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Abstract Climate observations in much of the tropical oceans are scarce during most of the 20th century,
so paleoclimate proxies are needed to understand the full range of natural climate variability. Past proxy studies
have focused primarily on sea surface temperatures, but there are comparatively few salinity reconstructions.
Such reconstructions can extend our understanding of hydroclimate across the tropical oceans, including
variability in precipitation, evaporation, and ocean circulation. Here we compile a network of salinity-sensitive
coral §'80 records, then apply a reduced-space method based on empirical orthogonal function analysis to
reconstruct annual tropical salinity anomalies over the 20th century. A comparison of surface salinity data
sets, including reanalyzes (SODA2/3, Ocean ReAnalysis System 5 (ORASS), Global Ocean Data Assimilation
System) and objective analyses (Institute of Atmospheric Physics (IAP), EN4, Delcroix), show large
discrepancies in the spatial structure, temporal evolution, and importance of the leading modes of variability.
Two salinity data sets, IAP and ORASS, are retained for climate reconstruction. Our coral-based salinity
reconstructions reveal significant long-term trends over the 20th century, which are likely associated with
hydrological cycle intensification and possibly a weakening of the Walker Circulation. These reconstructions
also capture the spatial and temporal patterns of salinity anomalies associated with the El Nifio-Southern
Oscillation, Interdecadal Pacific Oscillation, and Atlantic Multidecadal Oscillation. Ultimately, this approach
can enhance our understanding of tropical hydroclimate prior to the observational era.

1. Introduction

Earth's tropical oceans influence major features of atmospheric circulation, including the Intertropical Conver-
gence Zone (ITCZ), South Pacific Convergence Zone (SPCZ), and Walker and Hadley circulation, that affect
global hydroclimate. These features display interannual and decadal variability that can drive widespread patterns
of droughts and floods, and are likely undergoing long-term change as the global hydrological cycle intensi-
fies with warming (Rhein et al., 2013). However, our understanding of long-term hydroclimate variability and
trends over the global oceans is limited by sparse precipitation observations before the satellite era (1979—pres-
ent) (Rhein et al., 2013; Schneider et al., 2017), with studies of 20th century precipitation generally relying on
low-resolution (5°) precipitation products and reanalyzes (e.g., Green et al., 2017; Smith et al., 2012).

Paleoclimate reconstructions of sea surface salinity (SSS) can circumvent this limitation. SSS acts as a “rain
gauge” that reflects the balance of precipitation with evaporation over the global oceans, and can also track
regional changes in ocean circulation, terrestrial runoff and river discharge, and ice melt and formation, thus
offering more comprehensive insight into hydroclimate than precipitation alone (Durack et al., 2012; Rhein
et al., 2013; Skliris et al., 2014; Terray et al., 2012; N. T. Vinogradova & Ponte, 2013; Yu, 2011). In addition,
salinity affects seawater density (and therefore ocean circulation and stratification), which has profound impacts
on biological productivity and ocean heat storage (Rhein et al., 2013).

Despite its key role in circulation and climate variability, there is no “gold standard” (i.e., widely accepted as the
most reliable) gridded salinity data set. SSS observations, like those of precipitation, are sparse across the tropical
oceans for most of the 20th century (Figure 1) (Bingham et al., 2002). The two main approaches to infilling the
sparse observational data come with their own challenges. The first approach, Objective Analysis (OA), filters
and interpolates sparse salinity observations to generate a continuous gridded product. In the absence of observa-
tions, OA data sets typically relax to the SSS climatology in a given location (Table 1), masking variability and
trends. In the second approach, ocean reanalyzes attempt to bridge this observational void, assimilating salinity
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Figure 1. The number of observations per region (left) and instrumentation type (right) of near-surface (<10 m) salinity
observations in the global tropics (30°S-30°N, 1950-2017). Data are compiled from quality-controlled EN4.2.1 profiles
(Good et al., 2013), which include observations from Argo (Argo, 2020), the Global Temperature and Salinity Profile
Program (Sun et al., 2010), and the World Ocean Database (Boyer et al., 2013).

observations into a numerical model forced by other variables (e.g., ocean temperature, precipitation, and wind
stress) (Storto et al., 2019). In this way, observations are used to “nudge” the model estimate of the salinity field
toward the observational state at regular intervals (either online or offline). However, reanalyzes can still be sensi-
tive to changes in the frequency, location, or method of observations and are strongly susceptible to model biases
(Huang et al., 2008; Xue et al., 2017). Recent improvements in ocean reanalyzes, including higher resolution
models, more realistic physics and atmospheric forcing, better quality control of observations, and improved data
assimilation methods, broaden the potential applications of reanalysis data (Storto et al., 2019). These applica-
tions include the use of salinity reanalyzes for calibration of coral paleoclimate records in the absence of in situ
observations.

Coral geochemical proxies have been widely applied to reconstruct tropical climate variability and trends, particu-
larly of sea surface temperature (SST). Such reconstructions provide insights into natural climate variability, such
as the El Nifio-Southern Oscillation (ENSO), as well as anthropogenic trends, over longer time scales than the
instrumental record. Coral-based SST reconstructions include regionally representative time series (e.g., Abram
et al., 2003, 2008; Abram, Wright, et al., 2020; Cobb et al., 2003, 2013; Grothe et al., 2020; Hendy, 2002; Linsley
et al., 2004, 2006, 2015; Tierney et al., 2015), paleo-data assimilation (Sanchez et al., 2021), and field reconstruc-
tions (Evans et al., 2000, 2002), including Regularized Expectation Maximization field reconstruction methods
(Emile-Geay et al., 2013b; Sanchez et al., 2020). However, the most common coral geochemical proxy, 830,
does not solely record an SST signal. Instead, coral §'30 reflects a combination of both SST and seawater §'30.
In the tropical-subtropical oceans, seawater 8'%0 depends on the balance of precipitation, evaporation, diffusion,
advection, and runoff/river outflow, and therefore covaries with SSS at many coral sites (Cahyarini et al., 2008;
Cole & Fairbanks, 1990; Conroy et al., 2017; Fairbanks et al., 1997; LeGrande & Schmidt, 2006; Thompson
etal., 2011). The relative contribution of seawater 530 and SST to coral 5'20 varies globally; for example, west/
south Pacific corals more strongly reflect salinity than those in the central/east Pacific (Russon et al., 2013). This
contribution is leveraged in this study to reconstruct global tropical salinity from sites with strong salinity signals.
Previous coral studies have capitalized on salinity coherence across large spatial scales to reconstruct regional
salinity variability and trends (e.g., Dassié et al., 2018; Gorman et al., 2012), but coral-based reconstructions of
the global tropics are rare.

Here we apply a reduced-space approach to climate field reconstruction (CFR) (Evans et al., 2002; Fritts
et al.,, 1971; Mann et al., 1998) that has been previously used in paleoclimate research (Gill et al., 2016). We
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compile a network of SSS-sensitive coral §'80 records, and use this network to reconstruct 20th century annual
salinity anomalies in low-latitude regions where reef-building (scleractinian) corals are found (30°N-30°S),
which we call the “full tropics™ hereafter. We then assess the accuracy of this SSS reconstruction, with the goal
of identifying avenues for method improvement and extension further into the past. In order to accomplish these
goals, we address the following questions:

1. Which coral §'30 records are best suited to reconstructing salinity?
2. Do all SSS data sets yield similar salinity reconstructions?
3. What 20th century SSS variability and trends are captured by coral-based reconstructions?

