
Y. Naqvi et al. (2022) “Interpolation Polynomials, Bar Monomials, and Their Positivity,”
International Mathematics Research Notices, Vol. 00, No. 0, pp. 1–36
https://doi.org/10.1093/imrn/rnac049

Interpolation Polynomials, Bar Monomials, and Their

Positivity

Yusra Naqvi1, Siddhartha Sahi2,∗, and Emily Sergel2

1Department of Mathematics, University College London, London WC1H

0AY, UK and 2Department of Mathematics, Rutgers University,

Piscataway, NJ 08854, USA

∗Correspondence to be sent to: e-mail: sahi@math.rutgers.edu

We prove a conjecture of Knop–Sahi on the positivity of interpolation polynomials,

which is an inhomogeneous generalization of Macdonald’s conjecture for Jack poly-

nomials. We also formulate and prove the nonsymmetric version of this conjecture,

and in fact, we deduce everything from an even stronger positivity result. This last

result concerns certain inhomogeneous analogues of ordinary monomials that we call

bar monomials. Their positivity involves in an essential way a new partial order on

compositions that we call the bar order, and a new operation that we call a glissade.

1 Introduction

1.1 Main results

The interpolation polynomials Pρ
λ (x) are inhomogenous symmetric polynomials in

x = (x1, . . . , xn) that were introduced by Sahi [44] following earlier work with Kostant

[27, 28] and are characterized by simple vanishing conditions described in Section 2.1.

They are indexed by partitions λ ∈ Nn, have degree |λ| = λ1 + · · · + λn, and their

coefficients depend on n parameters ρ = (ρ1, . . . , ρn). Of particular interest is the one-
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2 Y. Naqvi et al.

parameter family ρ = rδ, δ = (n − 1, . . . , 0) studied by Knop and Sahi [25] and Okounkov

and Olshanski [38].

The Prδ
λ have a rich combinatorial structure that belies their simple definition.

As shown in [25], the top degree part of Prδ
λ is the Jack polynomial P(α)

λ with parameter

α = 1/r.

In his remarkable book, Macdonald [31, VI.10.26?] introduced a normalization

J(α)
λ = cλ(α)P(α)

λ and conjectured that its coefficients lie in N[α]. This was proved by

Knop and Sahi [26], who also gave a combinatorial formula for J(α)
λ in terms of certain

admissible tableaux.

In this paper, we extend the results of [26] to all of Prδ
λ . This involves the

normalized polynomial Jrδ
λ (x) = (−1)|λ|cλ(α)Prδ

λ (−x), where α = 1/r as before, and its

symmetric monomial expansion

Jrδ
λ =

∑

μα|μ|−|λ|aλ,μ(α)mμ.

We prove the following result conjectured by Knop and Sahi [25, Conjecture 7].

Theorem A. The coefficient aλ,μ(α) is a polynomial in N[α].

The interpolation polynomials have nonsymmetric analogues Eρ
η [24, 45, 46]

indexed by compositions η ∈ Nn and characterized by vanishing conditions described in

Section 2.2. For ρ = rδ, the top degree part of Erδ
η is the nonsymmetric Jack polynomial

E(α)
η of Heckman and Opdam [40]. After an explicit normalization, F(α)

η = dη(α)E(α)
η has

coefficients in N[α]. This was also proved in [26] and we now extend this to Erδ
η . More

precisely, we consider the normalized polynomial Frδ
η = (−1)|η|dη(α)Erδ

η (−x) and its

(ordinary) monomial expansion

Frδ
η =

∑

γ α|γ |−|η|bη,γ (α)xγ .

Theorem B. The coefficient bη,γ (α) is a polynomial in N[α].

The homogeneous F(α)
η and the inhomogeneous Frδ

η are both linear bases for

F[x1, . . . , xn] over the field F = Q(α) = Q(r). Thus, there is a unique F-linear “deho-

mogenization” operator � such that �(F(α)
η ) = Frδ

η for all η ∈ Nn. Its action on monomials
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Interpolation Polynomials and Bar Monomials 3

has the form

�(xη) = xη +
∑

|γ |<|η|cη,γ (r)xγ ,

and we prove the following positivity result for cη,γ (r), which implies Theorems A and B.

Theorem C. The coefficient cη,γ (r) is a polynomial in N[r] of degree ≤ |η| − |γ |.

We write xη = �(xη) and refer to it as a bar monomial. The notation is motivated

by the fact that for n = 1, we get the rising factorial xk = x(x + 1) · · · (x + k − 1).

In view of Theorem C, it is natural to ask for a combinatorial formula for

bar monomials that is manifestly positive and integral. We provide such a formula,

which involves the following simple operation on the (English) Ferrers diagram of a

composition:

Delete the last box from the highest row k of maximal length m; then

move l≥0 boxes from the end of row k to the end of another row, either

above and strictly left, or below and weakly left of their original

positions.

We call this a glissade, which in mountaineering means “descent via a controlled

slide”. We define the weight of a glissade applied to γ to be r if l > 0; otherwise, we

define it to be

xk + (m − 1) + r
(

n − 1 − lγ (k, m)

)

.

Here, lγ (k, m) is the leg of the box (k, m) in γ , which was defined in [26] as follows:

lγ (k, m) := #
{

i > k : m ≤ γi ≤ γk

}

+ #
{

i < k : m ≤ γi + 1 ≤ γk

}

.

If we start with some η and apply a sequence of |η| glissades, then we necessarily

arrive at 0. We call such a sequence G a bar game on η, and we define its weight w(G)

to be the product of the weights of its glissades. We write G(η) for the set of all bar

games on η, and we prove the following result that implies Theorem C, and hence also

Theorems A and B.

Theorem D. We have xη =
∑

G∈G(η) w(G).
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4 Y. Naqvi et al.

Fig. 1. All possible glissades on (1,2,4,1).

Fig. 2. A bar game on (6,4,1,0,2,6).

Fig. 3. All bar games on (1,2,4,1).

1.2 Examples

Before discussing the proof of Theorem D, we give three small examples to illustrate the

various concepts. More detailed examples can be found in Section 5.

Figure 1 shows all possible glissades on (1,2,4,1). The deleted box is indicated

with a ×, and the arrows show the movement of other boxes. The resulting shapes are

(1,2,3,1), (2,2,2,1), (1,2,2,2), and (1,2,1,3). See also Figure 4 for all moves on (1,4,1,2) and

on (1,1,4,2).

Figure 2 shows a complete bar game on (6,4,1,0,2,6). For the sake of space, when

a box is deleted but no other boxes are moved, we put a × in that box and continue

working with the same diagram. Thus, the last diagram represents fourteen deletions.

This game has weight

r3 · (x4 + 3 + 4r) · r · (x4 + 2 + r) · (x5 + 2 + r) ·
∏6

k=1(xk + 1) ·
∏6

k=1xk.
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Interpolation Polynomials and Bar Monomials 5

Figure 3 shows all possible games on (1,2,4,1). There are five games in total, and

taking their weighted sum gives the bar monomial x(1,2,4,1). The explicit formula is given

in Section 5.1.

1.3 Discussion of the proof

In Sections 2.1 and 2.2, we recall the precise definitions of symmetric and nonsymmetric

interpolation polynomials and their relationship with Jack polynomials. The symmetric

polynomials are more natural objects, but it is easier to work with the nonsymmetric

polynomials because they satisfy a recursion with respect to the graded affine Hecke

algebra of the symmetric group [24, 45, 46]. This recursion is discussed in Section 2.3;

it is an inhomogeneous extension of a homogenous recursion that plays a key role in

the proof of positivity for Jack polynomials [26]. However, the inhomogeneous recursion

does not preserve positivity. This is the main reason why Theorems A and B remained

conjectures for almost 25 years.

In Section 3.1, we introduce the dehomogenization operator and use this to

define the bar monomials in Section 3.2. In Section 3.3, we show how to deduce

Theorems A and B from the positivity of bar monomials, that is, from Theorem C. The

bar monomials satisfy a recursion described in Section 3.2; this is simpler than the

recursion of Section 2.3, but it, too, is not positive.

The essential new results of the paper are in Section 4. In Sections 4.1 and 4.2,

we define the notion of a glissade and establish its properties under the action of the

affine symmetric group. This is naturally related to a new partial order on compositions

that we call the bar order. In Section 4.3, we define notion of a bar game and show how

to deduce Theorem C from Theorem D. In Section 4.4, we prove Theorem D. The key here

is the transition formula for bar monomials in Theorem 4.4.6. This is proved using the

recursions for bar monomials from Section 3.2, and it implies Theorem D by a simple

iteration. Thus, Theorem D can be regarded as a positive combinatorial solution to a

nonpositive recursion.

We conclude the paper with some further examples illustrating Theorem D and

also explain how to use Theorem D to obtain combinatorial formulas for interpolation

polynomials.

