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Euler’s identity equates the number of partitions of any non-negative integer n into odd 
parts and the number of partitions of n into distinct parts. Beck conjectured and Andrews 
proved the following companion to Euler’s identity: the excess of the number of parts 
in all partitions of n into odd parts over the number of parts in all partitions of n into 
distinct parts equals the number of partitions of n with exactly one even part (possibly 
repeated). Beck’s original conjecture was followed by generalizations and so-called “Beck-
type” companions to other identities.
In this paper, we establish a collection of Beck-type companion identities to the following 
result mentioned by Lehmer at the 1974 International Congress of Mathematicians: the 
excess of the number of partitions of n with an even number of even parts over the 
number of partitions of n with an odd number of even parts equals the number of 
partitions of n into distinct, odd parts. We also establish various generalizations of Lehmer’s 
identity, and prove related Beck-type companion identities. We use both analytic and 
combinatorial methods in our proofs.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction and statement of results

Many results in the theory of partitions concern identities asserting that the set PX (n) of partitions of n satisfying 
condition X and the set PY (n) of partitions of n satisfying condition Y are equinumerous. Likely the oldest such result is 
Euler’s identity that the number of partitions of n into odd parts is equal to the number of partitions of n into distinct parts. 
In 2017, Beck made the following conjecture ([10], [2, Conjecture]):

Conjecture 1 (Beck). The excess of the number of parts in all partitions of n into odd parts over the number of parts in all partitions of 
n into distinct parts equals the number of partitions of n with exactly one even part (possibly repeated).
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Beck’s conjecture was quickly proved analytically by Andrews [2], who additionally showed that this excess also equals 
the number of partitions of n with exactly one part repeated (and all other parts distinct). The conjecture was also proved 
combinatorially by Yang [11] and Ballantine–Bielak [4] independently. This work was followed by generalizations and Beck-
type companions to other well known identities (e.g., [3], [5], [9], [11]). In general, a Beck-type companion identity to 
|PX (n)| = |PY (n)| is an identity that equates the excess of the number of parts in all partitions in PX (n) over the number 
of parts in all partitions in PY (n) to the number of partitions of n satisfying a condition closely related to X (or Y ).

In this article, we establish a number of Beck-type identities related to a result of Lehmer, which he informally mentioned 
at the 1974 International Congress of Mathematicians [8]: for every non-negative integer n, we have that

2pe(n,2) = p(n) + qo(n), (1)

where

pe(n,2) := p(n | the number of even parts is even)

and

qo(n) := p(n | distinct, odd parts).

Here and throughout we use the standard notations p(n) and p(n | X) to denote the number of partitions of n, and the 
number of partitions of n satisfying condition X , respectively. If we also denote by

po(n,2) := p(n | the number of even parts is odd),

identity (1) is equivalent to the following statement which we refer to as Lehmer’s identity.

Theorem 1.1. For any n ∈N0 := N ∪ {0}, we have

pe(n,2) = po(n,2) + qo(n). (2)

An analytic proof of Theorem 1.1 is immediate: The generating series for pe(n, 2) − po(n, 2) and qo(n) are given by 
(q; q2)−1∞ (−q2;q2)−1∞ and (−q; q2)∞ , respectively. Then Theorem 1.1 follows from the fact that

(−q;q2)∞ = (−q;q)∞
(−q2;q2)∞

and Euler’s identity

(−q;q)∞ = 1

(q;q2)∞ .

Here and throughout, the q-Pochhammer symbol is given by

(a;q)n :=
{
1, for n = 0,

(1− a)(1 − aq) · · · (1 − aqn−1), for n > 0;

(a;q)∞ := lim
n→∞(a;q)n.

In [8], Gupta provided a beautiful combinatorial proof of Theorem 1.1. We also note that (2) is equivalent to the following 
identity due to Glaisher ([6, p.129] [7, p.256])

pe(n) − po(n) = (−1)nqo(n),

where

pe/o(n) := p(n | even/odd number of parts).

Our first main result, Theorem 1.2 below, is a Beck-type companion identity to Lehmer’s identity (2). To state it, we 
first set some additional notation. We begin by formally defining a partition λ = (λ1, λ2, . . . , λ j) of size n ∈ N0 to be a non-
increasing sequence of positive integers λ1 ≥ λ2 ≥ · · · ≥ λ j called parts that add up to n. For convenience, we abuse notation 
and use λ to denote either the multiset of its parts or the non-increasing sequence of parts. We write a ∈ λ to mean the 
positive integer a is a part of λ. The empty partition is the only partition of size 0. Thus, p(0) = 1. We write |λ| for the 
size of λ and λ � n to mean that λ is a partition of size n. For a pair of partitions (λ, μ) we also write (λ, μ) � n to mean 
|λ| + |μ| = n. We use the convention that λk = 0 for all k greater than the number of parts. When convenient we will also 
use the exponential notation for parts in a partition: the exponent of a part is the multiplicity of the part in the partition, 
e.g., we write (ab) for the partition consisting of b parts equal to a. Further, we denote by calligraphy style capital letters the 
set of partitions enumerated by the function denoted by the same letter. For example, Qo(n) denotes the set of partitions 
of n into distinct odd parts. We also define Qo :=⋃n≥0Qo(n).
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Theorem 1.2. Let n ∈ N0 . The excess of the number of parts in all partitions in Pe(n, 2) over the number of parts in all partitions 
in Po(n, 2) ∪ Qo(n) equals the number of partitions of n with exactly one even part, possibly repeated, and all other parts odd and 
distinct.

Remark 1. As proved in [3], the excess in Theorem 1.2 is almost always equal to the number of parts in all self-conjugate 
partitions of n. Hence, the excess in the number of parts in all partitions in Pe(n, 2) over the number of parts in all 
partitions in Po(n, 2) is almost always equal to the total number of parts in all self-conjugate partitions of n and in all 
partitions of n into distinct odd parts. More precisely, if N(x) is the number of times the above statement is true for n ≤ x, 
then limx→∞ N(x)/x = 1.

We also establish a restricted Beck-type identity accompanying (2) in which we only count the number of even parts in 
partitions in Pe(n, 2) and Po(n, 2); this result is given in Theorem 1.3 below. To ease notation in the statement of this result 
and other Beck-type identities that follow, we introduce the following definition. Let n, r, a, b be non-negative integers such 
that 1 ≤ ab ≤ n. We define

Br(n,a,b) :=
⎧⎨⎩λ � n − rab

∣∣∣∣∣ λ 
= (ra, r(a − 2)), and
r(a + b + 1) /∈ λ, and
λ1 − λ2 ≤ 2r(a + b + 1) or λ1 = 3r(a + b + 1)

⎫⎬⎭ .

We write B(n, a, b) for B1(n, a, b).

Theorem 1.3. Let n ∈ N0 . The excess of the number of parts in all partitions in Qo(n) plus the number of even parts in all partitions 
in Po(n, 2) over the number of even parts in all partitions in Pe(n, 2) equals the number of pairs of partitions (λ, (ab)) satisfying the 
following conditions:

i. a, b are both odd,
ii. λ ∈ Qo ∩ B(n, a, b), i.e., λ has distinct odd parts, is not equal to (a, a − 2), does not have a + b + 1 as a part, and satisfies 

λ1 − λ2 ≤ 2(a + b + 1) or λ1 = 3(a + b + 1).

