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Abstract: Background: Hazard information plays an important role in how risk perceptions are 24 
formed and what actions are taken in response to risk. While past studies have shown that 25 
information on water and air pollution is associated with changes to individual behavior, there is a 26 
need for examination of water quality information in the context of environmental disturbances. 27 
This study fills that gap by examining water pollution in an active industrial region of the United 28 
States – the Galveston Bay of Texas. Methods: Using original survey data collected in 2019 of 525 29 
adults living in the Galveston Bay region, logistic regression is used to analyze the association of 30 
awareness and use of water pollution information on changes to outdoor activities and consumption 31 
of drinking water and/or seafood. Controls for chronic and acute exposure, environmental 32 
knowledge and experience, and demographics are included in the model. Results: The findings 33 
indicate that frequent checking of water quality information is significantly associated with action 34 
to reduce risk. Conclusions: There is a need for improvement in pollution data collection and 35 
development of a risk communication framework that facilitates the dissemination of this 36 
information in relevant, accessible, and credible ways.   37 
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1. Introduction 40 

 While much attention is paid to structural mitigation in reducing hazard risk, the role of hazard 41 

information in risk reduction is often overlooked. Yet, hazard information is critical to understanding 42 

and managing the risk people face. From the lens of risk as a product of exposure and vulnerability 43 

[1], hazard information can be understood as a resource influencing social vulnerability [2]. Where 44 

environmental hazard and monitoring information is lacking or difficult to access, interpret, or use – 45 
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as is often the case in race and ethnic minority communities – vulnerability is heightened [3]. From 46 

the lens of risk as socially and culturally constructed, hazard information is interpreted by 47 

individuals in relation to their worldviews as well as experience [4-6]. People carefully weigh 48 

multiple influences of risk on their well-being and develop coping strategies in response; then they 49 

re-evaluate the stressor, available resources, and coping strategies in relation to changes in the 50 

characteristics, conditions, and context of the stressor and their own coping abilities [4, 7-8]. In this 51 

iterative process, external information is important to the initial risk assessment and development of 52 

coping responses [9]. Hazard information, therefore, is an important factor influencing perceptions 53 

of and responses to risk.  54 

 Reducing risk is the aim of hazard mitigation, which “takes the form of advance action designed 55 

to eliminate or reduce the long‐term risk to human life and property from natural and man‐made 56 

hazards” [10]. Brody and Atoba [11] categorize hazard mitigation to include strategies that: avoid 57 

through retreat and relocation, resist through structural mitigation, accommodate through the creation 58 

of spaces and infrastructure that can absorb the impact of periodic hazard, or build awareness through 59 

education and information. Past research has found mitigation in the form of hazard education can 60 

build awareness. For example, education has been an essential tool for near-source mitigation of the 61 

National Tsunami Hazard Mitigation Program, and surveys of residents in the states of California, 62 

Oregon, and Washington demonstrated the campaigns raised awareness [12]. However, the 63 

education programs did not change individual behaviors. Residents prescribed action to reduce 64 

tsunami risk as a government, not personal responsibility. This calls into question if building 65 

awareness is sufficient for hazard mitigation - does risk reduction relies on behavioral adaptations? 66 

 Multiple studies have found hazard information awareness to be associated with changes in 67 

behavior. Wen, Balluz, and Mokdad [13] analyzed changes in behavior related to awareness of air 68 

quality alerts. Using data from a national survey of U.S. adults conducted in 2005, they found the 69 

prevalence of change in outdoor activity increased to 68% (from 16%) and 75% (from 31%) – among 70 

individuals without and with lifetime asthma – when accounting for awareness of air quality reports 71 

as well as individual perception of air quality. Similarly, a study conducted by Reams and colleagues 72 

[14] of residents of the upper Industrial Corridor of Louisiana found that individuals who are aware 73 

of air quality forecasts – and check them often – were more likely to change their behavior in order 74 

to limit their exposure to environmental risk. Additionally, the analyses indicated that higher levels 75 

of knowledge and concern about environmental hazards and more recent experience with storms, 76 

floods and other disruptive environmental events encourage individuals to take action to make 77 

themselves safer. A subsequent study by Reams and Irving [15], focused on the industrial corridor of 78 

Orleans and St. Tammany Parishes in Louisiana, supported these findings. Analyses of a survey of 79 

550 residents suggested that individuals who were aware of air quality forecasts - and checked them 80 

often - were more likely to adopt exposure reducing behaviors by altering their outdoor activities on 81 

days with poor air quality. Studies of water quality advisories find congruent changes in behavior, 82 

including decreases in surfing and beach-going following advisories for fecal contamination of 83 

coastal waters [16] and general compliance with boil water advisories [17-18].  84 

 The present study extends this line of inquiry to examine risk reducing behaviors related to 85 

awareness of water pollution in the context of environmental hazards in the Galveston Bay region of 86 

Texas. As a center of oil and gas and transportation industrial activity, Galveston Bay can be 87 

considered a testbed for interactions between society, the environment, and industry. Residents of 88 
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the area surrounding the Bay face both chronic exposure to water pollutants as well as acute exposure 89 

related to man-made, environmental hazard events – two of which are examined in this study: the 90 

Deer Park Intercontinental Terminals Company facility chemical fire (March 17, 2019) and a barge 91 

collision in the Houston Ship Channel involving oil tankers (May 10, 2019). Human-induced 92 

emergencies and disasters such as these are commonplace. As illustrated in Figure 1, the incidence of 93 

oil and chemical spills is rampant, affecting coastlines and waterways across the U.S. The data, 94 

capturing incidents reported to the National Oceanic and Atmospheric Administration from 1968-95 

2020 [19], also demonstrates an increase in these environmental disturbances over time.  96 