1.4 Related results and open problems

Jack polynomials were introduced by Jack [23] as a one-parameter generalization of

Schur functions and of the zonal polynomials that play an important role in multivariate
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6 Y. Naqvi et al.

statistics [19, 33]. Along with Hall–Littlewood polynomials, they were one of the two

key sources of inspiration for Macdonald’s introduction of his two-parameter family

of symmetric functions [31]; see [29] for a historical background. These polynomials, in

turn, were the impetus behind Cherednik’s discovery of the double affine Hecke algebra

[9, 10, 32, 47].

Since their discovery, Jack polynomials and Macdonald polynomials have found

an incredible number of applications in many different areas of mathematics. It is

impossible to give anything approaching a complete accounting, but a partial list

includes probability and statistics [6, 7, 39, 42], harmonic analysis [3, 43], combinatorics

[12, 13, 15, 16], representation theory [20, 21], algebraic geometry [17, 18, 34, 41, 56], and

knot theory [4, 11].

Symmetric Jack polynomials admit a formula in terms of semistandard tableaux

[31, 58], which generalizes the formula for Schur functions. However, this involves

weights that are rational functions in α; thus, it does not imply the integrality and

positivity, which was conjectured by Macdonald, and which is immediate from the

Knop–Sahi formula [25] in terms of admissible tableaux. The semistandard tableau

formula has been generalized by Okounkov [37, 38] to interpolation polynomials, but it

likewise does not imply Theorem A. Moreover, there does not seem to be a nonsymmetric

analog of Okounkov’s formula.

As explained in [44], interpolation polynomials arise naturally as solutions to

the Capelli eigenvalue problem for invariant differential operators on a symmetric cone.

The Capelli problem has analogues for other symmetric spaces studied in [50, 52, 54, 55]

and also for symmetric superspaces [2, 51, 53]. The solutions of these other problems

are related to interpolation polynomials defined by Okounkov, Ivanov, and Sergeev and

Veselov [22, 36, 57]. It would be interesting to see whether these classes of polynomials

also have combinatorial interpretations along the lines of the present paper.

Special values of interpolation polynomials appear as expansion coefficients at

x = 1 in the binomial formula for Jack polynomials [38, 46]. These too seem to have a

subtle positivity property, and it has been conjectured in [48] that (−r)|λ|Jrδ
λ (−μ − rδ)

belongs to N[α] for all partitions λ and μ. Although this conjecture does not follow from

the results of the present paper, the combinatorial ideas introduced do provide another

line of attack. This is discussed further in Section 5.3 below.

Interpolation analogues of symmetric and nonsymmetric Macdonald polynomi-

als have been defined in [24, 45, 46]; these depend on two parameters q and t. Thus,

one might ask for a two-parameter extension of the results of the present paper to the

Macdonald setting. Such an extension will not have the same positivity properties as
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Interpolation Polynomials and Bar Monomials 7

the Jack case presented here, but experiments suggest that an elegant combinatorial

formula (with signs) should still exist. Further ideas are required to fully generalize the

tools developed here, and therefore, we postpone this question to a subsequent paper.

There has been considerable interest in Macdonald polynomials and interpola-

tion polynomials in connection with integrable probability and solvable lattice models.

In particular, the papers [1, 8] describe formulas for Macdonald polynomials and related

polynomials in terms of 6-vertex models. It is an open problem whether these formulas

can be extended to the setting of interpolation polynomials. Relating the combinatorics

of bar monomials to lattice models might offer some clues in this direction.

For the special case q = t, the interpolation analogues of Macdonald polynomials

are Harish-Chandra images of Capelli elements in the center of Uq(glN). These central

elements play a key role in the recent work of Beliakova and Gorsky [4], which proves

that the so-called “universal link invariant” dominates the Witten–Reshetekhin–Turaev

invariants for Uq(glN). This work also raises the interesting problem of categorifying

the two-parameter interpolation polynomials, with the expectation that this should

have some applications to the study of knot and link invariants; see [4, 14] and the

references therein. Perhaps the results of the present paper and its eventual extension

to Macdonald polynomials might shed some light on this important question.

2 Preliminaries

2.1 Symmetric polynomials

The interpolation polynomials Pρ
λ (x) are inhomogeneous symmetric polynomials that

were introduced by Sahi [44] following earlier work with Kostant on generalizations of

the Capelli identity [27, 28]. They are indexed by partitions

Pn =
{

λ ∈ Zn | λ1 ≥ · · · ≥ λn ≥ 0
}

,

and their coefficients depend on n indeterminates ρ =
(

ρ1, . . . , ρn

)

.

Theorem 2.1.1 ([44]). There is a unique symmetric polynomial Pρ
λ (x) = Pρ

λ (x1, . . . , xn) of

total degree |λ| = λ1 + λ2 + · · · + λn such that

1. Pρ
λ (μ + ρ) = 0 for all μ ∈ Pn with |μ| ≤ |λ|, μ �= λ and

2. the coefficient of the symmetric monomial mλ in Pρ
λ is 1.
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8 Y. Naqvi et al.

As explained in [44] the existence and uniqueness of these polynomials is

equivalent to the following interpolation result.

Theorem 2.1.2 ([44]). A symmetric polynomial of degree d is uniquely characterized by

its values on the set {μ + ρ : |μ| ≤ d} .

The case ρ = rδ with δ = (n − 1, . . . , 1, 0) was studied in some detail by Knop and

Sahi [25] and is related to Jack polynomials P(α)
λ with parameter α = 1/r [31, 58].

Theorem 2.1.3 ([25]). We have Prδ
λ = P(α)

λ + terms of degree < |λ|.

For a box s = (i, j) in the Ferrers diagram of λ, its arm and leg are defined to be

aλ (i, j) = λi − j, lλ (i, j) = #
{

k > i : λk ≥ j
}

.

We set cλ (α) =
∏

s∈λ

(

αaλ (s) + lλ (s) + 1
)

and we define the normalized Jack polynomial

to be

J(α)
λ = cλ (α) P(α)

λ

Theorem 2.1.4 ([26]). The coefficients of J(α)
λ with respect to the mμ belong to N[α].

This was conjectured by Macdonald in his book [31, VI.10.26?]. The paper [26]

also provides a combinatorial formula for J(α)
λ in terms of certain “admissible” tableaux.

In [25], Knop and Sahi introduced a normalized version of the interpolation

polynomial, which involves the same constant cλ(α) together with a sign twist. They

also made a conjecture concerning its expansion coefficients with respect to mμ, which

generalizes Macdonald’s conjecture (Theorem 2.1.4).

Definition 2.1.5. Let α = 1/r. The normalized symmetric interpolation polynomial is

Jrδ
λ := (−1)|λ| cλ(α) Prδ

λ (−x), (2.1.1)

and its expansion coefficients aλ,μ (α) are defined by

Jrδ
λ =

∑

μ
α|μ|−|λ| aλ,μ(α) mμ. (2.1.2)
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Interpolation Polynomials and Bar Monomials 9

Conjecture 2.1.6 ([25, Conjecture 7]). The coefficients aλ,μ(α) belong to N[α].

We prove this conjecture in Theorem A below.

2.2 Nonsymmetric polynomials

Nonsymmetric interpolation polynomials are indexed by compositions η ∈ Nn and their

coefficients depend on ρ =
(

ρ1, . . . , ρn

)

as before. For γ ∈ Nn, let wγ be the shortest

permutation such that γ + = w−1
γ (γ ) is a partition, and define

γ = γ + wγ (ρ) = wγ

(

γ + + ρ
)

. (2.2.1)

We note that for a partition μ we have μ = μ+ and wμ = 1 and hence μ = μ + ρ.

Theorem 2.2.1 ([24, 45]). There is a unique polynomial Eρ
η (x) = Eρ

η (x1, . . . , xn) of total

degree |η| = η1 + · · · + ηn such that

1. Eρ
η (γ ) = 0 for all γ ∈ Nn such that |γ | ≤ |η| , γ �= η

2. the coefficient of the monomial xη in Eρ
η is 1.

As before, this is equivalent to the following interpolation result.

Theorem 2.2.2 ([24, 45]). A polynomial of degree d is uniquely characterized by its

values on the set {γ : |γ | ≤ d} .

This is proved in [24, 45] for various special choices of ρ, but the argument

works in general. Indeed, the interpolation conditions mean that the coefficients of the

polynomial satisfy a (square) system of linear equations over the field Q
(

ρ1, . . . , ρn

)

.

What we need to show is that the determinant of the corresponding matrix is not

identically zero. Thus, the result for any special ρ actually implies the result for

generic ρ.

For the special choice ρ = rδ the interpolation polynomials are related to

nonsymmetric Jack polynomials [26, 40].

Theorem 2.2.3 ([24]). For ρ = rδ, we have

Erδ
η = E(α)

η + terms of degree < |η|,
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10 Y. Naqvi et al.

where E(α)
η is the nonsymmetric Jack polynomial with parameter α = 1/r.

This is proved in [24] for a slightly different polynomial, denoted Eη in [24] and

Gη in [46], which is defined with respect to

ρ = (0, −r, . . . , − (n − 1)r) = rδ − (nr − r)1, (2.2.2)

where 1 = (1, . . . , 1). It follows easily that

Erδ
η (x) = Gη (x + (nr − r) 1) . (2.2.3)

In particular, Erδ
η has the same top degree part as Gη, namely E(α)

η .