Remark 2. If n is even, the condition λ 
= (a, a − 2) in ii. is vacuously true.

In general, whenever we refer to pairs of the form (λ, (ab)), we require (ab) to be nonempty (i.e. a, b > 0), while λ is 
allowed to be the empty partition.

Remark 3. Beck’s Conjecture 1 can also be formulated in the language of pairs as in Theorem 1.3:
The excess of the number of parts in all partitions of n into odd parts over the number of parts in all partitions of n into 

distinct parts equals the number of pairs of partitions (λ, (ab)) � n satisfying the following conditions:

i. a is even,
ii. λ is a partition into odd parts.

Next, we give a collection of Beck-type companion identities to the following generalization of Lehmer’s identity (2), 
which we prove in Section 3. For the remainder of the paper, we let r ∈N .

Theorem 1.4. For any n ∈N0 , we have

pe(n,2r) = po(n,2r) + qo(n, r), (3)

where

pe/o(n,2r) := p(n | all parts allowed, even/odd number of parts divisible by 2r)

qo(n, r) := p

(
n
∣∣∣ parts are not divisible by 2r,
parts divisible by r are distinct

)
= p

(
n | all parts divisible by r are distinct, odd multiples of r

)
.

Note that for r = 1, identity (3) reduces to identity (2).
Our first Beck-type companion identity to (3) is given by the next theorem which becomes Theorem 1.2 when r = 1.

Theorem 1.5. Let n ∈ N0 . The excess in the total number of parts in all partitions in Pe(n, 2r) over the total number of parts in all 
partitions in Po(n, 2r) ∪Qo(n, r) equals the number of pairs of partitions (λ, (ab)) � n such that
3
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i. 2r | a,
ii. λ ∈Qo(n − ab, r).

Remark 4. Equivalently, the excess of Theorem 1.5 equals the number of partitions of n in which, among the parts divisible 
by r, there is a single even multiple of r and this part is possibly repeated, while all other parts divisible by r are odd 
multiples of r and they are distinct.

Theorem 1.6 below is a restricted Beck-type companion identity to (3), in which we only count the number of parts 
divisible by r in Qo(n, r), and the number of parts divisible by 2r in Pe(n, 2r) and Po(n, 2r). The theorem reduces to 
Theorem 1.3 when r = 1.

Theorem 1.6. Let n ∈N0 . The excess of the number of parts divisible by r in all partitions in Qo(n, r) plus the number of parts divisible 
by 2r in all partitions in Po(n, 2r) over the number of parts divisible by 2r in all partitions in Pe(n, 2r) equals the number of pairs of 
partitions (λ, ((ar)b)) satisfying the following conditions:

i. a, b are both odd,
ii. λ ∈ Qo(n − rab, r) such that, if we write λ = λndiv ∪ λdiv where λdiv contains all parts of λ that are divisible by r, then 

λdiv ∈ Br(n − |λndiv |,a,b).

Recall that λ ∪ μ is the partition whose parts are precisely the parts of λ and μ (with multiplicities).
Next we give another generalization of Lehmer’s identity (2). To describe this, we let r ∈ N , and let Lr ⊆ {2, 4, 6, . . . , 2r}, 

with Lr 
= ∅. We use the sets Lr to restrict even parts of partitions to lie within certain arithmetic progressions. More 
precisely, we define

pe/o(n, Lr,2r) := p

⎛⎝n

∣∣∣∣∣ all parts allowed,
even parts ≡ � (mod 2r), � ∈ Lr ,
even/odd number of even parts

⎞⎠ ,

q(n, Lr, r) := p

(
n
∣∣∣ all parts distinct,even parts 
≡ � (mod 2r), � ∈ Lr

)
.

Theorem 1.7. For any n ∈N0 , we have

pe(n, Lr,2r) = po(n, Lr,2r) + q(n, Lr, r). (4)

Note that in the case Lr = {2, 4, . . . , 2r}, identity (4) is equivalent to identity (2).
The next theorem is a Beck-type companion identity to (4), which becomes Theorem 1.2 when Lr = {2, 4, . . . , 2r}.

Theorem 1.8. Let n ∈ N0 . The excess in the total number of parts in all partitions in Pe(n, Lr, 2r) over the total number of parts in all 
partitions in Po(n, Lr, 2r) ∪Q(n, Lr, r) equals the number of pairs of partitions (λ, (ab)) satisfying the following conditions:

i. a is even,
ii. λ ∈Q(n − ab, Lr, r).

A restricted Beck-type companion identity to (4) is given by the next theorem, where we only count the number of even 
parts in Pe(n, Lr, 2r) and Po(n, Lr, 2r). The theorem becomes Theorem 1.3 when Lr = {2, 4, . . . , 2r}.

Theorem 1.9. Let n ∈ N0 . The excess of the number of parts in all partitions in Q(n, Lr, r) plus the number of even parts in all 
partitions in Po(n, Lr, 2r) over the number of even parts in all partitions in Pe(n, Lr, 2r) equals the number of pairs of partitions 
(λ, (ab)) satisfying the following conditions:

i. a, b are both odd,
ii. λ ∈ Q(n − ab, Lr, r) such that, if we write λ = λe ∪ λo , where λe consists of all the even parts of λ and λo consists of all the odd 

parts of λ, then λo ∈ B(n − |λe|, a, b).

The next result is a new restricted Beck-type companion identity to Lehmer’s identity (2), different from Theorem 1.3. 
We only count the number of parts in certain arithmetic progressions in Qo(n, 2), Pe(n, 2) and Po(n, 2).

To describe it, for r ∈N , let

Lr ⊆ {2,4,6, . . . ,2r}, and Or ⊆ {1,3,5, . . . ,2r − 1}.

4
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Theorem 1.10. Let n be a positive integer, and Lr and Or as above such that if n ≡ 0 (mod 4) then 2 /∈ Lr . The excess of the number of 
parts ≡ � (mod 2r), � ∈ Or , in all partitions in Qo(n) plus the number of parts ≡ � (mod 2r), � ∈ Lr , in all partitions in Po(n, 2) over 
the number of parts ≡ � (mod 2r), � ∈ Lr , in all partitions in Pe(n, 2) equals the number of pairs of partitions (λ, (ab)) � n satisfying 
the following conditions:

i. a ≡ � (mod 2r) for some � ∈ Lr ∪ Or , and b is odd. Moreover, if a is odd, then b = 1,
ii. λ ∈Qo . Moreover, if a is odd, then a /∈ λ; if a is even, then λ1 − λ2 ≤ a and λ /∈ { ( a2 + 1, a

2 − 1
)
, 
( a
2 + 2, a

2 − 2
) }

.

If n ≡ 0 (mod 4) and 2 ∈ Lr , the excess is one less than the number of pairs counted above. Moreover, if we additionally have 
that n /∈ {4, 8, 12, 16, 20}, then the excess is equal to the number of pairs (λ, (ab)) satisfying i. and ii. with the additional condition 
(λ, (ab)) 
= ((9, 7, 5, 1), (2b)).

