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We provide elementary identities relating the three known types of non-symmetric inter-

polation Macdonald polynomials. In addition we derive a duality for non-symmetric

interpolation Macdonald polynomials. We consider some applications of these results,

in particular to binomial formulas involving non-symmetric interpolation Macdonald

polynomials.

1 Introduction

The symmetric interpolation Macdonald polynomials Rλ(x; q, t) = Rλ(x1, . . . , xn; q, t)

form a distinguished inhomogeneous basis for the algebra of symmetric polynomials

in n variables over the field F := Q(q, t). They were first introduced in [4, 13], building

on joint work by one of the authors with Knop [5] and earlier work with Kostant [6, 7,

12]. These polynomials are indexed by the set of partitions with at most n parts

Pn :=
{
λ ∈ Zn | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

}
.

For a partition μ ∈ Pn we define |μ| = μ1 + · · · + μn and write

μ =
(
qμ1τ1, . . . , qμnτn

)
where τ := (τ1, . . . , τn) with τi := t1−i.
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Remarks on Interpolation Macdonald Polynomials 14815

Then Rλ(x) = Rλ(x; q, t) is, up to normalization, characterized as the unique nonzero

symmetric polynomial of degree at most |λ| satisfying the vanishing conditions

Rλ(μ) = 0 for μ ∈ Pn such that |μ| ≤ |λ| , μ �= λ.

The normalization is fixed by requiring that the coefficient of xλ := x
λ1
1 · · · x

λn
n in the

monomial expansion of Rλ(x) is 1. In spite of their deceptively simple definition, these

polynomials possess some truly remarkable properties. For instance, as shown in [4,

13], the top homogeneous part of Rλ(x) is the Macdonald polynomial Pλ(x) [9] and Rλ(x)

satisfies the extra vanishing property Rλ(μ) = 0 unless λ ⊆ μ as Ferrer diagrams. Other

key properties of Rλ(x), which were proven by Okounkov [10], include the binomial

theorem, which gives an explicit expansion of Rλ(ax) = Rλ(ax1, . . . , axn; q, t) in terms

of the Rμ(x; q−1, t−1)’s over the field K := Q(q, t, a), and the duality or evaluation

symmetry, which involves the evaluation points

μ̃ =
(
q−μnτ1, . . . , q−μ1τn

)
, μ ∈ Pn

and takes the form

Rλ(aμ̃)

Rλ(aτ)
=

Rμ(ãλ)

Rμ(aτ)
.

The interpolation polynomials have natural non-symmetric analogs Gα(x) =

Gα(x; q, t), which were also defined in [4, 13]. These are indexed by the set of compo-

sitions with at most n parts, Cn :=
(
Z≥0

)n
. For a composition β ∈ Cn we define

β := wβ(β+),

where wβ is the shortest permutation such that β+ = w−1
β (β) is a partition. Then

Gα(x) is, up to normalization, characterized as the unique polynomial of degree at most

|α| := α1 + · · · + αn satisfying the vanishing conditions

Gα(β) = 0 for β ∈ Cn such that |β| ≤ |α| , β �= α.

The normalization is fixed by requiring that the coefficient of xα := x
α1
1 · · · x

αn
n in the

monomial expansion of Gα(x) is 1.

Many properties of the symmetric interpolation polynomials Rλ(x) admit non-

symmetric counterparts for the Gα(x). For instance, the top homogeneous part of Gα(x)
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14816 S. Sahi and J. Stokman

is the non-symmetric Macdonald polynomial Eα(x) and Gα(x) satisfies an extra vanish-

ing property [4]. An analog of the binomial theorem, proved by one of us in [14, Thm.

1.1], gives an explicit expansion of Gα(ax; q, t) in terms of a 2nd family of interpolation

polynomials G′
α(x) = G′

α(x; q, t). These latter polynomials are characterized by having

the same top homogeneous part as Gα(x), namely the non-symmetric polynomial Eα(x),

and the following vanishing conditions at the evaluation points β̃ := (−w0β), with w0

the longest element of the symmetric group Sn:

G′
α(β̃) = 0 for |β| < |α| .

The 1st result of the present paper is a Demazure-type formula for the primed

interpolation polynomials G′
α(x) in terms of Gα(x), which involves the symmetric group

action on the algebra of polynomials in n variables over F by permuting the variables,

as well as the associated Hecke algebra action in terms of Demazure-Lusztig operators

Hw (w ∈ Sn) as described in the next section.

Theorem A. Write I(α) := #{i < j | αi ≥ αj}. Then we have

G′
α(tn−1x; q−1, t−1) = t(n−1)|α|−I(α)w0Hw0

Gα(x; q, t).

This is restated and proved in Theorem 1 below.

The 2nd result is the following duality theorem for Gα(x), which is the non-

symmetric analog of Okounkov’s duality result.

Theorem B. For all compositions α, β ∈ Cn we have

Gα(aβ̃)

Gα(aτ)
=

Gβ(aα̃)

Gβ(aτ)
.

This is a special case of Theorem 17 below.

We now recall the interpolation O-polynomials introduced in [14, Thm. 1.1].

Write x−1 for (x−1
1 , . . . , x−1

n ). Then it was shown in [14, Thm. 1.1] that there exists a

unique polynomial Oα(x) = Oα(x; q, t; a) of degree at most |α| with coefficients in the

field K such that

Oα(β
−1

) =
Gβ(aα̃)

Gβ(aτ)
for all β.

Our 3rd result is a simple expression for the O-polynomials in terms of the interpolation

polynomials Gα(x).
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Remarks on Interpolation Macdonald Polynomials 14817

Theorem C. For all compositions α ∈ Cn we have

Oα (x) =
Gα(t1−naw0x)

Gα(aτ)
.

This is deduced in Proposition 22 below as a direct consequence of non-

symmetric duality. We also obtain new proofs of Okounkov’s [10] duality theorem, as

well as the dual binomial theorem of Lascoux et al. [8], which gives an expansion of the

primed-interpolation polynomials G′
α(x) in terms of the Gβ(ax)’s.

2 Demazure-Lusztig Operators and the Primed Interpolation Polynomials

We use the notations from [14]. The correspondence with the notations from the

other important references [4], [13] and [10] is listed in [14, Section 2] (directly after

Lemma 2.8).