2. Methods
2.1. Salinity Data

We begin by compiling full tropical gridded SSS data sets that substantially overlap with coral records, requiring
that the SSS data are available in 1980 or earlier. These data sets include multiple reanalysis and OA products.
Table 1 describes each product, the salinity observations upon which they are based, and the challenges and
opportunities associated with each.

Four members of the Simple Ocean Data Assimilation (SODA) reanalyzes were chosen, including two members
of SODA version 2 and two members from version 3. SODA2.2.4 was chosen as its time span, 1871-2008, makes
it a favorable and often-used candidate for coral calibration (Giese & Ray, 2011); we also include SODA2.1.6
(Carton & Giese, 2008), SODA3.3.1 (Carton, Chepurin, & Chen, 2018), and SODA3.4.2 (Carton, Chepurin, &
Chen, 2018) for comparison, though these data sets are shorter (Table 1). For SODA products, ocean models are
forced by near-surface variables from atmospheric reanalyzes, such as winds, air temperature, humidity, pressure,
precipitation, and radiative fluxes. The underlying ocean models and forcings differ among SODA versions;
recent iterations (SODA?3) also introduce corrections for biases in net surface heat and freshwater flux (Carton,
Chepurin, & Chen, 2018).

The European Centre for Medium-Range Weather Forecasts Ocean ReAnalysis System 5 (ORASS) ensemble
members (0—4) are also included (Zuo et al., 2019) (Table 1). These members only differ by perturbations to the
initial conditions, atmospheric forcings (e.g., heat, momentum, and freshwater fluxes), and observations (derived
from EN4 profiles) (Zuo et al., 2017), and are therefore highly similar to each other.

The final reanalysis data set, the National Centers for Environmental Prediction Global Ocean Data Assimila-
tion System (GODAS) (Behringer & Xue, 2004), does not directly assimilate salinity observations, and instead
computes and assimilates synthetic salinity profiles using temperature and salinity climatology from the National
Centers for Environmental Information World Ocean Database (WOD) (Saha et al., 2006) (Table 1).

OA products, in contrast to reanalyzes, do not assimilate observations into climate models, theoretically circum-
venting biases in model physics. These products are sensitive to the number and spatial distribution of observa-
tions, however, as well as the method used to infill missing observations. OA products considered here include
UK Met Office Hadley Center EN4.2.1, Delcroix, and Institute of Atmospheric Physics (IAP) SSS (Table 1).
EN4.2.1 extensively quality-controls salinity profiles from WOD (Boyer et al., 2013), the Global Temperature
and Salinity Profile Program (Sun et al., 2010), and Argo (Argo, 2020) to produce a gridded product that spans
the full 20th century (Good et al., 2013). Another OA product, Delcroix, exclusively reconstructs near-surface
(<10 m) salinity and therefore draws from a larger pool of observations, but is only available in the tropical
Pacific Ocean (Delcroix et al., 2011). Both OA products relax to the climatological mean in the absence of obser-
vations. Finally, a recently released interpolated salinity product from IAP similarly draws from WOD observa-
tions (Cheng et al., 2020). However, the IAP method infills missing data by using error covariance maps derived
from an ensemble of historical Coupled Model Intercomparison Project Phase 5 simulations. This Observational
Reconstruction approach differs from that of EN4.2.1 and Delcroix, which infill data using an isotropic or ellip-
soid function (Delcroix et al., 2011; Good et al., 2013).

These reanalysis and OA data sets are chosen to be illustrative examples, not exhaustive compilations. Further, as
they often assimilate identical or near-identical data sets, such as the 2013 or 2018 iterations of the WOD (Boyer
et al., 2013, 2018), they cannot be treated as truly independent estimates of salinity. Though WOD18 includes
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nearly 2 million surface-only salinity observations, such observations are not the main focus of the WOD, which
mainly compiles sub-surface profiles; instead, the WOD includes surface-only observations only when/where
profiles are sparse (Boyer et al., 2018). To our knowledge, no gridded, global, and long-term SSS data set assim-
ilates satellite-derived salinity observations (reviewed in N. Vinogradova et al. [2019]).

We restrict all data sets to the full tropics (30°S—-30°N). The SSS data are then averaged from April to the
following March (i.e., the “tropical year”) to avoid splitting ENSO events between years (Evans et al., 2002).
Only tropical years with 12 months of data are included to mitigate biases introduced by incomplete years.
This annual mean calculation can potentially smooth lagged relationships of salinity with subannual-to-inter-
annual climate variability (e.g., salinity at sites in the South Pacific can lag ENSO by as much as 7 months
[Kilbourne et al., 2004]), so we caution that interannual variability may be underestimated in comparison to
decadal-to-multidecadal variability and trends. Where needed, data are converted from absolute (g/kg) to prac-
tical (PSU) salinity using the Thermodynamic Equation of Seawater (IOC et al., 2010). Finally, we subtract the
temporal mean over the 1980-1990 reference period, chosen as the period of overlap between all SSS data sets
and most coral records, to compute SSS anomalies (SSSa).

2.2. Coral Data and Calibration

Coral §'80 data used in this study are compiled from the Iso2K database (Konecky et al., 2020). All coral records
are screened based on several criteria, such that all records: (a) are located within the global tropical-subtropical
oceans (30°S-30°N); (b) have a temporal resolution of annual or higher; (c) overlap and extend the SSS calibra-
tion period starting in 1970 (i.e., each record begins in 1960 or earlier and ends after 1980, such that there is at
least 10 years of overlap and pre-instrumental coral data). We include several additional records that meet these
criteria, including an updated version of the Fonoifua Island, Tonga record (TF1 in the original publication;
1s02K ID CO18DATOO01A) (Dassié et al., 2018), one record from Ha'afera Island, Tonga (TH1 in the original
publication) (Linsley et al., 2017), and two records from the Lombok Strait, Indonesia (Murty et al., 2018) (Table
S1 in Supporting Information S1).

For each location, we calibrate annual coral §'*0 with annual SSS over the calibration interval (defined to begin
in 1970, when observations are more frequent (Figure 1), and continuing to the most recent date of each coral
record). First, we calculate the annual, tropical-year mean for each sub-annually resolved coral record. Annually
resolved records are assumed to span the tropical year. We then calibrate each coral record to SSS using weighted
least squares (WLS) regression, a linear regression method that accounts for uncertainty in both the independent
and dependent variables (Thirumalai et al., 2011). We perform this calibration separately for each SSS data set
considered in this study, and for each 8'30 record at sites where multiple records are available. A coral record
is only calibrated if it overlaps with an SSS grid cell, which eliminates some near-shore coral records. We also
require an overlapping sample size of at least 5 years. Though this flexible calibration period could preferentially
include more recent coral records (for which the calibration period is longer and more likely to produce signifi-
cant relationships with SSS), this approach maximizes the salinity information obtained by the network of availa-
ble records compared to calibration over a common period (e.g., 1980-1990). Finally, we evaluate uncertainty in
the calibration equation for each coral record and SSS data set by using K-fold cross validation (see Supporting
Information S1).

