
REPRESENTATION THEORY
An Electronic Journal of the American Mathematical Society
Volume 25, Pages 481–507 (June 7, 2021)
https://doi.org/10.1090/ert/565

EULERIANITY OF FOURIER COEFFICIENTS

OF AUTOMORPHIC FORMS

DMITRY GOUREVITCH, HENRIK P. A. GUSTAFSSON, AXEL KLEINSCHMIDT,
DANIEL PERSSON, AND SIDDHARTHA SAHI

Abstract. We study the question of Eulerianity (factorizability) for Fourier
coefficients of automorphic forms, and we prove a general transfer theorem
that allows one to deduce the Eulerianity of certain coefficients from that of
another coefficient. We also establish a ‘hidden’ invariance property of Fourier
coefficients. We apply these results to minimal and next-to-minimal automor-
phic representations, and deduce Eulerianity for a large class of Fourier and

Fourier–Jacobi coefficients. In particular, we prove Eulerianity for parabolic
Fourier coefficients with characters of maximal rank for a class of Eisenstein
series in minimal and next-to-minimal representations of groups of ADE-type
that are of interest in string theory.

Contents

1. Introduction 481
2. Preliminaries 485
3. General results 490
4. Applications to small representations 492
5. Eisenstein series 494
Acknowledgments 504
References 504

1. Introduction

In the classical theory of modular forms for SL2 the study of Fourier coefficients is
instrumental for revealing arithmetic information. For example, Fourier coefficients
of Eisenstein series carry information on the analytic continuation of zeta functions,
while Fourier coefficients of theta functions yield important results for Euclidean
lattices (see, e.g., [Ser73]). For automorphic forms on groups of higher rank the
study of Fourier coefficients is crucial when proving the meromorphic continuation
of Langlands L-functions as well as analysing the trace formula, both of which
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are cornerstones in the Langlands program (see, e.g., [Lan71, Sha78, Sha81, JR97,
Gin14]).

A key step in proving continuation of L-functions is the unfolding of global
(adelic) integrals, which in particular involves Fourier coefficients of Eisenstein se-
ries. It is then important to consider special types of Fourier coefficients which are
Eulerian, i.e. can be factorized into an Euler product over all places. The prototypes
of such coefficients are the so-called Whittaker–Fourier coefficients, or Whittaker
coefficients for short. For now, let G be a reductive algebraic group defined and
quasi-split over a number field K. Let A = AK be the adele ring of K, G = G(A)
and Γ = G(K). For some of our results we will later also consider non-split groups
and finite central extensions of G(A). Choose a Borel subgroup B = NA ⊂ G,
with maximal torus A and unipotent radical N. Let ψN be a unitary character on
N = N(A), trivial on N ∩ Γ = N(K). Furthermore, let η be an automorphic form
in an admissible automorphic representation π of G. To this data one can associate
the Whittaker coefficient:

(1.1) WψN
[η](g) =

∫

N(K)\N(A)

η(ng)ψN (n)−1dn g ∈ G.

Choose a pinning of G, i.e., for every simple root α a non-zero root vector
Xα ∈ gα, and let xα : Ga → G be the corresponding one-parameter subgroup of
G. When ψN is generic, that is, ψN (xα(t)) is non-trivial for all simple roots α, it is
well-known that WψN

[η](g) is Eulerian, that is, for a pure tensor η in an irreducible
admissible representation π =

⊗
ν πν , it factorizes over the places ν of K as

(1.2) WψN
[η](g) =

∏

ν

WψN ,ν [η](gν), g =
∏

ν

gν , gν ∈ G(Kν),

where WψN ,ν [η] are local Whittaker functions. This follows from the fact that the
corresponding local Whittaker models induced by ψN are at most one-dimensional
[GK75,Sha74,Rod73,Kos78].

More generally, to any unipotent subgroup U ⊂ G and any unitary character
ψU on U = U(A) trivial on U(K) one can associate the Fourier coefficient (or
‘unipotent period integral’)

(1.3) FψU
[η](g) =

∫

U(K)\U(A)

η(ug)ψU (u)
−1du.

In particular, when U is the unipotent radical of a standard parabolic subgroup
P of G, we will call FψU

a parabolic Fourier coefficient. The above Whittaker
coefficients correspond to the special case when P equals the minimal parabolic B.

It is a difficult question to determine, in general, for which choice of data
(η,U, ψU ) the Fourier coefficient FψU

[η] is Eulerian. Generally, one does not ex-
pect it to factorize. However, when η belongs to a class of minimal automorphic

representations πmin, obtained as special values (see Table 1) of spherical Eisenstein
series on groups of type E6, E7 and E8, we recently showed that FψU

[η] is Eulerian
if U is the unipotent radical of a maximal parabolic subgroup of G, and ψU is a
non-trivial character on U [GGK+20, Remark 1.5.6].1

In this paper we prove Eulerianity for a large class of Fourier coefficients. We will
use a variety of techniques, building on our previous works [GGK+18,GGK+20] as

1Previous related work includes [GRS97,GS05,MS12,GMV15,GKP16,FGKP18].
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well as on [GGS17] and [FKP14,FGKP18]. To explain our results we first introduce
some terminology which will be detailed further in §2.

Let g = gK be the Lie algebra of Γ = G(K) and g∗ its vector space dual. A
Whittaker pair is an ordered pair (S, ϕ) ∈ g × g∗ where S is semi-simple and
rational, i.e. ad(S) has eigenvalues in Q, and ad∗(S)ϕ = −2ϕ. Fix an additive,
unitary character χ on A trivial on K. A Whittaker pair (S, ϕ) determines a
unipotent subgroup NS,ϕ ⊂ G(A) defined in (2.1) along with a unitary character
χϕ on NS,ϕ, trivial on NS,ϕ ∩ Γ, defined by χϕ(n) := χ(ϕ(logn)). In this way
we can associate to any automorphic form η and Whittaker pair (S, ϕ) a Fourier
coefficient

(1.4) FS,ϕ[η](g) =

∫

(NS,ϕ∩Γ)\NS,ϕ

η(ng)χϕ(n)
−1dn.

Note that this class of Fourier coefficients includes, in particular, all parabolic

Fourier coefficients as well as the coefficients studied in [GRS97,GRS11,Gin06a,
GH11,JLS16] which we call neutral Fourier coefficients and will define below.

The vanishing properties of these neutral Fourier coefficients determine the global
wave-front set WO(η) consisting of Γ-orbits of nilpotent elements ϕ ∈ g∗. Using the
partial ordering of these orbits, the global wave-front set is used to define minimal
and next-to-minimal representations in §2. The set of maximal orbits in WO(η)
form the Whittaker support WS(η) and we say that Fourier coefficients FS,ϕ[η] with
Γϕ ∈ WS(η) are of maximal rank.

To present our results in full generality, we will need a more general notion of
Fourier coefficients which, besides NS,ϕ, contain a further period integral depending
on a choice of an isotropic subspace of g. Let us briefly describe it now, and refer
to Definition 2.14 below for further details.

For aWhittaker pair (S, ϕ) let uS denote the nilpotent subalgebra of g spanned by
the eigenspaces of ad(S) in g corresponding to eigenvalues at least 1. Then ϕ defines
an antisymmetric form ωϕ on uS by ωϕ(X,Y ) := ϕ([X,Y ]). The Lie subalgebra
nS,ϕ of NS,ϕ ∩ Γ mentioned above is the radical of this form. Choose any isotropic
subspace i of uS with respect to ωϕ that contains nS,ϕ and let I := Exp(i⊗K A) be
the corresponding subgroup of G = G(A). For any automorphic form η, we define
the isotropic Fourier coefficient FI

S,ϕ[η] by

(1.5) FI
S,ϕ[η](g) =

∫

(I∩Γ)\I

η(ng)χϕ(n)
−1dn,

where χϕ can be extended to a character on I as explained in §2. We are in partic-
ular interested in maximal isotropic subspaces of uS with respect to inclusion. The
corresponding maximal isotropic Fourier coefficients will be called Fourier–Jacobi

coefficients for short and are a generalization of the similarly named coefficients
in [HS16, §5.2.3] (c.f. [Ike94,GRS03]). As further discussed in Remark 2.15, max-
imal isotropic subspaces are in bijection with Lagrangian subspaces of the abelian
quotient uS/nS,ϕ.

If ad(S) does not have eigenvalue 1 then uS = nS,ϕ and thus FS,ϕ[η] = FI
S,ϕ[η]

meaning that FS,ϕ is a Fourier–Jacobi coefficient. This is, for example, the case for
any parabolic Fourier coefficient. In general, FS,ϕ[η] equals a sum of left-translates
of FI

S,ϕ[η] as seen in [GGK+18, Lemma 3.1.1].
The main results of this paper are contained in the following statements.
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Theorem A (Transfer of Eulerianity, §3.1). Let η be an automorphic form on G.

Let (S, ϕ) and (H,ψ) be two Whittaker pairs such that Γψ = Γϕ ∈ WS(η). Suppose
that a Fourier–Jacobi coefficient FI

S,ϕ[η] is Eulerian. Then any Fourier–Jacobi

coefficient FI′

H,ψ[η] is also Eulerian.

In particular, we may use this to transfer Eulerianity to Fourier coefficients FS,ϕ

for which ad(S) has no eigenvalue 1, such as to parabolic Fourier coefficients. Recall
that any such Fourier coefficient is a Fourier–Jacobi coefficient.

Theorem B (Hidden symmetry, §3.2). Let η be an automorphic form on G, and

let (H,ϕ) be a Whittaker pair with Γϕ ∈ WS(η). Then any unipotent element of the

centralizer of the pair (H,ϕ) in G acts trivially on the Fourier coefficient FH,ϕ[η]
using the left regular action.

