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Abstract: Hopf–Hecke algebras and Barbasch–Sahi algebras were
defined by the first named author (2016) in order to provide a
general framework for the study of Dirac cohomology. The aim
of this paper is to explore new examples of these definitions and
to contribute to their classification. Hopf–Hecke algebras are dis-
tinguished by an orthogonality condition and a PBW property.
The PBW property for algebras such as the ones considered here
has been of great interest in the literature and we extend this dis-
cussion by further results on the classification of such deformations
and by a class of hitherto unexplored examples. We study infinites-
imal Cherednik algebras of GLn as defined by Etingof, Gan, and
Ginzburg in [Transform. Groups, 2005] as new examples of Hopf–
Hecke algebras with a generalized Dirac cohomology. We show that
they are in fact Barbasch–Sahi algebras, that is, a version of Vo-
gan’s conjecture analogous to the results of Huang and Pandžić in
[J. Amer. Math. Soc., 2002] is available for them. We derive an
explicit formula for the square of the Dirac operator and use it to
study the finite-dimensional irreducible modules. We find that the
Dirac cohomology of these modules is non-zero and that it, in fact,
determines the modules uniquely.
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1. Introduction

The Dirac operator was introduced by Dirac in 1928 ([Di]) in order to for-
mulate a relativistic quantum mechanical equation for the electron. It has
played an important role in many areas of physics and in differential ge-
ometry, especially in the Atiyah–Singer index theorem ([AtS]) and related
developments. An algebraic version of the Dirac operator was first employed
by Parthasarathy ([Pa]) to study the discrete series of a real reductive group
G ([Vo]). It was subsequently applied to the study of unitary representations
in general, perhaps with greatest effect to the classification of unitary highest
weight representations ([EHW, Ja]) and unitary representation with non-zero
cohomology ([VZ]).

In representation theory one studies the Harish–Chandra category HC

of “admissible” modules for the pair (g, K) where g is the complexified Lie
algebra of G and K is a maximal compact subgroup. The irreducible objects in
HC have been classified by Langlands and the key open problem is to identify
the subset of unitarizable modules, which are in bijection with irreducible
unitary representations of G. For any M in HC, the algebraic Dirac operator
D acts on M ⊗ S, where S is a spin representation of K. For unitarizable
M , this action is semisimple and, as shown by Parthasarathy, this leads to
an inequality relating the actions of the Casimir operators of G and K acting
on M and ker(D), respectively.

Vogan suggested a far-reaching extension of these ideas to an arbitrary,
not necessarily unitarizable, M in HC. He proposed that one should study
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the Dirac cohomology

HD(M) := ker(D)/ ker(D) ∩ im(D)

and he conjectured that this space, if non-zero, should determine the full in-
finitesimal character of M and not just the Casimir action. Vogan’s conjecture
was proved by Huang–Pandžić [HP1] in the original setting, and these ideas
have since been extended considerably to include various classes of Hecke
algebras, see, e.g., [BCT, Ci].

In [Fl] the first author established a common generalization of these cases.
The main results of [Fl] are the definition of an extremely general class H

of algebras, termed Hopf–Hecke algebras, for which one has a useful formula-
tion of Dirac cohomology, as well as a precise characterization of a subclass
B for which an analog of Vogan’s conjecture is true. These latter algebras
have been termed Barbasch–Sahi algebras by the first author to acknowl-
edge unpublished contributions of D. Barbasch and the second author in this
direction.

Kostant ([Ko1, Ko2, Ko3]) considered a cubic version of the Dirac operator
for semisimple complex Lie algebras with a suitable reductive Lie subalgebra,
generalizing the setting of Vogan and Huang–Pandžić, where the subalgebra
originates from a Cartan decomposition. He used this operator in proving
a generalized Bott–Borel–Weil theorem and in studying the appearance of
certain multiplets of representations. A version of Vogan’s conjecture was
proved for the cubic Dirac operator, generalizing the result of Huang–Pandžić.
Note that the cubic Dirac operator and its version of Vogan’s conjecture are
not a special case of the generalizations in [Fl].

The purpose of the present work is two-fold. We take the first steps to-
wards a classification of Hopf–Hecke algebras. We define a subclass S of H

consisting of algebras that we refer to as standard, and which are obtained by
an explicit construction. The relations between the various classes of algebras
can be described by this diagram (see Proposition 2.31 and Remark 3.10):

B
�=

H

B ∩ S
�=

S

We also describe a map hs from H to S which is idempotent, but “lossy”,
i.e. not surjective onto S, even though its image contains for instance all
Hopf–Hecke algebras coming from finite groups.
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We also exhibit a new example of a Barbasch–Sahi algebra, thus showing
that the class B is strictly larger than just the cases previously studied in
the literature. This new example, actually family of examples, consists of
infinitesimal Cherednik algebras Hξ, which are deformations of the enveloping
algebra U(sln+1) parameterized by a polynomial ξ = ξ(z). As members of H

and B, these deformations are not in the image of hs in general.
It is an interesting open problem to construct non-standard Hopf–Hecke

algebras, or to prove that they do not exist. It is also of considerable interest
to classify standard (and non-standard) Barbasch–Sahi algebras. We hope to
return to these two problems in the near future.

Organization of this paper We recall from [Fl] that Hopf–Hecke algebras are
PBW deformations constructed from a cocommutative Hopf algebra H, an
orthogonal module V and a deformation map κ.

The PBW property of Hopf–Hecke algebras and their deformation maps κ
is explored in Section 2. We recall the well-known relation between the PBW
property and a general kind of Jacobi identity. We generalize methods de-
veloped for Drinfeld Hecke algebras (corresponding to the special case where
H is the group algebra of a finite group, see for instance [RS]) to the gen-
eral Hopf algebra case, and we adapt ideas from the setting of infinitesimal
Hecke algebras (corresponding to the special case where H is the universal
enveloping algebra of a Lie algebra, see [EGG]). In particular, we define an
algebra filtration for any cocommutative Hopf algebra acting orthogonally on
a module, which allows us to distinguish orders of the deformation map κ.
We then use the coradical filtration to obtain more concrete information on
κ for Hopf algebras over C (or, more generally, pointed Hopf algebras), and
to define the “standardization map” hs.

Some of the main results on the Dirac cohomology of Hopf–Hecke algebras
and Barbasch–Sahi algebras from [Fl] are recalled in Section 3.

The Dirac cohomology of infinitesimal Cherednik algebras of GLn is stud-
ied in Section 4. We use an integral formula for the deformation map κ in this
special case to explicitly compute the square of the Dirac element, which will
allow us to conclude that the infinitesimal Cherednik algebras of GLn are, in
fact, Barbasch–Sahi algebras. Finally, we use our formula for the square of
the Dirac element to show that all finite-dimensional modules are determined
by their Dirac cohomology.