WLS regression requires uncertainty estimates for both coral §'80 and SSS. For coral §'80, we use the 1o analyt-
ical uncertainty. Because all of the reanalysis and some of the OA SSS data sets lack uncertainty estimates, we
use 16 SSS error from the EN4.2.1 gridded product for all SSS data sets except Delcroix, which includes its own
uncertainty calculations (note that IAP SSS error estimates are not publicly available as of April 2021, so EN4.2.1
error is used for IAP as well). Many SSS data products incorporate similar or identical observations (especially
the WOD) (Table 1), making EN4.2.1 uncertainties a reasonable choice in the absence of individualized uncer-
tainty data sets.

We remove any coral records with a 8'%0-SSS calibration p > 0.1; this p-value was chosen to buffer against
the impacts of small sample sizes in calibrations with shorter SSS data sets (e.g., for ORASS, mean calibration
n = 17) to maximize the salinity information obtained from the network of available coral records. We then apply
the calibration equation to convert the remaining coral 8'80 records to SSS. If there are multiple records for
each model grid cell, we then composite SSS at each site by Z-scoring each SSS reconstruction, averaging these
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Z-scores, then converting this composite Z-score to SSS using the mean and standard deviation of the SSS recon-
structions during their period of overlap. We then calculate SSSa relative to the reference period for each grid cell.

2.3. Reconstruction Method

The reduced-space reconstruction method used here is adapted from the method described by Gill et al. (2016)
(see Gill Figure 3 for a visual explanation of the method). The procedure for each SSSa data set is as follows:

EOF Analysis of SSS Data Products

1. SSSais interpolated to 2° X 2° spatial resolution to speed computations in step 3 (results [not shown] are
similar when the original resolution is used). The interpolated SSSa is then reshaped from three dimen-
sional (latitude X longitude X time) to two dimensional (time (length &, the number of years of the full
SSSa data set) X number of grid cells with SSSa data (length G)), producing the matrix X .

2. The covariance matrix, C,,, has dimensions G X G, and is computed from X,
function in Python (Harris et al., 2020).

3. C,, is decomposed into orthogonal space-time components (hereafter “modes”) by performing singular

, using the NumPy cov

i

value decomposition on C,,;, using the SciPy linalg.svd package in Python (Virtanen et al., 2020):

Crun = UfuI/AfuIIU;l//[' (1)

T
Jull
, is a matrix with the eigenvalues, 4, on the diagonal; these eigenvalues can be used to

U, is a matrix of eigenvectors (i.e., the spatial loadings, or EOFs, of each mode). U

of Uﬁd,, and Aﬁd

calculate the fraction of the total variance described by each mode. Uﬁd,, Afu,l, and U?u, . all have dimensions

G X G. The temporal evolution of each EOF is termed the “principal component” (PC). The matrix of

is the transpose

principal components, A, has shape N X G, and is calculated by multiplying the reshaped SSSa matrix
by the eigenvectors:

A s = XU s 2)

Note that the signs of these eigenvectors (and thus PCs) are arbitrary, and can be inverted as needed to be
consistent with the temporal evolution of real modes of climate variability (such as ENSO).

Coral Site EOF Analysis and Regression Model Development

4. A matrix is formed of a subset of the high-resolution SSSa grid cells (i.e., not interpolated to 2°) for each
data product that include only the locations of coral proxies. This matrix, X, .. has dimensions N X P,
where P is the number of grid cells with coral proxy sites. Repeat steps 2 and 3 with X, . This process
yields: the EOFs U, . (dimensions P X P); principal components A (dimensions N X P); and, finally,
the eigenvalues 4, . of the subset field.

5. Because the variance in a full-field mode may capture the variance of a combination of subset-field modes,
multiple linear regression is used to reconstruct each full-field PC using a combination of the leading
subset-field PCs as predictors (i.e., the consecutive subset-field PCs that together explain at least 75% of
the cumulative variance [Text S2 in Supporting Information S1]). Regressions using all possible combi-
nations of these subset-field PCs are evaluated using the Bayesian Information Criterion (BIC), and the
combination that yields the lowest BIC is used. This process yields regression equations for the leading y
full-field modes using the x retained limited-field PCs. The r? value (adjusted for the number of predictors
[Miles, 2014]) of each multiple linear regression is then calculated. Only the leading consecutive full-field
modes that produce an adjusted r? > 0.2 are explicitly reconstructed (see Supporting Information S1).

6. A matrix is formed of coral SSSa data (composited for each site), F, with dimensions L X P, where L is

subset

the time span of the coral matrix. We infill missing data within each site with O (i.e., the mean during the
SSSa reference period).
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Climate Field Reconstruction

7. For each year [ in the time span L of the coral matrix, reconstruct the subset-field principal components,

A (dimensions 1 X P); where applicable, variables are denoted R for “reconstructed”:

subset_R_1

Asubset_R_[ = FIUsubser (3)

We then find the leading reconstructed full-field principal components, A . ,, using A, ., ., and the
regression equations found in step 5. A, , , is a row vector of length y; the temporal mean of the remain-
ing full-field PCs is then used to fill the remaining space in A, ; , (i.e., extending y to length G) so that the
spatial expression of these combined principal components can be calculated. Finally, these reconstructed
PCs are converted to reconstructed full-field SSS anomalies for each year I:

Xruti_rt = Apui_rU funi 4)

The calculation of X, . , (dimensions 1 X G) is then repeated for each year / in which coral proxies are
available.
8. After looping through step 7 for each year, the results are ultimately compiled into matrix X, . (dimen-
sions L X G). This matrix is then reshaped to produce the three-dimensional (latitude X longitude X L) CFR
of SSSa.

9. Finally, we truncate the CFR to the period in which at least 50% of the maximum number of screened
coral sites for each SSS data set are available. Below this threshold, more than half of the sites are assigned
reconstructed SSSa values of zero, and we observe that the principal components similarly relax toward
the mean (data not shown). This process ultimately yields a coral-based CFR for each SSSa data set.

We compute the full- and subset-field modes for all SSA data sets. We then evaluate the leading EOFs
and PCs of each data set for evidence of unphysical behavior (e.g., unrealistic temporal trends or visual
evidence of the sparse observation network influencing spatial patterns) before considering them for CFR.

2.4. Error Assessments

We perform error assessments of each CFR over the full period of overlap among reconstructions and SSS data
(1980-1997). We caution that assessments over this period may not hold true over longer time scales, but this
is an unavoidable limitation of short salinity observations relative to those of other climate variables, such as
SST. We considered calibration-validation analyses for both coral §'30-SSS calibration and for comparing the
CFR,,, to SSS data. However, the period of overlap between all SSS data sets and most coral records is too short
to split into two sufficiently sized intervals: SSS data typically begins in 1980, and most coral records end in the
mid-1990s, such that the 50% threshold used to truncate the CFR occurs around 2000 CE. This limited sample
size (<10 years for each interval) precludes an informative out-of-sample validation approach.

