
A Visual Notation for Succinct Program Traces
Divya Bajaj

Oregon State University
bajajd@oregonstate.edu

Martin Erwig
Oregon State University
erwig@oregonstate.edu

Danila Fedorin
Oregon State University
fedorind@oregonstate.edu

Kai Gay
Oregon State University

gayk@oregonstate.edu

Abstract—Program traces are often used for explaining the

dynamic behavior of programs. Unfortunately, program traces

can grow quite big very quickly, even for small programs,

which compromises their usefulness. In this paper we present

a visual notation for program traces that supports their succinct

representation, as well as their dynamic transformation through

a structured query language.

An evaluation on a set of standard examples shows that our

representation can reduce the overall size of traces by more

than 80%, which suggests that our notation is an effective

improvement over the use of plain traces in the explanation of

dynamic program behavior.

Index Terms—program trace, ellipsis, query language

I. INTRODUCTION

To understand the dynamic behavior of programs, program-
mers regularly inspect program traces that keep track of the
computation performed by a program on particular inputs.
One important use of program traces is in the context of
debugging, where they are used to understand unexpected
program behavior. In addition, program traces are also used in
educational settings to illustrate the working of programs to
novice programmers. Either usage scenario is plagued by the
fact that program traces tend to be large, even for rather small
programs, which makes it often difficult and time-consuming
to isolate those parts of a trace that are relevant for the task
at hand: finding a bug or understanding a particular part of a
program.

Our ultimate goal is to support a variety of users of traces
(programmers, educators, learners) with a tool for the effective
creation of targeted, succinct, and adaptable traces. To this
end, we have investigated existing tracing approaches and, in
particular, the trace representations they employ. Based on this
analysis we have designed a new representation as a basis for
such a tool that offers a number of innovations. In this paper
we explain the design of our representation and discuss its
features in relation to other approaches.

Our approach is based on the idea of applying a set of
modular filters to automatically created complete traces. By
using different sets of filters users can quickly customize traces
to their needs. As we will show, the set of predefined filters
supports a wide variety of customizations and is sufficient for
many use cases. Still, new filters can be added as needed, since
the filters are defined based on a trace query language. The
definition of new filters using the query language is meant to

be done by experts, whereas the use of filters does not require
any understanding of the query language.

As the basis for our research we use traces for a small
functional language (an extension of the untyped lambda
calculus by numbers and algebraic data types). As an example,
consider the following definition of a factorial function.
fact = \x -> case x of {0 -> 1; y -> x * fact (x-1)}

A major design decision for how to represent program traces
is whether to employ linear sequences or trees of expressions.
Before we present our approach, we briefly discuss a widely
known form of linear traces in Section II to identify a number
of aspects and issues that affect the design of any trace
notation. This helps us motivate some of the design decisions
for our tree-based trace representation, which we introduce in
Section III. A key insight of our work on trace notation is that
the construction of succinct traces requires a set of expressive
filters that offer fine-grained control over the information
presented in traces. We will discuss trace filters in Section
IV. After we have presented our trace model, we provide
a systematic comparison of the different trace models and
illustrate their strengths and weaknesses in Section V. We then
present an artifact-based evaluation of our approach in Section
VI. Finally, we discuss related work in Section VII and present
conclusions and our plans for future work in Section VIII.

II. LINEAR TRACES

Linear traces are often used in introductory functional
programming textbooks as explanations for how particular
function definitions work [3], [12]. The simplicity of linear
traces is very appealing, and they generally are quite effective
in demonstrating computation, especially for small examples,
as the sequential ordering of expressions makes them easy
to follow. As an example, consider the linear trace for the
computation of fact 6, which can take the following form.
fact 6
= case 6 of {0 -> 1; y -> 6 * fact (6-1)}
= 6 * fact 5
= 6 * (case 5 of {0 -> 1; y -> 5 * fact (5-1)})
= 6 * (5 * fact 4)
...
= 6 * (5 * (4 * (3 * (2 * (1 *

(case 0 of {0 -> 1; y -> 0 * fact (0-1)}))))))
= 6 * (5 * (4 * (3 * (2 * (1 * 1)))))
= 720

We have omitted a number of intermediate steps from the
complete trace, since they don’t contribute anything new to
an understanding of how the computation unfolds. Obviously,978-1-6654-4592-4/21/$31.00 ©2021 IEEE

these include the sequence of steps replaced by the ellipsis, but
the trace also elides details about the substitution of arguments
for parameters, comparisons of values, and basic arithmetic
computations. This observation suggests the need for filtering
automatically produced traces, which raises questions regard-
ing describing and applying such filters.

One approach is to offer an interactive GUI for selecting
ranges and applying simple hide and unhide operations. An-
other approach is to programmatically specify filters and the
target ranges on which they operate using some form of query
language.

