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proved the following companion to Euler’s identity: the excess of the number of parts
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distinct parts equals the number of partitions of n with exactly one even part (possibly
repeated). Beck’s original conjecture was followed by generalizations and so-called “Beck-
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Beck-type identities In this paper, we establish a collection of Beck-type companion identities to the following
Lehmer's identity result mentioned by Lehmer at the 1974 International Congress of Mathematicians: the
g-series excess of the number of partitions of n with an even number of even parts over the

number of partitions of n with an odd number of even parts equals the number of
partitions of n into distinct, odd parts. We also establish various generalizations of Lehmer’s
identity, and prove related Beck-type companion identities. We use both analytic and
combinatorial methods in our proofs.
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1. Introduction and statement of results

Many results in the theory of partitions concern identities asserting that the set Px(n) of partitions of n satisfying
condition X and the set Py(n) of partitions of n satisfying condition Y are equinumerous. Likely the oldest such result is
Euler’s identity that the number of partitions of n into odd parts is equal to the number of partitions of n into distinct parts.
In 2017, Beck made the following conjecture ([10], [2, Conjecture]):

Conjecture 1 (Beck). The excess of the number of parts in all partitions of n into odd parts over the number of parts in all partitions of
n into distinct parts equals the number of partitions of n with exactly one even part (possibly repeated).
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Beck’s conjecture was quickly proved analytically by Andrews [2], who additionally showed that this excess also equals
the number of partitions of n with exactly one part repeated (and all other parts distinct). The conjecture was also proved
combinatorially by Yang [11] and Ballantine-Bielak [4] independently. This work was followed by generalizations and Beck-
type companions to other well known identities (e.g., [3], [5], [9], [11]). In general, a Beck-type companion identity to
|Px ()| = |Py(n)| is an identity that equates the excess of the number of parts in all partitions in Px(n) over the number
of parts in all partitions in Py (n) to the number of partitions of n satisfying a condition closely related to X (or Y).

In this article, we establish a number of Beck-type identities related to a result of Lehmer, which he informally mentioned
at the 1974 International Congress of Mathematicians [8]: for every non-negative integer n, we have that

2pe(n, 2) = p(n) + qo(n), (M
where

Pe(n,2) := p(n| the number of even parts is even)

and

qo(n) := p(n| distinct, odd parts).

Here and throughout we use the standard notations p(n) and p(n | X) to denote the number of partitions of n, and the
number of partitions of n satisfying condition X, respectively. If we also denote by

po(n, 2) := p(n| the number of even parts is odd),
identity (1) is equivalent to the following statement which we refer to as Lehmer’s identity.
Theorem 1.1. For any n € Ny := N U {0}, we have

Pe(n,2) = po(1,2) +qo(n). (2)

An analytic proof of Theorem 1.1 is immediate: The generating series for p.(n,2) — po(n,2) and q,(n) are given by
(@; )3 (—¢% ¢*) 3} and (—q; q%)oo, Tespectively. Then Theorem 1.1 follows from the fact that

(—0; Do
(oo = 55—
T (0% P
and Euler’s identity
(0 Do = .
F T (@GP

Here and throughout, the g-Pochhammer symbol is given by

@qn =1 forn=0,
D= G —a1—ag)--(1—ag™), forn > 0;

(@; @)oo := lim (a; @)p.
n—oo

In [8], Gupta provided a beautiful combinatorial proof of Theorem 1.1. We also note that (2) is equivalent to the following
identity due to Glaisher ([6, p.129] [7, p.256])

pe(m) — po(n) = (—1)"qo (),
where

Peso(n) := p(n | even/odd number of parts).

Our first main result, Theorem 1.2 below, is a Beck-type companion identity to Lehmer’s identity (2). To state it, we
first set some additional notation. We begin by formally defining a partition A = (1, A2, ..., Aj) of size n € N to be a non-
increasing sequence of positive integers A1 > Az > --- > A; called parts that add up to n. For convenience, we abuse notation
and use X to denote either the multiset of its parts or the non-increasing sequence of parts. We write a € > to mean the
positive integer a is a part of A. The empty partition is the only partition of size 0. Thus, p(0) = 1. We write |A| for the
size of A and A - n to mean that A is a partition of size n. For a pair of partitions (A, u) we also write (A, i) Fn to mean
[Al + || = n. We use the convention that A, =0 for all k greater than the number of parts. When convenient we will also
use the exponential notation for parts in a partition: the exponent of a part is the multiplicity of the part in the partition,
e.g., we write (a?) for the partition consisting of b parts equal to a. Further, we denote by calligraphy style capital letters the
set of partitions enumerated by the function denoted by the same letter. For example, Q,(n) denotes the set of partitions
of n into distinct odd parts. We also define Q, := - Qo(n).
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Theorem 1.2. Let n € Ny. The excess of the number of parts in all partitions in P, (n, 2) over the number of parts in all partitions
in Py(n,2) U Qy(n) equals the number of partitions of n with exactly one even part, possibly repeated, and all other parts odd and
distinct.

Remark 1. As proved in [3], the excess in Theorem 1.2 is almost always equal to the number of parts in all self-conjugate
partitions of n. Hence, the excess in the number of parts in all partitions in P, (n,2) over the number of parts in all
partitions in P, (n, 2) is almost always equal to the total number of parts in all self-conjugate partitions of n and in all
partitions of n into distinct odd parts. More precisely, if N(x) is the number of times the above statement is true for n <x,
then limy_, oo N(x)/x = 1.

