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We prove a conjecture of Knop-Sahi on the positivity of interpolation polynomials,
which is an inhomogeneous generalization of Macdonald's conjecture for Jack poly-
nomials. We also formulate and prove the nonsymmetric version of this conjecture,
and in fact, we deduce everything from an even stronger positivity result. This last
result concerns certain inhomogeneous analogues of ordinary monomials that we call
bar monomials. Their positivity involves in an essential way a new partial order on

compositions that we call the bar order, and a new operation that we call a glissade.

1 Introduction
1.1 Main results

The interpolation polynomials P{(x) are inhomogenous symmetric polynomials in
x = (x;,...,x,) that were introduced by Sahi [44] following earlier work with Kostant
[27, 28] and are characterized by simple vanishing conditions described in Section 2.1.
They are indexed by partitions A € N", have degree [A| = A; + --- + A,, and their

coefficients depend on n parameters p = (py,...,p,). Of particular interest is the one-
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2 Y. Naqvi et al.

parameter family p = r§,6 = (n — 1,...,0) studied by Knop and Sahi [25] and Okounkov
and Olshanski [38].
The P{B have a rich combinatorial structure that belies their simple definition.

As shown in [25], the top degree part of PK‘s is the Jack polynomial Pf\“) with parameter
a=1/r.

In his remarkable book, Macdonald [31, VI.10.26?] introduced a normalization
Jia) = ck(oc)Pia) and conjectured that its coefficients lie in N[w]. This was proved by
Knop and Sahi [26], who also gave a combinatorial formula for Ji“) in terms of certain
admissible tableaux.

In this paper, we extend the results of [26] to all of P{‘s. This involves the
normalized polynomial J?(x) = (—1)*¢, (@)P}®(—x), where « = 1/r as before, and its

symmetric monomial expansion
We prove the following result conjectured by Knop and Sahi [25, Conjecture 7].

Theorem A. The coefficient a, ,(«) is a polynomial in Nle].

The interpolation polynomials have nonsymmetric analogues Ej [24, 45, 46]
indexed by compositions n € N” and characterized by vanishing conditions described in
Section 2.2. For p = r§, the top degree part of E;‘S is the nonsymmetric Jack polynomial
E,(]“) of Heckman and Opdam [40]. After an explicit normalization, F,ga) = dn(a)E,(f‘) has
coefficients in Nl«]. This was also proved in [26] and we now extend this to E;‘S. More
precisely, we consider the normalized polynomial F}’ = (-1)"ld, (¢)E}’(—x) and its

(ordinary) monomial expansion
T8 _ ly1=Inl Y
F° = Eyot b,m,(oz)X .

Theorem B. The coefficient b, (@) is a polynomial in N[e].

The homogeneous F,ga) and the inhomogeneous F;‘S are both linear bases for
Flx,,...,x,] over the field F = Q(«) = Q(r). Thus, there is a unique F-linear “deho-

mogenization” operator E such that E(F,ga)) = F;B for all n € N, Its action on monomials
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has the form
= — %'
B = X"+ 20 1<y Cpy (DX

and we prove the following positivity result for Cpy (1), which implies Theorems A and B.
Theorem C. The coefficient Cpy (1) is a polynomial in N[r] of degree < |n| — |y|.

We write x = E(x") and refer to it as a bar monomial. The notation is motivated
by the fact that for n = 1, we get the rising factorial Xk =xx+1)---(x+k—1).

In view of Theorem C, it is natural to ask for a combinatorial formula for
bar monomials that is manifestly positive and integral. We provide such a formula,
which involves the following simple operation on the (English) Ferrers diagram of a
composition:

Delete the last box from the highest row k of maximal length m; then
move [>0 boxes from the end of row k to the end of another row, either

above and strictly left, or below and weakly left of their original
positions.

We call this a glissade, which in mountaineering means “descent via a controlled
slide”. We define the weight of a glissade applied to y to be r if [ > 0; otherwise, we
define it to be

X+ (m — 1)+r(n— 1 —ly(k,m)).
Here, ly (k, m) is the leg of the box (k, m) in y, which was defined in [26] as follows:
L (km):=#{i>k:m<y, <y} +#{i<k:m<y+1<y}.
If we start with some n and apply a sequence of || glissades, then we necessarily
arrive at 0. We call such a sequence G a bar game on 5, and we define its weight w(G)
to be the product of the weights of its glissades. We write G(n) for the set of all bar

games on 7, and we prove the following result that implies Theorem C, and hence also
Theorems A and B.

Theorem D. We have x” = > ¢, w(G).
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Fig. 1. All possible glissades on (1,2,4,1).
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Fig. 2. A bar game on (6,4,1,0,2,6).
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Fig. 3. All bar games on (1,2,4,1).

1.2 Examples

Before discussing the proof of Theorem D, we give three small examples to illustrate the
various concepts. More detailed examples can be found in Section 5.

Figure 1 shows all possible glissades on (1,2,4,1). The deleted box is indicated
with a x, and the arrows show the movement of other boxes. The resulting shapes are
(1,2,3,1), (2,2,2,1), (1,2,2,2), and (1,2,1,3). See also Figure 4 for all moves on (1,4,1,2) and
on (1,1,4,2).

Figure 2 shows a complete bar game on (6,4,1,0,2,6). For the sake of space, when
a box is deleted but no other boxes are moved, we put a x in that box and continue
working with the same diagram. Thus, the last diagram represents fourteen deletions.

This game has weight

P (X +344r) T (X247 x5+ 247 [, &+ 1) - [T x4
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Figure 3 shows all possible games on (1,2,4,1). There are five games in total, and
taking their weighted sum gives the bar monomial x1:241) The explicit formula is given

in Section 5.1.

1.3 Discussion of the proof

In Sections 2.1 and 2.2, we recall the precise definitions of symmetric and nonsymmetric
interpolation polynomials and their relationship with Jack polynomials. The symmetric
polynomials are more natural objects, but it is easier to work with the nonsymmetric
polynomials because they satisfy a recursion with respect to the graded affine Hecke
algebra of the symmetric group [24, 45, 46]. This recursion is discussed in Section 2.3;
it is an inhomogeneous extension of a homogenous recursion that plays a key role in
the proof of positivity for Jack polynomials [26]. However, the inhomogeneous recursion
does not preserve positivity. This is the main reason why Theorems A and B remained
conjectures for almost 25 years.