In [26, Sec. 4], Knop and Sahi defined the normalized nonsymmetric Jack

polynomials

F(α)
η = dη(α) E(α)

η , (2.2.4)

where the normalizing factor dη(α) is a product over boxes in the Ferrers diagram of η,

that is, over pairs s = (i, j) such that j ≤ ηi. Explicitly, we have

dη(α) =
∏

s∈λ

(

α

(

aη (s) + 1
)

+ lη (s) + 1
)

,

where aη and lη are the arm and leg of s = (i, j) defined by

aη (i, j) = ηi − j, lη (i, j) = #
{

k > i : j ≤ ηk ≤ ηi

}

+ #
{

k < i : j ≤ ηk + 1 ≤ ηi

}

. (2.2.5)

The main result of [26, Sec. 4] is as follows.

Theorem 2.2.4 ([26]). The coefficients of F(α)
η with respect to the monomials xγ belong

to N[α].

Our Theorem B is a generalization of this result for interpolation polynomials.

In analogy with Definition 2.1.5, we make the following definition.
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Interpolation Polynomials and Bar Monomials 11

Definition 2.2.5. Let α = 1/r. The normalized nonsymmetric interpolation polynomial

is

Frδ
η (x) = (−1)|η| dη(α) Erδ

η (−x) (2.2.6)

and its expansion coefficients bη,γ (α) are defined by

Frδ
η =

∑

γ
α|γ |−|η| bη,γ (α) xγ . (2.2.7)

In Theorem B, we show that the bη,γ (α) belong to N[α].

2.3 Intertwiners and recursion

Symmetric polynomials arise naturally as special functions in representation theory

and combinatorics. However, in the context of the present paper, nonsymmetric poly-

nomials are easier to work with because they satisfy useful recursions with respect to

the symmetric group. The simplest manifestation of this phenomenon involves ordinary

monomials, which can be generated from x0 = 1 by the recursions

xsiη = si

(

xη
)

, x	η = 	
(

xη
)

.

Here, si is the elementary transposition that interchanges ηi and ηi+1, and which acts on

functions by interchanging xi and xi+1, while 	 is the “affine intertwiner” that acts by

	η =
(

η2, . . . , ηn, η1 + 1
)

, 	f (x) = xnf (xn, x1, . . . , xn−1). (2.3.1)

Thus, 	 is the translation η �→
(

η1 + 1, η2, . . . , ηn

)

followed by the n-cycle

ω = s1 · · · sn−1 = (1, 2, . . . , n) . (2.3.2)

The corresponding result for Jack polynomials involves the scalars

cη

i =
r

ηi − ηi+1

and dη

i =

{

1 if ηi < ηi+1

1 −
(

cη

i

)2
if ηi ≥ ηi+1.

(2.3.3)

Theorem 2.3.1 ([25]). Nonsymmetric Jack polynomials satisfy the recursions

E(α)
	η = 	

(

E(α)
η

)

,
(

si + cη

i

)

E(α)
η = dη

i E(α)
siη

. (2.3.4)
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12 Y. Naqvi et al.

The 	-relation is [25, Cor 4.2]. The si-relation is proved for ηi < ηi+1 in [25,

Prop 4.3] and for ηi = ηi+1 in [25, Lemma 2.4]. In the latter situation, we have cη

i = −1

and dη

i = 0 so that the si-relation reduces to siE
(α)
η = E(α)

η as in [25, Lemma 2.4]. The

remaining case ηi > ηi+1 follows readily by applying si to both sides of the relation for

the case ηi < ηi+1.

The analogous result for interpolation polynomials involves the operators

∂i (f ) =
si (f ) − f

xi − xi+1

, σ−
i = si − r∂i, 	−f (x) = xnf (xn − 1, x1, . . . , xn−1). (2.3.5)

Theorem 2.3.2 ([24]). Nonsymmetric interpolation polynomials satisfy the recursions

Erδ
	η = 	−Erδ

η ,
(

σ−
i + cη

i

)

Erδ
η = dη

i Erδ
siη

.

This is proved in [24] for the variant Gη corresponding to ρ as in (2.2.2), and by

(2.2.3), it implies the result for Erδ
η .

Remark 2.3.3. These recursions suffice to generate all Erδ
η : suppose η �= 0. Let i be the

largest index such that ηi �= 0. If i = n, then

Erδ
η = 	−

(

Erδ
γ

)

,

where γ = (ηn − 1, η1, η2, . . . , ηn−1). Otherwise,

Erδ
η =

1

dsi(η)

i

(

σ−
i + csi(η)

i

)

Erδ
si(η).

Applying these identities repeatedly, we eventually reach the case Erδ
0 = 1. We can

generate all E(α)
η in a similar way.

3 Bar Monomials

3.1 The dehomogenization operator

The homogeneous polynomials F(α)
η and the inhomogeneous Frδ

η are both linear bases

for the polynomial algebra F
[

x1, . . . , xn

]

over the field F = Q (r) = Q (α). Thus, there is a

unique linear operator on F
[

x1, . . . , xn

]

that maps the 1st basis to the 2nd.
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Interpolation Polynomials and Bar Monomials 13

Definition 3.1.1. The dehomogenization operator � is the unique F -linear operator

satisfying

�(F(α)
η ) = Frδ

η . (3.1.1)

We now prove some basic properties of �. It is simpler to first consider the

modification 
 = S−1�S = S�S where S = S−1 is the sign change operator

Sf (x) = f (−x) .

Proposition 3.1.2. The operator 
 maps E(α)
η to Erδ

η and satisfies the intertwining

properties

	−
 = 
	, σ−
i 
 = 
si. (3.1.2)

Proof. Since E(α)
η is homogeneous of degree |η| and � is linear, we get

�

(

SE(α)
η

)

= �

(

(−1)|η| E(α)
η

)

=
(−1)|η|

dη (α)
�(F(α)

η ) =
(−1)|η|

dη (α)
Frδ

η = S
(

Erδ
η

)

,

whence 
 = S−1�S maps E(α)
η to Erδ

η . Next, by Theorems 2.3.1 and 2.3.2, we have

	−


(

E(α)
η

)

= E	(η) = 
	

(

E(α)
η

)

(

σ−
i + cη

i

)




(

E(α)
η

)

= dη

i Erδ
siη

= 

(

si + cη

i

)

(

E(α)
η

)

.

This shows that identities in (3.1.2) hold on the basis E(α)
η and therefore hold in

general. �

Proposition 3.1.3. If f is homogenous, then g = 
 (f ) is characterized by the

properties

1. g (x) = f (x) + terms of degree < deg (f )

2. g (η) = 0 for all compositions η with |η| < deg (f ) .

Proof. For f of a fixed homogeneity degree the two properties are linear in f .

Therefore, it is sufficient to verify them for f = E(α)
η . By Proposition 3.1.2, we have

g = Erδ
η , and by Theorem 2.2.3, Erδ

η satisfies the two properties.
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14 Y. Naqvi et al.

Now, suppose g1 and g2 both satisfy the two properties. Then the difference

g1 − g2 has degree < deg (f ) and vanishes at all η with |η| < deg (f ) . Thus, by Theorem

2.2.2, we have g1 − g2 = 0. This proves the uniqueness of g. �

Proposition 3.1.4. The operator 
 preserves the space of symmetric polynomials.

Proof. A function f is symmetric iff si (f ) = f for all i. By the definition of σ−
i , we have

σ−
i (f ) − f =

(

1 −
r

xi − xi+1

)

(

si (f ) − f
)

.

Thus, si (f ) = f if and only if σ−
i (f ) = f . Now, the relation σ−

i 
 = 
si (3.1.2) shows that

if f is symmetric then so is 
 (f ) . �

Proposition 3.1.5. If f is homogeneous symmetric, then g = 
 (f ) is characterized by

the properties

1. g is symmetric,

2. g (x) = f (x) + terms of degree < deg (f ) ,

3. g (μ + rδ) = 0 for all partitions μ with |μ| < deg (f ) .

Proof. By Propositions 3.1.4 and 3.1.3, g = 
 (f ) satisfies the three properties, and

the uniqueness follows from Theorem 2.1.2. �

Proposition 3.1.6. The operator 
 maps P(α)
λ to Prδ

λ .

Proof. This is immediate from Proposition 3.1.5 and Theorems 2.1.1 and 2.1.2. �

Proposition 3.1.6 shows that the restriction of 
 to symmetric polynomials is

the operator studied in [25, Sec. 6] in connection with the Pieri formula for interpolation

polynomials.

We now set σ+
i = S−1σiS and 	+ = S−1	−S so that we have

σ+
i = si + r∂i, 	+f (x) = xnf (xn + 1, x1, . . . , xn−1). (3.1.3)

Theorem 3.1.7. The operator � satisfies the intertwining properties

	+� = �	, σ+
i � = �si. (3.1.4)
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Interpolation Polynomials and Bar Monomials 15

Proof. This is immediate from Proposition 3.1.2. �

Theorem 3.1.8. If f is homogeneous, then g = �(f ) is characterized by the properties

1. g (x) = f (x) + terms of degree < deg (f ) ,

2. g (−η) = 0 for all compositions η with |η| < deg (f ) .