We also establish a restricted Beck-type identity accompanying (2) in which we only count the number of even parts in
partitions in Pe(n, 2) and P, (n, 2); this result is given in Theorem 1.3 below. To ease notation in the statement of this result
and other Beck-type identities that follow, we introduce the following definition. Let n, r, a, b be non-negative integers such
that 1 <ab <n. We define

A # (ra,r(a—2)), and
Br(n,a,b) :=3Atn—rab|r(a+b+1)¢2A, and
AM—Ay=<2r(@+b+1)orr;=3r(a+b+1)

We write B(n, a, b) for By(n,a,b).
Theorem 1.3. Let n € Ny. The excess of the number of parts in all partitions in Q,(n) plus the number of even parts in all partitions

in Py (n, 2) over the number of even parts in all partitions in Pe(n, 2) equals the number of pairs of partitions (%, (a?)) satisfying the
following conditions:

i. a, b are both odd,
ii. A€ Qy, N B(n,a,b), ie, A has distinct odd parts, is not equal to (a,a — 2), does not have a + b + 1 as a part, and satisfies
M—A<2@+b+1Dorriy=3@+b+1).

Remark 2. If n is even, the condition A # (a,a — 2) in ii. is vacuously true.

In general, whenever we refer to pairs of the form (%, (a®)), we require (a?) to be nonempty (i.e. a,b > 0), while A is
allowed to be the empty partition.

Remark 3. Beck’s Conjecture 1 can also be formulated in the language of pairs as in Theorem 1.3:
The excess of the number of parts in all partitions of n into odd parts over the number of parts in all partitions of n into
distinct parts equals the number of pairs of partitions (1, (a?)) I n satisfying the following conditions:

i. a is even,
ii. A is a partition into odd parts.

Next, we give a collection of Beck-type companion identities to the following generalization of Lehmer’s identity (2),
which we prove in Section 3. For the remainder of the paper, we let r € N.

Theorem 1.4. For any n € Ny, we have
pe(n, 2r) = po(n, 2r) + qo(n, 1), (3)
where

Peso(n, 2r) := p(n | all parts allowed, even/odd number of parts divisible by 2r)

parts are not divisible by 2r,
parts divisible by r are distinct

Go(n, 1) :=p (n |

= p (n | all parts divisible by r are distinct, odd multiples of ) .

Note that for r =1, identity (3) reduces to identity (2).
Our first Beck-type companion identity to (3) is given by the next theorem which becomes Theorem 1.2 when r = 1.

Theorem 1.5. Let n € Ny. The excess in the total number of parts in all partitions in Pe(n, 2r) over the total number of parts in all
partitions in P, (n, 2r) U Q, (n, ) equals the number of pairs of partitions (1, (a)) - n such that

3
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i. 2r|a,
ii. A€ Qy(n—ab,r).

Remark 4. Equivalently, the excess of Theorem 1.5 equals the number of partitions of n in which, among the parts divisible
by r, there is a single even multiple of r and this part is possibly repeated, while all other parts divisible by r are odd
multiples of r and they are distinct.

Theorem 1.6 below is a restricted Beck-type companion identity to (3), in which we only count the number of parts
divisible by r in Q,(n,r), and the number of parts divisible by 2r in P.(n,2r) and P,(n,2r). The theorem reduces to
Theorem 1.3 when r =1.

Theorem 1.6. Let n € Ng. The excess of the number of parts divisible by r in all partitions in Q, (n, r) plus the number of parts divisible
by 2r in all partitions in P, (n, 2r) over the number of parts divisible by 2r in all partitions in P, (n, 2r) equals the number of pairs of
partitions (1, ((ar))) satisfying the following conditions:

i. a, b are both odd, ' ‘ '
ii. A € Qo(n — rab,r) such that, if we write A = Andiv g \div ywhere 291V contains all parts of A that are divisible by r, then
24V e Bo(n — [AMY| a, b).

Recall that A U p is the partition whose parts are precisely the parts of A and p (with multiplicities).

Next we give another generalization of Lehmer’s identity (2). To describe this, we let r € N, and let L, € {2,4,6, ..., 2r},
with L # @. We use the sets L, to restrict even parts of partitions to lie within certain arithmetic progressions. More
precisely, we define

all parts allowed,
even parts=+¢ (mod 2r),£eL;, |,
even/odd number of even parts

all parts distinct,
even parts # ¢ (mod 2r),fe€lL; )’

Pejo(n, Ly, 2r):=p|n

qn, Ly,r):=p <n (

Theorem 1.7. For any n € Ny, we have
pe(n, Lr, 2r) = po(n, Ly, 2r) +q(n, Ly, 1). (4)

Note that in the case L, ={2,4, ..., 2r}, identity (4) is equivalent to identity (2).
The next theorem is a Beck-type companion identity to (4), which becomes Theorem 1.2 when L, ={2,4, ..., 2r}.

Theorem 1.8. Let n € Ny. The excess in the total number of parts in all partitions in Pe(n, Ly, 2r) over the total number of parts in all
partitions in Po(n, Ly, 2r) U Q(n, L, ) equals the number of pairs of partitions (., (a®)) satisfying the following conditions:

i. aiseven,
ii. he Q(n—ab, L., ).

A restricted Beck-type companion identity to (4) is given by the next theorem, where we only count the number of even
parts in Pe(n, L;, 2r) and P, (n, L, 2r). The theorem becomes Theorem 1.3 when L, ={2,4,...,2r}.

Theorem 1.9. Let n € Ny. The excess of the number of parts in all partitions in Q(n, Ly, r) plus the number of even parts in all
partitions in P,(n, Ly, 2r) over the number of even parts in all partitions in Pe(n, L;, 2r) equals the number of pairs of partitions
(1, (ab)) satisfying the following conditions:

i. a, b are both odd,
ii. A € Q(n— ab, L;, 1) such that, if we write A = A U A°, where A® consists of all the even parts of A and A° consists of all the odd
parts of A, then A° € B(n — |A¢|, a, b).

