
1.  Introduction
Earth's tropical oceans influence major features of atmospheric circulation, including the Intertropical Conver-
gence Zone (ITCZ), South Pacific Convergence Zone (SPCZ), and Walker and Hadley circulation, that affect 
global hydroclimate. These features display interannual and decadal variability that can drive widespread patterns 
of droughts and floods, and are likely undergoing long-term change as the global hydrological cycle intensi-
fies with warming (Rhein et al., 2013). However, our understanding of long-term hydroclimate variability and 
trends over the global oceans is limited by sparse precipitation observations before the satellite era (1979–pres-
ent) (Rhein et al., 2013; Schneider et al., 2017), with studies of 20th century precipitation generally relying on 
low-resolution (5°) precipitation products and reanalyzes (e.g., Green et al., 2017; Smith et al., 2012).

Paleoclimate reconstructions of sea surface salinity (SSS) can circumvent this limitation. SSS acts as a “rain 
gauge” that reflects the balance of precipitation with evaporation over the global oceans, and can also track 
regional changes in ocean circulation, terrestrial runoff and river discharge, and ice melt and formation, thus 
offering more comprehensive insight into hydroclimate than precipitation alone (Durack et  al.,  2012; Rhein 
et al., 2013; Skliris et al., 2014; Terray et al., 2012; N. T. Vinogradova & Ponte, 2013; Yu, 2011). In addition, 
salinity affects seawater density (and therefore ocean circulation and stratification), which has profound impacts 
on biological productivity and ocean heat storage (Rhein et al., 2013).

Despite its key role in circulation and climate variability, there is no “gold standard” (i.e., widely accepted as the 
most reliable) gridded salinity data set. SSS observations, like those of precipitation, are sparse across the tropical 
oceans for most of the 20th century (Figure 1) (Bingham et al., 2002). The two main approaches to infilling the 
sparse observational data come with their own challenges. The first approach, Objective Analysis (OA), filters 
and interpolates sparse salinity observations to generate a continuous gridded product. In the absence of observa-
tions, OA data sets typically relax to the SSS climatology in a given location (Table 1), masking variability and 
trends. In the second approach, ocean reanalyzes attempt to bridge this observational void, assimilating salinity 
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observations into a numerical model forced by other variables (e.g., ocean temperature, precipitation, and wind 
stress) (Storto et al., 2019). In this way, observations are used to “nudge” the model estimate of the salinity field 
toward the observational state at regular intervals (either online or offline). However, reanalyzes can still be sensi-
tive to changes in the frequency, location, or method of observations and are strongly susceptible to model biases 
(Huang et al., 2008; Xue et al., 2017). Recent improvements in ocean reanalyzes, including higher resolution 
models, more realistic physics and atmospheric forcing, better quality control of observations, and improved data 
assimilation methods, broaden the potential applications of reanalysis data (Storto et al., 2019). These applica-
tions include the use of salinity reanalyzes for calibration of coral paleoclimate records in the absence of in situ 
observations.

Coral geochemical proxies have been widely applied to reconstruct tropical climate variability and trends, particu-
larly of sea surface temperature (SST). Such reconstructions provide insights into natural climate variability, such 
as the El Niño-Southern Oscillation (ENSO), as well as anthropogenic trends, over longer time scales than the 
instrumental record. Coral-based SST reconstructions include regionally representative time series (e.g., Abram 
et al., 2003, 2008; Abram, Wright, et al., 2020; Cobb et al., 2003, 2013; Grothe et al., 2020; Hendy, 2002; Linsley 
et al., 2004, 2006, 2015; Tierney et al., 2015), paleo-data assimilation (Sanchez et al., 2021), and field reconstruc-
tions (Evans et al., 2000, 2002), including Regularized Expectation Maximization field reconstruction methods 
(Emile-Geay et al., 2013b; Sanchez et al., 2020). However, the most common coral geochemical proxy, δ 18O, 
does not solely record an SST signal. Instead, coral δ 18O reflects a combination of both SST and seawater δ 18O. 
In the tropical-subtropical oceans, seawater δ 18O depends on the balance of precipitation, evaporation, diffusion, 
advection, and runoff/river outflow, and therefore covaries with SSS at many coral sites (Cahyarini et al., 2008; 
Cole & Fairbanks, 1990; Conroy et al., 2017; Fairbanks et al., 1997; LeGrande & Schmidt, 2006; Thompson 
et al., 2011). The relative contribution of seawater δ 18O and SST to coral δ 18O varies globally; for example, west/
south Pacific corals more strongly reflect salinity than those in the central/east Pacific (Russon et al., 2013). This 
contribution is leveraged in this study to reconstruct global tropical salinity from sites with strong salinity signals. 
Previous coral studies have capitalized on salinity coherence across large spatial scales to reconstruct regional 
salinity variability and trends (e.g., Dassié et al., 2018; Gorman et al., 2012), but coral-based reconstructions of 
the global tropics are rare.

Here we apply a reduced-space approach to climate field reconstruction (CFR) (Evans et  al.,  2002; Fritts 
et al., 1971; Mann et al., 1998) that has been previously used in paleoclimate research (Gill et al., 2016). We 

Figure 1.  The number of observations per region (left) and instrumentation type (right) of near-surface (≤10 m) salinity 
observations in the global tropics (30°S–30°N, 1950–2017). Data are compiled from quality-controlled EN4.2.1 profiles 
(Good et al., 2013), which include observations from Argo (Argo, 2020), the Global Temperature and Salinity Profile 
Program (Sun et al., 2010), and the World Ocean Database (Boyer et al., 2013).
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compile a network of SSS-sensitive coral δ 18O records, and use this network to reconstruct 20th century annual 
salinity anomalies in low-latitude regions where reef-building (scleractinian) corals are found (30°N–30°S), 
which we call the “full tropics” hereafter. We then assess the accuracy of this SSS reconstruction, with the goal 
of identifying avenues for method improvement and extension further into the past. In order to accomplish these 
goals, we address the following questions:

1.	 �Which coral δ 18O records are best suited to reconstructing salinity?
2.	 �Do all SSS data sets yield similar salinity reconstructions?
3.	 �What 20th century SSS variability and trends are captured by coral-based reconstructions?

2.  Methods
2.1.  Salinity Data

We begin by compiling full tropical gridded SSS data sets that substantially overlap with coral records, requiring 
that the SSS data are available in 1980 or earlier. These data sets include multiple reanalysis and OA products. 
Table 1 describes each product, the salinity observations upon which they are based, and the challenges and 
opportunities associated with each.

Four members of the Simple Ocean Data Assimilation (SODA) reanalyzes were chosen, including two members 
of SODA version 2 and two members from version 3. SODA2.2.4 was chosen as its time span, 1871–2008, makes 
it a favorable and often-used candidate for coral calibration (Giese & Ray, 2011); we also include SODA2.1.6 
(Carton & Giese, 2008), SODA3.3.1 (Carton, Chepurin, & Chen, 2018), and SODA3.4.2 (Carton, Chepurin, & 
Chen, 2018) for comparison, though these data sets are shorter (Table 1). For SODA products, ocean models are 
forced by near-surface variables from atmospheric reanalyzes, such as winds, air temperature, humidity, pressure, 
precipitation, and radiative fluxes. The underlying ocean models and forcings differ among SODA versions; 
recent iterations (SODA3) also introduce corrections for biases in net surface heat and freshwater flux (Carton, 
Chepurin, & Chen, 2018).

