-
lar formulae can be informative. However, we did not expect tuple
features to outperform TED features for complex formulae, where
it seemed whole-tree matching would be best. There are two pos-
sible reasons for this. First, most formulae identified as complex
are larger than many other formulae. Therefore, finding partial
matches can provide better retrieval results. Second, what has been
annotated as medium complexity in the ARQMath collection might
be misleading; a formula that seems complex from a human per-
spective might not be complex for a machine. For the 16 queries
that have medium complexity, on average, there are 23 formulae
considered as relevant with an average of 13 formulae having high
or medium relevance. These numbers increase for the 8 formulae
with high complexity, with an average of 30 relevant formulae per
query and 19 formulae that have high or medium relevance.

Feature Weights. One useful property that SVM-rank provides
is the weights for each feature. Table 8 shows the weights for each
of the matching scores with different representations. Overall, in all
the matching features, the full representations have higher weights
compared to type representations, with OPT type being the less
informative feature. This aligns with the finding in [16] where the
OPT type representation was ignored.

Missing Features. There are some ARQMath queries that per-
form poorly for all of the models. For instance, for

Empty(x) < Ay(y € x)
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Table 7: Results from Table 6 broken down by query com-
plexity (see Table 2) for different feature sets.

P'@5 p(o)
FEATURE SET Low (21)  MepruMm (16)  HicH (8)
Sub-tree
Tuple 0.66(0.32)  0.48 (0.28)  0.55 (0.26)
MSS 0.54 (0.34)  0.48(0.29)  0.45(0.37)
Node Matching 0.71(0.26)  0.49(0.32)  0.55 (0.23)
Full Tree
UTED 0.58 (0.35)  0.56(0.32)  0.45 (0.32)
WTED 0.66 (0.36)  0.55(0.29)  0.40 (0.26)
Embedding / Other
CFT 0.72 (0.28)  0.49(0.29)  0.35(0.35)
OTS 0.51(0.33)  0.24(0.26)  0.22(0.27)

Table 8: SVM-rank weights for retrieval models using four
formula tree representations (OPT, SLT, OPT Type, and SLT
Type). Weight comparisons should be made within rows.

OPT SLT
MobEL Furr Type Fuir Type
Sub-tree
Tuple 2.78 0.05 3.19 1.53
Node Matching | 1.74 -0.09 | 232 117
Full Tree
UTED 5.89 4.62 5.78 5.03
WTED 3.74 2.28 5.23 3.45
Embedding
CFT 1.94 -0.98 | 4.98 3.40

only tuple matching features had a P @5 greater than 0. There are
seven relevant formulae in the collection for that query, but some
would require symbolic manipulation based on mathematical rules
to find. For instance, the formula ‘+ 3xVy(y ¢ x)’ is highly relevant,
but none of the feature sets will be able to capture the similarity of
these two formulae. Therefore, canonicalization of mathematical
formulae may improve results [19, 27].

There are also formulae in ARQMath where the proper inter-
pretation is shaped by associated query text, which we have not
used. Other formulae that may be similar to the query in terms
of SLT and/or OPT may come from a different context, in which
symbols refer to different operations or values (e.g., sets vs. real
numbers), and so are annotated as non-relevant. For instance, the
query Z—J; = f(x + 1), appeared in a question where someone was
asking for solving “differential equations”. There are formulae such
% = f(x) in the collection that are annotated as non-relevant.

Additional Analysis. Ranking with SVM-rank trained on CFT
features, we see that for the query p, = %pn_l, P @5 is 0.8. By
contrast, P’ @5 is 0 for both full-tree features, and 0.2 for each set of
sub-tree features. In this query, p, represents a probability, but for
example with TED features formulae such as b,, = %bn_l are found
because a substituting p for b yields a match. However, we can see
by looking at the post in which it appears that by, in that retrieved
formula refers to an element in a sequence and not a probability,
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Table 9: Ranking with Other Tree and Symbol features
(OTS): Top-5 hits for query: a® + b3 + ¢> — 3abc.

RaNk ‘ FormuLA RELEVANCE SCORE
1 a3 +b°+c3 —3abc  High

a®+¢3 =3abc — b  Medium

a®+ b3+ =3abc  Medium
a>+b3+c3—abc  High

a®+ b3 +c3 —6abc  High

gl W N

and therefore this formula was correctly annotated as non-relevant.
CFT features, by contrast, are capable of finding similar formulae
by prioritizing formulae that share common symbols.