The next result is a new restricted Beck-type companion identity to Lehmer’s identity (2), different from Theorem 1.3.
We only count the number of parts in certain arithmetic progressions in Q,(n,2), Pe(n, 2) and P,(n, 2).
To describe it, for r € N, let

L, <{2,4,6,...,2r}, and O, C{1,3,5,...,2r —1}.
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Theorem 1.10. Let n be a positive integer, and L, and O as above such that ifn =0 (mod 4) then 2 ¢ L.. The excess of the number of
parts = £ (mod 2r), £ € O, in all partitions in Q,(n) plus the number of parts = £ (mod 2r), £ € L, in all partitions in P, (n, 2) over
the number of parts = £ (mod 2r), £ € Ly, in all partitions in Pe(n, 2) equals the number of pairs of partitions (x, (a’)) - n satisfying
the following conditions:

i. a=¢ (mod 2r) forsome £ € L, U O, and b is odd. Moreover, if a is odd, then b =1,

ii. A € Qo. Moreover, ifais odd, thena ¢ A; ifais even, then iy — Ay <aand 2 ¢ {(§+1.§-1),(5+2.5-2)}.

Ifn=0 (mod 4) and 2 € L, the excess is one less than the number of pairs counted above. Moreover, if we additionally have
that n ¢ {4,8,12, 16, 20}, then the excess is equal to the number of pairs (i, (a?)) satisfying i. and ii. with the additional condition

(r, @) #((9,7,5,1), 2").
Remark 5. If n £ 0 (mod 4), then the condition A ¢ { (§+1,5 —1),(§+2,5 —2)} is vacuously true.

Generally speaking, our proofs are both analytic and combinatorial in nature. In Sections 2 to 4, we prove Theorems 1.2
through 1.9. In Section 5, we prove Theorem 1.10 and give several important examples. In Section 6, we establish the
non-negativity of the coefficients of some related g-series.

2. Proofs of Theorems 1.2 and 1.3

Consider the generating series

1 o0 o0 m
F(z;q) = = p(n | m parts, of which s parts are even)(—1)*z2"q",
(20: 4%)o0(—24%: 4%) o0 g% ;
,1 o0 o0
E(z;q) = = p(n | the number of even parts is m)(—z)™q",
(@3 4*)oo (=297 *)oo g%
and
o0 o0
Qo(z;q) :==(—2zq; q2)OQ = Z Z p(n | parts must be odd and distinct, m parts)z"q".
n=0m=0

To prove Theorem 1.2, note that % ,.1(F(z;q) — Qo(z; q)) gives the generating series for the excess of the number of
parts in all partitions in P (n, 2) over the number of parts in all partitions in Q,(n) U P,(n, 2). We have

9 ) o q2k+l o q2k q2k+l
37l FED = Qo @) =(~4:q)oc % T ; i ’Z Fpere
—| = k=0
5 i q2k+l i qk
= (=900 T ;
k:ol_q< 1<=1H_q<
) (i g2+ i ¢ i e
= (=440 T * T2 Tk
k=01_q< k:]l_q k:]l_q<
o k o k
q q
= (09" ( =y —— )
I<=11_q k=11_q<
o 2k

a2 q
=(-q;q )0021_—qZk'

k=1

The last expression is the generating series for the number of partitions of n with exactly one even part, possibly repeated,
and all other parts odd and distinct. This proves Theorem 1.2.

To prove Theorem 1.3 we note that 5’—2 ,-1(Qo(z; ) — E(z;:9)) is the generating series for the excess of the number of
parts in all partitions in Q,(n) plus the number of even parts in all partitions in 7, (n, 2) over the number of even parts in

all partitions in Pe(n, 2). We compute

o0 2k+1

0 : ca)) = (—a- a? 9 o 0
571, (@O —E@ D) = (=4: 4D (Z T g +> 1 +q2k>

k=0 k=1

5
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=(-¢: )0 -
k=1 1 T4
0 k 00 2k
q q
= (=4:4")0 (Z D 2 ) :
peci el el

Let
peo (n) := p(n | odd number of identical even parts),
ie.,

Pee(M):=|{AFn|A= (ab),a even and b odd}|.
Define pee (), poe (n), and pgo (n) similarly.

Then
21T P D (Poo () + peo ()",
k=1 n=1
and
o0 qzk 00
Z 1 —q%* = Z(Pof () + pee (n))q".
k=1 n=1

Since conjugation gives a bijection between Py (1) and Peo (n), we further have

0 qk 0 qZk o
> o > e D (poo () — pee(m)q".
k=1 k=1 n=1
Therefore
00 q" [ 00
(0 o0y —— =Y _aomq" ) [ D (por (1) — pec (m))q"
1+q
k=1 n=0 n=1
oo /n—1
=y (Z o (M) poo (1 — M) — Go () pee (1 — m)) 7",
n=1 \m=0
and the excess in question is given by
n—1
> @o(m)peo (n —m) — go(M)pec (n —m)).
m=0

Equivalently, this is the excess of the number of elements in
B(n) :={(x, (@) Fn| i€ Q,,a,bodd}
over that in
A@m) :={(\, @) Fn|xre Q. a,beven).

To measure this excess, we construct an injection T from A(n) to B(n) as follows. We partition the set A(n) into three
disjoint subsets:

Ar(n):={(, (@) e A) |a+b—1¢ 2k
Ax(n) :={(x, (ab)) € A(n) |a+b —1 € X and A has at least two parts};
As(n) :={(, (@) e A) | A= (@+b—1)}.

We define T on each A;(n) in the following way.

1. If (1, (@®)) € A1(n) (including the case where A is empty), then

T, (@) = (A Ula+b—1), ((a - 1)”*1)) :



C. Ballantine, H. Burson, A. Folsom et al. Discrete Mathematics 345 (2022) 112979

2. If (A, (@)) € Ax(n), then let m denote the largest part of A that is not a+b — 1 and define

T, @) = ((A \{m,a+b—1})U{2a+2b—2+m}, ((a _ 1)1’*1)) ,

where A \ {m,a+b — 1} is the partition obtained by removing parts a+b — 1 and m from A.
3.1f (A, (@)) € A3(n), then T(1, (@) == ((a+1,a— 1), ((@+ DP7T)).

The image sets are thus
T(A1 () = {1, (¢)) € B() | c+d + 1€ p};
o= im0 cam 547 £

T(A3(n) = {(, (c!)) € B) | = (c,c — 2)}.