In a linear trace, an interactive approach might be as simple
as selecting a range of lines. However, even this seemingly
simple operation could turn out to be quite cumbersome when
this range is large. Moreover, the need to select multiple
disconnected ranges makes the approach even less attractive.
Finally, when traces are generated repeatedly for different
inputs, the need to repeat filtering operations by hand might
be prohibitive. Therefore, a query approach to applying trace
transformations seems to be more effective and preferable over
a simple GUI interface, which reveals an important weakness
of linear representations, namely, the difficulty in specifying
the scope and effect of trace transformations.

Another feature of linear traces that is simultaneously a
strength and a potential weakness is the way variable bindings
are handled. Formally, when a function is applied to an argu-
ment, as in fact 6, a binding between the function parameter
and the argument is created (in this case x=6). Then each
reference to the parameter in the function body is replaced by
the bound value. Linear traces typically don’t show any bind-
ings between function parameters and arguments and instead
directly substitute arguments for all parameter references. The
advantage of this approach is that no environments (that is,
list or stacks of bindings) need to be maintained at all, which
helps to keep the traces small and manageable. However, this
approach turns into a disadvantage in situations where many
parameter references have to be substituted by an argument
that takes up a large amount of space. The following example
illustrates this case. Consider a function map1to6, which maps
an argument function to the list of numbers from 1 to 6.
map1to6 f = [f 1,f 2,f 3,f 4,f 5,f 6]

When we apply map1to6 to a function with a large body, this
function definition will be copied 6 times.
map1to6 (\x->some-big-expression)
= [(\x->some-big-expression) 1,

(\x->some-big-expression) 2,
(\x->some-big-expression) 3, ...]

This makes traces hard to read. In situations like these, keeping
a name in the trace together with the binding information that
shows the large expression only once is a more economic
representation.

A related problem is the inability to factor out, and represent
only once, subtraces for common subexpressions. Consider, for
example, the trace for fact 6 + fact 5. A linear trace would
contain the trace for fact 5 twice, which would not have

any additional explanatory value and would only decrease the
readability of the trace. Representing the subtrace for a shared
subexpression such as fact 5 as a shared subtrace would be
preferable in all cases.

The factorial trace also illustrates that the linear presentation
generally has to produce many parentheses to express the order
in which subexpressions have to be evaluated. This lexical
overhead can be quite annoying and make the reading of
traces more tedious. The need for bracketing is an intrinsic
problem for any linear representation that a tree representation
doesn’t have, since grouping is expressed implicitly through
the structure of the subtrees. Of course, a tree representation
has its own disadvantages, including the need for good layout
algorithms as well as generally requiring more space.

Finally, we point out a more subtle, but quite important, dis-
advantage of linear traces: The fact that each trace step consists
of a complete expression makes it difficult to systematically
isolate (and highlight or hide) the evaluation of subexpressions.
Here a tree representation can be more modular, in particular
when it contains not just expressions but evaluation judgments.
This aspect will become clear after we have explained how the
factorial trace looks in our visual representation, which we will
do in the next section.

III. NON-LINEAR TRACES FROM PROOF TREES

We can obtain a structurally different alternative to a linear
trace when we expose the hierarchical tree structure of expres-
sions and show the evaluation of each subexpression. Such a
tree of subexpressions and their results looks essentially like a
proof tree obtained through the application of an operational
semantics, which is an idea already presented in [6], albeit
in a different context and with a different goal. Operational
semantics define the evaluation of expressions through a set
of inference rules that have the following form.

P1 . . . Pn

C

The statement C is a conclusion that follows if all the premises
P1, . . . , Pn are true. In so-called big-step operational seman-
tics, the premises and conclusions are of the form ⇢ : e+ v that
say that expression e evaluates to the value v in the context
of an environment of variable bindings ⇢.

The semantics for our language are a fairly standard call-
by-value operational semantics [10].1 To give a few brief
examples, the rule for evaluating constants c has the form
⇢ : c+ c; it has only a conclusion and no premises and says
that each constant always evaluates to itself. Such rules without
premises are also called axioms.

The rule for evaluating expressions e1 op e2 that involve a
built-in binary operations op requires the evaluation of both

1This is actually not completely true: Our semantics rules maintain and
sometimes use names for functions and otherwise eliminate variable environ-
ment and replace them by binding nodes. We will explain these details later
in the paper.

argument expressions to values v1 and v2 and yields as a result
the value v obtained from applying op.

⇢ : e1 + v1 ⇢ : e2 + v2 v1 op v2 = v

⇢ : e1 op e2 + v

Finally, the rule for evaluating the application of expression e1
to another expression e2 requires that e1 evaluate to a function
value (a lambda abstraction \x->e0) and that e2 evaluate to a
value v0. The result of the application is then obtained by
evaluating the defining expression of the function, e0 in the
environment ⇢ that is extended by the binding of the function
parameter x to the result of the argument expression v0.