From Theorem A and the local uniqueness results in [LS06,KS15] we obtain the
following corollary.

Corollary C (§4.1). Let G be split of type Dn or E7, and let π be an irreducible

unitary minimal subrepresentation of A(G). Then any Fourier–Jacobi coefficient

FI
H,ϕ with ϕ �= 0 is Eulerian on π.

From Theorems A and B together with local uniqueness results from [GGP12,
JSZ10] we have the following corollary.

Corollary D (§4.2). Suppose that G is split of type Bn or Dn and let π be an

irreducible admissible automorphic representation of G(A). Let (H,ϕ) be a Whit-

taker pair with Γϕ ∈ WS(π) such that the complex orbit of ϕ is (31 . . . 1). Then

any Fourier–Jacobi coefficient FI
H,ϕ is Eulerian on π.

The next result concerns a class of spherical Eisenstein series and their Fourier–
Jacobi coefficients (in particular parabolic Fourier coefficients) that are of interest
in string theory as reviewed in [FGKP18]. The result follows from analyzing degen-
erate Whittaker coefficients using the reduction formula of Theorem 5.1, together
with Theorem A.

Theorem E (§5). Let G be a simple algebraic group split and defined over Q
of type A, D, or E. Then, for a class of spherical Eisenstein series in minimal

and next-to-minimal automorphic representations of G(AQ), listed in Table 1, all
Fourier–Jacobi coefficients of maximal rank are Eulerian.

For G = GLn(A), we deduce from [MW89,Gin06a, JL13,OS07] a very general
theorem.

Theorem F (§3.3). Let π be an irreducible admissible automorphic representation

in the discrete spectrum of GLn(A). Let (H,ψ) be a Whittaker pair with Γψ ∈
WS(π). Then any Fourier–Jacobi coefficient FI

H,ψ is Eulerian on π.

Remark 1.1. We expect that Theorems E and F hold in wider generality for other
automorphic forms and other groups as well. We remark here that for a neutral
pair (H,ϕ), the dimension of I is half the dimension of the orbit of ϕ, and thus this
expectation is in compliance with the dimension formula of [Gin06b].

Remark 1.2. A local result related to Theorem A is proven in [MW87]. Namely,
[MW87] consider non-archimedean local counterparts of Fourier coefficients, called
degenerate Whittaker models. They prove that for all Whittaker pairs (H,ϕ) with ϕ
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in the local Whittaker support, the dimension of the corresponding local Whittaker
model depends only on the orbit of ϕ.

While local uniqueness implies Eulerianity, the result of [MW87] cannot in gen-
eral replace the use of Theorem A for two reasons. First, [MW87] do not consider
the archimedean places, and second, the local Whittaker support (which equals the
local wave-front set) can be bigger than the global one.

After introducing the necessary preliminary background material in §2, we begin
in §3 by establishing some general results including transfer of Eulerianity (Theo-
rem A) and hidden invariance of Fourier coefficients (Theorem B) with respect to
the left regular action using techniques developed in [GGK+18,GGS]. In the same
section, we also show Eulerianity of Fourier coefficients for GLn(A) (Theorem F).
In §4 we apply Theorem A to Fourier coefficients for small automorphic represen-
tations. Specifically, in §4.1 we use the local uniqueness results of [KS15] to study
Eulerianity in the case of minimal representations (Corollary C). In §4.2 we use The-
orem B and the local uniqueness results of so-called Bessel models [GGP12,JSZ10]
to prove Corollary D.

In §5 we focus on certain spherical Eisenstein series realizing minimal and next-
to-minimal automorphic representations. We show that degenerate Whittaker coef-
ficients of maximal rank for that representation are Eulerian by direct computation
using the reduction formula of Theorem 5.1 from [FKP14]. We then use Theo-
rem A to transfer Eulerianity to other Fourier–Jacobi coefficients, including other
parabolic coefficients.

2. Preliminaries

Let K be a number field, o its ring of integers and A its ring of adeles. Let G be
a reductive algebraic group defined over K, G = G(A) and Γ = G(K). Let gK be
the Lie algebra of G(K) which we will often abbreviate to g. We will use a similar
notation for the Lie algebra of any subgroup of G(K).

Conversely, let u = uK be a nilpotent Lie subalgebra of g. It defines a unipotent
algebraic subgroup U of G such that U(K) = Exp(uK) and U(A) = Exp(uK⊗KA).
For convenience we will use the notation U := U(A) and [U ] := (U ∩ Γ)\U =
U(K)\U(A).

Let Kν denote the completion of K with respect to a place ν and oν the cor-
responding completion of the ring of integers o. For the following definition we
introduce the notation Kfin :=

∏
finite ν G(oν) and Ginf :=

∏
infinite ν G(Kν).

Definition 2.1. An automorphic form on G = G(A) is a function on G that is left
Γ-invariant, finite under the right-action of Kfin, and smooth under the right-action
of Ginf. Furthermore, it should be of moderate growth, and finite under the action
of the center Z of the universal enveloping algebra of g (see e.g. [FGKP18] for
details). We will denote the space of automorphic forms on G by A(G).

Some of our intermediate results hold for a space of functions more general
than A(G), where the requirements of moderate growth and finiteness under Z are
dropped. We call these functions automorphic functions. See [GGK+18] for details.

We are interested in different types of Fourier coefficients of automorphic func-
tions. A convenient way of describing different Fourier coefficients is via with so-
called Whittaker pairs which we will now introduce. Let S be a semi-simple element
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in g. We say that S is rational if adS has eigenvalues in Q. Let also g∗ be the
vector space dual of g.

Definition 2.2. A Whittaker pair is an ordered pair (S, ϕ) ∈ g × g∗ where S is
rational semi-simple and ad∗(S)ϕ = −2ϕ.

The fact that ϕ is in the (−2)-eigenspace of ad∗(S) implies that ϕ is nilpotent
in the sense that the closure of its co-adjoint orbit contains the trivial element. We
shall also use that it is paired with a nilpotent element fϕ ∈ g using the Killing
form. For reductive groups, the Killing form can be degenerate but there is a unique
nilpotent element that it is paired with.

Since eigenspaces of rational semi-simple elements will figure frequently through-
out the paper we introduce the following notation. We denote by gSλ the eigenspace
of ad(S) in g with eigenvalue λ ∈ Q. Let also gS>λ :=

⊕
μ>λ g

S
μ and similarly for

other inequalities as well as for g and ad(S) replaced by g∗ and ad∗(S). Moreover,
for ϕ ∈ g∗ we also denote by gϕ the stabilizer of ϕ in g under the coadjoint action.

For a Whittaker pair (S, ϕ) let NS,ϕ be the unipotent subgroup of G defined by
its Lie algebra

(2.1) nS,ϕ = gS>1 ⊕ (gS1 ∩ gϕ) .

viaNS,ϕ := NS,ϕ(A) = Exp(nS,ϕ⊗KA). Then, ϕ defines a character χϕ on [NS,ϕ] :=
NS,ϕ(K)\NS,ϕ(A) as follows. Fix a non-trivial unitary character χ on A trivial on
K and define χϕ by χϕ(n) = χ(ϕ(logn)) for n ∈ NS,ϕ where the logarithm is
well-defined since n is unipotent.

Definition 2.3. We define the Fourier coefficient of an automorphic form η ∈ A(G)
with respect to a Whittaker pair (S, ϕ) as

(2.2) FS,ϕ[η](g) :=

∫

[NS,ϕ]

η(ng)χϕ(n)
−1 dn

where g ∈ GA and dn denotes the pushforward of the Haar measure of NS,ϕ nor-
malized to be a probability measure. If (S, ϕ) = (0, 0) the corresponding Fourier
coefficient is defined to be the automorphic form η itself.

Although the above integral is over the compact space [NS,ϕ], we will show that
for certain (S, ϕ) and η it is Eulerian meaning that it factorizes as an Euler product
over the places ν of K.

Definition 2.4. We say that a function f : G(A) → C is Eulerian if there exist
functions fν : G(Kν) → C for each place ν of K such that f(g) =

∏
ν fν(gν) for all

g =
∏

ν gν ∈ G(A) where gν ∈ G(Kν).
For an irreducible admissible automorphic representation π ⊂ A(G(A)), we will

say that a Fourier coefficient FS,ϕ is Eulerian on π if for every pure tensor η ∈ π,
FS,ϕ[η] : G(A) → C is an Eulerian function.

The Eulerianity can be checked on any pure tensor, in particular on the spherical
vector, by the following lemma.

Lemma 2.5. If FS,ϕ[η] is Eulerian for some pure tensor η ∈ π then FS,ϕ is

Eulerian on π.

Proof. Let η′ ∈ π be another pure tensor. By the definition of restricted tensor
product, η and η′ differ only at finitely many places. The statement can be proven
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by induction on the number n of these places. The base is n = 0. For the induction
step, let ν be a place with ην �= η′ν . Since π

∞
ν is an irreducible smooth representation

of G(Kν), there exists a smooth compactly supported function h on G(Kν) such
that πν(h)ην = η′ν . Define ζ ∈ π by ζν = η′ν and ζμ = ημ for any μ �= ν. Let
FS,ϕ[η] =

∏
μ fμ be the Euler product decomposition of FS,ϕ[η]. Let f ′

ν be the

convolution fν∗h. Then we have FS,ϕ[ζ] = f ′
ν

∏
μ �=ν fμ, and thus FS,ϕ[ζ] is Eulerian.

By the induction hypothesis, it follows that FS,ϕ[η
′] is Eulerian. �

By [GGK+18, Lemma 3.2.8], if γ ∈ Γ = G(K) then

FS,ϕ[η](g) = FAd(γ)S,Ad∗(γ)ϕ[η](γg).