Proof. This is immediate from Proposition 3.1.3. �

Theorem 3.1.9. The operator � preserves the space of symmetric polynomials and

maps J(α)
λ to Jrδ

λ . If f is homogeneous symmetric, then g = �(f ) is characterized by the

properties

1. g is symmetric,

2. g (x) = f (x) + terms of degree < deg (f ) ,

3. g (−μ − rδ) = 0 for all partitions μ with |μ| < deg (f ) .

Proof. This is immediate from Propositions 3.1.4– 3.1.6. �

3.2 The bar monomials

We now consider the action of the dehomogenization operator on the monomial

xη = xη1

1 xη2

2 · · · xηn
n .

Definition 3.2.1. The bar monomial corresponding to a composition η is

xη = �
(

xη
)

.

We note that the bar monomial is not a monomial; however, by Theorem 3.1.8, it

is a monomial up to lower degree terms.

Theorem 3.2.2. The bar monomial xη is the unique polynomial g (x) satisfying

1. g (x) = xη+ terms of degree < |η|

2. g (−γ ) = 0 if |γ | < |η|

Proof. This immediate from Theorem 3.1.8. �
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16 Y. Naqvi et al.

Example 3.2.3. The three bar monomials for n = 2 and |η| = 2 are as follows:

x(2,0) = (x1 + 1 + r)(x1 + r) + r(x2)

x(1,1) = (x1)(x2)

x(0,2) = (x2 + 1 + r)(x2)

They satisfy the properties of Theorem 3.2.2. They have the appropriate top degree term,

and each vanishes at −γ with |γ | < 2, that is, at the points

− (0, 0) = (−r, 0), −(1, 0) = (−1−r, 0), −(0, 1) = (0, −1−r).

We now establish the basic recursive properties of the bar monomials.

Theorem 3.2.4. The bar monomials satisfy the recursions

xsiη = σ+
i

(

xη
)

, x	η = 	+
(

xη
)

.

Proof. By Theorem 3.1.7, we have

xsiη = �
(

xsiη
)

= �
(

six
η
)

= σ+
i �

(

xη
)

= σ+
i

(

xη
)

.

The argument for x	η is entirely analogous. �

Remark 3.2.5. Just as in Remark 2.3.3, it is easy to see that these recursions generate

all bar monomials. We make this explicit in the proof of Theorem 4.4.6, where it plays a

central role.

We now formulate the symmetric analogues of the above ideas.

Definition 3.2.6. The symmetric bar monomial corresponding to a partition λ is

mλ = �
(

mλ

)

.

Theorem 3.2.7. mλ is the unique polynomial g (x) satisfying

1. g (x) is symmetric

2. g (x) = mλ+ terms of degree < |λ|

3. g (−μ) = 0 if |μ| < |λ|
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Interpolation Polynomials and Bar Monomials 17

Proof. This immediate from Theorem 3.1.9. �

For any two compositions η, γ , we write η ∼ γ if one is a rearrangement of the

other.

Proposition 3.2.8. We have mλ =
∑

η∼λ xη.

Proof. This follows from the homogeneous version mλ =
∑

η∼λ xη by applying �. �

Example 3.2.9. The two symmetric bar monomials for n = 2 and |λ| = 2 are as follows:

m(1,1) = x(1,1) = x1x2

m(2,0) = x(2,0) + x(0,2) = (x1 + 1 + r)(x1 + r) + r(x2) + (x2 + 1 + r)(x2)

= x2
1 + x2

2 + (1 + 2r)
(

x1 + x2

)

+ r (1 + r)

They satisfy the properties of Theorem 3.2.7. That is, each is a symmetric polynomial

with the appropriate top degree terms, and vanishes at −μ with |μ| < 2, that is, at the

points

− (0, 0) = (−r, 0), −(1, 0) = (−1−r, 0).

3.3 Proofs of Theorems A and B

The bar monomials in the examples above are polynomials in x1, x2 and r with positive

integral coefficients. We will show that this true in general.

Definition 3.3.1. The expansion coefficients of the bar monomials are defined by

xη =
∑

γ
cη,γ (r) xγ , mλ =

∑

μ
dλ,μ(r) mμ.

Theorem C. The coefficient cη,γ (r) is a polynomial in N[r] of degree ≤ |η| − |γ |.

We prove this in Subsection 4.3 below, but we first deduce some important

consequences. In view of Proposition 3.2.8, we have an analogous result for dλ,μ(r).

Corollary 3.3.2. The coefficient dλ,μ(r) is a polynomial in N[r] of degree ≤ |λ| − |μ|.
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18 Y. Naqvi et al.

Proof. By Proposition 3.2.8, we have

mλ =
∑

η∼λ
xη =

∑

η∼λ

∑

γ
cη,γ (r) xγ =

∑

γ

[

∑

η∼λ
cη,γ (r)

]

xγ .

Comparing the coefficients of xμ on both sides, we get

dλ,μ(r) =
∑

η∼λ
cη,μ(r).

Now, the result follows from Theorem C. �

We can also prove Theorems A and B.

Proof of Theorem B. The nonsymmetric interpolation polynomials and Jack polyno-

mials have expansions

Frδ
η =

∑

|γ |≤|η|
α|γ |−|η| bη,γ (α) xγ , F(α)

η =
∑

|ζ |=|η|
bη,ζ (α) xζ , (3.3.1)

and by Theorem 2.2.4, we have

bη,ζ (α) ∈ N[α] for |ζ | = |η|. (3.3.2)

Since Frδ
η = �

(

F(α)
η

)

, we get

Frδ
η =

∑

|ζ |=|η|
bη,ζ (α) xζ =

∑

|ζ |=|η|
bη,ζ (α)

∑

γ
cζ ,γ (r) xγ ,

which implies that

bη,γ (α) =
∑

|ζ |=|η|
bη,ζ (α) c̃ζ ,γ (α),

where

c̃ζ ,γ (α) = α|η|−|γ | cζ ,γ (r) = α|ζ |−|γ | cζ ,γ (r).

Rewriting Theorem C in terms of α = 1/r we have

α|ζ |−|γ | cζ ,γ (r) ∈ N[α]. (3.3.3)

Together with (3.3.2) this implies that bη,γ (α) ∈ N [α], proving Theorem B. �
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Interpolation Polynomials and Bar Monomials 19

Proof of Theorem A. In the symmetric case, we get the formula

aλ,μ(α) =
∑

|ν|=|λ|
aλ,ν(α) d̃ν,μ(α)

d̃ν,μ(α) =
∑

η∼ν
c̃η,μ(α).

Arguing as above we get aλ,μ(α) ∈ N [α], proving Theorem A. �

4 Bar Games

In this section, we introduce some new combinatorial objects related to compositions.

These objects will be the summation indices in Theorem D, the combinatorial expression

for the bar monomials. We will prove this using Theorem 3.2.4. As such, it will be

important to understand how the weights of our objects behave under the operators

σ+
i and 	+, and how compositions behave under si and 	.

4.1 The critical box

Our main combinatorial object will be called a bar game. A game will consist of moves.

Each move will begin by deleting a prescribed box from a composition, which we will

call the critical box.

Definition 4.1.1. We define the critical box of a composition η to be s [η] = (k, m) where

m = m [η] := max
{

ηi

}

, k = k [η] := min
{

i : ηi = m
}

.

We will call k = k [η] the critical row and l [η] := lη (k, m) the critical leg.

Alternatively, k = k [η] is characterized by

ηk > η1, . . . , ηk−1 and ηk ≥ ηk+1, . . . ηn. (4.1.1)

Then we have m = m [η] = ηk, and the formula (2.2.5) for lη (k, m) becomes

l [η] = #
{

i > k : ηi = m
}

+ #
{

i < k : ηi = m − 1
}

(4.1.2)
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20 Y. Naqvi et al.

We now discuss the behavior of these quantities under the maps si, 	, and ω

where

	(η) =
(

η2, . . . , ηn, η1 + 1
)

and ω (η) =
(

η2, . . . , ηn, η1

)

.

Proposition 4.1.2. Suppose the critical box of η is s [η] = (k, m).

1. If k > 1, then s [	η] = (k − 1, m); if k = 1 then s [	η] = (n, m + 1) .

2. If siη �= η, then s
[

siη
]

=
(

si (k) , m
)

.

Proof. Since m [η] is the length of the critical row k [η], it suffices to prove that critical

rows of 	η and siη are ω (k) and si (k), respectively. In the case of 	η this comes down to

the following inequalities that are immediate from (4.1.1)

η1 + 1 > η2, . . . , ηn if k = 1,

ηk > η2, . . . , ηk−1 and ηk ≥ ηk+1, . . . ηn, η1 + 1 if k > 1,

For the case of siη since
(

siη
)

si(j)
= ηj it suffices to show

si (j) < si (k) 
⇒ ηj < ηk.