⇢ : e1 + \x->e0 ⇢ : e2 + v0 ⇢, x=v0 : e0 + v

⇢ : e1 e2 + v

With such rules we can build a tree for the evaluation of an
expression e as follows. First, we find a rule whose conclusion
matches e, which produces bindings for the metavariables used
in the rule. For example, to evaluate fact 6 we have to use
the rule for application, which binds e1 to fact and e2 to 6.
The environment ⇢ is bound to the current set of definitions,
which must contain a definition for fact. With these bindings
we then instantiate all premises of the rule. In the example, we
obtain the premise instances ⇢ : fact+ \x->e0 and ⇢ : 6+ v2.
(No metavariable in the third premise is instantiated yet.)
We then continue to find rules with matching conclusions for
each premise. In the example, a rule for looking up variable
bindings will locate the definition of fact in ⇢ and create
corresponding bindings for x and e0, and the application of
the constant axiom binds v2 to 6. Both of these rules create
leaves in the tree. With these new bindings we can now find
a rule for evaluating the third premise to evaluate the function
body of fact in the environment in which the parameter x

is bound to 6. This process continues recursively and ends
with the application of axioms creating leaves. The complete
evaluation tree for fact 6 is too big to be of practical use and
needs to be trimmed down further as discussed in Section IV.

To continue the discussion of the tree representation, we
therefore consider for now a simpler example: the tree repre-
senting the evaluation of the expression 3*(4+1). This tree can
be obtained by applying the rule for binary operations twice
and the axiom for constants three times.

⇢ : 3*(4+1)+ 15

⇢ : 3+ 3 ⇢ : 4+1+ 5

⇢ : 4+ 4 ⇢ : 1+ 1 4+1 = 5

3*5 = 15

The root of the tree contains the judgment with the ex-
pression to be evaluated and its result; its children contain
the judgments for the evaluation of the subexpressions. An
important feature of the hierarchical tree structure is that it
allows the viewer to decide which of the subexpressions (if
any) to follow, and in which order. This also means that
a user interface for exploring such trees can hide subtrees

independently of one another, which is the modularity property
mentioned in Section II. Certainly, this feature could also be
considered a drawback, since it requires the user to decide
which subtree to focus on next.

Compared to the following linear trace for evaluating the
expression 3*(4+1), the tree requires more space and seems
overly complex.
3*(4+1)
= 3*5
= 15

Maybe the tree representation isn’t such a good idea after
all? The tree representation is larger because it mentions
details that are omitted in the linear representation, such as
the evaluation of constants and the variable environment.

This is one area in which our trace notation deviates from
generic proof trees. First, we eschew environments from judg-
ments and replace variable lookups where necessary through
so-called binding nodes; second, we provide a number of filters
to eliminate, automatically or on request, judgments from the
tree that are deemed unnecessary by the user.

After removing environments and filtering out all constant
evaluation judgments, the tree trace for the arithmetic example
becomes already much simpler.

3*(4+1)+ 15

4+1+ 5

4+1 = 5

3*5 = 15

Note that the tree trace notation
suggests the reading of each node as
a statement justified by the statements
of its children. For example, the root
node reads: “3*(4+1) evaluates to 15
because 4+1 evaluates to 5 and be-
cause 3*5 is 15.”

3*(4+1)+ 15

4+1+ 5

If we also forgo the presentation of arith-
metic facts, we obtain an even simpler tree
with a complexity similar to the linear trace.

This example is of course not very exciting; we have used
it to illustrate the basic design that underlies our tree trace
notation. In the following section we show how to construct
succinct tree traces through the judicious use of trace filters.

IV. TRACE FILTERING

The complete trace for the fact 6 example consists of 80
nodes and 22 levels, which is a lot of information to slog
through. However, as the example in Section II illustrates,
the essence of the computation can be captured in a much
smaller trace by omitting details and some repeated structures.
Specifically, one might expect a trace to execute all parts
of a definition once, but generally not more than that. One
might also want to filter out some arithmetic computations
(for example, for decrementing a counter) and the lookup of
variable bindings. We call such a tailored trace a trace view.

In Figure 1 we show a trace view that meets these expecta-
tions.2 The trace view is similar to the linear trace presented
in Section II and is obtained from a complete trace in several
steps through the application of filters.

2The LaTeX code for the trace views in this paper was generated by
our prototype implementation, with occasional manual adjustment of the
horizontal positioning to fit the paper layout.

fact 6+ 720

case 6 of 0 -> 1; y -> 6*fact 5+ 720

6*fact 5+ 720

fact 5+ 120

. . .

5*fact 4+ 120

fact 4+ 24

. . .

fact 0+ 1

case 0 of 0 -> 1; y -> 0*fact (0-1)+ 1

5*24 = 120

6*120 = 720

Fig. 1. Trace view for fact 6 with many details hidden. Ellipses indicate
elided paths with potentially off-branching subtrees.

The modularity of these filters as well as the flexibility in
defining them makes our trace representation highly adaptable
to different situations and needs. In the following we use the
example trace to illustrate the definition and use of trace filters
and the principles that underlie our trace filtering approach.

