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The structure of the axoneme in motile cilia and flagella is emerging with
increasing detail from high-resolution imaging, but the mechanism by
which the axoneme creates oscillatory, propulsive motion remains myster-
ious. It has recently been proposed that this motion may be caused by a
dynamic ‘flutter’ instability that can occur under steady dynein loading,
and not by switching or modulation of dynein motor activity (as commonly
assumed). In the current work, we have built an improved multi-filament
mathematical model of the axoneme and implemented it as a system of
discrete equations using the finite-element method. The eigenvalues and
eigenvectors of this model predict the emergence of oscillatory, wave-like
solutions in the absence of dynein regulation and specify the associated
frequencies and waveforms of beating. Time-domain simulations with this
model illustrate the behaviour predicted by the system’s eigenvalues. This
model and analysis allow us to efficiently explore the potential effects of
difficult to measure biophysical parameters, such as elasticity of radial
spokes and inter-doublet links, on the ciliary waveform. These results sup-
port the idea that dynamic instability without dynamic dynein regulation
is a plausible and robust mechanism for generating ciliary beating.

1. Introduction

Cilia are slender organelles that cells use to move fluid or propel themselves.
Motile cilia clear mucus from our airways, circulate cerebrospinal fluid in our
brain ventricles and play important roles in reproduction and embryonic develop-
ment. Cilia are highly conserved from single-cell ciliates to humans. Ciliary
motion is driven by an active, microtubule (MT)-based cytoskeletal structure
known as the 9 +2 axoneme (figure 1). The axoneme is approximately 200 nm
in diameter and consists of nine outer microtubule doublets (MTDs) arranged
in a cylindrical array surrounding two inner MT singlets in the central pair com-
plex (CPC) [3,4]. The CPC is connected to the MTDs by radial spokes (RSs), and
adjacent MTDs are circumferentially interconnected by nexin—dynein regulatory
complexes (NDRCs). Though the basic structure of the axoneme has been known
for decades, details of its intricate architecture are still emerging [5-8].

Ciliary beating is driven by the motor protein dynein. Dynein is arranged in
arrays of inner and outer arms permanently attached by tail (stem) structures to
the A subtubules of the outer MTDs. At the opposite end of each dynein arm is
a stalk that terminates in a microtubule binding domain (MTBD) that intermit-
tently attaches to the B subtubule of the adjacent MTD. Dyneins create a one-
way sliding force between adjacent MTDs through a cycle of binding,
power stroke, release and reconfiguration using energy from the hydrolysis
of ATP [2,9]. This one-way sliding force has been shown and measured
experimentally [10-14].
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Figure 1. (a) Structure of the axoneme. Reproduced with permission from [1]. (b—e) Model of an individual dynein arm and interaction with an MT. Reproduced
with permission from [2]. Upon binding an ATP molecule, the MTBD releases and the dynein reconfigures, moving the MTBD towards the minus end of the MT (b,c).
Hydrolysis of ATP causes a rebinding of the MTBD to the MT and ‘power-stroke’ reconfiguration of the dynein that pulls the cargo (the A subtubule of the adjacent
MTD in the case of axonemal dynein) towards the minus end of the bound MT (d,e). DRC, dynein regulatory complex.

Most research on waveform generation has been guided
by the assumption that oscillatory motion requires periodic
modulation of dynein activity, so that dynein arms on each
side of the axoneme alternately produce bending in the
corresponding direction [15]. There are multiple competing
theories of dynein regulation. Several theories propose that
dynein activity is regulated locally by feedback, from
either inter-doublet sliding [16,17], axoneme curvature
[18,19] or axoneme twist [20]. Some possible biophysical
mechanisms have been proposed for such feedback [21,22],
but, to date, none have been clearly established. Other
studies have postulated regulation of dyneins through a
mechanically or chemically distributed signal [7,23].

Although the assumption of dynein switching or regu-
lation is intuitive, it may not be necessary. Steady forces or
fluid flows produce oscillations in many mechanical systems,
such as flags or aircraft wings, by a mechanism known as
dynamic instability or ‘flutter’ [24]. Dynamic instability
occurs when a system departs from equilibrium by way of
oscillations of increasing amplitude. In the case of filaments
under steady axially oriented loading, the dynamic instability
arises as the deflection of the initially perturbed filament re-
orients the local tangent vector and, therefore, re-orients the
direction of axial load. This phenomenon is well known for
the case of a ‘follower” end load (Beck’s column) and has
also been studied in filaments with distributed follower
loads (figure 2) [25-28]. The phenomenon in which an oscil-
latory system becomes unstable and a periodic solution
emerges as a control parameter is varied is called a ‘Hopf
bifurcation” [29].

Previous studies have suggested that steady (unregu-
lated) dynein forces can lead to oscillatory, cilia-like beating
in models of the axoneme through dynamic instability
[28,30,31]. In the current work, we develop an improved
model and a corresponding system of discrete equations,
which can be analysed to efficiently explore the effects of var-
ious biophysical parameters on predicted beating behaviour.