 97 

Figure 1. This map was developed using the NOAA Incident News Raw Incident Data downloaded 98 
on September 18, 2020 and ESRI's Light Grey Canvas Basemap.    99 

 Given the chronic problem of environmental disturbances affecting water quality, 100 

understanding how water pollution monitoring information in this context is associated with 101 

individual action to reduce risk is imperative. To our knowledge, past studies have not addressed 102 

awareness and use of water quality information among a representative population and in relation 103 

to multiple types of behavioral adaptation. The present study fills this gap by using survey data of 104 

525 adults living in the area around Galveston Bay to test the hypothesis: Individuals who are aware of 105 

water pollution monitoring and check it frequently will be more likely to change their behavior to activities that 106 

may put than at risk than those who are not aware of pollution monitoring or check it infrequently.  107 

2. Background: Water Pollutants in the Galveston Bay Watershed 108 

2.1. Galveston Bay Socioeconomic & Environmental Attributes 109 

 The Galveston Bay region is the fifth largest metropolitan area in the U.S. and home to three 110 

major ports, including the Port of Houston - the second largest U.S. port in terms of tonnage [20]. The 111 

region is economically driven by energy, manufacturing, aeronautics, transportation, and healthcare 112 
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industries. Access to Galveston Bay and the Gulf Mexico attracted a robust petrochemical industry 113 

including 10 oil refineries, processing approximately 40 percent of the state’s total crude oil 114 

production and 14 percent of the total capacity in the U.S. [21]. Galveston Bay also produces about 115 

one third of the commercial fishing income for the state of Texas and is widely used for recreational 116 

fishing, birding, and boating [22]. Half of the population of Texas lives in the Galveston Bay 117 

watershed [23] with nearly 5.1 million people living in the three counties adjacent to the bay 118 

(Chambers, Galveston, and Harris) [24]. 119 

 The Galveston Bay watershed consists of approximately 62,160 km2 of land and water, with a 120 

mere 1,554 km2 covered by the Bay. The Galveston Bay estuary is a hydrodynamically shallow (2.1 121 

meters) system [25] that is heavily influenced by wind and freshwater inflows from the Trinity and 122 

San Jacinto Rivers [26] as well as various creeks and bayous. The metropolis of Houston and its 123 

associated suburban communities occupy the western side of the Bay, while the eastern side remains 124 

largely agricultural and undeveloped. Galveston Bay supports a diverse number of fish, wildlife and 125 

wetland plants. It provides ecosystem goods including food and shells, ecosystem services including 126 

storing and cycling essential nutrients, absorbing and detoxifying pollutants, maintaining the 127 

hydrologic cycle, and moderating the local climate [27-28]. Although habitat loss and fragmentation 128 

continue, regulation of groundwater withdrawal has slowed subsidence [29]. For humans, services 129 

include also providing sites for employment, recreation, and tourism. The vast majority of water 130 

quality concerns are concentrated in the western, urban tributaries of the Bay where municipal, 131 

industrial, and urban development is most pronounced [30-31]. The Bay comprises a major route for 132 

oil tanker traffic (as it connects the northern Gulf of Mexico with the Houston Ship Channel), and the 133 

Bay’s coastline harbors major oil refineries. Over 8,000 vessels annually use the Houston ship channel 134 

enroute to the Ports of Houston, Texas City, and/or Galveston [32-33].  135 

2.2. Oil Spill Pollutants in Galveston Bay 136 

 While the immediate impacts of oil spills is relatively well understood, much less is known 137 

regarding the long-term effects of oil residues that persist in the environment [34-35]. Long-term 138 

population and ecosystem-level impacts of oil pollution are expected to depend on hydrocarbon 139 

bioavailability and the intrinsic physiology of afflicted organisms. For example, twenty years after 140 

the 1989 Exxon Valdez oil spill, surveys of fouled sites around Prince William Sound, Alaska 141 

demonstrated the continued presence of subsurface oil in up to 29% of sites surveyed [36-37]. 142 

Similarly, sediments and biota in the aftermath of the BP Deepwater Horizon (DwH) oil spill in the 143 

Gulf of Mexico have been shown to act as reservoirs for spilt oil [38]. A recent report examining the 144 

fate, behavior, and associated toxicity of DwH oil residues on GoM beaches showed persistence of 145 

high molecular polycyclic aromatic hydrocarbons (or PAHs), a class of chemicals that occur naturally 146 

in crude oil and gasoline, on oiled beaches at toxic levels [39-41]. Therefore, regardless of factors 147 

influencing hydrocarbon longevity in oiled sediments or beaches, their long-term environmental 148 

persistence can be a major contributor of chronic toxicity in exposed organisms [37, 42-43]. 149 

Specifically, the coastal ecosystems of Galveston Bay remain a high priority for environmental 150 

monitoring studies as there is continued concern for long-term oil pollution [44-45].  151 

 In the Galveston Bay, there were an average 275 of oil spills each year during the 1998-2014 time 152 

period [46], with significant spills (>168,000 gallons) taking place from time to time [47]. Seventy five 153 

percent of all reported spills were attributed to Bunker C and heavy fuel oils, diesel fuel, and 154 
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petroleum products of an unknown nature. Fifty seven percent of reported spills were from vessels, 155 

while 39 percent of spills could be traced to land-based facilities.  The propensity of oil-derived 156 

PAHs and ‘legacy’ industrial pollutants including  polychlorinated biphenyls (PCBs) to bio-157 

concentrate in organisms, bio-accumulate across food webs, and exert toxicity has led to 158 

environmental monitoring efforts to quantify their levels in various ecosystems [48-51]. Sediments 159 

and biota act as reservoirs and refuges for these pollutants in the environment. Such sequestration 160 

ensures their long-term persistence, contributing to chronic toxicity in exposed organisms [37, 42-43]. 161 

Studies continue to show high levels of PCBs and dioxins in sediment of the Houston Ship Channel 162 