A. Binding Nodes
We start by discussing a widely applicable trace simplifica-

tion, also used in this example: the hiding and propagating of
variable lookups. As can be seen in Figure 1, the trace does
not contain environments even though bindings of variables
are created and used repeatedly. In an expanded version of
the trace, the top part would actually look as follows.

fact 6+ 720A

case x of 0 -> 1; y -> x*fact (x-1)+ 720

A: x=6 6⇠ y x*fact (x-1)+ 720

We observe that the node evaluating the case expression is
shown in its unsubstituted form with x instead of 6 and x-1

instead of 5 and that it now has three children. The first child is
a binding node that explains that x was bound to 6 in the root
node (which has been assigned the label A). The second node
shows a simplified version of pattern matching judgments,
which says that 6 matches y (that is, the second case applies)
to justify the selection of the third premise. In general, pattern
matching judgments produce bindings, but they need not be
shown when they are not used (as is the case here). The third
child contains, as in Figure 1, the recursive application of fact,
but again using x and x-1 instead of the substituted values.

Binding nodes are an important innovation of our trace
model. Motivated by the need for small traces, they keep
the sharing property of bindings offered by environments
without having to repeat environments in every judgment.
Binding nodes interact in interesting ways with filters, since
they show information about the origin of the bindings. This
origin information may change in some cases, which requires
a careful definition of filter semantics.

B. Global Filters
To hide a set of nodes from a trace, we need a flexible

way of expressing which nodes to hide. To this end, we have
defined a concept of selectors, which are combinations of
syntactic patterns that use wildcard symbols. The selector that
matches all variable lookups, for any variable and value, is
⇧ = ⇧,3 but we can also use more specific patterns such as
x = ⇧ to hide only bindings for the variable x.

We can use such patterns directly or via assigned names in
operations for hiding and propagating. While hiding simply
removes all the nodes that match the pattern from the trace,
propagating also uses the pattern (when possible) as a rewrite
rule. In the case of variable lookups this means to replace
variables within their scope by their values. We have hidden
and propagated all variable bindings in the trace in Figure 1,
and we have also hidden all pattern matching evaluations.

Another class of uninteresting steps that are often hidden
from traces are reflexive judgements, which include specif-
ically axioms for evaluating constants, as well as simple
arithmetic operations, especially increments and decrements
by 1. These filters eliminate judgments such as 1+ 1 and
6-1+ 5 from the trace, as was done in Figure 1. Applied filters
can always be selectively deactivated to temporarily show the
hidden information. Repeated hiding and unhiding also can
help users to understand the effect of filters “by example.”

C. Selective Filters
Note that the trace illustrates that we can also hide only a

specific subset of nodes that match a pattern. One example
is case expressions of which we show only the first and last
occurrence to illustrate the two different situations (base case
and recursive case) covered. The other example is hiding most
of the intermediate recursive calls of fact. Specifically, we
have filters that allow the hiding of all but the first k recursive
calls and/or the last recursive call.

We will discuss the set of available filters in Section VI.
While omitting leaves or whole subtrees does not affect the

rest of a tree, the omission of intermediate parts from a tree
requires some notation to connect the parts that are separated
by the cut. We use ellipses “· · · ” to indicate places where paths
(with potential off-branching subtrees) have been omitted.

D. From Trees to DAGs
To exploit the fact that any specific expression has to be

evaluated only once, we have extended the tree notation to

3The node label is not part of the syntax for bindings and thus not part of
the pattern.

fact 6 + fact 7+ 5760

fact 6+ 720B

cf. Fig. 1

fact 7+ 5040

case 7 of 0 -> 1; y -> 7*fact 6+ 5040

7*fact 6+ 5040

B 7*720 = 5040

720+5040 = 5760

Fig. 2. Trace view for fact 6 + fact 7. DAGs, represented by using
node references, are used to avoid the repetition of subtraces.

DAGs. This idea is not new: in their paper on PROOFTOOL,
Dunchev et al. [4] mention the need to avoid the overlapping
edges that are associated with their DAG-based proofs. The
workaround they choose is to copy shared subgraphs to every
place where they are referenced. However, it is our view that
repeated copies of the same subtrace are merely noise in a
trace, and should therefore be avoided, since they incur the ad-
ditional cost for users of having to recognize and deliberately
ignore the copy. Explicitly performing sharing between such
subtraces and displaying them only once can automatically
simplify traces in cases when the same expression is evaluated
multiple times.

As an example, consider the evaluation of the expression
fact 6 + fact 7. The expression fact 6 has to be evaluated
a second time in the first recursive step of evaluating fact 7.
Instead of recreating the whole subtrace, our tool will produce
a reference to the root node (labeled with B) of the already
existing subtrace, see Figure 2.