This study advances earlier work in three ways. (i) The
current model enforces the exact balance of internal dynein
forces. The equations in prior models [30,31] included the
approximation that opposing dynein forces between two
doublets act parallel to each doublet. While this is approxi-
mately true, when doublets are not perfectly parallel,
internal forces do not balance exactly. In the current model,
the opposing forces on each active doublet pair are aligned
in the direction of their average tangent vector, enforcing
balance. (ii) The current model is implemented using a
custom finite-element approach to obtain discretized
equations governing the motion of multiple coupled doub-
lets. These equations can be analysed efficiently by finding
eigensolutions that identify and characterize oscillatory be-
haviour. (iii) The current model includes a model of dynein
arm kinematics that predicts changes to the force and
moment produced by the dynein motor under variation of
the inter-doublet spacing.

In any mathematical model, the choice of parameters is
important. In general, a model is more useful if its predictions
are not sensitive to parameter values, i.e. the existence of a cer-
tain behaviour does not depend sensitively on the precise value
of an unknown parameter. The ability of a model to predict
trends in behaviour in response to changes in parameter is
also important. A useful model will predict trends in simulated
behaviour that resemble trends in observed behaviour under
analogous parameter variations. The complexity of the axo-
neme leads to a large set of parameters, and its spatial scale
(on the order of nanometres) makes it difficult to determine
those parameters. While some parameters may be measured
experimentally, others may only be estimated from the size,
shape and composition of substructures, and some parameters
are not known at all. In this situation, models can be used
to estimate plausible values for unmeasured or currently
unmeasurable parameters.

The custom finite-element implementation of the current
model allows us to efficiently explore this large parameter
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Figure 2. (a) A single filament with a follower tip load (Beck’s column) provides an example of flutter. (b) Oscillation shapes of the filament under tip load through
one half-cycle (from blue to green in time). (c) A single filament with a distributed follower load loosely approximates the distribution of dynein along the MTD, but
lacks internal force and moment balance. (d) Oscillation shapes of a filament under distributed follower load through one half-cycle (from blue to green in time).
(e) The eigenvalues of either system, linearized about the straight equilibrium, predict exponentially growing oscillations (flutter) when the applied load is larger
than a critical load. This panel shows transverse tip displacement for an unstable oscillation. (f) Tip displacement prediction from a time-domain simulation that
includes geometric nonlinearities. Nonlinearities typically limit growth, leading to finite oscillations (limit cycles).

space to find ranges of parameter values that generate
propulsive, oscillatory waveforms. It further allows us to
investigate the effects of model parameters on behaviour. In
particular, the aggregate elastic and dissipative properties of
the components that couple doublets to each other, either
directly or through the central apparatus, such as the RSs
and NDRCs, are difficult to characterize. In this study, we
investigate the role of these inter-doublet coupling elements
in determining the existence and properties of oscillatory
waveforms produced by steady, unregulated dynein activity.

2. Methods

2.1. Modelling the axoneme

MTs within the axoneme are modelled as Euler-Bernoulli beams
subject to inter-doublet dynein forces, inter-doublet viscoelastic
coupling and viscous resistance due to the fluid in which the
cilium is beating. The boundary conditions on each beam rep-
resent attachment at the basal body. The system was first
reduced to a single beam with a baseward-oriented follower
load (figure 2c) to study the behaviour of a single filament
under steady dynein-like loading.

A system of two coupled beams in two dimensions
(figure 3b) was then used to study how the coupling of two
doublets affects the dynein force required to cause the system
to oscillate, as well as the beating shape and frequency. In this
system, the dynein forces are modelled as equal and opposite
forces on the two beams, and a distributed moment is imposed
owing to the distance (the length of the dynein arm) between

the opposing forces. Distributed springs and viscous dampers
couple the two beams.

A system of four coupled beams in three dimensions (figure 3c)
was created to model axoneme behaviour more accurately. This
system essentially couples two of the previously described two-
doublet systems so they act in opposition; its three-dimensional
structure allows out-of-plane beating. The four-filament system
is the least complex system in which the bending moments of
opposing MTD pairs oppose each other. Finally, the model was
extended to include six outer MTDs coupled to a central filament
representing the CPC (figure 3d). While still a simplification, this
seven-filament system replicates the approximately circular
symmetry and behaviour of the axoneme.

2.2. Rotational symmetry of the axoneme

The axoneme has several features that may cause it to bend pre-
ferentially in the plane that passes through MTD 1 and between
MTDs 5 and 6. One is the CPC, which rotates in some species,
but not in others [32]. Others are permanent cross-bridges
between MTDs 1 and 2 in Chlamydomonas cilia [4], and between
MTDs 5 and 6 in other species [33]. In sperm flagella, a central
partition lies between MTDs 3 and 8 [34,35]. To model these
effects, the bending stiffness of the axoneme was doubled in
the out-of-plane direction. To model the effects of inactive
dynein cross-bridges, the normal elastic stiffness between ‘inac-
tive doublet pairs’ was increased by a factor of 10 relative to
the stiffness between ‘active doublet pairs’.