The European Centre for Medium-Range Weather Forecasts Ocean ReAnalysis System 5 (ORAS5) ensemble 
members (0–4) are also included (Zuo et al., 2019) (Table 1). These members only differ by perturbations to the 
initial conditions, atmospheric forcings (e.g., heat, momentum, and freshwater fluxes), and observations (derived 
from EN4 profiles) (Zuo et al., 2017), and are therefore highly similar to each other.

The final reanalysis data set, the National Centers for Environmental Prediction Global Ocean Data Assimila-
tion System (GODAS) (Behringer & Xue, 2004), does not directly assimilate salinity observations, and instead 
computes and assimilates synthetic salinity profiles using temperature and salinity climatology from the National 
Centers for Environmental Information World Ocean Database (WOD) (Saha et al., 2006) (Table 1).

OA products, in contrast to reanalyzes, do not assimilate observations into climate models, theoretically circum-
venting biases in model physics. These products are sensitive to the number and spatial distribution of observa-
tions, however, as well as the method used to infill missing observations. OA products considered here include 
UK Met Office Hadley Center EN4.2.1, Delcroix, and Institute of Atmospheric Physics (IAP) SSS (Table 1). 
EN4.2.1 extensively quality-controls salinity profiles from WOD (Boyer et al., 2013), the Global Temperature 
and Salinity Profile Program (Sun et al., 2010), and Argo (Argo, 2020) to produce a gridded product that spans 
the full 20th century (Good et al., 2013). Another OA product, Delcroix, exclusively reconstructs near-surface 
(≤10 m) salinity and therefore draws from a larger pool of observations, but is only available in the tropical 
Pacific Ocean (Delcroix et al., 2011). Both OA products relax to the climatological mean in the absence of obser-
vations. Finally, a recently released interpolated salinity product from IAP similarly draws from WOD observa-
tions (Cheng et al., 2020). However, the IAP method infills missing data by using error covariance maps derived 
from an ensemble of historical Coupled Model Intercomparison Project Phase 5 simulations. This Observational 
Reconstruction approach differs from that of EN4.2.1 and Delcroix, which infill data using an isotropic or ellip-
soid function (Delcroix et al., 2011; Good et al., 2013).

These reanalysis and OA data sets are chosen to be illustrative examples, not exhaustive compilations. Further, as 
they often assimilate identical or near-identical data sets, such as the 2013 or 2018 iterations of the WOD (Boyer 
et al., 2013, 2018), they cannot be treated as truly independent estimates of salinity. Though WOD18 includes 
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nearly 2 million surface-only salinity observations, such observations are not the main focus of the WOD, which 
mainly compiles sub-surface profiles; instead, the WOD includes surface-only observations only when/where 
profiles are sparse (Boyer et al., 2018). To our knowledge, no gridded, global, and long-term SSS data set assim-
ilates satellite-derived salinity observations (reviewed in N. Vinogradova et al. [2019]).

We restrict all data sets to the full tropics (30°S–30°N). The SSS data are then averaged from April to the 
following March (i.e., the “tropical year”) to avoid splitting ENSO events between years (Evans et al., 2002). 
Only tropical years with 12 months of data are included to mitigate biases introduced by incomplete years. 
This annual mean calculation can potentially smooth lagged relationships of salinity with subannual-to-inter-
annual climate variability (e.g., salinity at sites in the South Pacific can lag ENSO by as much as 7 months 
[Kilbourne et  al.,  2004]), so we caution that interannual variability may be underestimated in comparison to 
decadal-to-multidecadal variability and trends. Where needed, data are converted from absolute (g/kg) to prac-
tical (PSU) salinity using the Thermodynamic Equation of Seawater (IOC et al., 2010). Finally, we subtract the 
temporal mean over the 1980–1990 reference period, chosen as the period of overlap between all SSS data sets 
and most coral records, to compute SSS anomalies (SSSa).

2.2.  Coral Data and Calibration

Coral δ 18O data used in this study are compiled from the Iso2K database (Konecky et al., 2020). All coral records 
are screened based on several criteria, such that all records: (a) are located within the global tropical-subtropical 
oceans (30°S–30°N); (b) have a temporal resolution of annual or higher; (c) overlap and extend the SSS calibra-
tion period starting in 1970 (i.e., each record begins in 1960 or earlier and ends after 1980, such that there is at 
least 10 years of overlap and pre-instrumental coral data). We include several additional records that meet these 
criteria, including an updated version of the Fonoifua Island, Tonga record (TF1 in the original publication; 
Iso2K ID CO18DATO01A) (Dassié et al., 2018), one record from Ha'afera Island, Tonga (TH1 in the original 
publication) (Linsley et al., 2017), and two records from the Lombok Strait, Indonesia (Murty et al., 2018) (Table 
S1 in Supporting Information S1).

For each location, we calibrate annual coral δ 18O with annual SSS over the calibration interval (defined to begin 
in 1970, when observations are more frequent (Figure 1), and continuing to the most recent date of each coral 
record). First, we calculate the annual, tropical-year mean for each sub-annually resolved coral record. Annually 
resolved records are assumed to span the tropical year. We then calibrate each coral record to SSS using weighted 
least squares (WLS) regression, a linear regression method that accounts for uncertainty in both the independent 
and dependent variables (Thirumalai et al., 2011). We perform this calibration separately for each SSS data set 
considered in this study, and for each δ 18O record at sites where multiple records are available. A coral record 
is only calibrated if it overlaps with an SSS grid cell, which eliminates some near-shore coral records. We also 
require an overlapping sample size of at least 5 years. Though this flexible calibration period could preferentially 
include more recent coral records (for which the calibration period is longer and more likely to produce signifi-
cant relationships with SSS), this approach maximizes the salinity information obtained by the network of availa-
ble records compared to calibration over a common period (e.g., 1980–1990). Finally, we evaluate uncertainty in 
the calibration equation for each coral record and SSS data set by using K-fold cross validation (see Supporting 
Information S1).

WLS regression requires uncertainty estimates for both coral δ 18O and SSS. For coral δ 18O, we use the 1σ analyt-
ical uncertainty. Because all of the reanalysis and some of the OA SSS data sets lack uncertainty estimates, we 
use 1σ SSS error from the EN4.2.1 gridded product for all SSS data sets except Delcroix, which includes its own 
uncertainty calculations (note that IAP SSS error estimates are not publicly available as of April 2021, so EN4.2.1 
error is used for IAP as well). Many SSS data products incorporate similar or identical observations (especially 
the WOD) (Table 1), making EN4.2.1 uncertainties a reasonable choice in the absence of individualized uncer-
tainty data sets.