E. Trace View Prototype

We have already mentioned that we have implemented a
prototype for producing and filtering trace views. The main
purpose of this tool is to allow us to investigate properties
of traces and trace filters. It has also helped to develop the
query language that is used to define all filters. The current
implementation provides a command-line interface as part of
the Haskell GHCi interpreter that interacts via the DOT format
with a viewer. The tool allows a user to (un)apply individual
filters and can also load scripts containing groups of filter
definitions. In addition, the tool also allows the step-by-step
customization of traces by targeting individual nodes (and
ellipses) with filters. The tool can export traces in LaTeX,
and all the trace figures in this paper have been generated by
the tool (some have been adjusted manually afterwards).

V. CLASSIFICATION OF TRACE MODELS

Tracing approaches can differ in several ways. In addition
to the notation aspects, the flexibility of manipulation traces
plays an important role in their effectiveness. To get a better
understanding of the existing approaches, we can organize
the design space along several orthogonal dimensions and

Approach Form
Handling of User

Scope Domain
Bindings Control

[3] [12] linear substitution full by node execution
[2] linear substitution none global proofs
[7] linear environment none global execution
[4] tree environment limited global proofs

[9] [11] [1] tree environment limited global execution
[5] digraph substitution full by node proofs

This paper DAG binding nodes full global execution

TABLE I
CLASSIFICATION OF TRACE NOTATIONS

classify the approaches accordingly. The decisions each trace
representation has to make are the following.

• Structure: linear, trees, or DAGs
• Handling of Binding Information: using environments

and variable lookups or substitutions
• Control over Trace Simplification: full, limited, or none
• Scope of Filters: global or individual nodes
• Domain: dynamic program behavior or proofs

We have already discussed the structure and binding informa-
tion aspects in Sections II and III, and the classification of the
different approaches in these regards are shown in Table I.

Another important question of any trace model is how to
control the size of traces. We can distinguish two aspects
that are relevant in this regard. On the one hand, does the
trace creator have any control over the information to be
included in the trace and thus can control the size of the trace?
On the other hand, if a user can exert control to omit trace
information, do decisions apply to single nodes only or more
globally to a range of nodes?

The linear traces found in textbooks are carefully crafted
and, by definition, under full control over what is represented,
but decisions to present or omit steps are made line-by-line.
This approach is very flexible, but doesn’t scale well, and
it is not automated. The linear traces generated by [7] for
concurrent program execution, are simplified using a heuristic
algorithm that applies 3 different simplification operations
repeatedly on the trace in a particular order. Thus, it does
not provide users with any control over these transformations.

The slicing approaches of [9], [11], and [1] give users some
indirect control through the selection of partial input/output.
These user actions affect the trace globally.

The approach presented in [5] represents traces for proof
systems as directed bipartite graphs (denoted as digraphs in
Table I). This system give users full control over traces through
the collapsing of related nodes. A GUI lets users select nodes
and perform transformations on these nodes. Thus, the user has
complete control over the transformations, but transformations
are applied on only individually selected nodes.

Finally, we also show the domain for which each of the trace
approach is intended in Table I. This information puts some
of the design decisions into perspective. In particular, traces
of proofs and traces of programs can benefit from some of the
same operations, but the method in which they are generated

differs: proof trees are often “built” interactively by the user
during a proof session.

VI. ARTIFACT EVALUATION

To evaluate the effectiveness of our approach we have cre-
ated trace views for 21 mostly well-known example programs
that we regularly employ as teaching material. The programs
are grouped into different sections: functions on numbers
(fact, twice-fact, and collision), lists (reverse*, replicate, sum,
filter, merge-lists, cart-product, subsets, and quicksort), (binary
search) trees (*BST and constants), and language processing
(eval*, typecheck, and fold-constants). We have measured the
size reductions that can be achieved and the filters that needed
to be employed to create the trace views. In the following we
describe the details of this experiment.

A. Systematic Creation of Trace Views

Among the most well-known results in psychology is
Miller’s demonstration that humans can only hold a small
number of “chunks” in their short-term memory [8]. Although
subsequent research has shown that the situation is more com-
plicated, the general trend remains: our short-term memory is
quite limited. In accordance with this, our approach was to
reduce (fairly aggressively) the number of nodes in the trace
that do not significantly contribute to the explanation of the
program. Rather than cluttering the reader’s mind with the
details of additions and environment lookups, or the trivial
reflexive evaluations necessitated by the semantics, we focus
on the control flow.

The creation of the traces was guided by a set of rules that
we have established based on observations and our experience
with working with traces. Specifically, over the course of many
months spent on analyzing trace notations and developing
our prototype we have noted a number of patterns in our
interaction with traces (with respect to hiding and propagating
information) from which we have derived a set of rules that
have proved repeatedly useful in focusing traces on the most
relevant information. The creation of the trace views has been
guided by these rules.

We group these rules into two groups. The first group
consists of quasi-universal rules that correspond to standard
filters and will always be applied by default to any created
trace. The second group consists of rules that apply only in
some situations. Since we have formalized these rules through
the definition of filters, we can be sure that they are followed
strictly and systematically.

