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Abstract

Let µ(m, n) (respectively, η(m, n)) denote the number of odd-balanced unimodal sequences of size 2n
and rank m with even parts congruent to 2 mod 4 (respectively, 0 mod 4) and odd parts at most half the
peak. We prove that two-variable generating functions for µ(m,n) and η(m,n) are simultaneously quantum
Jacobi forms and mock Jacobi forms. These odd-balanced unimodal rank generating functions are also
duals to partial theta functions originally studied by Ramanujan. Our results also show that there is a
single C∞ function in R × R to which the errors to modularity of these two different functions extend.
We also exploit the quantum Jacobi properties of these generating functions to show, when viewed as
functions of the two variables w and q, how they can be expressed as the same simple Laurent polynomial
when evaluated at pairs of roots of unity. Finally, we make a conjecture which fully characterizes the
parity of the number of odd-balanced unimodal sequences of size 2n with even parts congruent to 0 mod 4
and odd parts at most half the peak.
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1. Introduction and statement of results

Many recent papers have explored connections between combinatorial generating
functions associated to unimodal sequences and modular forms. For example,
Andrews et al. proved in [2] that such a generating function, there described in terms
of concave compositions, is a mixed mock modular form and made connections to
Mathieu Moonshine. Additionally, first in [9], and later in [12, 15], related unimodal
generating functions were shown to be both quantum and mock modular forms. More
recently in [5], the notion of a quantum Jacobi form was defined and the first examples
of quantum Jacobi forms, given in [4, 5], were presented as certain unimodal rank
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generating functions. Here, we study rank generating functions for so-called odd-
balanced unimodal sequences and show that these combinatorial q-hypergeometric
series are quantum Jacobi and mock Jacobi forms.

To make this precise, we define the notion of a strongly unimodal sequence of size
n: it is a sequence of integers {a j}

s
j=1(s ∈ N) such that for some k ∈ N,

0 < a1 < a2 < · · · < ak > ak+1 > · · · > as > 0

and a1 + · · · + as = n. The rank of a strongly unimodal sequence is equal to 2k − s − 11.
Odd-balanced unimodal sequences, first defined in [15], allow odd parts to repeat on
either side of the peak ak, but they must be identical on either side and the peak must
be even. Here we study a particular unimodal rank statistic defined as follows. Let
µ(m, n) denote the number of odd-balanced unimodal sequences of size 2n and rank m
with all even parts congruent to 2 modulo 4 and odd parts at most half the peak. The
rank generating function for such sequences satisfies

1
(1 + w−1)

M(z; τ) :=
∞∑

n=0

q2n+1(−wq; q2)n(−w−1q; q2)n

(q; q2)n+1

=

∞∑
n=0

∞∑
m=−∞

µ(m, n)wmqn,

where w := e(z),q := e(τ),with e(α) := e2πiα, and the q-Pochhammer symbol is defined
by (w; q)n :=

∏n−1
j=0(1 − wq j) for n ∈ N0 ∪ {∞}. We will use this notation (in particular,

that for w and q just mentioned) throughout the paper. We define a slight normalization
of M calledM+ by

M+(z; τ) := w1/2q−1/16M
(
z;
τ

2

)
. (1-1)

In Theorem 1.1, we prove that M+ is a quantum Jacobi form when viewed as a
function on an appropriate subset of Q × Q and a mock Jacobi form when viewed
as a function on C ×H, both with respect to the subgroup Γ :=

〈{(
1 2
0 1

)
,
(
−1 0
0 −1

)
,
(

1 0
6 1

)}〉
⊆

Γ0(6) ⊆ SL2(Z), where we let 〈S 〉 denote the group generated by the set S . We also
use the quantum Jacobi properties ofM+ to obtain an expression forM+ as a Laurent
polynomial when evaluated at pairs of rational numbers in Theorem 1.5.

To state Theorem 1.1 precisely, we define the ‘errors of modularity’

H1(z; τ) := −
1
2

(6τ + 1)−1/2e
( 6z2

6τ + 1

)
h
( z
6τ + 1

;
τ

2(6τ + 1)

)
−

1
2

h
(
z;
τ

2

)
, (1-2)

H2(z; τ) :=
1
2

w1/2q−1/24(6τ + 1)−1/2e
(9z2 + τ2

6τ + 1

)
×
ϑ(z + τ

2 + 1
2 ; τ)

η( τ2 )

∑
±

e
(
±

( z
6τ + 1

+
1
4

))
1Here, we use the definition of rank as in [15]. Other sources such as [6] define rank to be

−(2k − s − 1) = s − 2k + 1.
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×

[
h
(3z + (3 ∓ 1)τ + 1

2

6τ + 1
;

3τ
6τ + 1

)
− (6τ + 1)1/2e

(
−9z2 − τ2 ± 6τz

6τ + 1

)
h
(
3z ∓ τ +

1
2

; 3τ
)]
, (1-3)

where, for z ∈ C, τ ∈ H, the Mordell integral h is given by

h(z; τ) :=
∫
R

eπiτt2−2πzt

cosh(πt)
dt (1-4)

and the respective modular and Jacobi forms η and ϑ are defined in (2-1).
Theorem 1.1 below establishes the quantum Jacobi and mock Jacobi transformation

properties of the two-variable odd-balanced unimodal rank generating function M+.
The set QM+ ⊆ Q × Q is defined in Section 3.