2. Hopf–Hecke algebras as PBW deformations

Let F be a field of characteristic 0. All vector spaces and tensor products are
over F, all modules are finite-dimensional left modules.
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We start with a brief review of basic Hopf algebra theory, for more infor-

mation on this we refer to [Mo]. When working with a coalgebra C we will

refer to its counit as ε : C → F and to its coproduct as Δ : C → C ⊗ C.

When working with a Hopf algebra H, the same convention applies and the

antipode is referred to as S : H → H. For an element c ∈ C, we will use

Sweedler’s notation c(1) ⊗ c(2) for the coproduct Δ(c) ∈ C ⊗C which does not

necessarily represent a pure tensor, but implies a summation over several pure

tensors in general. The i-fold coproduct for c is written as c(1) ⊗ · · · ⊗ c(i+1)

in C⊗(i+1), where the notation is justified by the coassociativity. The Hopf

algebra H is an H-module itself (in fact, an H-module algebra) via the (left)

adjoint action

h · k := h(1)kS(h(2)) for h, k ∈ H.

Definition 2.1. A coalgebra C is called pointed if every simple subcoalgebra

is one-dimensional. An element c ∈ C is called group-like if Δc = c ⊗ c and

ε(c) = 1, and the set of group-like elements is denoted by G(C). If H is a

bialgebra, an element h ∈ H is called primitive if Δh = 1 ⊗ h + h ⊗ 1 and

ε(h) = 0, and the set of primitives is denoted by P (H).

Basic Hopf algebra theory tells us that for every Hopf algebra H, G(H)

is a group with multiplication in H and P (H) is a Lie subalgebra of H with

the commutator.

Definition 2.2. If H is a Hopf algebra and B is an H-module algebra, then

the semidirect/smash product B � H is the algebra generated by B and H

with the additional relation hb = (h(1) · b)h(2) for all h ∈ H, b ∈ B, that is,

B � H � B ⊗ H as a vector space and

(b ⊗ h)(b′ ⊗ h′) = b(h(1) · b′) ⊗ h(2)h
′ for all b, b′ ∈ B, h, h′ ∈ H.

We frequently identify B with the subalgebra B⊗1 and H with the subalgebra

1 ⊗ H of B � H.

By a well-known structure theorem, any cocommutative pointed Hopf

algebra H over a field F of characteristic 0 has the form H = U(P (H)) �

F[G(H)], where U(P (H)) is the universal enveloping algebra of the Lie algebra

of primitive elements and F[G(H)] is the group algebra of the group of group-

like elements in H. This applies, in particular, to any cocommutative Hopf

algebra over F = C, because every simple cocommutative coalgebra over an

algebraically closed field is one-dimensional.
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2.1. The PBW property and the Jacobi property

We review the definition of Hopf–Hecke algebras ([Fl, Def. 3.1]) and we will
study their structure. To this end we fix a cocommutative Hopf algebra H and
a finite-dimensional H-module V . As H is cocommutative, the tensor algebra
T (V ) is an H-module algebra. The semidirect/smash product T (V ) � H is
the algebra generated by T (V ) and H and the relation

hv = (h(1) · v)h(2) for all h ∈ H, v ∈ V.

Definition 2.3. A bilinear form 〈·, ·〉 on V is called H-invariant if 〈h(1) ·
v, h(2) · w〉 = ε(h)〈v, w〉, or equivalently if 〈h · v, w〉 = 〈v, Sh · w〉, for all
h ∈ H, v, w ∈ V ([Fl, Lem. 2.3]). V is called an orthogonal module if it
admits a non-degenerate H-invariant symmetric bilinear form.

In [Fl, Sec. 2], a pin cover of H with respect to V is constructed for any
pointed cocommutative Hopf algebra H over F with an orthogonal module
V (the special case relevant for this paper will be defined in Definition 3.6).
Note also that for such Hopf algebras, V is orthogonal if and only if every
group-like element acts as an orthogonal operator and every primitive element
acts as a skew-symmetric operator.

Definition 2.4. Let κ : V ∧ V → H be an F-linear map. We denote by Iκ

the two-sided ideal of T (V )�H generated by elements of the form vw −wv −
κ(v ∧ w) for v, w ∈ V . The algebra

(2.1) A = AH,V,κ := (T (V ) � H)/Iκ

is called a Hopf–Hecke algebra if V is an orthogonal module and if it satisfies
the PBW property, that is, if it is a flat deformation of S(V ) � H.

In other words, let A be the associated graded algebra of A with respect
to the filtration of the tensor factor T (V ). Now A satisfies the PBW property
if the natural surjection from S(V ) � H to A is an isomorphism.

Remark 2.5. We review [Fl, Rem. 3.2], since it will make the following struc-
ture theory more transparent: First, we note that the definition of a Hopf–
Hecke algebra is closely related to that of continuous Hecke algebras in [EGG];
if G is a reductive algebraic group and g its Lie algebra, then the Hopf algebra
H = U(g) � F[G] can be viewed as a subalgebra of the algebra of algebraic
distributions O(G)∗ on G. If we replace H with O(G)∗ in the definition above
and drop the orthogonality condition on V , we have the definition of contin-
uous Hecke algebras in the sense of [EGG].
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Second, we observe that a special case of our definition is the situation of
H being the group algebra of a finite group G. In this context, the algebras
AH,V,κ have been studied in [Dr, RS, SW1]. If F = R, then every module V
is orthogonal, because any positive-definite symmetric bilinear form can be
averaged to obtain an invariant positive-definite symmetric bilinear form.

Definition 2.6. We say that an F-linear map κ : V ∧ V → H (as in Defini-
tion 2.4) is H-equivariant if κ(h · r) = h · κ(r) for all h ∈ H, r ∈ V ∧ V , and
we say that κ has the Jacobi property if the following Jacobi identity holds in
AH,V,κ for all x, y, z ∈ V :

[κ(x, y), z] + [κ(y, z), x] + [κ(z, x), y] = 0.

The following fact is well-known ([BG], [EGG, Thm. 2.4], [WW, Thm. 3.1],
[Kh2, Thm. 2.5]):

Proposition 2.7. AH,V,κ has the PBW property if and only if κ is H-
equivariant and κ has the Jacobi property.

In order to study the Jacobi property, we introduce some useful notation:
for all h ∈ H, v ∈ V ,

(2.2) h � v := h · v − ε(h)v.

Note that the triangle “�” just denotes an F-linear action of H, not an algebra
action of H (in contrast to the dot “·”).

Definition 2.8. For any i ≥ 0, we define K ′
i ⊂ H to be the subspace of those

h ∈ H satisfying

(2.3) (h(1) � v1) ∧ · · · ∧ (h(i+1) � vi+1) = 0

for all v1, . . . , vi+1 ∈ V . Let Ki := Δ−1(K ′
i ⊗ H).

