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We provide elementary identities relating the three known types of non-symmetric inter-
polation Macdonald polynomials. In addition we derive a duality for non-symmetric
interpolation Macdonald polynomials. We consider some applications of these results,
in particular to binomial formulas involving non-symmetric interpolation Macdonald

polynomials.

1 Introduction

The symmetric interpolation Macdonald polynomials R, (x;q,t) = R,(x;,...,X,;q,%)
form a distinguished inhomogeneous basis for the algebra of symmetric polynomials
in n variables over the field F := Q(g, t). They were first introduced in [4, 13], building
on joint work by one of the authors with Knop [5] and earlier work with Kostant [6, 7,
12]. These polynomials are indexed by the set of partitions with at most n parts

Ppi={AeZ’ | A\, =2y>-->2,>0}.

n
For a partition u € P, we define |u| = u; +--- + u,, and write
= (q"1,...,¢""1,) where t:=(t,...,1,) with 7; := -,
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Remarks on Interpolation Macdonald Polynomials 14815

Then R, (x) = R, (x;q,t) is, up to normalization, characterized as the unique nonzero

symmetric polynomial of degree at most |A| satisfying the vanishing conditions

R, () =0 for u € P, such that |u| <[A|, n # A.

Al..-

The normalization is fixed by requiring that the coefficient of x* := x] In

X" in the
monomial expansion of R, (x) is 1. In spite of their deceptively simple definition, these
polynomials possess some truly remarkable properties. For instance, as shown in [4,
13], the top homogeneous part of R, (x) is the Macdonald polynomial P, (x) [9] and R, (x)
satisfies the extra vanishing property R, () = 0 unless A C u as Ferrer diagrams. Other
key properties of R, (x), which were proven by Okounkov [10], include the binomial
theorem, which gives an explicit expansion of R, (ax) = R, (axy,...,ax,;q,t) in terms
of the R, (x;q ', t™!)’s over the field K := Q(q,t,a), and the duality or evaluation

symmetry, which involves the evaluation points

n=(qg " t,....q"1,), we P,

and takes the form

Rx(aﬁ) _ R/L(a}:)
R,(at) R,(atr)’

The interpolation polynomials have natural non-symmetric analogs G,(x) =
G,(x;q,t), which were also defined in [4, 13]. These are indexed by the set of compo-

sitions with at most n parts, C,, := (Zzo)n. For a composition g € C,, we define
B = Wﬁ (E)I

where wy is the shortest permutation such that g, = w;l(ﬁ) is a partition. Then
G, (x) is, up to normalization, characterized as the unique polynomial of degree at most

loe| :=ot; + - -+ «,, satisfying the vanishing conditions
G,(B) = 0 for B € C,, such that || < |a|,p # «a.

The normalization is fixed by requiring that the coefficient of x* := xJ'---xy" in the
monomial expansion of G, (x) is 1.
Many properties of the symmetric interpolation polynomials R, (x) admit non-

symmetric counterparts for the G, (x). For instance, the top homogeneous part of G, (x)
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14816 S. Sahi and J. Stokman

is the non-symmetric Macdonald polynomial E,(x) and G, (x) satisfies an extra vanish-
ing property [4]. An analog of the binomial theorem, proved by one of us in [14, Thm.
1.1], gives an explicit expansion of G,(ax; g, t) in terms of a 2nd family of interpolation
polynomials G, (x) = G, (x;q,t). These latter polynomials are characterized by having
the same top homogeneous part as G, (x), namely the non-symmetric polynomial E, (x),
and the following vanishing conditions at the evaluation points g := W, with wy

the longest element of the symmetric group S,;:
G, (B) = 0 for |B| < |a].

The 1st result of the present paper is a Demazure-type formula for the primed
interpolation polynomials G, (x) in terms of G, (x), which involves the symmetric group
action on the algebra of polynomials in n variables over F by permuting the variables,
as well as the associated Hecke algebra action in terms of Demazure-Lusztig operators

H, (w € S,) as described in the next section.

Theorem A. Write I(o) :=#{i < | o; > o} Then we have
G, " 'x;q7 1t = DTy g G (x g, 1).

This is restated and proved in Theorem 1 below.
The 2nd result is the following duality theorem for G,(x), which is the non-

symmetric analog of Okounkov's duality result.

Theorem B. For all compositions «, 8 € C,, we have

G,(ap)  Gglaw)
G,(at)  Gglar)’

This is a special case of Theorem 17 below.

We now recall the interpolation O-polynomials introduced in [14, Thm. 1.1].
Write x~! for (x;',...,x;1). Then it was shown in [14, Thm. 1.1] that there exists a
unique polynomial O,(x) = O,(x;q,t; a) of degree at most |«| with coefficients in the
field K such that
Gﬂ(a&')
Gy(ar)

Oa(ﬁ_l) = for all B.

Our 3rd result is a simple expression for the O-polynomials in terms of the interpolation

polynomials G, (x).
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Theorem C. For all compositions « € C,, we have

o _ G, (' " awyx)
« =" a0

This is deduced in Proposition 22 below as a direct consequence of non-
symmetric duality. We also obtain new proofs of Okounkov’s [10] duality theorem, as
well as the dual binomial theorem of Lascoux et al. [8], which gives an expansion of the

primed-interpolation polynomials G, (x) in terms of the Gz(ax)'s.

2 Demazure-Lusztig Operators and the Primed Interpolation Polynomials

We use the notations from [14]. The correspondence with the notations from the
other important references [4], [13] and [10] is listed in [14, Section 2] (directly after
Lemma 2.8).