In Section 3.1, we introduce the dehomogenization operator and use this to
define the bar monomials in Section 3.2. In Section 3.3, we show how to deduce
Theorems A and B from the positivity of bar monomials, that is, from Theorem C. The
bar monomials satisfy a recursion described in Section 3.2; this is simpler than the
recursion of Section 2.3, but it, too, is not positive.

The essential new results of the paper are in Section 4. In Sections 4.1 and 4.2,
we define the notion of a glissade and establish its properties under the action of the
affine symmetric group. This is naturally related to a new partial order on compositions
that we call the bar order. In Section 4.3, we define notion of a bar game and show how
to deduce Theorem C from Theorem D. In Section 4.4, we prove Theorem D. The key here
is the transition formula for bar monomials in Theorem 4.4.6. This is proved using the
recursions for bar monomials from Section 3.2, and it implies Theorem D by a simple
iteration. Thus, Theorem D can be regarded as a positive combinatorial solution to a
nonpositive recursion.

We conclude the paper with some further examples illustrating Theorem D and
also explain how to use Theorem D to obtain combinatorial formulas for interpolation

polynomials.

1.4 Related results and open problems

Jack polynomials were introduced by Jack [23] as a one-parameter generalization of

Schur functions and of the zonal polynomials that play an important role in multivariate
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6 Y. Naqvi et al.

statistics [19, 33]. Along with Hall-Littlewood polynomials, they were one of the two
key sources of inspiration for Macdonald’s introduction of his two-parameter family
of symmetric functions [31]; see [29] for a historical background. These polynomials, in
turn, were the impetus behind Cherednik’s discovery of the double affine Hecke algebra
[9, 10, 32, 471.

Since their discovery, Jack polynomials and Macdonald polynomials have found
an incredible number of applications in many different areas of mathematics. It is
impossible to give anything approaching a complete accounting, but a partial list
includes probability and statistics [6, 7, 39, 42], harmonic analysis [3, 43], combinatorics
[12,13, 15, 16], representation theory [20, 21], algebraic geometry [17, 18, 34, 41, 56], and
knot theory [4, 11].

Symmetric Jack polynomials admit a formula in terms of semistandard tableaux
[31, 58], which generalizes the formula for Schur functions. However, this involves
weights that are rational functions in «; thus, it does not imply the integrality and
positivity, which was conjectured by Macdonald, and which is immediate from the
Knop-Sahi formula [25] in terms of admissible tableaux. The semistandard tableau
formula has been generalized by Okounkov [37, 38] to interpolation polynomials, but it
likewise does not imply Theorem A. Moreover, there does not seem to be a nonsymmetric
analog of Okounkov’s formula.

As explained in [44], interpolation polynomials arise naturally as solutions to
the Capelli eigenvalue problem for invariant differential operators on a symmetric cone.
The Capelli problem has analogues for other symmetric spaces studied in [50, 52, 54, 55]
and also for symmetric superspaces [2, 51, 53]. The solutions of these other problems
are related to interpolation polynomials defined by Okounkov, Ivanov, and Sergeev and
Veselov [22, 36, 57]. It would be interesting to see whether these classes of polynomials
also have combinatorial interpretations along the lines of the present paper.

Special values of interpolation polynomials appear as expansion coefficients at
x = 1 in the binomial formula for Jack polynomials [38, 46]. These too seem to have a
subtle positivity property, and it has been conjectured in [48] that (—r)*J7% (—p — r8)
belongs to N[e] for all partitions A and u. Although this conjecture does not follow from
the results of the present paper, the combinatorial ideas introduced do provide another
line of attack. This is discussed further in Section 5.3 below.

Interpolation analogues of symmetric and nonsymmetric Macdonald polynomi-
als have been defined in [24, 45, 46]; these depend on two parameters g and t. Thus,
one might ask for a two-parameter extension of the results of the present paper to the

Macdonald setting. Such an extension will not have the same positivity properties as
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Interpolation Polynomials and Bar Monomials 7

the Jack case presented here, but experiments suggest that an elegant combinatorial
formula (with signs) should still exist. Further ideas are required to fully generalize the
tools developed here, and therefore, we postpone this question to a subsequent paper.

There has been considerable interest in Macdonald polynomials and interpola-
tion polynomials in connection with integrable probability and solvable lattice models.
In particular, the papers [1, 8] describe formulas for Macdonald polynomials and related
polynomials in terms of 6-vertex models. It is an open problem whether these formulas
can be extended to the setting of interpolation polynomials. Relating the combinatorics
of bar monomials to lattice models might offer some clues in this direction.

For the special case g = t, the interpolation analogues of Macdonald polynomials
are Harish-Chandra images of Capelli elements in the center of Uq(gly). These central
elements play a key role in the recent work of Beliakova and Gorsky [4], which proves
that the so-called “universal link invariant” dominates the Witten—Reshetekhin—Turaev
invariants for U, (gly). This work also raises the interesting problem of categorifying
the two-parameter interpolation polynomials, with the expectation that this should
have some applications to the study of knot and link invariants; see [4, 14] and the
references therein. Perhaps the results of the present paper and its eventual extension

to Macdonald polynomials might shed some light on this important question.

2 Preliminaries
2.1 Symmetric polynomials

The interpolation polynomials Pf (x) are inhomogeneous symmetric polynomials that
were introduced by Sahi [44] following earlier work with Kostant on generalizations of

the Capelli identity [27, 28]. They are indexed by partitions

Po={reZ* | =--=x,>=0},

and their coefficients depend on n indeterminates p = (py, ..., py).

Theorem 2.1.1 ([44]). There is a unique symmetric polynomial P} (x) = P} (xy,...,X,) of
total degree [A| = A; + Ay + --- 4+ A, such that

1. Pf (w4 p) =0 forall u e P, with |u| < |A|, u # A and

2. the coefficient of the symmetric monomial m, in P} is 1.
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As explained in [44] the existence and uniqueness of these polynomials is

equivalent to the following interpolation result.

Theorem 2.1.2 ([44]). A symmetric polynomial of degree d is uniquely characterized by

its values on the set {u + o : |[u| < d}.

The case p =ré withd = (n—1,...,1,0) was studied in some detail by Knop and
Sahi [25] and is related to Jack polynomials Pﬁ"‘) with parameter « = 1/r [31, 58].

Theorem 2.1.3 ([25]). We have P[? = Pia)—i— terms of degree < |A|.