Therefore, when considering vanishing properties of Fourier coefficients, it is con-
venient to consider orbits of Whittaker pairs. In particular, it will be useful to
consider pairs which are related to Jacobson–Morozov sl2-triples, whose conjugacy
classes are in bijection with nilpotent orbits in g.

Definition 2.6. A Whittaker pair (h, ϕ) is called neutral if there exists an sl2-
triple (e, h, f) with standard commutation relations and such that f = fϕ is the
Killing form pairing with ϕ. The pair (h, ϕ) = (0, 0) will, for convenience, also be
called neutral.

The Jacobson–Morozov theorem implies that for any nilpotent ϕ ∈ g∗ there
exists a neutral pair (h, ϕ), and all the neutral pairs with the same ϕ are conju-
gate (see [Bou75]). By [GGS17, Theorem C], if η is an automorphic function and
Fh,ϕ[η] ≡ 0 for some neutral pair (h, ϕ), then FS,ϕ[η] = 0 for any Whittaker pair
with the same ϕ. We therefore only need to characterize the vanishing properties
for Fourier coefficients of neutral pairs.

Definition 2.7. For an automorphic form η, we define the global wave-front set

WO(η) to be the set of nilpotent Γ-orbits O in g∗ for which there exists a neutral
pair (h, ϕ) with ϕ ∈ O such that Fh,ϕ[η] is non-vanishing. We also define the
Whittaker support WS(η) to be the set of maximal orbits in WO(η).

For an automorphic representation (π, V ) in the space of automorphic forms
A(G) we define the global wave-front set WO(π) for π be the union

⋃
η∈V WO(η),

and the Whittaker support WS(π) to be the set of maximal orbits in WO(π).

Remark 2.8.

(i) We use the partial ordering of Γ-orbits defined in [GGK+18, §2.4]. If O <
O′ in this partial ordering, then, for any place ν of K, the closure (in the
local topology) of O′ in g∗(Kν) contains O as shown in Lemma 2.4.2 of the
same paper.

(ii) It is easy to see that if π ⊂ A(G) is generated by an automorphic form η
then WO(π) = WO(η) and WS(π) = WS(η).

The G(K)-orbits used above are more refined than the standard complex orbits
discussed for example in [CM93]. In [GGK+18] this allowed for stronger statements
relating Fourier coefficients associated to different G(K)-orbits. It is, however,
useful to relate them to complex orbits for which we have a coarser partial ordering
given by the Zariski closure and a classification determined by Bala–Carter labels.
The Bala–Carter label of a complex orbit O is determined by the Cartan type of the
unique conjugacy class of minimal Levi subalgebras that has non-trivial intersection
with O. When the Cartan type does not uniquely identify the orbit, the labels are
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further decorated as in the case for Dn, n > 4 with the orbits (2A1)
′ and (2A1)

′′

corresponding to the partitions (312n−3) and (2412n−8) respectively, both having
Cartan type 2A1 = A1 ×A1. Note that the (2A1)

′ orbit has representatives on the
sum of the simple root spaces αn−1 and αn and intersects the unipotent radical of
the standard parabolic with semi-simple Levi Dn−1 while the (2A1)

′′ orbit does not.
For D4, there are two orbits corresponding to the partition (24), because it is very
even, and the three next-to-minimal orbits are interchangeable by triality. These
complex orbits will be used to define minimal and next-to-minimal representations
of G in the space of automorphic forms A(G).

We fix an embedding K ↪→ C with which we define gC = gK ⊗K C and the
corresponding complex Lie group G(C). We may thus map any K-rational orbit
G(K)x to a corresponding complex orbit G(C)x and by [Dok98] this complex orbit
does not depend on the choice of embedding.

Definition 2.9. Let O be a non-zero G(C)-orbit in gC (or g∗C). We say that O is
minimal if its Zariski closure is a disjoint union of O itself and the zero orbit.

Definition 2.10. For a semi-simple, simply-laced group G we will say that an
orbit O ⊂ gC is next-to-minimal if its Zariski closure is a disjoint union of O itself,
minimal orbits, and the zero orbit with the additional condition that O does not
intersect any component of gC of type A2.

The same terminology is applied to G(K)-orbits via the map to complex orbits
described above.

If g is simple and simply-laced then [GGK+20, Lemma 2.1.1] gives that O is
minimal if and only if it has Bala–Carter label A1 and next-to-minimal if and only
if it has Bala–Carter label 2A1 (possibly with decorations for type D as noted
above). The extra condition in Definition 2.10 for a next-to-minimal orbit is added
to exclude for example the regular orbit for any A2-type component of g. Such an
orbit has Bala–Carter label A2 and the associated Fourier coefficients behave very
differently.

Consider G(K)-orbits in g∗ and denote by O{0} the set containing only the zero
orbit, by O{1} the union of O{0} and the set of minimal orbits, and by O{2} the
union of O{1} and the set of next-to-minimal orbits.

Definition 2.11. An automorphic form η ∈ A(G) is called minimal if WO(η) is a
subset of O{1} but not of O{0}. It is called next-to-minimal if WO(η) is a subset
of O{2} but not of O{1}. The same terminology can be applied to an automorphic
representation π by replacing WO(η) above with WO(π).

Definition 2.12. Let (H,ϕ) and (S, ϕ) be two Whittaker pairs with the same ϕ.
We say that (H,ϕ) dominates (S, ϕ) if H and S commute and

(2.3) gϕ ∩ gH≥1 ⊆ gS−H
≥0 .

Lemma 2.13 ([GGK+18, Lemma 2.3.7 and Lemma 3.2.1]). Let (h, ϕ) be a neutral

Whittaker pair, and let Z ∈ g be a rational semi-simple element that commutes with

h and with ϕ. Then (h, ϕ) dominates (h+ Z,ϕ). Furthermore, for any Whittaker

pair (H,ϕ) there exists a neutral pair (h, ϕ) and Z ∈ g as above such that H = h+Z.

We will also use a more general class of Fourier coefficients. Let (S, ϕ) be a
Whittaker pair, uS := gS≥1 and let nS,ϕ be as in (2.1). Define an anti-symmetric

form ωϕ on uS by ωϕ(X,Y ) := ϕ([X,Y ]). Let i ⊆ uS be any isotropic subspace
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with respect to ωϕ that includes nS,ϕ. Note nS,ϕ and i are ideals in uS . In fact, nS,ϕ
is the radical of the restriction ωϕ|uS

as can be seen by [GGS17, Lemma 3.2.6]. Let
I be the subgroup Exp(i⊗K A) of G and T = {z ∈ C : |z| = 1}. Then χI

ϕ : I → T

defined by χI
ϕ(x) = χ(ϕ(logx)) is a character of I trivial on I ∩ Γ that extends χϕ

on NS,ϕ ⊂ I. Indeed, ϕ(X) ∈ K for X ∈ i ⊂ gK and since i is isotropic, we have
that ωϕ|i⊗KA = 0 and thus χI

ϕ ∈ Hom(I,T).

Definition 2.14. For any η ∈ A(G), Whittaker pair (S, ϕ) and I = Exp(i ⊗K A)
as above, we define the corresponding isotropic Fourier coefficient as

(2.4) FI
S,ϕ[η](g) :=

∫

[I]

η(ng)χI
ϕ(n)

−1 dn.

If i is a maximal isotropic subspace of uS with respect to inclusion we call FI
S,ϕ

a Fourier–Jacobi coefficient. In the case when (S, ϕ) is neutral these maximal
isotropic coefficients are exactly those defined in [HS16, §5.2.3], but our notion is
more general.

In general, FI
S,ϕ[η] is a further period integral of FS,ϕ[η].

Remark 2.15. Note that the radical nS,ϕ is always an isotropic subspace of uS :=
gS≥1, but under certain conditions it is also maximal. Note that ωϕ defines a sym-

plectic form on the abelian quotient uS/nS,ϕ. Maximal isotropic subspaces i ⊆ uS
with respect to ωϕ are in bijection with Lagrangian subspaces in uS/nS,ϕ by tak-
ing their preimages in uS . By [GGS17, Lemma 3.2.6], u/nS,ϕ is isomorphic to
gS1 /(g

S
1 ∩ gϕ). If g

S
1 = {0} then uS = nS,ϕ and there is only one maximal isotropic

subspace nS,ϕ. Furthermore, if (S, ϕ) is neutral then, from [CM93, Lemma 3.4.3],
gS1 ∩ gϕ = {0} which means that uS/nS,ϕ ∼= gS1 .

Theorem 2.16 ([GGK+18, Theorem B, and Corollaries 3.1.2 and 4.3.2, and Propo-
sition 4.3.3]). Let π ⊂ A(G) be any automorphic representation. Let (H,ϕ) and

(S, ϕ) be Whittaker pairs such that (H,ϕ) dominates (S, ϕ) and Γϕ ∈ WS(π). Then

(i) FH,ϕ and FS,ϕ have the same kernel as linear operators from π to C∞(G).
(ii) Let i ⊂ gH≥1 and i′ ⊂ gS≥1 be maximal isotropic subspaces. Let

(2.5) v := i/(i ∩ i′), and v′ := i′/((i+ gϕ) ∩ i′)

Let I := Exp(i ⊗K A), I ′ := Exp(i′ ⊗K A), V := Exp(v ⊗K A) and V ′ :=
Exp(v′ ⊗K A). Then for any η ∈ π we have

(2.6) FI
H,ϕ[η](g) =

∫

V

FI′

S,ϕ[η](vg) dv and FI′

S,ϕ[η](g) =

∫

V ′

FI
H,ϕ[η](vg) dv.

Proof. Statement (i) follows from [GGK+18, Theorem B, and Proposition 4.3.3]
while (ii) follows from [GGK+18, Corollary 4.3.2], which proves the statement for
a particular choice of maximal isotropic subspaces, together with [GGK+18, Corol-
lary 3.1.2], which relates different choices of maximal isotropic subspaces.