Remark 2.9. Note that the left-hand side of (2.3) can be expanded. For in-
stance, for i = 1, the expansion reads

h · (v1 ∧ v2) − (h · v1) ∧ v2 − v1 ∧ (h · v2) + ε(h)v1 ∧ v2,

where the dot denotes the action of H on Λ(V ), and similar expansions of
the �-action in terms of the usual action of H on the exterior algebra of V
exist for all i ≥ 1.

Note also that K ′
0 = {h ∈ H : h · v = ε(h)v}, and that due to cocommu-

tativity, Δ−1(K ′
i ⊗ H) = Δ−1(K ′

i ⊗ K ′
i) for all i ≥ 0.
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Lemma 2.10. (Ki)i≥0 is an algebra filtration of H.

Proof. First, we want to show Ki ⊂ Ki+1 for any i ≥ 0. We consider h ∈ Ki

and we write Δh =
∑

k rk ⊗ hk with (hk)k in H and (rk)k in K ′
i. Then

(h(1) � v1) ∧ · · · ∧ (h(i+2) � vi+2) ⊗ h(i+3)

=
∑

k

(rk
(1) � v1) ∧ · · · ∧ (rk

(i+1) � vi+1) ∧ (hk
(1) � vi+2) ⊗ hk

(2) = 0,

for any v1, . . . , vi+2 ∈ V , so h ∈ Ki+1, as desired.
To see that we obtain an algebra filtration, consider i, j ≥ 0 and let

m := i + j. If a, b ∈ H, then

(ab) � v = a · (b � v) + ε(b)(a � v) for all v ∈ V.

Let us use the shorthand notations S(a, b, v) := a · (b � v) and T (a, b, v) :=
ε(b)(a � v). Then for all v1, . . . , vm+1 in V ,

((ab)(1) � v1) ∧ · · · ∧ ((ab)(m+1) � vm+1) ⊗ (ab)(m+2)

= ((a(1)b(1)) � v1) ∧ · · · ∧ ((a(m+1)b(m+1)) � vm+1) ⊗ (ab)(m+2)

= (S(a(1), b(1), v1) + T (a(1), b(1), v1)) ∧ · · ·

· · · ∧ (S(a(m+1), b(m+1), vm+1) + T (a(m+1), b(m+1), vm+1)) ⊗ (ab)(m+2).

Now we can simplify the wedge product using the distributive law and af-
ter swapping wedge factors and relabeling v1, . . . , vm+1 as v′

1, . . . , v′
m+1 when

necessary, every summand will contain a factor

S(a(1), b(1), v′
1) ∧ · · · ∧ S(a(i+1), b(i+1), v′

i+1)

or a factor

T (a(1), b(1), v1) ∧ · · · ∧ T (a(j+1), b(j+1), v′
j+1),

so every summand vanishes if a ∈ K ′
i and b ∈ K ′

j . Hence for such a and b,
the product ab lies in K ′

m, which implies KiKj ⊂ Ki+j .
Finally, note that Kd = K ′

d = H, where d = dim V .

Lemma 2.11. Ki is a subcoalgebra of H and a submodule of H under the
adjoint action for all i ≥ 0.

Proof. Consider h ∈ Ki. We can write Δh =
∑

k rk ⊗ hk for linearly indepen-
dent (hk)k in H and suitable elements (rk)k in K ′

i. For a given index j, let pj

be a projection of H onto Fhj along hk for all k �= j. Then

(rj
(1) � v1) ∧ · · · ∧ (rj

(i+1) � vi+1) ⊗ rj
(i+2) ⊗ hj
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= (id ⊗ id ⊗pj)(
∑

k

(rk
(1) � v1) ∧ · · · ∧ (rk

(i+1) � vi+1) ⊗ rk
(i+2) ⊗ hk)

= (id ⊗ id ⊗pj)(
∑

k

(rk
(1) � v1) ∧ · · · ∧ (rk

(i+1) � vi+1) ⊗ hk
(1) ⊗ hk

(2)) = 0,

so Δrj ∈ K ′
i ⊗ H, so rj ∈ Ki, and Ki is a subcoalgebra, as desired.

To see that Ki is a submodule of H, we first note that for all h, k ∈ H
and all v ∈ V ,

(k · h) � v = (k(1)hSk(2)) � v = k(1) · (h � (Sk(2) · v)).

So assume h ∈ Ki. Then

((k · h)(1) � v1) ∧ · · · ∧ ((k · h)(i+1) � vi+1) ⊗ (k · h)(i+2)

= (k(1) · (h(1) � (Sk(2) · v1))) ∧ . . .

∧ (k(2i+1) · (h(i+1) � (Sk(2i+2) · vi+1))) ⊗ k(2i+3) · h(i+2)

= k(1) · ((h(1) � (Sk(2) · v1)) ∧ · · · ∧ (h(i+1) � (Sk(i+2) · vi+1))) ⊗ k(i+3) · h(i+2)

= 0

and indeed, k · h ∈ Ki.

Analogous to the proof of [EGG, Prop 2.8] we define the notation

(v1, . . . , vk|x, y)

(2.4)

:= (κ(x, y)(1) � v1) ∧ · · · ∧ (κ(x, y)(k) � vk) ⊗ κ(x, y)(k+1) ∈ ΛkV ⊗ H

for all v1, . . . , vk, x, y ∈ V .
Now we have a counterpart to [EGG, Prop. 2.8] on the “support” of κ:

Proposition 2.12. Assume κ : V ∧ V → H has the Jacobi property. Then
im κ ⊂ K2.

Proof. This is a word-for-word translation of [EGG, Prop. 2.8] and the asso-
ciated lemmas:

Note that in A,

[h, v] = (h(1) · v)h(2) − ε(h(1))vh(2) = (h(1) � v)h(2),

so using our new notation, the Jacobi identity reads

(2.5) (v|x, y) + (x|y, v) + (y|v, x) = 0 for all v, x, y ∈ V.
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Now as in [EGG, Lem. 2.10], this implies

(2.6) (z, u|x, y) = (x, y|z, u) for all z, u, x, y ∈ V.

Now as in [EGG, Lem. 2.11], this implies

(2.7) (z, u, v|x, y) = 0 for all z, u, v, x, y ∈ V.

Hence if h = κ(x, y) ∈ H for elements x, y ∈ V , then

(h(1) � z) ∧ (h(2) � u) ∧ (h(3) � v) ⊗ h(4) = 0 for all z, u, v ∈ V,

so Δh ∈ K ′
2 ⊗ H and hence h ∈ K2.

Remark 2.13. Compare this with [Kh2, Prop. 4.3] which is formulated for
a cocommutative bialgebra and with an additional deformation parameter λ
(and note that the above proof works for a cocommutative bialgebra, as well).