For a box s = (i,j) in the Ferrers diagram of A, its arm and leg are defined to be
a, G,H=r—Jj L G)=#{k>i:r>j}.

We set ¢, (@) = [[,e; (@@, (s) +1, (s) + 1) and we define the normalized Jack polynomial
to be

J* = ¢, (@) P

Theorem 2.1.4 ([26]). The coefficients of Ji“) with respect to the m , belong to Nla].

This was conjectured by Macdonald in his book [31, VI.10.267]. The paper [26]
also provides a combinatorial formula for Ji“) in terms of certain “admissible” tableaux.
In [25], Knop and Sahi introduced a normalized version of the interpolation
polynomial, which involves the same constant c, («) together with a sign twist. They
also made a conjecture concerning its expansion coefficients with respect to m,, which

generalizes Macdonald’'s conjecture (Theorem 2.1.4).

Definition 2.1.5. Let o = 1/r. The normalized symmetric interpolation polynomial is
JP = (=DM ¢, (@) PP (—x), (2.1.1)
and its expansion coefficients a; , (o) are defined by

J = ZM“W—W a, ,(ym,. (2.1.2)
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Interpolation Polynomials and Bar Monomials 9

Conjecture 2.1.6 ([25, Conjecture 7]). The coefficients a, ,(«) belong to Na].

We prove this conjecture in Theorem A below.

2.2 Nonsymmetric polynomials

Nonsymmetric interpolation polynomials are indexed by compositions n € N and their
coefficients depend on p = (pl,...,pn) as before. For y € N”, let w, be the shortest

permutation such that y* = W;l()/) is a partition, and define
V=v+w,(0)=w,(y" +p). (2.2.1)

We note that for a partition u we have u = u* and w, =1 and hence 1z = u + p.

Theorem 2.2.1 ([24, 45]). There is a unique polynomial E} (x) = E} (x,,...,x,) of total
degree |n| =n; +--- +n, such that

1. E;) (y) =0 forall y e N* such that |y| < ||,y #7

2. the coefficient of the monomial x” in E}) is 1.

As before, this is equivalent to the following interpolation result.

Theorem 2.2.2 ([24, 45]). A polynomial of degree d is uniquely characterized by its

values on the set {y : |y| < d}.

This is proved in [24, 45] for various special choices of p, but the argument
works in general. Indeed, the interpolation conditions mean that the coefficients of the
polynomial satisfy a (square) system of linear equations over the field Q (pl,...,pn).
What we need to show is that the determinant of the corresponding matrix is not
identically zero. Thus, the result for any special p actually implies the result for
generic p.

For the special choice p = r§ the interpolation polynomials are related to

nonsymmetric Jack polynomials [26, 40].

Theorem 2.2.3 ([24]). For p = rs, we have

E)’ =E + terms of degree < [n],
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where E,(,a) is the nonsymmetric Jack polynomial with parameter o« = 1/r.

This is proved in [24] for a slightly different polynomial, denoted E, in [24] and
G,, in [46], which is defined with respect to

o=0,—-r,...,—(n—=—1r)=r5 — (nr—n)l, (2.2.2)
where 1 = (1,...,1). It follows easily that
E) (x)=G,(x+(nr—nl. (2.2.3)

In particular, E;’S has the same top degree part as G,, namely E,(f‘).
In [26, Sec. 4], Knop and Sahi defined the normalized nonsymmetric Jack

polynomials
F\% =d, () E, (2.2.4)

where the normalizing factor d, («) is a product over boxes in the Ferrers diagram of 7,

that is, over pairs s = (i,j) such that j < ;. Explicitly, we have

dy@ =TT, («(a,®+1) +1,9+1),

where a, and [, are the arm and leg of s = (i,j) defined by
a,@p=n—J LGp=#fk>i:j<m<n}+#{k<i:j<m+1=<n}. (225

The main result of [26, Sec. 4] is as follows.

Theorem 2.2.4 ([26]). The coefficients of F,g") with respect to the monomials x” belong
to Nla].

Our Theorem B is a generalization of this result for interpolation polynomials.

In analogy with Definition 2.1.5, we make the following definition.
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Interpolation Polynomials and Bar Monomials 11

Definition 2.2.5. Let« = 1/r. The normalized nonsymmetric interpolation polynomial

is

FP(x) = (-1)"d, (@) E} (—x) (2.2.6)
and its expansion coefficients b,m,(oz) are defined by

FP =2 o""b, @)x". (2.2.7)

In Theorem B, we show that the b, , («) belong to Nl«].

)71)/
2.3 Intertwiners and recursion

Symmetric polynomials arise naturally as special functions in representation theory
and combinatorics. However, in the context of the present paper, nonsymmetric poly-
nomials are easier to work with because they satisfy useful recursions with respect to
the symmetric group. The simplest manifestation of this phenomenon involves ordinary

monomials, which can be generated from x° = 1 by the recursions
x5 =5, (x), x®" = & (x").

Here, s; is the elementary transposition that interchanges »; and n;,,, and which acts on

functions by interchanging x; and x;,,, while ® is the “affine intertwiner” that acts by
Dn=(ng,....npm +1), OF X =%, Xy, X1,....X,_1). (2.3.1)
Thus, @ is the translation n — (771 +1,n9,..., nn) followed by the n-cycle
w=S8;--S,_;=(1,2,...,n). (2.3.2)
The corresponding result for Jack polynomials involves the scalars

o (2.3.3)
L= (c)" ifmy = mip

r
cl=—— and d;’ =
N —Mix1

Theorem 2.3.1 ([25]). Nonsymmetric Jack polynomials satisfy the recursions

Eg) =0 (E®), (si+0))EC = dJEY). 2.3.4)
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The ®-relation is [25, Cor 4.2]. The s;-relation is proved for n; < »n;,; in [25,
Prop 4.3] and for n; = n;,; in [25, Lemma 2.4]. In the latter situation, we have c;’ =1
and d] = 0 so that the s;-relation reduces to siE,(f‘) = E,(,"‘) as in [25, Lemma 2.4]. The
remaining case n; > n;,; follows readily by applying s; to both sides of the relation for
the case n; < ;.
The analogous result for interpolation polynomials involves the operators
s;(H—f

9,(f)=———, 0. =5;,—19;, O fx=x,0(x,—1,%1,....%X,_1). (2.3.5)

i i 1
X —Xi41

Theorem 2.3.2 ([24]). Nonsymmetric interpolation polynomials satisfy the recursions
) — s - s s
Ey, = E, (o] +¢)E =d{Eg,.

