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We developed an integrated recurrent neural network and nonlinear regression spatio-temporal model for

vector-borne disease evolution. We take into account climate data and seasonality as external factors that
correlate with disease transmitting insects (e.g. flies), also spill-over infections from neighboring regions sur-
rounding a region of interest. The climate data is encoded to the model through a quadratic embedding scheme
motivated by recommendation systems. The neighboring regions’ influence is modeled by a long short-term
memory neural network. The integrated inodel is trained by stochastic gradient descent and tested on leish-
maniasis data in Sri Lanka from 20,1’@ 2018 where: infection outbreaks occurred. Our model out-performed
ARIMA models across a numbe/r/of regions with hlgh mfectlons and an associated ablation study renders
support to our modeling hypot})ésm and ideas. -

Leishmaniases are troplcal dxseases caused by lelsh-

manja, parasites dnd Wansmited :through-the: bites -af- /" ing. dreds by al récurient netral. metwork. withs input

vector sand flies. The cutaneous leishmgniasis {CL)
is the most common threat and health risksin‘devel-
oping countries in the tropical regions.
per, we study data from Sri Lanka that has reported a
substantial surge in clinical leishmaniasis cases in the
past 20 years (Fig.1, a)). Previous studies Siriwardana
et al. (2010); Karunaweera et al. (2018) found that (1)
leishmaniasis epidemics in Sri Lanka had two trans-
mission hot spots, one on the south coast and another
in the north central region of the country (Fig.1,b)),
with a biannual seasonal variation; (2) outdoor activ-
ities, including occupational exposure and living near
a vector breeding area, are some of the key risk fac-
tors of infection. An important scientific task for pub-
lic health is to model the spatio-temporal dynamics
in leishmaniasis transmission and the driving forces
behind it, thereby help predict future infections and
outbreaks.

In this paper, we aim to generalize and advance
existing geo-statistical and ecological models Kyri-
akidis and Journel (1999); Elith and Leathwick (2009)
by incorporating spatio-temporal transmission factors
such as climate effects and local carryover of infec-
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In ehi§ Pass, .
",.:;-;_s1nce the de; _',lopment of both the sand flies and the

data from up to, r]':nree most infected neighbors;

2) 1nc1ud1ng_chmate data input as an external factor,

'&de their guts are affected by climatic con-

(3) hybridizing (1) and (2) with regression to form
an integrated nonlinear space-time model trained by
stochastic gradient descent on 51 months (2013-03 to
2017-08) and tested on 18 months (2017-09 to 2018-
12) in 5 highly infected regions of Sri Lanka.

The rest of the paper is organized as follows.
In section 2, we review related prior work on in-
fectious disease modeling where climate and geo-
neighbor factors have been separately modeled. In
section 3, we outline pre-processing of raw data to
remove trend, and introduce our integrated model
structure with embedding operations of climate and
time stamps (monthly) motivated by design of rec-
ommender systems. In section 4, we go over train-
ing and test data, and compare prediction results with
ARIMA as baseline. In terms of both root mean
squares error and maximum absolute error, our in-
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Figure 1. a) Nationwide mean annual incidence

Applications and Methods

rate (cases/1,000 people/year) from 2001 to 2019

(left), b) the distribution of average incidence rate in each district over the study period (middle),

and c) the corresponding names and incidence
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Note: Kalmunai is a new district created frorT}B@ttfiééloa district, it had only reported 2 leishmaniasis cases so far.
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Forecasting of disease time series has gone far beyond ~-~

the traditional regression approach. External infor-
mation has been widely used in models; for example,
Yang et al. (2015) proposed Auto-Regression method
with GOogle search data (ARGO) that used google
search information as additional regressors. The
intuition of ARGO is that the amount of searches of
influenza and related key words indicate the outbreak
of influenza. Utilizing this external internet search in-
formation, ARGO outperforms auto-regressive model
and its variant ARIMA on CDC influenza data. Un-
fortunately, Google Correlate, the website where
Google provided the internet search data, has been
shut down for many years. Motivated by the infec-
tious nature of the influenza, Li et al. (2019) proposed
graph-structured recurrent neural networks (SRNN)
to learn the interaction of geographical spread of
influenza. As a result, SRNN further improves
ARGO’s accuracy on CDC data. Recently, spatio-
temporal models combining epidemic differential
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Figure 2: An example of data pre-processing for region Ku-
runegala: a) raw and transformed (differenced) data; (b)
transformed (differenced) and normalized data.
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equations and RNNs Li et al. (2020); Zheng et al.
(2020) have been proposed for one to seven day ahead
forecasting of Covid-19 cases in Italy and the US.
For vector-borne diseases, due to the difficulty of
tracking fly populations and evolution, mixed linear
regression-autoregression models with near-neighbor
spatial coupling has been commonly used for predic-
tion and risk analysis Kyriakidis and Journel (1999);
Elith and Leathwick (2009).