Theorem 1.1. The following transformation properties hold.
(i) For (z, τ) ∈ (C × H) ∪ QM+ ,

M+(z; τ) − eπi/4M+(z; τ + 2) = 0, (1-5)
M+(z; τ) −M+(−z; τ) = 0, (1-6)

M+(z; τ) + (6τ + 1)−1/2e
( 6z2

6τ + 1

)
M+

( z
6τ + 1

;
τ

6τ + 1

)
= H1(z; τ) + H2(z; τ), (1-7)

M+(z; τ) +M+(z + 1; τ) = 0, (1-8)

M+(z; τ) − w−2q−1M+(z + τ; τ)

= −w−1/2q−1/16 + w−3/2q−9/16

+ w−2q−11/12(1 − qw2)
ϑ(z + τ

2 + 1
2 ; τ)

η( τ2 )
. (1-9)

(ii) In particular, for (z, τ) ∈ QM+ ,

M+(z; τ) + (6τ + 1)−1/2e
( 6z2

6τ + 1

)
M+

( z
6τ + 1

;
τ

6τ + 1

)
= H1(z; τ), (1-10)

M+(z; τ) − w−2q−1M+(z + τ; τ) = −w−1/2q−1/16 + w−3/2q−9/16. (1-11)

The function on the right-hand side of (1-11) extends to a C∞ function on R × R
and the function H1 on the right-hand side of (1-10) extends to a C∞ function on
(R \ (Z + { 12 ,±

1
24 ,±

1
8 ,±

5
24 ,±

7
24 ,±

3
8 ,±

11
24 })) × (R \ {− 1

6 }).

Remarks 1.2. (1) Theorem 1.1 shows that the functionM+ is a quantum Jacobi form
of weight 1

2 and index −1 with respect to Γ (where Γ is as defined above). Direct
calculation shows that QM+ is invariant under the action of Γ.

(2) As suggested by the transformations given on C × H in Theorem 1.1, the proof
of Theorem 1.1 in Section 4 reveals that M+ is also a mock Jacobi form. In
particular, it is the holomorphic part of a nonholomorphic Jacobi form.
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We also study the quantum Jacobi and mock Jacobi properties of a second odd-
balanced unimodal rank generating function, namely, the function

1
(1 + w−1)

N(z; τ) :=
∞∑

n=0

q2n+2(−wq2; q2)n(−w−1q2; q2)n

(q; q2)n+1

=

∞∑
n=0

∞∑
m=−∞

η(m, n)wmqn,

where η(m, n) counts the number of odd-balanced unimodal sequences of size 2n
and rank m with even parts congruent to 0 modulo 4 and odd parts at most half the
peak. Our function N was independently studied at around the same time in [7] by
Bringmann and Jennings-Shaffer. In [7], the relevant function is called U2, studied
there for its combinatorial, asymptotic, and mock modular properties. We also point
out that the q-hypergeometric series defining N and M are duals to partial theta
functions studied by Ramanujan [1, 17]. Parallel to Theorem 1.1, in Theorem 1.3
below, we establish the quantum Jacobi and mock Jacobi properties of the normalized
function

N+(z; τ) := w1/2q−1/16N
(
z;
τ

2

)
.

The ‘error’ function H1 is as in Theorem 1.1 (see (1-2)) and H3 is defined in (4-16).
The set QN+ ⊆ Q × Q is defined in Section 3.

Theorem 1.3. The following transformation properties hold.
(i) For (z, τ) ∈ (C × H) ∪ QN+ ,

N+(z; τ) − eπi/4N+(z; τ + 2) = 0, (1-12)
N+(z; τ) − N+(−z; τ) = 0, (1-13)

N+(z; τ) + (6τ + 1)−1/2e
( 6z2

6τ + 1

)
N+

( z
6τ + 1

;
τ

6τ + 1

)
= H1(z; τ) + H3(z; τ),

(
τ , −

1
6

)
, (1-14)

N+(z; τ) +N+(z + 1; τ) = 0, (1-15)

N+(z; τ) − w−2q−1N+(z + τ; τ)

= −w−1/2q−1/16 + w−3/2q−9/16

+ w−2q−2/3(1 − wq1/2)
ϑ(z + 1

2 ; τ)
η( τ2 )

. (1-16)

(ii) In particular, for (z, τ) ∈ QN+ ,

N+(z; τ) + (6τ + 1)−1/2e
( 6z2

6τ + 1

)
N+

( z
6τ + 1

;
τ

6τ + 1

)
= H1(z; τ),

(
τ , −

1
6

)
, (1-17)

N+(z; τ) − w−2q−1N+(z + τ; τ) = −w−1/2q−1/16 + w−3/2q−9/16. (1-18)
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The function on the right-hand side of (1-18) extends to a C∞ function on R × R
and the function H1 on the right-hand side of (1-17) extends to a C∞ function on
(R \ (Z + { 12 ,±

1
24 ,±

1
8 ,±

5
24 ,±

7
24 ,±

3
8 ,±

11
24 })) × (R \ {− 1

6 }).

Remarks 1.4.

(1) Theorem 1.3 shows that N+, like M+ in Theorem 1.1, is a quantum Jacobi
form of weight 1

2 and index −1 with respect to Γ. Direct calculation shows that
QN+ is invariant under the action of Γ. As was the case with M+, the proof of
Theorem 1.3 shows that N+ is also a mock Jacobi form.

(2) In (1-14) and (1-17), we must exclude pairs (z, τ) with τ = − 1
6 in order to

avoid singularities. For any γ ∈ Γ, we similarly must exclude pairs (z, τ) with
τ = γ−1(i∞) in the analogues to (1-14) and (1-17).

(3) It is interesting to point out that the so-called ‘error functions’ forM+ and N+

on their respective quantum Jacobi sets are identical and therefore extend to
identical functions in an identical subset of R × R. That is, the functions on the
right-hand sides of (1-5), (1-6), (1-8), (1-12), (1-13), and (1-15) are identically
zero and (more interestingly) the functions on the right-hand sides of (1-10) and
(1-17) are equal, as are the functions on the right-hand sides of (1-11) and (1-18).

Using quantum Jacobi properties established in Theorems 1.1 and 1.3, we show in
Theorem 1.5 that the odd-balanced unimodal rank generating functions M+ and N+

can be expressed as simple Laurent polynomials when evaluated at pairs of rationals in
QM+ andQN+ , respectively. These evaluations are nontrivial, in that they do not simply
follow from the q-hypergeometric definitions of the functions M+ and N+. These
types of evaluations have been of interest lately specifically as related to radial limits
of mock theta functions and can sometimes also be used to give simple polynomial
evaluations of Eichler integrals [5, 8, 11–13, 21].