Let Sn be the symmetric group in n letters and si ∈ Sn the permutation that

swaps i and i +1. The si (1 ≤ i < n) are Coxeter generators for Sn. Let � : Sn → Z≥0 be the

associated length function. Let Sn act on Zn and Kn by siv := (· · · , vi−1, vi+1, vi, vi+2, . . .)

for v = (v1, . . . , vn). Write w0 ∈ Sn for the longest element, given explicitly by i → n+1−i

for i = 1, . . . , n.

For v = (v1, . . . , vn) ∈ Zn define v = (v1, . . . , vn) ∈ Fn by vi := qvit−ki(v) with

ki(v) := #{k < i | vk ≥ vi} + #{k > i | vk > vi}.

If v ∈ Zn has non-increasing entries v1 ≥ v2 ≥ · · · ≥ vn, then v = (qv1τ1, . . . , qvnτn).

For arbitrary v ∈ Zn we have v = wv(v+) with wv ∈ Sn the shortest permutation such

that v+ := w−1
v (v) has non-increasing entries, see [4, Section 2]. We write ṽ := −w0v for

v ∈ Zn.

Note that αn = t1−n if α ∈ Cn with αn = 0.

For a field F we write F[x] := F[x1, . . . , xn], F[x±1] := F[x±1
1 , . . . , x±1

n ] and F(x) for

the quotient field of F[x]. The symmetric group acts by algebra automorphisms on F[x]

and F(x), with the action of si by interchanging xi and xi+1 for 1 ≤ i < n. Consider the

F-linear operators

Hi = tsi −
(1 − t)xi

xi − xi+1

(1 − si) = t +
xi − txi+1

xi − xi+1

(si − 1)
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14818 S. Sahi and J. Stokman

on F(x) (1 ≤ i < n) called Demazure-Lusztig operators, and the automorphism � of F(x)

defined by

�f (x1, . . . , xn) = f (q−1xn, x1, . . . , xn−1).

Note that Hi (1 ≤ i < n) and � preserve F[x±1] and F[x]. Cherednik [1, 2] showed that

the operators Hi (1 ≤ i < n) and � satisfy the defining relations of the type A extended

affine Hecke algebra,

(Hi − t)(Hi + 1) = 0,

HiHj = HjHi, |i − j| > 1,

HiHi+1Hi = Hi+1HiHi+1,

�Hi+1 = Hi�,

�2H1 = Hn−1�2

for all the indices such that both sides of the equation make sense (see also [4, Section 3]).

For w ∈ Sn we write Hw := Hi1
Hi2

· · · Hi�
with w = si1

si2
· · · si�

a reduced expression

for w ∈ Sn. It is well defined because of the braid relations for the Hi’s. Write

Hi := Hi + 1 − t = tH−1
i and set

ξi := t1−nHi−1 · · · H1�−1Hn−1 · · · Hi, 1 ≤ i ≤ n. (1)

The operators ξi’s are pairwise commuting invertible operators, with inverses

ξ−1
i = Hi · · · Hn−1�H1 · · · Hi−1.

The ξ−1
i (1 ≤ i ≤ n) are the Cherednik operators [2, 4].

The monic non-symmetric Macdonald polynomial Eα ∈ F[x] of degree α ∈ Cn is

the unique polynomial satisfying

ξ−1
i Eα = αiEα, i = 1, . . . , n

and normalized such that the coefficient of xα in Eα is 1.

Let ι be the field automorphism of K inverting q, t and a. It restricts to a field

automorphism of F, inverting q and t. We extend ι to a Q-algebra automorphism of K[x]
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Remarks on Interpolation Macdonald Polynomials 14819

and F[x] by letting ι act on the coefficients of the polynomial. Write

G◦
α := ι

(
Gα

)
, E◦

α := ι
(
Eα

)

for α ∈ Cn. Note that v−1 = (ι(v1), . . . , ι(vn)).

Put H◦
i , H◦

w, H
◦

i , �◦ and ξ◦
i for the operators Hi, Hw, Hi, � and ξi with q, t replaced

by their inverses. For instance,

H◦
i = t−1si −

(1 − t−1)xi

xi − xi+1

(1 − si),

�◦f (x1, . . . , xn) = f (qxn, x1, . . . , xn−1).

We then have ξ◦
i E◦

α = αiE
◦
α for i = 1, . . . , n, which characterizes E◦

α up to a scalar factor.

Theorem 1. For α ∈ Cn we have

G′
α(x) = t(1−n)|α|+I(α)w0H◦

w0
G◦

α(tn−1x) (2)

with I(α) := #{i < j | αi ≥ αj}.

Remark. Formally set t = qr, replace x by 1 + (q − 1)x, divide both sides of (2) by

(q − 1)|α| and take the limit q → 1. Then

G′
α(x; r) = (−1)|α|σ(w0)w0Gα(−x − (n − 1)r; r) (3)

for the non-symmetric interpolation Jack polynomial Gα(· ; r) and its primed version

(see [14]). Here σ denotes the action of the symmetric group with σ(si) the rational

degeneration of the Demazure-Lusztig operators Hi, given explicitly by

σ(si) = si +
r

xi − xi+1

(1 − si),

see [14, Section 1]. To establish the formal limit (3) one uses that σ(w0)w0 = w0σ ◦(w0)

with σ ◦ the action of the symmetric group defined in terms of the rational degeneration

σ ◦(si) = si −
r

xi − xi+1

(1 − si)

of H◦
i . Formula (3) was obtained before in [14, Thm. 1.10].
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14820 S. Sahi and J. Stokman

Proof. We show that the right-hand side of (2) satisfies the defining properties of G′
α.

For the vanishing property, note that

tn−1w0β̃ = β
−1

(4)

(this is the q-analog of [14, Lem. 6.1(2)]); hence,

(
w0H◦

w0
G◦

α(tn−1x)
)
|x=β̃ =

(
H◦

w0
G◦

α(x)
)
|
x=β

−1 .

This expression is zero for |β| < |α| since it is a linear combination of the evaluated

interpolation polynomials G◦
α(wβ

−1
) (w ∈ Sn) by [14, Lem. 2.1(2)].