Note that T(A1(n)), T(A2(n)), and T(A3(n)) are disjoint, and their union T (A(n)) is a subset of B(n). Define the map L
from T(A(n)) to A(n) as follows:

1. If (u, (c%)) € T(A1(n)), then

LGe @)= (i fe+d o+ 1), (e + D)),
2. If (1, (c%)) € T(A2(n)), then

LGa, @) = (A () Ule+d+ 1,01 =2 +d+ D), (€ + D))
3. If (i, (ch)) € T(A3(n)), then

L @) = (e +d =1, (€ = D).

Then L and T are inverses of each other. Since T gives a bijection between A(n) and T(A(n)) C B(n), the excess in question
is given by the number of elements in

B(m)\ T(A(m)) =Bm) \ (T(A1(n)) UT(A2(n)) UT(A3(n)))
c+d+1¢u, u#(c,c—2),and
{(/‘L (C))EB(H)‘ MzSZ(C+d+1)OrM1=3(C+d+])}
={w. @) eBm | ueBme.d).
Theorem 1.3 now follows.

3. Proofs of Theorems 1.4, 1.5, and 1.6

For r € N, we define

1

Fr(z;q) :=
' (20: 400 (26% 4% oo+ (262711 42N oo - (—267; 4% ) o

co oo m all parts allowed,

= Z Z Z p | n| m parts, (=1)’Z"¢"
n=0m=0 s=0 s parts divisible by 2r
(=29"; 47 )0

Rr(z;9) := 44"

(295 400 (265 400 -+ (24715 ¢ oo
parts are not divisible by 2r,

= Z Z p | n | mparts, Z"q".
n=0m=0 parts divisible by r are distinct

Hence, the generating series for pe(n, 2r) — po(n,2r) and qo(n,r) are F,(1;q) and R;(1; q), respectively. We have

7
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@ 9% oo 1 @400 (=090
0= e e @D (0000
2r. 421
SURILRIES - (e (4 qzr)oo—(q_q)oo (=a"30")oo
45 Do 45 Do
=R (1; q).

Here we used the facts

(=070 (=000 = (=03 qD0  and (@3 4%)oo(@3 6% oo = @3 @)oo

in the second and fourth equality respectively, and used Euler’s identity

¢ QDoo=—5—
@)

(by replacing q by q") in the third equality Theorem 1.4 now follows.

To prove Theorem 1.5, we have that dz ,—1 (Fr(z; @) — Rr(z; q)) is the generating series for the excess of the total number
of parts in all partitions in P, (n, 2r) over the total number of parts in all partitions in P,(n, 2r) U Q,(n,r). We have

9 zrzl 00 qi+2kr 0 - 1% qZJrkr o0 qr+2kr
|, (Fr@ @) — Rz ) =R (1:9) o -

1 _ gt+2kr 14 g2kr Z+kr r42kr
0zl ZlkO -4 1+q =1 k= O1 k=01+q

2f 1 00 glr2kr r—=1 oo gtk 2 gk
=Rr(1;9)

Z+2kr Z Z Z+kr - lz: 1+ qkr
k=1

ZlkO =1 k=

2r 1 oo Z+2kr r—1 oo [J,_kr 00 qkr o qZkr
=R:(1; @ Z+2kr Z Z Z+kr - Z 1— q2kr + Z 1— qZkr

E 1 k =1 k= k=1 k=1
o0 r—1 oo o0 qkr
=Ry (1;9) Z] ZZ q[+kr _Z] _q2kr>
=1 k= 0 k=1
oo q o0 qkr
=R:(1;9) Z] kr_Z]_qZkr)
k=1
— ¢
=Rr<W>ZW- ©
k=1 q

This is the generating series for the number of pairs of partitions (%, (a®)) Fn so that

i. 2r]a,
ii. A€ Qy(n—ab,r).

Equivalently, (5) is the generating series for the number of partitions of n in which among the parts divisible by r there is
exactly one even multiple of r, possibly repeated, and all other parts divisible by r are odd multiples of r and are distinct.
This proves Theorem 1.5.

To prove Theorem 1.6, we define

1
b0 (63700 (@ 4 oo - (@15 4?0 - (=275 4% ) o
o o
= Z Z p(n | all parts allowed, m parts divisible by 2r)(—2)™q"
n=0m=0
r. 421
Qr(Z; CI) = .aqr (Z.Z(r] 1 )oor—1. T
(@9)00(@% 0o --- (@5 4N
0 00 parts are not divisible by 2r,
= Z Z p | n| parts divisible by r are distinct, | z™q".
n=0m=0 m parts divisible by r

As in the proof of Theorem 1.5, we compute
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(=" 4" ) g
—|._Qrzq —E(z:q) = - . (6)
8z‘z:1 ' ' (@:9)00(@% 400 (@711 qN00 (4 1+
In the proof of Theorem 1.3, we have shown that
00 k
2 q
—q: 7
( QQ)oo’<:]1+qk (7)

is the generating series for the number of pairs of partitions (1, (a?)) F n satisfying the following conditions:

i. a,b are both odd,
ii. Ae QyNB(n,a,b).
For each r € N, replacing q by ¢" in (7) implies that
o

I
(=000 Y il
’ kr

P 1+¢q

is the generating series for the number of pairs (A%, ((ar))) - n satisfying the following conditions:

i. a,b are both odd, '
ii. A1V e Qy(n—rab,r) N Br(n,a,b) and every part of A4 is divisible by r.