Theorem 1.5. The following identities hold.

(i) For (a/b, h/k) ∈ QM+ ,

M+
(a
b

;
h
k

)
= −

1
2

k−1∑
j=0

(ζ−(4 j+1)a
2b ζ

−(4 j+1)2h
16k − ζ

−(4 j+3)a
2b ζ

−(4 j+3)2h
16k ).

(ii) For (a/b, h/k) ∈ QN+ ,

N+
(a
b

;
h
k

)
= −

1
2

k−1∑
j=0

(ζ−(4 j+1)a
2b ζ

−(4 j+1)2h
16k − ζ

−(4 j+3)a
2b ζ

−(4 j+3)2h
16k ).

Remark 1.6. It is interesting to note that the same exact Laurent polynomial is used to
evaluate the functions M+ and N+ in parts (i) and (ii) of Theorem 1.5. See also the
remark following Theorem 1.3.

We also give a conjecture (which has since been proved; see the remark below) on
the parity of η(n), the number of odd-balanced unimodal sequences of size 2n with
even parts congruent to 0 modulo 4 and odd parts at most half the peak.
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162 M. Barnett, A. Folsom and W. J. Wesley [6]

Conjecture 1.7. For all nonnegative integers n, η(n) is odd if and only if 8n − 1 =

3pe`2 or qem2, where p and q are primes congruent to 5 and 23 modulo 24,
respectively, e ≡ 1 mod 4, p - `, and q - m.

This implies Ramanujan-type congruences analogous to those satisfied by u(n),
the number of strongly unimodal sequences of size n, and v(n), the number of odd-
balanced unimodal sequences of size 2n + 2 given in [9] and [15].

Remark 1.8. Shortly after this paper was written, Lovejoy [16] provided a proof of
Conjecture 1.7 using Bailey pairs and the arithmetic of Z[

√
6]. Around the same time,

Bringmann and Jennings-Shaffer [7, Theorem 1.3] also rediscovered this result and
gave a proof along the same lines.

The remainder of this paper is organized as follows. In Section 2, we recall the
definition of a quantum Jacobi form and give certain properties of some Jacobi forms
which we use in our proofs. In Section 3, we introduce some technical lemmas that
are instrumental to our work. Our main theorems are proved in Section 4.

2. Preliminaries

2.1. Quantum Jacobi forms. Quantum Jacobi forms were defined in [5] in 2016,
naturally combining Zagier’s definition of a quantum modular form from 2010 [20]
and the definition of a Jacobi form, the theory of which was largely developed in the
1980s by Eichler and Zagier [10].

Definition 2.1. A weight k ∈ 1
2Z and index m ∈ 1

2Z quantum Jacobi form is a complex-
valued function on Q × Q such that for all γ =

(
a b
c d

)
∈ SL2(Z) and (λ, µ) ∈ Z × Z, the

functions hγ : Q × (Q \ γ−1(i∞))→ C and g(λ,µ) : Q × Q→ C defined by

hγ(z; τ) := φ(z; τ) − ε−1
1 (γ)(cτ + d)−ke−2πimcz2/(cτ+d)φ

( z
cτ + d

;
aτ + b
cτ + d

)
,

g(λ,µ)(z; τ) := φ(z; τ) − ε−1
2 ((λ, µ))e2πim(λ2τ+2λz)φ(z + λτ + µ; τ)

satisfy a ‘suitable’ property of continuity or analyticity in a subset of R × R.

Remarks 2.2.

(1) The complex numbers ε1(γ) and ε2((λ, µ)) satisfy |ε1(γ)| = |ε2((λ, µ))| = 1; in
particular, the ε1(γ) are such as those appearing in the theory of half-integral
weight forms.

(2) We may modify the definition to allow modular transformations on appropriate
subgroups of SL2(Z). We may also restrict the domains of the functions hγ and
g(λ,µ) to be suitable subsets of Q × Q.

Prior to the two functions studied in this paper (M+ and N+), there were just
three known examples of quantum Jacobi forms. As mentioned in Section 1, the first
example is provided in [5] and the second and third examples are given in [4]. All
of these functions, including M+ and N+ studied here, are q-hypergeometric series
which are also two-variable combinatorial generating functions.
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[7] Quantum unimodal rank generating functions 163

2.2. Modular forms and related functions. Here we recall some properties of
various modular objects and related functions. We begin with the Mordell integral
h defined in Section 1, which appeared in Zwegers’ thesis on mock theta functions.
The following properties were given in [22].

Lemma 2.3. The following properties hold:

(i) h is an even function of z;
(ii) h(z; τ) + h(z + 1; τ) = 2/

√
−iτeπi(z+1/2)2/τ;

(iii) h(z; τ) + e−2πiz−πiτh(z + τ; τ) = 2e−πi(z+τ/4);
(iv) h(z/τ;−1/τ) =

√
−iτe−πiz2/τh(z; τ).

Under certain conditions, h can be re-written using the weight 3/2 theta functions
ga,b, defined for a, b ∈ R and τ ∈ H by

ga,b(τ) :=
∑
ν∈a+Z

νeπiν2τ+2πiνb.

The functions ga,b transform as follows [19, 22].

Lemma 2.4. With hypotheses as above, the functions ga,b satisfy:

(i) ga+1,b(τ) = ga,b(τ);
(ii) ga,b+1(τ) = e2πiaga,b(τ);
(iii) ga,b(τ + 1) = e−πia(a+1)ga,a+b+1/2(τ);
(iv) ga,b(−1/τ) = ie2πiab(−iτ)3/2gb,−a(τ);
(v) g−a,−b(τ) = −ga,b(τ).

The following result relates the functions h and ga,b [22].