2.3. Modelling the applied dynein force and moment
Because dynein motors are distributed along the axoneme, the
force of a linear array of dyneins applied to a single MTD is
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Figure 3. Mathematical models of the axoneme. (a) Conceptual model: dyneins between MTDs 2, 3 and 4 are placed in one ‘active’ group and dyneins between
MTDs 7, 8 and 9 are placed in another ‘active’ group on the opposite side of the beat plane. The two groups are treated as having 180° rotational symmetry about
the central axis. (b) The two-doublet system is modelled as a pair of beams with tangential follower loads, moments, and elastic and viscous damping. See
the electronic supplementary material, for details. () Combining two two-doublet systems creates the simple four-doublet representation. Baseward and tipward
forces are represented as dotted and crossed circles, respectively. Orange arrows represent applied moments. (d) Adding additional doublets and a beam represent-

ing the CPC leads to a more accurate seven-beam model of the axoneme.

modelled as a distributed force approximately tangent to the
longitudinal axis of the MTD (figure 2c). This ‘distributed fol-
lower load” model [26] leads to oscillatory beating, but
physically it is incomplete as it does not maintain a balance of
forces within the axoneme. Therefore, in multi-doublet models,
dynein forces are modelled on pairs of MTDs, where the
dynein forces applied to one doublet are equal and opposite to
the dynein forces applied to the adjacent doublet. These forces
are oriented along the average tangent vector of the two doub-
lets. Basing the dynein force orientation on the average tangent
angle rather than orienting dynein forces directly along the tan-
gent vector of each doublet ensures a balance of internal forces
(a key improvement on the model of [30]). Additionally, there
must be a distributed bending moment applied to one or both
doublets to account for the moment created by the dynein
force couple (figure 3b).

2.3.1. Dynein force or moment will depend on inter-doublet

spacing

In the simplest model of dynein as a steady-force mechanical
motor, the shear force created between adjacent doublets is con-
stant, as is the moment created by the application of forces
separated by the inter-doublet spacing. However, the axoneme
is a dynamic system in which the spacing between adjacent
doublets varies as the cilium deforms. There are several possible
ways to model the relationship between the dynein force and
moment as the inter-doublet separation varies.

Under case A, the axial component of the force produced by
the dyneins is constant and, in the linearized model, the moment

is exactly proportional to the inter-doublet distance a =4, + da,

m:mo(l +%) (2.1)
o

Here mg = poay (the moment due to the steady dynein force,
po, and undeformed inter-doublet spacing, ao). This case in
which the moment is directly proportional to the inter-doublet
spacing will be referred to as having a moment gain of 1.

Under case B, the dyneins are assumed to produce a constant
moment (moment gain=0), so the axial force is inversely pro-
portional to the inter-doublet distance: p = my/(ag + da). When
this is linearized using a first-order Taylor series expansion, the
equation for the force becomes: p = (19 /ag)(1 — (8a/ay)).

A third case, case C, is one in which the moment produced by
dynein increases less than proportionally with increasing inter-
doublet separation (moment gain less than 1). The dynein
moment may even decrease with inter-doublet spacing (moment
gain less than 0). This behaviour occurs in the kinematic model
of the dynein motor shown in figure 4. In this model, the stem
of the dynein is treated as a rigid arm and the stalk is treated
as a flexible fibre in tension, so the dynein arm acts like a mech-
anical ‘winch’ [36,37]. A geometric analysis and linearization of
this model leads to equations for the variation of moment and
axial force with respect to variation in inter-doublet spacing.

If the length of the stalk is assumed constant and the
longitudinal attachment length, b, is allowed to vary with the
inter-doublet spacing, a =ag + da, the equations become

m:mo(l-‘r (l—W) %). (2.2)

The difference between equation (2.2) for the dynein winch
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Figure 4. (a) Dynein schematic diagram. Adapted from [2]. (b) Model of dynein kinematics. The inter-doublet spacing is g, the dynein stem length is d, the distance
from the stem to the binding domain is L and the longitudinal distance between the fixed attachment at MTD n and the transient attachment at MTD n + 1 is b.
The dynein force is modelled as a tensile force along the stalk, which is treated as a flexible fibre.

Table 1. Estimated values of some axoneme parameters.

parameter estimated value
L 5.6-200 pm
Bl 200-1000 pN-pm?
ks 10°-2.5 % 10° pN pm 2
p 20-1000 pN pm ™"
Q 7/200
ke e prm g

model and equation (2.1) for the steady dynein force model is the
moment gain term (1 — ag(ap — d)/b?) in front of the inter-doublet
distance variation. This value is less than unity; in fact, for plaus-
ible estimates of this dynein geometry, the moment gain is
negative, indicating that the moment decreases as the inter-doub-
let spacing increases. Moment gain is incorporated into an
additional matrix term in the equation of motion (see electronic
supplementary material, section 54).