To decide which filters to apply in which situation, the trace
views were initially created by one of the researchers and then
reviewed and critiqued by 2-3 other members of the research
group, which sometimes led to a revision of the applied filters
and resulting traces. A threat to the validity of this experiment
is of course the potential bias of the group assessing the filters.
Different groups may come to different results, but we believe
that these differences would be minor and not change the
overall picture significantly. Furthermore, the general principle

of our approach remains: users have the flexibility to customize
traces differently, yet succinct traces remain always an option.

B. Filter Collections
Next we describe the filters we have used in our experiment.

All filters can be divided into two categories: those that are
applied to all of our example trace views, and those that are
only applicable in some cases. Table II shows for which trace
views these filters were used. We also classify filters by scope,
that is, while in general each filter is applied globally, some
filters are applied in an intelligent way hiding or propagating
only in some places. One example is the recursion filter,
which hides only intermediate recursive calls. Such filters
are identified by a trailing � symbol. These filters cannot
be defined by a simple syntactic pattern, but require a more
sophisticated query. Finally, some filters are parameterized by
name or value. We report this information as well and indicate
it by a subscript f .

In the following we list all filters that we used. Many
are simply a straightforward hiding of a specific syntactic
category. For some more interesting filters we add a brief
explanation. We start with filters that are used in every
example.

• REFLEXIVE hides all of the constant evaluations.
• PATMATCH hides all pattern matching judgements.
• PARTIALAPP hides all partial function applications and

all of their descendants. Partial function application is
identified by patterns of the form f x+ \y -> e; however,
some additional care is required to avoid hiding the
subtrees corresponding to the evaluation of the function’s
arguments.

• FUNDEFf filter hides top-level function declarations.
Since the filter is parameterized, we can instantiate it
to hide several different declarations. The minimal func-
tional language on which our prototype implementation is
based requires function definitions to be given as let ex-
pressions. In an implementation that stores function defi-
nitions in separate program files, this filter would not be
needed. Note that we could achieve the same effect with a
non-parameterized filter, but parameterization gives us the
flexibility to hide only some declarations while keeping
others (for instance, definitions of constants).

• LIMITREC�
f is a parameterized filter that hides all of the

intermediate applications of the function supplied as an
argument to this filter. We use this filter to show the
first two and one last function application of recursive
functions.

• The OUTERCASE filter hides all case expressions that
have another case expression as one of their immediate
children. For example, the filter will hide a node contain-
ing case e of p -> case e’ of ds; cs, since it has a
child containing case e’ of ds. OUTERCASE will not
hide the latter node if e’ and ds don’t contain any case

expressions.
• BINDING hides all binding nodes but is also used to

propagate the values to where they are used in the trace.

Program #T #T ⇤ �% lT lT ⇤ �%
 !
T
 !
T ⇤ �% #F Additional Filters

factorial 80 7 91 22 8 64 3 2 33 1 DEC
twice-fact 70 13 81 13 10 23 3 2 33 1 DEC
collision 532 8 98 25 8 68 3 2 33 3 CASE, COND, TRIVIALf

reverse 203 9 96 21 13 38 3 1 67 1 TRIVIALf

reverse-accum 89 4 96 13 8 39 3 1 67 1 CASE
replicate 97 6 94 20 8 60 3 1 67 1 DEC
sum 148 7 95 34 8 77 3 2 33 0 -
filter 127 9 93 20 11 45 3 2 33 1 TRIVIALf

merge-lists 140 8 94 25 12 52 3 1 67 1 COND
cart-product 242 10 96 20 9 55 4 2 50 1 TRIVIALf

subsets 359 13 96 23 12 48 3 2 33 2 TRIVIALf , CASE
quicksort 500 22 96 28 13 54 4 2 50 1 TRIVIALf

search-BST 71 5 93 10 8 20 4 1 75 2 CASE, COND
insert-BST 115 8 93 18 12 33 4 1 75 2 CASE, COND
delete-BST 167 15 91 24 16 33 4 2 50 1 COND
inorder-BST 70 7 90 11 9 18 4 1 75 0 -
constants 239 17 93 18 12 33 4 3 25 2 CASE, TRIVIALf

eval-expr 158 13 92 17 10 41 4 3 25 0 -
eval-fun 226 13 94 20 11 45 3 3 0 1 TRIVIALf

typecheck 127 20 84 16 14 13 4 3 25 0 -
fold-const 133 9 93 13 10 23 4 2 50 2 ADD, TRIVIALf

8 Hide

REFLEXIVE
PATMATCH
FUNDEFf

PARTIALAPP
LIMITREC�

f

OUTERCASE
8 Propagate

BINDING

9 Hide

TRIVIALf

CASE
ADD
COND
9 Propagate

DEC

TABLE II
SIZE OF TRACES (T) AND TRACE VIEWS (T ⇤) (#: NUMBER OF NODES, l: DEPTH, !: WIDTH) AND SPACE SAVINGS (�%) ACHIEVED. COLUMN #F

SHOWS THE NUMBER OF ADDITIONAL FILTERS NEEDED, AND THE LAST COLUMN LISTS THOSE ADDITIONAL FILTERS.