Lemma 2.5. For a, b ∈ (− 1
2 ,

1
2 ),∫ i∞

0

ga+1/2,b+1/2(z)
√
−i(z + τ)

dz = −e−πia2τ+2πia(b+1/2)h(aτ − b; τ).

We also make use of the weight 1/2 modular form η and the weight 1/2 Jacobi form
ϑ, defined for τ ∈ H and z ∈ C by

η(τ) := q1/24
∞∏

n=1

(1 − qn), ϑ(z; τ) :=
∑

n∈Z+1/2

eπin2τ+2πin(z+1/2). (2-1)

These functions satisfy the transformation properties given in Lemmas 2.6 and 2.7
below [18].

Lemma 2.6. For γ =
(

a b
c d

)
∈ SL2(Z) and τ ∈ H,

η(γτ) = χγ(cτ + d)1/2η(τ),
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164 M. Barnett, A. Folsom and W. J. Wesley [8]

where, for c > 0,

χγ =


1
√

i

(d
c

)
i(1−c)/2eπi(bd(1−c2)+c(a+d))/12 if c is odd,

1
√

i

( c
d

)
eπid/4eπi(ac(1−d2)+d(b−c))/12 if d is odd.

(2-2)

Lemma 2.7. For λ, µ ∈ Z, γ =
(

a b
c d

)
∈ SL2(Z), and (z, τ) ∈ C × H:

(i) ϑ(z + λτ + µ; τ) = (−1)λ+µq−λ
2/2e−2πiλzϑ(z; τ);

(ii) ϑ(z/(cτ + d); γτ) = χ3
γ(cτ + d)1/2eπicz2/(cτ+d)ϑ(z; τ);

(iii) ϑ(z; τ) = −iq1/8w−1/2 ∏∞
n=1(1 − qn)(1 − wqn−1)(1 − w−1qn).

Next we define Zwegers’ mock Jacobi form µ, defined for τ ∈ H and u, v ∈ C (u, v <
Zτ + Z) by [22]

µ(u, v; τ) :=
eπiu

ϑ(v; τ)

∑
n∈Z

(−1)neπi(n2+n)τ+2πinv

1 − e2πinτ+2πiu . (2-3)

This form may be completed into a nonholomorphic Jacobi form by adding to it a
certain nonholomorphic function as follows [22]:

µ̂(u, v; τ) := µ(u, v; τ) +
i
2

R(u − v; τ), (2-4)

where the nonholomorphic function R is defined by

R(u; τ) :=
∑

ν∈1/2+Z

{sgn(ν) − E((ν + α)
√

2y)}(−1)ν−1/2e−πiν2τ−2πiνu, (2-5)

with y := Im(τ), α := Im(u)/ Im(τ) and

E(z) := 2
∫ z

0
e−πu2

du.

From [22, Propositions 1.9 and 1.10 and Theorem 1.11], we have the following
transformation properties of R and µ̂.

Lemma 2.8. With hypotheses as above, R satisfies the following transformation
properties:

(i) R(u; τ + 1) = e−πi/4R(u; τ);
(ii) 1/

√
−iτeπiu2/τR(u/τ;−1/τ) + R(u; τ) = h(u; τ);

(iii) R(u; τ) = R(−u; τ);
(iv) R(u; τ) + e−2πiu−πiτR(u + τ; τ) = 2e−πiu−πiτ/4.

Lemma 2.9. With hypotheses as above, for k, l,m, n ∈ Z and
(

a b
c d

)
∈ SL2(Z), the function

µ̂ satisfies the following (nonholomorphic) Jacobi transformation properties:
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[9] Quantum unimodal rank generating functions 165

(i) µ̂(u + kτ + l, v + mτ + n; τ) = (−1)k+l+m+neπi(k−m)2τ+2πi(k−m)(u−v)µ̂(u, v; τ);
(ii) µ̂(u/(cτ + d), v/(cτ + d); (aτ + b)/(cτ + d)) = χ−3(a b

c d
)(cτ + d)1/2e−πic(u−v)2/cτ+d

µ̂(u, v; τ).

Next, after Zwegers [23], we define the level-` Appell functions A` for ` ∈ N,
z1, z2 ∈ C, and τ ∈ H by

A`(z1, z2; τ) := ρ`/21

∑
n∈Z

(−1)`nρn
2q`n(n+1)/2

1 − ρ1qn ,

where ρ j = e2πiz j , j ∈ {1, 2}. As with Zwegers’ µ function, the functions A` are
completed with the function R. The completed level-` Appell functions Â` are defined
by

Â`(z1, z2; τ) := A`(z1, z2; τ)

+
i
2

`−1∑
j=0

e2πi jz1ϑ
(
z2 + jτ +

` − 1
2

; `τ
)
R
(
`z1 − z2 − jτ −

` − 1
2

; `τ
)
. (2-6)

We have the following transformation properties of Â` [23].

Lemma 2.10. With hypotheses as above, for n1, n2,m1,m2 ∈ Z and γ =
(

a b
c d

)
∈ SL2(Z),

the functions Â` satisfy the following transformation properties:

(i) Â`(−z1,−z2; τ) = −Â`(z1, z2; τ);
(ii) Â`(z1 + n1τ + m1, z2 + n2τ + m2;τ) = (−1)`(n1+m1)ρ`n1−n2

1 ρ−n1
2 q`n

2
1/2−n1n2 Â`(z1, z2;τ);

(iii) Â`(z1/(cτ + d), z2/(cτ + d); γτ) = (cτ + d)eπic/(cτ+d)(−`z2
1+2z1z2)Â`(z1, z2; τ).

3. Lemmas

Here we establish various auxiliary lemmas which are used in Section 4 in the
proofs of our main results. First we define the infinite subsets QM+ and QN+ of Q × Q
on whichM+ and N+ converge, respectively:

QM+ :=
{(a

b
,

h
k

)
∈ Q × Q

∣∣∣∣∣ a, h ∈ Z, b, k ∈ N, h, k odd,
gcd(a, b) = gcd(h, k) = 1, and b | k

}
,

QN+ :=
{(a

b
,

h
k

)
∈ Q × Q

∣∣∣∣∣∣ a ∈ Z, b, k ∈ N, h odd, gcd(a, b) = 1,
gcd(h, k) = 1, and either k even and b | k,
or k odd, b even, and b/2 | k

}
.