To be more precise, the isotropic subspaces considered in [GGK+18, Corollary
4.3.2] are not maximal, but they become maximal after one adds to them a maximal
isotropic subspace of gS1 ∩ gH1 , and the proof of [GGK+18, Corollary 4.3.2] work
verbatim in this case. �

The statement and proof of Theorem 2.16 also apply to a more general setup,
considered in [GGK+18]. In this setup G is a finite central extension of G(A), and
π lies in a more general space of functions on G, that we call automorphic functions.
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3. General results

In this section we prove our general result on transfer of Eulerianity (Theo-
rem A). This will then be used in subsequent sections to deduce Eulerianity of
(classes of) Fourier coefficients associated with minimal and next-to-minimal rep-
resentations. In this section we also prove a result (Theorem B) on the left-regular
action of unipotent elements in G on Fourier coefficients associated with Whittaker
pairs. Both of these results also hold for automorphic functions and finite cen-
tral extensions. At the end of the section we apply Theorem A to GLn, proving
Theorem F.

3.1. Transfer of Eulerianity. Let us recall the setup of Theorem A. We have
an automorphic form η on G and two Whittaker pairs (S, ϕ) and (H,ψ) such that
ψ ∈ Γϕ ∈ WS(η). We also have isotropic subspaces i ⊆ uS = gS≥1 and i′ ⊆ uH = gH≥1

with respect to ωϕ and ωψ containing nS,ϕ and nH,ψ respectively. We denote the
corresponding unipotent subgroups in G by I and I ′. Given that FI

S,ϕ[η] is Eulerian

we will now prove that FI′

H,ψ[η] is also Eulerian.

Proof of Theorem A. Let (s, ϕ) and (h, ψ) be neutral Whittaker pairs that domi-
nate (S, ϕ) and (H,ψ) respectively. Such pairs exist by Lemma 2.13. By the theory
of sl2-triples ([Bou75, §11]), there exists γ ∈ Γ such that (Ad(γ)h,Ad∗(γ)ψ) =
(s, ϕ). Let r ⊂ us = gs≥1 be any maximal isotropic subspace with respect to ωϕ.

Then r′ := Ad(γ−1)r is a maximal isotropic subspace of uh with respect to ωψ. Let
R := Exp(r⊗KA) and R′ := Exp(r′⊗KA) be the corresponding unipotent subgroups
of G. Then, by a change of integration variable (cf. [GGK+18, Lemma 3.2.8]), we

get that FR′

h,ψ[η](g) = FR
s,ϕ[η](γg) for any g ∈ G.

Using Theorem 2.16 (ii), we may now relate the above Fourier coefficients by
(non-compact) adelic integral transforms:

(3.1) FI′

H,ψ[η](g) ←→ FR′

h,ψ[η](g) = FR
s,ϕ[η](γg) ←→ FI

S,ϕ[η](γg) .

Since such transforms preserve Eulerianity, the theorem follows. �

3.2. Hidden invariance. A Fourier coefficient FH,ϕ[η](g) is χϕ-semi-invariant un-
der left-translations of its argument g by an element in the adelic unipotent sub-
group NH,ϕ ⊂ GA as can be seen by a change of integration variable. Similarly, if
γ ∈ Γ, then [GGK+18, Lemma 3.2.8] shows that FH,ϕ[η](g) = FH′,ϕ′ [η](γg) where
H ′ = Ad(γ)H and ϕ′ = Ad∗(γ)ϕ. Thus, FH,ϕ[η](g) is left unchanged if γ cen-
tralizes (H,ϕ). We will now show that there is a further, hidden invariance when
Γϕ ∈ WS(η).

Proof of Theorem B. By [GGS17, Lemma 3.0.2], there exists an sl2-triple γ =
(e, h, f) such that h commutes with H, and ϕ is given by the Killing form pairing
with f . Denote q := gH0 ∩ gϕ and Z := H − h. Then Z commutes with γ, and
q ⊂ gh≤0 ∩ gH0 ⊂ gZ≥0 since gϕ ⊂ gh≤0. Thus, we can decompose q into Z-eigenspaces

as q = qZ0 ⊕ qZ>0 using a similar notation as for g.
Denote ξ := FH,ϕ[η] which is a function on G. Let us first show that for any

λ ∈ Q>0 and any u ∈ Exp(qZλ ⊗K A) that ξu = ξ, where ξu(x) := ξ(u−1x) for
x ∈ G. Since ϕ ∈ (g∗)H−2 and q ⊂ gH0 , ϕ vanishes on q and thus χϕ(u) = 1. Since
u centralizes the pair (H,ϕ), we have that u normalizes NH,ϕ and ξu = FH,ϕ[η

u]
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by a change of variable in the integral. The measure remains unchanged since u is
unipotent.

Consider the Whittaker pair (H + λ−1Z,ϕ) and note that u ∈ NH+λ−1Z,ϕ by
construction. Thus, by shifts in the integration variable,

(3.2) FH+λ−1Z,ϕ[η] = FH+λ−1Z,ϕ[η]
u = FH+λ−1Z,ϕ[η

u],

meaning that ηu−η is in the kernel of FH+λ−1Z,ϕ. TheWhittaker pair (H+λ−1Z,ϕ)
dominates the Whittaker pair (H,ϕ). Since ϕ ∈ WS(η), Theorem 2.16 (i) implies
that the restrictions of FH+λ−1Z,ϕ and FH,ϕ to the representation generated by η
have the same kernel. From this and (3.2) we obtain that ξu−ξ = FH,ϕ[η

u−η] = 0.
It remains to show that Exp(qZ0 ⊗K A) acts trivially on ξ. By factorization, it is

enough to show that u = exp(ae′) where a ∈ A and e′ ∈ qZ0 acts trivially. Let gγ be
the centralizer of the triple γ in g. The Lie algebra qZ0 is reductive, since it equals
the centralizer of the semisimple element Z in the reductive Lie algebra gγ . By the
Jacobson–Morozov theorem, e′ can be completed to an sl2-triple (e′, h′, f ′) in qZ0 .
By construction u ∈ Nh+h′,ϕ and, similar to above, we get that ηu − η is in the
kernel of Fh+h′,ϕ. By Lemma 2.13, the neutral Whittaker pair (h, ϕ) dominates
both (h + h′, ϕ) and (H,ϕ). Thus, with repeated use of Theorem 2.16 (i), we get
that ηu − η is in the kernel of FH,ϕ and hence ξu − ξ = 0. �

An application of this hidden invariance property is given by Corollary D that
will be further discussed in §4.2.

3.3. Eulerianity for type An. By the work of Mœglin and Waldspurger [MW89],
the discrete spectrum of GLn(A) consists of Speh representations Δ(τ, b) [Spe83],
where τ runs over irreducible unitary cuspidal automorphic representations of
GLa(A), and n = ab. Let us show that any top Fourier coefficient of any Speh
representation is Eulerian. By [Gin06a, Proposition 5.3] or [JL13], the unique top
orbit for Δ(τ, b) corresponds to the partition ab. That is, WS(Δ(τ, b)) = {Oab}.
By Theorem A, it is enough to prove Eulerianity for the Whittaker coefficient cor-
responding to this orbit, i.e. the coefficient FH,ϕ, where H is the diagonal matrix
H = diag(n − 1, n − 3, . . . , 3 − n, 1 − n), and ϕ is given by the trace form pairing
with the matrix in lower-triangular Jordan form, with b blocks of size a each.

Proposition 3.1. FH,ϕ is Eulerian on Δ(τ, b).

Proof. We prove by induction on b. For b = 1, Δ(τ, b) is a cuspidal represen-
tation, ϕ is a regular nilpotent element, and FH,ϕ is factorizable by the local
uniqueness of (non-degenerate) Whittaker models [GK75, Sha74]. For b > 1, let
Q = LU denote the standard (upper-triangular) maximal parabolic with blocks
(b−1)a, a. Then FH,ϕ = FL

H,ϕ ◦ cU , where cU denotes the constant term, and FL
H,ϕ

denotes the Whittaker coefficient corresponding to (H,ϕ) on the Levi subgroup
L = GL(a−1)b(A) × GLb(A). By [OS07, Lemma 2.4], cU (Δ(τ, b)) is isomorphic as
an automorphic representation of L to the exterior product Δ(τ, b − 1) � τ . It is
easy to see that FL

H,ϕ also decomposes as an exterior product FH1,ϕ1
� FH2,ϕ2

of
analogous Fourier coefficients. Explicitly,

(3.3) H1 = diag(a(b− 1)− 1, . . . , 1− a(b− 1)), H2 = diag(a− 1, . . . , 1− a),

ϕ1 is given by the trace form pairing with the matrix in lower-triangular Jordan
form with b − 1 blocks of size a each, and ϕ is given by a single Jordan block of
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size a. Since FH1,ϕ1
on Δ(τ, b− 1) and FH1,ϕ1

on τ are Eulerian by the induction
hypothesis, we obtain that FH,ϕ is Eulerian on Δ(τ, b). �

Theorem F follows now from [MW89], Proposition 3.1 and Theorem A.

4. Applications to small representations

4.1. Minimal representations. We will use the following notions of minimal ir-
reducible smooth representations of algebraic reductive groups over local fields F
of characteristic zero, following [KS15]. An irreducible admissible smooth represen-
tation of a real reductive group is minimal if its annihilator ideal in the universal
enveloping algebra U(gC) is the Joseph ideal. An irreducible representation of a
p-adic reductive group is minimal if its character, viewed as a distribution around
0 on g(F ), is equal to μ̂Omin

+ cδ0, where μ̂Omin
is the Fourier transform of the

invariant measure on a minimal G-orbit in g∗(F ), c ∈ C and δ0 is the δ-function at
0.