Extending the class of examples we obtain from transferring the discussion
in [EGG, Sec. 2.3] to our setting, we have the following class of examples:

Definition 2.14. Consider elements τ ∈ (V ∧ V )∗ ⊗ K0,

σ =
∑

m

σm ⊗ hm ∈ (V ∧ V )∗ ⊗ K1, θ =
∑

i

θi ⊗ ki ∈ (V ∧ V )∗ ⊗ K2,

which can be viewed as linear maps from V ∧V to K0, K1 and K2, respectively.
Using those we define new linear maps from V ∧ V to H: κτ (x, y) := τ(x, y),

κσ(x, y) :=
∑

m

σm(hm
(1) � x, y)hm

(2) + σm(x, hm
(1) � y)hm

(2),

κθ(x, y) :=
∑

i

θi(k
i
(1) � x, ki

(2) � y)ki
(3)

for all x, y ∈ V , and

(2.8) κ := κτ + κσ + κθ.

Remark 2.15. κσ and κθ actually only depend on [σ] and [θ] in K1/K0 and
K2/K1, respectively. This is, because if h ∈ K0 and k ∈ K1, then

h(1) � x ⊗ h(2) = h(1) � y ⊗ h(2) = 0

and

(k(1) � x) ∧ (k(2) � y) ⊗ k(3) = 0.
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Lemma 2.16. Each of κτ , κσ or κθ as in the definition is H-equivariant if

the corresponding map τ , σ or θ is H-equivariant, respectively. In particular,
κ is H-equivariant if τ , σ and θ are H-equivariant.

Proof. For κτ , the assertion is tautological. For κσ, κθ let us first note that

for any h, k ∈ H and any x ∈ V ,

h � (Sk · x) = Sk(1) · ((k(2)hSk(3)) � x) = Sk(1) · ((k(2) · h) � x)

using the adjoint action in H. Now a linear map from V ∧ V to H is H-

equivariant, if the corresponding element in (V ∧ V )∗ ⊗ H is H-invariant. So

we can verify for any h ∈ H, x, y ∈ V :

(h · κθ)(x, y) =
∑

i

θi(k
i
(1) � (Sh(1) · x), ki

(2) � (Sh(2) · y))h(3) · ki
(3)

=
∑

i

θi(Sh(1) · (h(2) · ki
(1)) � x, Sh(3) · (h(4) · ki

(2)) � y)h(5) · ki
(3)

=
∑

i

(h(1) · θi)((h(2) · ki)(1) � x, (h(2) · ki)(2) � y)(h(2) · ki)(3)

= κh·θ(x, y),

and analogously for κσ.

Remark 2.17. Obviously, one way of obtaining H-equivariant τ, σ, θ is by

choosing H-invariant elements in (V ∧V )∗ and H-invariant (that is, H-central)
elements in K0, K1 and K2. The map κ generated according to Definition 2.14

will be H-equivariant and will have the Jacobi property, so AH,V,κ will be a
PBW deformation. If additionally V is an orthogonal H-module, AH,V,κ will

be a Hopf–Hecke algebra.

Proposition 2.18. Let κ be as in Definition 2.14. Then it has the Jacobi
property.

In particular, if additionally τ , σ, θ are H-equivariant, then A = AH,V,κ

has the PBW property.

Proof. As in [EGG, Thm. 2.13]: By Proposition 2.7, the PBW property is

equivalent to the Jacobi identity if κ is H-equivariant.

To verify the Jacobi property, we consider elements x, y, z ∈ V . Recall

that the Jacobi identity reads

0 = (κ(x, y)(1) �z)κ(x, y)(2) +(κ(y, z)(1) �x)κ(y, z)(2) +(κ(z, x)(1) �y)κ(z, x)(2).
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Now for all h ∈ K0 and all v ∈ V ,

0 = (h(1) � v) ⊗ h(2),

which verifies the Jacobi identity for κτ .
Also, for every index m and all x, y, z ∈ V ,

0 = (hm
(1) � x) ∧ (hm

(2) � y) ∧ z ⊗ hm
(3),

because hm ∈ K1, so

0 = σm(hm
(1) � x, hm

(2) � y)z ⊗ hm
(3) + σm(hm

(1) � y, z)(hm
(2) � x) ⊗ hm

(3)

+ σm(z, hm
(1) � x)(hm

(2) � y) ⊗ hm
(3)

= σm(hm
(1) � y, z)(hm

(2) � x) ⊗ hm
(3) + σm(z, hm

(1) � x)(hm
(2) � y) ⊗ hm

(3),

again, because hm ∈ K1.
Thus,

0 = σm(hm
(1) � x, y)(hm

(2) � z)hm
(3) + σm(x, hm

(1) � y)(hm
(2) � z)hm

(3)

+ σm(hm
(1) � z, x)(hm

(2) � y)hm
(3) + σm(z, hm

(1) � x)(hm
(2) � y)hm

(3)

+ σm(hm
(1) � y, z)(hm

(2) � x)hm
(3) + σm(y, hm

(1) � z)(hm
(2) � y)hm

(3),

which verifies the Jacobi identity for κσ.
Finally for every index i and all x, y, z ∈ V ,

0 = (ki
(1) � x) ∧ (ki

(2) � y) ∧ (ki
(3) � z) ⊗ ki

(4),

because ki ∈ K2, so

0 = (θi(k
i
(1) � x, ki

(2) � y)(ki
(3) � z) + θi(k

i
(1) � z, ki

(2) � x)(ki
(3) � y)

+ θi(k
i
(1) � y, ki

(2) � z)(ki
(3) � x))ki

(4),

which verifies the Jacobi identity for κθ.

Corollary 2.19. In the situation of the proposition, if additionally V is an
orthogonal H-module, then A = AH,V,κ is a Hopf–Hecke algebra.

Definition 2.20. We call a PBW deformation A = AH,V,κ with a deformation
map κ as in Definition 2.14 a standard PBW deformation or, if additionally
V is an orthogonal H-module, a standard Hopf–Hecke algebra.

We will investigate conditions under which PBW deformations or Hopf–
Hecke algebras are standard.
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2.2. Maps with the Jacobi property for pointed cocommutative

Hopf algebras

In the following, we consider the case of a pointed cocommutative Hopf al-
gebra H over F (a field of characteristic 0). We recall that this includes all
cocommutative Hopf algebras over C.

Let H be a cocommutative pointed Hopf algebra. Recall that by the
structure theorem for cocommutative pointed Hopf algebras over a field of
characteristic 0, H = H1 � F[G(H)], where H1 is the universal enveloping
algebra of the Lie algebra of primitive elements in H and F[G(H)] is the group
algebra of the group of group-like elements G(H) in H. For each group-like
element g ∈ G(H), H1g is a subcoalgebra of H and H =

⊕

g∈G(H) H1g as

coalgebras. Let pg : H → H1g be the corresponding projection map.
We continue to assume that V is a finite-dimensional H-module. For any

linear map κ : V ∧ V → H and any g ∈ G(H), we define κg := pg ◦ κ :
V ∧ V → H1g.