We compare the CFR_,, from each SSS data set to the SSS data set used to reconstruct it (e.g., IAP SSSa
compared to SSSa from the IAP CFR_, ), hereafter the “respective SSS” of each CFR, by computing the Anom-
aly Correlation statistic (AC). The AC is essentially the product-moment correlation coefficient (r-value) between
reconstructed and original SSSa computed for each grid cell and then spatially averaged (Cook et al., 2011;
Wilks, 2006). We also map the long-term mean CFR__-SSS difference over the period of overlap. This process

coral”

allows the examination of spatial or temporal biases in each CFR,, , compared to its respective SSS data set.

To better assess the sources of error in the climate field reconstructions, we generate an “SSS observation-based
CFR” from each SSS data set (“CFR”). We compute each CFR by following the steps 1-5 in Section 2.3
used to generate each CFR . In step 6, rather than generating matrix F from coral data, we create this matrix
using the SSS from the grid cells of the included coral data. This matrix, F, has dimensions N X P. We then
complete the CFR (steps 7-9) using F instead of F. In a sense, this approach produces a “best case” CFR, one
in which the coral records from each site perfectly reflect SSS and thus introduce no additional error to the recon-
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struction. We then repeat the CFR
data set, we can quantify the uncertainties that result from a combination of: (a) the number and location of coral

ora ETTOT assessments using CFR . By comparing CFR i to its respective SSS
sites, and (b) the CFR method, such as the number of modes that are explicitly reconstructed, and the regression
between the full- and subset-field PCs. We also compare CFR,
result from the coral records. Sources of such error may include uncertainty in the §'30-SSS calibration slope

ora1 10 CFR ¢ t0 assess the additional error that may
and intercept, contribution of SST to coral §'0, age model uncertainty, and non-climatic §'80 variability due to
growth-related (“vital”) effects (McConnaughey, 1989).

2.5. Climate Analyses

To identify significant long-term trends, each reconstruction is subset to a common period when most coral records
are available (1900-1990). Ordinary least squares (OLS) regression coefficients are then computed and evaluated
for significance (after Santer et al. [2000]). These trends are then compared among reconstructions. We compare the
response of reconstructed and instrumental SSSa fields to ENSO events using the Nifio3.4 index (ERSSTv5 over
5°S-5°N, 170°-120°W; detrended by subtracting mean SST over 20°S-20°N). We further compare the Nifio3.4
index to the coral reconstruction of the SSS mode that most strongly reflects ENSO. We also evaluate regressions
of reconstructed salinity with the Interdecadal Pacific Oscillation (Henley et al., 2015), Atlantic Multidecadal
Oscillation (Trenberth & Shea, 2006), and Indian Ocean Dipole (Saji et al., 1999), all computed using ERSSTv5
(Huang et al., 2017). We note that computing the IOD index using ERSSTv5 enables comparisons over the full
20th century, but may reduce the magnitude of inferred IOD events compared to shorter and higher-resolution SST
products (Abram, Hargreaves, et al., 2020). The Atlantic Multidecadal Oscillation (AMO) index is smoothed with
a 10-year running mean, and all climate indices are computed over the tropical year. We compare these salinity
regression maps with those of reanalysis-based precipitation minus evaporation (“P—E”) data (NOAA/CIRES/
DOE 20th Century Reanalysis version 3, Slivinski et al., 2021), but caution that P—E and SST observations, like
salinity observations, are scarce for most ocean basins during much of the 20th century.

2.6. Assumptions

The EOF analysis approach to CFR requires several key assumptions. The first assumptions arise from the SSS
data: we assume that the SSS data sets span enough time to accurately capture the leading modes of variability,
and that SSS modes result from real SSS variability and are not an artifact of changing number, location, and/
or method of salinity observations through time. Other assumptions are more fundamental: this CFR method
assumes that the leading modes of variability over the period of EOF computation remain the dominant modes of
variability over the reconstruction period. We further assume a multivariate, linear relationship between the PCs
of full SSS field and the subset field.

The final assumptions arise from the coral data. We assume that the coral §'%0-SSS calibration is valid over the
reconstruction period. This calibration may be affected by nonlinearities in local seawater 5'80-SSS relation-
ships that cannot be constrained without in situ seawater isotope measurements (Legrande & Schmidt, 2011;
Stevenson et al., 2018). In addition, we assume that the contribution of SST to coral §'0 does not meaningfully
affect our SSS reconstructions. A paired geochemical approach potentially avoids this assumption by subtracting
a Sr/Ca-derived SST signal from coral 8'%0 to isolate a seawater §'30 (and therefore salinity) signal (Cahyarini
et al., 2008; Ren et al., 2002). However, we did not apply this approach in this study for three reasons. First, the
number of paired Sr/Ca-5'%0 records is small compared to the number of 5'80-only records. Second, SST-SSS
covariance can bias paired Sr/Ca-8'30 salinity reconstructions. Where covariance is strongly negative (i.e., at
many of our coral sites [Russon et al., 2013]), the §'%0-SST calibration slope is anomalously steep; as a conse-
quence, this method may yield reconstructions not of total seawater 8'0, but of the small fraction of the seawater
8'30 signal that varies independently of SST (Cahyarini et al., 2008). Third, compounding errors (Sr/Ca-SST
and 8'30-SST regressions, and analytical uncertainties of Sr/Ca and §'%0) can further weaken signal-to-noise
ratios. A seawater 8'30 reconstruction method that accounts for SST-SSS covariance could improve the CFRs in
this study. In the absence of such a method, we use unpaired coral 5'20, leveraging the SST-SSS covariance that
can amplify salinity signals, and caution that the SST contribution could be a source of uncertainty beyond the
calibration period.
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Figure 2. Calibration slope (colored circles) between coral §'0 and sea surface salinity (SSS) for each coral record, averaged across SSS data sets. All data sets (e.g.,
Delcroix, Global Ocean Data Assimilation System, and EN4.2.1) are included; for individual calibrations, see Figure S2 in Supporting Information S1. The mean slope
excludes any calibrations that fail the screening criteria for sample sizes and significance given in the Methods. Circle size corresponds to the number of SSS data sets
for each coral record that yield a calibration that passes the screening criteria (larger size = significantly correlated with more SSS data sets). White X's denote sites
where no calibration passes the screening criteria. Background shading shows the standard deviation of annual SSS (ORAS5-0).

3. Results and Discussion
3.1. Coral Record Calibration

Of the 74 coral 8'30 records considered, between 16 and 37 pass the screening criteria for inclusion in the CFR,
depending on the specific SSS data set (Figures S1 and S2 in Supporting Information S1). Data sets with longer
overlaps with coral records (SODA2.2.4 and 2.1.6, EN4.2.1, IAP, and Delcroix) generally include more coral
sites than shorter SSS data sets, likely due to larger sample sizes (Figure S2 in Supporting Information S1). Few
records from the central/eastern equatorial Pacific, Atlantic, and Caribbean Sea pass the screening criteria. Those
that do generally show steeper 8'80-SSS slopes (which translates to a small coefficient when converting 580
to SSS) (Figure 2 and Figure S2 in Supporting Information S1). Some nearshore sites (e.g., the Great Barrier
Reef) are not significantly correlated with any SSS data sets. This may result from sub-grid-scale variations in
SSS due to runoff, river input, and local ocean circulation. Comparing our regressions with published §'80-SSS
calibrations for individual sites, we find that WLS 5'80-SSS slopes are steeper than those of OLS. This differ-
ence is expected because accounting for SSS uncertainties in WLS regressions typically increases the magnitude
of regression slopes. Nonetheless, WLS produces SSS reconstructions with consistently smaller errors when
compared to OLS-based SSS reconstructions (Table S2 in Supporting Information S1). For sites that pass the
calibration screening criteria, K-fold cross validation (see Supporting Information S1) shows that coral-based
SSS reconstructions for each record have a median uncertainty of 0.13-0.24 PSU (RMSE) compared to the SSS
time series from the nearest grid cell (Figure S3 in Supporting Information S1). Uncertainty is lowest for IAP and
highest for SODA3 members.