[52-53]. Another study noted a strong gradient of PCBs levels were found in Galveston Bay, with 163 

sources pointing towards the industrialized portion of the Houston Ship Channel [54]. The same 164 

study found a parallel gradient in contamination was also noted in the water, sediment and fish 165 

samples, with PCBs level in Gulf killifish (Fundulus grandis) correlating strongly with that found in 166 

the sediment. Dioxins and related furans are created through the combustion of chlorinated 167 

hydrocarbons. Recent studies suggest that dioxins continue to be released into the environment in 168 

and around the Houston Ship Channel and Clear Creek, including at the Superfund site [52, 55-58]. 169 

Since 1990, PCBs, dioxin, and organochlorine pesticides have been identified as pollutants of concern 170 

in seafood consumption advisories issued in the Lower Galveston Bay watershed by the Texas 171 

Department of State Health Services [29, 58].  172 

2.3. Other Sources of Pollution in Galveston Bay 173 

 When human activities disrupt the essential functions of ecosystems, the assimilative capacity 174 

of the natural system can be exceeded, and the normal flow of goods and services provided by healthy 175 

ecosystems can become impaired [59]. In the Galveston Bay this was particularly evident after 176 

Hurricane Harvey when the flooding flushed an unprecedented volume of nutrients and 177 

contaminants into the bay in a very short amount of time [60]. The largest number of fish kills in 178 

Texas occurred from 1951 to 2006 in Galveston Bay [61]; these were associated primarily with low 179 

dissolved oxygen and harmful algal blooms, often thought to be symptoms of environmental 180 

degradation.  181 

 Atmospheric deposition and land-based activities (residential, industrial and agricultural lands) 182 

that reside within the watershed are thought to diminish water quality. Fertilizers and pesticides 183 

from lawns, pet waste, herbicides, and oil and grease from roads and parking lot runoff from the 184 

land, On-site Septic Facilities (OSSF), and various and contaminants enter the water [29, 62-67). 185 

Improperly maintained and highly clustered OSSFs are contributing to increased nutrient loadings 186 

in the watersheds surrounding Galveston Bay [67]. An increase of overall low intensity development 187 

in the Bay’s watersheds is likely to increase total phosphorus as a result of increased nonpoint source 188 

loadings from fertilizer [65], thereby lowering the nitrogen to phosphorus (N:P )ratio. Such changes 189 

to N:P ratio have been shown to change the phytoplankton community composition in the past [68].  190 

2.4. 2019 Environmental Hazards in Galveston Bay  191 

 In 2019, two environmental disturbances occurred in less than two months that spilled 192 

approximately one million gallons of oil derived products into Galveston Bay. The first occurred on 193 

March 17, 2019 at approximately 10:30 AM when a storage tank caught fire at the Intercontinental 194 

Terminals Company (ITC) facility in Deer Park, Texas due to a mechanical failure [69]. The tank 195 
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contained naphtha enriched with butane, a highly flammable liquid used in the production of 196 

gasoline [70]. The fire eventually spread to ten other 80,000 barrel storage tanks before being 197 

extinguished three days later. These additional storage tanks held stock feeds for gasoline production 198 

including xylene and pygas, which contain concentrations of carcinogenic benzene [71]. Local reports 199 

state that the fire produced a black plume of smoke visible for 30 miles and a smog-like haze across 200 

at least six counties [72]. On the third day of the fire, elevated benzene levels led to a one-day shelter-201 

in place order in the Deer Park area [73]. Days later on March 22, a dike wall partially collapsed at 202 

the facility allowing chemicals to be released into Tucker Bayou and the Houston Ship Channel; 203 

however, no evidence of benzene was found in local drinking water. The effort to extinguish the fire 204 

produced 21 million gallons of waste water mixed with tank products and firefighting foam [71]. 205 

 Less than two months later on May 10, 2019 at approximately 3:20 PM, the 775-foot tanker MV 206 

Genesis River collided with the tug Voyager pushing two barges in the Houston Ship Channel near 207 

Bayport, Texas. One barge capsized and the other was heavily damaged leaking approximately 208 

11,276 barrels (473,600 gallons) of product over five days [74]. Each barge contained approximately 209 

25,000 barrels of reformate used in the production of gasoline which can have high concentrations of 210 

carcinogenic benzene [75]. The Genesis River took on water, but did not spill any fuel or cargo. 211 

Residents of Seabrook, Clear Lake Shores, Kemah, Baycliff and San Leon were told to avoid fishing 212 

and coming in contact with the water [76]. A strong “gasoline smell” was reported across several 213 

cities; however, the Texas Commission on Environmental Quality and US Coast Guard air 214 

monitoring showed no concern for public health related to this smell [77]. Water sampling in some 215 

areas did show some elevated levels of known human carcinogen benzene [75], and there were 216 

reports of a large fish kill following the spill [74]. By May 15, 2019, both barges were removed from 217 

the ship channel and normal vessel traffic resumed [74]. Federal, state and local personnel 218 

participated in rapid cleanup operations both near the collision and along the coast, utilizing eight 219 

skimmers and over 20,000 feet of containment boom. The fishing advisory was lifted on May 24 after 220 

water testing no longer showed high levels of contaminants from the event.  221 

 In all, the Deer Park fire is estimated to have released ~696,990 gallons of oil-contaminated water 222 

and ~1.5 million gallons of flame retardants [78]. Whereas, the barge spill is estimated to have released 223 

~378,000 gallons of gasoline into Galveston Bay [75]. At present, the extent of oil leak into the 224 

surrounding waters is not fully known. The magnitude of these disturbances is suspected to have a 225 

significant impact on the local and national economy due to a partial closure of adjacent waterways 226 

of the Houston Ship Channel, and estimates of economic impacts ranging from $0.5 – $1 billion [79]. 227 