It remains to show that the top homogeneous terms of both sides of (2) are the

same, that is, that

Eα = tI(α)w0H◦
w0

E◦
α. (5)

Note that � := w0H◦
w0

satisfies the intertwining properties

Hi� = t�H
◦

i ,

�� = tn−1�H
◦

n−1 · · · H
◦

1(�◦)−1H◦
n−1 · · · H◦

1 (6)

for 1 ≤ i < n (use e.g., [2, Prop. 3.2.2]). It follows that ξ−1
i � = �ξ◦

i for i = 1, . . . , n.

Therefore,

Eα(x) = cα�E◦
α(x)

for some constant cα ∈ F. But the coefficient of xα in �xα is t−I(α); hence, cα = tI(α). �

Consider the Demazure operators Hi and the Cherednik operators ξ−1
j as

operators on the space F[x±1] of Laurent polynomials. For an integral vector u ∈ Zn,

let Eu ∈ F[x±1] be the common eigenfunction of the Cherednik operators ξ−1
j with

eigenvalues uj (1 ≤ j ≤ n), normalized such that the coefficient of xu := x
u1
1 · · · x

un
n

in Eu is 1. For u = α ∈ Cn this definition reproduces the non-symmetric Macdonald

polynomial Eα ∈ F[x] as defined before. Note that

Eu+(1n) = x1 · · · xnEu(x).
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Remarks on Interpolation Macdonald Polynomials 14821

It is now easy to check that formula (5) is valid with α replaced by an arbitrary integral

vector u,

Eu = tI(u)w0H◦
w0

E◦
u (7)

with E◦
u := ι(Eu). Furthermore, one can show in the same vein as the proof of (5) that

w0E−w0u(x−1) = Eu(x)

for an integral vector u, where p(x−1) stands for inverting all the parameters x1, . . . , xn

in the Laurent polynomial p(x) ∈ F[x±1]. Combining this equality with (7) yields

E−w0u(x−1) = tI(u)H◦
w0

E◦
u(x),

which is a special case of a known identity for non-symmetric Macdonald polynomials

(see [2, Prop. 3.3.3]).

3 Evaluation Formulas

In [14, Thm. 1.1] the following combinatorial evaluation formula

Gα(aτ) =
∏

s∈α

( t1−n − qa′(s)+1t1−l′(s)

1 − qa(s)+1tl(s)+1

) ∏

s∈α

(atl′(s) − qa′(s)) (8)

was obtained, with a(s), l(s), a′(s) and l′(s) the arm, leg, coarm and coleg of s = (i, j) ∈ α,

defined by

a(s) := αi − j, l(s) := #{k > i | j ≤ αk ≤ αi} + #{k < i | j ≤ αk + 1 ≤ αi},

a′(s) := j − 1, l′(s) := #{k > i | αk > αi} + #{k < i | αk ≥ αi}.

By (8) we have

Eα(τ ) = lim
a→∞

a−|α|Gα(aτ) =
∏

s∈α

( t1−n+l′(s) − qa′(s)+1t

1 − qa(s)+1tl(s)+1

)
,

which is the well-known evaluation formula [1, 2] for the non-symmetric Macdonald

polynomials. Note that for α ∈ Cn,

�(w0) − I(α) = #{i < j | αi < αj}.
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14822 S. Sahi and J. Stokman

Lemma 2. For α ∈ Cn we have

G′
α(aτ) = t(1−n)|α|+I(α)−�(w0)G◦

α(aτ−1).

Proof. Since tn−1w0τ = τ−1 = 0
−1

we have by Theorem 1,

G′
α(aτ) = t(1−n)|α|+I(α)

(
H◦

w0
G◦

α

)
(a0

−1
)

= t(1−n)|α|+I(α)−�(w0)G◦
α(a0

−1
),

where we have used [14, Lem. 2.1(2)] for the 2nd equality. �

We now derive a relation between the evaluation formulas for Gα(x) and G◦
α(x).

To formulate this we write, following [8],

n(α) :=
∑

s∈α

l(s), n′(α) :=
∑

s∈α

a(s).

Note that n′(α) =
∑n

i=1

(
αi
2

)
; hence, it only depends on the Sn-orbit of α, while

n(α) = n(α+) + �(w0) − I(α). (9)

The following lemma is a non-symmetric version of the 1st displayed formula on [10,

page 537].

Lemma 3. For α ∈ Cn we have

Gα(aτ) = (−a)|α|t(1−n)|α|−n(α)qn′(α)G◦
α(a−1τ−1).

Proof. This follows from the explicit evaluation formula (8) for the non-symmetric

interpolation Macdonald polynomial Gα. �

Following [8, (3.9)] we define τα ∈ F (α ∈ Cn) by

τα := (−1)|α|qn′(α)t−n(α+). (10)

It only depends on the Sn-orbit of α.
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Remarks on Interpolation Macdonald Polynomials 14823

Corollary 4. For α ∈ Cn we have

G′
α(a−1τ) = τ−1

α a−|α|Gα(aτ).

Proof. Use Lemmas 2 and 3 and (9). �

4 Normalized Interpolation Macdonald Polynomials

We need the basic representation of the (double) affine Hecke algebra on the space of

K-valued functions on Zn, which is constructed as follows.

For v ∈ Zn and y ∈ Kn write v� := (v2, . . . , vn, v1 + 1) and y� := (y2, . . . , yn, qy1).

Denote the inverse of � by 
, so v
 = (vn −1, v1, . . . , vn−1) and y
 = (yn/q, y1, . . . , yn−1). We

have the following lemma (cf. [4, 13, 14]).

Lemma 5. Let v ∈ Zn and 1 ≤ i < n. Then we have

1. si(v) = siv if vi �= vi+1.

2. vi = tvi+1 if vi = vi+1.

3. v� = v�.

Let H be the double affine Hecke algebra over K. It is isomorphic to the

subalgebra of End(K[x±1]) generated by the operators Hi (1 ≤ i < n), �±1, and the

multiplication operators x±1
j (1 ≤ j ≤ n).

For a unital K-algebra A we write FA for the space of A-valued functions

f : Zn → A on Zn.