Lemma 3.1. The following identities hold.

(i) If (z, τ) = (a/b, h/k) ∈ Q+
M

, then there is a constant Ca,b,h,k such that

M+(z; τ) = 2 cos
(aπ

b

)
ζ−h

16k

Ca,b,h,k∑
n=0

ζh(2n+1)
2k (−ζa

bζ
h
2k; ζh

k )n(−ζ−a
b ζh

2k; ζh
k )n

(ζh
2k; ζh

k )n+1
. (3-1)

https://doi.org/10.1017/S1446788719000405 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000405


166 M. Barnett, A. Folsom and W. J. Wesley [10]

(ii) If (z, τ) = (a/b, h/k) ∈ QN+ , then there is a constant Da,b,h,k such that

N+(z; τ) = 2 cos
(aπ

b

)
ζ−h

16k

Da,b,h,k∑
n=0

ζh(n+1)
k (−ζa

bζ
h
k ; ζh

k )n(−ζ−a
b ζh

k ; ζh
k )n

(ζh
2k; ζh

k )n+1
.

Proof. The proof of (ii) is similar to the proof of (i), so for brevity we omit it and prove
(i) here. If h is odd, then the denominators of the summands of (3-1) are nonzero for
every term in the series. We will show that the numerators of the summands eventually
vanish by showing that there exists a j ∈ N such that

±
a
b

+
h
k

(
j +

1
2

)
∈ Z +

1
2
. (3-2)

Since b | k, there exists b′ ∈ Z such that bb′ = k. Thus, (3-2) is equivalent to the
congruence ±2ab′ + 2h j + h − k ≡ 0 mod 2k. Since h and k are odd, (h − k)/2 ∈ Z.
Moreover, since (a/b, h/k) ∈ QM+ , there exists h′ such that hh′ ≡ −1 mod 2k. Then
we may let j be a positive integer such that j ≡ h′(±ab′ + (h − k)/2) mod 2k. �

We will also use slightly different normalizations of the functions ϑ, µ, and A3
introduced in the previous section. As in [17], we let

j(x; q) := (x; q)∞(x−1q; q)∞(q; q)∞,

m(ρ, q, x) :=
1

j(x; q)

∑
n∈Z

(−1)nqn(n−1)/2xn

1 − ρxqn−1 ,

g(x, q) := x−1
(
− 1 +

∞∑
n=0

qn2

(x; q)n+1(x−1q; q)n

)
.

The functions j and m are nearly identical to the functions ϑ and µ defined in (2-1) and
(2-3), respectively, after suitable changes of variables, and the function g is directly
related to the function A3. Note that g is a universal mock theta function and is also
often referred to as g3 in the literature, as in [14].

Lemma 3.2. The following identities hold:

(i) j(w; q) = iw1/2q−1/8ϑ(z; τ);
(ii) m(ρ1ρ

−1
2 , q, ρ2) = iρ1/2

2 ρ−1/2
1 q1/8µ(z1, z2; τ), where ρ j = e(z j), j ∈ {1, 2};

(iii) 1 − wg(−w, q2) = iw−3/2q1/12η−1(2τ)A3(z + 1
2 ,−2τ; 2τ).

Proof. Identities (i) and (ii) follow immediately from the definitions of j,m, and µ
and from Lemma 2.7. (In verifying (ii), the reader may find it convenient to perform
a simple shift in the index of summation in the series defining m, as in [17, (2.6)].)
Identity (iii) follows from the equation above equation (3-2) in [6], originally due to
Atkin and Swinnerton-Dyer [3]1. �

1We correct a minor typographical error in [6]: the left-hand side of the referenced equation should be
multiplied by w.
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Using Lemma 3.2 and equations (4.20) and (4.29) in [17], we establish the
following expressions for M+ and N+ in terms of the Jacobi ϑ-function, Zwegers’
mock Jacobi form µ, and the Appell function A3.

Lemma 3.3. We have that

M+(z; τ) =M+
1 (z; τ) +M+

2 (z; τ) +M+
3 (z; τ)

and

N+(z; τ) = N+
1 (z; τ) +N+

2 (z; τ) +N+
3 (z; τ),

where

M+
1 (z; τ) := −iµ

(
z +

1
2
,

1
2

;
τ

2

)
,

M+
2 (z; τ) := −iw−1/2q1/8ϑ(z + τ

2 + 1
2 ; τ)

η(τ)η( τ2 )
A3

(
z +

1
2
,−τ; τ

)
,

M+
3 (z; τ) :=

η4( τ2 )

2η2(τ)ϑ(z + 1
2 ; τ2 )

and

N+
1 (z; τ) := −iµ

(
z +

1
2
,

1
2

;
τ

2

)
,

N+
2 (z; τ) := −q−1/24ϑ(z + 1

2 ; τ)
η( τ2 )

∑
±

±w±1/2µ
((

1 ±
1
2

)
τ − z +

1
2
, 2z + τ; 3τ

)
,

N+
3 (z; τ) :=

ϑ(z; τ2 )η2( τ2 )
2ϑ(2z; τ)η(τ)

.

We will also use Lemma 3.4 below in Section 4.

Lemma 3.4. The following are true.

(i) If (z, τ) ∈ QM+ , then ϑ(z + τ/2 + 1/2; τ)/η(τ/2) = 0.
(ii) If (z, τ) ∈ QN+ , then ϑ(z + 1/2; τ)/η(τ/2) = 0.

Proof. Using Lemma 2.7 and simplifying,

ϑ(z + τ
2 + 1

2 ; τ)
η( τ2 )

= −q−7/48w−1/2
∞∏

n=1

(1 + wqn−1/2)(1 + w−1qn−1/2)(1 + qn/2).