2.4. What are the parameters that affect ciliary beating?
As any model increases in complexity, the number of model
parameters grows as well. Estimates are available for some
mechanical properties of the axoneme, such as the flexural rigid-
ity of MTDs [38-40]. However, other properties, such as stiffness
and damping of individual NDRCs and RSs, are not easily
measured; this leaves the corresponding parameters undeter-
mined within a large, physically plausible range (table 1). The
efficient exploration of this undetermined parameter space—
exploring the effects of parameter combinations on the overall
behaviour of the model system—is the focus of this work. By
identifying which parameter combinations give rise to cilia-
like oscillation, we can efficiently obtain estimates of physical

description references
length of cilia of various organisms and gametes [41-43]
e [344] L
flexural rigidity of axoneme [38,45,46]
CORCrem s [4748] o
RS axial stiffness estimated
e [38] N
applied dynein force [10,11]
e [4950]
link damping estimated
L tangent 'a'hgie'cbu'p'l'ihg' S

properties that would lead to beating under steady dynein
loading.

2.5. Overview of derivation of finite-element equations
of motion

The mathematical model used in this study is based on the finite-
element method. For a single-beam element, displacements are
represented as a sum of basis or shape functions ¢;, which are
functions of the longitudinal position x. The nodal displacements
or generalized coordinates, q;, are functions of time, ¢,

yah =Y G@q. (2.3)

Using small-angle assumptions and Euler-Bernoulli beam
theory, equations were derived for the kinetic and potential
energy of the beam in terms of the generalized coordinates. Using
equation (2.3) to represent the state of the continuous system by a
finite number of these coordinates, Lagrange’s equations (equation
(2.4)) were employed to derive the discretized equations of motion,

d (oT\ oT oV .
a(@)*@*a?f—@f' @4
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The resulting equations take the form (using Einstein notation)
.[ i ¢; dx +q/J Cupip; dix + q,J EI¢"; ¢ dx
L
+g; Jo N¢'; ¢; dx = g; Jo —p¢idjdx. (2.5)

Here 71 is the mass per unit length (kg m™), ¢, is a distributed
resistive force coefficient (Nsm™), EI is the flexural rigidity
(Nm?), N(x) is the internal axial tension (N) and p is the distributed
follower load (N m™"). Derivatives with respect to t are denoted
with an overdot, and derivatives with respect to x are denoted
with a prime. The first and third terms of equation (2.5) represent
the consistent mass and stiffness matrices. The fourth term is a ‘geo-
metric stiffness matrix’ that describes the effects of loading on the
effective stiffness of the beam (filament). The viscous damping
matrix (second term) and non-conservative follower load matrix
(right-hand term) are derived from the virtual work of these non-
conservative forces under variation of the generalized coordinates.

Finite-element matrices (4 x 4) for individual elements were
created by analytically evaluating the terms in equation (2.5)
with cubic Hermite interpolating polynomials for shape func-
tions, and these element-level matrices were combined to create
filament-level matrices. System-level matrices for multi-filament
systems were created by combining filament-level matrices in
block matrices.

Additional system-level matrices were derived to model
viscoelastic coupling between filaments and follower loading
on active MTD pairs based on the average tangent angle (to
ensure internal force balance). Coupling block matrices are cre-
ated as the Kronecker product of a truss matrix representing
the filament links and the filament-level coupling matrices.

The final system may be written compactly as

Mg+Cq+ K+ Kg—P)g=0. (2.6)

M is the system-level consistent mass matrix (a diagonal block
matrix of beam-level mass matrices). C is the damping matrix
which captures the effects of external fluid damping (mass
proportional), internal beam damping (stiffness proportional)
and damping in the beam coupling. K is the global stiffness
matrix which captures both the flexural rigidity of the individual
beams and the beam coupling stiffness. K¢ is the system-level
geometric stiffness matrix. P is the system-level geometric loading
matrix, which, because of the non-conservative follower load, is
non-symmetric. This loading matrix represents the ability of non-
conservative forces to add energy to the system and leads to the
possibility of dynamic instability without dynein regulation.

2.5.1. Non-dimensionalization of the system

The system above can be written in dimensionless form using
appropriate definitions of characteristic length, time and force
(table 2); this reduces the complexity of the matrix equations
and avoids ill-conditioning. The system in equation (2.5) is first
non-dimensionalized using a characteristic length, L, and a
characteristic force, f. = EI/L2. Using parameter estimates for
typical cilia [30] the coefficient of the dimensionless mass
matrix is of the order of 107, hence inertial terms are neglected.
The characteristic time is chosen to be 7=cyL*/El so that the
period of the system will generally scale with cy,

mL*
() -+ (5

Cq+ (K +Kg — P)g=0. (2.8)

ol )Cq+(K+Kc—P)q 0 @7

and

System behaviour is described in terms of dimensionless par-
ameters, such as the dimensionless dynein force p = pL3/EI and

Table 2. Example dimensionless model parameters.

dimensional dimensionless description
L=12pm ~ characteristic length
73 pN-um ~ flexural rigidity per
filament
¢y = 0.003 pN-s um_2 ~ resistive force
coefficient
7=0.8554s ~ characteristic time
ol /el
L3
p=25pN ym~"! B — 600 ﬁ:”E—l
5 . kst
ks = 3.5 % 10° pN-pm? k=10 ks =— T

the distributed link stiffness non-dimensionalized as k = kL*/EL
Table 2 lists example values of these dimensionless parameters.