Lemma 2.21. A linear map κ : V ∧ V → H has the Jacobi property if and
only if κg has the Jacobi property for all g ∈ G(H).

Proof. We can apply idV ⊗pg to the Jacobi identity in V ⊗ H to obtain the
Jacobi identity for κg.

Definition 2.22. Let C be a coalgebra. A filtration (Ck)k of C as vector
space is called a coalgebra filtration if

ΔCk ⊂
∑

0≤i≤k

Ci ⊗ Ck−i.

Let C0 be the coradical of C, i.e. the sum of all simple subcoalgebras of C.
The coradical filtration of C is defined inductively by Ck+1 := Δ−1(C0 ⊗ C +
C ⊗ Ck).

We recall well-known facts from the theory of coalgebras: The coradical
filtration is a coalgebra filtration such that C =

⋃

k≥0 Ck for every coalgebra
C. If C is a pointed coalgebra, for instance any cocommutative coalgebra over
C, then C0 =

⊕

g∈G(C) Fg for the set of group-like elements G(C) in C.
In the following, rnk will denote the rank of the action of an element of

H acting on V . We record a useful lemma.

Lemma 2.23. We consider an element g ∈ G(H) with rnk(g − 1) = 1. Then
g acts diagonalizably on V if either g has finite order or if V is an orthogonal
module (i.e., there is a non-degenerate H-invariant symmetric bilinear form
〈·, ·〉 on V ).
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Proof. Since rnk(g − 1) = 1, we can write (g − 1)|V = f(·)v with suitable
non-zero f ∈ V ∗, v ∈ V . Now it is enough to show f(v) �= 0, because then a
basis of the kernel of (g − 1)|V together with v form a basis of V consisting
of eigenvectors of g.

If g has finite order r, assume f(v) = 0, then

idV = g|rV = (idV +f(·)v)r = idV +rf(·)v,

which is a contradiction. Hence f(v) �= 0, and g acts diagonalizably.

Similarly, assume V is orthogonal and f(v) = 0. Since f �= 0, we can pick
x ∈ V such that f(x) �= 0, and we obtain

〈v, x〉 = 〈gv, gx〉 = 〈v, x + f(x)v〉 ⇒ 〈v, v〉 = 0.

Now for all y ∈ V \ (ker f), z ∈ ker f ,

〈y, y〉 = 〈gy, gy〉 = 〈y + f(y)v, y + f(y)v〉 ⇒ 〈v, y〉 = 0,

〈x, z〉 = 〈gx, gz〉 = 〈x + f(x)v, z〉 ⇒ 〈v, z〉 = 0.

But this means that 〈v, V 〉 = 0, which is a contradiction. Hence f(v) �= 0 and
again, g acts diagonalizably.

We have the following information on the group-like elements g which
are necessary to determine κ and the corresponding maps κg (see also [RS,
Sec. 1], [EGG, Sec. 2.3]):

Proposition 2.24. Let κ : V ∧ V → H be a linear map with the Jacobi
property. Then the following holds for every g ∈ G(H), where (g − 1) denotes
the corresponding operator on V :

• κg = 0 if rnk(g − 1) �∈ {0, 1, 2}.
• If rnk(g − 1) = 1, then κg(x, y) = 0 for all x, y ∈ V satisfying ((g − 1) ·

x) ⊗ y − ((g − 1) · y) ⊗ x = 0.
• If rnk(g − 1) = 1 and g acts diagonalizably on V (for instance, if g has

finite order or V is an orthogonal H-module), then κg(x, y) = 0 for all
x, y ∈ V satisfying ((g − 1) · x) ∧ y + x ∧ ((g − 1) · y) = 0.

• If rnk(g − 1) = 2, then κg(x, y) = 0 for all x, y ∈ V satisfying ((g − 1) ·
x) ∧ ((g − 1) · y) = 0.

Proof. We fix g ∈ G(H). Then by Lemma 2.21, κg has the Jacobi property,
so it is enough to consider the case κ = κg.
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It is a basic statement on coalgebras that every finite-dimensional sub-
space is contained in a finite-dimensional subcoalgebra. Let C be such a finite-
dimensional subcoalgebra of H1g (which is a subcoalgebra of H) containing
(im κg). Let (Ck)k≥0 be the coradical filtration of C and let k be minimal such
that im κ ⊂ Ck. Note that C0 = Fg now, because g is the unique group-like
element in C.

Then we can write κg =
∑

i θih
i with suitable non-zero (θi)i in (V ∧ V )∗

and linearly independent (hi)i in Ck. Let J be the set of indices j such that
hj ∈ Ck \Ck−1 (where we set C−1 = 0). Since k was chosen minimally, J �= ∅.
For every j ∈ J , let pj be a projection of Ck onto Fhj along Ck−1 and along
hi for all i �= j. Then

(id ⊗pj) ◦ Δ(hi) = δijg ⊗ hj for all i.

Thus if we apply (id ⊗pj) to (2.7), this yields

0 = (g − 1) · z ∧ (g − 1) · u ∧ (g − 1) · v ⊗ θj(x, y)hj for all z, u, v, x, y ∈ V,

so the operator (g − 1) has rank at most 2.
If we apply (id ⊗pj) to the Jacobi identity 0 = (x|y, z)+(y|z, x)+(z|x, y)

in V ⊗ H for any x, y, z ∈ V , we obtain

0 = (((g − 1) · x)θj(y, z) + ((g − 1) · y)θj(z, x) + ((g − 1) · z)θj(x, y)) ⊗ hj .

Let us assume that (g −1) has rank 1, and let us pick f ∈ V ∗ and z ∈ V such
that f((g − 1) · z) = 1. Then the last equation implies

θj(x, y) = f((g−1)·z)θj(x, y) = −(f ⊗θj(·, z))(((g−1)·x)⊗y−((g−1)·y)⊗x),

so that θj(x, y) = 0 if ((g − 1) · x) ⊗ y − ((g − 1) · y) ⊗ x = 0.
If additionally g acts diagonalizably, then (g − 1) · v = f((g − 1) · v)z for

all v ∈ V , so

θj(x, y) = −θj(y, (g−1)·x)+θj(x, (g−1)·y) = θj((g−1)·x∧y+x∧(g−1)·y),

which confirms that θj(x, y) = 0 if (g − 1) · x ∧ y + x ∧ (g − 1) · y = 0.
Let us assume that (g−1) has rank 2. We apply (id ⊗pj) to (2.6) to obtain

(g − 1) · z ∧ (g − 1) · u ⊗ θj(x, y) = (g − 1) · x ∧ (g − 1) · y ⊗ θj(z, u)

for all z, u, x, y ∈ V . Since (g − 1) has rank 2, we can pick z, u such that
(g−1)·z∧(g−1)·u is non-zero. So θj(x, y) has to be zero if (g−1)·x∧(g−1)y =
0.
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Hence θj has to vanish on the subspaces as stated for every j ∈ J . Hence

κ(x, y) =
∑

i�∈J

θi(x, y)hi =: κ′(x, y)

on these subspaces, but im κ′ ⊂ Ck−1. We repeat the argument inductively
replacing κ by κ′ each time until im κ′ ⊂ C−1 = 0.