By an argument similar to the proof of Lemma 3.1, there is a positive n such that
(1 + wqn− 1

2 ) is zero, so the infinite product vanishes. The proof of (ii) follows similarly
using Lemma 2.7 and the definition of QN+ . �
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4. Proofs
4.1. Proof of Theorem 1.1. Equations (1-5), (1-6), and (1-8) follow directly from
the definition ofM+ in (1-1). Equations (1-10) and (1-11) follow directly from (1-7)
and (1-9), respectively, using Lemma 3.4. Thus, we are left to prove (1-7), (1-9), and
the analytic properties claimed in Theorem 1.1.

We begin with (1-9). Using the functional equation (4.21) in [17], as well as
Lemma 3.2 and the definition ofM+ in (1-1),

M+(z + τ) − qw2M+(z)

= w1/2q7/16
(
q1/2w − 1−w−1/2q−17/48(1 − w2q)

ϑ(z + τ
2 + 1

2 ; τ)
η( τ2 )

)
.

Equation (1-9) follows after simplification and re-arrangement of terms.
To prove (1-7), we begin with the expressions given for M+ in Lemma 3.3. We

define the following completed functions:

M̂1(z; τ) := −i µ̂
(
z +

1
2
,

1
2

;
τ

2

)
,

M̂2(z; τ) := −iw−1/2q1/8ϑ(z + τ
2 + 1

2 ; τ)
η(τ)η( τ2 )

Â3

(
z +

1
2
,−τ; τ

)
,

M̂3(z; τ) :=
η4( τ2 )

2η2(τ)ϑ(z + 1
2 ; τ2 )

.

Note that M̂3 =M+
3 because, as we shall show,M+

3 is a Jacobi form (see (4-6)). Using
Lemmas 2.6, 2.7, 2.9, and 2.10, after some calculation and simplification, we obtain
the following Jacobi transformation properties, which hold for

(
a b
c d

)
∈ Γ0(2) ∩ Γ0(6)

(noting that these congruence conditions are imposed in order to apply portions of the
aforementioned lemmas) and j ∈ {1, 2, 3}:

M̂ j

( z
cτ + d

;
aτ + b
cτ + d

)
= ψ j(cτ + d)1/2e−2πicz2/(cτ+d)M̂ j(z; τ), (4-1)

where

ψ1 = ψ1

(
a b
c d

)
= χ−3(

a b/2
2c d

)(−1)c+d−1,

ψ2 = ψ2

(
a b
c d

)
= χ2(a b

c d
)χ−1(

a b/2
2c d

)(−1)(a+b−1)/2e
( 1

8 (−2 + 2a − 2cd − 2bc + ab)
)
,

ψ3 = ψ3

(
a b
c d

)
= χ(

a b/2
2c d

)χ−2(a b
c d

)(−1)c+(1−d)/2e
( c
2
−

cd
4

)
.

A lengthy but straightforward calculation using (2-2) reveals that ψ1, ψ2, and ψ3 are
equal for any

(
a b
c d

)
∈ Γ0(2) ∩ Γ0(6), so that for j ∈ {1, 2, 3},

M̂ j

( z
cτ + d

;
aτ + b
cτ + d

)
= ψ(cτ + d)1/2e−2πicz2/(cτ+d)M̂ j(z; τ),

where ψ = ψ
(

a b
c d

)
= ψ1 = ψ2 = ψ3.
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By definition and (2-4),

M̂1(z; τ) =M+
1 (z; τ) +

1
2

R
(
z;
τ

2

)
. (4-2)

We also apply the definition of M̂2(z; τ) and (2-6), as well as the facts that ϑ(1; τ) = 0,
that ϑ(−z; τ) = −ϑ(z; τ), and that ϑ(τ; 3τ) = −iq−1/6η(τ), together with Lemma 2.7(i),
to conclude that

M̂2(z; τ) =M+
2 (z; τ)

+
1
2

w1/2q−1/24ϑ(z + τ
2 + 1

2 ; τ)
η( τ2 )

∑
±

(iw)±1R
(
3z ∓ τ +

1
2

; 3τ
)
. (4-3)

Thus, we obtain from (4-1) and the discussion following, including (4-2) and (4-3),
that for

(
a b
c d

)
∈ Γ0(2) ∩ Γ0(6),

M+
1

( z
cτ + d

;
aτ + b
cτ + d

)
− ψ(cτ + d)1/2e−2πicz2/(cτ+d)M+

1 (z; τ)

= −
1
2

R
( z
cτ + d

;
aτ + b

2

2cτ + d

)
+

1
2
ψ(cτ + d)1/2e−2πicz2/(cτ+d)R(z; τ2 ), (4-4)

M+
2

( z
cτ + d

;
aτ + b
cτ + d

)
− ψ(cτ + d)1/2e−2πicz2/(cτ+d)M+

2 (z; τ)

= −
1
2

e
(z/2 − (aτ + b)/24

cτ + d

)ϑ( 2z+aτ+b+cτ+d
2(cτ+d) ; aτ+b

cτ+d )

η( aτ+b/2
2cτ+d )

×
∑
±

e
(
±

( z
cτ + d

+
1
4

))
R
(3z ∓ (aτ + b)

cτ + d
+

1
2

;
3(aτ + b)

cτ + d

)
+

1
2
ψ(cτ + d)1/2e−2πicz2/(cτ+d)w1/2q−1/24ϑ(z + τ

2 + 1
2 ; τ)

η( τ2 )

×
∑
±

(iw)±1R(3z ∓ τ + 1
2 ; 3τ), (4-5)

M+
3

( z
cτ + d

;
aτ + b
cτ + d

)
− ψ(cτ + d)1/2e−2πicz2/(cτ+d)M+

3 (z; τ) = 0. (4-6)

If we denote the right-hand sides of (4-4) and (4-5) by F1(z; τ) and F2(z; τ),
respectively, then we have shown (for