This is proved in [24] for the variant G, corresponding to p as in (2.2.2), and by
(2.2.3), it implies the result for EJ’.

Remark 2.3.3. These recursions suffice to generate all E,r]‘sz suppose n # 0. Let i be the

largest index such that ; # 0. If i = n, then
S _ A rs
By = o (B,

where y = (n,, — 1,1;,19,...,1,_1). Otherwise,

1 .
rs __ — s; (1) ré
Ey = 25 (Gi +¢ )ESi(n)‘

1

Applying these identities repeatedly, we eventually reach the case ES‘3 = 1. We can

generate all E,(f‘) in a similar way.

3 Bar Monomials
3.1 The dehomogenization operator

The homogeneous polynomials F,(f‘) and the inhomogeneous Fg‘s are both linear bases
for the polynomial algebra F [x,, ..., x, | over the field F = Q (r) = Q (a). Thus, there is a

unique linear operator on F [Xl, ... ,Xn] that maps the 1st basis to the 2nd.
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Definition 3.1.1. The dehomogenization operator E is the unique F -linear operator

satisfying
EF™) =F]. (3.1.1)

We now prove some basic properties of E. It is simpler to first consider the

modification ¥ = ST1ES = SES where S = S~! is the sign change operator

Sf(x) =f (%)

Proposition 3.1.2. The operator ¥ maps E,(f‘) to E;‘S and satisfies the intertwining

properties
OV =Vd, o V=WUs. (3.1.2)

Proof. Since E,(f’) is homogeneous of degree |n| and E is linear, we get

= (sey) =2 (0" E) = (dnl()olz)lﬁ( = (dl() )|F'7S s (7).

whence ¥ = S™1ES maps E,(f‘) to E;a. Next, by Theorems 2.3.1 and 2.3.2, we have

~y (E@ _ (@)
oW (E,, ) Egqy = ¥ (E,7 )

(o7 +e)w (E®) = dIED, = (si+]) (E).
This shows that identities in (3.1.2) hold on the basis E,(fl) and therefore hold in

general. |

Proposition 3.1.3. If f is homogenous, then g = W (f) is characterized by the
properties

1. g(x) =f(x)+ terms of degree < deg (f)

2. g () = 0 for all compositions n with |n| < deg (f).

Proof. For f of a fixed homogeneity degree the two properties are linear in f.
Therefore, it is sufficient to verify them for f = E,(,a). By Proposition 3.1.2, we have

g= E;‘S, and by Theorem 2.2.3, E,r"s satisfies the two properties.
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14 Y. Naqvi et al.

Now, suppose g; and g, both satisfy the two properties. Then the difference
g, — g, has degree < deg (f) and vanishes at all 7 with |y| < deg (f). Thus, by Theorem

2.2.2, we have g; — g, = 0. This proves the uniqueness of g. |
Proposition 3.1.4. The operator ¥ preserves the space of symmetric polynomials.

Proof. A function f is symmetric iff s; (f) = f for all i. By the definition of o;", we have

o -f=(1- 15—

|~ Xi1

)(Si(f)—f)-

Thus, s; (f) = f if and only if 0;” (f) = f. Now, the relation o, ¥ = Ws; (3.1.2) shows that
if f is symmetric then so is ¥ (f). |

Proposition 3.1.5. If f is homogeneous symmetric, then g = ¥ (f) is characterized by
the properties

1. gis symmetric,
2. g(x) =f(x)+ terms of degree < deg (f),
3. g(u+rd) =0 for all partitions u with |u| < deg (f).

Proof. By Propositions 3.1.4 and 3.1.3, g = ¥ (f) satisfies the three properties, and

the uniqueness follows from Theorem 2.1.2. |
Proposition 3.1.6. The operator ¥ maps Pi“) to PJ2.
Proof. This is immediate from Proposition 3.1.5 and Theorems 2.1.1 and 2.1.2. ]

Proposition 3.1.6 shows that the restriction of ¥ to symmetric polynomials is
the operator studied in [25, Sec. 6] in connection with the Pieri formula for interpolation
polynomials.

We now set o;" = S7'0;S and ®+ = S~!®~S so that we have
o =s;4+710;, PN =x,x,+1,%x,...,X,_)). (3.1.3)
Theorem 3.1.7. The operator E satisfies the intertwining properties

ot &, o

[l
Il
[1]

(3.1.4)

[
Il
[x]
7}
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Interpolation Polynomials and Bar Monomials 15

Proof. This is immediate from Proposition 3.1.2. |

Theorem 3.1.8. If f is homogeneous, then g = E (f) is characterized by the properties

1. g(x) =f(x)+ terms of degree < deg (f),
2. g(—mn) = 0 for all compositions n with || < deg (f) .

Proof. This is immediate from Proposition 3.1.3. |

—

Theorem 3.1.9. The operator E preserves the space of symmetric polynomials and
maps Ji“) to J{‘S. If f is homogeneous symmetric, then g = E (f) is characterized by the
properties

1. gis symmetric,

2. g(x) =f(x)+ terms of degree < deg (f),

3. g(—u —rd) =0 for all partitions u with |u| < deg (f).

Proof. This is immediate from Propositions 3.1.4— 3.1.6. |

3.2 The bar monomials

We now consider the action of the dehomogenization operator on the monomial

n

x"=x]'x)*

1 Nn
X5 .

.. Xn
Definition 3.2.1. The bar monomial corresponding to a composition 7 is
x1 =8 (x").

We note that the bar monomial is not a monomial; however, by Theorem 3.1.8, it

is a monomial up to lower degree terms.

Theorem 3.2.2. The bar monomial x? is the unique polynomial g (x) satisfying

1. g(x) = x"+ terms of degree < |n|

2. g(=y)=0if |y < nl

Proof. This immediate from Theorem 3.1.8. [ |
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16 Y. Naqvi et al.

Example 3.2.3. The three bar monomials for n = 2 and |»| = 2 are as follows:

x20 — (x; + 14 7)(x; +7) +7(xy)
XM = (Xl)(Xz)

x(02) — (X, +14+1)(x5)

They satisfy the properties of Theorem 3.2.2. They have the appropriate top degree term,

and each vanishes at —y with |y| < 2, that is, at the points
—(0,0) = (-1,0, —(1,0)=(-1-7,0), —(0,1)=(0,~1-7).
We now establish the basic recursive properties of the bar monomials.
Theorem 3.2.4. The bar monomials satisfy the recursions
il = o (x1), x21 = (x1).
Proof. By Theorem 3.1.7, we have
XM = B (x%") = E (s;x") = o B (x") = O’l-+ (x1).