Except if k = i, j = i + 1 the condition si (j) < si (k) implies j < k and hence ηj < ηk.

For k = i, j = i + 1, we need to show ηk+1 < ηk. Now, by definition of k = k [η], we have

ηk+1 ≤ ηk and since k = i, the assumption siη �= η implies ηk+1 �= ηk. �

The critical leg l [η] behaves as follows.

Lemma 4.1.3. We have l [	η] = l [η]; moreover, l
[

siη
]

= l [η] except in the following two

cases:

1. l
[

siη
]

= l [η] + 1 if k [η] = i and ηi+1 = ηi − 1,

2. l
[

siη
]

= l [η] − 1 if k [η] = i + 1 and ηi = ηi+1 − 1.

Proof. This is immediate from (4.1.2) and Proposition 4.1.2. �

Definition 4.1.4. We write η∗ for the composition obtained from η by deleting the

critical box.
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Interpolation Polynomials and Bar Monomials 21

Then Proposition 4.1.2 immediately implies the following result.

Corollary 4.1.5. We have [	(η)]∗ = 	(η∗), and if si (η) �= η, then
(

siη
)∗

= si (η∗).

4.2 Glissades and the bar order

We consider the following operation on compositions that we call a glissade. (These will

be the moves of our games, which are introduced in the next subsection.)

Delete the critical box to get η*, and then move l≥0 boxes from the

end of the critical row k to the end of some other row j, with the proviso

that the new positions of the boxes are either above and strictly left,

or below and weakly left of their original positions.

Example 4.2.1. Some examples of glissades can be found in Figures 2, 4, and 5. For

each glissade, we have placed a × in the critical box and indicated movement of other

boxes with arrows.

We write η � γ if γ is obtained from η by a glissade. We now discuss how

glissades behave under the action of the operators si and 	. In view of Corollary 4.1.5,

we focus on the case of glissades γ �= η∗, and thus we define

P [η] = {γ : η � γ } \
{

η∗
}

. (4.2.1)

Proposition 4.2.2. We have P [	η] = 	(P [η]), and if siη �= η, then P
[

siη
]

= si (P [η])

except as in the following table:

i ηi+1 − ηi P
[

siη
]

k − 1 > 1 si (P [η]) ∪ {η∗}

k < −1 si (P [η]) \ {η∗}

(4.2.2)

Proof. We denote by M = 〈γ , η, j, k, l〉 the statement that “k = k [η] and γ is obtained

from η∗ by moving l > 0 boxes from row k to row j ”. By Proposition 4.1.2, the statement

M is equivalent to

	(M) := 〈	γ , 	η, ω (j) , ω (k) , l〉 and si (M) :=
〈

siγ , siη, si (j) , si (k) , l
〉

.
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22 Y. Naqvi et al.

Moreover, M = 〈γ , η, j, k, l〉 represents a glissade if and only if

ε = ε (M) := ηk − 1 − γj = ηk − ηj − l − 1 satisfies

{

ε > 0 i f j < k

ε ≥ 0 if j > k
(4.2.3)

The M-inequality (4.2.3) is identical to that for 	(M) and si (M) with the

following exceptions where there is a change in the relative order of (j, k) and/or a

change in ε:

(j, k) M 	(M)

(1, k) ε > 0 ε − 1 ≥ 0

(j, 1) ε ≥ 0 ε + 1 > 0

(j, k) M si (M)

(i, i + 1) ε > 0 ε ≥ 0

(i + 1, i) ε ≥ 0 ε > 0

.

In each row of the 1st table the two inequalities are still equivalent; thus, M is a glissade

iff 	(M) is a glissade. The same is true in the 2nd table except if ε = 0, which implies

that γ = siη
∗ and siγ = η∗ and leads to the following two situations:

(j, k) ηi+1 − ηi siη
∗ ∈ P [η] η∗ ∈ P

[

siη
]

(i, i + 1) l + 1 False True

(i + 1, i) − (l + 1) True False

.

Since we have l > 0 we get l + 1 > 1 and the above table corresponds precisely to the

exceptions in (4.2.2). This completes the proof of the proposition. �

Example 4.2.3. Figure 4 shows P[1, 4, 1, 2] and P[1, 1, 4, 2]. Notice that there is a glissade

on (1, 4, 1, 2) that moves two boxes out of the critical row, but not on (1, 1, 4, 2). This

illustrates the special cases in the last table of the Proof of Proposition 4.2.2 when

η = (1, 4, 1, 2) or η = (1, 1, 4, 2) and i = 2.

Definition 4.2.4. The bar order on compositions is the transitive closure of �.

The bar order equips (N)n with the structure of a ranked poset for which � is the

covering relation. The rank function is |η| and the composition 0 is the unique minimal

element.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
4
9
/6

5
5
3
9
8
7
 b

y
 R

u
tg

e
rs

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 1

0
 J

u
ly

 2
0
2
2
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Fig. 4. All nontrivial glissades on (1,4,1,2) and (1,1,4,2).

Fig. 5. A sequence of glissades in a game on (1,8,3,0,2,5).

4.3 Bar games and the proof of Theorem C

Definition 4.3.1. A bar game on η is a maximal �-chain with greatest element η. We

write G (η) for the set of bar games on η.

Each bar game G in G (η) is a chain of length d = |η| of the form

G : η = η(0) � η(1) � · · · � η(d) = 0. (4.3.1)

We can visualize G (η) as the set of all possible “solitaire” games that start with the

Ferrers diagram of η and reach 0 along a sequence of glissades. There are finitely many

games in G (η) , each of which ends after exactly |η| moves.

Example 4.3.2. Figure 5 shows a bar game on η = (1, 8, 3, 0, 2, 5). Once we reach the

rightmost shape, (2,2,3,2,2,3), there is only one possible choice of all future glissades:

delete the critical box and do nothing else. The next few shapes will be (2, 2, 2, 2, 2, 3),

(2, 2, 2, 2, 2, 2), (1, 2, 2, 2, 2, 2), (1, 1, 2, 2, 2, 2), and so on.

We now introduce the crucial notion of the weight of a bar game.
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24 Y. Naqvi et al.

Definition 4.3.3. We define the weight of a composition η with critical box (k, m) to

be

wη = xk + (m − 1) + r (n − 1 − l [η]) ,

where l [η] = lη (k, m) is the critical leg. We define the weight of a pair η � γ to be

w (η � γ ) =

{

wη if γ = η∗

r if γ �= η∗
.

We define the weightof a game G as in (4.3.1) to be w (G) =
∏d

i=1 w
(

η(i−1) � η(i)
)

.

Example 4.3.4. The game in Example 4.3.2 has weight

r · (x1 + 5r + 5) · r3 · (x3 + 2r + 2) · (x6 + 2) ·
∏6

k=1(xk + 1) ·
∏6

k=1xk.

The connection between bar games and bar monomials is given by Theorem D of

the introduction, which we now recall in a precise form.

Theorem D. We have xη =
∑

G∈G(η) w(G).

We will prove Theorem D in a moment, but we first note that it immediately

implies Theorem C.

Proof of Theorem C. From Definition 4.3.3 each w(G) is a polynomial of total degree

≤ |η| in x1, . . . , xn, r, with nonnegative integral coefficients; thus, the same is true of xη.

For the distinguished game G∗ with η(i+1) =
(

η(i)
)∗

for all i, the monomial xη

occurs once in the expansion of w (G∗) . All other monomials in any w (G) have degree

< |η| in x1, . . . , xn. This implies Theorem C. �

4.4 The transition formula and the proof of Theorem D

Bar monomials satisfy the recursions of Theorem 3.2.4 that involve the operators

ω̃ (f ) (x) = f
(

xn + 1, x1, . . . , xn−1

)

, ∂if =
si (f ) − f

xi − xi+1

, 	+ = xnω̃, σ+
i = si + r∂i.
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Interpolation Polynomials and Bar Monomials 25

For the proof of Theorem D, we study their action on the polynomials

Aη =
∑

γ∈P[η]
xγ , Bη = wηxη∗

, Cη =
(

Bη + rAη

)

.

Lemma 4.4.1. We have 	+(Aη) = A	η and if ηi > ηi+1 then σ+
i (Aη) = Asiη

except

if i = k and ηi − 1 > ηi+1, then σ+
i (Aη) = Asiη

− rxη∗

.

Proof. This is immediate from Theorem 3.2.4 and Proposition 4.2.2. �

For the action on Bη, we first note the following general result.

Lemma 4.4.2. For any two functions f , g, we have

	(fg) = ω̃ (f )	+ (g) , σ+
i (fg) = si (f ) σ+

i (g) + r∂i (f ) g.

Proof. The operators ω̃ and si are multiplicative

ω̃ (fg) = ω̃ (f ) ω̃ (g) , si (fg) = si (f ) si (g) ,

while ∂i is a “twisted” derivation in the following sense:

∂i (fg) =
si (f ) si (g) − si (f ) g

xi − xi+1

+
si (f ) g − fg

xi − xi+1

= si (f ) ∂i (g) + ∂i (f ) g.