Corollary 6. Let A be a unital K-algebra. Consider the A-linear operators Ĥi (1 ≤ i < n),

�̂ and x̂j (1 ≤ j ≤ n) on FA defined by

(Ĥif )(v) := tf (v) +
vi − tvi+1

vi − vi+1

(f (siv) − f (v)),

(�̂f )(v) := f (v
), (�̂−1f )(v) := f (v�),

(̂xjf )(v) := avjf (v) (11)

for f ∈ FA and v ∈ Zn. Then Hi �→ Ĥi (1 ≤ i < n), � �→ �̂ and xj �→ x̂j (1 ≤ j ≤ n) defines

a representation H → EndA(FA), X �→ X̂ (X ∈ H) of the double affine Hecke algebra H on

FA.
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14824 S. Sahi and J. Stokman

Proof. Let O ⊂ Kn be the smallest Sn-invariant and �-invariant subset that contains

{av | v ∈ Zn}. Note that O is contained in {y ∈ Kn | yi �= yj if i �= j}. The Demazure–

Lusztig operators Hi (1 ≤ i < n), �±1 and the coordinate multiplication operators xj

(1 ≤ j ≤ n) act A-linearly on the space FO
A of A-valued functions on O, and hence turns

FO
A into an H-module. Define the surjective A-linear map

pr : FO
A → FA

by pr(g)(v) := g(av) (v ∈ Zn).

We claim that Ker(pr) is an H-submodule of FO
A . Clearly Ker(pr) is xj-invariant

for j = 1, . . . , n. Let g ∈ Ker(pr). Part 3 of Lemma 5 implies that �g ∈ Ker(pr). To show

that Hig ∈ Ker(pr) we consider two cases. If vi �= vi+1 then siv = siv by part 1 of Lemma 5.

Hence,

(Hig)(av) = tg(av) +
vi − tvi+1

vi − vi+1

(g(asiv) − g(av)) = 0.

If vi = vi+1 then vi = tvi+1 by part 2 of Lemma 5. Hence,

(Hig)(v) = tg(av) +
vi − tvi+1

vi − vi+1

(g(asiv) − g(av)) = tg(av) = 0.

Hence, FA inherits the H-module structure of FO
A /Ker(pr). It is a straightforward

computation, using Lemma 5 again, to show that the resulting action of Hi (1 ≤ i < n),

� and xj (1 ≤ j ≤ n) on FA is by the operators Ĥi (1 ≤ i < n), �̂ and x̂j (1 ≤ j ≤ n). �

Remark 7. With the notations from (the proof of) Corollary 6, let g̃ ∈ FO
A and set

g := pr(̃g) ∈ FA. In other words, g(v) := g̃(av) for all v ∈ Zn. Then

(
X̂g

)
(v) = (Xg̃)(av), v ∈ Zn

for X = Hi, �
±1, xj.

Remark 8. Let F
+
A be the space of A-valued functions on Cn. We sometimes will

consider Ĥi (1 ≤ i < n), �̂−1 and x̂j (1 ≤ j ≤ n), defined by the formulas (11), as linear

operators on F
+
A .

Definition 9. We call

Kα(x; q, t; a) :=
Gα(x; q, t)

Gα(aτ ; q, t)
∈ K[x] (12)

the normalized non-symmetric interpolation Macdonald polynomial of degree α.
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Remarks on Interpolation Macdonald Polynomials 14825

We frequently use the shorthand notation Kα(x) := Kα(x; q, t; a). We will see in

a moment that formulas for non-symmetric interpolation Macdonald polynomials take

the nicest form in this particular normalization.

Note that a cannot be specialized to 1 in (12) since Gα(τ ) = Gα(0) = 0 if α ∈ Cn is

nonzero. Note furthermore that

lim
a→∞

Kα(ax) =
Eα(x)

Eα(τ )
(13)

since lima→∞ a−|α|Gα(ax) = Eα(x).

Recall from [4] the operator � = (xn − t1−n)� ∈ H and the inhomogeneous

Cherednik operators

�j =
1

xj

+
1

xj

Hj · · · Hn−1�H1 · · · Hj−1 ∈ H, 1 ≤ j ≤ n.

The operators Hi, �j and � preserve K[x] (see [4]); hence, they give rise to K-linear

operators on F
+
K[x] (e.g., (Hif )(α) := Hi(f (α)) for α ∈ Cn). Note that the operators Hi, �j

and � on F
+
K[x] commute with the hat-operators Ĥi, x̂j and �̂−1 on F

+
K[x] (cf. Remark 8).

The same remarks hold true for the space F
K(x) of K(x)-valued functions on Zn (in fact,

in this case the hat-operators define a H-action on F
K(x)).

Let K ∈ F
+
K[x] be the map α �→ Kα(·) (α ∈ Cn).

Lemma 10. For 1 ≤ i < n and 1 ≤ j ≤ n we have in F
+
K[x],

1. HiK = ĤiK.

2. �jK = ax̂−1
j K.

3. �K = t1−n(a2x̂−1
1 − 1)�̂−1K.

Proof. 1. To derive the formula we need to expand HiKα as a linear combination of the

Kβ ’s. As a 1st step we expand HiGα as linear combination of the Gβ ’s.

If α ∈ Cn satisfies αi < αi+1 then

HiGα(x) =
(t − 1)αi

αi − αi+1

Gα(x) + Gsiα
(x)

by [14, Lem. 2.2]. Using part 1 of Lemma 5 and the fact that Hi satisfies the quadratic

relation (Hi − t)(Hi + 1) = 0, it follows that

HiGα(x) =
(t − 1)αi

αi − αi+1

Gα(x) +
t(αi+1 − tαi)(αi+1 − t−1αi)

(αi+1 − αi)
2

Gsiα
(x)
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14826 S. Sahi and J. Stokman

if α ∈ Cn satisfies αi > αi+1. Finally, HiGα(x) = tGα(x) if α ∈ Cn satisfies αi = αi+1 by [4,

Cor. 3.4].

An explicit expansion of HiKα as linear combination of the Kβ ’s can now be

obtained using the formula

Gα(aτ) =
αi+1 − tαi

αi+1 − αi

Gsiα
(aτ)

for α ∈ Cn satisfying αi > αi+1, cf. the proof of [14, Lem 3.1]. By a direct computation the

resulting expansion formula can be written as HiK = ĤiK.