The argument for x®” is entirely analogous. |

Remark 3.2.5. Just as in Remark 2.3.3, it is easy to see that these recursions generate
all bar monomials. We make this explicit in the proof of Theorem 4.4.6, where it plays a

central role.
We now formulate the symmetric analogues of the above ideas.
Definition 3.2.6. The symmetric bar monomial corresponding to a partition A is
m; =E(m,).

Theorem 3.2.7. m, is the unique polynomial g (x) satisfying
1. g(x)is symmetric
2. g(x) = m,+ terms of degree < [A|
3. g(—=m) =0if [u| < 2]
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Interpolation Polynomials and Bar Monomials 17

Proof. This immediate from Theorem 3.1.9. [ |

For any two compositions 5, y, we write n ~ y if one is a rearrangement of the

other.
Proposition 3.2.8. We have m; = an xI.
Proof. This follows from the homogeneous version m, = an x" by applying E. |

Example 3.2.9. The two symmetric bar monomials for n = 2 and |A| = 2 are as follows:

— x1D _
m<l’1) =X —Xle

Mg = x4 xO0D = (¢ + 14 1)(x; +7) +7(xp) + (x5 + 1 +1)(x5)

=x7+ x5+ (1427 (X, + %) +r(L+7)

They satisfy the properties of Theorem 3.2.7. That is, each is a symmetric polynomial
with the appropriate top degree terms, and vanishes at —u with || < 2, that is, at the

points

-(0,0) =(-r,0, -(1,0)=(=1-r,0).

3.3 Proofs of Theorems A and B

The bar monomials in the examples above are polynomials in x;, x, and r with positive

integral coefficients. We will show that this true in general.

Definition 3.3.1. The expansion coefficients of the bar monomials are defined by

x! = Zy Coy (rx”, m, = ZM dk,u(r) my.
Theorem C.  The coefficient ¢, , (r) is a polynomial in N[r] of degree < || — |y|.

We prove this in Subsection 4.3 below, but we first deduce some important

consequences. In view of Proposition 3.2.8, we have an analogous result for d, , (r).

Corollary 3.3.2. The coefficient d)w(r) is a polynomial in N[r] of degree < |A| — |u/.
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18 Y. Naqvi et al.

Proof. By Proposition 3.2.8, we have

= Z’?NA Xt = zrwk Zy Sy (T) X' = Zy [Z,M Cny (r)] x7.

Comparing the coefficients of x* on both sides, we get
dy, (1) = ZHNA Cp,pu (1)
Now, the result follows from Theorem C.

We can also prove Theorems A and B.

Proof of Theorem B. The nonsymmetric interpolation polynomials and Jack polyno-

mials have expansions
FP =2y X7 EO =2 by @)X
and by Theorem 2.2.4, we have
b, . («) € Nla] for [¢] = [n].
Since F;‘s =E (F,ga)), we get

ré __ L _ y
i _le|=\m by (@) X Z;l:wbm(wa Crpy (M) X7,

which implies that
byyl) =2 by @&, @,
where
E;,y(a) = gln=rl Cry (r) = al¢1=lvl C;,y(r)'
Rewriting Theorem C in terms of « = 1/r we have
[Z1=Ivl
altml ¢, (1) € Nla].

Together with (3.3.2) this implies that bn,y (a) € N[e], proving Theorem B.

(3.3.1)

(3.3.2)

(3.3.3)
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Interpolation Polynomials and Bar Monomials 19

Proof of Theorem A. In the symmetric case, we get the formula

a,,@ = Z|u|:m“%”(°‘) d, ()
d,,(@ = an Gy (@)
Arguing as above we get a, , (o) € Na], proving Theorem A. |

4 Bar Games

In this section, we introduce some new combinatorial objects related to compositions.
These objects will be the summation indices in Theorem D, the combinatorial expression
for the bar monomials. We will prove this using Theorem 3.2.4. As such, it will be
important to understand how the weights of our objects behave under the operators

ai+ and ®*, and how compositions behave under s; and ®.

4.1 The critical box

Our main combinatorial object will be called a bar game. A game will consist of moves.
Each move will begin by deleting a prescribed box from a composition, which we will

call the critical box.

Definition 4.1.1. We define the critical box of a composition n to be s[y] = (k, m) where
m=m[n):=max{n;}, k=k[n:=min{i:n =m}.

We will call k = k[n] the critical row and [[n] := l,7 (k, m) the critical leg.

Alternatively, k = k [] is characterized by
M > N10-- oMy @0d 0 = Mgy, - 1y (4.1.1)
Then we have m = m [] = n, and the formula (2.2.5) for ln (k, m) becomes

Im=#{i>k:ny=m}+#{i<k:n=m—1} (4.1.2)
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20 Y. Nagqvi et al.

We now discuss the behavior of these quantities under the maps s;, ®, and w

where

Q(ﬂ)z(ﬂzllﬂnr’h‘l'l) and w(n)z(nzlu-,’?nﬂh)-

Proposition 4.1.2. Suppose the critical box of n is 5[] = (k, m).

1. If k> 1,thens[®n] = (k—1,m); if k=1 then s[®n] = (n,m + 1).
2. If s;n # n, then s[s;n] = (s; (k) , m).

Proof. Since m[n] is the length of the critical row k [], it suffices to prove that critical
rows of ®n and s;n are w (k) and s; (k), respectively. In the case of ®7 this comes down to

the following inequalities that are immediate from (4.1.1)

m+1l>mny....n,ifk=1,

M > Ngr-- Mgy @nd N > Mgyq, ..My +1if k> 1,

For the case of s;n since (s;n) n; it suffices to show

si() —
s; () < s;(k) = nj <.

Except if k = i,j = i + 1 the condition s; (j) < s; (k) implies j < k and hence 7; < n.

Fork =1,j =i+ 1, we need to show 5., < ;. Now, by definition of k = k[5], we have

Nky1 < Mk and since k = i, the assumption s;n # n implies 1y | # ny. |

The critical leg L[] behaves as follows.