Remark 5. If n 
≡ 0 (mod 4), then the condition λ /∈ { ( a2 + 1, a
2 − 1

)
, 
( a
2 + 2, a

2 − 2
) }

is vacuously true.

Generally speaking, our proofs are both analytic and combinatorial in nature. In Sections 2 to 4, we prove Theorems 1.2
through 1.9. In Section 5, we prove Theorem 1.10 and give several important examples. In Section 6, we establish the 
non-negativity of the coefficients of some related q-series.

2. Proofs of Theorems 1.2 and 1.3

Consider the generating series

F (z;q) := 1

(zq;q2)∞(−zq2;q2)∞ =
∞∑
n=0

∞∑
m=0

m∑
s=0

p(n | m parts, of which s parts are even)(−1)szmqn,

E(z;q) := 1

(q;q2)∞(−zq2;q2)∞ =
∞∑
n=0

∞∑
m=0

p(n | the number of even parts ism)(−z)mqn,

and

Qo(z;q) := (−zq;q2)∞ =
∞∑
n=0

∞∑
m=0

p(n | parts must be odd and distinct,m parts)zmqn.

To prove Theorem 1.2, note that ∂
∂z

∣∣
z=1(F (z; q) − Qo(z; q)) gives the generating series for the excess of the number of 

parts in all partitions in Pe(n, 2) over the number of parts in all partitions in Qo(n) ∪Po(n, 2). We have

∂

∂z

∣∣∣
z=1

(F (z;q) − Qo(z;q)) = (−q;q2)∞
( ∞∑

k=0

q2k+1

1− q2k+1
−

∞∑
k=1

q2k

1+ q2k
−

∞∑
k=0

q2k+1

1+ q2k+1

)

= (−q;q2)∞
( ∞∑

k=0

q2k+1

1− q2k+1
−

∞∑
k=1

qk

1+ qk

)

= (−q;q2)∞
( ∞∑

k=0

q2k+1

1− q2k+1
−

∞∑
k=1

qk

1− q2k
+

∞∑
k=1

q2k

1− q2k

)

= (−q;q2)∞
( ∞∑

k=1

qk

1− qk
−

∞∑
k=1

qk

1− q2k

)

= (−q;q2)∞
∞∑
k=1

q2k

1− q2k
.

The last expression is the generating series for the number of partitions of n with exactly one even part, possibly repeated, 
and all other parts odd and distinct. This proves Theorem 1.2.

To prove Theorem 1.3 we note that ∂
∂z

∣∣
z=1(Qo(z; q) − E(z; q)) is the generating series for the excess of the number of 

parts in all partitions in Qo(n) plus the number of even parts in all partitions in Po(n, 2) over the number of even parts in 
all partitions in Pe(n, 2). We compute

∂

∂z

∣∣∣
z=1

(Qo(z;q) − E(z;q)) = (−q;q2)∞
( ∞∑ q2k+1

1+ q2k+1
+

∞∑ q2k

1+ q2k

)

k=0 k=1

5
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= (−q;q2)∞
∞∑
k=1

qk

1+ qk

= (−q;q2)∞
( ∞∑

k=1

qk

1− q2k
−

∞∑
k=1

q2k

1− q2k

)
.

Let

peo (n) := p(n | odd number of identical even parts),

i.e.,

peo (n) := |{λ � n | λ = (ab),a even and b odd}|.
Define pee (n), poe (n), and poo (n) similarly.

Then
∞∑
k=1

qk

1− q2k
=

∞∑
n=1

(poo (n) + peo (n))qn,

and
∞∑
k=1

q2k

1− q2k
=

∞∑
n=1

(poe (n) + pee (n))qn.

Since conjugation gives a bijection between Poe (n) and Peo (n), we further have
∞∑
k=1

qk

1− q2k
−

∞∑
k=1

q2k

1− q2k
=

∞∑
n=1

(poo (n) − pee (n))qn.

Therefore

(−q;q2)∞
∞∑
k=1

qk

1+ qk
=
( ∞∑

n=0

qo(n)qn
)( ∞∑

n=1

(poo (n) − pee (n))qn
)

=
∞∑
n=1

(
n−1∑
m=0

qo(m)poo (n −m) − qo(m)pee (n −m)

)
qn,

and the excess in question is given by

n−1∑
m=0

(qo(m)poo (n −m) − qo(m)pee (n −m)) .

Equivalently, this is the excess of the number of elements in

B(n) := {(λ, (ab)) � n | λ ∈ Qo,a,b odd}
over that in

A(n) := {(λ, (ab)) � n | λ ∈ Qo,a,b even}.
To measure this excess, we construct an injection T from A(n) to B(n) as follows. We partition the set A(n) into three 
disjoint subsets:

A1(n) := {(λ, (ab)) ∈ A(n) | a + b − 1 /∈ λ};
A2(n) := {(λ, (ab)) ∈ A(n) | a + b − 1 ∈ λ and λ has at least two parts};
A3(n) := {(λ, (ab)) ∈ A(n) | λ = (a + b − 1)}.

We define T on each Ai(n) in the following way.

1. If (λ, (ab)) ∈ A1(n) (including the case where λ is empty), then

T (λ, (ab)) :=
(
λ ∪ {a + b − 1},

(
(a − 1)b−1

))
.

6
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2. If (λ, (ab)) ∈ A2(n), then let m denote the largest part of λ that is not a + b − 1 and define

T (λ, (ab)) :=
(
(λ \ {m,a + b − 1}) ∪ {2a + 2b − 2+m},

(
(a − 1)b−1

))
,

where λ \ {m, a + b − 1} is the partition obtained by removing parts a + b − 1 and m from λ.
3. If (λ, (ab)) ∈ A3(n), then T (λ, (ab)) := ((a + 1,a − 1),

(
(a + 1)b−1

))
.

The image sets are thus

T (A1(n)) = {(μ, (cd)) ∈ B(n) | c + d + 1 ∈ μ};
T (A2(n)) =

{
(μ, (cd)) ∈ B(n)

∣∣∣ c + d + 1 /∈ μ, μ1 
= 3(c + d + 1),
and μ1 − μ2 > 2(c + d + 1)

}
;

T (A3(n)) = {(μ, (cd)) ∈ B(n) | μ = (c, c − 2)}.
Note that T (A1(n)), T (A2(n)), and T (A3(n)) are disjoint, and their union T (A(n)) is a subset of B(n). Define the map L

from T (A(n)) to A(n) as follows:

1. If (μ, (cd)) ∈ T (A1(n)), then

L(μ, (cd)) :=
(
μ \ {c + d + 1},

(
(c + 1)d+1

))
.

2. If (μ, (cd)) ∈ T (A2(n)), then

L(μ, (cd)) :=
(
(μ \ {μ1}) ∪ {c + d + 1,μ1 − 2(c + d + 1)},

(
(c + 1)d+1

))
.