This gives

	+ (fg) = xnω̃ (f ) ω̃ (g) = ω̃ (f )	+ (g)

σ+
i (fg) = si (f ) si (g) + r

[

si (f ) ∂i (g) + ∂i (f ) g
]

= si (f ) σ+
i (g) + r∂i (f ) g

as desired. �

We now prove the analog of Lemma 4.4.1 for Bη.

Lemma 4.4.3. We have 	+(Bη) = B	η and if ηi > ηi+1 then σ+
i (Bη) = Bsiη

except

if i = k and ηi − 1 > ηi+1, then σ+
i (Bη) = Bsiη

+ rxη∗

.
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26 Y. Naqvi et al.

Proof. By Theorem 3.2.4, Corollary 4.1.5, and the previous lemma, we have

	+(Bη) = ω̃(wη)	
+
(

xη∗)

= ω̃(wη)x
	(η∗)

= ω̃(wη)x
(	η)∗ (4.4.1)

σ+
i (Bη) = si(wη)σ

+
i

(

xη∗)

+ r∂i(wη)x
η∗

= si(wη)x
(siη)∗ + r∂i(wη)x

η∗

(4.4.2)

Now, suppose the critical box of η is s [η] = (k, m) and the critical leg is l [η] = l

so that

wη = xk + (m − 1) + r (n − 1 − l) .

By Proposition 4.1.2, if k > 1, then s [	η] = (k − 1, m) and l [	η] = l and we get

w	η = xk−1 + (m − 1) + r (n − 1 − l) = ω̃

(

wη

)

,

while if k = 1, then s [	η] = (n, m + 1) and l [	η] = l and we get

w	η = xn + m + r (n − 1 − l)

= (xn + 1) + (m − 1) + r (n − 1 − l) = ω̃

(

wη

)

,

Thus, ω̃

(

wη

)

= w	η always, and by ( 4.4.1), we deduce 	+
(

Bη

)

= B	η.

By Proposition 4.1.2, if i �= k, k + 1, then s
[

siη
]

= (k, m) and l
[

siη
]

= l and we get

wsiη
= xk + (m − 1) + r (n − 1 − l) = wη = si

(

wη

)

∂i

(

wη

)

=
si

(

wη

)

− wη

xi − xi+1

= 0

and by (4.4.2), we deduce σ+
i

(

Bη

)

= Bsiη
in this case.

For i = k we have s
[

siη
]

= (k + 1, m). If ηi+1 �= ηi − 1, then we have l
[

siη
]

= l;

hence, we get

wsiη
= xk+1 + (m − 1) + r (n − 1 − l) = si

(

wη

)

,

if ηi+1 �= ηi − 1, then we have l
[

siη
]

= l + 1 and so we get

wsiη
= si

(

wη

)

− r.
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In both cases, ∂i

(

wη

)

= ∂i

(

xi

)

= 1, and so by (4.4.2), we get

σ+
i

(

Bη

)

=

{

Bsiη
+ r if i = k and ηi − 1 > ηi+1

Bsiη
otherwise

.

�

Finally, we consider the case of Cη = Bη + rAη.

Lemma 4.4.4. We have 	+
(

Cη

)

= C	η and if ηi �= ηi+1 then σ+
i

(

Cη

)

= Csiη
.

Proof. Since
(

σ+
i

)2
= 1 it suffices to prove the σ+

i -recursion for ηi > ηi+1. This follows

from Lemmas 4.4.1 and 4.4.3 since the two exceptions cancel out for the combination

Bη + rAη. The 	+ -recursion is immediate from Lemmas 4.4.1 and 4.4.3. �

Example 4.4.5. Consider the case η = (1, 4, 1, 2) and i = 2. Lemma 4.4.1 gives

σ+
2 (A1,4,1,2) = A1,1,4,2 − rx1,3,1,2.

See Example 4.2.3. On the other hand, Lemma 4.4.3 gives

σ+
2 (B1,4,1,2) = B1,1,4,2 + rx1,3,1,2.

Adding these gives σ+
2 (C1,4,1,2) = C1,1,4,2 as desired.

We can now prove the following one-step transition formula for bar monomials.

Theorem 4.4.6. For η �= 0, we have

xη = wη xη∗

+ r
∑

γ∈P[η]
xγ . (4.4.3)

Proof. The right side is, of course, the polynomial Cη; we set

Zη = xη − Cη.

By Theorem 3.2.4 and Lemma 4.4.4, we get

	+
(

Zη

)

= Z	η and if ηi �= ηi+1 then σ+
i

(

Zη

)

= Zsiη
.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
4
9
/6

5
5
3
9
8
7
 b

y
 R

u
tg

e
rs

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 1

0
 J

u
ly

 2
0
2
2
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Fig. 6. The set G(1, 0, 4) of all games on (1,0,4).

We will prove Zη = 0 by induction on the size |η| and, for a given |η|, by downward

induction on the largest index i = i (η) for which ηi �= 0. The base case (0, . . . , 0, 1) is a

straightforward check. Now, suppose we are given γ �= (0, . . . 0, 1). If i (γ ) = n, then we

can write

γ = 	η, η :=
(

γn − 1, γ1, . . . , γn−1

)

,

and thus Zγ = 	+
(

Zη

)

= 0 by induction, since |η| < |γ |. If i (γ ) = i < n, then we can

write

γ = si (η) , η :=
(

γ1, . . . , γi−1, 0, γi, 0, . . . , 0
)

,

and thus, Zγ = σ+
i

(

Zη

)

= 0 by induction, since |η| = |γ | and i (η) = i + 1 > i (γ ) . �

Proof of Theorem D. Theorem D follows by iterating Theorem 4.4.6. �

5 Examples, Explicit Formulas, and Binomial Coefficients

We now give several detailed examples of Theorem D, leading to explicit formulas

for bar monomials and interpolation polynomials. We also discuss special values of

interpolation polynomials, known as binomial coefficients. These too are conjecturally

positive, although this does not follow from our formulas.

5.1 Examples of Theorem D

Now, we give three examples of the full computation of xγ . For brevity, when we delete

the critical box without moving anything else, we record this with a × and continue

working with the same diagram. For instance, the top middle part of Figure 6 represents

the game (1, 0, 4) → (1, 0, 3) → (1, 1, 1) → (0, 1, 1) → (0, 0, 1) → (0, 0, 0).
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Fig. 7. The set G(3, 0, 3) of all games on (3,0,3).

Example 5.1.1. From Figure 6, we obtain

x1,0,4 = (x3 + 3 + 2r) · (x3 + 2 + 2r) · (x3 + 1 + r) · (x1 + r) · x3

+ (x3 + 3 + 2r) · r · x1 · x2 · x3

+ r · (x1 + 1 + r) · (x3 + 1 + r) · (x1 + r) · x3

+ r · (x3 + 1) · x1 · x2 · x3

+ r · (x2 + 1 + r) · x1 · x2 · x3

+ r2 · (x3 + 1 + r) · x2 · x3.

Example 5.1.2. From Figure 7, we obtain

x3,0,3 = (x1 + 2 + r) · (x3 + 2 + r) · (x1 + 1 + r) · (x3 + 1 + r) · (x1 + r) · x3

+ (x1 + 2 + r) · (x3 + 2 + r) · r · (x3 + 1 + r) · x2 · x3

+ (x1 + 2 + r) · r · (x1 + 1 + 2r) · x1 · x2 · x3

+ r · (x3 + 2 + 2r) · (x3 + 1) · x1 · x2 · x3

+ r · (x3 + 2 + r) · (x2 + 1 + r) · (x3 + 1 + r) · x2 · x3

+ r2 · (x2 + 1 + r) · x1 · x2 · x3.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
4
9
/6

5
5
3
9
8
7
 b

y
 R

u
tg

e
rs

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 1

0
 J

u
ly

 2
0
2
2



30 Y. Naqvi et al.

Example 5.1.3. Continuing our example from Subsection 1.2, Figure 3 gives

x1,2,4,1 = (x3 + 3 + 3r) · (x3 + 2 + 2r) · (x2 + 1 + r) · (x3 + 1 + r) · x1 · x2 · x3 · x4

+ (x3 + 3 + 3r) · r · (x2 + 1 + r) · (x4 + 1) · x1 · x2 · x3 · x4

+ r · (x1 + 1 + r) · (x2 + 1 + r) · (x3 + 1 + r) · x1 · x2 · x3 · x4

+ r · (x2 + 1 + r) · (x3 + 1 + r) · (x4 + 1 + r) · x1 · x2 · x3 · x4

+ r · (x4 + 2 + 2r) · (x2 + 1 + r) · (x4 + 1) · x1 · x2 · x3 · x4.

5.2 A combinatorial expansion for Jack interpolation polynomials

A fundamental result of [26] is that F(α)
γ can be written as a positive, weighted sum of

certain “admissible” tableaux. Combining this result with Theorem D gives a positive,

combinatorial expansion for the Jack interpolation polynomials. We state this result

below. For the necessary combinatorial notions, we follow the definitions and notation

of [26, sections 4–5].