Sites with significant correlations with the most SSS data sets cluster in the ITCZ and SPCZ. In these regions,
salinity variance, and therefore 8'%0 variance, is high (Figure 2), so coral 880 variability is expected to strongly
reflect 8'30,, and its covariance with SST (Russon et al., 2013). Warmer and fresher conditions co-occur in most
of these regions, strengthening the significance of coral §'80-SSS regressions (Russon et al., 2013). In other
regions, such as the central/eastern Pacific and southern Indian Ocean, few records pass §'%0-SSS significance
testing. In these regions, SSS and SST may not constructively covary, and sometimes even destructively covary,
with warmer and saltier conditions coinciding (Russon et al., 2013). This may weaken §'80-SSS regressions
below the threshold of significance, especially in regions where overall salinity variance is low. Therefore, the
distribution of coral records that are significantly related to salinity is in agreement with expected coral 580
behavior, based on spatio-temporal patterns of SST and §'80_, variability.

3.2. Modes of Variability in SSS Data Sets

A prerequisite to reduced-space climate reconstruction is identifying the leading modes of variability to recon-
struct. We evaluate the leading modes of variability in the SSS data sets to determine their suitability for recon-
struction, and any discrepancies in these modes among SSS data products would have important implications for
coral-based climate field reconstructions. This evaluation is not intended to comprehensively assess or interpret
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Figure 3. The spatial (EOF; left column) and temporal (PC; right column) pattern of the leading mode of variability for each
sea surface salinity data set considered in this study. EOFs and PCs are unscaled, and the signs of the loadings are arbitrary.
ORASS5-1 through ORASS5-4 are similar to ORASS-0 and are not shown. The time span (in tropical years) of each salinity
data set, and the percentage of total salinity variance explained by the leading mode, are given at left.
the climatic significance of salinity modes of variability. Instead, we screen for unphysical variability that could
be an artifact of the evolving observation network, infilling method (for OA), or model-based climate forcings
and flux corrections (for reanalyzes), which would preclude their use for paleoclimate reconstruction. Overall, the
spatial and temporal patterns of the leading modes are inconsistent among SSS data sets (Figures S4 and S5 in
Supporting Information S1). These discrepancies persist even if the data are subset to the common period before
computing EOFs (1980-2008; Figures S6 and S7 in Supporting Information S1), and exemplify the uncertainties
that can result from sparse salinity observations over the 20th century (Figure 1).
We evaluate the leading modes of variability computed from the full time span of each SSS data set, and show
the first mode (EOF1 and PC1) for comparison among data sets (Figure 3). SODA2 EOF1 loads in the same
direction across nearly the entire tropics (Figures 3a and 3b). In SODA2.2.4, the leading mode is a long-term
trend (Figure 3j), which is less clear during the shorter time span of SODA2.1.6 (Figure 3k). The fact that
this nearly pan-tropical pattern is absent from all other SSS data sets, including more recent SODA versions
(Figures 3c and 3d) indicates that this mode is likely non-climatic in origin. Flux corrections were not imple-
mented in SODAZ2, and could account for the unrealistic trend in these members; by comparison, evaporative
fluxes in SODA3 were corrected by up to +2 mm/day (Carton, Chepurin, & Chen, 2018; Carton, Chepurin, Chen,
& Grodsky, 2018). Therefore, we do not use SODA2 for coral reconstructions.
REED ET AL. 10 of 22
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We exclude SODA3 and GODAS from reconstructions for similar reasons. SODA3 and GODAS EOF1 show
weak regional spatial coherence compared to other data sets (Figures 3d and 3f). In addition, SODA3.4.2 and
SODA3.3.1 EOF1 are highly dissimilar despite having nearly identical methods (Figures 3c and 3d, Table 1),
indicating that these EOFs are highly sensitive to the surface forcings used in these reanalyzes. SODA3 members
are also excluded because the ability of the subset field to reconstruct the full-field ENSO mode (EOF3, not
shown) is below the r? cutoff of 0.2, and is therefore not explicitly reconstructed. GODAS is precluded from
reconstructions as it does not directly assimilate salinity observations, resulting in spatially incoherent EOFs that
do not resemble those of any other data sets considered in this study (Figure 3f).

Several OA data sets also show evidence of non-climatic artifacts. EN4.2.1 and Delcroix SSS relax to the long-
term climatology in the absence of observations, which impacts the assessment of variability and trends. This
bias is visible as a dampening of PC1 variability before observations are widespread (approximately 1970 CE)
(Figures 3p and 3r), and as unusually strong loadings in locations with frequent observations (e.g., the TAO array
is visible in EOF1 of EN4.2.1; Figure 3g).

The remaining data sets include IAP and the ORAS5 ensemble. These data sets show no obvious impacts of
the composition of observations (i.e., changes in the frequency, type, and/or location through time). For exam-
ple, the leading mode of IAP (Figures 3h and 3q) is similar to that of EN4.2.1 (Figures 3g and 3p), but with no
visible variability damping before 1970, and with greater regional spatial coherence compared to EN4.2.1 due
to differences in IAP's infilling method for sparse observations. IAP EOF1 shows a spatial pattern that resem-
bles salinity trends during the mid-to-late 20th century seen in previous studies (Cheng et al., 2020; Durack
et al., 2012; Skliris et al., 2014), and PC1 shows strong multidecadal variability or a trend (Figures 3h and 3q).
Because ORASS5-0 spans a shorter time period than IAP, IAP and ORAS5-0's modes are shuffled and/or inter-
mixed relative to each other. For example, ORAS5-0 PC1 is characterized by interannual rather than multidecadal
variability (Figure 3n), as expected when computing EOFs over short time spans. Nonetheless, ORAS5-0 PC1
is significantly correlated with both IAP PC1 and PC2 (» = 0.79 and 0.84, respectively; autocorrelation-adjusted
p < 0.05, after Bretherton et al. (1999); Figure S4 in Supporting Information S1). ORASS5 PC1 and IAP PC2
are not only strongly correlated, but their EOFs are especially similar, with the strongest negative loadings in the
western equatorial Pacific (Figures 3e and 3n; Figure S4 in Supporting Information S1). This region has notably
high interannual SSS variability, which is linked to ENSO events (Chi et al., 2022; Delcroix et al., 2011; Qi
et al., 2019; Singh et al., 2011); indeed, ORAS5-0 PC1 and IAP PC2 are both significantly correlated with the
Nino3.4 index (r = 0.73 and 0.77, respectively; adjusted p < 0.05). Ultimately, the ORASS ensemble and IAP
provide one example each of reanalysis and OA-based SSS data sets that we retain for use in coral-based salinity
reconstructions.