2.6. Eigenvalue-based stability analysis of linearized
finite-element model

The analysis is based on finding the eigenvalues and eigenvectors
of the finite-element matrices of the system, linearized about an
equilibrium position (linear stability analysis). The construction
of the finite-element matrices and subsequent eigenvalue analysis
are computationally inexpensive and can be easily parallelized.
This allows rapid generation of solutions over a wide range of par-
ameter combinations to obtain a quantitative portrait of system
behaviour over the defined parameter space.

Once the finite-element matrices have been assembled, the
eigenvalues and eigenvectors of the system are found
numerically (figure 5) using the Matlab solver eig() [51]. The
real part of each eigenvalue tells us the rate of growth (positive
real part) or decay (negative real part) of the corresponding
mode shape. The imaginary part of the eigenvalue tells us the
frequency of oscillation (if it is non-zero). Eigenvalues with a
positive real part and a non-zero imaginary part are said to be
dynamically unstable. Dynamically unstable modes exhibit
growing oscillations when perturbed from equilibrium. In most
physical systems, such growing oscillations are limited in ampli-
tude by nonlinearities in the system, and settle into limit cycles.

Each eigenvalue has a corresponding eigenvector which
determines the waveform. If the eigenvalue/eigenvector pair is
complex, the angles of the complex values of the eigenvector
indicate the phase delay as a function of axial position and deter-
mine propagation of the ciliary waveform. These ‘mode shapes’
may be visualized to compare their shape and propagation
with those observed in cilia. The eigenmode with the largest
positive real eigenvalue part is the most unstable (will grow
the fastest) and will dominate the system behaviour. We focus
on this single eigenvalue for each parameter combination,
although other unstable modes may participate.

2.7. Time-domain simulations

Representative predictions from stability analysis were con-
firmed by time-domain simulation. A cubic nonlinearity was
added to the linking stiffness as a simplified representation of
the multiple physical nonlinearities that might limit the beating
amplitude and create limit cycle behaviour. The system was
solved using the Matlab ode15s() solver for stiff systems.
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Figure 5. Eigenvalue analysis for the example of a single filament with a distributed follower load. (a) Eigenvalues, A, are calculated as a function of non-dimen-
sional distributed force p and separated into real and imaginary parts. Negative real parts indicate that the mode is stable (i, ii). Positive real parts indicate that the
mode is unstable (jii). Non-zero imaginary parts (ii, iii) indicate the frequency of oscillation (non-dimensional in this example). (b) The complex mode shape at
P = 100 (corresponding to the eigenvalue denoted by asterisks in (a)) visualized through one beat cycle.
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Figure 6. Effect of non-dimensional spoke stiffness, k5, and non-dimensional dynein force, p, on stability and frequency for four- and seven-filament systems.
Colour indicates the frequency of the dominant (least stable) mode. (a) Stability/frequency plot for the four-doublet system. The red line indicates the stability
border. Points to the left of the red line (lower p) are stable, and points to the right of it (higher p) are unstable. (b) Stability/frequency plot for the seven-filament
system. Values along the horizontal green line at k; = 10* are shown in the next panel. (c) Frequency and growth rate (not shown in colour maps (a,b)) for points
along the horizontal green line from the previous panel. The vertical red line indicates the critical value of p for instability (Hopf bifurcation). The growth rate

increases monotonically with increasing p.

3. Results

3.1. Overview of multi-filament system behaviour
Analysis of system eigenvalues reveals regions of stability in
parameter space, as well as regions of dynamic instability
and, in some cases, static instability (buckling or divergence).
For regions showing dynamic instability, visualization of the
eigenvectors shows cilia-like beating shapes. The effect of
system parameters on frequency and instability is described
in detail below.

3.1.1. Overview of frequency and stability behaviour—
eigenvalues

System behaviour is summarized by contour plots of

output characteristics, such as dominant frequency, as input

parameters are systematically varied. Frequency maps for

four- and seven-filament systems are shown in figure 6, as
functions of non-dimensional dynein force and spoke stiff-
ness. Non-dimensional frequency is dimensionalized by the
characteristic time in table 2.