3. If (μ, (cd)) ∈ T (A3(n)), then

L(μ, (cd)) :=
(
(c + d − 1),

(
(c − 1)d+1

))
.

Then L and T are inverses of each other. Since T gives a bijection between A(n) and T (A(n)) ⊆ B(n), the excess in question 
is given by the number of elements in

B(n) \ T (A(n)) = B(n) \ (T (A1(n)) ∪ T (A2(n)) ∪ T (A3(n)))

=
{
(μ, (cd)) ∈ B(n)

∣∣∣ c + d + 1 /∈ μ,μ 
= (c, c − 2), and
μ1 − μ2 ≤ 2(c + d + 1) or μ1 = 3(c + d + 1)

}
,

=
{
(μ, (cd)) ∈ B(n)

∣∣∣μ ∈ B(n, c,d)
}

.

Theorem 1.3 now follows.

3. Proofs of Theorems 1.4, 1.5, and 1.6

For r ∈ N , we define

Fr(z;q) := 1

(zq;q2r)∞(zq2;q2r)∞ · · · (zq2r−1;q2r)∞ · (−zq2r;q2r)∞

=
∞∑
n=0

∞∑
m=0

m∑
s=0

p

⎛⎝n

∣∣∣∣∣ all parts allowed,
m parts,
s parts divisible by 2r

⎞⎠ (−1)szmqn,

Rr(z;q) := (−zqr;q2r)∞
(zq;qr)∞(zq2;qr)∞ · · · (zqr−1;qr)∞

=
∞∑
n=0

∞∑
m=0

p

⎛⎝n

∣∣∣∣∣∣
parts are not divisible by 2r,
m parts,
parts divisible by r are distinct

⎞⎠ zmqn.

Hence, the generating series for pe(n, 2r) − po(n, 2r) and qo(n, r) are Fr(1; q) and Rr(1; q), respectively. We have
7
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Fr(1;q) = (q2r;q2r)∞
(q;q)∞ · 1

(−q2r;q2r)∞ = (q2r;q2r)∞
(q;q)∞ · (−qr;q2r)∞

(−qr;qr)∞
= (q2r;q2r)∞

(q;q)∞ · (qr;q2r)∞ · (−qr;q2r)∞ = (qr;qr)∞
(q;q)∞ · (−qr;q2r)∞

= Rr(1;q).
Here we used the facts

(−q2r;q2r)∞(−qr;q2r)∞ = (−qr;qr)∞ and (q2r;q2r)∞(qr;q2r)∞ = (qr;qr)∞
in the second and fourth equality respectively, and used Euler’s identity

(−q;q)∞ = 1

(q;q2)∞
(by replacing q by qr ) in the third equality. Theorem 1.4 now follows.

To prove Theorem 1.5, we have that ∂
∂z

∣∣
z=1 (Fr(z; q) − Rr(z; q)) is the generating series for the excess of the total number 

of parts in all partitions in Pe(n, 2r) over the total number of parts in all partitions in Po(n, 2r) ∪Qo(n, r). We have

∂

∂z

∣∣∣
z=1

(Fr(z;q) − Rr(z;q)) = Rr(1;q)
(

2r−1∑
�=1

∞∑
k=0

q�+2kr

1− q�+2kr
−

∞∑
k=1

q2kr

1+ q2kr
−

r−1∑
�=1

∞∑
k=0

q�+kr

1− q�+kr
−

∞∑
k=0

qr+2kr

1+ qr+2kr

)

= Rr(1;q)
(

2r−1∑
�=1

∞∑
k=0

q�+2kr

1− q�+2kr
−

r−1∑
�=1

∞∑
k=0

q�+kr

1− q�+kr
−

∞∑
k=1

qkr

1+ qkr

)

= Rr(1;q)
(

2r−1∑
�=1

∞∑
k=0

q�+2kr

1− q�+2kr
−

r−1∑
�=1

∞∑
k=0

q�+kr

1− q�+kr
−

∞∑
k=1

qkr

1− q2kr
+

∞∑
k=1

q2kr

1− q2kr

)

= Rr(1;q)
( ∞∑

k=1

qk

1− qk
−

r−1∑
�=1

∞∑
k=0

q�+kr

1− q�+kr
−

∞∑
k=1

qkr

1− q2kr

)

= Rr(1;q)
( ∞∑

k=1

qkr

1− qkr
−

∞∑
k=1

qkr

1− q2kr

)

= Rr(1;q)
∞∑
k=1

q2kr

1− q2kr
. (5)

This is the generating series for the number of pairs of partitions (λ, (ab)) � n so that

i. 2r | a,
ii. λ ∈Qo(n − ab, r).

Equivalently, (5) is the generating series for the number of partitions of n in which among the parts divisible by r there is 
exactly one even multiple of r, possibly repeated, and all other parts divisible by r are odd multiples of r and are distinct. 
This proves Theorem 1.5.

To prove Theorem 1.6, we define

Er(z;q) := 1

(q;q2r)∞(q2;q2r)∞ · · · (q2r−1;q2r)∞ · (−zq2r;q2r)∞
=

∞∑
n=0

∞∑
m=0

p(n | all parts allowed,m parts divisible by 2r)(−z)mqn,

Qr(z;q) := (−zqr;q2r)∞
(q;qr)∞(q2;qr)∞ . . . (qr−1;qr)∞

=
∞∑
n=0

∞∑
m=0

p

⎛⎝n

∣∣∣∣∣ parts are not divisible by 2r,
parts divisible by r are distinct,
m parts divisible by r

⎞⎠ zmqn.

As in the proof of Theorem 1.5, we compute
8
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∂

∂z

∣∣∣
z=1

(Qr(z;q) − Er(z;q)) = (−qr;q2r)∞
(q;qr)∞(q2;qr)∞ · · · (qr−1;qr)∞

∞∑
k=1

qkr

1+ qkr
. (6)

In the proof of Theorem 1.3, we have shown that

(−q;q2)∞
∞∑
k=1

qk

1+ qk
(7)

is the generating series for the number of pairs of partitions (λ, (ab)) � n satisfying the following conditions:

i. a, b are both odd,
ii. λ ∈Qo ∩B(n, a, b).

For each r ∈ N , replacing q by qr in (7) implies that

(−qr;q2r)∞
∞∑
k=1

qkr

1+ qkr

is the generating series for the number of pairs (λdiv , ((ar)b)) � n satisfying the following conditions:

i. a, b are both odd,
ii. λdiv ∈Qo(n − rab, r) ∩Br(n, a, b) and every part of λdiv is divisible by r.

Theorem 1.6 follows from equation (6).