3.3. Salinity Field Reconstruction

The IAP and ORASS coral-based SSS reconstructions range from 115 to 131 years in length (dependent on
the availability of coral records used in the reconstruction), and all reconstructions span the period 1890-1999.
We generate these CFRs by reconstructing the leading 2—4 full-field modes (Figure S8 in Supporting Informa-
tion S1), for which which at least 20% of the variance are explicitly reconstructed by corals (i.e., 7> > 0.2; Figure
S9 in Supporting Information S1). Together, these reconstructed modes explain at least 30% of the total subset-
field and full-field variance of each SSS data set. Sensitivity analyses demonstrate that including additional
modes by lowering the 2 threshold to zero (i.e., reconstructing more of the total variance, but with modes that are
not well reconstructed by the corals) only marginally increases the AC scores (see Supporting Information S1).
AC scores plateau at r?> > 0.2; therefore, our approach reconstructs the greatest variance explained while main-
taining information from the coral proxies.

3.4. Sources of Uncertainty

A comparison of the long-term mean difference between each CFR,  , and the SSS data product used to recon-
struct it shows biases in each coral-based CFR of up to 0.36 PSU (Figures 4a and 4¢). The same analyses between
CFR-SSS (Figures 4b and 4f) are nearly indistinguishable from CFR_ -SSS. These same findings are borne
out by the spatial mean RMSEs through time (Figures 4d and 4h): for both IAP and ORASS, CFR, -SSS and

CFR-SSS are nearly identical, and the RMSEs between the two CFRs is much smaller. These analyses indicate

coral
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Figure 4. Long-term mean difference over the common period (1980-1997) between: each CFR,, , and the sea surface salinity (SSS) data product used to reconstruct

it (a and e); CFR and the SSS data product used to reconstruct it (b and f); and CFR

,and CFR (c and g). The time series (d and h) show the spatial mean

cora

RMSE between each CFR,, , and its respective SSS (blue), CFR and its respective SSS (orange), and CFR_,,, and CFR (green). Results are shown for Institute of
Atmospheric Physics and for the ensemble mean of Ocean ReAnalysis System 5.

that discrepancies between coral-based reconstructions and observations during the period of overlap largely
arise from the CFR method and the number/location of coral proxy sites, not from an inability of the coral 520
network to capture salinity variability (or from shortcomings in the coral calibration method).

The Anomaly Correlations (AC) between pairs of data sets produce similar results (Figure 5). SSS data sets show
strong agreement within the ORASS ensemble (median AC = 0.85), but substantially weaker agreement between
ORASS and IAP SSS (median AC = 0.33) (Figure 5). A similar pattern is shown by comparisons among coral
CFRs, with weaker agreement for IAP-ORASS5 comparisons than within ORASS5 members (Figure 5; median
AC = 0.55 and 0.91, respectively). These results indicate that disagreement among salinity data sets is a signif-
icant source of uncertainty in the reconstructions as well. Similar disagreements have complicated paleoclimate
reconstructions of SST (Emile-Geay et al., 2013a). In contrast, when each CFR_ , is compared to the SSS data
used to generate it, the resulting ACs are virtually identical to CFR-SSS ACs (median AC = 0.26 and 0.28,
respectively) (Figure 5, right two columns). Again, these results illustrate that non-salinity-related coral variabil-
ity is a small source of error when compared to uncertainties resulting from discrepancies among SSS data sets;
CFR-SSS comparisons indicate that methodological uncertainties and the distribution of coral sites contribute
to disagreements as well.

3.5. Interannual Variability

Both coral-based reconstructions show strong salinity responses to ENSO, with freshening in the central-west-
ern Pacific and salinification in the Maritime Continent during El Nifio events (Figure 6). These results are
consistent with the notably high interannual signal-to-noise ratios in the central-western Pacific, which are less
than 1 (noise-dominated) elsewhere in the global tropics (Balmaseda et al., 2015). Fortunately, this region also
overlaps with the area of best coverage by coral records (Figure 2). This overlap likely explains why ENSO is
well reconstructed by coral records (Figure 6). The ability to capture ENSO is quickly degraded before these
central-western Pacific records are available (not shown); for example, the Tarawa 8'0 record ends in 1894

REED ET AL.

12 of 22



A7t |

M\I Paleoceanography and Paleoclimatology 10.1029/2021PA004371

ADVANCING EARTH
AND SPACE SCIENCE

1.0

_|

0.8 1

©
o))

o
N

+ =

among within
datasets datasets

Anomaly Correlation (mean r-value)
o
N

©
o

CFRSSS'
respective SSS

CI:Rcora/‘
Other CFRcora/
SSS-other SSS -
CFRr:ora/'
respective SSS

Among Data Sets: Within Data Sets:

@ ORASS5 pairs ® @ ORAS5-2

@ all other pairs @ ORAS5-0 ORAS5-3
@ ORAS5-1 ORAS5-4
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CFRs generated using a variety of SSS datasets (e.g., compares the IAP-based
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members (e.g., ORAS5-1 CFR,,, , compared to ORAS5-2 CFR ) are
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SSS” compares the reanalysis SSS datasets to other SSS datasets (e.g.,
Institute of Atmospheric Physics SSS compared to ORASS5-0 SSS); again,
comparisons among ORA ensemble members are colored in blue. “CFR -
respective SSS” compares the CFR created using SSS data to the SSS data set
used to reconstruct it. “CFR__-respective SSS” is similar, except that the final
coral-based CFR is used.

coral

(Table S1 in Supporting Information S1). Both IAP and ORAS5 CFR
(Figures 6¢ and 6d) show weaker ENSO sensitivity than their respective
SSS data sets (Figures 6a and 6b); overall, ORASS sensitivity to ENSO
(Figures 6b and 6d) is stronger than IAP (Figures 6a and 6¢) in both the orig-
inal data sets and coral reconstructions. Nonetheless, the principal compo-
nents of SSS which strongly reflect ENSO variability (IAP PC2 and ORAS5
PC1; see Section 3.2) are significantly correlated with the Nino3.4 index
in both coral CFRs (r = 0.57 for ORAS5-0 and 0.65 for IAP, autocorrela-
tion-adjusted p < 0.05) (Figure 6e).

coral

We also examine interannual variability in coral CFRs in several key regions,
including the western equatorial Pacific, central/eastern Pacific, and portions
of the IPWP and SPCZ (Figure 7). In the western equatorial Pacific, which
is especially sensitive to ENSO, reconstructed SSSa are significantly corre-
lated with their respective SSS data sets (Figure 7a). Similar results emerge
from the SPCZ (Figure 7c), which also has high interannual SSS varia-
bility (Figure 2), and from the central/eastern Pacific in the ITCZ region,
which has lower interannual SSS variability but is nonetheless sensitive to
ENSO (Figures 6a and 6b). The IPWP is the exception to this pattern, where
interannual variability is high, but correlations of reconstructed SSSa with
their respective SSSa data sets are much weaker (Figure 7b). Though multi-
ple coral records pass screening criteria in the IPWP region, none of these
records are located within the South China Sea (Figure 2), which comprises
a large portion of this region. For 3 of the 4 regions examined, we find that
ORASS reconstructions yield stronger correlations with observations than do
IAP reconstructions (Figure 7), which is consistent with the stronger salinity
regression slopes with ENSO seen in ORASS compared to IAP (for both
reconstructions and the original SSS data sets; Figure 6). Overall, we find
that the coral CFRs yield more accurate interannual salinity reconstructions
in regions that are well-represented by coral records, and where interannual
variability is high.