The ecological impacts of both disturbances are not fully known at this time. In the immediate 228 

aftermath of the Deer Park fire (on 3/23/19), the Texas Commission on Environmental Quality (TCEQ) 229 

released a water quality report. Their chemical analysis of waters in the immediate vicinity of the fire 230 

found oil-derived hydrocarbon levels to far-exceed their regulatory mandated health-protective 231 

concentrations [80]. Initial public concern was mainly over the release of volatile organic compounds, 232 

including benzene [81]. However, subsequent analytical chemical analyses showed the absence of 233 

volatile organics (including benzene) in water samples taken from the vicinity of the fire [82]. 234 

Continued concerns for human exposure due to the consumption of contaminated fish and shellfish 235 

from the Houston Ship Channel led to a moratorium on sea food consumption immediately following 236 
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the spill [83]. However, concern remains for the exposure of aquatic biota to oil-derived 237 

hydrocarbons, and likely long-term human health effects as related to sea food consumption.  238 

2.5. Health Impacts of Pollutants in Galveston Bay 239 

 The International Agency for Research on Cancer (IARC) [84] classifies heavy oil and related 240 

contaminants as carcinogens that may directly increase risk of cancers through several pathways: 241 

stress, immunosuppression, or endocrine disruption. Oil contains several chemical compounds 242 

including benzene, toluene, xylene, gasoline, and naphthylene which can dissolve or deform cell 243 

membranes and kill cells. Immediate health effects of crude oil on human health has been 244 

documented to include: irritation to the skin or skin disorders; irritation to the nose, throat, and lungs; 245 

headaches; nausea; drowsiness; fatigue; loss of coordination; labored breathing; or irregular heartbeat 246 

[85]. Safety information on crude oil indicates that prolonged exposure or repeated contact should be 247 

avoided and that vapor, mist, or liquid may be harmful if inhaled [85]. Extra caution should be taken 248 

since vapor from crude oil may not be detectable by human odor perception.   249 

 Exposure to oil has been studied in lab animals and humans to a lesser extent. Skin tumors in 250 

lab animals demonstrate the carcinogenic effects of prolonged exposure and repeated contact with 251 

crude oil and associated substances [85]. Human health studies of oil exposure, especially those 252 

studying long-term health consequences are limited with only seven studies on the health effects on 253 

humans exposed from the 39 largest oil spills globally [86]. Recent research on short term human 254 

health effects conducted in the Gulf of Mexico following the Deepwater Horizon oil spill (DWHOS) 255 

report lower respiratory tract, inflammation of the eyes and throat, nausea, headache, low back pain, 256 

psychological impacts (e.g. depression) among exposed populations [87]. A study of women and 257 

their children’s health found that among women in Southern Louisiana, physical-environmental 258 

exposure such as working on oil clean-up, coming into contact with oil, or damage to property or 259 

where you fish as well as economic exposure such as experiencing negative financial consequences 260 

from the oil spill were both associated with higher self-reported physical health impacts including 261 

burning in nose, throat, or lungs; sore throat; wheezing; headaches; watery, burning, itchy eyes or 262 

nose [88].  263 

 Further, exposure to the DWHOS was a predictor of higher rates of poor mental health in the 264 

same cohort of women [89]. The Gulf Long-term Follow-up (GuLF) Study, a cohort study following 265 

the health of DWHOS clean-up workers and volunteers found that working on the spill for more than 266 

180 days and stopping work due to the heat were associated with greater risk of nonfatal myocardial 267 

infarction [90] and that high amounts of total hydrocarbon exposure or stress on the job were 268 

associated with increased prevalence of depression and PTSD [91].  269 

3. Materials & Methods 270 

3.1. Survey Sample 271 

To assess the association of pollution information and changes in behavior of residents of the 272 

Galveston Bay region, we launched an online survey of adults, aged 18 years or older, residing in a 273 

total of 51 zip codes surrounding Galveston Bay. The survey sample area is shown in Figure 3 in 274 

relation to the Deer Park chemical fire and the barge collision; Galveston beach is also highlighted in 275 

the figure. The survey was in the field May 28 - July 14, 2020 and collected responses from 525 276 
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individuals. All survey participants gave their informed consent for inclusion before they 277 

participated in the study, and the survey protocol was approved by the Texas A&M University 278 

Institutional Review Board (reference number IRB2019-0646M).  279 

Figure 3: Map of Surveyed Area in Relation to Environmental Hazards280 

 281 

Figure 2. Shaded area corresponds to zip codes sampled in the survey, in relation to the 2019 282 
environmental hazard events and Galveston beach. Map developed using U.S. Census Bureau 2019 283 
TIGER/Line Shapefile of zip code tabulation areas and ESRI's Light Grey Canvas Basemap. Zip code 284 
tabulation areas correspond with the zip codes designated for the survey sample. Locations for the 285 
ITC Deer Park Fire and Barge Collision were drawn based on event reports [69, 74]. Galveston Beach 286 
was drawn according to generalized beach access points published by the Texas Parks and Wildlife 287 
Department [92].  288 

 Survey respondents were recruited by Qualtrics to fill quotas on sex, age, and race. The quotas 289 

represent overall population characteristics of residents in the zip codes sampled, determined by 2018 290 

U.S. Census Bureau data [93]. There were differences between the sample and population proportions 291 

with skews towards more females (60.76% in the sample versus 50.45% in the population), younger 292 

adults (42.29% of 18-34 year olds in the sample compared to 33.65% in the population), and white 293 