To compare this with the classical situation of H being the group-algebra
of a finite group, we note:

Corollary 2.25. Let κ : V ∧ V → H be an H-equivariant F-linear map with
the Jacobi property, and fix g ∈ G(H) such that rnk(g − 1) = 1 and g acts
diagonalizably on V (which is true for instance if g has finite order or V is
an orthogonal H-module). Let r be the non-zero eigenvalue of (g − 1). Then

im κg ⊂ {x ∈ H1g : gxg−1 = (r + 1)x}.

In particular, if H is the group algebra of a finite-group, then κg = 0 for
all g with rnk(g − 1) = 1.

Proof. Let v ∈ V be an eigenvector of (g − 1) with eigenvalue r ∈ F \ {0}
such that V = Fv ⊕ ker(g − 1). Now κg(x, y) = 0 for all x, y ∈ ker(g − 1) and
κg(x, y) = 0 for all x, y ∈ Fv, because in both cases,

(g − 1) · x ∧ y + x ∧ (g − 1) · y = 0.

Assume x = v and y ∈ ker(g − 1). Then due to H-equivariance,

gκg(x, y)g−1 = κg(g · x, g · y) = (r + 1)κg(x, y),

so indeed im κg lies in the subspace of H1g on which g acts by (r + 1).
If H is the group algebra of a finite group, then H1g = Fg, so g acts

trivially on H1g, but r + 1 �= 1.

Definition 2.26. For every p ≥ 0 and a linear map κ : V ∧ V → H, we
define

κ(p) :=
∑

g∈G(H),rnk(g−1)=p,im κg⊂Kp

κg.

We observe that if κ has the Jacobi property, by Proposition 2.12 and
Proposition 2.24, κ(p) = 0 for p > 2 and the condition im κg ⊂ K2 in the
definition of κ(2) is redundant. We also note that if κ has the Jacobi property,
then κ(p) has the Jacobi property for every p ≥ 0 by Lemma 2.21, since κ(p)

is a sum of κg’s.
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Lemma 2.27. For every κ : V ∧ V → H with the Jacobi property, κ(0) is of
the form of Definition 2.14.

Proof. This is immediate from the definition of κ(0).

Proposition 2.28. Assume G(H) is a torsion group (for instance, a finite
group) or V is an orthogonal H-module. Then for every κ : V ∧ V → H with
the Jacobi property, κ(1) is of the form

κ(1)(x, y) =
∑

m

σm(hm
(1) � x, y)hm

(2) + σm(x, hm
(1) � y)hm

(2)

with hm in K1 and σm ∈ (V ∧V )∗ for every m. In particular, it is of the form
of Definition 2.14.

Proof. By Lemma 2.21, it is enough to show the assertion for κ = κg for a
fixed g ∈ G(H) with rnk(g − 1) = 1 and such that im κg ⊂ K1.

We can write κ =
∑

i σih
i with linearly independent hi in H1g ∩ K1 and

suitable σi in (V ∧V )∗. Let J be the set of indices j such that hj lies in maximal
degree d of the coradical filtration. Since rnk(g − 1) = 1, by Proposition 2.24
we know that

σj(x, y) = σ̃j((g − 1) · x ∧ y + x ∧ (g − 1) · y)

for some σ̃j in (V ∧ V )∗. We define

κ′(x, y) :=
∑

j∈J

σ̃j(h
j
(1) � x, y)hj

(2) + σ̃j(x, hj
(1) � y)hj

(2),

then by Proposition 2.18, κ′ has the Jacobi property, so κ′′ = κ − κ′ has the
Jacobi property, but the image of κ′′ lies in degree ≤ d − 1 of the coradical
filtration, because the highest degree terms of κ and κ′ cancel. We can replace
κ by κ′′ and proceed inductively until the image of κ′′ lies in degree −1, so
κ′′ = 0.

Finally, for all g ∈ G(H) with rnk(g − 1) = 2, let us fix θg ∈ (V ∧ V )∗

which do not vanish on the one-dimensional spaces (g − 1)V ∧ (g − 1)V .

Proposition 2.29. For every κ : V ∧ V → H with the Jacobi property, κ(2)

is of the form

κ(2)(x, y) =
∑

g∈G(H),rnk(g−1)=2

θg(hg
(1) � x, hg

(2) � y)hg
(3)
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with hg in H1g ∩ K2 for every g. In particular, it is of the form of Defini-
tion 2.14.

Proof. By Lemma 2.21, it is enough to show this for κ = κg for a fixed
g ∈ G(H) with rnk(g − 1) = 2.

Since rnk(g − 1) = 2, the restriction of any skew-symmetric bilinear form
on V to (g − 1)V ∧ (g − 1)V is just a scalar multiple of the restriction of θg.

We can write κ =
∑

i θik
i with linearly independent ki in H1g ∩ K2 and

suitable θi in (V ∧V )∗. Let J be the set of indices j such that kj lies in maximal
degree d of the coradical filtration. Since rnk(g − 1) = 2, by Proposition 2.24
we know that

θj(x, y) = θ̃j((g − 1) · x, (g − 1) · y) = rjθg((g − 1) · x, (g − 1) · y)

for some θ̃j in (V ∧ V )∗ and for some rj ∈ F. We define hj := rjk
j and

κ′(x, y) :=
∑

j∈J

θg(hj
(1) � x, hj

(2) � y)hj
(3),

then by Proposition 2.18, κ′ has the Jacobi property, so κ′′ = κ − κ′ has the
Jacobi property, but the image of κ′′ lies in degree ≤ d − 1 of the coradical
filtration, because the highest degree terms of κ and κ′ cancel. We can replace
κ by κ′′ and proceed inductively until the image of κ′′ lies in degree −1, so
κ′′ = 0. This way we see that

κ(x, y) =
∑

p

θg(hp
(1) � x, hp

(2) � y)hp
(3)

for some (hp)p in H1g ∩ K2, but now we can define hg :=
∑

p hp and the
assertion follows.

Definition 2.30. Let us denote the class of Hopf–Hecke algebras AH,V,κ by
H and the class of standard Hopf–Hecke algebras by S (see Definition 2.20),
that is, the elements of S are deformations with deformation maps κ of the
form of Definition 2.14. For every PBW deformation A = AH,V,κ (even if V
is not an orthogonal module) we define

hs(κ) := κ(0) + κ(1) + κ(2) and hs(AH,V,κ) := AH,V,hs(κ).