4. Proofs of Theorems 1.7, 1.8, and 1.9

For r ∈ N, Lr ⊆ {2, 4, . . . , 2r} as in Section 1, we define

Er,Lr (z;q) := 1

(q;q2)∞
∏
�∈Lr

(−zq�;q2r)∞

=
∞∑
n=0

∞∑
m=0

p

⎛⎝n

∣∣∣∣∣ all odd parts allowed,
even parts ≡ � (mod 2r), � ∈ Lr ,
m even parts

⎞⎠ (−z)mqn,

Fr,Lr (z;q) := 1

(zq;q2)∞
∏
�∈Lr

(−zq�;q2r)∞

=
∞∑
n=0

∞∑
m=0

m∑
s=0

p

⎛⎝n

∣∣∣∣∣ all odd parts allowed,
even parts ≡ � (mod 2r), � ∈ Lr ,
m parts, s even parts

⎞⎠ (−1)szmqn,

Qr,Lr (z;q) :=
2r∏
j=1
j /∈Lr

(−zq j;q2r)∞

=
∞∑
n=0

∞∑
m=0

p

⎛⎝n

∣∣∣∣∣ all odd parts allowed,
even parts 
≡ � (mod 2r), � ∈ Lr ,
m parts, all distinct,

⎞⎠ zmqn.

Theorem 1.7 now follows from the fact that Er,Lr (1; q) = Qr,Lr (1; q), which is not difficult to obtain after a short calcula-
tion using Euler’s identity.

The proof of Theorem 1.8 is similar to the proofs of Theorems 1.2 and 1.5, and can be seen from

∂

∂z

∣∣∣
z=1

(Qr,Lr (z;q) − Fr,Lr (z;q)) = Qr,Lr (1;q)
∞∑
k=1

q2k

1− q2k
.

9
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To prove Theorem 1.9, we compute

∂

∂z

∣∣∣
z=1

(Qr,Lr (z;q) − Er,Lr (z;q)) =
2r∏
j=1
j /∈Lr

(−q j;q2r)∞
( ∞∑

k=1

qk

1 + qk

)

=

⎛⎜⎜⎜⎝
2r∏
j=1

j even, j /∈Lr

(−q j;q2r)∞

⎞⎟⎟⎟⎠ (−q;q2)∞
∞∑
k=1

qk

1+ qk
. (8)

Using the combinatorial interpretation of (7) in the proof of Theorem 1.3, Theorem 1.9 follows from (8).

5. Proof of Theorem 1.10

Let r ∈ N , Lr ⊆ {2, 4, . . . , 2r} and Or ⊆ {1, 3, . . . , 2r − 1} as in Section 1. Also let Lcr = {2, 4, . . . , 2r} \ Lr and Oc
r =

{1, 3, . . . , 2r − 1} \ Or . Define

Ẽr,Lr (z;q) := 1

(q;q2)∞
∏
j∈Lcr

(−q j;q2r)∞
∏
�∈Lr

(−zq�;q2r)∞

=
∞∑
n=0

∞∑
m=0

(pe(n,m; Lr) − po(n,m; Lr))zmqn,

Q̃ r,Or (z;q) :=
∏
j∈Oc

r

(−q j;q2r)∞
∏
�∈Or

(−zq�;q2r)∞

=
∞∑
n=0

∞∑
m=0

qo(n,m; Or)z
mqn,

where

pe/o(n,m; Lr) := p

⎛⎝n

∣∣∣∣∣ all parts allowed,
even/odd no. of even parts,
m (even) parts ≡ � (mod 2r), � ∈ Lr

⎞⎠ ,

qo(n,m; Or) := p

(
n
∣∣∣ all parts odd and distinct,
m (odd) parts ≡ � (mod 2r), � ∈ Or

)
.

When z = 1, Ẽr,Lr (1; q) = Q̃ r,Or (1; q) recovers Lehmer’s identity (2) in Theorem 1.1.
We compute that

∂

∂z

∣∣∣
z=1

(Q̃ r,Or (z;q) − Ẽr,Lr (z;q)) = (−q;q2)∞
∑

�∈Lr∪Or

∞∑
k=0

q2kr+�

1 + q2kr+�
. (9)

To prove Theorem 1.10, it suffices to prove the case where Lr ∪ Or = {�} for each positive integer � ≤ 2r. In Section 5.1, 
we state and prove Proposition 5.1, which establishes the non-negativity of the q-series coefficients of the series in (9)
(noting that special case � = 2 is more delicate). We then prove Theorem 1.10, making use of Proposition 5.1 and its proof.

5.1. Non-negativity of q-series coefficients

We use the notation F (q) � 0 to mean that the coefficients of F (q) when expanded as a q-series are all non-negative.

Proposition 5.1. Let r ∈ N , and � a positive integer such that � ≤ 2r.
If � 
= 2, then

(−q;q2)∞
∞∑ q2kr+�

1+ q2kr+�
� 0.
k=0

10
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If � = 2, then the only possible negative coefficients of

(−q;q2)∞
∞∑
k=0

q2kr+2

1+ q2kr+2
(10)

(when expanded as a q-series) are the coefficients of q4, q8, q12, q16 , and q20 , and any such negative coefficient is equal to −1. Precisely, 
the set of all n such that the coefficient of qn in (10) is negative (and thus equal to −1) is given as a function of r in the following table:

r {n}
1 { }
2,4,7 {4,8,12}
3 {4}
5 {4,8}
6,9 {4,8,12,16}
8,or ≥ 10 {4,8,12,16,20}

Proof of Proposition 5.1. We divide our proof into three cases: � odd, � even but � 
= 2, and � = 2.
For 0 < � ≤ 2r odd, we have that

(−q;q2)∞
∞∑
k=0

q2kr+�

1+ q2kr+�
=

∞∑
k=0

∞∏
m=0

2m+1 
=2kr+�

q2kr+�(1+ q2m+1) � 0. (11)

For 0 < � ≤ 2r even, we note that

(−q;q2)∞
∞∑
k=0

q2kr+�

1+ q2kr+�
=

∞∑
k=0

(−q;q2)∞(1− q2kr+�)
q2kr+�

1− q2(2kr+�)
. (12)

We first assume that � 
= 2. Using (12), it suffices to show that (−q; q2)∞(1 − q2a) � 0 for any integer a ≥ 2. We apply 
the well-known identity (see, e.g., [1, (2.2.6) with q �→ q2, t �→ q])

(−q;q2)∞ =
∞∑
n=0

qn
2

(q2;q2)n
to re-write

(−q;q2)∞(1 − q2a) = (1− q2a)
∞∑
n=0

qn
2

(q2;q2)n

= (1− q2a) + (1− q2a)

(1 − q2)

( ∞∑
n=1

qn
2

(q4;q2)n−1

)

= 1− q2a +
(

a−1∑
t=0

q2t
)( ∞∑

n=1

qn
2

(q4;q2)n−1

)
. (13)

Thus, it suffices to show that the coefficient of q2a in the q-series expansion of(
a−1∑
t=0

q2t
)( ∞∑

n=1

qn
2

(q4;q2)n−1

)
(14)

is strictly positive. We re-write 2a = u2 + v , where u2 is the largest even perfect square at most equal to 2a (with u a 
non-negative even integer), and v is a non-negative integer. Note that u2 ≥ 4 (so u ≥ 2), since 2a ≥ 4. Since u is even, v is 
even, and since u2 ≥ 4, we have that 0 ≤ v ≤ 2(a − 2). That is, v = 2t for some 0 ≤ t ≤ a − 2. For this t , we consider

q2t
∞∑
n=1

qn
2

(q4;q2)n−1
, (15)

which appears in (14). We extract the n = u term qu2
/(q4;q2)u−1 from the sum in (15), noting that u ≥ 2. Expanding this 

as a q-series, we obtain
11
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qu
2

(q4;q2)u−1
= qu

2 + �u(q), (16)

where �u(q) � 0. Multiplying (16) by q2t , we find the term q2t+u2 = q2a in the q-expansion of (14); moreover, we have 
explained that �u(q) � 0, and it is clear that the remaining coefficients in the q-expansion of (14) are non-negative. This 
completes the proof of non-negativity in the case of even � 
= 2.