We remove any coral records with a δ 18O-SSS calibration p > 0.1; this p-value was chosen to buffer against 
the impacts of small sample sizes in calibrations with shorter SSS data sets (e.g., for ORAS5, mean calibration 
n = 17) to maximize the salinity information obtained from the network of available coral records. We then apply 
the calibration equation to convert the remaining coral δ 18O records to SSS. If there are multiple records for 
each model grid cell, we then composite SSS at each site by Z-scoring each SSS reconstruction, averaging these 
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Z-scores, then converting this composite Z-score to SSS using the mean and standard deviation of the SSS recon-
structions during their period of overlap. We then calculate SSSa relative to the reference period for each grid cell.

2.3.  Reconstruction Method

The reduced-space reconstruction method used here is adapted from the method described by Gill et al. (2016) 
(see Gill Figure 3 for a visual explanation of the method). The procedure for each SSSa data set is as follows:

�EOF Analysis of SSS Data Products

1.	 �SSSa is interpolated to 2° × 2° spatial resolution to speed computations in step 3 (results [not shown] are 
similar when the original resolution is used). The interpolated SSSa is then reshaped from three dimen-
sional (latitude × longitude × time) to two dimensional (time (length N, the number of years of the full 
SSSa data set) × number of grid cells with SSSa data (length G)), producing the matrix Xfull.

2.	 �The covariance matrix, Cfull, has dimensions G × G, and is computed from Xfull using the NumPy cov 
function in Python (Harris et al., 2020).

3.	 �Cfull is decomposed into orthogonal space-time components (hereafter “modes”) by performing singular 
value decomposition on Cfull using the SciPy linalg.svd package in Python (Virtanen et al., 2020):

𝐂𝐂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐔𝐔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝚲𝚲𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐔𝐔
𝑇𝑇

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
.� (1)

Ufull is a matrix of eigenvectors (i.e., the spatial loadings, or EOFs, of each mode). 𝐴𝐴 𝐔𝐔
𝑇𝑇

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 is the transpose 

of Ufull, and Λfull is a matrix with the eigenvalues, λfull, on the diagonal; these eigenvalues can be used to 
calculate the fraction of the total variance described by each mode. Ufull, Λfull, and 𝐴𝐴 𝐔𝐔

𝑇𝑇

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 all have dimensions 

G × G. The temporal evolution of each EOF is termed the “principal component” (PC). The matrix of 
principal components, Afull, has shape N × G, and is calculated by multiplying the reshaped SSSa matrix 
by the eigenvectors:

𝐀𝐀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐗𝐗𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐔𝐔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� (2)

Note that the signs of these eigenvectors (and thus PCs) are arbitrary, and can be inverted as needed to be 
consistent with the temporal evolution of real modes of climate variability (such as ENSO).

�Coral Site EOF Analysis and Regression Model Development

�4.	� A matrix is formed of a subset of the high-resolution SSSa grid cells (i.e., not interpolated to 2°) for each 
data product that include only the locations of coral proxies. This matrix, Xsubset, has dimensions N × P, 
where P is the number of grid cells with coral proxy sites. Repeat steps 2 and 3 with Xsubset. This process 
yields: the EOFs Usubset (dimensions P × P); principal components Asubset (dimensions N × P); and, finally, 
the eigenvalues λsubset of the subset field.

�5.	� Because the variance in a full-field mode may capture the variance of a combination of subset-field modes, 
multiple linear regression is used to reconstruct each full-field PC using a combination of the leading 
subset-field PCs as predictors (i.e., the consecutive subset-field PCs that together explain at least 75% of 
the cumulative variance [Text S2 in Supporting Information S1]). Regressions using all possible combi-
nations of these subset-field PCs are evaluated using the Bayesian Information Criterion (BIC), and the 
combination that yields the lowest BIC is used. This process yields regression equations for the leading y 
full-field modes using the x retained limited-field PCs. The r 2 value (adjusted for the number of predictors 
[Miles, 2014]) of each multiple linear regression is then calculated. Only the leading consecutive full-field 
modes that produce an adjusted r 2 ≥ 0.2 are explicitly reconstructed (see Supporting Information S1).

�6.	� A matrix is formed of coral SSSa data (composited for each site), F, with dimensions L × P, where L is 
the time span of the coral matrix. We infill missing data within each site with 0 (i.e., the mean during the 
SSSa reference period).
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�Climate Field Reconstruction

�7.	� For each year l in the time span L of the coral matrix, reconstruct the subset-field principal components, 
Asubset_R_l (dimensions 1 × P); where applicable, variables are denoted R for “reconstructed”:

A𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑅𝑅_𝑙𝑙 = F𝑙𝑙𝐔𝐔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� (3)

�We then find the leading reconstructed full-field principal components, Afull_R_l, using Asubset_R_l and the 
regression equations found in step 5. Afull_R_l is a row vector of length y; the temporal mean of the remain-
ing full-field PCs is then used to fill the remaining space in Afull_R_l (i.e., extending y to length G) so that the 
spatial expression of these combined principal components can be calculated. Finally, these reconstructed 
PCs are converted to reconstructed full-field SSS anomalies for each year l:

X𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑅𝑅_𝑙𝑙 = A𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑅𝑅_𝑙𝑙𝐔𝐔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� (4)

�The calculation of Xfull_R_l (dimensions 1 × G) is then repeated for each year l in which coral proxies are 
available.

�8.	� After looping through step 7 for each year, the results are ultimately compiled into matrix Xfull_R (dimen-
sions L × G). This matrix is then reshaped to produce the three-dimensional (latitude × longitude × L) CFR 
of SSSa.

�9.	� Finally, we truncate the CFR to the period in which at least 50% of the maximum number of screened 
coral sites for each SSS data set are available. Below this threshold, more than half of the sites are assigned 
reconstructed SSSa values of zero, and we observe that the principal components similarly relax toward 
the mean (data not shown). This process ultimately yields a coral-based CFR for each SSSa data set.

�We compute the full- and subset-field modes for all SSA data sets. We then evaluate the leading EOFs 
and PCs of each data set for evidence of unphysical behavior (e.g., unrealistic temporal trends or visual 
evidence of the sparse observation network influencing spatial patterns) before considering them for CFR.

2.4.  Error Assessments

We perform error assessments of each CFR over the full period of overlap among reconstructions and SSS data 
(1980–1997). We caution that assessments over this period may not hold true over longer time scales, but this 
is an unavoidable limitation of short salinity observations relative to those of other climate variables, such as 
SST. We considered calibration-validation analyses for both coral δ 18O-SSS calibration and for comparing the 
CFRcoral to SSS data. However, the period of overlap between all SSS data sets and most coral records is too short 
to split into two sufficiently sized intervals: SSS data typically begins in 1980, and most coral records end in the 
mid-1990s, such that the 50% threshold used to truncate the CFR occurs around 2000 CE. This limited sample 
size (<10 years for each interval) precludes an informative out-of-sample validation approach.

We compare the CFRcoral from each SSS data set to the SSS data set used to reconstruct it (e.g., IAP SSSa 
compared to SSSa from the IAP CFRcoral), hereafter the “respective SSS” of each CFR, by computing the Anom-
aly Correlation statistic (AC). The AC is essentially the product-moment correlation coefficient (r-value) between 
reconstructed and original SSSa computed for each grid cell and then spatially averaged (Cook et  al.,  2011; 
Wilks, 2006). We also map the long-term mean CFRcoral-SSS difference over the period of overlap. This process 
allows the examination of spatial or temporal biases in each CFRcoral compared to its respective SSS data set.