(43.05% in the sample versus 35.90% in the population) individuals in the sample. Given these 294 

discrepancies, a sample weight was calculated to adjust the sample to population parameters for sex, 295 

age, and race/ethnicity using a “raking” or iterative proportional fitting method [94]. While there are 296 

no strict rules on trimming survey weights – and many surveys use different trimming procedures 297 

and threshold points [95], we adopt the procedure used in other studies [e.g., 96] to trim observations 298 

three times smaller or three times larger than the median weight value. Accordingly, a total of 6.86% 299 

of the observations were trimmed. While applying the weight to the quota-based sample adjusts the 300 

sample to make it more representative of the population, there are unknown biases introduced into 301 

the survey estimates [97]. This is due to the non-probability sampling frame because measures of 302 

precision (i.e., response rate, margins of error) are not available with such a sampling approach. See 303 
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Appendix A for a table reporting the sample proportions with and without the weight applied, 304 

compared to population proportions.  305 

3.2. Measures  306 

 To measure the dependent variable of interest - change to behavior - survey respondents were 307 

asked two questions: 1) “Have you ever changed your planned outdoor activities for the day due to 308 

poor water quality conditions in Galveston Bay?” and 2) “Have you ever changed your use or 309 

consumption of drinking water and/or seafood due to poor water quality conditions in Galveston 310 

Bay?” Response options included “yes,” “no,” or “don’t know.” Observations with responses of 311 

“don’t know” were dropped from the analysis. To assess the key independent variable of interest - 312 

awareness and frequency of use of pollution information - the survey asked respondents: “Are you 313 

aware of any pollution monitoring of the water quality of Galveston Bay?” Response options 314 

included “yes,” “no,” “don’t know.” For those respondents that indicated “yes,” they were asked a 315 

follow-up question: “And how often do you check the water quality rating of your community? Do 316 

you check it…” Response options included: “don’t know,” “never,” “seldom,” “sometimes,” 317 

“occasionally,” and “everyday.” See Table 1 for tabulations of responses by measure. 318 

 319 

Table 1. Tabulations of Variables Analyzed in Regression Models 320 

Variable Category Prevalence 

Change outdoor activities (no1) yes 44.21% 

Change consumption (no) yes 36.26% 

Water quality monitoring (not aware) never check 6.15% 

 seldom check 6.62% 

 sometimes check 8.89% 

 occasionally check 7.36% 

 everyday check 4.07% 

Fish, swim, visit Galveston Bay (never) once a year 12.18% 

 a couple of times a year 19.77% 

 multiple times a year  18.52% 

 once a month 11.59% 

 multiple times a month  15.73% 

 once a week 8.97% 

 multiple times a week 4.81% 

Eat locally caught seafood (never) once a year 3.83% 

 a couple of times a year 14.77% 

 multiple times a year  22.22% 

 once a month 12.22% 

 multiple times a month  15.72% 

 once a week 8.33% 

 multiple times a week 5.90% 

Concern for health (not at all) not at all - a little 4.32% 

 a little 9.55% 

 a little - a moderate amount 8.34% 
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 a moderate amount 18.15% 

 a moderate amount - a lot 11.50% 

 a lot 15.81% 

 a lot - a great deal 10.07% 

 a great deal 14.30% 

Environmental hazard knowledge (not at all) slightly 22.81% 

 moderately 34.79% 

 very 18.88% 

 extremely 11.36% 

Pollution experience (none) at least one event  91.26% 

Sex (male) female 50.40% 

Age (18-34 years) 35-44 years 18.00% 

 45-64 years 33.40% 

 65 years and older 14.90% 

Latino (no) yes 47.60% 

African American (no) yes 10.90% 

Education level (high school or less) some college 21.02% 

 Associate's or Bachelor's degree 36.68% 

 post-graduate degree 9.79% 

1 Referent category of the variable noted in parentheses. Survey weight applied to tabulations. 321 

 Chronic exposure to poor environmental conditions has been connected to behavior 322 

modifications in a study of air quality [98]; similarly, it is thought that acute exposure to 323 

environmental emergencies and disasters encourages adaptations to reduce risk [99]. Accordingly, 324 

the model controls for chronic and acute pollution exposure through multiple measures. Chronic 325 

exposure to water pollution in the Galveston Bay is measured by responses to two survey questions 326 

that replicate survey items in past studies [15, 100]: 1) “How often would you say you fish, swim, or 327 

visit Galveston Bay?” and 2) “How often do you eat locally caught seafood?” Response options 328 

included: “never,” “once a year,” “a couple of times a year,” “multiple times a year but not 329 

monthly,” “once a month,” “multiple times a month but not weekly,” “once a week,” and “multiple 330 

times a week.” A third question was asked about frequency of Galveston beach. However, the 331 

variable was highly correlated with frequency of swimming, fishing, and visiting Galveston Bay; 332 

therefore, it was not included in the model.  333 

 Assessment of acute exposure to water pollution focused on the recent environmental hazard 334 

events and asked respondents to rate their concerns about health related to these events. Two 335 

questions were posed: 1) “How concerned were you about the effect of the Deer Park Fire on your 336 

health and the health of your household?” and 2) “How concerned were you about the effect of the 337 

barge collision in Galveston Bay on your health and the health of your household?” Response options 338 

included: “not at all,” “a little,” “a moderate amount,” “a lot,” and “a great deal.” Prior to these 339 

questions, respondents were asked if they were aware of these events. Regarding the Deer Park 340 

chemical fire, 58.86% said they were aware of this event, and 50.48% were aware of the barge collision. 341 

For those that were not aware or said they were not sure, brief descriptions of the events and pictures 342 

from local media were shown to respondents (see Supplemental Materials, Figure S1). This should 343 

have aided recall for some respondents; therefore, the self-reported indicator of health concern to 344 
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measure acute exposure to the two environmental hazard events should reasonably capture if 345 

individuals thought they were physically exposed or experienced anxiety or stress over the event. 346 

Due to a high correlation between health concern for each environmental hazard event, the measure 347 

of acute exposure included in the model represents the averages concern for the two events. The 348 

resulting variable has nine categories, ranging from no concern to “a great deal” of concern. 349 