The four- and seven-filament systems share key behaviours.
With all other parameters held constant, below a critical value
of p, the system is stable and non-oscillatory as evidenced by
the zero frequency and negative maximal real eigenvalue part
(to the left of the red ‘critical value’ line). Oscillations emerge
when the frequency (imaginary eigenvalue part) becomes
non-zero. As the critical value is exceeded, the system becomes
unstable, exhibiting a Hopf bifurcation and the emergence of
oscillations. As p increases further, frequency initially increases
as well, but the relation is generally nonlinear and non-
monotonic. In some cases, if p is increased further still, the
oscillation frequency eventually vanishes, and the system
becomes statically unstable (divergent).
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Figure 7. (a—d) Comparison of mode shapes from one-, two-, four- and seven-filament systems at p = 300. For multi-filament systems,
ks = 10°, k, = 10°, ¢, = 1/200. (a) One filament (347 Hz). (b) Two filaments (83 Hz). (c) Four filaments (49 Hz). (d) Seven filaments (51 Hz). (e~h) Effect of
increasing steady dynein force on mode shapes of a seven-filament system. Points in parameter space for (e,f) are labelled in figure 8d. (¢) p = 150 (17 Hz).
(f) p = 200 (22 Hz). (g) p = 400 (66 Hz). (h) p = 800 (245 Hz). Animations for (¢,f) are shown in electronic supplementary material, movies S1 and S2.

3.1.2. Overview of spatial behaviour—eigenvector mode shapes
Example mode shapes of a one-beam system under a distribu-
ted follower load as well as two-, four- and seven-filament
systems are shown in figure 7. All systems produce oscillatory
waveforms, although only the four- and seven-filament sys-
tems are consistent with internal loading (balanced opposing
dynein force pairs and moments). In figure 7a—d, the mode
shapes shown are calculated at the same p. In the one-beam
case (figure 7a), the filament experiences an unopposed base-
ward compressive force; the system oscillates at 347 Hz. In
the two-filament case, forces are balanced, but there is an
omitted unbalanced moment (the mode shape is shown with-
out the static bend that would be imposed by the unbalanced
moment). In the four- and seven-filament cases, moments are
balanced by those in the opposing dynein-coupled pairs of
MTDs. These systems both beat at approximately 50 Hz. In
figure 7e—h, all parameters are kept constant other than p. As
p is increased, the temporal frequency increases and the spatial
wavelength decreases.

3.2. Effect of inter-doublet stiffness

RSs and NDRCs create elastic resistance to changes in inter-
filament spacing. To reduce the parameter space, the ratio
of RS stiffness to NDRC stiffness was studied at three mark-
edly different values: 1:1, 10%:1, 10°:1. RSs are larger
structures than NDRCs and, therefore, thought to be stiffer
[8,52]. Increasing the inter-doublet stiffness had a stabilizing
effect on the system at all ratios and in all ranges of stiffness
values (figure 8). At high RS:NDRC ratios oscillation is
dominated by circumferential motion of outer MTDs relative
to the CPC.

3.3. Effect of inter-filament damping

In addition to elastic coupling between filaments, internal vis-
cous coupling is provided by cytoplasm and rate-
dependent resistance of NDRC and RS structures. Though dif-
ficult to measure, these viscous properties may affect the

stability and frequency of the system. Physically, internal damp-
ing can modulate the frequency and stability of the system.

At RS:NDRC ratio k;/k, =10 and k; = 10%, a different
behaviour is observed again in the relationship of frequency
to link damping, ¢;, at different ranges of p (figure 9). At
lower values of p (150), ¢, has little effect on the frequency,
though frequency eventually decreases slightly as ¢; becomes
very large. At larger values of p (500), ¢ has a strong non-
linear, non-monotonic effect on the system. Increasing cy,
from 10™* initially drives the frequency up. In the higher
range of spoke stiffness (ks = 10°), increasing ¢; tends to
strongly decrease the frequency of the system.

The effect of ¢;, on stability is more straightforward in this
regime as increasing damping monotonically increased stab-
ility (lowered the positive real part of the eigenvalue) at all
values of p for which the system was unstable.

3.4. Effect of dynein moment gain

Increasing the dynein moment gain, y (the effect of doublet
separation on the active bending moment), lowers the critical
value of instability (figure 10) and generally speeds
the growth of oscillations. However, the effect of moment
gain on frequency is more pronounced. Decreasing the
moment gain from zero (so that the active bending moment
decreases with doublet spacing) increases frequency sharply,
and higher values of p increase the steepness of that slope.
Likewise, raising moment gain from zero decreases frequency
until it vanishes. To the right of the neutral stability isoline,
this zero-frequency contour represents the border between
oscillations and divergence (static instability). An animation
of the dominant mode shape with p =400, y=-2 is shown
in electronic supplementary material, movie S3.

3.5. Propagation velocity and wavelength of the
dominant mode

Propulsive beating patterns of cilia and flagella have a base-
to-tip propagation direction [50]. The propagation rate is
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Figure 11. (a) Wavelength, A, as a function of non-dimensional spoke stiffness, k,, and non-dimensional dynein force, p. Mode shapes for points (i), (ii) and (i)
are shown above. (b) The propagation velocity is calculated from the product of the wavelength and the beat frequency at each point in the parameter space.

quantified in the current model by calculating the average
gradient of the phase of the dominant complex eigenmode.
The sign of this gradient gives the direction of propagation,
and its magnitude provides the propagation rate. The axial
distance associated with a 2z difference in the phase is the
spatial wavelength of the mode.