Let S,, be the symmetric group in n letters and s; € S, the permutation that
swaps i and i + 1. The s; (1 < i < n) are Coxeter generators for S,. Let £ : S;, — Z_ be the

associated length function. Let S,, act on Z" and K" by s;v := (--- ,v;_1,V; 1,V Viyo,...)

forv = (vq,...,v,). Write w, € S,, for the longest element, given explicitlybyi - n+1—i
fori=1,...,n.
Forv=(vy,...,v,) € Z" definev = (v{,...,v,) e F* by v, := qVit‘ki(V) with

kw)y=#k<ilvp>v;}+#k>i|v, >y}

If v € Z" has non-increasing entries v; > v, > --- > v,, then v = (g"'t,...,q""1,).

For arbitrary v € Z" we have v = w, (V) with w,, € S, the shortest permutation such

that v, = w;l(v) has non-increasing entries, see [4, Section 2]. We write V := TOV for
veZ.

Note that @,, = t! ™ if « € C,, with &, = 0.

For a field F we write Flx] := Flx;,...,x,], FIx*] := F[Xlil,. ..,x1 and F(x) for

the quotient field of F[x]. The symmetric group acts by algebra automorphisms on F[x]
and F(x), with the action of s; by interchanging x; and x;,, for 1 <i < n. Consider the

F-linear operators

— . X — tX:
Ho=ts;— ——L(1—-s)=t+ (s, —1)
Xi — X1 X — X
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14818 S. Sahi and J. Stokman

on F(x) (1 <i < n) called Demazure-Lusztig operators, and the automorphism A of F(x)
defined by

Af(Xy, ... X)) =F@ 1%, %7, ... X, ).

Note that H; (1 < i < n) and A preserve Flx*!] and F[x]. Cherednik [1, 2] showed that
the operators H; (1 < i < n) and A satisfy the defining relations of the type A extended

affine Hecke algebra,

H;—t)(H; +1) =0,
H;H; = H;H;, li—jl>1,
HiH; (Hy = H;  HiH;,q,
AHy, = HiA,

A’H, = H,

n

2
A

for all the indices such that both sides of the equation make sense (see also [4, Section 3]).
For w € S, we write H,, := H; H; ---H; with w = s; 5, ---5s;, a reduced expression
for w € S,. It is well defined because of the braid relations for the H;'s. Write
H;:=H;+1—t=tH; ' and set

g:=t""H, ,---HA'H, ,---H, 1<i<n. (1)

1

The operators &;'s are pairwise commuting invertible operators, with inverses
—1 TT TT
§ =H;---Hy, 1AH;---H; ;.

The éifl (1 <i < n) are the Cherednik operators [2, 4].
The monic non-symmetric Macdonald polynomial E, € F[x] of degree o € C,, is

the unique polynomial satisfying

and normalized such that the coefficient of x* in E, is 1.
Let ¢ be the field automorphism of K inverting g, t and a. It restricts to a field

automorphism of F, inverting g and t. We extend ¢ to a Q-algebra automorphism of K[x]
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and F[x] by letting ¢ act on the coefficients of the polynomial. Write

for o € C,,. Note that vl= @), t(Vy)).
Put HY, HS,, H;, A° and g for the operators Hy, H,,, H;, A and &; with g, t replaced

by their inverses. For instance,

1 -t Hx;

X; —Xi41

A°f(xy,....x,) =f(qx,, Xy, Xp_1).

We then have .§i°E§ =w,;E; fori=1,...,n, which characterizes E; up to a scalar factor.
Theorem 1. For «a € C,, we have

G (x) = WOy e 6ot 1x) (2)
with I(e) :=#{i <j|o; > aj}.

Remark. Formally set t = q", replace x by 1 + (q¢ — 1)x, divide both sides of (2) by
(g — 1*I and take the limit ¢ — 1. Then

G, (x;r) = (=)o (wy)wyG,(—x — (n — 1)r; 1) (3)

for the non-symmetric interpolation Jack polynomial G,(-;r) and its primed version
(see [14]). Here o denotes the action of the symmetric group with o(s;) the rational

degeneration of the Demazure-Lusztig operators H;, given explicitly by

r
o(s))=8;,+———1 —35;),
X — X1

see [14, Section 1]. To establish the formal limit (3) one uses that o (wy)wy = wyo°(wy)

with o° the action of the symmetric group defined in terms of the rational degeneration

. r
o°(s) =8, — ———(1—s5))
X, — X1

of H?. Formula (3) was obtained before in [14, Thm. 1.10].
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Proof. We show that the right-hand side of (2) satisfies the defining properties of G,.
For the vanishing property, note that

tnilWOB':E_l (4)
(this is the g-analog of [14, Lem. 6.1(2)]); hence,
(WOH‘ZIO Gq (tn_lx)) |X=,§ = (Hé’vo G, (X)) |X:B—1 .

This expression is zero for |8| < |«| since it is a linear combination of the evaluated
interpolation polynomials G, (W_,B_l) (w € S,,) by [14, Lem. 2.1(2)].

It remains to show that the top homogeneous terms of both sides of (2) are the
same, that is, that

E, = "“Yw,H;, E? (5)

wo o

Note that ¥ := wHy, satisfies the intertwining properties
H,V = tVH;,

(o]

AV =" WH, .. H{(A)'HS_,---H} (6)

for 1 < i < n (use e.g., [2, Prop. 3.2.2]). It follows that gi—lw = Vg fori =1,...,n.