Sub-tree matching features can also do well. There are large and
complex formula queries such as:

] reswaray- //Q F@(w,0)

for which sub-tree matching can be more effective. The P’ @5 for
ranking with tuple features is 0.8, whereas for CFT P’ @5 is 0 and
0.2 for UTED and WTED, respectively. The first retrieved formula
by CFT features is:

od 0P
—_— X —_—
u v

8(x,
[ sxwaxay= [ 15 s xtw, gt opdude

which is annotated as non-relevant. As can be seen, the same prop-
erty of CFT features, giving high rank to formulae with common
symbols, provides a better ranking for the previous formula but not
this one.

Sub-tree matching cannot always provide relevant results. For
instance, for the query:

-P—>A;—> ... oA, > P

with the sub-tree matching feature tuple, a non-relevant formula
-A—>A—>B

is the first retrieved formula. For some of the queries, partial match-
ing provides less relevant results. TED features can overcome this
issue by looking at the whole tree. For the above query, ranking
with tuple features results in P’ @5 of 0.2 whereas with TED features
P’ @5is 0.8.

As Table 6 shows, WTED features can slightly improve P @5.
For query (1 + iV3)1/2, ranking with UTED features has P @5 of
0; for WTED features P’ @5 is 0.4. As operation costs learned from
training queries tend to give lower weight to substitutions, formula
(1+ \/§i)1/2 is in the top-5 results for WTED features, whereas
for UTED features in which all operations have the same weight a
non-relevant formula such as (1 + iV3)8 gets a higher rank.

Ranking with other tree and symbol (OTS) features can also find
relevant formulae for some of the queries. For four low-complexity
queries, using this set of features P,@S was 1. Table 9 shows the
top-5 results returned when ranking with other-tree features for
the query a® + b® + ¢ — 3abc. As these results indicate, for some
queries, simple features such as the number of matching operators,
variable names, and numbers can provide effective results.
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Table 10: ARQMath results for SVM-rank using different
feature subsets.

u(o)
FEATURES FROM TABLE 8 P,@S MAP NDCG’ @5
All features 0.61(0.31)  0.57(0.24)  0.68 (0.26)
Top-6 Weights 0.61(0.30)  0.58 (0.24)  0.67 (0.25)

All features: no OTS 0.64 (0.27) 0.58 (0.23) 0.69 (0.21)

5.3 Multiple Models with Multiple
Representations

Finally, we look at whether our learning to rank model can further
improve retrieval results by using multiple retrieval models with
multiple formula representations (RQ3). As noted before, our OTS
features are less informative than the similarity scores from the
retrieval models, so although we do train a LtR model with all
features and retrieval models, we also train a LtR model without
the OTS features. Because running a large number of retrieval
models concurrently can be costly, we also create a third LtR model
using only the retrieval models with the highest learned linear
weights (in this case, with absolute weight > 0.3) to see whether a
smaller model can perform similarly.

Table 10 shows results for these three conditions. Removing OTS
features improves all measures, and produces the highest P @5,
MAP’, and nDCG @5 values yet reported for this test collection.
Moreover, the LtR model using fewer ranking models as features
yields results that are nearly as good at roughly half the compu-
tational cost. Using a one-way ANOVA followed by Tukey HSD
tests on P’ @5 values, all three of these models are significantly
different from the ARQMath baseline systems (p < 0.01) in Table
3, but differences between models in Table 10 are not statistically
significant.

For some queries, a single ranking model performs better than
combining multiple ranking models, but such cases are rare in
ARQMath. For instance, for query -P — A1 —» ... —» A, — P,
sub-tree matching finds some formulae matching small parts of the
expression that were assessed as not relevant. As a result, P’ @5
decreases from 0.8 using UTED alone to 0.4 when using all features.
However, more commonly the SVM-rank model using all ranking
models performed better for complex formulae, where sub-tree
matching often proved beneficial.

Feature Computation Times. For each retrieval model, we cal-
culated the average time needed to compute the similarity between
a query and a single candidate formula in milliseconds, averaging
over formulae in all representations (SLT, OPT, SLT Type, OPT
Type). The times shown in Figure 2 were computed using a single
thread on an Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz with
528GB RAM. Note that MSS and node matching features are com-
puted together in one pass by Tangent-S. As can be seen, calculating
similarity features for a large collection is impractical, particularly
for tree edit distances. Given this, we next look at how our learning
to rank model can be applied for re-ranking rather than ranking
the whole collection.