 In addition to chronic and acute pollution exposure, environmental hazard knowledge and prior 350 

experience with pollution are controlled for in the model as these have been found to be associated 351 

with action to reduce risk [14-15]. To measure environmental hazard knowledge, a question 352 

replicating items of past studies [15, 100] was posed in the survey: “How knowledgeable do you feel 353 

you are about actions to take in the event of an environmental hazard? An environmental hazard is 354 

the risk of damage to the environment from air pollution, water pollution, toxins, and radioactivity.” 355 

Response options included: “not knowledge at all,” “slightly knowledgeable,” “moderately 356 

knowledgeable,” “very knowledgeable,” and “extremely knowledgeable.”  357 

 The survey also presented respondents with a list of pollution types and events, asking: “In your 358 

lifetime, have you ever personally seen or experienced the following in or around Galveston Bay?” 359 

These included: “tar balls on the beach,” “trash and other debris in the water,” “trash and other debris 360 

on the beach or coastline,” “dead fish on the beach or coastline likely due to contamination,” “smell 361 

of oil or other chemicals,” “smell of sewer,” and “sheen of oil or other chemicals in the water.” 362 

Responses that indicated experience with at least one of these is considered to represent pollution 363 

experience while responses of “none of these'' indicates no experience with pollution. Finally, controls 364 

are included for sex (male or female), age (18-34 years, 35-44 years, 45-64 years, and 65 years and 365 

older), Latino ethnicity (no or yes), African American race (no or yes), and education level (high 366 

school or less, some college, Associate’s or Bachelor’s degree, or post-graduate degree).  367 

3.3. Method 368 

 Logistic regression was used to model change in outdoor activities (Model 1) and change in 369 

consumption of drinking water or seafood (Model 2) due to poor water conditions in Galveston Bay 370 

as explained by awareness and frequency of use of water quality monitoring information, while 371 

controlling for: chronic water pollution exposure (fish, swim, or visit Galveston Bay; visit Galveston 372 

beach; and eat locally caught seafood), acute water pollution exposure (health concern related to the 373 

Deer Park chemical fire and health concern related to the barge collision of May 10, 2019), 374 

environmental hazard knowledge, pollution experience in and around Galveston Bay, sex, age, race 375 

and ethnicity, and education level. Logistic regression is appropriate when the dependent variable is 376 

a binomial response variable and when modeling the impacts of multiple explanatory variables on 377 

the response variable [101]. Goodness of fit of the models was assessed using the F-adjusted mean 378 

residual test, which was developed for testing the fit of logistic regression models using survey data 379 

and validated using National Health Interview Survey data [102]. The results are explored using 380 

marginal effects at specified values because they appropriately express both the non-linearity and 381 

conditional effects of the results [103]. 382 

4. Results 383 

 The results of the logistic regression analyses are presented in Table 2 as marginal effects 384 

representing the discrete change in the likelihood of altering behavior to outdoor activities (Model 1) 385 
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and consumption of drinking water and seafood (Model 2) due to poor water quality conditions in 386 

Galveston Bay. Marginal effects like these, expressed at specified values of the independent variables, 387 

should be interpreted in relation to the referent category. Note that demographical controls variables 388 

are omitted from the table; Table S1 in the Supplemental Materials provides a table reporting the 389 

coefficients and standard errors of all variables in the logistic regression models. 390 

Table 2. Logistic Regression Results: Marginal Effects1 391 

 Model 1 Model 2 

  OUTDOOR ACTIVITIES CONSUMPTION 

  dy/dx CI lower CI upper dy/dx CI lower CI upper 

Water Quality Monitoring (not aware)   

never check -1.39% -0.236 0.208 -0.21% -0.176 0.172 

seldom check -11.17% -0.330 0.107 -10.38% -0.279 0.071 

sometimes check 9.59% -0.075 0.267 0.18% -0.164 0.167 

occasionally check 14.59% -0.046 0.337 25.86% 0.085 0.433 

everyday check 25.92% 0.047 0.471 32.71% 0.101 0.553 

Fish, swim, visit Galveston Bay (never)   

once a year 0.79% -0.193 0.208 -12.86% -0.367 0.110 

a couple of times a year 9.07% -0.095 0.276 -7.48% -0.314 0.164 

multiple times a year  18.52% -0.019 0.389 2.86% -0.215 0.272 

once a month 0.92% -0.203 0.222 -6.61% -0.313 0.181 

multiple times a month  13.36% -0.079 0.346 3.28% -0.216 0.282 

once a week 0.44% -0.227 0.236 -4.71% -0.321 0.227 

multiple times a week 18.12% -0.082 0.444 -1.48% -0.340 0.310 

Eat locally caught seafood (never)   

once a year 0.86% -0.278 0.296 5.03% -0.243 0.343 

a couple of times a year -5.20% -0.213 0.109 2.51% -0.145 0.195 

multiple times a year  -4.68% -0.204 0.110 0.76% -0.156 0.171 

once a month -10.77% -0.296 0.081 3.39% -0.160 0.228 

multiple times a month  4.64% -0.136 0.229 2.67% -0.147 0.200 

once a week -6.91% -0.272 0.133 -2.66% -0.224 0.171 

multiple times a week -20.59% -0.425 0.013 -5.32% -0.261 0.155 

Concern for health (not at all)   

not at all - a little -3.18% -0.352 0.289 11.02% -0.177 0.397 

a little 3.99% -0.197 0.277 1.28% -0.223 0.249 

a little - a moderate amount -3.82% -0.278 0.202 6.59% -0.179 0.311 

a moderate amount 6.19% -0.170 0.294 12.77% -0.118 0.373 

a moderate amount - a lot 1.01% -0.232 0.252 1.01% -0.231 0.252 

a lot 11.85% -0.118 0.355 10.41% -0.137 0.346 

a lot - a great deal 16.26% -0.086 0.411 5.89% -0.181 0.299 

a great deal 26.60% 0.017 0.515 19.98% -0.039 0.439 

Environmental hazard knowledge (not at all)   

slightly 9.16% -0.100 0.283 10.59% -0.063 0.275 
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moderately 7.21% -0.113 0.257 11.77% -0.040 0.276 

very -4.09% -0.236 0.154 9.92% -0.076 0.274 

extremely 19.54% -0.042 0.433 14.59% -0.058 0.350 

Pollution experience (none)   

at least one event  26.45% 0.124 0.405 32.87% 0.229 0.429 

1 Note: Change in marginal effects from referent category, noted in parentheses, reported with confidence 392 
intervals. Bolded figures are statistically significant (p<0.05). 393 