Therefore,
E,(x) = c,VE, (x)
for some constant ¢, € F. But the coefficient of x* in Wx* is t1®; hence, ¢, = t!®. N

Consider the Demazure operators H; and the Cherednik operators i-‘j_l as
operators on the space F[x*!] of Laurent polynomials. For an integral vector u € Z",
let E, € Flx*!] be the common eigenfunction of the Cherednik operators sj_l with
eigenvalues U; (1 < j < n), normalized such that the coefficient of x" := x| xy"
in E, is 1. For u = «a € C, this definition reproduces the non-symmetric Macdonald

polynomial E, € F[x] as defined before. Note that

Eypany =X X, By ().
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It is now easy to check that formula (5) is valid with « replaced by an arbitrary integral

vector u,
E, = ttWwHS, E° (7)

wo—'u

with E}, := ((E,). Furthermore, one can show in the same vein as the proof of (5) that
WoE o (x71) = E, (%)

for an integral vector u, where p(x~!) stands for inverting all the parameters x, ..., x,,

in the Laurent polynomial p(x) € F[x*!]. Combining this equality with (7) yields
E_ o (x7 1) = "WH, ED (x),

which is a special case of a known identity for non-symmetric Macdonald polynomials
(see [2, Prop. 3.3.3]).

3 Evaluation Formulas
In [14, Thm. 1.1] the following combinatorial evaluation formula
ti-n _ qa’(s)+1t1—l/(s)

_ I'(s) a'(s)
Gy(ar) = H( 1 — qa®+1¢ls)+1 )H(at -q ) 8)

Sea Sea

was obtained, with a(s), I(s), a’(s) and I'(s) the arm, leg, coarm and coleg of s = (i,j) € «,
defined by

as)i=a;—j, Us)=#k>ilj<op<a)+#k<ilj<a+1<al,
a(s):=j—1, U(s):=#k>1i|ayp>a)+#k<i|o>aql
By (8) we have

t17n+l’(s) _ qa’(s)+1t
1— qa(s)+1tl(s)+1 )’

E,(1) = lim a™G, (ar) = H(

Sea

which is the well-known evaluation formula [1, 2] for the non-symmetric Macdonald

polynomials. Note that for e € C,,

Lwy) —I(a) =#{i < jlo; < aj}.
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Lemma 2. Fora € C, we have
_ (1-m)le|+I(e)—¢ o (-1
G;(ar) = tA=n)el+1(@) (WO)Ga(a‘E ).

Proof. Since t" lwyr =171 = 0! we have by Theorem 1,

G (at) = tI-MleH@ (52, Gg)(aﬁﬂ)

— t(I-mlal+I@—two) go (551
o ’

where we have used [14, Lem. 2.1(2)] for the 2nd equality. |

We now derive a relation between the evaluation formulas for G, (x) and G (x).

To formulate this we write, following [8],

n(e) = ZZ(S), n (@) = Za(s).

Sexa Sea

Note that n'(a) = 31| (%); hence, it only depends on the S, -orbit of o, while
n(a) =n(@®) + ((wy) — I(a). 9)

The following lemma is a non-symmetric version of the 1st displayed formula on [10,

page 537].

Lemma 3. Foroa e Cn we have
al s(1-n)|a|—n(a) ,n' (@) ~o —1 _—1

Proof. This follows from the explicit evaluation formula (8) for the non-symmetric

interpolation Macdonald polynomial G,,. |

Following [8, (3.9)] we define 7, € F (@ € C,) by
T, 1= (_1)“"|qn/(“‘)t—"(“+). (10)

It only depends on the S, -orbit of «.
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Corollary 4. For« € C,, we have
G, (a 't) = ta "G, (ar).

Proof. TUse Lemmas 2 and 3 and (9). |

4 Normalized Interpolation Macdonald Polynomials

We need the basic representation of the (double) affine Hecke algebra on the space of
K-valued functions on Z", which is constructed as follows.

For v € Z" and y € K" write v/ := (v,,...,v,,v; + 1) and y* := (V5,..., ¥, qV1)-
Denote the inverse of * by #, so v* = (v, — 1,vy,..., v 1) and VP =Wn/q V1 Vn1) We
have the following lemma (cf. [4, 13, 14]).

Lemma5. LetveZ"and 1l <i< n.Then we have
5;{(V) =5;vif v; # iy
Vi =t i vy =vig,.

7= vh,

Let H be the double affine Hecke algebra over K. It is isomorphic to the
subalgebra of End(K[x*!]) generated by the operators H; (1 < i < n), A*!, and the
multiplication operators XJ li<j<n).

For a unital K-algebra A we write F, for the space of A-valued functions
f:7Z"— AonZ".

Corollary 6. Let A be a unital K-algebra. Consider the A-linear operators fIi (1<i<n),
A andSEJ- (1 <j <n)on F, defined by

-~ v, —tv
B =)+ LS s - fw),

i+1
AHW) =f,  AIHW) =D,
XN W) = avif(v) (11)
for f € ¥, and v € Z". Then H; |—>ﬁi 1<i<n), A A andxj r—>3?j (1 < j < n) defines

a representation H — End,(F,), X > X (X € H) of the double affine Hecke algebra H on
fA-
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Proof. Let O C K" be the smallest S, -invariant and g-invariant subset that contains
{av | v € Z"}. Note that O is contained in {y € K" | y; # Yj if i # j}. The Demazure-
Lusztig operators H; (1 < i < n), A*! and the coordinate multiplication operators Xj
(1 <j < n) act A-linearly on the space FE of A-valued functions on O, and hence turns

F/(? into an H-module. Define the surjective A-linear map
pr: Fg) — Fy

by pr(g)(v) := g(av) (v € Z™).