Lemma 4.1.3. We have [[®7] = [[n]; moreover, l[sin] = I[n] except in the following two

cases:
1. Uspn]=1m+1 ifkpl=iand n,, =n— 1,
2. lsp] =1l -1 ifkn=i+1andn =n;, — L

Proof. This is immediate from (4.1.2) and Proposition 4.1.2. |

Definition 4.1.4. We write n* for the composition obtained from n by deleting the

critical box.
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Then Proposition 4.1.2 immediately implies the following result.
Corollary 4.1.5.  We have [ (7)]* = ® (¥), and if 5; () # 1, then (s;n)" = s; ().

4.2 Glissades and the bar order

We consider the following operation on compositions that we call a glissade. (These will
be the moves of our games, which are introduced in the next subsection.)

Delete the critical box to get n*, and then move [>0 boxes from the

end of the critical row k to the end of some other row j, with the proviso

that the new positions of the boxes are either above and strictly left,
or below and weakly left of their original positions.

Example 4.2.1. Some examples of glissades can be found in Figures 2, 4, and 5. For
each glissade, we have placed a x in the critical box and indicated movement of other

boxes with arrows.

We write n > y if y is obtained from 5 by a glissade. We now discuss how
glissades behave under the action of the operators s; and &. In view of Corollary 4.1.5,

we focus on the case of glissades y # n*, and thus we define

P ={y:n>y}\{n"}. (4.2.1)

Proposition 4.2.2. We have P[®n] = ® (P[n]), and if s;n # n, then P[s;n] = s; P[]

except as in the following table:

Lo ngp— P[s;n]
k—1 >1 s; (P D) U {n*} (4.2.2)
k <=1 |s;PMnD\{n*}

Proof. We denote by M = (y,n,j, k,1I) the statement that “k = k[n] and y is obtained
from »n* by moving I > 0 boxes from row k to row j “. By Proposition 4.1.2, the statement

M is equivalent to

D (M) = <<DV/ q)n:w (j) , (k) Il) and Si (M) = (si)/l Sifl, Si (i) rsi (k) Il) .
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Moreover, M = (y,n,]j, k,l) represents a glissade if and only if

e>0 ifj<k

e=eM):=mn,—1 —Vj=77k—'7j—l— 1 satisfies I (4.2.3)

e>0 ifj>k

The M-inequality (4.2.3) is identical to that for ® (M) and s; (M) with the
following exceptions where there is a change in the relative order of (j, k) and/or a

change in ¢:

g,k M D (M) g,k M | s (M)
(1,k) |e>0|e—-1>0 i,i+1)|e>0|¢e>0 |
G, 1) |[e>0]e+1>0 +1,0))|e>0|e>0

In each row of the 1st table the two inequalities are still equivalent; thus, M is a glissade
iff ® (M) is a glissade. The same is true in the 2nd table except if ¢ = 0, which implies

that y = s;n* and s;y = * and leads to the following two situations:

Gk | ni—m | sin* € Plnl | n* € P[s;n]
(i,1+1) l+1 False True
i+1,0)| —A+1 True False

Since we have I > 0 we get [ + 1 > 1 and the above table corresponds precisely to the

exceptions in (4.2.2). This completes the proof of the proposition. |

Example 4.2.3. Figure 4 shows P[1,4,1,2] and P[1, 1,4, 2]. Notice that there is a glissade
on (1,4,1,2) that moves two boxes out of the critical row, but not on (1, 1,4, 2). This
illustrates the special cases in the last table of the Proof of Proposition 4.2.2 when
n=(1,4,1,2)orn=(1,1,4,2) and i = 2.

Definition 4.2.4. The bar order on compositions is the transitive closure of >.

The bar order equips (N)" with the structure of a ranked poset for which > is the
covering relation. The rank function is |n| and the composition 0 is the unique minimal

element.
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X [TPX [[TX X

| | | 1 |

X X 1 X

Fig. 4. All nontrivial glissades on (1,4,1,2) and (1,1,4,2).

HN [TIX A
NN 1 . /

[ 1] [ 1] [ 1] X l

Fig. 5. A sequence of glissades in a game on (1,8,3,0,2,5).

4.3 Bar games and the proof of Theorem C

Definition 4.3.1. A bar game on 7 is a maximal >-chain with greatest element n. We

write G (n) for the set of bar games on 7.

Each bar game G in G () is a chain of length d = || of the form

G: n=n9sy0Os. .. 5y@d_0 (4.3.1)

We can visualize G () as the set of all possible “solitaire” games that start with the
Ferrers diagram of  and reach 0 along a sequence of glissades. There are finitely many

games in G (1) , each of which ends after exactly || moves.

Example 4.3.2. Figure 5 shows a bar game on n = (1,8,3,0,2,5). Once we reach the
rightmost shape, (2,2,3,2,2,3), there is only one possible choice of all future glissades:
delete the critical box and do nothing else. The next few shapes will be (2,2,2,2,2,3),
2,2,2,2,2,2),(1,2,2,2,2,2),(1,1,2,2,2,2), and so on.

We now introduce the crucial notion of the weight of a bar game.
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Definition 4.3.3. We define the weight of a composition 5 with critical box (k, m) to
be

w, =x,+m-D+rn—-1-1[x),
where l[n] = [, (k, m) is the critical leg. We define the weight of a pair 5 > y to be

w, ify=n*
wn>y)= "
roify #n*

We define the weightof a game G as in (4.3.1) to be w (G) = [[&, w (n@1 » n®).

Example 4.3.4. The game in Example 4.3.2 has weight
7o, +5r+5) 1 (X3 +2r +2) - (x5 +2) - [[oo X + 1) - [To %k

The connection between bar games and bar monomials is given by Theorem D of

the introduction, which we now recall in a precise form.
Theorem D. We have x”’ = ZGeg(n) w(G).

We will prove Theorem D in a moment, but we first note that it immediately

implies Theorem C.

Proof of Theorem C. From Definition 4.3.3 each w(G) is a polynomial of total degree
<Inlinx,,...,x,,r, with nonnegative integral coefficients; thus, the same is true of x.

For the distinguished game G* with n@D = (y®)” for all i, the monomial x"
occurs once in the expansion of w (G*). All other monomials in any w (G) have degree

< |nlin x,,...,x,. This implies Theorem C. |

4.4 The transition formula and the proof of Theorem D

Bar monomials satisfy the recursions of Theorem 3.2.4 that involve the operators

- s;(H—f -
N X =Ff(x,+1,x,....%,_1), Bif:X’—X, ot =x,0, 0i+:Si+r8i'
i i+l
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For the proof of Theorem D, we study their action on the polynomials
— 4 — n* —
A, = Zyepm x’, B, =w,x", C, = (B, +TA,).