3 OUR APPROACH

3.1 Transformation of Raw Data

Since the original leishmaniasis data is highly non-
stationary Chaves and Pascual (2006), we first trans-
form (pre-process) it to be approximately stationary.
There are several popular techniques to stationarize

data. We found that taking the first order differ:. .

ence along time is effective to improve the stamonar-
ity of the raw data here. In Fig. 2, panel (afj shows
how the original case data of Kurunega}a region is
transformed by the difference method,” As is well-
known that RNN is sensitive to normdlization, panel
(by,shews the normialized:transformed data ahar wil

be fedzm'to pur model We remprlq that npr‘mah»za:tron

3-2-;,<_Ba§:_1?;s.pa_¢9-;_tlmﬁ M@@!:el et

In classical space-time geological and eeéi?ogical sta-

tistical modeling (Kyriakidis and J ournel--'fi:]_f'%?)}-;/___
Elith and Leathwick (2009) among others), the cases”

of neighbors are summed as a single regressor. To
learn the impact of neighbors more at depth, we
use RNN to process such information and extract
(“edge”) features as in Li et al. (2020); Zheng et al.
(2020). Let y., = (! .2 ;,y2 ;) be a vector of
observations from the three neighbors that have the
highest cases at t — 1. Define:

ht == LSTM(yeﬁt)
fi=

where LSTM is a standard long short-term memory
network Hochreiter and Schmidhuber (1997). If a re-
gion has less than three neighbors, we pad zero into
ye- Let I be the set of neighbors, then the model out-
put (an estimated case number for a region of interest
at time 7) is:

gr=0(y1+BYyi+fitb), (D

iel

where G := max(x,0) is the rectified linear unit
(ReLu) activation function.
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Figure 3: Normalized data of cases vs. mean temperature
and precipitation in Kurunegala region of Sri Lanka.

3.3 Integrated Model

According to previous studies (Zhou et al. (2004);
Chaves and Pascual (2006) among others), leishma-
niasis outbreak is highly correlated to climate condi-

_ tions such as temperature, rainfalls and seasonality,
“see Fig. 3 and Fig. 5 for illustrations. Hence, we

adopt climate data as an external feature to further
improve our madel performance. The climate data,
denoted as v; € R*- being part of our model input,
contarns the maximum temperature mrnrmurn tem-

The temperature effect turns out
10 be: highly: non: lmear ‘Hence, we setout:to; learn
the order—2 1nter,ag:t10ns of the chmate features The
complete order-zj interactions of n features involve
( ) +n addrtrpnal features, which are expensive to

our exper iments.

an easily lead to over-fitting. Similar

':pwblem arlses in capturing high-order interactions of

user-itein; f&4tures in recommendation systems where
the so-called cross layer method Wang et al. (2017)
is proposed through Hadamard product and a weight
matrix and the interaction is encoded into a vector of
length n. As in Wang et al. (2017), we compute the
order 2 interaction of climate features as follows:

WI]V% F WiV +wi3vivs +wigvivg
wavivy + W22V% + W23V V3 +Wwosvavg
W31V1V3 +Ww3pvavs + W33v% + w3qv3vs
W41V V4 +WapVova + Wa3v3vy + W44v42‘

(Wv)ov=

Once the order interaction of climate features has
been encoded in (Wv ®v), we use a dense layer to
map the interaction of climate data into the final pre-
diction:
~T
y(v) =" [(Wvov)].

In addition to external features, capturing season-
ality has drawn much attention in recent literature
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Figure 4: Illustration of our model architecture (viz. equation (2)).