To better assess the sources of error in the climate field reconstructions, we generate an “SSS observation-based 
CFR” from each SSS data set (“CFRSSS”). We compute each CFRSSS by following the steps 1–5 in Section 2.3 
used to generate each CFRcoral. In step 6, rather than generating matrix F from coral data, we create this matrix 
using the SSS from the grid cells of the included coral data. This matrix, FSSS, has dimensions N × P. We then 
complete the CFR (steps 7–9) using FSSS instead of F. In a sense, this approach produces a “best case” CFR, one 
in which the coral records from each site perfectly reflect SSS and thus introduce no additional error to the recon-
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struction. We then repeat the CFRcoral error assessments using CFRSSS. By comparing CFRSSS to its respective SSS 
data set, we can quantify the uncertainties that result from a combination of: (a) the number and location of coral 
sites, and (b) the CFR method, such as the number of modes that are explicitly reconstructed, and the regression 
between the full- and subset-field PCs. We also compare CFRcoral to CFRSSS to assess the additional error that may 
result from the coral records. Sources of such error may include uncertainty in the δ 18O-SSS calibration slope 
and intercept, contribution of SST to coral δ 18O, age model uncertainty, and non-climatic δ 18O variability due to 
growth-related (“vital”) effects (McConnaughey, 1989).

2.5.  Climate Analyses

To identify significant long-term trends, each reconstruction is subset to a common period when most coral records 
are available (1900–1990). Ordinary least squares (OLS) regression coefficients are then computed and evaluated 
for significance (after Santer et al. [2000]). These trends are then compared among reconstructions. We compare the 
response of reconstructed and instrumental SSSa fields to ENSO events using the Niño3.4 index (ERSSTv5 over 
5°S–5°N, 170°–120°W; detrended by subtracting mean SST over 20°S–20°N). We further compare the Niño3.4 
index to the coral reconstruction of the SSS mode that most strongly reflects ENSO. We also evaluate regressions 
of reconstructed salinity with the Interdecadal Pacific Oscillation (Henley et  al.,  2015), Atlantic Multidecadal 
Oscillation (Trenberth & Shea, 2006), and Indian Ocean Dipole (Saji et al., 1999), all computed using ERSSTv5 
(Huang et al., 2017). We note that computing the IOD index using ERSSTv5 enables comparisons over the full 
20th century, but may reduce the magnitude of inferred IOD events compared to shorter and higher-resolution SST 
products (Abram, Hargreaves, et al., 2020). The Atlantic Multidecadal Oscillation (AMO) index is smoothed with 
a 10-year running mean, and all climate indices are computed over the tropical year. We compare these salinity 
regression maps with those of reanalysis-based precipitation minus evaporation (“P−E”) data (NOAA/CIRES/
DOE 20th Century Reanalysis version 3, Slivinski et al., 2021), but caution that P−E and SST observations, like 
salinity observations, are scarce for most ocean basins during much of the 20th century.

2.6.  Assumptions

The EOF analysis approach to CFR requires several key assumptions. The first assumptions arise from the SSS 
data: we assume that the SSS data sets span enough time to accurately capture the leading modes of variability, 
and that SSS modes result from real SSS variability and are not an artifact of changing number, location, and/
or method of salinity observations through time. Other assumptions are more fundamental: this CFR method 
assumes that the leading modes of variability over the period of EOF computation remain the dominant modes of 
variability over the reconstruction period. We further assume a multivariate, linear relationship between the PCs 
of full SSS field and the subset field.

The final assumptions arise from the coral data. We assume that the coral δ 18O-SSS calibration is valid over the 
reconstruction period. This calibration may be affected by nonlinearities in local seawater δ 18O-SSS relation-
ships that cannot be constrained without in situ seawater isotope measurements (Legrande & Schmidt, 2011; 
Stevenson et al., 2018). In addition, we assume that the contribution of SST to coral δ 18O does not meaningfully 
affect our SSS reconstructions. A paired geochemical approach potentially avoids this assumption by subtracting 
a Sr/Ca-derived SST signal from coral δ 18O to isolate a seawater δ 18O (and therefore salinity) signal (Cahyarini 
et al., 2008; Ren et al., 2002). However, we did not apply this approach in this study for three reasons. First, the 
number of paired Sr/Ca-δ 18O records is small compared to the number of δ 18O-only records. Second, SST-SSS 
covariance can bias paired Sr/Ca-δ 18O salinity reconstructions. Where covariance is strongly negative (i.e., at 
many of our coral sites [Russon et al., 2013]), the δ 18O-SST calibration slope is anomalously steep; as a conse-
quence, this method may yield reconstructions not of total seawater δ 18O, but of the small fraction of the seawater 
δ 18O signal that varies independently of SST (Cahyarini et al., 2008). Third, compounding errors (Sr/Ca-SST 
and δ 18O-SST regressions, and analytical uncertainties of Sr/Ca and δ 18O) can further weaken signal-to-noise 
ratios. A seawater δ 18O reconstruction method that accounts for SST-SSS covariance could improve the CFRs in 
this study. In the absence of such a method, we use unpaired coral δ 18O, leveraging the SST-SSS covariance that 
can amplify salinity signals, and caution that the SST contribution could be a source of uncertainty beyond the 
calibration period.
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3.  Results and Discussion
3.1.  Coral Record Calibration

Of the 74 coral δ 18O records considered, between 16 and 37 pass the screening criteria for inclusion in the CFR, 
depending on the specific SSS data set (Figures S1 and S2 in Supporting Information S1). Data sets with longer 
overlaps with coral records (SODA2.2.4 and 2.1.6, EN4.2.1, IAP, and Delcroix) generally include more coral 
sites than shorter SSS data sets, likely due to larger sample sizes (Figure S2 in Supporting Information S1). Few 
records from the central/eastern equatorial Pacific, Atlantic, and Caribbean Sea pass the screening criteria. Those 
that do generally show steeper δ 18O-SSS slopes (which translates to a small coefficient when converting δ 18O 
to SSS) (Figure 2 and Figure S2 in Supporting Information S1). Some nearshore sites (e.g., the Great Barrier 
Reef) are not significantly correlated with any SSS data sets. This may result from sub-grid-scale variations in 
SSS due to runoff, river input, and local ocean circulation. Comparing our regressions with published δ 18O-SSS 
calibrations for individual sites, we find that WLS δ 18O-SSS slopes are steeper than those of OLS. This differ-
ence is expected because accounting for SSS uncertainties in WLS regressions typically increases the magnitude 
of regression slopes. Nonetheless, WLS produces SSS reconstructions with consistently smaller errors when 
compared to OLS-based SSS reconstructions (Table S2 in Supporting Information S1). For sites that pass the 
calibration screening criteria, K-fold cross validation (see Supporting Information S1) shows that coral-based 
SSS reconstructions for each record have a median uncertainty of 0.13–0.24 PSU (RMSE) compared to the SSS 
time series from the nearest grid cell (Figure S3 in Supporting Information S1). Uncertainty is lowest for IAP and 
highest for SODA3 members.