Re-Ranking ARQMath Runs. To further validate our learning-
to-rank model, we applied our best model (All features: no OTS) to
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Figure 2: Per-query feature calculation time for a single for-
mula tree in milliseconds, aggregated over 45 queries using
OPT, SLT, OPT Type, and SLT Type representations.

Table 11: Re-ranking ARQMath Task 2 runs using the best
SVM-rank model. All mean scores improve in every metric.

, #io) :

SYSTEM P @5 MAP NDCG @5
Original Runs

Tangent-S 0.51 (0.30)  0.45(0.22) 0.58 (0.27)
Tangent-CFTED 0.53(0.36)  0.39(0.27)  0.56 (0.26)
SCM 0.09 (0.22)  0.06 (0.14)  0.10 (0.22)
FormulaEmbedding | 0.04 (0.09)  0.02 (0.03)  0.06 (0.13)
Re-ranked Runs

Tangent-S 0.62(0.30) 0.52(0.22) 0.69 (0.23)
Tangent-CFTED 0.58(0.32)  0.42(0.27)  0.65 (0.26)
SCM 0.18 (0.29)  0.10 (0.16)  0.21 (0.20)
FormulaEmbedding | 0.15(0.21)  0.05(0.11)  0.22(0.25)

the best runs from participating teams in the ARQMath formula
retrieval task. Each original run contained up to 1000 formulae per
query. Table 11 compares submitted runs against our re-ranked
results. Using the same system settings, on average, the time to re-
rank the top-1000 results for a query is 3.10 seconds (time-averaged
over 45 queries). The SVM-rank could be run using a map-reduce
architecture, with each retrieval model executed in parallel. With
the parallel execution, the retrieval time drops to an average of
1.53 seconds per query with tree-edit distance being the most time-
consuming model.

The average value for all effectiveness measures improves after
re-ranking. T-tests on both P/@S and nDCG/@S scores between
each original and re-ranked result show a significant difference,
except for Tangent-CFTED (p < 0.01). Providing examples on the
results, Tangent-S uses sub-tree features for ranking, shown earlier
to produce better results for complex formulas (see Table 7). With re-
ranking P’ @5 for low-complexity queries improves for this system.
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For example, PI@S for query (M2x2(Q), X) increases from 0 to 0.8,
and non-relevant formulae such as T : Max2(R) — Moxs(R) are
pushed down in the results after re-ranking. The re-ranked Tangent-
CFTED results also improved, by incorporating features other than

full-tree matching; for the query fom Si;ax , after re-ranking the

P’ @5 score for the query increases from 0.4 to 0.8.

6 CONCLUSION

Prior methods in which hand-engineered combinations across two
or more representations (e.g., Symbol Layout Trees and Opera-
tor Trees, with or without unification) have pointed the way to
the gains in ranking quality that can be achieved by combining
evidence. In this paper, we have shown that combining evidence
from multiple similarities computed on the same representation(s)
provides complementary evidence that can yield further improve-
ments. Moreover, we have shown that with relevance judgments
for a modest number of training queries that it is possible to learn
to combine that evidence in ways that yield a new state of the art
for the formula retrieval task.

Our work opens several new directions that we plan to pursue.
First, we can generate additional features that could lead to fur-
ther improvements. As one simple example, we might measure the
potential of using query complexity features of the type that are
available in the ARQMath test collection. If that proves produc-
tive, we might then draw on the literature from query performance
prediction to automatically generate informative features for char-
acterizing query difficulty. We are also interested in exploring the
use of graph and visual formula embeddings [25] for similar rea-
sons. A second line of future work would be to explore alternative
learning to rank frameworks, including techniques such as Lamb-
daMART that are designed for robust results with limited training,
or—for some settings—data-hungry neural techniques.

Unlike the formula retrieval task, the ARQMath community
question answering answer retrieval task includes both text and
math. The learning to rank framework that we have demonstrated
in this paper would clearly be applicable to that task as well, with the
presence of text (and the potential presence of multiple formulae)
offering even greater scope for feature design. This is the third clear
line of future work that we plan to explore.

What makes all of this possible is the existence of a sufficiently
large test collection for the task. There is a synergy between system
building and collection building; better systems can better target
the effort invested in creating relevance judgments, which in turn
can yield better training data for building better systems. We are
still early in that process, but the first step along that path is to
place formula retrieval on a firm foundation as a learning to rank
task, as we have sought to do in this paper.
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