In addition to these universal filters, some filters are used only
for creating some of the trace views.

• CASE is used to simply hide all case expressions. It
can be used to keep all control flow decisions out of a
trace, which is sometimes useful. For example, we could
filter the remaining case expressions from the trace view
shown in Figure 1 and still get a useful illustration of the
computation.

• TRIVIALf hides the evaluation of function applications
(such as 10 > 0) whose behavior is well understood.
Even though one could argue for placing all TRIVIALf

filters into the category of always-applied filters (at least
for a single user), there are functions that we may want to
explain separately, but then assume them to be understood
when used elsewhere. One example is the list function
filter, which has its own trace view, but is considered
trivial when used as part of the trace for quicksort.

• Finally, we have a number of very specific filters that help
the customization of trace views. For the set of example
programs these are filters for hiding decrementing a
variable (DEC), additions (ADD), and simple comparisons
(COND). With DEC, we also propagate the values.

A summary of the filters is shown on the right of Table II.

C. Results

Table II summarizes the size information for the examples.
The first three columns show the sizes of the original traces T
and trace views (T ⇤) as well as the percentage size reduction
achieved by the trace views. The next six columns show the
same information for the depths and widths of the traces. The
last column (#F) shows the number of filters used (in addition
to the standard ones) for generating trace views.

We can observe that traces are reduced by more than 80%
(up to 98% in the case of collision), and for at least 90% of
the programs the traces have been reduced by 90% or more.
For the height of the traces, the min/max/median reductions
are 13%, 77%, and 41%, respectively. Wider traces cause a
significant amount of horizontal scrolling. We therefore also
measured the width of traces (in number of nodes). In only one
of the cases the width could not be reduced. Nine programs
had the maximum trace width of 4. For three of these programs
the resulting trace view was linear. Four trace views had a
maximum width of 3, and a linear trace was obtained for seven
of the programs.

The median of 1 for column #F reflects the fact that trace
views can be generally generated quite quickly.

A direct comparison with the size reduction potential of
other approaches is either not possible (approaches in proof
domains cannot express traces for program executions), or not
very useful (the approaches [1], [9], [11] provide only indirect,
limited control over trace size). In any case, we don’t see our
tracing approach in competition to Perera et al., but rather as
a potential orthogonal extension.

VII. RELATED WORK

To address the problem of trace size in the context of
debugging, Perera, et al. [9] and Ricciotti et al. [11] have
employed program slicing to generate smaller program traces.
Their technique takes a section of the computation result that
is selected by the user and uses backward slicing [14] to
generate a path to the input focusing on the computations
that were responsible for that section. It replaces all the
irrelevant computations by holes, thereby focusing on the steps
that are important for understanding the section of the result

that was surprising to the user in the first place. While this
technique generates a technically correct subtrace, the result
can still be large, even for simple programs. The problem is
that much of the information that is produced through slicing
techniques, while technically relevant, might not contribute to
the explanation sought by the user.

The program slicing approach works well in the context
of debugging when the focus on part of a trace can be
guided by questions about specific parts of a computation’s
output. However, when no information is available to inform
the program slicing analysis, traces cannot be simplified.
Moreover, parts of the trace that are not eliminated by slicing
cannot be simplified either.

The goal of Acar et al. [1] is to provide information about
how a particular output was generated from the execution
of a program. Traces can then be fed into a disclosure
slicing algorithm, which, given a partial output of a program,
generates information about how this output was produced.
This approach is very similar to backward slicing presented by
Perera et al. [9] and consequently suffers similar limitations.
Furthermore, while the disclosure slicing method works very
well for its specific task (the tracking of provenance), it is too
rigid for tracing in general.

The relation between proofs and programs means that there
is much related work on representations of proofs, especially
those generated by computers. Proofs that are generated with
the aid of a proof assistant or an automated theorem prover
face the same challenges regarding size and irrelevant infor-
mation that we’ve noted in this paper.

For example, Farmer et al. [5] present an interface for
exploring deductive graphs (implemented as directed bipartite
graphs) of a simple proof system called IMPS. These deductive
graphs share many similarities with our tree traces. Their
approach allows users to collapse related nodes to reduce the
size of the deductive graph. They also maintain a history of
operations applied to the graph, although they don’t provide
means for defining and reusing filters.

Trac et al. [13] present a DAG-based view of the proofs
generated by automated theorem provers. Using heuristics one
can create a “synopsis” of proofs via hiding nodes. These
heuristics are computed to produce an “interestingness” value,
and then all nodes below a user-provided threshold are hidden.
Some of the heuristics for removing nodes are similar to
some of our simpler filters. For instance, removing tautologies
corresponds to applying REFLEXIVE.