Proof of Corollary C. We can assume that ϕ lies in the minimal orbit Omin ⊂ g∗,
since otherwise FI

H,ϕ vanishes on π. The groupG has a maximal parabolic subgroup
Pab = LabUab with abelian unipotent radical Uab. Let Sab ∈ g be the Cartan
element satisfying α(Sab) = 0 for the simple roots α that define Lab and α(Sab) = 2
for the remaining simple roots. Then Sab defines Uab by (2.1) independent of

character and Omin intersects (g∗)Sab
−2 . By [MS12], this intersection lies in a single

orbit under Pab(C). Let ψ lie in this intersection. Let us show that FSab,ψ is
Eulerian on π.

By Theorem 2.16, FSab,ψ is not identically zero on π, while FSab,ψ′ is identically

zero on π for any ψ′ ∈ (g∗)Sab
−2 which does not lie in the minimal orbit. Thus, π is

of global rank 1 in the sense of [KS15, §9]. By [KS15, Theorem 9.4], this implies
that for every place ν, the local component πν of π is of local rank 1. Since πν is
unitary and has rank 1, it also has rank 1 with respect to the Heisenberg parabolic
subalgebra by [LS06, §2]. Now, [LS06, Theorem 8] implies that πν is minimal.

Let χ be the character of Uab(A) given by ψ. By [KS15, Propositions 7.2 and
8.3] and [HKM14, Theorems A and B], for every ν with minimal πν we have

dim
(
(π∞

ν )∗
)Uab(Kν),χ = 1

This implies that FSab,ψ is Eulerian on π. By Theorem A, so is FI
H,ϕ. �

Remark 4.1. For the theorem we rely on the results of [KS15] which restrict the
choice of groupG. We expect the theorem to be true more generally for other groups
of type ADE. For example, for E8 where one only has a Heisenberg parabolic the
results of [Pol18] on (limits of) quaternionic discrete series could be helpful. For
E6 the reference [MS17] might also be helpful.

We note that for types Bn and Cn there are no minimal automorphic represen-
tations, since the minimal orbits are not special in these cases, while Whittaker
supports for automorphic representations of split classical groups contain only spe-
cial orbits by [JLS16]. Furthermore, for split real reductive groups of type Bn,
n ≥ 4, the absence of minimal irreducible admissible representations, even for the
universal cover, is proven in [Vog81].
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Remark 4.2. In [KS15] uniqueness of minimal representations was proved for a
certain extended class of K-forms of groups. The allowed K-forms can be char-
acterized by having a parabolic subgroup with abelian unipotent defined over K.
Over K = Q, this includes all split forms but only the quasi-split forms SUn,n and
On,n+2. In the former case, the corresponding parabolic has abelian nilpotent con-
sisting of (n × n)-matrices that meets the minimal and next-to-minimal nilpotent
orbit of SUn,n. In the latter case, the parabolic is associated with node 1 of the
Dynkin diagram and the abelian nilpotent is the (2n)-dimensional representation
of On−1,n+1 that meets the minimal orbit and the next-to-minimal orbit (2A1)

′.

4.2. Next-to-minimal representations. In this section we will use the results
of §3 to deduce Eulerianity of a large class of maximal rank Fourier coefficients of
automorphic forms on groups of type B and D whose Whittaker support includes
an orbit that embeds into the complex orbit of partition (31 . . . 1). For type D this
corresponds to a next-to-minimal orbit with Bala–Carter label (2A1)

′, while for
type B the orbit has Bala–Carter label B1 with a representative in the root space
for the short simple root.

We will now deduce Corollary D from Theorems A and B, as well as from a local
statement that follows from uniqueness of Bessel models.

Let f ∈ g be such that ϕ is given by the Killing form pairing with f . By
[MS12, §5.2 and §5.6] (cf. [GGK+18, Lemma A.1]) there exists a maximal torus
and a root system such that f lies in the root space of the short root

∑n
i=1 αi for

Bn, or in a direct sum of the root spaces of the roots
∑n−1

i=1 αi and
∑n−2

i=1 αi + αn,
for Dn, in the Bourbaki notation. Let Sα1

be the rational semisimple element in
g given by the values αi(Sα1

) = 2 if i = 1 and otherwise 0. Then (Sα1
, ϕ) is a

Whittaker pair.
Then Sα1

defines a unipotent subgroup U which is the unipotent radical of the
maximal parabolic subgroup P ⊂ G associated to the root α1. Then the centralizer
of Sα1

is a Levi subgroup L ⊂ P, and ϕ is given by an element of the first internal
Chevalley module of L. Let M ⊂ L denote the centralizer of ϕ in [L,L]. Then
M is split and simple, and thus generated by its unipotent elements. We have
[L,L] ∼= SOn−1,n, and M ∼= SOn−1,n−1 for type B and [L,L] ∼= SOn−1,n−1, and
M ∼= SOn−1,n−2 for type D. Let Kν be a completion of K, archimedean or not. Let
χν denote the character of M(Kν)U(Kν) given by the corresponding factor of χϕ

on U(Kν) and trivial on M(Kν).

Theorem 4.3 ([GGP12, Cor. 15.3], [JSZ10]). For any irreducible admissible rep-

resentation πν of G(Kν), we have

dimHomM(Kν)U(Kν)(πν , χν) ≤ 1

In fact, [GGP12,JSZ10] prove a much stronger statement, that allows to tensor
χν with any irreducible smooth admissible representation of M(Kν). This stronger
statement is called uniqueness of Bessel models, but we will not need it.

Proof of Corollary D. Let π =
⊗

ν πν be the decomposition of π into local prod-
ucts. By Theorem B, the restriction of FSα1

,ϕ to π is M(Kν)-invariant. Thus,

FSα1
,ϕ induces for every ν an M(Kν)-invariant functional on πν . It is also of

course U(Kν), χ-equivariant. By Theorem 4.3, the space of such functionals is one-
dimensional. Thus, FSα1

,ϕ is Eulerian on π. By Theorem A, this implies that any

Fourier–Jacobi coefficient FI
H,ϕ is Eulerian on π. �
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5. Eisenstein series

In this section, we study a special class of automorphic forms on G = G(A),
namely Langlands–Eisenstein series E(λ, g), depending on a complex parameter λ.
For special values of λ such Eisenstein series belong to minimal or next-to-minimal
representations of G. We restrict to K = Q throughout this section and let A = AQ.

We shall prove that Fourier–Jacobi coefficients of these Eisenstein series are
Eulerian, thus proving Theorem E. Using Theorem A, this proceeds via a trans-
fer of Eulerianity from degenerate Whittaker coefficients which are in turn shown
to be Eulerian by computation using the reduction formula of Theorem 5.1 be-
low. Our results hold for the specific realizations of minimal and next-to-minimal
representations given in Table 1.

5.1. Eisenstein series and reduction formula for Whittaker coefficients.

Before proving all the next-to-minimal cases for ADE type of Table 1, we first have
to introduce some notation for Eisenstein series, following [FGKP18]. We then
recall the reduction theorem from [FKP14, FGKP18] which is later used to show
Eulerianity of Whittaker coefficients.

Let G be a semisimple algebraic group split and defined over Q, and fix a Borel
subgroup B = NA where A is a maximal torus and N is the unipotent radical.
Fix a maximal compact subgroup KA of G(A) as in [MW95, I.1.4] such that

(5.1) G(A) = N(A)A(A)KA

and KA =
∏

ν Kν where Kν is a maximal compact subgroup of G(Qν) and equals
G(oν) at almost all finite places which are in bijection with the rational prime
numbers. The only infinite place for K = Q is the archimedean real place ν = ∞
and G(Q∞) = G(R) is a split real group of ADE type.

Let X∗(A) = Hom(A,Gm) denote the lattice of rational characters of A, where
Gm is the multiplicative group, and let h∗ = X∗(A)⊗ R with vector space dual h.
Using the Iwasawa decomposition (5.1), we define a logarithm map H : G(A) → h

which is left-invariant under N(A), right-invariant under KA and determined by its
values on A(A) by

(5.2) e〈λ|H(a)〉 = |λ(a)|A for all λ ∈ h∗

where 〈·|·〉 is the dual pairing and |·|A is the adelic norm. Let h∗C = h∗ ⊗R C and let
ρ ∈ h∗C denote the Weyl vector. For each weight λ ∈ h∗C we define a quasi-character
τλ : B(A) → C× by

(5.3) τλ(b) = e〈λ+ρ|H(b)〉.

Note that τλ is Eulerian.
Consider now the principal series of smooth functions on G(A) defined by

(5.4) IB(λ) := {f : G(A) → C | f(bg) = τλ(b)f(g), b ∈ B(A)}.

The theory of Eisenstein series provides an automorphic realization of the principal
series, parametrized by a choice of weight λ. To each λ ∈ h∗C we define the following
function on G(A):

(5.5) E(λ, g) =
∑

γ∈B(Q)\G(Q)

e〈λ+ρ|H(γg)〉.
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This is invariant under the left action of G(Q) on g, while being right-invariant
under KA. We will therefore refer to this as an Eisenstein series which is the
spherical vector of the automorphic realization of the induced representation (5.4).

For spherical Eisenstein series on split groups G, the Whittaker coefficient (1.1)
with respect to a generic character ψN simplifies to the Eulerian integral

(5.6) WψN
[λ](g) :=

∫

N(A)

τλ(w0ng)ψN (n)−1dn.

where w0 is a representative of the longest word in the Weyl group W of G and
we have replaced E(λ, g) in the functional argument by λ. The local factors at
finite places are called Jacquet integrals and can be computed by the Casselman–
Shalika formula [CS80] related to characters of highest weight representations of
the Langlands dual group. For brevity let us henceforth denote the characters on
N(A) simply by ψ. Note that for generic ψ the integral (5.6) is only non-zero for
generic λ.