Coral-based SSS reconstructions also capture the spatial patterns of inter-
annual variability associated with the IOD, with salinification in the east-
ern Indian Ocean and freshening in the west during positive IOD events
(Figure 9). Beyond the Indian Ocean, the IOD spatial pattern resembles that
of El Nifio, which is consistent with the tight coupling of the IOD with ENSO
highlighted in previous studies (Abram, Wright, et al., 2020).

Though we interpret salinity patterns largely in terms of changes in precipita-
tion and evaporation, other factors can influence salinity as well. For example,
a salinity anomaly can be advected far from the precipitation or evaporation
anomaly that caused it. We observe such circulation influences across time
scales, from interannual (Figure 6) to multidecadal (Figure 8). For example,
during El Nifio events, the Pacific North/South Equatorial Currents (NEC,
approximately 15°N; SEC, approximately 2°N) both advect unusually fresh
water from the central Pacific westward; the North Equatorial Countercurrent
(NECC; approximately 7°N) advects unusually salty water in the IPWP east-
ward; finally, upwelling of the Equatorial Undercurrent (EUC; 0°N) weak-

ens, causing surface salinification in the eastern Pacific (Figure 6a). Similar fingerprints of advection are seen in

long-term trends (Figure 8). Such advection, as well as mixing, could homogenize or dampen salinity anomalies.

Nonetheless, these processes also spatially smooth and spread a salinity anomaly over a wide geographic area,

making such anomalies easier to detect with a limited coral and observational network. In this way, smoothing

of salinity anomalies via advection and mixing can potentially aid in the detection of long-term changes within

sparse observational networks.
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Figure 6. Response of sea surface salinity (SSS) to El Nifio-Southern Oscillation (ENSO) events. (a and b) The linear
regression slope of SSS with the Nifio3.4 index (ERSSTVS, detrended by subtracting mean sea surface temperature [SST]
over 20°S-20°N) for Institute of Atmospheric Physics (IAP) (a) and the Ocean ReAnalysis System 5 (ORASS) ensemble
mean (b) SSS data products. (c and d) The linear regression slope of the coral CFR with the Nifio3.4 index for IAP (c) and
the ORASS ensemble mean (d). (e) Reconstructions of the PC for each SSS data product that best reflects ENSO events,
compared to Nifio3.4 SST anomalies (black line). Each PC is scaled by dividing by the square root of its eigenvalue, and
inverted as needed so that El Nifio events are plotted upward. The correlation coefficient (r) between each PC and the Nino3.4
index is given; signficant correlations are marked with an asterisk (autocorrelation-adjusted p < 0.05, after Bretherton

et al. [1999]).

3.6. Twentieth Century Trends and Multidecadal Variability

We evaluate long-term salinity trends over the period of 1900-1990, when most coral records are available. This
period extends previous studies of global tropical salinity trends by at least 50 years (Boyer et al., 2005; Cheng
et al., 2020; Durack & Wijffels, 2010; Helm et al., 2010; Skliris et al., 2014). The coral reconstructions each
show freshening of the Pacific ITCZ and SPCZ, with the strongest trends in the western Pacific, and salinifica-
tion of the southeastern Pacific and Maritime Continent (Figure 8). Both reconstructions also show widespread
Atlantic salinification, aside from insignificant freshening trends in the ITCZ region. These trends in the IAP and
ORASS reconstructions broadly resemble the climatology of SSS (shown by contours in Figure 8), and likely
reflect a thermodynamical intensification of the hydrological cycle—that is, a “wet gets wetter, dry gets drier”
pattern (Rhein et al., 2013). This pattern is seen in previous salinity studies (albeit over different time periods)
and is attributed to increasing atmospheric water vapor transport with temperature (Cheng et al., 2020; Durack
et al., 2012; Friedman et al., 2017; Skliris et al., 2014).

The Pacific trends also share many similarities with salinity anomalies observed during El Nifio events (e.g.,
freshening western Pacific and salinifying southeast Pacific; Figure 6 and Figure S10 in Supporting Informa-
tion S1). These similarities could provide evidence of a long-term weakening in the Walker Circulation (e.g.,
Power & Kociuba, 2011; Power & Smith, 2007; Vecchi et al., 2006; Zhang & Song, 2006) (contours in Figure
S10 of Supporting Information S1). This dynamical response is difficult to disentangle from the thermodynam-
ical component; however, locations that subvert the “fresh gets fresher, salty gets saltier” paradigm can provide
evidence of such dynamical changes. The clearest such example is the salinification trend in the climatologically
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Figure 7. Regional mean SSS anomalies (SSSa) for coral CFRs and original SSS data sets (area-weighed; anomalies relative
to 1980-1990 reference period). Regions include the western equatorial Pacific (a), a subset of the Indo-Pacific Warm Pool
(b), a portion of the South Pacific Convergence Zone (c), and the central/eastern Pacific (d). The number of coral records
from each region is given for each reconstruction (n,,,,,); the correlation coefficient (r) between the coral reconstruction

and its respective SSS data set is also given, with significant correlations marked with an asterisk (autocorrelation-adjusted
p < 0.05, after Bretherton et al. [1999]).

fresh Maritime Continent, especially near Borneo, which resembles salinity anomalies in this region during El
Niflo events (Figure 6). Though this trend may be poorly constrained in our CFRs due to the lack of coral records
in this region (Figures 2 and 7b), previous studies nonetheless show similar salinification trends in the Maritime
Continent (Cheng et al., 2020; Skliris et al., 2014). This salinification is consistent with decreasing precipita-
tion in this region associated with a weakening of the Pacific Walker circulation. Such weakening is shown in
many climate models forced by anthropogenic warming, though observations show strengthening trends in recent
decades due to internal variability and/or sulfate aerosol forcing (Bonfils et al., 2020; Chung et al., 2019; England

ORAS5
CFRcoral
ensemble mean

100°E 140°E  180°  140°W  100°W
B — ——

-0.20 -0.15 -0.10 —0.05 0.00 0.05 0.10 0.15 0.20
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Figure 8. Sea surface salinity (SSS) trends (1900-1990) for selected coral-based climate field reconstructions (CFR_,,,),
including Institute of Atmospheric Physics (a) and the Ocean ReAnalysis System 5 ensemble mean (b). Trends are computed
using OLS regression. Stippling denotes sites where the trend is not significant (p > 0.05, calculated from a two-tailed
Student's 7 test with autocorrelation-adjusted sample sizes, see Santer et al. [2000]). Black lines show selected contours
(34.5-35.5 PSU) of climatological mean instrumental SSS.
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Figure 9. Regression slope maps of ERSSTv5-based climate indices, including the Interdecadal Pacific Oscillation (left column), Atlantic Multidecadal Oscillation
(center column), and 10D (right column) with sea surface temperature (SST), precipitation minus evaporation (P-E), and the coral-based CFR (CFR ). SST

is observation-based (ERSST version 5, Huang et al. [2017]) (a—c); P-E is reanalysis-based (NOAA/CIRES/DOE 20th Century Reanalysis version 3, Slivinski

et al. [2021]) (d—f). Coral-based CFRs are based on Institute of Atmospheric Physics (g—i) and the mean across Ocean ReAnalysis System 5 ensemble members (j—1).

et al., 2014; L’Heureux et al., 2013; Plesca et al., 2018; Takahashi & Watanabe, 2016). Ultimately, our coral
reconstructions show evidence of multiple potential mechanisms of long-term salinity change.