2. See [4, Thm. 2.6].

3. Let α ∈ Cn. By [14, Lem. 2.2 (1)],

�Gα(x) = q−α1Gα�(x).

By the evaluation formula (8) we have

Gα�(aτ)

Gα(aτ)
= at1−n+k1(α) − qα1t1−n.

Hence,

�Kα(x) = t1−n(aα−1
1 − 1)Kα�(x).

�

Remark 11. Note that

�Kα(x) = (aα̃n − t1−n)Kα�(x)

for α ∈ Cn since α−1 = tn−1w0α̃.

5 Interpolation Macdonald Polynomials with Negative Degrees

In this section we give the natural extension of the interpolation Macdonald polynomi-

als Gα(x) and Kα(x) to α ∈ Zn. It will be the unique extension of K ∈ F
+
K[x] to a map

K ∈ F
K(x) such that Lemma 10 remains valid.

Lemma 12. For α ∈ Cn we have

Gα(x) = q−|α|
Gα+(1n)(qx)

∏n
i=1(qxi − t1−n)

,

Kα(x) =
( n∏

i=1

(1 − aα−1
i )

(1 − qtn−1xi)

)
Kα+(1n)(qx).
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Remarks on Interpolation Macdonald Polynomials 14827

Proof. Note that for f ∈ K[x],

�nf (x) =
( n∏

i=1

(xi − t1−n)
)
f (q−1x).

The 1st formula then follows by iteration of [14, Lem. 2.2(1)] and the 2nd formula from

part 3 of Lemma 10. �

For m ∈ Z≥0 we define Am(x; v) ∈ K(x) by

Am(x; v) :=

n∏

i=1

(
q1−mav−1

i ; q
)
m(

qtn−1xi; q
)
m

∀ v ∈ Zn, (14)

with
(
y; q

)
m

:=
∏m−1

j=0 (1 − qjy) the q-shifted factorial.

Definition 13. Let v ∈ Zn and write |v| := v1 +· · ·+vn. Define Gv(x) = Gv(x; q, t) ∈ F(x)

and Kv(x) = Kv(x; q, t; a) ∈ K(x) by

Gv(x) := q−m|v|−m2n
Gv+(mn)(q

mx)
∏n

i=1 xm
i

(
q−mt1−nx−1

i ; q
)
m

,

Kv(x) := Am(x; v)Kv+(mn)(q
mx),

where m is a nonnegative integer such that v + (mn) ∈ Cn (note that Gv and Kv are well

defined by Lemma 12).

Example 14. If n = 1 then for m ∈ Z≥0,

K−m(x) =

(
qa; q

)
m(

qx; q
)
m

, Km(x) =
(x

a

)m
(
x−1; q

)
m(

a−1; q
)
m

.

Lemma 15. For all v ∈ Zn,

Kv(x) =
Gv(x)

Gv(aτ)
.

Proof. Let v ∈ Zn. Clearly Gv(x) and Kv(x) only differ by a multiplicative constant, so

it suffices to show that Kv(aτ) = 1. Fix m ∈ Z≥0 such that v + (mn) ∈ Cn. Then

Kv(aτ) = Am(aτ ; v)Kv+(mn)(q
maτ) = Am(aτ ; v)

Gv+(mn)(q
maτ)

Gv+(mn)(aτ)
= 1,
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14828 S. Sahi and J. Stokman

where the last formula follows from a direct computation using the evaluation formula

(8). �

We extend the map K : Cn → K[x] to a map

K : Zn → K(x)

by setting v �→ Kv(x) for all v ∈ Zn. Lemma 10 now extends as follows.

Proposition 16. We have, as identities in F
K(x),

1. HiK = ĤiK.

2. �jK = ax̂−1
j K.

3. �K = t1−n(a2x̂−1
1 − 1)�̂−1K.

Proof. Write Am ∈ F
K(x) for the map v �→ Am(x; v) for v ∈ Zn. Consider the linear

operator on F
K(x) defined by (Amf )(v) := Am(x; v)f (v) for v ∈ Zn and f ∈ F

K(x). For

1 ≤ i < n we have [Hi, Am] = 0 as linear operators on F
K(x), since Am(x; v) is a symmetric

rational function in x1, . . . , xn. Furthermore, for v ∈ Zn and f ∈ F
K(x),

(
(Ĥi ◦ Am)f

)
(v) =

(
(Am ◦ Ĥi)f

)
(v) if vi �= vi+1 (15)

by part 2 of Lemma 5 and the fact that Am(x; v) is symmetric in v1, . . . , vn. Fix v ∈ Zn

and choose m ∈ Z≥0 such that v + (mn) ∈ Cn. Since

Kv(x) = Am(x; v)Kv+(mn)(q
mx)

we obtain from [Hi, Am] = 0 and (15) that (HiK)(v) = (ĤiK)(v) if vi �= vi+1. This also holds

true if vi = vi+1 since then (ĤiK)(v) = tKv and HiKv+(mn)(q
mx) = tKv+(mn)(q

mx). This

proves part 1 of the proposition.

Note that �Kv(x) = t1−n(av−1
1 − 1)Kv�(x) for arbitrary v ∈ Zn by Lemma 10 and

the commutation relation

� ◦ Am = Am ◦ �(qm), (16)

where �(qm) := (qmxn − t1−n)�. This proves part 3 of the proposition.

Finally we have �jKv(x) = v−1
j Kv(x) for all v ∈ Zn by [Hi, Am] = 0, (16) and

Lemma 10. This proves part 2 of the proposition. �
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Remarks on Interpolation Macdonald Polynomials 14829

6 Duality of the Non-Symmetric Interpolation Macdonald Polynomials

Recall the notation ṽ = −w0v for v ∈ Zn.

Theorem 17. (Duality). For all u, v ∈ Zn we have

Ku(aṽ) = Kv(aũ). (17)

Example 18. If n = 1 and m, r ∈ Z≥0 then

Km(aq−r) = q−mr (a−1; q)m+r

(a−1; q)m(a−1; q)r

(18)

by the explicit expression for Km(x) from Example 14. The right-hand side of (18) is

manifestly invariant under the interchange of m and r.