We claim that Ker(pr) is an H-submodule of Ff. Clearly Ker(pr) is x;-invariant
forj=1,...,n. Let g € Ker(pr). Part 3 of Lemma 5 implies that Ag € Ker(pr). To show
that H;g € Ker(pr) we consider two cases. If v; # v;,; then s;v = 5;v by part 1 of Lemma 5.

Hence,

— _ L, Vi—tv, — —
(H;9)(av) = tg(av) + ———(g(as;v) — g(av)) = 0.
Vi=Vipa
If v; = v;,, then v; = tv;,, by part 2 of Lemma 5. Hence,
v, — tv; _ _ _
<"1 (g(as;v) — g(av)) = tg(av) = 0.

(H,9)(V) = tg(av) + ——
Vi = Vi

Hence, 7, inherits the H-module structure of FE /Ker(pr). It is a straightforward
computation, using Lemma 5 again, to show that the resulting action of H; (1 < i < n),

A and x; (1 <j < n) on F, is by the operators ﬁi 1<i<n)A and&} (1 <j=<n). |

Remark 7. With the notations from (the proof of) Corollary 6, let g € FE and set
g :=pr(g) € F,. In other words, g(v) := g(av) for all v € Z". Then

(Xg)(v) = (Xg)(av), veZ"

for X = H;, A:H,XJ-.

Remark 8. Let F, be the space of A-valued functions on C,. We sometimes will
consider ﬁi (1<i<n)A! and')?j (1 <j < n), defined by the formulas (11), as linear

operators on F,.

Definition 9. We call

G,(x;q,1)

G. (@90 e Klx] (12)

K,(x;q,t;a) =

the normalized non-symmetric interpolation Macdonald polynomial of degree «.
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We frequently use the shorthand notation K, (x) := K, (x; q, t; a). We will see in
a moment that formulas for non-symmetric interpolation Macdonald polynomials take
the nicest form in this particular normalization.

Note that a cannot be specialized to 1 in (12) since G,(r) = G, 0)=0ifa e C, is

nonzero. Note furthermore that

E,(®

E,(7) (13)

lim K, (ax) =
a— o0

since lim, , . a %G, (ax) = E,(x).

Recall from [4] the operator ® = (x,, — t!™™)A € H and the inhomogeneous

Cherednik operators

1 1 .
L“AJ-I)TJ'-F)TJPI]'"'Hn_l(DHl-“I‘IJ-_IEH, 1§]§TL.

The operators H;, Ej and & preserve Klx] (see [4]); hence, they give rise to K-linear
operators on fﬁ[xl (e.g., (H;f)(a) := H;(f(x)) for @ € C,). Note that the operators H;, g;
and ® on Fy;,, commute with the hat-operators H;, %; and A~! on 7, (cf. Remark 8).
The same remarks hold true for the space F, of K(x)-valued functions on Z" (in fact,
in this case the hat-operators define a H-action on F ).

Let K € F-

K] D€ the map « — K, () (& € Cy).

Lemma 10. Forl <i<nandl <j<nwehavein fﬁ(f[x]'

H,K = HK.
S |
._,]K_axj K.

PK = t! a?% ! - )ATIK.

Proof. 1. To derive the formula we need to expand H;K,, as a linear combination of the
Ky's. As a 1st step we expand H;G, as linear combination of the Gg's.

If « € C,, satisfies o; < o, then

HG,(x) = ﬂo‘a (x) + Gy (%)

o — 0y

by [14, Lem. 2.2]. Using part 1 of Lemma 5 and the fact that H; satisfies the quadratic
relation (H; — t)(H; + 1) = 0, it follows that

(t— Da; t@;, , —ta,)(@;, , —t 'a;)
HiGa(X) — — — 1+1 1 1+1 1

“G, (x) +

Gy (X)
— — 2 sia
i % (ai+1 - ai) '
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14826 S. Sahi and J. Stokman

if o € C, satisfies o; > «; ;. Finally, H;G,(x) = tG,(x) if a € C,, satisfies o; = o;,; by [4,
Cor. 3.4].
An explicit expansion of H;K, as linear combination of the Kj's can now be

obtained using the formula

a;, 1 — ta;
G,(at) = H—1G, ,(ar)
@ir1

for o € C, satisfying o; > o;, ;, cf. the proof of [14, Lem 3.1]. By a direct computation the
resulting expansion formula can be written as H;K = H;K.

2. See [4, Thm. 2.6].

3. Let o € C,,. By [14, Lem. 2.2 (1)],

DG, (x) = Gy (x).
By the evaluation formula (8) we have

Gau(ar) _ atl_n+k1(a) _
G,(at)

(03} tl—n.

q

Hence,

DK, (x) =t M(a@; ! — DK, (x).

Remark 11. Note that
OK, (x) = (ad,, — t' K, (x)

fora € C, sincea™! = " wya.

5 Interpolation Macdonald Polynomials with Negative Degrees

In this section we give the natural extension of the interpolation Macdonald polynomi-
als G,(x) and K, (x) to « € Z". It will be the unique extension of K € ]:HJQ[X] to a map

K € Fg(x such that Lemma 10 remains valid.