Theorem 1.6 follows from equation (6).
4. Proofs of Theorems 1.7, 1.8, and 1.9

Forre N, L, C€{2,4,...,2r} as in Section 1, we define
1

@40 [ [ (20" ¢*eo
Lely

Err.(z;q) :=

all odd parts allowed,
even parts =¢ (mod 2r),£€L;, | (—2)™q",
m even parts

1

(29; oo [ | (=20 oo
Lely

oo o0

>3 (n

n=0m=0

Fr1,(z;q) =

oo o0 m

>33

n=0m=0 s=0

all odd parts allowed,
even parts = ¢ (mod 2r), £ € Ly, | (=1)°2"¢",
m parts, s even parts

2r
Q@) =[] (~2a"; o
j=1
L

oo o0

= Yo (n

n=0m=0

all odd parts allowed,
even parts # ¢ (mod 2r), £ € Ly, | Z"q".
m parts, all distinct,

Theorem 1.7 now follows from the fact that E, ;,(1;q) = Qr,1,(1; ), which is not difficult to obtain after a short calcula-
tion using Euler’s identity.
The proof of Theorem 1.8 is similar to the proofs of Theorems 1.2 and 1.5, and can be seen from

P 2k

oo
: g = . q
57l QL@ D = Fr @) = Qrr, (15 Q)I; T
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To prove Theorem 1.9, we compute

3 2r 00 q"
i . _ . _ _qd. q2r
|, QL@ Er,Lr<z,q)>—1"[< 75400 (Z1+ k)
_ — 1+g¢
j=1 k=1
jgLr
2r ) o) qk
=| [T dia= o) (8)
j=1 P!
jeven, j¢Ly

Using the combinatorial interpretation of (7) in the proof of Theorem 1.3, Theorem 1.9 follows from (8).
5. Proof of Theorem 1.10
Let re N, L, €{2,4,...,2r} and O, € {1,3,...,2r — 1} as in Section 1. Also let Lt ={2,4,...,2r} \ L; and Of =
{1,3,...,2r—1}\ O;. Define
1
@ 4%)oo [ [ (=47 6% )00 [ [ (=20 oo

jeLt Lely

ErL(z:q) =

=33 (pen.m; Ly) — po(n,m; L;))2"q",
n=0m=0
Qro,z@ =[] (-0 [ [ (~20":¢*)0

jeos Le0r
o0 o
=YY go(n.m; 0))2"q",
n=0m=0
where
all parts allowed,

even/odd no. of even parts,
m (even) parts =¢ (mod 2r),¢ € L,

Pejo(n,m;Ly):=p|n

(.m: 0,):=p(n ’ all parts odd and distinct,
Qo1 1M Ur) == p m (odd) parts =¢ (mod 2r), £€ 0, |~

When z=1, ’I::r’Lr(l; q) = (Nzr’o,(l; q) recovers Lehmer’s identity (2) in Theorem 1.1.
We compute that

P o 2kr+¢

~ = q
—| Qo@D —ErL @) =6 Y. Y
9z ]z=1 LelrU0r k=0 T+q%rT

(9)

To prove Theorem 1.10, it suffices to prove the case where L, U O, = {¢} for each positive integer £ < 2r. In Section 5.1,
we state and prove Proposition 5.1, which establishes the non-negativity of the g-series coefficients of the series in (9)
(noting that special case £ =2 is more delicate). We then prove Theorem 1.10, making use of Proposition 5.1 and its proof.

5.1. Non-negativity of q-series coefficients
We use the notation F(q) > 0 to mean that the coefficients of F(q) when expanded as a g-series are all non-negative.

Proposition 5.1. Let r € N, and ¢ a positive integer such that ¢ < 2r.
If € # 2, then
0 q2kr+£

A2
(=490 =0Wi

k

10
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If € = 2, then the only possible negative coefficients of

, ot q2kr+2
(=0:0%) 0 ) 3 (10)

2
Pl
(when expanded as a q-series) are the coefficients of ¢, q%, q'2, q'%, and q%°, and any such negative coefficient is equal to —1. Precisely,

the set of all n such that the coefficient of q" in (10) is negative (and thus equal to —1) is given as a function of r in the following table:

{n}

{}

{4,8,12}

{4}

{4, 8}

; {4,8,12,16}
,or>10] {4,8,12, 16,20}

>
~

(o]

O UI|WIN| ==

Proof of Proposition 5.1. We divide our proof into three cases: ¢ odd, £ even but £ #2, and £ =2.
For 0 < £ < 2r odd, we have that

0 2kr+-¢

o x
q
(—q;qz)ooE Ty = =) ]_[ A+ g™ = 0. (1)
k=0

2m+ kr+[
For 0 < £ < 2r even, we note that

o0 2kr+l q2kr+l

A2 2I<r+£
(—a:q )ooZH T Z( 0 q%)oo(1— = P (12)
k=0

We first assume that ¢ £ 2. Using (12), it suffices to show that (—q; q%)so(1 — q%%) = 0 for any integer a > 2. We apply
the well-known identity (see, e.g., [1, (2.2.6) with g+ g%, t — q])

2
(—: 000 = i T
' o (% ¢*)n

to re-write
nZ

o
q
(31 =) =1 =) ) ———
> ; @%:¢*)n
2
1-¢") (v ¢
=(1-¢9+
(1-¢?) ; (@* ¢*)n-1
(al [ qn2
2a 2t
+ Zq )(Z 7. 2 ) (13)
por = @ a1
Thus, it suffices to show that the coefficient of q2? in the g-series expansion of

<a1 ) ( > qn2
2t
> ) (% et (19
=0 n=1 (q o q )1171
is strictly positive. We re-write 2a = u® + v, where u? is the largest even perfect square at most equal to 2a (with u a

non-negative even integer), and v is a non-negative integer. Note that u? >4 (so u > 2), since 2a > 4. Since u is even, v is
even, and since u% > 4, we have that 0 <v < 2(a — 2). That is, v = 2t for some 0 <t <a — 2. For this ¢, we consider

00 2

2t q"
q ) (15)
HZ:; @*: 4*)n-1

which appears in (14). We extract the n =u term q“z/(q“; q®)y—1 from the sum in (15), noting that u > 2. Expanding this
as a g-series, we obtain

11
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g 2
u
=0 +Zu@, (16)
(% q%)u-1 !
where %,(q) = 0. Multiplying (16) by g%, we find the term q2t+“2 =% in the g-expansion of (14); moreover, we have
explained that X,(q) > 0, and it is clear that the remaining coefficients in the g-expansion of (14) are non-negative. This
completes the proof of non-negativity in the case of even £ # 2.