(
a b
c d

)
∈ Γ) that

M+
( z
cτ + d

;
aτ + b
cτ + d

)
− ψ(cτ + d)1/2e−2πicz2/(cτ+d)M+(z; τ) = F1(z; τ) + F2(z; τ). (4-7)
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Next we write
(

1 0
6 1

)
as S −1T−6S (where S :=

(
0 −1
1 0

)
,T :=

(
1 1
0 1

)
) and apply Lemma 2.8

repeatedly. After some lengthy but straightforward calculations,

R
( z
6τ + 1

;
τ

2(6τ + 1)

)
= h

( z
6τ + 1

;
τ

2(6τ + 1)

)
+ (6τ + 1)1/2e

(
−6z2

6τ + 1

)(
h
(
z;
τ

2

)
− R

(
z;
τ

2

))
, (4-8)

R
(3z + (3 ∓ 1)τ + 1

2

6τ + 1
;

3τ
6τ + 1

)
= h

(3z + (3 ∓ 1)τ + 1
2

6τ + 1
;

3τ
6τ + 1

)
− (6τ + 1)1/2e

(
−τ2 ± 6τz − 9z2

6τ + 1

)[
h
(
3z ∓ τ +

1
2

; 3τ
)
− R

(
3z ∓ τ +

1
2

; 3τ
)]
.

(4-9)

Substituting (4-8) and (4-9) into (4-7) with
(

a b
c d

)
=

(
1 0
6 1

)
, applying Lemmas 2.6 and 2.7,

and re-arranging, we obtain (1-7).
It remains to show that the ‘errors’ on the right-hand sides of (1-10) and (1-11)

extend to C∞ functions on (R \ (Z + { 12 , ±
1

24 , ±
1
8 , ±

5
24 , ±

7
24 , ±

3
8 , ±

11
24 })) × (R \ {− 1

6 }),
and R × R, respectively. The claim with respect to (1-11) is clear. Regarding (1-10),
we first prove that H1 is C∞ on (− 1

24 ,
1

24 ) × (R \ {− 1
6 }) and then explain why it suffices

to prove the result on this restricted interval in z. To begin, we apply Lemmas 2.4
and 2.5, with a = 0 and b = −z, with z ∈ (− 1

2 ,
1
2 ), to write the Mordell integral h(z; τ2 )

as the period integral

h
(
z;
τ

2

)
= −

∫ i∞

0

g1/2,−z+1/2(ρ)√
−i( τ2 + ρ)

dρ. (4-10)

Applying Lemma 2.3 and using the substitutions a = −z, b = 12z, where z ∈
(− 1

24 ,
1

24 ),

h
( z
6τ + 1

;
τ

2(6τ + 1)

)
=

1√
−i( τ

2(6τ+1) )
e
( z2

τ(6τ + 1)

)
h
(2z
τ

;−12 −
2
τ

)

=
−1√

−i
( τ

2(6τ+1)
)e

( z2

τ(6τ + 1)
−

z2

τ
+ 6z2 +

z
2

) ∫ i∞

0

g−z+1/2,12z+1/2(ρ)√
−i(ρ − 12 − 2

τ
)

dρ. (4-11)

Making the change of variable ρ 7→ 12 − 1/ρ and applying Lemmas 2.4 and 2.5, we
see that the integral on the right-hand side of (4-11) equals
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∫ 0

1/12

g−z+1/2,12z+1/2(12 − 1
ρ
)

ρ2
√
−i(− 1

ρ
− 2

τ
)

dρ

= −(−i)5/2

√
τ

2
e
(
−

z
2
− 6z2

) ∫ 0

1/12

g1/2,−z+1/2(ρ)√
−i(ρ + τ

2 )
dρ. (4-12)

Combining (4-11) and (4-12) gives

h
( z
6τ + 1

;
τ

2(6τ + 1)

)
= −(6τ + 1)1/2e

(
−6z2

6τ + 1

) ∫ 0

1/12

g1/2,−z+1/2(ρ)√
−i(ρ + τ

2 )
dρ. (4-13)

Now substituting (4-10) and (4-13) into (1-2) gives

H1(z; τ) =
1
2

∫ i∞

1/12

g1/2,−z+1/2(ρ)√
−i(ρ + τ

2 )
dρ. (4-14)

The proof that the function in (4-14) is C∞ follows by an almost identical argument
as given by Bringmann and the second author in [5] and in the follow-up paper [4];
note that the same integrand, namely the function g1/2,−z+1/2(ρ)/

√
−i(τ + ρ), appears

in [5, Proof of Theorem 1.1, page 375] (and also in [4]). By Lemma 3.4, H2(z; τ)
vanishes on QM+ . The proof that H1(z; τ) is C∞ is similar to the argument given in [4]:
we integrate along the path from 1

12 to i∞ and the path from 1
12 + i∞ to i∞. Using the

following bound given in [5],

∂`

∂z`
g1/2,−z+1/2

( 1
12

+ it
)
� e−π/4t,

we have that H1(z; τ) is C∞ on (− 1
24 ,

1
24 ) × (R \ {− 1

6 }) by the Leibniz rule.
To establish the claim for more general z which lie in the set (R \ (Z +

{ 12 ,±
1

24 ,±
1
8 ,±

5
24 ,±

7
24 ,±

3
8 ,±

11
24 })), we argue as in [4, 5]. Briefly speaking, this is made

possible by Lemma 2.3: we use Lemma 2.3 to translate the Mordell integral h in
the elliptic variable by integers or integer multiples of τ up to addition of analytic
functions (τ , 0). After doing so, we may proceed as with (4-10) and re-write the
h-function which appears as a period integral. The rest of the argument follows as
above. In particular, we point out that the rationals excluded from the domain of z
arise from the hypotheses given in Lemma 2.5 (as is made explicit above in the case
z ∈ (− 1

24 ,
1
24 )). We refer the interested reader to [5, Proof of Theorem 1.1, page 375]

or [4, Proof of Theorem 1.1, page 31] for more details carried out there.