Lemma 12. For « € C,, we have

Goram (gX)
[Tty (gx; — i)’
(1 —aw; ")

Koo = ([ a =gty evam @0

i=1

G,(x)=q "
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Remarks on Interpolation Macdonald Polynomials 14827
Proof. Note that for f € K[x],
n
o"f0) = ([Tex — ¢ 7™)f@ ).
i=1
The 1st formula then follows by iteration of [14, Lem. 2.2(1)] and the 2nd formula from
part 3 of Lemma 10. |
For m € Z., we define A,, (x; v) € K(x) by
n 1-m . ——1

Ao = [[ Lt D

YveZ®, (14)
i=1 (qtn_lxi;q)m

with (y; q),, := ]_[j";al(l — ¢'y) the g-shifted factorial.

Definition 13. Let v € Z" and write |v| := v; +---+Vv,,. Define G,(x) = G,(x; g, t) € F(x)
and K, (x) =K, (x;q,t; a) € K(x) by

GV+(m") (qmX)
[TL, x" (g ™' x; Y q)

Kv(X) = Am(Xl V)Kv+(m”) (qmX)r

GV(X) = q—m\v|—m2n

’

where m is a nonnegative integer such that v 4+ (m") € C,, (note that G, and K, are well
defined by Lemma 12).

Example 14. If n =1 thenform € Z.,
K ()=

Lemma 15. Forall v e Z",
G, (x)

KV(X) = m

Proof. Letv e Z". Clearly G,(x) and K, (x) only differ by a multiplicative constant, so
it suffices to show that K (atr) = 1. Fix m € Z., such that v + (m") € C,,. Then

G n ( maf)
K,(at) = A, (at; VK, | mn (@"at) = Ay, (at; V)% =
GV_,’_(mn)(aT)
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14828 S. Sahi and J. Stokman

where the last formula follows from a direct computation using the evaluation formula
(8). |

We extend the map K : C,, — Klx] to a map
K:7" - K(x)
by setting v — K, (x) for all v € Z". Lemma 10 now extends as follows.

Proposition 16. We have, as identities in FKx)r

HK = HK.
N P |
HJK_axj K.

K = ¢! a?%;! - HATIK.

Proof. Write A,, € Fg(, for the map v — A, (x;v) for v € Z". Consider the linear
operator on Fy defined by (4,,/)(v) == A, &x;v)f(v) for v € Z" and f € FK(x)- For

1 <i < nwe have [H;, A,;] = 0 as linear operators on Fy ), since A, (x; v) is a symmetric

rational function in x;, ..., x,,. Furthermore, for v e Z" and f € FRx)r
(H; 0 Af) () = (A, o HYf)(v) if v; # vy (15)
by part 2 of Lemma 5 and the fact that A,,(x; v) is symmetric in v,,...,V,. Fix v € Z"

and choose m € Z_ such that v + (m") € C,. Since

we obtain from [H;, A, ] = 0 and (15) that (H;K)(v) = (ﬁiK)(V) if v; # v;, 1. This also holds
true if v; = v;,; since then (HK)(v) = tK, and HiK,\ (mn)(@"x) = tK, ;yn)(q"x). This
proves part 1 of the proposition.

Note that ®K,(x) = tl*"(cﬁl_1 — 1)K,z (x) for arbitrary v € Z" by Lemma 10 and

the commutation relation
PoA, =A,0dd", (16)

where ®@") := (g™x,, — t'~™)A. This proves part 3 of the proposition.
Finally we have 8K, (x) = VJTIKV(X) for all v € Z" by [H;,A,,] = 0, (16) and
Lemma 10. This proves part 2 of the proposition. |
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6 Duality of the Non-Symmetric Interpolation Macdonald Polynomials

Recall the notation v = —w,v for v € Z".

Theorem 17. (Duality). For all u,v € Z™ we have
K, (av) =K, (au). (17)
Example 18. Ifn=1andm,re Zq then

(a_l? Dmtr

K -y _ ,—mr
@)= T g e ),

(18)

by the explicit expression for K,,(x) from Example 14. The right-hand side of (18) is

manifestly invariant under the interchange of m and r.
Proof. We divide the proof of the theorem in several steps. |

Step 1. If K, (av) = K,(au) for all v € Z" then KSiu(cﬁ) = K,(as;u) for v € Z" and

1<i<n.

Proof of Step 1. Writing out the formula from part 1 of Proposition 16 gives

t—1)y; — (Vi —tVy; o
%Kﬁav)—i—(l—f“)l{u(asn_iv)
(Vi = Viy1) vi _1Vi:rl o 19)
t—1Du; ~ u; —tu; ~
ZQKIA(G«V) + (_l—_lH)Ks.u(aV).
(U; — Uiyy) U — Uiy '
Replacing in (19) the role of u and v and replacing i by n — i we get
t—Du,_; e Uy —tU, _
(7 Dl KV(au)+(~"l—~"+“)KV(asiu)
(Up—j = Upy1-9) lz:—i I_)i‘n—&-l—i ) _ 20)
-Dv,_; _ Vi — Vi1 ~
Z%K‘,(au) + (_nl—_n-i_ll)Ksn_iV(CLU).
(Vn—i = Vpy1-i) Vi =~ Vn+1-i

Suppose that s, ;v = v. Then v

—1
n+1-i’

direct computation that (19) reduces to K, (av) = K, (av) and (20) to K, (as;u) = K, (au)

n_i = tV,,1_; by the 2nd part of Lemma 5. Since

v =t"""w,v !, thatis, v; = t! v we then also have ¥; = tv;, ;. It then follows by a

ifs, ;v=v.
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14830 S. Sahi and J. Stokman

We now use these observations to prove Step 1. Assume that K, (av) = K, (au)
for all v. We have to show that K ,,(av) = K, (as;u) for all v. It is trivially true if s;u = u,
so we may assume that s;u # u. Suppose that v satisfies s,,_;,v = v. Then it follows from

the previous paragraph that
Ksiu(cﬁ) =K, (av) = K, (au) = K, (as;u).