All parameter combinations that led to oscillations also led
to anterograde (base-to-tip) beating propagation. For the par-
ameter values analysed in figure 11, the wavelength of the
mode shape varies between 6.4 and 50um, and

the propagation velocity ranges from 50 to 1350 pms™.

These values overlap with values found in [53-55], where
investigators obtained wavelengths of 10-20 pm in Chlamydo-
monas cilia and 20-30 pm in sperm flagella. The values of
wavelength and frequency from these prior measurements cor-

respond to a propagation velocity range of 500-1200 pm s™".

3.6. Out-of-plane beating

While many cilia beat predominantly in a plane, other cilia,
such as nodal cilia, have waveforms that are highly non-
planar [56,57]. The dominant mode shapes obtained from the
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Figure 12. Comparison of behaviour predicted by time-domain simulation and eigenanalysis with parameter values. (a) The waveform predicted by time-domain
simulation. (b) Non-symmetric beat shapes predicted by time-domain simulation of oscillation superimposed on a curved configuration produced by an imbalanced
moment. The animation is shown in electronic supplementary material, movie S4. (c) The waveform predicted from the unstable eigenmode. (d,e) Time series of

non-dimensional tip displacement corresponding to waveforms in (a,b).

eigenvectors of the current model are predominantly planar,
though they tend to lie in planes at a slight angle from the
plane dividing the two active halves of the model (figure 12).
These modes typically exhibit a small out-of-plane component,
with less than 5% of the amplitude of the in-plane component
(figure 12). At values of p studied in this work, additional
mode shapes become unstable and may contribute to the wave-
form. An example of such an out-of-plane mode shape is shown
in electronic supplementary material, figure S3. Additionally,
the axoneme undergoes torsion (rotation of the osculating
plane) and twisting about its axis during beating [58]. These
behaviours are illustrated in electronic supplementary material,
figure S5 and section 57.4.

3.7. Comparison with time-domain simulations
Time-domain simulations generate solutions by iteratively
marching forward in time, updating the state of the model
at discrete, consecutive time points. Simulations performed
with parameter values near the stability boundary confirm
that beating occurs as predicted by dominant eigenvalues
and eigenvectors (figure 12). A small perturbation is applied
to initiate departure from the straight equilibrium configur-
ation. As predicted by the eigenvalue analysis, simulations
in unstable regions of the parameter space exhibit growing
oscillations (as determined from visualizations of the time-
domain beating shapes and time-series plots of the tip
displacements) (figure 12d,¢).

3.7.1. Asymmetric beat shapes

It has been proposed that asymmetric beat shapes in multi-
ciliate cells and organisms may arise from the superposition
of a symmetric beat and an asymmetric curvature [19,53].

In the current steady dynein force model of ciliary beating,
asymmetric curvature could be caused by an imbalance
in dynein forces on opposite sides of the beat plane, or, alter-
natively, by an initial static (buckling) instability. Our
eigenvalue analysis, which is based on a model linearized
about the straight equilibrium, cannot capture the effects
of large initial deformation due to either mechanism. This
phenomenon can be seen in time-domain simulations, how-
ever. Adding a constant distributed moment to the steady
dynein forces along the entire flagellum leads to the asym-
metric beat patterns shown in figure 12b (electronic
supplementary material, movie S4), which qualitatively
resemble the waveforms observed in cilia of mammalian air-
ways or Chlamydomonas algae. This simulation produces a
waveform with wavelength 17 um, frequency 17 Hz and
dynamic amplitude 0.71rad. The static curvature was
—0.044 rad pm ™', as measured by the approach of Geyer et al.
[53] with a 12 pm cilium length and a moment imbalance
corresponding to a dynein force on one side of the axoneme
of approximately five times the force on the other side. While
the results here are not intended to replicate any of the cases
shown in [53], they are comparable to values observed
for mutant (mbo2; curvature —0.04 +0.01 rad pm™"' and fre-
quency 28 +7 Hz) and wild-type (curvature —0.24 +0.02 and
frequency 68 + 3 Hz) axoneme waveforms in that study.

4. Discussion

Analysis of finite-element models of the ciliary axoneme, each
consisting of coupled filaments under steady, unregulated
dynein loading, reveal different types of behaviour, including
wave-like oscillations. In all examples shown, there exists a
boundary between stability and dynamic instability of the
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straight equilibrium shape. This boundary is strongly affected
by dynein force, length and flexural rigidity of the axoneme,
but is also affected by parameters such as inter-doublet elastic
and viscous resistance and the kinematics of dynein motors.
While the oscillation frequency is not uniquely defined by
the non-dimensional loading parameter p, values correspond-
ing to a distributed dynein force of approximately 20-40
(pPNpm™) gave realistic frequencies with reasonable
estimates of other system parameters.