When � = 2, we begin with the identity in (13), which also holds for a = 1. In this case, the q-series expansion for 
the expression in (14) is q + q4 + O (q8) (and has non-negative coefficients); that is, the coefficient of q2 is 0. Thus, the 
q-expansion of (13) in this case is 1 +q −q2 +q4 + O (q8), and has non-negative coefficients for all powers of q greater than 
4. Referring to (12), as above, we have that

∞∑
k=1

(−q;q2)∞(1 − q2kr+�)
q2kr+�

1− q2(2kr+�)
� 0 (17)

for any even � ∈ Lr , including � = 2. We also have from the above that the k = 0 term from (12) satisfies

(−q;q2)∞(1 − q�)
q�

1− q2�
� 0 (18)

for even � ≥ 4. For � = 2, we have shown that the only negative term appearing in the q-expansion

(−q;q2)∞(1 − q2) = 1+ q − q2 + q4 + q8 + q9 + q12 + q13 + q15 + 2q16 + O (q17) (19)

is −q2. We multiply (19) by

q2

1− q4
= q2 + q6 + q10 + q14 + q18 + q22 + O (q26) (20)

(which clearly has non-negative q-series coefficients) to obtain

q2 + q3 − q4 + 2q6 + q7 − q8 + 3q10 + 2q11 − q12 + 4q14 + 3q15 − q16 + q17 + 6q18 + 4q19 − q20 + �(q), (21)

where �(q) = O (q21). We now argue that �(q) � 0. It is not difficult to see that the only powers of q in the expansion for 
�(q) which may possibly have negative coefficients are those qm such that m ≡ 0 (mod 4), m ≥ 24 (where we have also 
used that �(q) = O (q21)). Now, any m ≡ 0 (mod 4) such that m ≥ 24 can also be written as m = (3 + 1)2 + 6 + (2 + 4c) for 
some integer c ≥ 0. Thus, we also obtain the term +qm after multiplying (19) and (20) as follows. We use the expression in 
(13) (with a = 1 and t = 0) for (19), and take the numerator q(3+1)2 of the n = 3 term and also q6 from the expansion of the 
denominator (q4; q2)3 of that same term. This yields a term q(3+1)2+6 after multiplying. We now multiply by the term q2+4c

from the expansion of q2/(1 − q4) in (20). Overall, this yields after multiplication the term q(3+1)2+6+(2+4c) = qm , which 
cancels with the earlier −qm . This shows that �(q) � 0.

Thus, the only negative coefficients of the series in (21) are q4, q8, q12, q16, and q20, and these coefficients are all 
equal to −1. When added to the rest of the sum in (17) (which has non-negative coefficients), this argument shows that 
the only powers of q in the expansion of (10) (equivalently, (12) with � = 2) with potentially negative coefficients are 
q4, q8, q12, q16, q20, and that any such negative coefficient must be −1, as claimed. Moreover, for r ≥ 10, and any k ≥ 1, we 
have that

q2kr+2

1− q2(2kr+2)
= O (q22),

which, when combined with the above argument, proves that the coefficients of q4, q8, q12, q16, and q20 are all equal to −1. 
The remaining negative coefficients as given in the table in Proposition 5.1 for 1 ≤ r ≤ 9 are easily calculated directly. �
5.2. Combinatorial interpretation of Proposition 5.1

In this section, we give a combinatorial interpretation of the coefficient of qn in the q-series of Proposition 5.1 in terms 
of the number of pairs of partitions (λ, (ab)) � n satisfying certain conditions. This will complete the proof of Theorem 1.10.

Let � be a positive integer such that � ≤ 2r.
If � is odd, then the coefficient of qn in (11) is the number of pairs of partitions (λ, (a)) � n satisfying a ≡ � (mod 2r), 

λ ∈Qo , and a /∈ λ.
12
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If � is even, � 
= 2, we substitute (13) in (12) to obtain

(−q;q2)∞
∞∑
k=0

q2kr+�

1+ q2kr+�
=

∑
a≡� (mod 2r)

a>0

⎛⎝1+
⎛⎝ a

2−1∑
t=0

q2t

⎞⎠( ∞∑
n=0

q(n+1)2

(q4;q2)n

)⎞⎠ qa

1− q2a
(22)

− ∑
a≡� (mod 2r)

a>0

qa
qa

1− q2a
. (23)

The q-series
∞∑
n=0

q(n+1)2

(q4;q2)n
is the generating series for the number of self-conjugate partitions of n ≥ 1 which are either (1) or whose smallest part 
is at least 2. Thus, this is also the generating series of the number of partitions of n ≥ 1 into distinct odd parts which are 
either (1) or partitions whose first two parts differ by exactly 2. Moreover,

a
2−1∑
t=0

q2t

is the generating series for partitions of n into a single even part no larger than a − 2.
By adding a non-negative even integer no larger than a − 2 to (1) or the first part of a partition into distinct odd parts 

whose first two parts differ by exactly 2, we see that⎛⎝ a
2−1∑
t=0

q2t

⎞⎠( ∞∑
n=0

q(n+1)2

(q4;q2)n

)
is the generating series for the number of partitions λ of n ≥ 1 into distinct odd parts with λ1 − λ2 ≤ a. Note that λ2 can 
be 0.

Thus, (22) is the generating series for the number of pairs of partitions (λ, (ab)) � n with b odd, a ≡ � (mod 2r), and 
λ ∈Qo satisfying λ1 − λ2 ≤ a. Note that λ may be empty.

To interpret (23), for a ≥ 4 and even, define μ(a) ∈Qo(a) to be the partition

μ(a) :=
{( a

2 + 1, a
2 − 1

)
if a

2 is even( a
2 + 2, a

2 − 2
)

if a
2 is odd.

(24)

Thus, (23) is the generating series for the number of pairs of partitions (μ(a), (ab)) � n with b odd, a ≡ � (mod 2r).
Therefore, the coefficient of qn in

(−q;q2)∞
∞∑
k=0

q2kr+�

1+ q2kr+�

is equal to the number of the pairs of partitions (λ, (ab)) � n with b odd, a ≡ � (mod 2r), and λ ∈Qo satisfying λ1 − λ2 ≤ a
and λ 
= μ(a).