If s, ;v # v then (19) and the induction hypothesis can be used to write K, (av)
as an explicit linear combination of K,(au) and K; _,(au). Then (20) can be used to
rewrite the term involving K; . (au) as an explicit linear combination of K,(au) and
K, (as;u). Hence, we obtain an explicit expression of K, ,(av) as linear combination of
K,(au) and K, (as;u), which turns out to reduce to Ksl,u(cﬁ) = K,(as;u) after a direct

computation. |
Step 2. K,(av) =1 =K,(a0) for all v € Z".

Proof of Step 2. Clearly Ky(x) = 1 and KV(aa) = K,(at) = 1 for v € Z" by
Lemma 15. u

Step3. K,(av) =K,(aa) forveZ" and « € C,,.

Proof of Step 3. We prove it by induction. It is true for « = 0 by Step 2. Let m € Z_
and suppose that K, (av) = K, (ay) for v € Z" and y € C, with |y| < m. Let « € C,, with
|| = m.

We need to show that K, (av) = K, (ax) for all v € Z"™. By Step 1 we may assume
without loss of generality that «,, > 0. Then y := of € C, satisfies |[y| = m — 1, and

a = y". Furthermore, note that we have the formula
@' — DK, (av?) = (aT; " — DK, (@) (21)

for all u,v € Z"™, which follows by writing out the formula from part 3 of Lemma 16.

Hence, we obtain

K. (aV) = K..(a¥) = (a_vl_l—_l)K (av?)
T @t -n
_ (avy'—1)

= K. ) =K ~U =K o ,
@ T-1) v:(ay) = Ky(ay®) = Ky (aa)

where we used the induction hypothesis for the 3rd equality and (21) for the 2nd and
4th equality. This proves the induction step. |
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Step4. K, (av) =K, (au) forall u,v € Z".

Proof of Step 4. Fix u,v € Z". Let m € Z. such that u 4 (m") € C,,. Note that ¢"'v =

v ff_r;”) andg mu=u :E_n/l"). Then

= A @V WKy, m (a(v — (M)
= Ap @V, WK, _ o (a(u+ (m")))
= A, (aV; WK, _mn (g "al) = Ay, (aV; wA,, (@ "au; v — (m")K, (at),
where we used Step 3 in the 3rd equality. The result now follows from the fact that
A, (@v; wA,, (@ "au;v—(m") =1,
which follows by a straightforward computation using (4). |

7 Some Applications of Duality
7.1 Non-symmetric Macdonald polynomials
Recall that the (monic) non-symmetric Macdonald polynomial E, (x) of degree « is the

top homogeneous component of G, (x), i.e.,

E (x) = alinoloa_“”Ga(ax), aeC,.

The normalized non-symmetric Macdonald polynomials are

E,(x)
E (1)

o

K,(x):= ali)noloKa(aX) = , aeC,.

We write K € F . for the resulting map « + K. Taking limits in Lemma 10 we get the
Flx] 8 e g g

following.

Lemma 19. Wehaveforl <i<nandl <j<n,
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Note that
e 0)"F 0 = ([Txi)f @ .
i=1

Then repeated application of part 3 of Lemma 19 shows that for« € C,,,

Xl...X

n
K, (x) = gl ( H(aixi)il)ia-‘r(l”)(x)-
i=1

(22)

As is well known and already noted in Section 2, the 1st equality allows to relate the

non-symmetric Macdonald polynomials E, (x) := E,(x; g, t) € F[x*!] for arbitrary v € Z"

to those labeled by compositions through the formula

EV+(m")(X)

EV(X)= (XIX )m

n

The 2nd formula of (22) can now be used to explicitly define the normalized non-

symmetric Macdonald polynomials for degrees v € Z".

Definition 20. Let v € Z" and m € Z., such that v + (m") € C,. Then I?V(X) =

K,(x;q,t) € Flx*!] is defined by
n
R, () 1= gV ([0 ™) By ) (0-
i=1
Using
) n
lim A, (axv) =g ™ e [[@x) ™"

i=1

and the definitions of G,(x) and K, (x) it follows that

lim a VG (ax) = E,(x),

Jim K, (ax) = K,(x)

for all v € Z", so in particular
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Lemma 19 holds true for the extension of K to the map K € Fy 41 defined by v — K,
(v € Z"). Taking the limit in Theorem 17 we obtain the well-known duality [1] of the

Laurent polynomial versions of the normalized non-symmetric Macdonald polynomials.

Corollary 21. For all u,v € Z",

7.2 O-polynomials

We now show that the duality of the non-symmetric interpolation Macdonald polyno-
mials (Theorem 17) directly implies the existence of the O-polynomials O, (which is the
nontrivial part of the proof of [14, Thm. 1.2]), and that it provides an explicit expression

for O, in terms of the non-symmetric interpolation Macdonald polynomial X, .
Proposition 22. For all « € C,, we have
0,(x) =K, (t' "awyx).
Proof. The polynomial ba (x) ==K, (tl_”awox) is of degree at most |¢| and
0,(F ) =K, (t' "awoB ') = K, (aB) = Ky(ad)

for all 8 € C,, by (4) and Theorem 17. Hence, 5a =0,. [ |

o

7.3 Okounkov’s duality

Write F[x]5» for the symmetric polynomials in x,...,x, with coefficients in a field
F. Write C, := Zwesn H,. The symmetric interpolation Macdonald polynomial
R, (x) € FlxI" is the multiple of C, G, such that the coefficient of x* is one (see, e.g.,
[13]). We write

—R’\ &) e K

Sn
R, (ar) < <

Krx) =

for the normalized symmetric interpolation Macdonald polynomial. Then

C,K,(x)= ( Z tZ(W>)KOZ(X) (23)

wWeS,

for o € C,,. Okounkov’s [10, Section 2] duality result now reads as follows.
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Theorem 23. For partitions A, u € P, we have

I —1
K (an™") =Kl (ax ).