When ¢ =2, we begin with the identity in (13), which also holds for a = 1. In this case, the g-series expansion for
the expression in (14) is q + q* + 0(q®) (and has non-negative coefficients); that is, the coefficient of g2 is 0. Thus, the
g-expansion of (13) in this case is 1+q —q% +q* + 0(g®), and has non-negative coefficients for all powers of q greater than
4, Referring to (12), as above, we have that

&0 . e+ q2kr+f

. T
D (~4:0)0e(1 =4 T gy 20 (17)
k=1

for any even ¢ € L, including ¢ = 2. We also have from the above that the k =0 term from (12) satisfies

0
q
(=4 a0 (1= ¢) =5 =0 (18)
—q
for even ¢ > 4. For £ =2, we have shown that the only negative term appearing in the g-expansion

31 - =1+q- +q* +¢®+¢° +q"* + ¢ +q¢"° +2¢"° + 0(¢") (19)
is —q%. We multiply (19) by

q2

1_q4 =q2+q6+q10+q14 +q18 +q22+0(q26) (20)

(which clearly has non-negative g-series coefficients) to obtain

P+ —q*+2¢°+q" —q® +3q°+2q" —q'2 + 49" +3¢"° — q'® +q'7 +6¢"® + 49" — ?° + X(q), 1)

where £(q) = 0(q%!). We now argue that =(q) > 0. It is not difficult to see that the only powers of q in the expansion for
3(q) which may possibly have negative coefficients are those g™ such that m =0 (mod 4), m > 24 (where we have also
used that =(q) = 0(q?")). Now, any m =0 (mod 4) such that m > 24 can also be written as m = (3 + 1)2 + 6 + (2 + 4c) for
some integer ¢ > 0. Thus, we also obtain the term +q™ after multiplying (19) and (20) as follows. We use the expression in
(13) (with a =1 and t = 0) for (19), and take the numerator g3+ of the n = 3 term and also q® from the expansion of the
denominator (g% g)3 of that same term. This yields a term q3+1*+6 after multiplying. We now multiply by the term g2+4
from the expansion of g2/(1 — %) in (20). Overall, this yields after multiplication the term gG+D’+6+@2+4) — gm \hich
cancels with the earlier —g™. This shows that X(q) > 0.

Thus, the only negative coefficients of the series in (21) are q*,q8,q'2,q!®, and q%°, and these coefficients are all
equal to —1. When added to the rest of the sum in (17) (which has non-negative coefficients), this argument shows that
the only powers of g in the expansion of (10) (equivalently, (12) with ¢ = 2) with potentially negative coefficients are
q*, q%,q'2,q'%, %0, and that any such negative coefficient must be —1, as claimed. Moreover, for r > 10, and any k > 1, we
have that

2kr+2
q +

_ 22
1= gy — 0@
which, when combined with the above argument, proves that the coefficients of g%, ¢3, q'2, q'%, and ¢%° are all equal to —1.
The remaining negative coefficients as given in the table in Proposition 5.1 for 1 <r <9 are easily calculated directly. O

5.2. Combinatorial interpretation of Proposition 5.1

In this section, we give a combinatorial interpretation of the coefficient of q" in the g-series of Proposition 5.1 in terms
of the number of pairs of partitions (1, (a)) - n satisfying certain conditions. This will complete the proof of Theorem 1.10.

Let ¢ be a positive integer such that ¢ < 2r.

If ¢ is odd, then the coefficient of ¢" in (11) is the number of pairs of partitions (A, (a)) - n satisfying a =¢ (mod 2r),
reQp, and a ¢ A.

12
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If ¢ is even, € # 2, we substitute (13) in (12) to obtain

0 2kr+-¢
q

1 2kr+-¢ =
k=0 +a

31 | (S g+’ ¢
Z 1+ Z q Z (q4- qZ) 1— an (22)

a=¢ (mod 2r) t=0 n=0 ’ n

a>0

(-4 1Moo

qa
a
Z q 1 _qZG' (23)

a={ (mod 2r)
a>0

The g-series
X gn+D?
4. 12
=5 @%q%n
is the generating series for the number of self-conjugate partitions of n > 1 which are either (1) or whose smallest part

is at least 2. Thus, this is also the generating series of the number of partitions of n > 1 into distinct odd parts which are
either (1) or partitions whose first two parts differ by exactly 2. Moreover,

a1

2t
>4
t=0

is the generating series for partitions of n into a single even part no larger than a — 2.
By adding a non-negative even integer no larger than a — 2 to (1) or the first part of a partition into distinct odd parts
whose first two parts differ by exactly 2, we see that

a_1 5
2 0 (1)
2t q
I [pafemsy
= = @%q%n
is the generating series for the number of partitions A of n > 1 into distinct odd parts with A; — A, <a. Note that A, can
be 0.

Thus, (22) is the generating series for the number of pairs of partitions (A, (a®)) -n with b odd, a = ¢ (mod 2r), and
A € Q, satisfying A1 — A2 <a. Note that A may be empty.

To interpret (23), for a > 4 and even, define u(a) € Qy(a) to be the partition

(§+1,5—1) ifSiseven

24
(§+2.5—2) iffisodd. (24)

uia) = {

Thus, (23) is the generating series for the number of pairs of partitions (u(a), @)y +n with b odd, a = ¢ (mod 2r).
Therefore, the coefficient of ¢" in

o q2kr+€

(—Q§ q2)oo W
+¢
pard 1+q
is equal to the number of the pairs of partitions (A, (a®)) -n with b odd, a= ¢ (mod 2r), and A € Q, satisfying A1 — Ay <a
and A # u(a).