When ψ is degenerate the associated degenerate Whittaker coefficient is typi-
cally not Eulerian, unless one also chooses non-generic weights λ. We first recall a
reduction theorem for Whittaker coefficients for simply-laced groups G in the case
of degenerate ψ [FKP14]. To this end we introduce some more notation. Denote
by Π the set of simple roots of g. As in §1, we choose a pinning of G from which
we obtain a one-parameter subgroup xα : Ga → G for each simple root α. Let χ
be a fixed and unramified character on A trivial on Q. We may then represent the
value of ψ on any n ∈ N(A) as follows

(5.7) ψ(n) = ψ

(
∏

α∈Π

xα(uα)n
′

)
= χ

(
∑

α∈Π

mαuα

)
, mα ∈ Q, uα ∈ A

where n′ ∈ [N,N](A) and the value of ψ does not depend on it. We call the set
of simple roots for which mα �= 0 the support of ψ and denote it by supp(ψ). The
character is generic if supp(ψ) = Π and otherwise it is degenerate. If ψ has support
only on k orthogonal simple roots we will say that it is degenerate of type kA1.

A degenerate character ψ canonically defines a semi-simple proper subgroup
G′ ⊂ G, such that the set of simple roots Π′ of G′ equals the support of ψ. The
Dynkin diagram of G′ is the subdiagram obtained from that of G by restricting to
the nodes of Π′. Let W ′ be the Weyl group of G′ with longest Weyl word w′

0. We
then have the following:

Theorem 5.1 ([FKP14]). Let G be a simple, simply-laced and split Lie group,

defined over Q with a fixed maximal unipotent subgroup N and associated set of

simple roots Π. Let ψ be a character on N(A) and let G′ be the subgroup of G

determined by the set of simple roots Π′ := supp(ψ) as described above. Let E(λ, g)
be a spherical Eisenstein series on G(A) as defined in (5.5). Then the degenerate

Whittaker coefficients WG

ψ [λ](1) of E(λ, g) at the identity are determined by

WG

ψ [λ](1) =
∑

wcw′

long∈W/W ′

M(w−1
c , λ)WG

′

ψ [w−1
c λ](1) .(5.8)

Here, wc is a coset representative of minimal length and can be constructed explicitly

by Weyl orbit methods, and WG
′

ψ [w−1
c λ](1) denotes a generic Whittaker coefficient

of an Eisenstein series on the subgroup G′ evaluated at the identity.
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A similar formula for general arguments g ∈ A(A) can be found in [FGKP18].
The fact that we restrict to the identity g = 1 of G to make later expressions shorter
will not affect the argument for Eulerianity. This is because we will show that, for
the particular representations and coefficients we consider, there will be only one
term in the reduction formula(5.8). Since each WG

′

ψ in (5.8) is a generic Whittaker
coefficent, it is known to be Eulerian for general g as described in §1.

Remark 5.2. The sum in the theorem above is over very specific coset representa-
tives wc. The intertwiner M(w−1

c , λ) is given by a quotient of completed Riemann
zeta functions ξ(s) = π−s/2Γ(s/2)ζ(s) through

M(w−1
c , λ) =

∏

α>0
w−1

c α<0

ξ(〈α|λ〉)

ξ(〈α|λ〉+ 1)
(5.9)

where 〈·|·〉 here is the Killing form, normalized such that long roots satisfy 〈α|α〉 =
2.

Remark 5.3. If λ corresponds to a quasi-character τλ on a standard parabolic sub-

group P̃ = L̃Ũ, the Eisenstein series (5.5) becomes a parabolic Eisenstein series
in a degenerate principal series. In this case the Weyl coset sum in (5.8) reduces

further to a double coset of Weyl groups W̃\W/W ′ where W̃ is the Weyl group

of the Levi subgroup L̃, see (10.81) in [FGKP18]. These double cosets typically
have very few elements and the number of summands can be further reduced at
special points in the degenerate principal series. These additional simplifications
can have two origins and both depend on the choice of λ. First, the intertwiner
(5.9) can vanish at special points for the character λ, e.g. when one is studying
a small representation as a residue of a degenerate principal series. Second, the
Whittaker coefficient WG

′

ψ [w−1
c λ](1) can vanish when w−1

c λ does not represent a

generic quasi-character for G′ as one is then trying to compute a generic Whittaker
coefficient of a non-generic automorphic representation and this has to vanish.

5.2. Minimal and next-to-minimal representations. A representation in the
space of automorphic forms is said to have Gelfand–Kirillov dimension d if all the
orbits in its Whittaker support have dimension 2d. It is conjectured that all irre-
ducible automorphic representations have a Gelfand–Kirillov dimension, i.e. all the
orbits in the Whittaker support have the same dimension [Gin06a, Conjecture 5.10].
For automorphic realizations of a degenerate principal series IP(λ) similar to (5.5),
it is conjectured that for a generic value of the parameter λ the Gelfand–Kirillov
dimension equals the dimension of the unipotent subgroup U of the parabolic sub-
group P = LU they are induced from.

For the purposes of this section we shall restrict to maximal parabolic subgroup
Pi∗ where i∗ denotes the simple root of G that is missing from the root system
of the Levi subgroup Li∗ . The corresponding Eisenstein series of the automorphic
realization of the degenerate principal series can be obtained by using the specific
weight

(5.10) λi∗(s) = 2sΛi∗ − ρ, s ∈ C ,

where Λi∗ denotes a fundamental weight that satisfies 〈Λi∗ |αj〉 = δi∗,j with the
simple roots αj .



EULERIANITY OF FOURIER COEFFICIENTS 497

Table 1. Eisenstein series realizations of minimal and next-to-
minimal representations. The notation si∗ here labels at the same
time the maximal parabolic Pi∗ and the value of the parameter
s appearing in (5.10). For type SOn,n and n ≥ 5 there are two
distinct next-to-minimal representations that we realize automor-
phically. The non-generic different choices give isomorphic auto-
morphic representations due to Langlands’s functional relations for
Eisenstein series.

Lie group πmin πntm

SLn generic s1 or generic sn−1 generic s2 or generic sn−2

SOn,n s1 = n−2
2 or sn = 1 or sn−1 = 1

{
generic s1 (2A1)

′

sn−1 = 2 or sn = 2 (2A1)
′′

E6(6) s1 = 3
2 or s6 = 3

2 generic s1 or generic s6 or s5 = 1

E7(7) s1 = 3
2 or s7 = 2 s1 = 5

2 or s6 = 3
2 or s7 = 4

E8(8) s1 = 3
2 or s8 = 5

2 s1 = 5
2 or s7 = 2 or s8 = 9

2

The Gelfand–Kirillov dimension of the associated automorphic representation is
conjectured in [Gin06a, §5] to satisfy

GKdim
(
IPi∗

(λi∗(s))
)
= dimUi∗ for all s ∈ C.(5.11)

However, for specific choices of s there can be spherical submodules/quotients
with smaller GK-dimension; this is one of the standard ways of realising minimal
and next-to-minimal automorphic representations [GRS97, KS90, GS05, GMV15,
FGKP18]. In Table 1, we list particular ways of realizing minimal and next-to-
minimal representations of groups of ADE-type based on these references. More
specifically, the minimal and next-to-minimal cases for type An as full inductions
from maximal parabolics are well known and we verify them using the methods of
this section below. The minimal cases of Dn, E6, E7 and E8 in the Heisenberg
parabolic were treated in [GRS97], the next-to-minimal case for E6, E7 and E8 in
the parabolic P1 were given in [GMV15] and the other realizations given in the
table are related by functional relations of Eisenstein series. The next-to-minimal
cases for Dn can be determined using the methods of this section and we shall
present the details for spinor nodes below where we also derive the Eulerianity of
the next-to-minimal coefficients. We analyze also the exceptional cases using this
method and derive the next-to-minimal Whittaker support of the Eisenstein series
at s8 = 9

2 in detail. The realizations in Table 1 were chosen because they are of
interest in string theory where the extremal nodes of the Dynkin diagram have
an interpretation related to certain weak-coupling limits of the theory [FGKP18].
At the values shown in the table, minimal and next-to-minimal representations
appear as subrepresentations. The corresponding Gelfand–Kirillov dimensions are
tabulated in Table 2. Note that for type D there are two distinct next-to-minimal
orbits of type 2A1 (see §4.2) and they are listed separately. We follow Bourbaki
labelling conventions.
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Table 2. Gelfand–Kirillov dimensions for minimal and next-to-
minimal representations described in Table 1. The Whittaker sup-
port of the corresponding Eisenstein series is shown to be given by
the nilpotent orbits whose dimension is listed in the table. For SL3

there exists no next-to-minimal representation whose Whittaker
support is a 2A1-orbit since there is no such orbit. For SOn,n and
n ≥ 5 there are two 2A1 orbits that are listed separately.

Lie group GKdim(πmin) GKdim(πntm)

SLn n− 1 2n− 4

SOn,n 2n− 3

{
2n− 2 (2A1)

′

4n− 10 (2A1)
′′

E6(6) 11 16
E7(7) 17 26
E8(8) 29 46

5.3. Eulerianity for minimal and next-to-minimal representations of

ADE-type. In this section, we give explicit examples of degenerate Whittaker
coefficients for the minimal and next-to-minimal representations of Table 1.

For convenience we will introduce the following labelling of the coefficients and
their characters. As shown in (5.7), a character ψ on N can be parametrized by a
tuple [mα1

, . . . ,mαr
] with mαi

∈ Q. We will denote the corresponding Whittaker
coefficient of an Eisenstein series E(λ, g) as W[mα1

,...,mαr ]
(g) suppressing the de-

pendence of λ. We shall also evaluate all Whittaker coefficients at the identity 1 of
G(A) to make the resulting expressions simpler.