Lemma 4.4.1. We have ®"(4,) = Ay, and if 5; > n;;, then Gi+(An) = A,,, except

ifi=kandn —1>n;,,, theno/ (4,) = A, —rx’.

Proof. This is immediate from Theorem 3.2.4 and Proposition 4.2.2.

For the action on B, , we first note the following general result.

Lemma 4.4.2. For any two functions f, g, we have
®(fg)=a ()T (@), of (fo)=s;(No;" (@ +71d; (g
Proof. The operators @ and s; are multiplicative
ofgp=o)o@, s;(fg=ss; @,

while 9; is a “twisted” derivation in the following sense:

s;(s; @ —s;(Hg LS Hg—rfag

X; — Xit1 X; — Xi41

0; (fg) = =50 @ +0(Ng.

This gives

ot (fg) =x,0 (N (9 =o ) dT (9

o fo)=s;Ns; (@ +r[s;(N @+, gl=s;Ho (@+r0(Ng
as desired.

We now prove the analog of Lemma 4.4.1 for B, .

Lemma 4.4.3. We have ®*(B,) = By, and if n; > n;, then 0i+(Bn) = By, except
ifi=kandn —1>n;,,, theno; (B,) =B, +rx’.
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Proof. By Theorem 3.2.4, Corollary 4.1.5, and the previous lemma, we have
O*(B,) = d(w,)d" (x) = &(w,)x2) = G(w,)x @0 (4.4.1)
;" (B,) = s;(w,)o;" (xL) + rd(w, )X = s;(w,) xS 4 79 (w, ) x (4.4.2)

Now, suppose the critical box of 7 is s[n] = (k, m) and the critical leg is I[n] = [
so that

anxk—i—(m—l)—i—r(n—l—l).
By Proposition 4.1.2, if k > 1, then s[®7n] = (k — 1, m) and [[®n] = [ and we get
wq,n:XkA~|—(m—1)~|—r(n—1—l)=c7)(w,]),
while if k = 1, then s[®5] = (n,m + 1) and [[®n] = [ and we get

We, = X, +m+rn—-1-10

= (Xn+1)+(m—1)+r(n—1—l):c7)(wn),

Thus, @ (W,]) = wy, always, and by (4.4.1), we deduce ot (Bn) = Bg,)-
By Proposition 4.1.2, if i # k,k + 1, then s[s;n] = (k,m) and [[s;n] =l and we get

WSm:Xk+(m—1)+r(n—1—l)=wn=gi(wn)

ai(wn)=m=0

X —Xi4

and by (4.4.2), we deduce oi+ (Bn) = Bsm in this case.
For i = k we have s[s;n] = (k+1,m). If n;,; # n; — 1, then we have I[s;n] = [,

hence, we get
Wy =X t(m—D+rn—1-0=s; (W,]),
if n; .1 # n; — 1, then we have I [s;n] =+ 1 and so we get

sin = S; (Wn) —T.

w
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In both cases, 9, (Wn) =9, (Xi) =1, and so by (4.4.2), we get

By, otherwise
i

U+(Bn):[ By, +r ifi=kandn; —1> 1y,

Finally, we consider the case of C, =B, +14A,.

Lemma 4.4.4. We have & (Cn) = Cy, and if n; # n;,, then o;" (Cn)

+

Proof. Since (o;

=C

Sin®

)2 = 1 it suffices to prove the o, -recursion for n; > n;,,. This follows

from Lemmas 4.4.1 and 4.4.3 since the two exceptions cancel out for the combination

Bn + rAn. The 1 -recursion is immediate from Lemmas 4.4.1 and 4.4.3. | |

Example 4.4.5. Consider the case n = (1,4,1,2) and i = 2. Lemma 4.4.1 gives

+ _ 1,3,1,2
0y (A1a12) =A11,40 — X5

See Example 4.2.3. On the other hand, Lemma 4.4.3 gives
1,3,1,2

+
0y (Bya1,2) =By ,1,40 T 1x25

Adding these gives 0, (Cy 4, 5) = Cy 1 4, as desired.

We can now prove the following one-step transition formula for bar monomials.

Theorem 4.4.6. For n # 0, we have
n U v
X w, X ~|—rzyepmx .
Proof. The right side is, of course, the polynomial Cn,' we set
_
Z,] = Xx1 Cn‘

By Theorem 3.2.4 and Lemma 4.4.4, we get

ot (Zn) = Zg,, and if 5; # n;,, then o/ (Zn) =Z

Sin®

(4.4.3)
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Fig. 6. The set G(1,0,4) of all games on (1,0,4).

We will prove zZ, =0 by induction on the size || and, for a given |5|, by downward
induction on the largest index i = i (») for which n; # 0. The base case (0,...,0,1) is a
straightforward check. Now, suppose we are given y # (0,...0,1). If i (y) = n, then we

can write
J/=(D’7/ 775=(Vn—1/)/1:--~,]/n_1),

and thus zZ, = ot (Zn) = 0 by induction, since || < |y|. If i(y) = i < n, then we can

write

y=s;(m, n:= (yl,...,yi_l,O,yi,O,...,0) ,
and thus, Z, = oi+ (Zn) = 0 by induction, since |5| = |y|andi(n) =i+ 1> i(y). [ ]
Proof of Theorem D. Theorem D follows by iterating Theorem 4.4.6. |

5 Examples, Explicit Formulas, and Binomial Coefficients

We now give several detailed examples of Theorem D, leading to explicit formulas
for bar monomials and interpolation polynomials. We also discuss special values of
interpolation polynomials, known as binomial coefficients. These too are conjecturally

positive, although this does not follow from our formulas.

5.1 Examples of Theorem D

Now, we give three examples of the full computation of x¥. For brevity, when we delete
the critical box without moving anything else, we record this with a x and continue
working with the same diagram. For instance, the top middle part of Figure 6 represents
the game (1,0,4) - (1,0,3) - (1,1,1) - (0,1,1) — (0,0,1) — (0,0, 0).
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KKK [[X] [IX
oo

N
[ 1] [ 1] [ 1]
Fig. 7. The set G(3,0, 3) of all games on (3,0,3).
Example 5.1.1. From Figure 6, we obtain
xAO04 — (x4 3427 (X3 +242r) - (X3 +1+7)- (X, +7)-X3

Example 5.1.2.