If ¢ =2, the argument above fails only in the interpretation of q“% when a = 2. However, this g-series is just

> e g*. Thus, if £ =2 and n =0 (mod 4), the coefficient of q" in (12) is one less than the number of pairs of par-
titions described above. If n > 24, n =0 (mod 4), then ((9, 7,5, 1), 2®=22/2)) is a pair counted by the sequence whose
generating series is (22). Thus, if n ¢ {4, 8, 12, 16, 20}, the coefficient of ¢" in (12) is non-negative and equal to the number
of pairs of partitions (1, (a?)) -n with b odd, a = ¢ (mod 2r), and A € Q, satisfying A1 — Ay <@, A # u(a) and, if n=0
(mod 4), also (%, (@)) # ((9,7,5, 1), 2Q0~22/2y),

If ¢=2,r>10, and n € {4, 8,12, 16, 20}, then g" appears only when a =2 in (22). If b is odd, n —2b =2 (mod 4) and
n — 2b < 18. Thus, a partition A -n — 2b into distinct parts would have two parts. However, since n — 2b =2 (mod 4), it
follows that A; — A2 > 4. Therefore, there are no pairs of partitions (X, (a”)) counted by the sequence whose generating
series is (22) and the coefficient of ¢" in (12) is —1. For r < 10, one can easily verify that the values of n giving negative
coefficients are as in the statement of the theorem.

13
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5.3. Examples of Theorem 1.10

In this section, we give some examples of Theorem 1.10 for specific choices of L, and O, in which the excess is non-
negative for all n. Example 1 gives a new interpretation for the excess studied in Theorem 1.3. Examples 2 and 3, when
specialized to r =1, are also related to the excess studied in Theorem 1.3.

5.3.1. Example 1: L, U O, ={1,...,2r}

The excess in this case is the same as that in Theorem 1.3, but the combinatorial description given by Theorem 1.3 and
Theorem 1.10 are different.

When n # 0 (mod 4), Theorem 1.10 becomes: The excess of the number of parts in all partitions in Q,(n) plus the
number of even parts in all partitions of 7 (n,2) over the number of even parts in all partitions in P,(n, 2) equals the
number of pairs of partitions (1, (a?)) - n satisfying the following conditions:

i. b is odd. Moreover, if a is odd, then b =1,
ii. A € Q,. Moreover, if a is odd, then a ¢ A; if a is even, then A1 — Ay <a.

When n € {4, 8,12, 16, 20}, since 2 € L, U O, Theorem 1.10 does not guarantee the non-negativity of the excess. However,
since Ly D {2,4,...,2r}, when n=0 (mod 4), we can exclude (&, (n)) instead of ((9,7,5, 1), (2%)), proving non-negativity
of the excess. Specifically, the excess is now equal to the number of pairs of partitions (i, (a?)) - n satisfying the following
conditions:

i. b is odd. Moreover, if a is odd, then b =1,
ii. A € Q,. Moreover, if a is odd, then a ¢ A; if a is even, then A1 — A2 <a and A # u(a)}; f a=0 (mod 4) and b =1, then
A £ 2.

With the modification explained above we have the following corollary of Theorem 1.10:

Corollary 5.2. The excess of the number of even parts in all partitions of P,(n, 2) over the number of even parts in all partitions of
Pe(n, 2) equals the number of partitions A of n such that exactly one part is even, all other parts are odd and distinct, the even part
may be repeated an odd number of times and, if we write » = (A° U ((2k)?)) with A° € Q,, k > 1, then Ay — A < 2Kk, A° #£ u(2k),
and ifk is even and b = 1 then 1° # @.

Proof. Corollary 5.2 follows from the fact that counting (A, (a)) - n with a odd and a ¢ A is the same as counting parts
in Q,(n). When a = 2k, we insert the even (possibly repeated) part into the partition into distinct odd parts to obtain a
statement similar to the original Beck conjecture. 0O

Combining Theorem 1.2 and Corollary 5.2, we arrive at the following corollary.

Corollary 5.3. The excess of the number of odd parts in all partitions in P.(n, 2) over the number of odd parts in P,(n,2) U Qy (1)
equals the number of partitions X of n satisfying either

i. A has exactly one even part, possibly repeated, and all other parts are odd and distinct, or
ii. all parts of A are odd and exactly one part b is repeated. Moreover, let 1° = A \ (b2¥) be the partition obtained by removing from
A the largest even number of parts equal to b, then Ay — A9 < 2k, A° # (2k), and if k is even and b = 1 then 1° # @.

Proof. The excess in Corollary 5.3 is the sum of the excess in Theorem 1.2 and Corollary 5.2. The partitions described
in ii. are disjoint from the partitions described in i. They are in one-to-one correspondence with the partitions described
in Corollary 5.2. To see this correspondence, consider a partition p = (u° U ((2k)®)) as in Corollary 5.2. Then define A =
1% U (b%). Now b, which is odd, is a repeated part. The part b may have already existed in u°, so its multiplicity in A can
be even or odd. O

5.3.2. Example2: L, U O, = {r, 2r}
In this case,

o0

qkr
kr*
pard 14+q

9 ~ ~
551, (Qro,z @ —Eri (z:9) = (—g; 7)o
Zlz=1

Theorem 1.10 implies that the series has non-negative coefficients when r > 3, because 2 ¢ L, U O,. When r = 1, both Exam-
ple 1 and Proposition 5.1 show that the series has non-negative coefficients. When r = 2, the series also has non-negative
coefficients. As in Example 1, when n =0 (mod 4), we can exclude (&, (n)) instead of ((9,7,5, 1), (2%)). Alternatively, one

14
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4k+2
can see that in Proposition 5.1, the coefficient of ¢" in (—q;q%)wo Y keo liq—:kﬂ is negative (and equal to —1) only for
Ak+4
n=4,8,12, while it can be computed that the coefficient of g%, ¢%,q'? in (—q; ¢*)o0 Y oo 11}—;#4 are 1, 1, 4, respectively.

5.3.3. Example 3: L, U 0, = {1, 2r}
In this case,

9 ~ ~
| (Qro@ @) — Erp, (z:0) = (=¢; 7)o (

0 q2kr+l S q2kr
0z lz= '

+
2kr+1 2kr
k=0 1 +q k=1 1 +q

Theorem 1.10 (for r > 2) and Example 1 (for r = 1) imply that the series has non-negative coefficients.