For m ∈ Z and s ∈ C we shall also use the notation

Bm(s) :=
2

ξ(2s)
|m|s−1/2σ1−2s(m)Ks−1/2(2π|m|)(5.12)

for the standard SL2 Whittaker coefficient evaluated at the identity with σ1−2s(m)
being the divisor sum and Ks−1/2 the modified Bessel function of the second kind.
We note that this function does not vanish unless s = 0, corresponding to the value
where the non-holomorphic SL2 Eisenstein series belongs to the trivial representa-
tion (and thus has vanishing Fourier coefficients), or when s = 1/2, corresponding
to the value where there is a zero in the degenerate principal series. Moreover, the
expression (5.12) is always Eulerian.

Similarly, we shall use the notation

Bm1,m2
(s1, s2) :=

1

ξ(2s1)ξ(2s2)ξ(2s1 + 2s2 − 1)
K̃s1,s2(m1,m2) ,(5.13)

for the generic SL3 Whittaker coefficient evaluated at the identity. The function
K̃s1,s2(m1,m2) is a special function that is given by a convolution of two K-Bessel
functions [Bump84, PP09]. Its precise form does not matter to us here since it
does not vanish for any value of s1 and s2. The vanishing is solely controlled by
the prefactor. As (5.13) corresponds to a generic SL3 Whittaker coefficient, it is
Eulerian for generic (non-vanishing) m1 and m2.
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Our focus will be mainly on type A1 and type 2A1 Whittaker coefficients that
are characterized by a single simple root or a pair of orthogonal simple roots,
respectively. All single simple roots are Weyl-conjugate. According to [GGK+20,
Cor. 3.0.3] all orthogonal pairs are conjugate for simple groups of types A and E
while for Dn with n > 4 there are two inequivalent pairs, corresponding to the
two types of 2A1 orbits and next-to-minimal representations listed in Table 2. We
shall only analyse one inequivalent pair of orthogonal for each next-to-minimal
representation as other choices are conjugate.

5.3.1. Type An. For type An, we consider first minimal representations. These
come in a one-parameter family that corresponds to the degenerate principal series
induced from P1 (or Pn). To show Eulerianity of rank-one Fourier coefficients it
suffices to compute a single Whittaker coefficient that we choose to be supported
on the simple root α1. Applying (5.8) we obtain for λ = 2sΛ1 − ρ

W[m,0,0,...,0](1) = Bm(s)(5.14)

and is clearly Eulerian. We have also checked that Whittaker coefficients supported
on more than a single root vanish by using Theorem 5.1.

For the next-to-minimal representation given in Table 1 and n > 2 we consider
the parabolic P2 according to Table 1, i.e. λ = 2sΛ2 − ρ. Choosing the degenerate
character to be supported on nodes 1 and 3, one finds

W[m,0,n,...,0](1) =
ξ(2s− 1)

ξ(2s)
Bm(s− 1

2 )Bn(s−
1
2 ) ,(5.15)

which is an Eulerian expression. Eulerianity of maximal parabolic Fourier coeffi-
cients then follows from Theorem A or from [AGK+18, Thm. B(iii)]. Whittaker
coefficients associated with larger orbits can be shown to vanish by using Theo-
rem 5.1.

5.3.2. Type Dn. According to Table 1, the minimal representation ofDn (for n ≥ 4)
can be realized in the degenerate principal series induced IP1

for the value s = 1.
The corresponding Whittaker coefficient is determined from (5.8) to be

W[m,0,0,...,0](1) = Bm

(
n−2
2

)
(5.16)

and is Eulerian. One can check that there are no non-zero Whittaker coefficients
associated with larger orbits.

Let us deduce that the representation π generated by the Eisenstein series
E(λ1(1), g), where we use the notation (5.10), is indeed minimal. Since π is a
quotient of the automorphic realization of the degenerate principal series IP1

, the
local components are quotients of local degenerate principal series. Thus, every
orbit of the Whittaker support of π lies in the closure of the Whittaker support
of the local degenerate principal series for each place. The behavior of the local
Whittaker support under induction is determined for p-adic places in [MW87], and
for degenerate principal series the Whittaker support lies in the Richardson orbit
corresponding to the parabolic subgroup.

The (complex) Richardson orbit of the parabolic P1 is given by the partition
(2n) for even n and by the partition (2n−112) for odd n. Each complex orbit
in the closure of this one is given by a partition of the form (2k12(n−k)), and
every such orbit includes a unique rational orbit. Moreover, all these rational
orbits allow Whittaker coefficients. Lemma 2.13 and Theorem 2.16 imply now that
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for every orbit in the Whittaker support of the Eisenstein series E(λ1(1), g), the
corresponding Whittaker coefficient does not vanish. Since E(λ1(1), g) has no non-
zero Whittaker coefficients associated with non-zero non-minimal orbits, we deduce
that the only orbit in its Whittaker support is the minimal orbit.

For Dn (n > 4), there are two different next-to-minimal representations to dis-
cuss from Table 1 and we consider both in turn.

We begin with the degenerate principal series forDn associated with the maximal
parabolic P1 in Bourbaki enumeration. This is a next-to-minimal representation
of Gelfand–Kirillov dimension 2n − 2, corresponding to the partition (31n−3) and
orbit (2A1)

′, for generic members of the degenerate principal series. Among the
pairs of orthogonal simple roots, only the pair (αn−1, αn) of spinor nodes belongs
to the orbit (2A1)

′ [GGK+20] and we shall now evaluate the associated degenerate
Whittaker vector using formula (5.8). For this one needs to study the double
cosets W (A1A1)\W (Dn)/W (Dn−1) and there are 2n−3 of them. Inspection shows
that there is only one element with a non-vanishing Whittaker coefficient and this
becomes Eulerian.

As an example, for D5 and the Eisenstein series with weight λ = 2sΛ1 − ρ one
obtains the Eulerian Whittaker coefficient (at the identity)

W[0,0,0,m,n](1) =
ξ(2s− 4)2

ξ(2s)ξ(2s− 3)
Bm( 52 − s)Bn(

5
2 − s) ,(5.17)

while for D6 the similar Whittaker coefficient is given by

W[0,0,0,0,m,n](1) =
ξ(2s− 5)2

ξ(2s)ξ(2s− 4)
Bm(3− s)Bn(3− s) .(5.18)

The Eulerianity of these coefficients can be transferred to other Fourier coefficients
using Theorem A.

For Dn and n > 4 one can also generate next-to-minimal representations with
Whittaker support given by the other next-to-minimal orbit (2A1)

′′ from degenerate
principal series associated with the ‘spinor’ nodes αn or αn−1. We shall choose αn

for concreteness in the following. The Whittaker support of generic members of this
degenerate principal series of Dn has Bala–Carter label �n

2 �A1 and thus exceeds the
next-to-minimal type 2A1 for n ≥ 6. Therefore one has to consider special members
of the degenerate principal series, i.e., special values of s. Before addressing the
general case, we illustrate the idea in the case of D6.

We shall study the degenerate principal series IP6
of D6 and first look at generic

values of s where the representation is larger than next-to-minimal and then show
how for the value s = 2 of Table 1 the automorphic representation reduces to a
next-to-minimal representation. For generic s, the Whittaker support is of Bala–
Carter type 3A1 as can be seen by studying the degenerate Whittaker coefficients.
For an Eisenstein series in this degenerate principal series, a Whittaker coefficient
of type 3A1 is then determined according to (5.8) as

W[m,0,n,0,0,p](1) =
ξ(2s− 5)3

ξ(2s)ξ(2s− 4)ξ(2s− 2)
Bm(3− s)Bn(3− s)Bp(3− s) .(5.19)

This is Eulerian as one expects for a character in a maximal orbit of the wave-front
set.
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By comparison, the following Whittaker coefficient of type 2A1 is, in the generic
degenerate principal series IP6

, given by

W[m,0,n,0,0,0](1) =
ξ(2s− 5)2

ξ(2s)ξ(2s− 2)
Bm(3− s)Bn(3− s)

+
ξ(2s− 5)3

ξ(2s)ξ(2s− 4)ξ(2s− 2)
Bm(3− s)Bn(3− s)(5.20)

and is clearly not Eulerian. For the special value s = 2, however, the generic spinor
reduces to a next-to-minimal representation with Eulerian Whittaker coefficient
since the second term vanishes. Moreover, the 3A1 Whittaker coefficient (5.19)
vanishes for s = 2 and therefore the Whittaker support of the automorphic repre-
sentation is reduced to (2A1)

′′ at this value of s.
For generic Dn with n > 6, the Whittaker support of the degenerate princi-

pal series induced from Pn is �n
2 �A1. Computing all the degenerate Whittaker

coefficients in this case is not very feasible and instead we analyse the Fourier coef-
ficients of the Pn degenerate principal series with respect to the unipotent radical of
the parabolic subgroup P1. The complete Fourier expansion was already obtained
in [BK15, (B.8)] and can be written as

ξ(2s)EDn(λn(s)) = 2ξ(2s)EDn−1(λn−1(s)) + 2ξ(2s− n)EDn−1(λn−2(s− 1))

+
∑

Q∈Z
2(n−1)
×

〈Q,Q〉=0

fQ(s, n)E
Dn−2(λn−3(s− 1))e2πi〈Q,u〉 ,(5.21)

where Q ∈ Z
2(n−1)
× labels a non-vanishing character on the unipotent U1 of Dn and

u ∈ u1 is a Lie algebra element so that e2πi〈Q,u〉 is the corresponding Fourier mode.
The constraint on the sum means that the vector Q is null in the split signature
lattice and this characterizes minimal elements in the character variety u∗1.