Sites with significant correlations with the most SSS data sets cluster in the ITCZ and SPCZ. In these regions, 
salinity variance, and therefore δ 18Osw variance, is high (Figure 2), so coral δ 18O variability is expected to strongly 
reflect δ 18Osw and its covariance with SST (Russon et al., 2013). Warmer and fresher conditions co-occur in most 
of these regions, strengthening the significance of coral δ 18O-SSS regressions (Russon et al., 2013). In other 
regions, such as the central/eastern Pacific and southern Indian Ocean, few records pass δ 18O-SSS significance 
testing. In these regions, SSS and SST may not constructively covary, and sometimes even destructively covary, 
with warmer and saltier conditions coinciding (Russon et al., 2013). This may weaken δ 18O-SSS regressions 
below the threshold of significance, especially in regions where overall salinity variance is low. Therefore, the 
distribution of coral records that are significantly related to salinity is in agreement with expected coral δ 18O 
behavior, based on spatio-temporal patterns of SST and δ 18Osw variability.

3.2.  Modes of Variability in SSS Data Sets

A prerequisite to reduced-space climate reconstruction is identifying the leading modes of variability to recon-
struct. We evaluate the leading modes of variability in the SSS data sets to determine their suitability for recon-
struction, and any discrepancies in these modes among SSS data products would have important implications for 
coral-based climate field reconstructions. This evaluation is not intended to comprehensively assess or interpret 

Figure 2.  Calibration slope (colored circles) between coral δ 18O and sea surface salinity (SSS) for each coral record, averaged across SSS data sets. All data sets (e.g., 
Delcroix, Global Ocean Data Assimilation System, and EN4.2.1) are included; for individual calibrations, see Figure S2 in Supporting Information S1. The mean slope 
excludes any calibrations that fail the screening criteria for sample sizes and significance given in the Methods. Circle size corresponds to the number of SSS data sets 
for each coral record that yield a calibration that passes the screening criteria (larger size = significantly correlated with more SSS data sets). White X's denote sites 
where no calibration passes the screening criteria. Background shading shows the standard deviation of annual SSS (ORAS5-0).
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the climatic significance of salinity modes of variability. Instead, we screen for unphysical variability that could 
be an artifact of the evolving observation network, infilling method (for OA), or model-based climate forcings 
and flux corrections (for reanalyzes), which would preclude their use for paleoclimate reconstruction. Overall, the 
spatial and temporal patterns of the leading modes are inconsistent among SSS data sets (Figures S4 and S5 in 
Supporting Information S1). These discrepancies persist even if the data are subset to the common period before 
computing EOFs (1980–2008; Figures S6 and S7 in Supporting Information S1), and exemplify the uncertainties 
that can result from sparse salinity observations over the 20th century (Figure 1).

We evaluate the leading modes of variability computed from the full time span of each SSS data set, and show 
the first mode (EOF1 and PC1) for comparison among data sets (Figure 3). SODA2 EOF1 loads in the same 
direction across nearly the entire tropics (Figures 3a and 3b). In SODA2.2.4, the leading mode is a long-term 
trend (Figure  3j), which is less clear during the shorter time span of SODA2.1.6 (Figure  3k). The fact that 
this nearly pan-tropical pattern is absent from all other SSS data sets, including more recent SODA versions 
(Figures 3c and 3d) indicates that this mode is likely non-climatic in origin. Flux corrections were not imple-
mented in SODA2, and could account for the unrealistic trend in these members; by comparison, evaporative 
fluxes in SODA3 were corrected by up to +2 mm/day (Carton, Chepurin, & Chen, 2018; Carton, Chepurin, Chen, 
& Grodsky, 2018). Therefore, we do not use SODA2 for coral reconstructions.

Figure 3.  The spatial (EOF; left column) and temporal (PC; right column) pattern of the leading mode of variability for each 
sea surface salinity data set considered in this study. EOFs and PCs are unscaled, and the signs of the loadings are arbitrary. 
ORAS5-1 through ORAS5-4 are similar to ORAS5-0 and are not shown. The time span (in tropical years) of each salinity 
data set, and the percentage of total salinity variance explained by the leading mode, are given at left.
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We exclude SODA3 and GODAS from reconstructions for similar reasons. SODA3 and GODAS EOF1 show 
weak regional spatial coherence compared to other data sets (Figures 3d and 3f). In addition, SODA3.4.2 and 
SODA3.3.1 EOF1 are highly dissimilar despite having nearly identical methods (Figures 3c and 3d, Table 1), 
indicating that these EOFs are highly sensitive to the surface forcings used in these reanalyzes. SODA3 members 
are also excluded because the ability of the subset field to reconstruct the full-field ENSO mode (EOF3, not 
shown) is below the r 2 cutoff of 0.2, and is therefore not explicitly reconstructed. GODAS is precluded from 
reconstructions as it does not directly assimilate salinity observations, resulting in spatially incoherent EOFs that 
do not resemble those of any other data sets considered in this study (Figure 3f).

Several OA data sets also show evidence of non-climatic artifacts. EN4.2.1 and Delcroix SSS relax to the long-
term climatology in the absence of observations, which impacts the assessment of variability and trends. This 
bias is visible as a dampening of PC1 variability before observations are widespread (approximately 1970 CE) 
(Figures 3p and 3r), and as unusually strong loadings in locations with frequent observations (e.g., the TAO array 
is visible in EOF1 of EN4.2.1; Figure 3g).

The remaining data sets include IAP and the ORAS5 ensemble. These data sets show no obvious impacts of 
the composition of observations (i.e., changes in the frequency, type, and/or location through time). For exam-
ple, the leading mode of IAP (Figures 3h and 3q) is similar to that of EN4.2.1 (Figures 3g and 3p), but with no 
visible variability damping before 1970, and with greater regional spatial coherence compared to EN4.2.1 due 
to differences in IAP's infilling method for sparse observations. IAP EOF1 shows a spatial pattern that resem-
bles salinity trends during the mid-to-late 20th century seen in previous studies (Cheng et  al.,  2020; Durack 
et al., 2012; Skliris et al., 2014), and PC1 shows strong multidecadal variability or a trend (Figures 3h and 3q). 
Because ORAS5-0 spans a shorter time period than IAP, IAP and ORAS5-0's modes are shuffled and/or inter-
mixed relative to each other. For example, ORAS5-0 PC1 is characterized by interannual rather than multidecadal 
variability (Figure 3n), as expected when computing EOFs over short time spans. Nonetheless, ORAS5-0 PC1 
is significantly correlated with both IAP PC1 and PC2 (r = 0.79 and 0.84, respectively; autocorrelation-adjusted 
p < 0.05, after Bretherton et al. (1999); Figure S4 in Supporting Information S1). ORAS5 PC1 and IAP PC2 
are not only strongly correlated, but their EOFs are especially similar, with the strongest negative loadings in the 
western equatorial Pacific (Figures 3e and 3n; Figure S4 in Supporting Information S1). This region has notably 
high interannual SSS variability, which is linked to ENSO events (Chi et al., 2022; Delcroix et al., 2011; Qi 
et al., 2019; Singh et al., 2011); indeed, ORAS5-0 PC1 and IAP PC2 are both significantly correlated with the 
Nino3.4 index (r = 0.73 and 0.77, respectively; adjusted p < 0.05). Ultimately, the ORAS5 ensemble and IAP 
provide one example each of reanalysis and OA-based SSS data sets that we retain for use in coral-based salinity 
reconstructions.