Freshening trends are also observed in individual salinity-sensitive coral reconstructions in the central Pacific
(Nurhati et al., 2011; Sanchez et al., 2020) and SPCZ region (Dassié et al., 2018); indeed, several of these records
are used in both the ORASS and IAP reconstructions in this study. Freshening trends in individual records from
the southern Indonesian Throughflow region (Murty et al., 2018) disagree with insignificant salinification trends
in our coral CFRs in the same region (Figure 8). However, those records do not pass the calibration screening
criteria for inclusion in the IAP and ORASS reconstructions (Figure S2 in Supporting Information S1), so it is
possible that these corals are sensitive to fine-scale SSS variability that is not well captured by 1° gridded SSS
data sets. We also caution that the region of the Maritime Continent with the largest reconstructed salinification
trends (e.g., near Borneo) does not contain any coral §'80 records with coverage of the early to-mid 20th century,
though coral records during the satellite era show a robust salinity signal (Krawczyk et al., 2020); this region
would therefore be a suitable target for future coral paleo-salinity work.

In the Indian Ocean, however, salinity trends are less consistent. Both IAP and ORASS show salinification
in the southeastern Indian Ocean (Figure 8). This salinification may be consistent with a trend toward a posi-
tive IOD-like mean state (Abram, Hargreaves, et al., 2020), with decreased P—E in this region during positive
IOD events (Figure 9). However, trends are inconsistent in the northern and western Indian Ocean, showing
either freshening (IAP) or no significant trends (ORASS). The Indian Ocean is a noted region of disagreement
among salinity studies, and has been attributed to poor observational coverage (Durack & Wijffels, 2010; Skliris
et al., 2014). Few salinity-sensitive coral records are available in this region, which could further contribute to
these discrepancies in the western and northern Indian Ocean.

Salinity reconstructions also show responses to decadal-and-longer climate variability, though we caution that
multidecadal variability may not be well resolved by the 2—4 leading SSS modes that are explicitly reconstructed.
During positive Interdecadal Pacific Oscillation (IPO) phases, when eastern and central equatorial Pacific SSTs
are anomalously warm, we observe a salinity pattern that generally resembles the response to El Niflo events,
with freshening in the western equatorial Pacific and much of the Indian Ocean, and salinification in the Mari-
time Continent and tropical Atlantic (Figure 9, left column, Figure 6). These patterns closely correspond to those
shown by reanalysis estimates of P-E over the same time span (Figure 9d). For IAP and ORASS, the positive
AMO phase (i.e., warm north Atlantic) is associated with Atlantic, eastern Pacific, and eastern Indian freshening,
and central/western Pacific and western Indian salinification (Figure 9, center column). The similarity between
the AMO and IPO SSS patterns highlight the dynamic linkages between these two modes (Meehl et al., 2021).
Because these IPO and AMO spatial SSS patterns are similar to observed 20th century trends (though inverted
for the AMO) (Figure 8), decadal-to-multidecadal internal variability could complicate the detection of anthro-
pogenic salinity trends over these time scales, as noted in other studies (Gu & Adler, 2013; Stott et al., 2008; N.
T. Vinogradova & Ponte, 2017).
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4. Conclusions

This study demonstrates the utility of coral §'#0 in the spatiotemporal reconstruction of tropical SSS over the full
20th century. Our reconstructions extend existing records of pan-tropical salinity trends by over 50 years (Cheng
et al., 2020; Durack et al., 2012; Skliris et al., 2014). These coral-based salinity reconstructions show trends over
the 20th century that we attribute to an intensifying hydrological cycle and possibly a weakening Walker Circu-
lation, both superimposed on decadal-to-multidecadal variability.

We identify some key limitations of this reduced-space climate reconstruction approach. Chief among these is
a lack of consensus among data sets on the leading modes of salinity variability. Ultimately, the skill of a CFR
depends on the accuracy of the salinity data used to generate it. Inconsistencies in the leading modes of variability
among SSS reanalyzes—even though these data sets assimilate identical or similar observations—indicate that
more work is needed in this regard.

From a coral proxy perspective, there is a pressing need for a gridded surface salinity data set that assimilates
all available quality-controlled near-surface observations, is regularly updated to ensure the longest time series
possible, and includes uncertainty estimates for calibration with coral data. In the absence of a “gold standard”
salinity data set, our results highlight the critical need to compare multiple SSS data sets when examining spatio-
temporal variability. Our EOF results demonstrate that IAP and ORASS5 have the most physically plausible salin-
ity variability of the data sets considered in this study. We caution that these results do not necessarily make these
data sets more “accurate” than others (a rigorous comparison to observed EN4 profiles would be needed). Never-
theless, the availability of 1o uncertainties for AP make it especially well suited for coral §'%0-SSS calibrations.
Therefore, of the data sets considered in this study, IAP meets the most criteria for coral proxy applications.

A second avenue of improvement for this coral-based reconstruction method is the disentanglement of the SST
and SSS contributions to coral §'80. Work is needed (e.g., the PAGES CoralHydro2k project) to improve the
8180, reconstruction methods and expand the network of coral-based 880, records. Such records could ulti-
mately reconcile discrepancies in trends in regions with suboptimal data availability (e.g., the Indian Ocean and
the Maritime Continent).

Despite these limitations, this reduced-space field reconstruction method offers several opportunities to deepen
our understanding of both coral §'80 proxies and tropical Pacific climate variability. This method can be used
as a framework to target potential coral sites that can best improve salinity reconstructions and/or extend the
reconstruction further into the 19th century, and can be used to develop hypotheses about salinity variability that
can be tested against new coral records. For example, western equatorial Pacific sites show high signal-to-noise
ratios for reconstructing salinity (Balmaseda et al., 2015); longer paleoclimate records in this region could help
constrain interannual to multidecadal salinity variability before the Industrial Era. Finally, this reconstruction
method can facilitate proxy-model comparisons. Ultimately, by extending our observational records of tropi-
cal oceanic hydroclimate, this climate reconstruction approach can help to disentangle natural variability from
anthropogenic trends in a sparsely observed, but climatically crucial, region of the world.

Data Availability Statement

The Python code for CFR, and the resulting coral-based field reconstructions, are publicly available via Zenodo
(Reed et al., 2022).
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