Let us derive Theorem 23 as consequence of Theorem 17. Write C, = >, s Hy,,
with H, := H; ---H; for a reduced expression w = s; ---s; . Write f, € Fg for the

functionfﬂ(u) =K (ap) (u € Z"™). Then

(> #")KS (@ib) = (€.K,) @) = C.f,) 0 (24)

weSy

by part 1 of Proposition 16. The duality (17) of K, and (4) imply that

f(w) =K, (at) = (JwoK, (' 7"%))|y_g1g (25)
with (Jf)(x) :=f(X1_l, e ,X,‘Ll) for f € K(x). A direct computation shows that
JHJ = H) ™Y, woHwy = (HS )7 (26)

for 1 <i < n.In particular, Jw,C, = C, Jw,. Combined with Remark 7 we conclude that
@ f) ) = (rCK, (B9 i

By (23) and (4) this simplifies to

Cofpm = ( D )k @h.

weSy

Returning to (24) we conclude that Kf(aﬁ) = K;(ai). Since K;r is symmetric we obtain

from (4) that
K @r ) =K@ ),

which is Okounkov’s duality result.

7.4 A primed version of duality

We first derive the following twisted version of the duality of the non-symmetric

interpolation Macdonald polynomials (Theorem 17).
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Lemma 24. For u,v € Z"™ we have

(Hy,Ky)(@V) = (H,, K,)(al). (27)

Proof. We proceed as in the previous subsection. Set f, (u) := K, (av) for u,v € Z". By

part 1 of Proposition 16,

(HuwoKo) @?) = (Hyof,) W),

Since f, (u) = (IwyK,)(a~'t""1w) by (4), Remark 7 implies that
(H,, f,) (W) = (H,, JwoK,) (@ " u).
Now H,, Jw, = JwyH,, by (26); hence,
(H,,f,) W = (JwoH,, K,) (@ 't"" ') = (H,, K,)(ah),
which completes the proof. |

Recall from Theorem 1 that
G};(X) — t(l—n)lﬂl-i-l(ﬂ)\yG%(tn—lX)

with W := wyHy, . We define normalized versions by

G} ()

Ky(x) = G 1o

=t'WIUK; (" 'x),  BeCy,
with K{ := 1«(K,) for v € Z" (the 2nd formula follows from Lemma 2). More generally, we

define for v € Z",
K, (x) := t"WOwKS (" 1x). (28)

We write K’ : Z" — K(x) for the map v — Kj, (v € Z"). Since H;¥ = WH, part 1 of
Proposition 16 gives H;K' = fILF’K/. Considering the action of ((x,, — 1)A°)" on Kl/g(x) we
get, using the fact that ((x,, — 1)A°)"” commutes with ¥ and part 3 of Proposition 16,

n

/ (1 - ailvi) / -
K, (x) = (H m)Kerun)(q 'x),
i=1 t

220z @unp || uo Jasn saueiqr] Ausioaiun s1oBiny Ag L98Y19G/7 L8 L/61/1.Z0Z/S10Ie/ulwl/wod dno olwspeoe)/:sdjy Wolj papeojumoq



14836 S. Sahi and J. Stokman

in particular

K00 = (]

n
i=

(a lvi’q)m / -m
W)Kv+<m"><q X)-

1 m

Example 25. For n = 1 we have K}, (x) = K{(x) for v € Z; hence,

(@'alig), m (qa:iq),
(@ 'xq71),, (gx71;q),,
xhah), (a9,
(@q), (aha),

K, (x) = = (ax)

Ky, (x) = (ax)™
for m € Z. by Example 14.
Proposition 26. For all u,v € Z™ we have
K, (a 'u) =K, (a"'v).
Proof. Note that
Ky (@ 'w) = t"YOUK (" %) g = PO (H, KDY (@ uT)

by (4). By (27) the right-hand side is invariant under the interchange of u and v. |

7.5 Binomial formula and dual binomial formula

In [14] the existence and uniqueness of O, was used to prove the following binomial

theorem [14, Thm. 1.3]. Define for «, 8 € C,, the generalized binomial coefficient by

.
[a} . G8@ (29)
gl 6P

Applying the automorphism ¢ of F to (29) we get

[a} _G@h
Ploier GRBH
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Theorem 27. For «, 8 € C,, we have the binomial formula

Ka(aX) = Z alﬂl |:ai| GG;S(X) . (30)
FeCn B g-1-1 ﬂ(a‘f)

Remark 28. 1. Note that the sum in (30) is finite, since the generalized binomial
coefficient (29) is zero unless g C o, with § C « meaning 8, <«; fori=1,...,n.