3.3.  Salinity Field Reconstruction

The IAP and ORAS5 coral-based SSS reconstructions range from 115 to 131 years in length (dependent on 
the availability of coral records used in the reconstruction), and all reconstructions span the period 1890–1999. 
We generate these CFRs by reconstructing the leading 2–4 full-field modes (Figure S8 in Supporting Informa-
tion S1), for which which at least 20% of the variance are explicitly reconstructed by corals (i.e., r 2 ≥ 0.2; Figure 
S9 in Supporting Information S1). Together, these reconstructed modes explain at least 30% of the total subset-
field and full-field variance of each SSS data set. Sensitivity analyses demonstrate that including additional 
modes by lowering the r 2 threshold to zero (i.e., reconstructing more of the total variance, but with modes that are 
not well reconstructed by the corals) only marginally increases the AC scores (see Supporting Information S1). 
AC scores plateau at r 2 ≥ 0.2; therefore, our approach reconstructs the greatest variance explained while main-
taining information from the coral proxies.

3.4.  Sources of Uncertainty

A comparison of the long-term mean difference between each CFRcoral and the SSS data product used to recon-
struct it shows biases in each coral-based CFR of up to 0.36 PSU (Figures 4a and 4e). The same analyses between 
CFRSSS-SSS (Figures 4b and 4f) are nearly indistinguishable from CFRcoral-SSS. These same findings are borne 
out by the spatial mean RMSEs through time (Figures 4d and 4h): for both IAP and ORAS5, CFRcoral-SSS and 
CFRSSS-SSS are nearly identical, and the RMSEs between the two CFRs is much smaller. These analyses indicate 
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that discrepancies between coral-based reconstructions and observations during the period of overlap largely 
arise from the CFR method and the number/location of coral proxy sites, not from an inability of the coral δ 18O 
network to capture salinity variability (or from shortcomings in the coral calibration method).

The Anomaly Correlations (AC) between pairs of data sets produce similar results (Figure 5). SSS data sets show 
strong agreement within the ORAS5 ensemble (median AC = 0.85), but substantially weaker agreement between 
ORAS5 and IAP SSS (median AC = 0.33) (Figure 5). A similar pattern is shown by comparisons among coral 
CFRs, with weaker agreement for IAP-ORAS5 comparisons than within ORAS5 members (Figure 5; median 
AC = 0.55 and 0.91, respectively). These results indicate that disagreement among salinity data sets is a signif-
icant source of uncertainty in the reconstructions as well. Similar disagreements have complicated paleoclimate 
reconstructions of SST (Emile-Geay et al., 2013a). In contrast, when each CFRcoral is compared to the SSS data 
used to generate it, the resulting ACs are virtually identical to CFRSSS-SSS ACs (median AC = 0.26 and 0.28, 
respectively) (Figure 5, right two columns). Again, these results illustrate that non-salinity-related coral variabil-
ity is a small source of error when compared to uncertainties resulting from discrepancies among SSS data sets; 
CFRSSS-SSS comparisons indicate that methodological uncertainties and the distribution of coral sites contribute 
to disagreements as well.

3.5.  Interannual Variability

Both coral-based reconstructions show strong salinity responses to ENSO, with freshening in the central-west-
ern Pacific and salinification in the Maritime Continent during El Niño events (Figure  6). These results are 
consistent with the notably high interannual signal-to-noise ratios in the central-western Pacific, which are less 
than 1 (noise-dominated) elsewhere in the global tropics (Balmaseda et al., 2015). Fortunately, this region also 
overlaps with the area of best coverage by coral records (Figure 2). This overlap likely explains why ENSO is 
well reconstructed by coral records (Figure 6). The ability to capture ENSO is quickly degraded before these 
central-western Pacific records are available (not shown); for example, the Tarawa δ 18O record ends in 1894 

Figure 4.  Long-term mean difference over the common period (1980–1997) between: each CFRcoral and the sea surface salinity (SSS) data product used to reconstruct 
it (a and e); CFRSSS and the SSS data product used to reconstruct it (b and f); and CFRcoral and CFRSSS (c and g). The time series (d and h) show the spatial mean 
RMSE between each CFRcoral and its respective SSS (blue), CFRSSS and its respective SSS (orange), and CFRcoral and CFRSSS (green). Results are shown for Institute of 
Atmospheric Physics and for the ensemble mean of Ocean ReAnalysis System 5.
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(Table S1 in Supporting Information  S1). Both IAP and ORAS5 CFRcoral 
(Figures  6c and  6d) show weaker ENSO sensitivity than their respective 
SSS data sets (Figures  6a and  6b); overall, ORAS5 sensitivity to ENSO 
(Figures 6b and 6d) is stronger than IAP (Figures 6a and 6c) in both the orig-
inal data sets and coral reconstructions. Nonetheless, the principal compo-
nents of SSS which strongly reflect ENSO variability (IAP PC2 and ORAS5 
PC1; see Section  3.2) are significantly correlated with the Nino3.4 index 
in both coral CFRs (r = 0.57 for ORAS5-0 and 0.65 for IAP, autocorrela-
tion-adjusted p < 0.05) (Figure 6e).

We also examine interannual variability in coral CFRs in several key regions, 
including the western equatorial Pacific, central/eastern Pacific, and portions 
of the IPWP and SPCZ (Figure 7). In the western equatorial Pacific, which 
is especially sensitive to ENSO, reconstructed SSSa are significantly corre-
lated with their respective SSS data sets (Figure 7a). Similar results emerge 
from the SPCZ (Figure  7c), which also has high interannual SSS varia-
bility (Figure  2), and from the central/eastern Pacific in the ITCZ region, 
which has lower interannual SSS variability but is nonetheless sensitive to 
ENSO (Figures 6a and 6b). The IPWP is the exception to this pattern, where 
interannual variability is high, but correlations of reconstructed SSSa with 
their respective SSSa data sets are much weaker (Figure 7b). Though multi-
ple coral records pass screening criteria in the IPWP region, none of these 
records are located within the South China Sea (Figure 2), which comprises 
a large portion of this region. For 3 of the 4 regions examined, we find that 
ORAS5 reconstructions yield stronger correlations with observations than do 
IAP reconstructions (Figure 7), which is consistent with the stronger salinity 
regression slopes with ENSO seen in ORAS5 compared to IAP (for both 
reconstructions and the original SSS data sets; Figure 6). Overall, we find 
that the coral CFRs yield more accurate interannual salinity reconstructions 
in regions that are well-represented by coral records, and where interannual 
variability is high.

Coral-based SSS reconstructions also capture the spatial patterns of inter-
annual variability associated with the IOD, with salinification in the east-
ern Indian Ocean and freshening in the west during positive IOD events 
(Figure 9). Beyond the Indian Ocean, the IOD spatial pattern resembles that 
of El Niño, which is consistent with the tight coupling of the IOD with ENSO 
highlighted in previous studies (Abram, Wright, et al., 2020).