Theorem 5.2.1. Let γ ∈ Nn. Then,

Frδ
γ (x) =

∑

T 0-admissible

d0
T(α)

∑

G∈G(ω(T))

w(G).

Let γ + be the unique partition conjugate to γ . Then,

Jrδ
γ +(x) =

∑

T admissible

dT(α)
∑

G∈G(ω(T))

w(G).

Example 5.2.2. There are four tableaux of shape (0, 2) (shown below), but only the

latter two are 0-admissible.

Hence,

Frδ
(0,2) = (2

r + 2) x1,1 + (2
r + 2)(1

r + 1) x0,2

= (2
r + 2) x1x2 + (2

r + 2)(1
r + 1)(x2 + 1 + r)x2.
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2

3

1

3

1 2

3

1 2

3

3

3

1 1 2

3

32

Fig. 8. All 0-admissible tableau of shape (2, 0, 1).

On the other hand, all four tableaux of shape (2,0) are 0-admissible. We get

Frδ
(2,0) = (2

r + 1)(1
r + 1) x2,0 +

(

(2
r + 1) + 1

)

x1,1 + (1
r + 1) x0,2

= (2
r + 1)(1

r + 1)

(

(x1 + 1 + r)(x1 + r) + r(x2)

)

+
(

(2
r + 1) + 1

)

x1x2 + (1
r + 1)(x2 + 1 + r)x2.

and

Jrδ
(2,0) = (1

r + 1) x2,0 + 2 x1,1 + (1
r + 1) x0,2

= (1
r + 1)

(

(x1 + 1 + r)(x1 + r) + r(x2)

)

+ 2 x1x2 + (1
r + 1)(x2 + 1 + r)x2.

Example 5.2.3. There are six 0-admissible tableaux of shape (2, 0, 1). They are given in

Figure 8. The weights ω of these tableaux are (2, 0, 1) , (1, 1, 1), (1, 0, 2), (1, 1, 1), (0, 2, 1),

and (0, 1, 2), respectively. Hence,

Frδ
(2,0,1) = (2

r + 2)(1
r + 1)(1

r + 2) x(2,0,1)

+ (2
r + 2)(1

r + 2) x(1,1,1)

+ (2
r + 2)(1

r + 2) x(1,0,2)

+ (1
r + 2) x(1,1,1)

+ (1
r + 1)(1

r + 2) x(0,2,1)

+ (1
r + 2) x(0,1,2).

To further expand, we need to look at games. Notice that among all the games of shapes

(2, 0, 1), (1, 1, 1), (1, 0, 2), (0, 2, 1), and (0, 1, 2), there is only one game with a nontrivial
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move: (2, 0, 1) → (0, 1, 1) → (0, 0, 1) → (0, 0, 0). Hence, we get the following expansion:

Frδ
(2,0,1) = (2

r + 2)(1
r + 1)(1

r + 2)

(

(x1 + 1 + 2r)(x1 + r)x3 + rx2x3

)

+ (2
r + 2)(1

r + 2) x1x2x3

+ (2
r + 2)(1

r + 2)(x3 + 1 + r)(x1 + r)x3

+ (1
r + 2) x1x2x3

+ (1
r + 1)(1

r + 2)(x2 + 1 + 2r)x2x3

+ (1
r + 2)(x3 + 1 + r)x2x3.

5.3 Vanishing properties

By definition, the bar monomials have lower vanishing properties. For instance, x3,0

vanishes at (1, 1) = (−1 − r, −1). However, this does not happen game by game.

Combinatorially, it is not clear why it happens at all.

Furthermore, when the interpolation Jack polynomials are evaluated at shapes

that are larger in the containment order, it seems that we get positive Laurent polynomi-

als in r (up to an overall sign). These polynomials are called binomial coefficients [5, 30,

38]. But this is not true at the level of bar monomials (much less at the level of games),

and again the combinatorics is obscure.

We give examples to illustrate the two phenomena.

Example 5.3.1. Vanishing of x3,0 at (1, 1) = (−1 − r, −1)

x3,0 = (x1 + 2 + r)(x1 + 1 + r)(x1 + r) + (x1 + 2 + r)rx2 + r(x2 + 1 + r)x2 + rx1x2

and at (1, 1) = (−1 − r, −1) we get

(x1 + 2 + r)(x1 + 1 + r)(x1 + r) → 0

(x1 + 2 + r)rx2 → −r

r(x2 + 1 + r)x2 → −r2

rx1x2 → r2 + r
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Example 5.3.2. Positivity of Frδ
(3,1)

at (3, 4) = (−3, −4 − r)

Frδ
(3,1) = (3

r + 2)(2
r + 1)(1

r + 1)2 x3,1 + (3
r + 2)(1

r + 1) x2,2

+ (3
r + 2)(2

r + 1)(1
r + 1) x2,2 + (3

r + 2)(1
r + 1)2 x1,3

= (3
r + 2)(2

r + 1)(1
r + 1)2

(

(x1 + 2 + r)(x1 + 1 + r)x1x2 + r(x2 + 1)x1x2

)

+ (3
r + 2)(1

r + 1) (x1 + 1)(x2 + 1)x1x2

+ (3
r + 2)(2

r + 1)(1
r + 1) (x1 + 1)(x2 + 1)x1x2

+ (3
r + 2)(1

r + 1)2 (x2 + 2 + r)(x2 + 1)x1x2

Evaluating this at (3, 4) = (−3, −4 − r) gives

144

r4
+

60

r3
−

834

r2
−

1530

r
− 1074 − 330r − 36r2

+
432

r3
+

1188

r2
+

1230

r
+ 600 + 138r + 12r2

+
216

r2
+

486

r
+ 372 + 114r + 12r2

+
216

r3
+

702

r2
+

858

r
+ 486 + 126r + 12r2

=
144

r4
+

708

r3
+

1272

r2
+

1044

r
+ 384 + 48r

Currently, there is no manifestly positive combinatorial formula for the binomial

coefficients, except in some small cases [25, 35, 49]. Understanding the lower vanishing

properties of the bar monomials from a combinatorial perspective may shed more light

on the binomial coefficient problem.

Funding

This work was supported by the Australian Research Council [Y.N. through DP180102437], the

National Science Foundation [S.S. through DMS-1939600 and 2001537, E.S. through DMS-1603681],

and the Simons Foundation [S.S. through grant 509766].

References

[1] Aggarwal, A., A. Borodin, and M. Wheeler. “Colored Fermionic vertex models and symmetric

functions.” (2021): preprint arXiv:2101.01605.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
4
9
/6

5
5
3
9
8
7
 b

y
 R

u
tg

e
rs

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 1

0
 J

u
ly

 2
0
2
2



34 Y. Naqvi et al.

[2] Alldridge, A., S. Sahi, and H. Salmasian. “Schur Q Functions and the Capelli Eigenvalue

Problem for the Lie Superalgebra q(n).” In Representation Theory and Harmonic Analysis on

Symmetric Spaces, vol. 714. Contemp. Math. 1–21. Providence, RI: American Mathematical

Society, 2018.

[3] Baker, T. H. and P. J. Forrester. “Nonsymmetric Jack polynomials and integral kernels.” Duke

Math. J. 95, no. 1 (1998): 1–50.

[4] Beliakova, A. and E. Gorsky. “Cyclotomic expansions for glN knot invariants via interpolation

Macdonald polynomials.” (2021): preprint arXiv:2101.08243.

[5] Bingham, C. “An identity involving partitional generalized binomial coefficients.” J. Multi-

variate Anal. 4 (1974): 210–23.

[6] Borodin, A. and I. Corwin. “Macdonald processes.” Probab. Theory Related Fields 158,

no. 1–2 (2014): 225–400.

[7] Borodin, A. and G. Olshanski. “Harmonic functions on multiplicative graphs and interpola-

tion polynomials.” Electron. J. Combin. 7, no. 28 (2000): 39.

[8] Borodin, A. and M. Wheeler. “Nonsymmetric Macdonald polynomials via integrable vertex

models.” (2019): preprint arXiv:1904.06804.

[9] Cherednik, I. “Double affine Hecke algebras and Macdonald’s conjectures.” Ann. of Math. (2)

141, no. 1 (1995): 191–216.

[10] Cherednik, I. Double Affine Hecke Algebras, vol. 319. London Math. Soc. Lecture Note

Ser.Cambridge: Cambridge University Press, 2005.

[11] Cherednik, I. “Jones polynomials of torus knots via DAHA.” Int. Math. Res. Not. IMRN 23

(2013): 5366–425.

[12] Garsia, A. M. and M. Haiman. “A remarkable q, t-Catalan sequence and q-Lagrange inver-

sion.” J. Algebraic Combin. 5, no. 3 (1996): 191–244.

[13] Garsia, A. M. and M. Haiman. “A graded representation model for Macdonald’s polynomials.”

Proc. Natl. Acad. Sci. USA 90, no. 8 (1993): 3607–10.

[14] Gorsky, E. and P. Wedrich. “Evaluations of annular Khovanov–Rozansky homology.” (2019):

preprint arXiv:1904.04481.