If � = 2, the argument above fails only in the interpretation of qa qa

1−q2a
when a = 2. However, this q-series is just ∑∞

k=1 q
4k . Thus, if � = 2 and n ≡ 0 (mod 4), the coefficient of qn in (12) is one less than the number of pairs of par-

titions described above. If n ≥ 24, n ≡ 0 (mod 4), then ((9, 7, 5, 1), (2(n−22)/2)) is a pair counted by the sequence whose 
generating series is (22). Thus, if n /∈ {4, 8, 12, 16, 20}, the coefficient of qn in (12) is non-negative and equal to the number 
of pairs of partitions (λ, (ab)) � n with b odd, a ≡ � (mod 2r), and λ ∈ Qo satisfying λ1 − λ2 ≤ a, λ 
= μ(a) and, if n ≡ 0
(mod 4), also (λ, (ab)) 
= ((9, 7, 5, 1), (2(n−22)/2)).

If � = 2, r ≥ 10, and n ∈ {4, 8, 12, 16, 20}, then qn appears only when a = 2 in (22). If b is odd, n − 2b ≡ 2 (mod 4) and 
n − 2b ≤ 18. Thus, a partition λ � n − 2b into distinct parts would have two parts. However, since n − 2b ≡ 2 (mod 4), it 
follows that λ1 − λ2 ≥ 4. Therefore, there are no pairs of partitions (λ, (ab)) counted by the sequence whose generating 
series is (22) and the coefficient of qn in (12) is −1. For r < 10, one can easily verify that the values of n giving negative 
coefficients are as in the statement of the theorem.
13
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5.3. Examples of Theorem 1.10

In this section, we give some examples of Theorem 1.10 for specific choices of Lr and Or in which the excess is non-
negative for all n. Example 1 gives a new interpretation for the excess studied in Theorem 1.3. Examples 2 and 3, when 
specialized to r = 1, are also related to the excess studied in Theorem 1.3.

5.3.1. Example 1: Lr ∪ Or = {1, . . . , 2r}
The excess in this case is the same as that in Theorem 1.3, but the combinatorial description given by Theorem 1.3 and 

Theorem 1.10 are different.
When n 
≡ 0 (mod 4), Theorem 1.10 becomes: The excess of the number of parts in all partitions in Qo(n) plus the 

number of even parts in all partitions of Pe(n, 2) over the number of even parts in all partitions in Po(n, 2) equals the 
number of pairs of partitions (λ, (ab)) � n satisfying the following conditions:

i. b is odd. Moreover, if a is odd, then b = 1,
ii. λ ∈Qo . Moreover, if a is odd, then a /∈ λ; if a is even, then λ1 − λ2 ≤ a.

When n ∈ {4, 8, 12, 16, 20}, since 2 ∈ Lr ∪ Or , Theorem 1.10 does not guarantee the non-negativity of the excess. However, 
since Lr ⊇ {2, 4, . . . , 2r}, when n ≡ 0 (mod 4), we can exclude (∅, (n)) instead of ((9, 7, 5, 1), (2b)), proving non-negativity 
of the excess. Specifically, the excess is now equal to the number of pairs of partitions (λ, (ab)) � n satisfying the following 
conditions:

i. b is odd. Moreover, if a is odd, then b = 1,
ii. λ ∈Qo . Moreover, if a is odd, then a /∈ λ; if a is even, then λ1 − λ2 ≤ a and λ 
= μ(a)}; if a ≡ 0 (mod 4) and b = 1, then 

λ 
=∅.

With the modification explained above we have the following corollary of Theorem 1.10:

Corollary 5.2. The excess of the number of even parts in all partitions of Po(n, 2) over the number of even parts in all partitions of 
Pe(n, 2) equals the number of partitions λ of n such that exactly one part is even, all other parts are odd and distinct, the even part 
may be repeated an odd number of times and, if we write λ = (λo ∪ ((2k)b)) with λo ∈ Qo , k ≥ 1, then λo

1 − λo
2 ≤ 2k, λo 
= μ(2k), 

and if k is even and b = 1 then λo 
= ∅.

Proof. Corollary 5.2 follows from the fact that counting (λ, (a)) � n with a odd and a /∈ λ is the same as counting parts 
in Qo(n). When a = 2k, we insert the even (possibly repeated) part into the partition into distinct odd parts to obtain a 
statement similar to the original Beck conjecture. �

Combining Theorem 1.2 and Corollary 5.2, we arrive at the following corollary.

Corollary 5.3. The excess of the number of odd parts in all partitions in Pe(n, 2) over the number of odd parts in Po(n, 2) ∪ Qo(n)

equals the number of partitions λ of n satisfying either

i. λ has exactly one even part, possibly repeated, and all other parts are odd and distinct, or
ii. all parts of λ are odd and exactly one part b is repeated. Moreover, let λo = λ \ (b2k) be the partition obtained by removing from 

λ the largest even number of parts equal to b, then λo
1 − λo

2 ≤ 2k, λo 
= μ(2k), and if k is even and b = 1 then λo 
= ∅.

Proof. The excess in Corollary 5.3 is the sum of the excess in Theorem 1.2 and Corollary 5.2. The partitions described 
in ii. are disjoint from the partitions described in i. They are in one-to-one correspondence with the partitions described 
in Corollary 5.2. To see this correspondence, consider a partition μ = (μo ∪ ((2k)b)) as in Corollary 5.2. Then define λ =
μo ∪ (b2k). Now b, which is odd, is a repeated part. The part b may have already existed in μo , so its multiplicity in λ can 
be even or odd. �
5.3.2. Example 2: Lr ∪ Or = {r, 2r}

In this case,

∂

∂z

∣∣∣
z=1

(Q̃ r,Or (z;q) − Ẽr,Lr (z;q)) = (−q;q2)∞
∞∑
k=0

qkr

1+ qkr
.

Theorem 1.10 implies that the series has non-negative coefficients when r ≥ 3, because 2 /∈ Lr ∪ Or . When r = 1, both Exam-
ple 1 and Proposition 5.1 show that the series has non-negative coefficients. When r = 2, the series also has non-negative 
coefficients. As in Example 1, when n ≡ 0 (mod 4), we can exclude (∅, (n)) instead of ((9, 7, 5, 1), (2b)). Alternatively, one 
14
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can see that in Proposition 5.1, the coefficient of qn in (−q; q2)∞∑∞
k=0

q4k+2

1+q4k+2 is negative (and equal to −1) only for 

n = 4, 8, 12, while it can be computed that the coefficient of q4, q8, q12 in (−q; q2)∞∑∞
k=0

q4k+4

1+q4k+4 are 1, 1, 4, respectively.

5.3.3. Example 3: Lr ∪ Or = {1, 2r}
In this case,

∂

∂z

∣∣∣
z=1

(Q̃ r,Or (z;q) − Ẽr,Lr (z;q)) = (−q;q2)∞
( ∞∑

k=0

q2kr+1

1+ q2kr+1
+

∞∑
k=1

q2kr

1+ q2kr

)
.

Theorem 1.10 (for r ≥ 2) and Example 1 (for r = 1) imply that the series has non-negative coefficients.

Remark 6. The derivative differences given in Examples 2 and 3 also have interpretations as generating series for the number 
of pairs of partitions satisfying certain conditions as in Theorem 1.10.