4.2. Proof of Theorem 1.3. The proof of Theorem 1.3 is very similar to the proof
of Theorem 1.1, so we provide a detailed sketch. Equations (1-12), (1-13), (1-15), and
(1-16) follow in a straightforward manner, analogous to the proofs of their counterparts
in Theorem 1.1. Equation (1-17) follows from (1-14) and Lemma 3.4, and equation
(1-18) follows from (1-16) and Lemma 3.4. Thus, we are left to prove (1-14) and the
analytic properties claimed in Theorem 1.3.
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Define

N̂1(z; τ) := −i µ̂
(
z +

1
2
,

1
2

;
τ

2

)
,

N̂2(z; τ) := −q−1/24ϑ(z + 1
2 ; τ)

η( τ2 )

∑
±

±w±1/2µ̂
((

1 ±
1
2

)
τ − z +

1
2
, 2z + τ; 3τ

)
,

N̂3(z; τ) :=
ϑ(z; τ2 )η2( τ2 )
2ϑ(2z; τ)η(τ)

.

Using Lemmas 2.6, 2.7, and 2.9, we find, after some simplification, that for any
γ =

(
a b
c d

)
∈ SL2(Z) such that a ≡ 1 mod 6, b ≡ 0 mod 2, and c ≡ 0 mod 6, and

j ∈ {1, 2, 3}, that

N̂ j

( z
cτ + d

;
aτ + b
cτ + d

)
= σ j(cτ + d)1/2e−2πicz2/(cτ+d)N̂ j(z; τ), (4-15)

where

σ1 = σ1(γ) := χ−3(
a b/2
2c d

),
σ2 = σ2(γ) := χ3(a b

c d
)χ−1(

a b/2
2c d

)χ−3(
a 3b

c/3 d

)(−1)c/6+b/2ζ−ab
24 ,

σ3 = σ3(γ) := χ5(
a b/2
2c d

)χ−4(a b
c d

).
A calculation shows that under the given conditions on γ, σ1 = σ2 = σ3. Using this
fact, as well as (4-15) and Lemma 3.3, we obtain (with γ =

(
1 0
6 1

)
) that

N+(z; τ) + (6τ + 1)−1/2e12πiz2/(6τ+1)N+
( z
6τ + 1

;
τ

6τ + 1

)
= F1(z; τ) + F3(z; τ),

where the ‘error function’ F1 is exactly as given in the proof of Theorem 1.1 (see
(4-7)) and F3 is defined similarly using the Mordell integral h in (1-4) and the
nonholomorphic function R in (2-5). As was the case in the proof of Theorem 1.1, we
have that F1 = H1, where H1 is as in (1-3). Similarly, we apply Lemma 2.8 repeatedly
and after some calculation obtain that F3 = H3, where

H3(z; τ) :=
i
2

q−1/24ϑ(z + 1
2 ; τ)

η( τ2 )

×

(∑
±

±w±1/2h
(
∓
τ

2
+ 3z −

1
2

; 3τ
)
− (6τ + 1)−1/2e

(1
2

( 18z2

6τ + 1
+

τ2/2
6τ + 1

))
×

∑
±

±α±

(
z;
τ

2

)
h
(
∓

1
6

+
z
τ
− 1 −

1
6τ

;−2 −
1
3τ

))
, (4-16)

where

α±(z; τ) :=

√
−i

(
− 2 −

1
6τ

)
e
(

±z
2(12τ + 1)

)
e
(−(∓ 1

6 + z
2τ − 1 − 1

12τ )2

2(−2 − 1
6τ )

)
.

This proves (1-14).
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The functions on the right-hand sides of (1-17) and (1-18) are exactly the same as
on the right-hand sides of (1-10) and (1-11), respectively, so by the argument given
regarding the C∞ properties of these functions given in the proof of Theorem 1.1, the
proof of Theorem 1.3 is complete.

4.3. Proof of Theorem 1.5. We proceed as in [4, 5]. Suppose that a function f (z; τ)
transforms in z as

f (z + τ; τ) = w2q( f (z; τ) + r(z; τ)) (4-17)

for some function r(z; τ). By induction on m ∈ N0, it can be shown that

f (z + mτ; τ) = w2mqm2
f (z; τ) +

m−1∑
j=0

r(z + jτ; τ)w2(m− j)qm2− j2 .

We can see from (1-11) and (1-18) that M+ and N+ satisfy (4-17) with r(z; τ) =

w−1/2q−1/16 − w−3/2q−9/16, so

M+(z + h; τ)|(z,τ)=(a/b,h/k)∈QM+

= w2kqk2
M+(z; τ) +

k−1∑
j=0

r(z + jτ; τ)w2(k− j)qk2− j2 ,

N+(z + h; τ)|(z,τ)=(a/b,h/k)∈QN+

= w2kqk2
N+(z; τ) +

k−1∑
j=0

r(z + jτ; τ)w2(k− j)qk2− j2 .

From (1-8) and (1-15), we have that for any h ∈ Z,

M+(z + h, τ) = (−1)hM+(z; τ) and N+(z + h, τ) = (−1)hN+(z; τ).

It follows that

[(−1)h − w2kqk2
]M+(z; τ) =

k−1∑
j=0

r(z + jτ; τ)w2(k− j)qk2− j2 ,

[(−1)h − w2kqk2
]N+(z; τ) =

k−1∑
j=0

r(z + jτ; τ)w2(k− j)qk2− j2 .

For the function M+, h is odd and b | k, so the factor in front of M+ in the above
equation is −2. For the function N+, there are two cases to consider (arising from the
definition of QN+). If h is odd, k is even, and b | k, then the factor in front ofN+ in the
above equation is −2. If h is odd, k is odd, b is even, and b/2 | k, then again the factor
in front of N+ in the above equation is −2. The result of Theorem 1.5 now follows
after simplification.
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