Though we interpret salinity patterns largely in terms of changes in precipita-
tion and evaporation, other factors can influence salinity as well. For example, 
a salinity anomaly can be advected far from the precipitation or evaporation 
anomaly that caused it. We observe such circulation influences across time 
scales, from interannual (Figure 6) to multidecadal (Figure 8). For example, 
during El Niño events, the Pacific North/South Equatorial Currents (NEC, 
approximately 15°N; SEC, approximately 2°N) both advect unusually fresh 
water from the central Pacific westward; the North Equatorial Countercurrent 
(NECC; approximately 7°N) advects unusually salty water in the IPWP east-
ward; finally, upwelling of the Equatorial Undercurrent (EUC; 0°N) weak-

ens, causing surface salinification in the eastern Pacific (Figure 6a). Similar fingerprints of advection are seen in 
long-term trends (Figure 8). Such advection, as well as mixing, could homogenize or dampen salinity anomalies. 
Nonetheless, these processes also spatially smooth and spread a salinity anomaly over a wide geographic area, 
making such anomalies easier to detect with a limited coral and observational network. In this way, smoothing 
of salinity anomalies via advection and mixing can potentially aid in the detection of long-term changes within 
sparse observational networks.

Figure 5.  Agreement between pairs of spatiotemporal sea surface salinity 
(SSS) data sets and reconstructions for the common period of 1980–1997, 
evaluated using the Anomaly Correlation statistic (AC). Higher AC values 
denote greater similarity. “CFRcoral-other CFRcoral” compares coral-based 
CFRs generated using a variety of SSS datasets (e.g., compares the IAP-based 
CFRcoral to that based on ORAS5-0). Comparisons between ORA ensemble 
members (e.g., ORAS5-1 CFRcoral compared to ORAS5-2 CFRcoral) are 
colored in blue, and IAP-ORAS5 comparisons are colored gray. “SSS-other 
SSS” compares the reanalysis SSS datasets to other SSS datasets (e.g., 
Institute of Atmospheric Physics SSS compared to ORAS5-0 SSS); again, 
comparisons among ORA ensemble members are colored in blue. “CFRSSS-
respective SSS” compares the CFR created using SSS data to the SSS data set 
used to reconstruct it. “CFRcoral-respective SSS” is similar, except that the final 
coral-based CFR is used.
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3.6.  Twentieth Century Trends and Multidecadal Variability

We evaluate long-term salinity trends over the period of 1900–1990, when most coral records are available. This 
period extends previous studies of global tropical salinity trends by at least 50 years (Boyer et al., 2005; Cheng 
et al., 2020; Durack & Wijffels, 2010; Helm et al., 2010; Skliris et al., 2014). The coral reconstructions each 
show freshening of the Pacific ITCZ and SPCZ, with the strongest trends in the western Pacific, and salinifica-
tion of the southeastern Pacific and Maritime Continent (Figure 8). Both reconstructions also show widespread 
Atlantic salinification, aside from insignificant freshening trends in the ITCZ region. These trends in the IAP and 
ORAS5 reconstructions broadly resemble the climatology of SSS (shown by contours in Figure 8), and likely 
reflect a thermodynamical intensification of the hydrological cycle—that is, a “wet gets wetter, dry gets drier” 
pattern (Rhein et al., 2013). This pattern is seen in previous salinity studies (albeit over different time periods) 
and is attributed to increasing atmospheric water vapor transport with temperature (Cheng et al., 2020; Durack 
et al., 2012; Friedman et al., 2017; Skliris et al., 2014).

The Pacific trends also share many similarities with salinity anomalies observed during El Niño events (e.g., 
freshening western Pacific and salinifying southeast Pacific; Figure 6 and Figure S10 in Supporting Informa-
tion S1). These similarities could provide evidence of a long-term weakening in the Walker Circulation (e.g., 
Power & Kociuba, 2011; Power & Smith, 2007; Vecchi et al., 2006; Zhang & Song, 2006) (contours in Figure 
S10 of Supporting Information S1). This dynamical response is difficult to disentangle from the thermodynam-
ical component; however, locations that subvert the “fresh gets fresher, salty gets saltier” paradigm can provide 
evidence of such dynamical changes. The clearest such example is the salinification trend in the climatologically 

Figure 6.  Response of sea surface salinity (SSS) to El Niño-Southern Oscillation (ENSO) events. (a and b) The linear 
regression slope of SSS with the Niño3.4 index (ERSSTv5, detrended by subtracting mean sea surface temperature [SST] 
over 20°S-20°N) for Institute of Atmospheric Physics (IAP) (a) and the Ocean ReAnalysis System 5 (ORAS5) ensemble 
mean (b) SSS data products. (c and d) The linear regression slope of the coral CFR with the Niño3.4 index for IAP (c) and 
the ORAS5 ensemble mean (d). (e) Reconstructions of the PC for each SSS data product that best reflects ENSO events, 
compared to Niño3.4 SST anomalies (black line). Each PC is scaled by dividing by the square root of its eigenvalue, and 
inverted as needed so that El Niño events are plotted upward. The correlation coefficient (r) between each PC and the Nino3.4 
index is given; signficant correlations are marked with an asterisk (autocorrelation-adjusted p ≤ 0.05, after Bretherton 
et al. [1999]).
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fresh Maritime Continent, especially near Borneo, which resembles salinity anomalies in this region during El 
Niño events (Figure 6). Though this trend may be poorly constrained in our CFRs due to the lack of coral records 
in this region (Figures 2 and 7b), previous studies nonetheless show similar salinification trends in the Maritime 
Continent (Cheng et al., 2020; Skliris et al., 2014). This salinification is consistent with decreasing precipita-
tion in this region associated with a weakening of the Pacific Walker circulation. Such weakening is shown in 
many climate models forced by anthropogenic warming, though observations show strengthening trends in recent 
decades due to internal variability and/or sulfate aerosol forcing (Bonfils et al., 2020; Chung et al., 2019; England 

Figure 7.  Regional mean SSS anomalies (SSSa) for coral CFRs and original SSS data sets (area-weighed; anomalies relative 
to 1980–1990 reference period). Regions include the western equatorial Pacific (a), a subset of the Indo-Pacific Warm Pool 
(b), a portion of the South Pacific Convergence Zone (c), and the central/eastern Pacific (d). The number of coral records 
from each region is given for each reconstruction (ncoral); the correlation coefficient (r) between the coral reconstruction 
and its respective SSS data set is also given, with significant correlations marked with an asterisk (autocorrelation-adjusted 
p ≤ 0.05, after Bretherton et al. [1999]).

Figure 8.  Sea surface salinity (SSS) trends (1900–1990) for selected coral-based climate field reconstructions (CFRcoral), 
including Institute of Atmospheric Physics (a) and the Ocean ReAnalysis System 5 ensemble mean (b). Trends are computed 
using OLS regression. Stippling denotes sites where the trend is not significant (p > 0.05, calculated from a two-tailed 
Student's t test with autocorrelation-adjusted sample sizes, see Santer et al. [2000]). Black lines show selected contours 
(34.5–35.5 PSU) of climatological mean instrumental SSS.
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et al., 2014; L’Heureux et al., 2013; Plesca et al., 2018; Takahashi & Watanabe, 2016). Ultimately, our coral 
reconstructions show evidence of multiple potential mechanisms of long-term salinity change.