[15] Haglund, J. The q-t Catalan Numbers and the Space of Diagonal Harmonics: With an

Appendix on the Combinatorics of Macdonald Polynomials, vol. 41. Univ. Lecture Ser.

Providence, RI: American Mathematical Society, 2008.

[16] Haiman, M. “Hilbert schemes, polygraphs and the Macdonald positivity conjecture.” J. Amer.

Math. Soc. 14, no. 4 (2001): 941–1006.

[17] Hausel, T., E. Letellier, and F. Rodriguez-Villegas. “Arithmetic harmonic analysis on charac-

ter and quiver varieties.” Duke Math. J. 160, no. 2 (2011): 323–400.

[18] Hausel, T. and F. Rodriguez-Villegas. “Mixed Hodge polynomials of character varieties.”

Invent. Math. 174, no. 3 (2008): 555–624. With an appendix by Nicholas M. Katz.

[19] Herz, C. S. “Bessel functions of matrix argument.” Ann. of Math. (2) 61, no. 3 (1955): 474–523.

[20] Ion, B. “Nonsymmetric Macdonald polynomials and Demazure characters.” Duke Math. J.

116, no. 2 (2003): 299–318.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
4
9
/6

5
5
3
9
8
7
 b

y
 R

u
tg

e
rs

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 1

0
 J

u
ly

 2
0
2
2



Interpolation Polynomials and Bar Monomials 35

[21] Ion, B. “Standard bases for affine parabolic modules and nonsymmetric Macdonald polyno-

mials.” J. Algebra 319, no. 8 (2008): 3480–517.

[22] Ivanov, V. N. “The dimension of skew shifted young diagrams, and projective characters of

the infinite symmetric group.” Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.

(POMI) 115–135 (1997): 292–3.

[23] Jack, H. “A class of symmetric polynomials with a parameter.” Proc. Roy. Soc. Edinburgh

Sect. A 69, no. 1 (1970): 1–8.

[24] Knop, F. “Symmetric and non-symmetric quantum Capelli polynomials.” Comment. Math.

Helv. 72, no. 1 (1997): 84–100.

[25] Knop, F. and S. Sahi. “Difference equations and symmetric polynomials defined by their

zeros.” Int. Math. Res. Not. IMRN 10 (1996): 473–86.

[26] Knop, F. and S. Sahi. “A recursion and a combinatorial formula for Jack polynomials.” Invent.

Math. 128, no. 1 (1997): 9–22.

[27] Kostant, B. and S. Sahi. “The Capelli identity, tube domains, and the generalized Laplace

transform.” Adv. Math. 87, no. 1 (1991): 71–92.

[28] Kostant, B. and S. Sahi. “Jordan algebras and Capelli identities.” Invent. Math. 112, no. 3

(1993): 657–64.

[29] Kuznetsov, V. B. and S. Sahi., eds. Jack, Hall–Littlewood and Macdonald Polynomials,

vol. 417. Contemp. Math.Providence, RI: American Mathematical Society, 2006.

[30] Lassalle, M. “Une formule du binôme généralisée pour les polynômes de Jack.” C. R. Acad.

Sci. Paris Sér. I Math. 310, no. 5 (1990): 253–6.

[31] Macdonald, I. G. Symmetric Functions and Hall Polynomials, 2nd ed. Oxford Math.

Monogr.New York: Oxford University Press, 1995.

[32] Macdonald, I. G. Affine Hecke Algebras and Orthogonal Polynomials, vol. 157. Cambridge

Tracts in Math.Cambridge: Cambridge University Press, 2003.

[33] Muirhead, R. J. Aspects of Multivariate Statistical Theory. Wiley Ser. Probab. Stat.Hoboken,

NJ: Wiley, 1982.

[34] Nakajima, H. “More Lectures on Hilbert Schemes of Points on Surfaces.” In Development of

Moduli Theory—Kyoto 2013, vol. 69. Adv. Stud. Pure Math. 173–205. Tokyo: Math. Soc. Japan,

2016.

[35] Naqvi, Y. and S. Sahi. “A combinatorial formula for certain binomial coefficients for Jack

polynomials.” (2018): preprint arXiv:1807.10325.

[36] Okounkov, A. “BC-Type interpolation Macdonald polynomials and binomial formula for

Koornwinder polynomials.” Transform. Groups 3, no. 2 (1998): 181–207.

[37] Okounkov, A. “(Shifted) Macdonald polynomials: q-integral representation and combinato-

rial formula.” Compos. Math. 112, no. 2 (1998): 147–82.

[38] Okounkov, A. and G. Olshanski. “Shifted Jack polynomials, binomial formula, and applica-

tions.” Math. Res. Lett. 4 (1997): 69–78.

[39] Okounkov, A. and G. Olshanski. “Asymptotics of Jack polynomials as the number of variables

goes to infinity.” Int. Math. Res. Not. IMRN 13 (1998): 641–82.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
4
9
/6

5
5
3
9
8
7
 b

y
 R

u
tg

e
rs

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 1

0
 J

u
ly

 2
0
2
2



36 Y. Naqvi et al.

[40] Opdam, E. “Harmonic analysis for certain representations of graded Hecke algebras.” Acta

Mathematica 175 (1995): 75–121.

[41] Rains, E. M. and S. Ole Warnaar. “A Nekrasov–Okounkov formula for Macdonald polynomi-

als.” J. Algebraic Combin. 48, no. 1 (2018): 1–30.

[42] Richards, D. S. P., ed. Hypergeometric Functions on Domains of Positivity, Jack Polynomials,

and Applications, vol. 138. Contemp. Math.Providence, RI: American Mathematical Society,

1992.

[43] Rösler, M. “Generalized Hermite polynomials and the heat equation for Dunkl operators.”

Comm. Math. Phys. 192, no. 3 (1998): 519–42.

[44] Sahi, S. “The Spectrum of Certain Invariant Differential Operators Associated to a Hermitian

Symmetric Space.” In Lie Theory and Geometry, vol. 123. Progr. Math. 569–76. Basel:

Birkhäuser/Springer, 1994.

[45] Sahi, S. “Interpolation, integrality, and a generalization of Macdonald’s polynomials.” Int.

Math. Res. Not. IMRN 10 (1996): 457–71.

[46] Sahi, S. “The binomial formula for nonsymmetric Macdonald polynomials.” Duke Math. J.

94, no. 3 (1998): 465–77.

[47] Sahi, S. “Nonsymmetric Koornwinder polynomials and duality.” Ann. of Math. (2) 150, no. 1

(1999): 267–82.

[48] Sahi, S. “Binomial Coefficients and Littlewood–Richardson Coefficients for Interpolation

Polynomials and Macdonald Polynomials.” In Representation Theory and Mathematical

Physics, vol. 557. Contemp. Math. 359–69. Providence, RI: American Mathematical Society,

2011.

[49] Sahi, S. “Binomial coefficients and Littlewood–Richardson coefficients for Jack polynomi-

als.” Int. Math. Res. Not. IMRN 7 (2011): 1597–612.

[50] Sahi, S. “The Capelli identity for Grassmann manifolds.” Represent. Theory 17 (2013): 326–36.

[51] Sahi, S. and H. Salmasian. “The Capelli problem for gl (m|n) and the spectrum of invariant

differential operators.” Adv. Math. 303 (2016): 1–38.

[52] Sahi, S. and H. Salmasian. “Quadratic Capelli operators and Okounkov polynomials.” Ann.

Sci. Éc. Norm. Supér. (4) 52, no. 4 (2019): 867–90.

[53] Sahi, S., H. Salmasian, and V. Serganova. “The Capelli eigenvalue problem for Lie superalge-

bras.” Math. Z. 294, no. 1–2 (2020): 359–95.

[54] Sahi, S. and G. Zhang. “The Capelli identity and Radon transform for Grassmannians.” Int.

Math. Res. Not. IMRN 12 (2017): 3774–800.

[55] Sahi, S. and G. Zhang. “Positivity of Shimura operators.” Math. Res. Lett. 26, no. 2 (2019):

587–626.

[56] Schiffmann, O. and E. Vasserot. “The elliptic Hall algebra, Cherednik Hecke algebras and

Macdonald polynomials.” Compos. Math. 147, no. 1 (2011): 188–234.

[57] Sergeev, A. N. and A. P. Veselov. “Generalised discriminants, deformed Calogero–Moser–

Sutherland operators and super-Jack polynomials.” Adv. Math. 192, no. 2 (2005): 341–75.

[58] Stanley, R. P. “Some combinatorial properties of Jack symmetric functions.” Adv. Math. 77,

no. 1 (1989): 76–115.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
4
9
/6

5
5
3
9
8
7
 b

y
 R

u
tg

e
rs

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 1

0
 J

u
ly

 2
0
2
2


	Interpolation Polynomials, Bar Monomials, and Their Positivity
	1 Introduction
	2 Preliminaries
	3 Bar Monomials
	4 Bar Games
	5 Examples, Explicit Formulas, and Binomial Coefficients