2. By Corollary 4 and (28) the binomial formula (30) can be alternatively written as

1|
K, (ax) = Z ! [ } Kj(x)
BECn g1t

K5 @ K (x)
=> L= (31)
peC, TpKg(B )
Kg(a—l)prg(t"—lx)

—
pecn KRB )

— tE(WO)

with W = woHp,
the normalization factors of the interpolation polynomials Kg (x) and K/’6 (x)).
3. The binomial formula (30) and Theorem 1 imply the twisted duality (27) of K|,

as follows. By the identity H,, W = w, the binomial formula (31) implies the finite

(note that the dependence on a in the right-hand side of (31) is through

expansion
K@ HKS (" twyx)
(HWoKa)(a'X) = ¢! Z : ﬁ——l )
7wk )

Substituting x = ¥ and using (4) we obtain

_ Kg@ DKy
(HyoK,)(@p) = >
pecn  TpKp(B )
The right-hand side is manifestly invariant under interchanging « and y, which is

equivalent to twisted duality (27).

In [8, Section 4] it is remarked that an explicit identity relating G, and G,
is needed to provide a proof of the dual binomial formula [8, Thm. 4.4] as a direct
consequence of the binomial formula (30). We show here that Theorem 1 is providing
the required identity. Instead of Theorem 1 we use its normalized version, encoded
by (28).
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The dual binomial formula [8, Thm. 4.4] in our notations reads as follows.

Theorem 29. For all @ € C,, we have

K,0 = 14 [a] Kj(ax). (32)
BeCn qt

The starting point of the alternative proof of (32) is the binomial formula in the

form
G (a—l)\ng(t”—lx)

P
pecn  TGR(B )

’

K, (ax) = t‘wo)

1

see (31). Replace (a,x,q,t) by (a!,at" 'x,q7!,t7!) and act by woH,,, on both sides.

Since wyH,, WV = Id we obtain

WKy (" x) =10 Y [;} Ky (ax).
p

q.t

Now use (28) to complete the proof of (32).

Remark 30. It follows from this proof of (32) that the dual binomial formula (32) can
be rewritten as
I71.9" ()Kg(ax)

- (33)
K4(B)

WKy (" x) = 0
B

As observed in [8, (4.11)], the binomial and dual binomial formula directly imply

Z T =0y
BeCn B at 14 g1t

)
Since |: :| = 0 unless § D ¢, the terms in the sum are zero unless y € 8 C «.
€
qt

the orthogonality relations

Acknowledgments

We thank Eric Rains for sharing with us his unpublished results with Alain Lascoux and Ole

Warnaar on a one-parameter rational extension of the non-symmetric interpolation Macdonald

220z @unp || uo Jasn saueiqr] Ausioaiun s1oBiny Ag L98Y19G/7 L8 L/61/1.Z0Z/S10Ie/ulwl/wod dno olwspeoe)/:sdjy Wolj papeojumoq



Remarks on Interpolation Macdonald Polynomials 14839

polynomials. It leads to a different proof of the duality of the non-symmetric interpolation

Macdonald polynomials (Theorem B). We thank an anonymous referee for detailed comments.

Funding

This work was partially supported by Simons Foundation [509766 to S.S.].

References

[1] Cherednik, I. “Nonsymmetric Macdonald polynomials.” Int. Math. Res. Not. 1995, no. 10
(1995): 483-515.

[2] Cherednik, I. Double Affine Hecke Algebras. London Mathematical Society Lecture Note
Series 319, 2005. Cambridge: Cambridge University Press.

[3] Knop, F. “Symmetric and nonsymmetric quantum Capelli polynomials.” Comment. Math.
Helv. 72 (1997): 84-100.

[4] Xnop, F. and S. Sahi. “Difference equations and symmetric polynomials defined by their
zeros.” Int. Math. Res. Not. 1996, no. 10 (1996): 473-86.

[6] Kostant, B. and S. Sahi. “The Capelli identity, tube domains, and the generalized Laplace
transform.” Adv. Math. 87, no. 1 (1991): 71-92.

[6] Kostant, B. and S. Sahi. “Jordan algebras and Capelli identities.” Invent. Math. 112, no. 3
(1993): 657-64.

[71 Lascoux, A., E. M. Rains, and S. O. Warnaar. “Nonsymmetric interpolation Macdonald
polynomials and gl,, basic hypergeometric series.” Transform. Groups 14, no. 3 (2009):
613-47.

[8] Macdonald, 1. G. Symmetric Functions and Hall Polynomials, 2nd ed. Oxford: Clarendon
Press, 1995.

[9] Okounkov, A. “Binomial formula for Macdonald polynomials and applications.” Math Res.
Lett. 4 (1997): 533-53.

[10] Sahi, S. “The Spectrum of Certain Invariant Differential Operators Associated to a Hermitian
Symmetric Space.” Lie Theory and Geometry, 569-76. Progress in Mathematics, 123. Boston,
MA: Birkhauser Boston, 1994.

[11] Sahi, S. “Interpolation, integrality, and a generalization of Macdonald’s polynomials.” Int.
Math. Res. Not. 1996, no. 10 (1996): 457-71.

[12] Sahi, S. “The binomial formula for nonsymmetric Macdonald polynomials.” Duke Math. J.

94, no. 3 (1998): 465-77.

220z @unp || uo Jasn saueiqr] Ausioaiun s1oBiny Ag L98Y19G/7 L8 L/61/1.Z0Z/S10Ie/ulwl/wod dno olwspeoe)/:sdjy Wolj papeojumoq



	Some Remarks on Non-Symmetric Interpolation Macdonald Polynomials
	1 Introduction
	2 Demazure-Lusztig Operators and the Primed Interpolation Polynomials
	3 Evaluation Formulas
	4 Normalized Interpolation Macdonald Polynomials
	5 Interpolation Macdonald Polynomials with Negative Degrees
	6 Duality of the Non-Symmetric Interpolation Macdonald Polynomials
	7 Some Applications of Duality