6. Further non-negativity results

The derivative difference in Example 3 can be expressed as

(−q;q2)∞
( ∞∑

k=1

q2kr

1− q4kr
−

∞∑
k=0

q2(2kr+1)

1− q2(2kr+1)

)
(25)

+ (−q;q2)∞
( ∞∑

k=0

q2kr+1

1− q2(2kr+1)
−

∞∑
k=1

q4kr

1− q4kr

)
. (26)

In Theorem 6.1, we show that (25) has non-positive coefficients, and, in Theorem 6.2, we show that (26) has non-negative 
coefficients.

Theorem 6.1. For r ∈N , we have that

(−q;q2)∞
( ∞∑

k=0

q2(2kr+1)

1− q2(2kr+1)
−

∞∑
k=1

q2kr

1− q4kr

)
� 0.

Proof. It suffices to construct an injection T from

A(n) := {(λ, (ab)) � n | λ ∈ Qo,a ≡ 0 (mod 2r),b odd}
to

B(n) := {(λ, (ab)) � n | λ ∈ Qo,a ≡ 1 (mod 2r),b even}.
Let (λ, (ab)) ∈ A(n). Let 0 ≤ c < 2r be the remainder of b − 1 when divided by 2r. Note that c is even. We partition the 

set A(n) into two disjoint subsets:

A1(n) := {(λ, (ab)) ∈ A(n) | λ 
= ∅};
A2(n) := {(λ, (ab)) ∈ A(n) | λ = ∅}.

We define T on each Ai(n) in the following way.

1. If λ 
=∅, then

T (λ, (ab)) = (λ \ {λ1} ∪ {λ1 + ab − (a − c)(b − c)}, ((b − c)a−c)).

2. If λ =∅, then

T (∅, (ab)) = (μ(ab − (a − c)(b − c)), ((b − c)a−c)).

The image sets are thus

T (A1(n)) ={(μ, (xy)) ∈ B(n) | μ1 − μ2 > (y + z)(x + z) − xy},
T (A2(n)) ={(μ, (xy)) ∈ B(n) | μ = μ((x+ z)(y + z) − xy)},
15



C. Ballantine, H. Burson, A. Folsom et al. Discrete Mathematics 345 (2022) 112979
where z is the remainder of −y when divided by 2r.
Note that T maps (λ, (ab)) ∈ A(n) with b ≡ � (mod 2r) to (μ, (xy)) ∈ B(n) with y ≡ −� + 1 (mod 2r). When b ≡ 1

(mod 2r), T (∅, (ab)) = (∅, (ba)) /∈ T (A1(n)). When b ≡ � 
≡ 1 (mod 2r), because (y + z)(x + z) − xy ≥ 2(x + y) + 4 ≥ 4, 
T (A1(n)) and T (A1(n)) are disjoint.

Define the map L from T (A(n)) to A(n) as follows:

1. If (μ, (xy)) ∈ T (A1), then

L(μ, (xy)) = (μ \ {μ1} ∪ {μ1 − (y + z)(x+ z) + xy}, ((y + z)x+z)).

2. If (μ, (xy)) ∈ T (A2), then

L(μ, (xy)) = (∅, ((y + z)x+z)).

Then L and T are inverse to each other. Hence T is an injection and Theorem 6.1 follows. �
Remark 7. When r = 1, the injection T is the bijection (λ, (ab)) �→ (λ, (ba)), where the conjugation (ab) �→ (ba) was used in 
the proof of Theorem 1.3.

Theorem 6.2. For r ∈ N , we have that

(−q;q2)∞
( ∞∑

k=0

q2kr+1

1− q2(2kr+1)
−

∞∑
k=1

q4kr

1− q4kr

)
� 0.

First Proof. Because the derivative difference in Example 3 has non-negative coefficients, Theorem 6.2 follows from Theo-
rem 6.1. �
Second Proof. Alternatively, we can also prove Theorem 6.2 directly. It suffices to construct an injection T from

A(n) := {(λ, (ab)) � n | λ ∈ Qo,a ≡ 0 (mod 2r),b even}
to

B(n) := {(λ, (ab)) � n | λ ∈ Qo,a ≡ 1 (mod 2r),b odd}.
We partition the set A(n) into three disjoint subsets:

A1(n) := {(λ, (ab)) ∈ A(n) | a + (2r − 1)(b − 1) /∈ λ};
A2(n) := {(λ, (ab)) ∈ A(n) | a + (2r − 1)(b − 1) ∈ λ and λ has at least two parts};
A3(n) := {(λ, (ab)) ∈ A(n) | λ = (a + (2r − 1)(b − 1))}.

We define T on each Ai(n) in the following way.

1. If (λ, (ab)) ∈ A1(n) (including the case where λ is empty), then

T (λ, (ab)) := (λ ∪ {a + (2r − 1)(b − 1)}, ((a + 1− 2r)b−1)).

2. If (λ, (ab)) ∈ A2(n), let m denote the largest part of λ that is not (a + (2r − 1)(b − 1)). Then T (λ, (ab)) equals

((λ \ {a + (2r − 1)(b − 1),m}) ∪ {2(a + (2r − 1)(b − 1)) +m}, ((a + 1− 2r)b−1)).

3. If (λ, (ab)) ∈ A3(n), then

T (λ, (ab)) := ((a + 1,a + (2r − 2)b − (2r − 1)), ((a + 1)b−1)).

The image sets are thus

T (A1(n)) = {(μ, (cd)) ∈ B(n) | c + (2r − 1)(d + 1) ∈ μ},

T (A2(n)) =
⎧⎨⎩(μ, (cd)) ∈ B(n)

∣∣∣∣∣ c + (2r − 1)(d + 1) /∈ μ,

μ1 − μ2 > 2(c + (2r − 1)(d + 1)),
μ1 
= 3(c + (2r − 1)(d + 1))

⎫⎬⎭ ,

T (A3(n)) = {(μ, (cd)) ∈ B(n) | μ = (c, c + (2r − 2)d − 2)}.
16
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Note that when r = 1, (2r − 2)d − 2 = −2 < 0, and 2 ≤ 2(c + (2r − 1)(d + 1)). When r > 1, (2r − 2)d − 2 > 0 and 
(2r − 2)d − 2 ≤ 2(c + (2r − 1)(d + 1)). Hence T (A1(n)), T (A2(n)), T (A3(n)) are pairwise disjoint.

Define the map L from T (A(n)) to A(n) as follows:

1. If (μ, (cd)) ∈ T (A1(n)), then

L(μ, (cd)) := (μ \ {c + (2r − 1)(d + 1)}, ((c + 2r − 1)d+1)).

2. If (μ, (cd)) ∈ T (A2(n)), then we define L(μ, (cd)) by

((μ \ {μ1}) ∪ {c + (2r − 1)(d + 1),μ1 − 2(c + (2r − 1)(d + 1))}, ((c + 2r − 1)d+1)).

3. If (μ, (cd)) ∈ T (A3(n)), then

L(μ, (cd)) := ((c − 1+ (2r − 1)d), ((c − 1)d+1)).

Then L and T are inverses of each other. Hence, T is an injection and Theorem 6.2 follows. �
Remark 8. When r = 1, the second proof of Theorem 6.2 recovers the proof of Theorem 1.3.
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