 Considering first the primary explanatory variable of interest, the results support that 394 

individuals who are aware of water pollution monitoring and check it frequently are more likely to 395 

change their behavior than those who are not aware of pollution monitoring or check it infrequently. 396 

The marginal effects demonstrate the average individual who checks water quality information 397 

“everyday” is 25.92% (p=0.017) more like than someone who is not aware of water pollution 398 

monitoring to change their planning outdoor activities and 32.71% (p=0.005) more likely to change 399 

their consumption of drinking water and/or seafood when poor quality conditions in Galveston Bay 400 

are present. The average individual who checks water quality “occasionally” is associated with a 401 

25.86% (p=0.004) higher likelihood of changing their consumption behavior, compared to someone 402 

with no awareness of water quality information.  403 

 The models account for chronic and acute exposure to water pollution. Of these measures, only 404 

the concern for health related to recent environmental hazards (the Deer Park chemical fire and the 405 

barge collision in Galveston Bay) are associated with changes in behavior that reduce risk. The 406 

marginal effects indicate that, on average, an individual who has the highest level of concern for their 407 

health and the health of their household is 26.60% (p=0.036) more likely than someone with no 408 

concern to change their outdoor activities due to poor water quality.  409 

 In addition to exposure, the model accounts for self-reported environmental hazard knowledge 410 

and experience with pollution events in and around Galveston Bay. While environmental hazard 411 

knowledge is not statistically significant, pollution experience is significantly associated with action 412 

to reduce risk. On average, individuals who have experienced at least one event in their lifetime are 413 

26.45% (p=0.000) and 32.87% (p=0.000) more likely than someone who has never observed a pollution 414 

disturbance to change their outdoor activities and consumption of drinking water and/or seafood, 415 

respectively. Finally, of the demographic controls the results indicate that females are 10.66% 416 

(p=0.026) more likely than males to change their consumption behavior, and 45-65 year old adults are 417 

17.35% (p=0.007) less likely than 18-34 year old adults to change their outdoor activities.  418 

5. Discussion 419 

5.1. Implications of Findings 420 

 The results support our hypothesis that individuals who are aware of pollution water 421 

monitoring and check this information frequently are more likely to take action that reduces their 422 

risk in terms of changing their outdoor activities and consumption of drinking water and/or seafood 423 

on days when water quality is poor. This is in line with past studies that have found awareness of air 424 

quality reports and frequency of checking them is associated with behaviors to reduce risk [12, 14-425 

15]. These findings suggest risk-reducing behavior is sensitive to the frequency of checking water 426 

quality information. While occasionally checking water quality information is significantly associated 427 
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with changes to consumption, it is not significantly associated with changes to outdoor activities. The 428 

findings also indicate that acute, but not chronic, exposure is significantly associated with changes to 429 

outdoor activities when water quality is poor. However, changes to consumption in relation to the 430 

2019 environmental hazards is not evident. Additional data, particularly rich qualitative data from 431 

interviews and focus groups, would help explore how perceptions of risk are associated with acute 432 

exposure events and, in turn, affect the propensity to take different actions to reduce risk. There is 433 

some evidence that the fishing public often ignores fish consumption advisories due to discounting 434 

health risks that are associated with familiar and enjoyable activities [104]. Similar psychosocial 435 

processes involving de-amplification of risk may be occurring with recreational activities in the 436 

Galveston Bay. 437 

5.2. Need for Pollution Monitoring & Risk Communication Framework  438 

 The findings of this study point to a need for pollution monitoring data that is current, accessible 439 

to the public, and communicated in a manner that induces responses. Although straightforward, 440 

meeting this need is challenging. Water pollution monitoring is complex and requires considerable 441 

expertise and effort (see Table S2 in Supplemental Materials for details on the process of water 442 

pollution analysis in relation to the Galveston Bay). Additionally, adequate environmental 443 

monitoring requires continuity, consistency, and adequate scale – requirements that entail significant 444 

and consistent investment of resources [105]. For this reason, there is a dearth of environmental 445 

monitoring information [106]. This is evident in the Galveston Bay where, with the exception of 446 

independent research, there is a lack of concerted water pollution monitoring. Water quality 447 

monitoring is mainly under the remit of state agencies and communicated through seafood 448 

advisories. Filling this information gap, not only in the Galveston Bay but globally, is a critical first 449 

step so that risk may be communicated effectively.  450 

 A coupled issue with lack of environmental monitoring information is the dissemination of this 451 

information to the public and policy-makers. It is important to approach information dissemination 452 

not as a process of filling information deficits, but as a process of contextualization in relation ‘real 453 

world’ experience [107]. In a study of awareness, use of, and attitudes toward air quality information 454 

in the United Kingdom, Bickerstaff and Walker [107] found that relevance is key. Air quality 455 

information was criticized by residents as being overly technical in language, ambiguous due to lack 456 

of description to ease interpretation of presentation of quality metrics, and not sufficiently specific 457 

with regards to spatial application. Additionally, air quality reports were consistently in conflict with 458 

direct personal experience. They explain [107] (p. 292):  459 

Air-quality information is not passively received by a homogenous public body. Rather the 460 

material is contextualised and 'made sense of’ in relation to the relevance to people's lives and 461 

the immediate and personal realities of physical encounters with air pollution. Where air-462 

quality information and advice has little resonance with people's local experience, and where 463 

its credibility is challenged, it is quite reasonable to expect that it will be ignored or simply 464 

set alongside the many other demands on the public's attention arid understanding.  465 