Proof. We divide the proof of the theorem in several steps. �

Step 1. If Ku(aṽ) = Kv(aũ) for all v ∈ Zn then Ksiu
(aṽ) = Kv(as̃iu) for v ∈ Zn and

1 ≤ i < n.

Proof of Step 1. Writing out the formula from part 1 of Proposition 16 gives

(t − 1)̃vi

(̃vi − ṽi+1)
Ku(aṽ)+

( ṽi − t̃vi+1

ṽi − ṽi+1

)
Ku(as̃n−iv)

=
(t − 1)ui

(ui − ui+1)
Ku(aṽ) +

(ui − tui+1

ui − ui+1

)
Ksiu

(aṽ).

(19)

Replacing in (19) the role of u and v and replacing i by n − i we get

(t − 1)ũn−i

(ũn−i − ũn+1−i)
Kv(aũ)+

( ũn−i − tũn+1−i

ũn−i − ũn+1−i

)
Kv(as̃iu)

=
(t − 1)vn−i

(vn−i − vn+1−i)
Kv(aũ) +

(vn−i − tvn+1−i

vn−i − vn+1−i

)
Ksn−iv

(aũ).

(20)

Suppose that sn−iv = v. Then vn−i = tvn+1−i by the 2nd part of Lemma 5. Since

ṽ = t1−nw0v−1, that is, ṽi = t1−nv−1
n+1−i, we then also have ṽi = t̃vi+1. It then follows by a

direct computation that (19) reduces to Ksiu
(aṽ) = Ku(aṽ) and (20) to Kv(as̃iu) = Kv(aũ)

if sn−iv = v.
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14830 S. Sahi and J. Stokman

We now use these observations to prove Step 1. Assume that Ku(aṽ) = Kv(aũ)

for all v. We have to show that Ksiu
(aṽ) = Kv(as̃iu) for all v. It is trivially true if siu = u,

so we may assume that siu �= u. Suppose that v satisfies sn−iv = v. Then it follows from

the previous paragraph that

Ksiu
(aṽ) = Ku(aṽ) = Kv(aũ) = Kv(as̃iu).

If sn−iv �= v then (19) and the induction hypothesis can be used to write Ksiu
(aṽ)

as an explicit linear combination of Kv(aũ) and Ksn−iv
(aũ). Then (20) can be used to

rewrite the term involving Ksn−iv
(aũ) as an explicit linear combination of Kv(aũ) and

Kv(as̃iu). Hence, we obtain an explicit expression of Ksiu
(aṽ) as linear combination of

Kv(aũ) and Kv(as̃iu), which turns out to reduce to Ksiu
(aṽ) = Kv(as̃iu) after a direct

computation. �

Step 2. K0(aṽ) = 1 = Kv(ã0) for all v ∈ Zn.

Proof of Step 2. Clearly K0(x) = 1 and Kv(ã0) = Kv(aτ) = 1 for v ∈ Zn by

Lemma 15. �

Step 3. Kα(aṽ) = Kv(aα̃) for v ∈ Zn and α ∈ Cn.

Proof of Step 3. We prove it by induction. It is true for α = 0 by Step 2. Let m ∈ Z>0

and suppose that Kγ (aṽ) = Kv(aγ̃ ) for v ∈ Zn and γ ∈ Cn with |γ | < m. Let α ∈ Cn with

|α| = m.

We need to show that Kα(aṽ) = Kv(aα̃) for all v ∈ Zn. By Step 1 we may assume

without loss of generality that αn > 0. Then γ := α
 ∈ Cn satisfies |γ | = m − 1, and

α = γ �. Furthermore, note that we have the formula

(av−1
1 − 1)Ku(aṽ�) = (au−1

1 − 1)Ku�(aṽ) (21)

for all u, v ∈ Zn, which follows by writing out the formula from part 3 of Lemma 16.

Hence, we obtain

Kα(aṽ) = Kγ �(aṽ) =
(av−1

1 − 1)

(aγ −1
1 − 1)

Kγ (aṽ�)

=
(av−1

1 − 1)

(aγ −1
1 − 1)

Kv�(aγ̃ ) = Kv(aγ̃ �) = Kv(aα̃),

where we used the induction hypothesis for the 3rd equality and (21) for the 2nd and

4th equality. This proves the induction step. �
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Remarks on Interpolation Macdonald Polynomials 14831

Step 4. Ku(aṽ) = Kv(aũ) for all u, v ∈ Zn.

Proof of Step 4. Fix u, v ∈ Zn. Let m ∈ Z≥0 such that u + (mn) ∈ Cn. Note that qmṽ =

˜v − (mn) and q−mũ = ˜u + (mn). Then

Ku(aṽ) = Am(aṽ; u)Ku+(mn)(q
maṽ)

= Am(aṽ; u)Ku+(mn)

(
a( ˜v − (mn))

)

= Am(aṽ; u)Kv−(mn)

(
a( ˜u + (mn))

)

= Am(aṽ; u)Kv−(mn)(q
−maũ) = Am(aṽ; u)Am(q−maũ; v − (mn))Kv(aũ),

where we used Step 3 in the 3rd equality. The result now follows from the fact that

Am(aṽ; u)Am(q−maũ; v − (mn)) = 1,

which follows by a straightforward computation using (4). �

7 Some Applications of Duality

7.1 Non-symmetric Macdonald polynomials

Recall that the (monic) non-symmetric Macdonald polynomial Eα(x) of degree α is the

top homogeneous component of Gα(x), i.e.,

Eα(x) = lim
a→∞

a−|α|Gα(ax), α ∈ Cn.

The normalized non-symmetric Macdonald polynomials are

Kα(x) := lim
a→∞

Kα(ax) =
Eα(x)

Eα(τ )
, α ∈ Cn.

We write K ∈ F
+
F[x] for the resulting map α �→ Kα. Taking limits in Lemma 10 we get the

following.

Lemma 19. We have for 1 ≤ i < n and 1 ≤ j ≤ n,

1. HiK = ĤiK.

2. ξjK = x̂−1
j K.

3. xn�K = t1−nx̂−1
1 �̂−1K.
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14832 S. Sahi and J. Stokman

Note that

(xn�)nf (x) =
( n∏

i=1

xi

)
f (q−1x).