Increasing RS and NDRC stiffness tends to increase stab-
ility and generally decreases oscillation frequency near the
stability boundary, but the relationship between stiffness
and frequency is nonlinear and non-monotonic. If the
NDRCs are made much less stiff than the RSs (by a factor
of 10°), the system remains unstable for higher values of RS
stiffness, as shown by the stability boundaries in figure 9.
While the radial motion of outer filaments becomes con-
strained at high RS stiffness, the circumferential motion of
filaments remains relatively unrestricted.

Inter-doublet damping provides a potential mechanism
for the control of ciliary beat frequency. Near the stability
boundary, adding damping to inter-filament links surpris-
ingly increases instability in some ranges of parameter
values. At larger values, inter-filament damping stabilizes
the system. Likewise, near the stability boundary inter-
filament damping lowers the beat frequency, but at higher
values of p the dependence is nonlinear and non-monotonic.
This non-monotonic behaviour is difficult to explain, but may
be related to the emergence and interaction of different
unstable modes as parameters are varied (see electronic
supplementary material, section S7.3).

Beat propagation is anterograde (base to tip; figure 11b) in
all cases analysed here. This is likely to be due to the bound-
ary conditions: motion is constrained at the base of the
axoneme and free at the tip. While this behaviour is consist-
ent with most observations of ciliary beating, retrograde
propagation has been reported under some conditions [59].
It is possible that changes to the boundary conditions and
inter-filament coupling (i.e. adding compliance to the base
and constraining relative motion of filaments at the tip)
might lead to retrograde propagation. If and how this
occurs could be a topic of future work.

The current model of dynein arm kinematics reveals the
potential influence of a parameter we denote as ‘moment
gain’. Positive values of the moment gain decrease frequency,
increase instability and can lead to divergence as a dominant
mode of instability. Negative values of moment gain increase
frequency, and slightly stabilize the system. Both positive and
negative values of moment gain can be obtained using plaus-
ible dimensions in the dynein model. Small changes in
baseline dynein geometry lead to qualitative differences in
behaviour, providing a plausible mechanism to vary the beat-
ing of cilia and flagella. Mutations (sup-pf-1) affecting the
dynein stalk can restore motility to central pair-deficient
cilia and affect beating frequency [60]. Axonemes lacking
spokes or a central pair are likely to have different passive
properties and dynein kinematics from wild-type axonemes,
and it is plausible that suppressor mutations such as sup-pf-1
compensate for these differences. The behaviour of paralysed
mutants and their suppressors clearly merits future investi-
gation. Negative moment gain has similar effects to the
‘geometric clutch” described by Lindemann, although
without actual modulation of dynein activity [22,61].

The possibility of divergent (buckling-like) behaviour
deserves attention. In this small-deformation model, diver-
gence (monotonic growth without oscillation) may seem
inconsistent with cilia behaviour. However, eigenvalue analy-
sis cannot predict the behaviour of the fully nonlinear system.
An axoneme that initially diverges from its straight equili-
brium configuration may reach a new curved equilibrium,
and undergo a secondary dynamic instability leading to
limit cycle oscillation about that curved shape. This can
only be studied in a model that rigorously accounts for
large deformations and is thus deferred to future work.

Future work should include exploration of asymmetric
beating patterns and non-planar beating. In the current
steady dynein force model, asymmetry may arise from sus-
tained imbalance between dynein activity on opposite sides
of the axoneme. Time-domain simulations in the current
model exhibit asymmetric beating similar to the asymmetric
beating patterns of cilia in airway epithelia or Chlamydomonas
algae. The controllability of this asymmetry offers a possible
explanation for the presence or absence of static curvature in
waveforms observed by Geyer et al. [53].

The current model also exhibits non-planar beating. All
eigenmodes had some non-planar component, and some
unstable modes were highly non-planar, consistent with the
helical motion of nodal cilia [56]. Complete exploration of this
behaviour will require nonlinear models, but such models can
be guided by the current results. Finally, all parameters have
been assumed constant along the axoneme. Future studies
might explore the effects of longitudinal variations.

This study confirms the general predictions of an earlier
study which suggested that steady dynein force can lead to
wave-like oscillations in axonemes [30]. The current study
addresses a key limitation of the previous model, in which
dynein forces on opposing doublets did not exactly balance
if doublets did not remain parallel. We note that, even
though the current model predicts that steady dynein activity
is sufficient to drive ciliary oscillation, it does not rule out
alternative mechanisms. Nevertheless, the current work
strongly supports an important role for axial loading of
doublets in ciliary beating.

5. Conclusion

This study confirms that steady dynein forces without active
dynein regulation can lead to oscillatory beating in math-
ematical models of the axoneme with biologically plausible
physical parameters. Predicted waveforms resemble those
observed in cilia in terms of their physical shape, frequency
and direction of propagation. Eigenanalysis of discrete
finite-element models provides an efficient way to identify
parameters that lead to cilia-like beating and to assess the
effects of those parameters.

Future directions include stability analysis of more realis-
tic axoneme models, as well as extending the current models
to capture larger deformations and more complicated behav-
iour of dynein and passive structural components.
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