Dunchev et al. [4] present PROOFTOOL, a tool for viewing
proofs. PROOFTOOL presents proofs in the sequent calculus
using binary trees. The sequents are very similar to our
evaluation judgements; because of this, the tool must deal with
very similar issues to those faced by our own representation.
The growing sizes of the assumption lists (analogous to our
environments) led the authors to hide all such assumptions
that are not in use. In addition, the tool gives users the ability
to hide irrelevant portions of a proof, or focus on its specific
subset. While the hiding of structural rules applies globally,
hiding irrelevant proof parts has to be done manually, by

interacting with the visualization of the proof tree displayed
in PROOFTOOL’s user interface. This shares the limitations of
tailoring linear traces: for large enough programs, user-guided
manipulation becomes impractical, if not impossible.

Bertot et al. [2] developed an approach for displaying
explanations of proofs within theorem provers. In their sys-
tem, the proof objects constructed within the logical system
were converted into a textual representation of the proof. As
mentioned earlier, the trees in our approach are proof objects
of the proposition that the expression e evaluates to a value v in
the environment ⇢. Under this interpretation, some similarities
between Bertot et al.’s work and our own arise. For instance,
much like we tag bindings nodes with the application nodes
in which the variable was first introduced, the textual notation
used in Bertot et al.’s system marks uses of assumptions with
the locations where they were first introduced as hypotheses.
Unlike our own work, however, the presented approach more
aggressively manipulates the displayed structure of the proof
objects in order to improve readability: while we attempt to
preserve the overall structure of the proof trees, inserting
ellipses where nodes and paths are omitted, Bertot et al.
rearrange and restructure their proofs to reduce the amount of
nesting and to provide context as early as possible. Because
this tool focuses on the method of displaying proofs to the
user, it does not provide users with the tools to further adjust
what they are seeing.

Jalbert et al. [7] introduce a heuristic algorithm for sim-
plifying traces of concurrent programs. The goal is to support
the identification of concurrency bugs. Traces in this approach
are linear and show the results of concurrent execution as
interleaved operations from the constituent programs. The
trace simpification attempts to minimize the amount of inter-
leavings between the concurrently executing programs, thereby
attempting to de-obfuscate the location of concurrency bugs.
The approach does not offer other trace simplification features
and thus does not provide users with any control over the
presentation of the trace.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a new approach for tracing program
executions that is based on the systematic transformation of
traces through the application of filters. A key component of
approach is the visual trace representation that is based on
DAGs, trades environments for binding nodes, and systemat-
ically employs ellipses. Our evaluation indicates that we can
achieve sophisticated trace manipulations without exposing
users to an underlying query language (on which the filters are
based) and that our approach is quite effective in reducing the
size of traces. In future work we will build a user interface that
provides users convenient access to the application of filters.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under the grants CCF-1717300, DRL-1923628,
and CCF-2114642.

REFERENCES

[1] Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. A Core
Calculus for Provenance. In Int. Conf. on Principles of Security and
Trust, pages 410–429, 2012.

[2] Y. Bertot and L. Théry. A generic approach to building user interfaces
for theorem provers. Journal of Symbolic Computation, 25(2):161–194,
1998.

[3] R. S. Bird. Introduction to Functional Programming Using Haskell.
Prentice-Hall International, London, UK, 1998.

[4] Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Martin Riener,
Mikheil Rukhaia, Daniel Weller, and Bruno Woltzenlogel-Paleo.
Prooftool: a gui for the gapt framework. Electronic Proceedings in
Theoretical Computer Science, 118:1–14, Jul 2013.

[5] William M. Farmer and Orlin G. Grigorov. Panoptes: An exploration tool
for formal proofs. Electronic Notes in Theoretical Computer Science,
226:39–48, 2009. Proceedings of the 8th International Workshop on
User Interfaces for Theorem Provers (UITP 2008).

[6] Gérard Ferrand, Willy Lesaint, and Alexandre Tessier. Explanations and
proof trees. Computing and Informatics, 25:105–125, 2006.

[7] Nicholas Jalbert and Koushik Sen. A trace simplification technique
for effective debugging of concurrent programs. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering, pages 57–66, 2010.

[8] George A. Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. The Psychological
Review, 63(2):81–97, March 1956.

[9] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional Programs
That Explain Their Work. In ACM Int. Conf. on Functional Program-
ming, pages 365–376, 2012.

[10] B. C. Pierce. Types and Programming Languages. MIT Press,
Cambridge, MA, 2002.

[11] Wilmer Ricciotti, Jan Stolarek, Roly Perera, and James Cheney. Imper-
ative Functional Programs that Explain their Work. Proceedings of the
ACM on Programming Languages, 1(ICFP), 2017.

[12] S. Thompson. Haskell – The Craft of Functional Programming (2nd
ed.). Addison-Wesley, Harlow, England, 1999.

[13] Steven Trac, Yury Puzis, and Geoff Sutcliffe. An interactive derivation
viewer. Electronic Notes in Theoretical Computer Science, 174(2):109–
123, 2007.

[14] Mark Weiser. Program Slicing. IEEE Transactions on Software
Engineering, (4):352–357, 1984.