In particular, hs can be applied to a Hopf–Hecke algebra A = AH,V,κ, for
which the H-module V is orthogonal.
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Proposition 2.31. hs : H → H is a well-defined idempotent mapping and
hs(H) � S.

Proof. To summarize Proposition 2.18, Lemma 2.27, Proposition 2.28 and
Proposition 2.29, for every κ with the Jacobi property, hs(κ) = κ(0) + κ(1) +
κ(2) is of the form of Definition 2.14 and has the Jacobi property. In other
words, for every PBW deformation A = AH,V,κ, the deformation hs(A) =
AH,V,κ(0)+κ(1)+κ(2)

is a standard PBW deformation. Since the orthogonality of
V is unaffected by hs, hs sends Hopf-Hecke algebras to standard Hopf–Hecke
algebras. By its definition, hs is an idempotent mapping.

It remains to see that there are standard Hopf–Hecke algebras which
cannot be obtained through hs from any Hopf–Hecke algebra. We will describe
such an algebra: Let us pick non-zero y ∈ C and x ∈ C∗ such that x(y) = 1,
then H := gl1(C) = C acts on V = C ⊕ C∗, where Ix = x and Iy = −y
for I := 1 ∈ gl1(C). Now V carries a non-degenerate H-invariant symmetric
bilinear form 〈·, ·〉 defined by 〈x, x〉 = 〈y, y〉 = 0 and 〈x, y〉 = 1, that is, V is
orthogonal. Similarly, a non-degenerate H-invariant skew-symmetric bilinear
form θ1 ∈ (V ∧V )∗ is defined by θ1(x∧y) = 1. In this situation, H is abelian,
I �∈ K0 and I3 ∈ K2. So θ := θ1 ⊗ I3 : V ∧ V → K2 is a well-defined H-linear
map. Thus, by Definition 2.14 and Proposition 2.18, we have a standard PBW
deformation A = AH,V,κθ

(which, in fact, is isomorphic tox U(sl2(C))), where

κθ(x ∧ y) = θ1(I3
(1) � x, I3

(2) � y)I3
(3) = θ1(Ix, Iy)I = −I.

In particular, im κ �⊂ K0. Hence, this standard PBW deformation is not
obtained from hs, that is, hs is not surjective onto S.

In Section 4 we will consider infinitesimal Cherednik algebras, which gen-
eralize the (counter)example appearing in the proof: There, instead of gl1(C),
we consider gln(C) for arbitrary n ≥ 1 and the deformation map κ takes
values not only in gln(C) ⊂ U(gln(C)), but in all of U(gln(C)).

Remark 2.32. It might be another interesting question which maps κ have the
Jacobi property other than the ones of the form of Definition 2.14, or similarly,
which PBW deformations A = AH,V,κ are not standard PBW deformations.

Regarding the first question, note that by Lemma 2.21 and Proposi-
tion 2.29, it is enough to consider the case κ = κg for a fixed group-like g with
rnk(g − 1) ∈ {0, 1}, and by the results in Lemma 2.27, and Proposition 2.28,
an example with orthogonal V extending our partial characterization would
necessarily satisfy im κg �⊂ Krnk(g−1).

If H is the group-algebra of a finite group, there can be no such maps,
because by Corollary 2.25, κg = 0 for all g ∈ G(H) with rnk(g − 1) = 1 and
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for all g ∈ G(H) with rnk(g −1) = 0, im κg ⊂ H1g = Fg ⊂ K0 automatically,
so κ = κ(0) + κ(2) = hs(κ). In particular, all PBW deformations are standard
in this case.

3. Dirac cohomology for Hopf–Hecke algebras

For the convenience of the reader we would like to recall some central notions
and results from [Fl] which will be used in the course of this paper.

We fix a cocommutative Hopf algebra H, an orthogonal (finite-dimen-
sional) H-module V with bilinear form 〈·, ·〉 and an H-equivariant F-linear
map κ : V ∧ V → H with the Jacobi property (Definition 2.6), so A = AH,V κ

is a Hopf–Hecke algebra. Since V is fixed, we use the shorthand C for the
Clifford algebra, which can be defined (in characteristic not 2) as a quotient
of the tensor algebra T (V ) by

C = C(V ) := T (V )/(vw + wv − 2〈v, w〉).

For a general Hopf–Hecke algebra A = AH,V,κ, we have the following
definitions and results ([Fl, Sec. 3.2]):

Definition 3.1. Let (vk)k, (vk)k be a pair of orthogonal bases of V with
respect to 〈·, ·〉. Then the Casimir element Ω and the Dirac element D are
defined to be

(3.1) Ω :=
∑

k

vkvk ∈ A, D :=
∑

k

vk ⊗ vk ∈ A ⊗ C.

Lemma 3.2. The Casimir and the Dirac element are independent of the
choice of dual bases, they are H-invariant and

D2 = Ω ⊗ 1 + 1
2

∑

k<l

κ(vk, vl) ⊗ [vk, vl]

in A ⊗ C, where the commutator is taken in C.

If F = C, then up to equivalence, there is a unique irreducible C-module
if dim V is even, or two irreducible C-modules if dim V is odd. We fix an
irreducible C-module S and let M be an A-module. Then M ⊗S is an A⊗C-
module, and, in particular, the Dirac operator acts on M ⊗ S.

Definition 3.3. The Dirac cohomology of M (with respect to S) is defined
as

HD(M) := ker D/(im D ∩ ker D).
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Lemma 3.4. If D acts diagonalizably on M ⊗S (e.g., as a normal operator),
then HD(M) ∼= ker D2.

In general, the Dirac cohomology HD(M) is a module not necessarily
of the Hopf algebra H, but of a certain Hopf algebra double cover H̃ of H,
which we call the pin cover. In [Fl] a result relating the Dirac cohomology with
central characters (“Vogan’s conjecture”) is proved under a certain condition
regarding the square of the Dirac operator. If this condition is met, we call
the Hopf–Hecke algebra a Barbasch–Sahi algebra.

In the following we will be interested in the special case where H = U(g),
the universal enveloping algebra of a finite-dimensional complex Lie algebra g.
In particular, H is pointed and 1 ∈ H is the unique group-like element. This
simplifies the pin cover construction and also the condition on D2 significantly.

Remark 3.5. Let so(V ) denote the Lie algebra of skew-symmetric linear op-
erators of V with respect to 〈·, ·〉 and let Biv(V ) be the Lie subalgebra of the
Clifford algebra C(V ) generated by the commutators w1w2 − w2w1 in C(V )
for vectors w1, w2 ∈ V . Then we have a Lie algebra isomorphism

φ : Biv(V ) → so(V ), 1
2(w1w2 − w2w1) �→ (v �→ −2〈w1, v〉w2 + 2〈w2, v〉w1),

(3.2)

which can also be realized as taking commutators in C, leaving the subspace
V invariant. For more information on Clifford algebras and this isomorphism
we refer to [HP2, Me].