X3,0,3

+ X3 +3+2r) 71X - Xy - Xq

+r- X +1+nr-X3+1+71r)-(x;+7) X3
+r-(xX3+1) X -X,- X,

+r- Xy +14+71) X Xy X3

+72 (g +1471) X, x5

From Figure 7, we obtain

=X +24+71) - X3+24+1) - X +1+1) - X3 +1+7) (X, +7) X3
+ & +24+1)- X3 +24+1) T (X3+1+71)-Xy - X5
+ & +2+1)-r-(X; +14+2r)-X; - Xy - X3
+r (X3 +2+2r)- X3+ 1) -x; X, - Xq
+7r X3 +2471) - &X+14+1)  X3+1+7) Xy Xq

+r Xy +1+7) X)Xy X5
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Example 5.1.3. Continuing our example from Subsection 1.2, Figure 3 gives

x12AL — (x4 343r) - (xg+24+2r) - (Xg+ 1471 - (g +1+7) X)Xy - X3-X,4

+ X3 +3+3r) - r- Xy +1+71)-(x4+1) %)Xy -X3-X4
+r X1+ - X+ 1+ (X3 +1+7) X)Xy X3 X,
+r-X+1+r - X3+1+1)- (X +1+71) X Xy X3-X,

+r X +2+2r) (X +1+1r) (X4 + 1) X% - X5 - X3 Xy4.

5.2 A combinatorial expansion for Jack interpolation polynomials

A fundamental result of [26] is that F}(,“) can be written as a positive, weighted sum of
certain “admissible” tableaux. Combining this result with Theorem D gives a positive,
combinatorial expansion for the Jack interpolation polynomials. We state this result
below. For the necessary combinatorial notions, we follow the definitions and notation
of [26, sections 4-5].

Theorem 5.2.1. Let y € N, Then,

FPo= > di@ > w.

T o0-admissible GEg(CO(T))

Let ¥ T be the unique partition conjugate to y. Then,

= D, de@ > w(G.

T admissible Geg(w(T))

Example 5.2.2. There are four tableaux of shape (0,2) (shown below), but only the

latter two are 0-admissible.

Hence,

Fog=CG+2x2 + (2 +2)(3 +1)x%2

=C+2)x%,+ Z+2)E +D(x, +1+1)x,.
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1] [z [E 2 212 [213]
3] 3] 3] 3] 3] 3]

Fig. 8. All 0-admissible tableau of shape (2,0, 1).

On the other hand, all four tableaux of shape (2,0) are 0-admissible. We get

Fiooy=C+DE+Dx20 4+ (2 + 1)+ 1) x2 + (L +1)x02
=E+DE+ 1)((x1 + 14+ +1r+ T'(Xz))

+(E+D+1)x %+ L+ Dx, +1+1)x,.
and

J(rés,O) = (% +1)x20 y 2xL 4 (% +1)x%2

=+ 1)((;;1 F14r0 1)+ r(Xz)) F2x%+ (E + D)+ 1+7)x,.

Example 5.2.3. There are six 0-admissible tableaux of shape (2,0, 1). They are given in
Figure 8. The weights w of these tableaux are (2,0,1), (1,1,1), (1,0,2), (1,1,1), (0,2,1),
and (0, 1, 2), respectively. Hence,

Firo1 = G +2)(F + D} +2) x20D
+(EZ+2)E +2)x0LD
+(E+2)(% +2)x102
+ (L +2)xLLD
+ A+ DA 4+2)x02D

+ (L +2)x@L2,

To further expand, we need to look at games. Notice that among all the games of shapes
(2,0,1), (1,1,1), (1,0,2), (0,2,1), and (0,1, 2), there is only one game with a nontrivial
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move: (2,0,1) - (0,1,1) — (0,0,1) — (0,0,0). Hence, we get the following expansion:

FRon=CG+2E+D(E+2) ((x1 +142rx; +nx3 + erXs)
+ G +2)(F +2) X, %%
+E+2)E +2)(x3+ 141 (x; + x5
+ (1 +2)x,x,%,
+ G+ DG+ 20+ 1+ 20x,%,

+ (L +2)(x5 + 1 +1)x,px5.

5.3 Vanishing properties

By definition, the bar monomials have lower vanishing properties. For instance, x3°

vanishes at (1,1) = (—1 — r,—1). However, this does not happen game by game.
Combinatorially, it is not clear why it happens at all.

Furthermore, when the interpolation Jack polynomials are evaluated at shapes
that are larger in the containment order, it seems that we get positive Laurent polynomi-
als in r (up to an overall sign). These polynomials are called binomial coefficients [5, 30,
38]. But this is not true at the level of bar monomials (much less at the level of games),
and again the combinatorics is obscure.

We give examples to illustrate the two phenomena.

Example 5.3.1. Vanishing of x> at (1,1) = (-1 —r,—1)
X320 = (X 4241 141 +7) + (X + 2+ 11%, +1(Xy + 1 +1)X, + 71X, X,
and at (1,1) = (-1 —r,—1) we get

X, +2+nNx;+14+nx;+r — 0
x+24+nrx, — -1
rxo +1+nrx, — -—r

XX, — Tr°4r
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Example 5.3.2. Positivity of F(rés,n at (3,4) = (—=3,—4—71)

Fy=C+2E¢+1n¢ + 122+ E+2¢ + D x22
+C+2¢+ DG +Dx22 4+ +2)(F + 12 xE
=C+2E¢+DG + 1)2((x1 F 247X + 1+ 10X X, + (X + 1)X1X2)
+C+2)E + 1) x + x4+ Dx;x,
+C+2C+ DA+ 1D (& + Dix, + Dx;x,

+E+2G + D% x4+ 2+ 1y + Dxyx,

Evaluating this at (3,4) = (—3,—4 —r) gives

144 60 834 1530

2
7+r_3_r_2 - — 1074 — 330r — 36r

432 1188 1230
— +— 600 + 138r + 1212

r3 r2
216 486 2
+ oo+ + 372 4 114r 4 127

r

216 702 858

S+ 5+ — +486 +126r+12r°
r T r

144 708 1272 1044
= 4 — + "4+ ——— + 384 +48r
rt rd r2 r
Currently, there is no manifestly positive combinatorial formula for the binomial
coefficients, except in some small cases [25, 35, 49]. Understanding the lower vanishing
properties of the bar monomials from a combinatorial perspective may shed more light

on the binomial coefficient problem.
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