Taylor and Letham (2018); Zhou et al. (2004) of ti;nﬁ

series forecasting. A classical analytical appro,ach is

to use partial sums of Fourier series to repre/sent sea-
sonality. However, the performance relies oﬁ fine tun-
ing a non-trainable integer parameter (t)ze number of
terms) Instead, in Vlew of the perso;fahzatlon tech-

erﬁploy Ay’ e«mbeddlng layer to map the mdmh ID O tx:) ;

11510 a: highet - dimerisionito téanii. seasoality,
data. Then, we use a dense fayer to map it into the
output

TRy Er Gbéad).
Integrated with the climate features and Seasonahty,

our model is formulated as: VL,
' "',-:,-':»health ofﬁcers, The climatic data came from meteo-
'rbIaglcal stations in Sri Lanka in the format of max-

Se=o(oy1+BY v 1+ fi+g(t) +wiv)+b).

il
2
The architecture of our model is illustrated in Fig. 6.
As shown in equation (2), the final prediction model
is written as the sum of all learned information fol-
lowed by ReLu activation function. The training loss

function is
N

L(©) = Z(y’ —Yt)2
=1
which is minimized by an adaptive Adam optimizer
to arrive at an optimal value ®.

4 EXPERIMENTAL RESULTS

Our clinically confirmed leishmaniasis case data
came from from the national diagnostic and research
laboratory at the University of Colombo, Sri Lanka;
the epidemiology unit of the Sri Lanka Ministry
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““Figuré 5: ‘Seasonality component g(t) of Polohnaruwa,
S

of Health and':{ﬁrough communication with medical

1mumfmlm1ﬁum/mean temperature and precipitation.
We use 51 months (2013-03 to 2017-08) for training
and 18 months (2017-09 to 2018-12) for testing, with
ARIMA as our baseline model. We set the standard
parameters of ARIMA as (p,q,d) = (2,1,1) after op-
timizing. Note that with d = 1, ARIME also applied
difference transform to the original data. Meanwhile,
we compare the performance of our base model equa-
tion (1) and the integrated model equation (2). The
results are shown in Table 1 and Table 2. We evaluate
the models using both MAE and RMSE metrics. Let
e ={ejle; = [Jy —y¢|,i < n}, where n is the number of
data points in testing set. Then,

MaE - 3 L
-1

n 8-2

RMSE = Zfl
n

i=1
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We note that RMSE. = MAE, ,and it.can be shown that
RMSE=MAE = Var( . We Obsérve that éqUHtlon ity
outperforms ARIMA model in both MAE and RMSE

prediction errors. ST

Table 1: RMSE prediction errors of different models.

Region @)) 2) ARIMA
Matara 11.38 | 11.36 11.92
Anuradhapura | 14.70 | 12.81 14.70
Polonnaruwa | 8.65 8.04 8.65
Kurunegala | 14.70 | 10.08 | 10.35
Hambantota | 32.76 | 32.12 34.63

Table 2: MAE errors of different models.

Region (1) 2) ARIMA
Matara 9.33 8.62 9.54
Anuradhapura | 10.25 | 9.88 12.2
Polonnaruwa 7.20 6.08 7.57
Kurunegala 17.50 | 16.80 17.50
Hambantota | 41.28 | 39.77 41.28

Equation (2) performs the best among the three
models. Hence, the edge features in cases of
neighboring regions helped model (1) to outperform
ARIMA, which is only based on historical observa-

ARIMA iy direggionts of S Lk

.',

. tions of the region of interest,.. The external, climate

(see ‘Fig: 5fora séaSonahty ‘illustration ‘inforthation
helps model (Z}K) further improve prediction.

In this st di/, we integrated components of geograph-
ical spatial information, temperature, and seasonality
to build a spatio-temporal network model for predict-
ing vector-borne disease cases. We employ the cross
layer from recommendation system to compute the
order-2 interaction of climate data, and utilize embed-
ding layer to map month ID to higher dimensions to
learn seasonality. The model is successfully trained
on leishmaniasis data of several regions in Sri Lanka
with high infections (see Fig. 6).

In future work, we plan to study other vector-
borne disease data with our model (2), and also gen-
eralize RNN to an efficient transformer model to ex-
plore additional non-local temporal information for
improving prediction.

As suggested in Fig. 3, the effects of climatic data
may have a latent period to induce vector growth and
subsequent case upswing. In future work, we plan
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to introduce a time delay in the climate term of our
model and learn it from the data for another improve-
ment.
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