Remark 6. The derivative differences given in Examples 2 and 3 also have interpretations as generating series for the number
of pairs of partitions satisfying certain conditions as in Theorem 1.10.

6. Further non-negativity results

The derivative difference in Example 3 can be expressed as

, o qZkr o q2(2kr+1)
(=4:¢%)00 | -5 -3 (25)

_ q4kr _ q2(kr+1)
k=1 q k=0l a

, 0 q2kr+1 e q4l<r
+ (6000 | 2 1— geakr+n) > T—g% | (26)

k=0 k=1

In Theorem 6.1, we show that (25) has non-positive coefficients, and, in Theorem 6.2, we show that (26) has non-negative
coefficients.

Theorem 6.1. For r € N, we have that

, © 2+ o g2
AR 1— q2@kr+D) — > 1— g z0
k=0 k=1

Proof. It suffices to construct an injection T from

A ={(x, (ab)) Fnjie Qy,a=0 (mod 2r),b odd}
to

B(n) :={(x, (ab)) Fn|ie Qy,a=1 (mod 2r),b even}.

Let (1, (a®)) € A(n). Let 0 < ¢ < 2r be the remainder of b — 1 when divided by 2r. Note that ¢ is even. We partition the
set A(n) into two disjoint subsets:

A1(n) = {(, (@) € A() | A # B);
Ax(n) == {(A. (@) e A) | A = 2}.
We define T on each A;(n) in the following way.
1. If A # @, then
T(A, (@) =\ {M}U{r +ab— @—c)(b—0)}, (b —0)*)).
2. If =@, then
T(@, (@) = (u@b — (@ —c)(b — ), (b — )" ).
The image sets are thus
T(A1(m) ={(n, ®)) € B() | 1 — p2 > (y +2)(x +2) — xy},
T(A2(m) ={(, ®)) € B() | b = u((x+2)(y +2) — xy)},

15
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where z is the remainder of —y when divided by 2r.

Note that T maps (%, (a?)) € A(n) with b =¢ (mod 2r) to (u, (x¥)) € B(n) with y=—¢+ 1 (mod 2r). When b =1
(mod 2r), T(@, (@®)) = (@, (b%)) ¢ T(A1(n)). When b = £ # 1 (mod 2r), because (y +2)(x+2) —xy > 2(x + y) + 4 > 4,
T(A1(n)) and T(Aq(n)) are disjoint.

Define the map L from T(A(n)) to A(n) as follows:

1. If (i, (x¥)) € T(A7), then

L(p, (&) = (u\ {u1} U {1 — (v + 2 (x+2) + xy}, (v + 2)*T7)).
2. If (u, (x¥)) € T(A2), then

L(p, () = (@, (¥ +2)*)).
Then L and T are inverse to each other. Hence T is an injection and Theorem 6.1 follows. O

Remark 7. When r = 1, the injection T is the bijection (x, (a®)) — (&, (b)), where the conjugation (a?) —~ (b%) was used in
the proof of Theorem 1.3.

Theorem 6.2. For r € N, we have that

, S q2kr+1 S q4kr
(=4 q%)oo Z 1— geakr+1) Z 1— ik =0

k=0 k=1

First Proof. Because the derivative difference in Example 3 has non-negative coefficients, Theorem 6.2 follows from Theo-
rem 6.1. O

Second Proof. Alternatively, we can also prove Theorem 6.2 directly. It suffices to construct an injection T from
A() :={(A, @))Fn|reQya=0 (mod 2r),b even}
to
B(n):={(A, (@) Fn|reQp,a=1 (mod 2r),bodd}.
We partition the set A(n) into three disjoint subsets:
Ar(n):=1{(h, (@) e Am) |a+ @r—1)(b—1) ¢ A);
Axy(n) :={(}, (ab)) € A(n) |a+ 2r —1)(b — 1) € A and A has at least two parts};
A3(n) == {(x. (@) € Am) | A= @+ 2r — 1)(b— 1)}

We define T on each A;(n) in the following way.

1. If (1, (@?)) € A1 (n) (including the case where A is empty), then
T(., @)= Ufa+@r— Db -1}, (@+1-2n"").

2. If (A, (@) € A2(n), let m denote the largest part of A that is not (a + (2r — 1)(b — 1)). Then T(}, (a®)) equals
(A\fa+Qr—1)(b—-1),m)U{2(@+ @r—1)(b—1)+m}, (@+1-2n"").

3.1f (1, (@) € A3(n), then

T(x, (@) :=(@+1,a+ @r—2)b— Q2r—1)), ((a+ 1’"H).
The image sets are thus

T(A1(n) = {(, (ch) € B() |c+ Q2r — 1)(d + 1) € pu},
cC+QRr—1Dd+1)¢pu,

T(A2(n) =3 (i, () € B(n) | w1 — p2 > 2(c+ @r—1)(d+ 1), ¢,
M1 #3(C+QRr—1Dd+1)

T(A3(n) = {(, (¢") € B() | 0 = (c, c + 2r — 2)d — 2)}.

16
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Note that when r=1, 2r—2)d —2=-2<0,and 2<2(c+ 2r — 1)(d+1)). When r > 1, 2r —2)d — 2 > 0 and
2r—2)d—2<2(c+ 2r—1)(d+1)). Hence T(A1(n)), T(Ay(n)), T(A3(n)) are pairwise disjoint.
Define the map L from T(A(n)) to A(n) as follows:

1. If (, (c?)) € T(A1(n)), then

L(p, €)= (u\ {c + @r — D) + D}, ((c +2r — )4y,
2. If (1, (c%)) € T(A2(n)), then we define L(u, (c?)) by

(\ () Ufc+ @r—1d+1), pq — 2(c+ 2r = (d + 1)}, ((c +2r — D).
3. If (u, (c%)) € T(A3(n)), then

L(p, () := ((c = 14 @r = Dd), (= DT)).
Then L and T are inverses of each other. Hence, T is an injection and Theorem 6.2 follows. O
Remark 8. When r = 1, the second proof of Theorem 6.2 recovers the proof of Theorem 1.3.
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