The first line represents the constant term in this unipotent Fourier expansion
and is given by maximal parabolic Eisenstein series on the semi-simple Levi Dn−1.
The non-trivial Fourier coefficients in the second line are only non-zero for elements
in the minimal Dn−1-orbit in u∗1 that is given by non-vanishing null vectors Q.
These minimal elements are the intersection of the minimal A1-type of orbit of Dn

with u∗1. The corresponding Fourier coefficient is composed out of a non-vanishing
Eulerian function fQ(s, n), that is explicitly known, and an Eisenstein series on
Dn−2. Here, Dn−2 arizes as the stabilizer (in Dn−1) of the null vector Q and is
obtained by deleting the first two nodes of the original Dn diagram. The function
fQ(s, n) is given by a product of a certain divisor sum (contribution from the finite
places) and a modified Bessel function (archimedean contribution), and has a trivial
Fourier expansion on the Levi Dn−1. Using (5.21) one can now identify the minimal
and next-to-minimal representations in the degenerate principal series IPn

of Dn.
The value s = 1 always realizes a minimal representation. This can be seen in

the above formula as follows: For s = 1 the Eisenstein series on the Levi subgroups
Dn−1 and Dn−2 in the second and third terms belong to the trivial representation
and are equal to one. The sum over Q in the third term contains only minimal
characters in the Fourier mode e2πi〈Q,u〉 and so is of type A1 as is thus the full
second line since EDn−2 is trivial. The first term is by induction minimal at s = 1
and the second term belongs to the trivial orbit. Therefore, s = 1 is by induction
an automorphic realization of a minimal representation, in agreement with Table 1.



502 D. GOUREVITCH ET AL.

Moreover, the Fourier coefficient is Eulerian as can be checked by induction or using
the fact that this automorphic realization of a minimal representation is related
functionally to the one at the beginning of the Dn section which was checked to
have an Eulerian Whittaker coefficient.

A next-to-minimal representation is always realized at s = 2. This can be seen
in (5.21) as follows. The first term in the first line belongs to a next-to-minimal
representation by induction. The second term belongs to the minimal orbit as its
proper s-value is then s− 1 = 1 which was analysed above to be minimal. The last
term has an Eisenstein series on the stabilizer subgroup Dn−2 at s − 1 = 1 which
again is minimal multiplied with a minimal character on the character variety, so
together they are always of type 2A1 and hence next-to-minimal. The two A1s are
orthogonal since one is associated with node 1 of the original Dn diagram and the
other with any of the nodes of Dn−2 that is disconnected from node 1. The 2A1

Fourier modes in the Whittaker support of the next-to-minimal representation at
s = 2 are moreover Eulerian as the function fQ(s, n) is can be seen by inspection
of its explicit form in [BK15].

5.3.3. Type E6. The automorphic realization of the minimal representation given
in Table 1 by s1 = 3/2 and the associated A1-type Whittaker coefficient were given
in [DS99,KPW02,KP04,SW07,FKP14] and shown to be Eulerian.

There is a one-parameter family of next-to-minimal representations for E6, see
Table 1. A next-to-minimal Eisenstein series can be obtained for any value of s in
the degenerate principal series induced from the parabolic P1 or P6. Focusing on
P1 for concreteness, this family can be parametrised by taking a generic character
λ = 2sΛ1 − ρ with s ∈ C. We shall now analyse the degenerate Whittaker vectors
of type A1 and type 2A1.

Consider first taking a minimal character ψ such that G′ is of type A1 and take

this for simplicity to be the node that also defines G̃, i.e., we take G′ to correspond
to node 1. Then there are 21 double coset elements in the sum of (5.8). For all

but 6 of these the Whittaker coefficient WG
′

ψ vanishes since w−1
c λ is not generic

on that A1. Thus we have a simplification but still a non-Eulerian degenerate
Whittaker coefficient. There are non-generic choices for s (see Table 1) where there
are simplifications coming from the intertwiner and these correspond to embedding
the minimal representation in this degenerate principal series and at these special
points one is left with a single term in the sum, leading to an Eulerian Whittaker
coefficient.

Now consider a next-to-minimal character ψ with G′ of type 2A1 that we take
to be defined on the orthogonal nodes 1 and 4. Evaluating the resulting Whit-
taker coefficient WG

ψ in the degenerate principal series all but one term in the sum
disappear with the result

W[m,0,0,n,0,0](1) =
ξ(2s− 7)2

ξ(2s)ξ(2s− 3)
Bm(4− s)Bn(4− s) .(5.22)

This represents an Eulerian expression for the type 2A1 Whittaker coefficient in the
next-to-minimal representation. By Theorem A this Eulerianity transfers to other
unipotent Fourier coefficients.

5.3.4. Type E7. The automorphic realization of the minimal representation given
in Table 1 by s1 = 3/2 and the associated A1-type Whittaker coefficient were given
in [DS99,KPW02,KP04,SW07,FKP14] and shown to be Eulerian.
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For E7, we consider the so-called abelian realisation which means the degenerate
principal series associated with the maximal parabolic P7 where node 7 is singled
out. For generic members of this degenerate principal series, the Whittaker support
is 3A1 [MS12], but for special points this reduces to 2A1 and gives an automorphic
realization of a next-to-minimal representation, see Table 1.

We focus immediately on the 2A1 Whittaker coefficient and choose a character
ψ that is supported on nodes 1 and 7. For generic s one has the non-Eulerian
expression

W[m,0,0,0,0,0,p](1) =
ξ(2s− 9)ξ(2s− 6)

ξ(2s)ξ(2s− 4)
Bm( 132 − s)Bn(5− s)

+
ξ(2(s− 6))ξ(2s− 9)2

ξ(2s)ξ(2s− 8)ξ(2s− 4)
Bm( 72 − s)Bn(5− s) .(5.23)

For s = 4 the second term vanishes and one is left with a single Eulerian coefficient
as expected for an orbit in the Whittaker support of a next-to-minimal represen-
tation. By Theorem A this Eulerianity can be transferred to other Fourier–Jacobi
coefficients. One can also check that Whittaker coefficients for larger orbits vanish.

5.3.5. Type E8. The automorphic realization of the minimal representation given
in Table 1 by s1 = 3/2 and the associated A1-type Whittaker coefficient were given
in [DS99,KPW02,KP04,SW07,FKP14] and shown to be Eulerian.

For E8, we consider the degenerate principal series in the Heisenberg realisation
which is associated with the maximal parabolic subgroup P8. The Whittaker sup-
port for generic members of the principal degenerate series is type A2 (lying over
the non-special 3A1 in the E8 Hasse diagram [Spa82]) and this has to reduce to
2A1 for the correct s-value given as s = 9/2 in Table 1.

We first determine a Whittaker coefficient of type A2 for generic members of the
degenerate principal series
(5.24)

W[0,0,0,0,0,0,m,n](1)=
ξ(2(s− 9))ξ(2(s− 7))ξ(2s− 11)ξ(4s− 29)

ξ(4(s− 7))ξ(2s)ξ(2s− 9)ξ(2s− 5)
Bm,n(6− s, 19

2 − s)

where Bm1,m2
(s1, s2) was defined in (5.13). This Whittaker coefficient is Eulerian

but it vanishes when s = 9/2 which is the value when the degenerate principal
series has a subrepresentation corresponding to a next-to-minimal representation.

In this case it is also interesting to consider the 3A1 coefficient. For generic s
one instance is
(5.25)

W[0,0,0,m,0,n,0,p](1)

=
ξ(2s− 11)3

ξ(2s)ξ(2s− 9)ξ(2s− 5)
Bm(6− s)Bn(6− s)Bp(6− s)

+
ξ(2(s− 9))3ξ(4s− 29)

ξ(4(s− 7))ξ(2s)ξ(2s− 9)ξ(2s− 5)
Bm( 192 − s)Bn(

19
2 − s)Bp(

19
2 − s)

and it is clearly not Eulerian. However, we see that it vanishes completely for
s = 9/2 which is to be expected since the orbit 3A1 is not special and therefore
should not be the Whittaker support of any automorphic representation. This is
the phenomenon of ‘raising nilpotent orbits’ [JLS16].

Let us finally consider a 2A1 Whittaker coefficient and the next-to-minimal rep-
resentation. We choose the character ψ for on nodes 6 and 8 and formula (5.8)
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yields
(5.26)

W[0,0,0,0,0,m,0,n](1) =
ξ(2s−11)2

ξ(2s)ξ(2s−5)Bm(6− s)Bn(6− s)

+ ξ(2(s−9))ξ(2(s−7))ξ(2(s−6))ξ(4s−29)
ξ(4(s−7))ξ(2s)ξ(2s−9)ξ(2s−5) Bm( 132 − s)Bn(

19
2 − s)

+
ξ(2s−11)2

(
ξ(2s−11)+ξ(2s−13)+ξ(2(s−6))+ξ(2(s−5))

)
ξ(2s)ξ(2s−9)ξ(2s−5) Bm(6− s)Bn(6− s)

+
ξ(2(s−9))2ξ(4s−29)

(
ξ(2s−19)+ξ(2s−17)+ξ(2s−15)+ξ(2(s−9))+ξ(2(s−8))

)
ξ(4(s−7))ξ(2s)ξ(2s−9)ξ(2s−5) Bm( 192 −s)Bn(

19
2 −s)

+ ξ(2(s−7))ξ(2s−17)ξ(2s−11)
ξ(2s)ξ(2s−9)ξ(2s−5) Bm(9− s)Bn(6− s) .

For the special value s = 9/2 all terms but the first one vanish and one is left with
an Eulerian expression. This shows that the 2A1 Whittaker coefficients become
Eulerian in the next-to-minimal representation of Table 1.

Theorem A then allows to conclude Eulerianity for all Fourier–Jacobi coefficients
with characters in the above orbits, thus proving Theorem E.
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