 Applying this to the issue of water quality suggests water pollution information should be 466 

provided on a relevant spatial scale (i.e., what is considered ‘local’) and in relation to observable 467 

water quality disturbances. Further, pollution information should be approached as a collaborative 468 

effort among data users and producers [106] and possibly incorporate local knowledge through, for 469 
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example, crowd-sourcing platforms [108]. Additionally, pollution information should come from 470 

credible sources where trust is established in the relationships between the public and the 471 

organizations. Irwin contends that effective communication of risk recognizes that information 472 

sources “will be judged alongside the perceived credibility of the source and the possibilities for 473 

practical action which are opened up for its intervention” [109] (p. 102). Pollution information, 474 

therefore, should also be connected to practical actions to reduce risk. Future work should endeavor 475 

to create a risk communication framework that implements this aspects of pollution information 476 

formatting and dissemination.   477 

5.3. Study Limitations 478 

 The current study is limited by its cross-sectional design that captures explanatory and outcome 479 

measures at the same time. Consequently, causal relationships cannot be established. The strength of 480 

this approach for examining the association of pollution information with actions to reduce risk 481 

outweigh this limitation as this study contributes to an area of research with few empirical analyses 482 

of water quality monitoring. Furthermore, the present cross-sectional analysis has provided 483 

additional information on the frequency of checking water quality information and changes to 484 

multiple types of behavior to reduce risk – critical information to move forward with further research 485 

in this area. The study is also limited by its reliance on online survey data, which limits recruitment 486 

and participation to individuals with access to online services.  487 

 Another limitation of this study is the reliance on a non-probability, quota-based sampling 488 

frame. Due to low response rates, high costs, and poor coverage of probability surveys, non-489 

probability surveys are being increasingly used by researchers [110]. While quota-based sampling 490 

aims to match a panel to a set of population parameters and, therefore, enhances the 491 

representativeness of the sample, there is a critical disadvantage. Specifically, non-probability 492 

samples, including those using quotas, do not allow for calculation of margins of error that provide 493 

a measure of precision. This likely results in introducing unknown sampling biases into the survey 494 

estimates [97]. A study by Pew Research Center [111] concludes that such biases may be reduced 495 

through the use of survey weights. Accordingly, this study includes a weight that adjusts the sample 496 

on population parameters for sex, race/ethnicity, and age using an iterative proportional fitting 497 

method by [94]. This method is appropriate for managing the limitations of non-probability survey 498 

samples [110] but does not completely eliminate biases. 499 

6. Conclusion 500 

 Hazard mitigation can take a number of forms; the present study has looked at one strategy of 501 
risk reduction – building awareness [11]. Building on the work of Reams and colleagues [14-15], this 502 
study examined how water pollution awareness and frequency of checking information is 503 
associated with changes to outdoor activities and consumption of drinking water and/or seafood 504 
when water quality is poor. The results of the present study are in line with prior research, finding 505 
that behavioral changes are associated with frequent checking of water quality ratings. The findings 506 
underscore that awareness is not enough to reduce risk; rather, changes in risky behavior is only 507 
associated with very frequent engagement with pollution information.  508 
 Critical to the contribution of this study is the context in which water pollution information 509 
and risk reduction activities were explored. As a hotspot of oil and gas and transportation industry 510 
activity, environmental disturbances - including 2019 events of a chemical fire and barge collision - 511 
often affect the Galveston Bay. Residents living around the Bay, therefore, are exposed to chronic 512 
and acute water pollution. It is under these conditions that the present study has found the 513 
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frequency of checking water quality information to be significantly associated with changes to 514 
recreational and consumption patterns. This context has considerable implications for risk 515 
communicators, including researchers, environmental organizations, and policy-makers. Primarily 516 
the message is a cautious one – it is imperative to improve water pollution monitoring and the 517 
dissemination of this information so that risk is not ignored, normalized, or de-amplified. 518 
Investments are needed to make data collection more consistent, widespread, and on the 519 
appropriate spatial scale. Concerted efforts are also needed to share this information in ways that 520 
are perceived as relevant, accessible, and credible to the public. Only with these developments will 521 
the potential hazard information offers for risk reduction be realized.  522 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 523 
Environmental Hazard Events in Survey, Table S1: Logistic Regression Results, Table S2: Process for Detection 524 
of PAHs & PCBs in Water and Biota Samples.  525 
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Appendix A 538 

Comparison of sample and population proportions on sex, age, and race and ethnicity are given in 539 

Table A.1. Column 1 corresponds to the sample without a weight applied; column 2 to the sample 540 

with a weight applied; and column 3 to the population. The data analyzed in this study applies the 541 

survey weight (column 2). 542 

Table A.1. Sample and Population Proportions on Sex, Age, and Race and Ethnicity 543 

  1 2 3 

Sex Male 39.24 49.62 49.55 

 Female 60.76 50.38 50.45 

Age 18-34 years 42.29 34.20 33.65 

 35-44 years 22.67 18.27 18.03 

 45-64 years 28.00 33.31 33.38 

 65 years & older 7.05 14.23 14.94 

Race & 

Ethnicity 

White 43.05 36.30 35.90 

African-American 9.33 10.87 10.90 

Latino 40.95 47.14 47.60 

Asian-American 4.00 3.75 3.70 

 Other 2.67 1.93 1.90 

 544 
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