Then repeated application of part 3 of Lemma 19 shows that for α ∈ Cn,

Eα(x) =
Eα+(1n)(x)

x1 · · · xn

,

Kα(x) = q|α|t(1−n)n
( n∏

i=1

(αixi)
−1

)
Kα+(1n)(x). (22)

As is well known and already noted in Section 2, the 1st equality allows to relate the

non-symmetric Macdonald polynomials Ev(x) := Ev(x; q, t) ∈ F[x±1] for arbitrary v ∈ Zn

to those labeled by compositions through the formula

Ev(x) =
Ev+(mn)(x)

(x1 · · · xn)m
.

The 2nd formula of (22) can now be used to explicitly define the normalized non-

symmetric Macdonald polynomials for degrees v ∈ Zn.

Definition 20. Let v ∈ Zn and m ∈ Z≥0 such that v + (mn) ∈ Cn. Then Kv(x) :=

Kv(x; q, t) ∈ F[x±1] is defined by

Kv(x) := qm|v|t(1−n)nm
( n∏

i=1

(vixi)
−m

)
Kv+(mn)(x).

Using

lim
a→∞

Am(ax; v) = q−m2nt(1−n)nm
n∏

i=1

(vixi)
−m

and the definitions of Gv(x) and Kv(x) it follows that

lim
a→∞

a−|v|Gv(ax) = Ev(x),

lim
a→∞

Kv(ax) = Kv(x)

for all v ∈ Zn, so in particular

Kv(x) =
Ev(x)

Ev(τ )
∀ v ∈ Zn.
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Lemma 19 holds true for the extension of K to the map K ∈ F
F[x±1] defined by v �→ Kv

(v ∈ Zn). Taking the limit in Theorem 17 we obtain the well-known duality [1] of the

Laurent polynomial versions of the normalized non-symmetric Macdonald polynomials.

Corollary 21. For all u, v ∈ Zn,

Ku(̃v) = Kv(ũ).

7.2 O-polynomials

We now show that the duality of the non-symmetric interpolation Macdonald polyno-

mials (Theorem 17) directly implies the existence of the O-polynomials Oα (which is the

nontrivial part of the proof of [14, Thm. 1.2]), and that it provides an explicit expression

for Oα in terms of the non-symmetric interpolation Macdonald polynomial Kα.

Proposition 22. For all α ∈ Cn we have

Oα(x) = Kα(t1−naw0x).

Proof. The polynomial Õα(x) := Kα(t1−naw0x) is of degree at most |α| and

Õα(β
−1

) = Kα(t1−naw0β
−1

) = Kα(aβ̃) = Kβ(aα̃)

for all β ∈ Cn by (4) and Theorem 17. Hence, Õα = Oα. �

7.3 Okounkov’s duality

Write F[x]Sn for the symmetric polynomials in x1, . . . , xn with coefficients in a field

F. Write C+ :=
∑

w∈Sn
Hw. The symmetric interpolation Macdonald polynomial

Rλ(x) ∈ F[x]Sn is the multiple of C+Gλ such that the coefficient of xλ is one (see, e.g.,

[13]). We write

K+
λ (x) :=

Rλ(x)

Rλ(aτ)
∈ K[x]Sn

for the normalized symmetric interpolation Macdonald polynomial. Then

C+Kα(x) =
( ∑

w∈Sn

t�(w)
)
K+

α+
(x) (23)

for α ∈ Cn. Okounkov’s [10, Section 2] duality result now reads as follows.
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14834 S. Sahi and J. Stokman

Theorem 23. For partitions λ, μ ∈ Pn we have

K+
λ (aμ−1) = K+

μ (aλ
−1

).

Let us derive Theorem 23 as consequence of Theorem 17. Write Ĉ+ =
∑

w∈Sn
Ĥw,

with Ĥw := Ĥi1
· · · Ĥir

for a reduced expression w = si1
· · · sir

. Write fμ ∈ F
K

for the

function fμ(u) := Ku(aμ̃) (u ∈ Zn). Then

( ∑

w∈Sn

t�(w)
)
K+

λ (aμ̃) = (C+Kλ)(aμ̃) = (Ĉ+fμ)(λ) (24)

by part 1 of Proposition 16. The duality (17) of Ku and (4) imply that

fμ(u) = Kμ(aũ) =
(
Jw0Kμ(t1−nx)

)
|x=a−1u (25)

with (Jf )(x) := f (x−1
1 , . . . , x−1

n ) for f ∈ K(x). A direct computation shows that

JHiJ = (H◦
i )−1, w0Hiw0 = (H◦

n−i)
−1 (26)

for 1 ≤ i < n. In particular, Jw0C+ = C+Jw0. Combined with Remark 7 we conclude that

(Ĉ+fμ)(λ) =
(
Jw0C+Kμ(t1−nx)

)
|x=a−1λ.

By (23) and (4) this simplifies to

(Ĉ+fμ)(λ) =
( ∑

w∈Sn

t�(w)
)
K+

μ (ãλ).

Returning to (24) we conclude that K+
λ (aμ̃) = K+

μ (ãλ). Since K+
λ is symmetric we obtain

from (4) that

K+
λ (aμ−1) = K+

μ (aλ
−1

),

which is Okounkov’s duality result.

7.4 A primed version of duality

We first derive the following twisted version of the duality of the non-symmetric

interpolation Macdonald polynomials (Theorem 17).
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Lemma 24. For u, v ∈ Zn we have

(
Hw0

Ku

)
(aṽ) =

(
Hw0

Kv

)
(aũ). (27)

Proof. We proceed as in the previous subsection. Set fv(u) := Ku(aṽ) for u, v ∈ Zn. By

part 1 of Proposition 16,

(
Hw0

Ku

)
(aṽ) =

(
Ĥw0

fv

)
(u).

Since fv(u) =
(
Iw0Kv

)
(a−1tn−1u) by (4), Remark 7 implies that

(
Ĥw0

fv

)
(u) =

(
Hw0

Jw0Kv

)
(a−1tn−1u).