Freshening trends are also observed in individual salinity-sensitive coral reconstructions in the central Pacific 
(Nurhati et al., 2011; Sanchez et al., 2020) and SPCZ region (Dassié et al., 2018); indeed, several of these records 
are used in both the ORAS5 and IAP reconstructions in this study. Freshening trends in individual records from 
the southern Indonesian Throughflow region (Murty et al., 2018) disagree with insignificant salinification trends 
in our coral CFRs in the same region (Figure 8). However, those records do not pass the calibration screening 
criteria for inclusion in the IAP and ORAS5 reconstructions (Figure S2 in Supporting Information S1), so it is 
possible that these corals are sensitive to fine-scale SSS variability that is not well captured by 1° gridded SSS 
data sets. We also caution that the region of the Maritime Continent with the largest reconstructed salinification 
trends (e.g., near Borneo) does not contain any coral δ 18O records with coverage of the early to-mid 20th century, 
though coral records during the satellite era show a robust salinity signal (Krawczyk et al., 2020); this region 
would therefore be a suitable target for future coral paleo-salinity work.

In the Indian Ocean, however, salinity trends are less consistent. Both IAP and ORAS5 show salinification 
in the southeastern Indian Ocean (Figure 8). This salinification may be consistent with a trend toward a posi-
tive IOD-like mean state (Abram, Hargreaves, et al., 2020), with decreased P−E in this region during positive 
IOD events (Figure 9). However, trends are inconsistent in the northern and western Indian Ocean, showing 
either freshening (IAP) or no significant trends (ORAS5). The Indian Ocean is a noted region of disagreement 
among salinity studies, and has been attributed to poor observational coverage (Durack & Wijffels, 2010; Skliris 
et al., 2014). Few salinity-sensitive coral records are available in this region, which could further contribute to 
these discrepancies in the western and northern Indian Ocean.

Salinity reconstructions also show responses to decadal-and-longer climate variability, though we caution that 
multidecadal variability may not be well resolved by the 2–4 leading SSS modes that are explicitly reconstructed. 
During positive Interdecadal Pacific Oscillation (IPO) phases, when eastern and central equatorial Pacific SSTs 
are anomalously warm, we observe a salinity pattern that generally resembles the response to El Niño events, 
with freshening in the western equatorial Pacific and much of the Indian Ocean, and salinification in the Mari-
time Continent and tropical Atlantic (Figure 9, left column, Figure 6). These patterns closely correspond to those 
shown by reanalysis estimates of P-E over the same time span (Figure 9d). For IAP and ORAS5, the positive 
AMO phase (i.e., warm north Atlantic) is associated with Atlantic, eastern Pacific, and eastern Indian freshening, 
and central/western Pacific and western Indian salinification (Figure 9, center column). The similarity between 
the AMO and IPO SSS patterns highlight the dynamic linkages between these two modes (Meehl et al., 2021). 
Because these IPO and AMO spatial SSS patterns are similar to observed 20th century trends (though inverted 
for the AMO) (Figure 8), decadal-to-multidecadal internal variability could complicate the detection of anthro-
pogenic salinity trends over these time scales, as noted in other studies (Gu & Adler, 2013; Stott et al., 2008; N. 
T. Vinogradova & Ponte, 2017).

Figure 9.  Regression slope maps of ERSSTv5-based climate indices, including the Interdecadal Pacific Oscillation (left column), Atlantic Multidecadal Oscillation 
(center column), and IOD (right column) with sea surface temperature (SST), precipitation minus evaporation (P–E), and the coral-based CFR (CFRcoral). SST 
is observation-based (ERSST version 5, Huang et al. [2017]) (a–c); P–E is reanalysis-based (NOAA/CIRES/DOE 20th Century Reanalysis version 3, Slivinski 
et al. [2021]) (d–f). Coral-based CFRs are based on Institute of Atmospheric Physics (g–i) and the mean across Ocean ReAnalysis System 5 ensemble members (j–l).
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4.  Conclusions
This study demonstrates the utility of coral δ 18O in the spatiotemporal reconstruction of tropical SSS over the full 
20th century. Our reconstructions extend existing records of pan-tropical salinity trends by over 50 years (Cheng 
et al., 2020; Durack et al., 2012; Skliris et al., 2014). These coral-based salinity reconstructions show trends over 
the 20th century that we attribute to an intensifying hydrological cycle and possibly a weakening Walker Circu-
lation, both superimposed on decadal-to-multidecadal variability.

We identify some key limitations of this reduced-space climate reconstruction approach. Chief among these is 
a lack of consensus among data sets on the leading modes of salinity variability. Ultimately, the skill of a CFR 
depends on the accuracy of the salinity data used to generate it. Inconsistencies in the leading modes of variability 
among SSS reanalyzes—even though these data sets assimilate identical or similar observations—indicate that 
more work is needed in this regard.

From a coral proxy perspective, there is a pressing need for a gridded surface salinity data set that assimilates 
all available quality-controlled near-surface observations, is regularly updated to ensure the longest time series 
possible, and includes uncertainty estimates for calibration with coral data. In the absence of a “gold standard” 
salinity data set, our results highlight the critical need to compare multiple SSS data sets when examining spatio-
temporal variability. Our EOF results demonstrate that IAP and ORAS5 have the most physically plausible salin-
ity variability of the data sets considered in this study. We caution that these results do not necessarily make these 
data sets more “accurate” than others (a rigorous comparison to observed EN4 profiles would be needed). Never-
theless, the availability of 1σ uncertainties for IAP make it especially well suited for coral δ 18O-SSS calibrations. 
Therefore, of the data sets considered in this study, IAP meets the most criteria for coral proxy applications.

A second avenue of improvement for this coral-based reconstruction method is the disentanglement of the SST 
and SSS contributions to coral δ 18O. Work is needed (e.g., the PAGES CoralHydro2k project) to improve the 
δ 18Osw reconstruction methods and expand the network of coral-based δ 18Osw records. Such records could ulti-
mately reconcile discrepancies in trends in regions with suboptimal data availability (e.g., the Indian Ocean and 
the Maritime Continent).

Despite these limitations, this reduced-space field reconstruction method offers several opportunities to deepen 
our understanding of both coral δ 18O proxies and tropical Pacific climate variability. This method can be used 
as a framework to target potential coral sites that can best improve salinity reconstructions and/or extend the 
reconstruction further into the 19th century, and can be used to develop hypotheses about salinity variability that 
can be tested against new coral records. For example, western equatorial Pacific sites show high signal-to-noise 
ratios for reconstructing salinity (Balmaseda et al., 2015); longer paleoclimate records in this region could help 
constrain interannual to multidecadal salinity variability before the Industrial Era. Finally, this reconstruction 
method can facilitate proxy-model comparisons. Ultimately, by extending our observational records of tropi-
cal oceanic hydroclimate, this climate reconstruction approach can help to disentangle natural variability from 
anthropogenic trends in a sparsely observed, but climatically crucial, region of the world.

Data Availability Statement
The Python code for CFR, and the resulting coral-based field reconstructions, are publicly available via Zenodo 
(Reed et al., 2022).
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