Now Hw0
Jw0 = Jw0Hw0

by (26); hence,

(
Ĥw0

fv

)
(u) =

(
Jw0Hw0

Kv

)
(a−1tn−1u) = (Hw0

Kv)(aũ),

which completes the proof. �

Recall from Theorem 1 that

G′
β(x) = t(1−n)|β|+I(β)�G◦

β(tn−1x)

with � := w0H◦
w0

. We define normalized versions by

K′
β(x) :=

G′
β(x)

G′
β(a−1τ)

= t�(w0)�K◦
β(tn−1x), β ∈ Cn,

with K◦
v := ι(Kv) for v ∈ Zn (the 2nd formula follows from Lemma 2). More generally, we

define for v ∈ Zn,

K′
v(x) := t�(w0)�K◦

v(tn−1x). (28)

We write K′ : Zn → K(x) for the map v �→ K′
v (v ∈ Zn). Since Hi� = �H◦

i , part 1 of

Proposition 16 gives HiK
′ = Ĥ◦

i K′. Considering the action of ((xn − 1)�◦)n on K′
β(x) we

get, using the fact that ((xn − 1)�◦)n commutes with � and part 3 of Proposition 16,

K′
v(x) =

( n∏

i=1

(1 − a−1vi)

(1 − q−1xi)

)
K′

v+(1n)(q
−1x),
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14836 S. Sahi and J. Stokman

in particular

K′
v(x) =

( n∏

i=1

(
a−1vi; q

)
m(

q−mxi; q
)
m

)
K′

v+(mn)(q
−mx).

Example 25. For n = 1 we have K′
v(x) = K◦

v(x) for v ∈ Z; hence,

K′
−m(x) =

(
q−1a−1; q−1

)
m(

q−1x; q−1
)
m

= (ax)−m

(
qa; q

)
m(

qx−1; q
)
m

,

K′
m(x) = (ax)m

(
x−1; q−1

)
m(

a; q−1
)
m

=

(
x; q

)
m(

a−1; q
)
m

for m ∈ Z≥0 by Example 14.

Proposition 26. For all u, v ∈ Zn we have

K′
v(a−1u) = K′

u(a−1v).

Proof. Note that

K′
v(a−1u) = t�(w0)�K◦

v(tn−1x)|x=a−1u = t�(w0)
(
H◦

w0
K◦

v

)
(a−1ũ−1)

by (4). By (27) the right-hand side is invariant under the interchange of u and v. �

7.5 Binomial formula and dual binomial formula

In [14] the existence and uniqueness of Oα was used to prove the following binomial

theorem [14, Thm. 1.3]. Define for α, β ∈ Cn the generalized binomial coefficient by

[
α

β

]

q,t

:=
Gβ(α)

Gβ(β)
. (29)

Applying the automorphism ι of F to (29) we get

[
α

β

]

q−1,t−1

=
G◦

β(α−1)

G◦
β(β

−1
)
.
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Theorem 27. For α, β ∈ Cn we have the binomial formula

Kα(ax) =
∑

β∈Cn

a|β|

[
α

β

]

q−1,t−1

G′
β(x)

Gβ(aτ)
. (30)

Remark 28. 1. Note that the sum in (30) is finite, since the generalized binomial

coefficient (29) is zero unless β ⊆ α, with β ⊆ α meaning βi ≤ αi for i = 1, . . . , n.

2. By Corollary 4 and (28) the binomial formula (30) can be alternatively written as

Kα(ax) =
∑

β∈Cn

τ−1
β

[
α

β

]

q−1,t−1

K′
β(x)

=
∑

β∈Cn

K◦
β(α−1)K′

β(x)

τβK◦
β(β

−1
)

= t�(w0)
∑

β∈Cn

K◦
β(α−1)�K◦

β(tn−1x)

τβK0
β(β

−1
)

(31)

with � = w0H◦
w0

(note that the dependence on a in the right-hand side of (31) is through

the normalization factors of the interpolation polynomials K◦
β(x) and K′

β(x)).

3. The binomial formula (30) and Theorem 1 imply the twisted duality (27) of Kα

as follows. By the identity Hw0
� = w0 the binomial formula (31) implies the finite

expansion

(
Hw0

Kα

)
(ax) = t�(w0)

∑

β

K◦
β(α−1)K◦

β(tn−1w0x)

τβK◦
β(β

−1
)

.

Substituting x = γ̃ and using (4) we obtain

(
Hw0

Kα

)
(aγ̃ ) =

∑

β∈Cn

K◦
β(α−1)K◦

β(γ −1)

τβK◦
β(β

−1
)

.

The right-hand side is manifestly invariant under interchanging α and γ , which is

equivalent to twisted duality (27).

In [8, Section 4] it is remarked that an explicit identity relating G′
α and Gα

is needed to provide a proof of the dual binomial formula [8, Thm. 4.4] as a direct

consequence of the binomial formula (30). We show here that Theorem 1 is providing

the required identity. Instead of Theorem 1 we use its normalized version, encoded

by (28).
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14838 S. Sahi and J. Stokman

The dual binomial formula [8, Thm. 4.4] in our notations reads as follows.

Theorem 29. For all α ∈ Cn we have

K′
α(x) =

∑

β∈Cn

τβ

[
α

β

]

q,t

Kβ(ax). (32)

The starting point of the alternative proof of (32) is the binomial formula in the

form

Kα(ax) = t�(w0)
∑

β∈Cn

G◦
β(α−1)�K◦

β(tn−1x)

τβG◦
β(β

−1
)

,

see (31). Replace (a, x, q, t) by (a−1, atn−1x, q−1, t−1) and act by w0Hw0
on both sides.

Since w0Hw0
� = Id we obtain

�K◦
α(tn−1x) = t−�(w0)

∑

β

τβ

[
α

β

]

q,t

Kβ(ax).

Now use (28) to complete the proof of (32).

Remark 30. It follows from this proof of (32) that the dual binomial formula (32) can

be rewritten as

�K◦
α(tn−1x) = t−�(w0)

∑

β

τβKβ(α)Kβ(ax)

Kβ(β)
. (33)

As observed in [8, (4.11)], the binomial and dual binomial formula directly imply

the orthogonality relations

∑

β∈Cn

τβ

τα

[
α

β

]

q,t

[
β

γ

]

q−1,t−1

= δα,γ .

Since

[
δ

ε

]

q,t

= 0 unless δ ⊇ ε, the terms in the sum are zero unless γ ⊆ β ⊆ α.
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