Now we have the following concrete description of the pin cover of H as
constructed in [Fl, Sec. 2]:

Definition 3.6. Let H̃ := H ⊕ H, let π : H̃ → H be the natural projection
onto the first copy of H, and let γ : H̃ → C be the algebra map defined by
h̃ �→ φ−1(π(h̃)·) for all h̃ ∈ g ⊕ H ⊂ H̃, where the element π(h̃) of H can
be viewed as a skew-symmetric endomorphism of V , since V is an orthogonal
module.

Proposition 3.7. (H̃, π, γ) is the pin cover of H with respect to V in the
sense of [Fl, Def. 2.11], and it splits in the sense of [Fl, Def. 2.13], i.e. the
epimorphism π : H̃ → H splits as a Hopf algebra map.

We recall ([Fl, Def. 2.5]) that for a pointed cocommutative Hopf algebra
with an orthogonal module we have an algebra Z2-gradation which assigns
each group-like element the determinant of the corresponding operator on V
and each primitive element degree 1 in Z2

∼= {±1}. Obviously, in our setting
where H = U(g), H = Heven and H̃ = H̃even irrespective of the module V .
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We also recall the definition ([Fl, Def. 2.11]) of the diagonal map,

ΔC : H̃ → H ⊗ C, h̃ �→ π(h̃(1)) ⊗ γ(h̃(2)),

and of H ′ := H̃/ ker ΔC . Since the pin cover splits by our construction, we
have H ′ ∼= H, we can consider H as a Hopf subalgebra of H̃ and we have
algebra maps γ|H : H → C, h �→ φ−1(h·), and ΔC |H : H → H ⊗ C, h �→
h(1) ⊗ γ|H(h(2)), which we denote by γ, ΔC , as well (abusing notation).

We now have

Lemma 3.8 ([Fl, Lem. 3.9]). D and ΔC(h) commute in A⊗C for all h ∈ H.

Consequently, HD(M) is an H-module.
Finally, we recall that the Hopf–Hecke algebra A defined by (H, V, κ) is

called a Barbasch–Sahi algebra if D satisfies the Parthasarathy condition,

D2 ∈ Z(A ⊗ C) + ΔC(H̃even).

Now with the Hopf algebra H as above, this is equivalent to

D2 ∈ Z(A ⊗ C) + ΔC(H).

Definition 3.9. Let us denote the class of Barbasch–Sahi algebras by B.

The significance of this class of algebras is that in this case one has a
“good” notion of Dirac cohomology, with consequences for the representa-
tion theory. More precisely, the non-vanishing of Dirac cohomology imposes
a strong restriction on a representation, in particular its central character is
uniquely determined by its Dirac cohomology.

Remark 3.10. By definition, B ⊂ H . However, this inclusion is proper in
general. For instance, the rational Cherednik algebra with parameters t, c
is a Hopf–Hecke algebra with H = C[W ], the group algebra of a reflection
group. It is explained in [EGG] that this definition is standard according to
our Definition 2.20. In [Ci, Prop. 4.9, Rem. 4.10], the square of the Dirac
operator is computed, and it is observed that for t �= 0, it is not of the form
required to make it a Barbasch–Sahi algebra.

Combining this with Proposition 2.31 we obtain the following diagram,
where it is an open question, if the vertical inclusions are proper:

B
�=

H

B ∩ S
�=

S
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4. Infinitesimal Cherednik algebras of GLn

4.1. Motivation

We fix a cocommutative Hopf algebra H over C and a completely reducible H-
module V . Let us recall a well-known characterization of modules with both a
symmetric and a skew-symmetric form. We give the proofs for completeness.

Proposition 4.1. If V admits both a symmetric and a skew-symmetric non-
degenerate H-invariant bilinear form, then V is of the form V ∼= W ⊕ W ∗

for an H-module W .

Proof. Since V is completely reducible, we can decompose V as a direct sum
of simple submodules, and we can group these simple submodules such that

V =
k

⊕

i=1

V ai

i ⊕
m

⊕

j=1

W
bj

j ⊕ (W ∗
j )cj

with positive integers (ai)i, (bj)j , (cj)j and self-dual modules (Vi)i and such
that (Vi)i, (Wj)j , (W ∗

j )j are all pairwise non-isomorphic simple H-modules.
As V admits a non-degenerate H-invariant bilinear form, it is self-dual, so
bj = cj for each j. Hence, it is enough to show that ai is even for each i.

Consider two simple submodules V ′ and V ′′ of V and let α be a non-
degenerate H-invariant bilinear form on V . Then v �→ α(·, v) is an H-linear
map from V ′ to (V ′′)∗, but since V ′ and V ′′ are simple, the map has to
be an isomorphism or 0. Hence the restriction of α to V ai

i has to be non-
degenerate for each i. This means that V ai

i admits both a symmetric and a
skew-symmetric non-degenerate H-invariant bilinear form for each i.

We consider a fixed index i. Since Vi is self-dual, there is an H-linear
isomorphism Vi → V ∗

i or, equivalently, a non-degenerate H-invariant bilinear
form α on Vi. We can view α as the sum of a symmetric and a skew-symmetric
bilinear form, and since α is H-invariant, both summands have to be H-
invariant, as well. Since Vi is simple, the space of H-linear endomorphisms,
equivalently, H-invariant bilinear forms is one-dimensional. Hence α has to
be symmetric (case a) or skew-symmetric (case b).

We write V ai

i = Vi ⊗ Cai and we pick a basis (ep)1≤p≤ai
of Cai . Let

β be a non-degenerate H-invariant skew-symmetric (case a) or symmetric
(case b) bilinear form on V ai

i . Now for every 1 ≤ p, q ≤ ai, the map (v, v′) �→
β(v⊗ep, v′⊗eq) is an H-invariant bilinear form on Vi, so it has to be a multiple
of α. Hence β(v⊗ep, v′ ⊗eq) = γ(ep, eq)α(v, v′) for scalars (γ(ep, eq))p,q, which
defines a bilinear form γ on Cai . For β to be skew-symmetric (case a) or
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symmetric (case b), γ has to be skew-symmetric. Now if ai is odd, γ cannot
be non-degenerate, so there is a vector e ∈ Cn such that γ(e, e′) = 0 for all
e′ ∈ Cn, and consequently, β(v ⊗ e, v′ ⊗ e′) = 0 for all v, v′ ∈ Vi and e′ ∈ Cn.
This is a contradiction, since β was assumed to be non-degenerate. Hence ai

has to be even, which was to be shown.

Proposition 4.2. The completely reducible finite-dimensional H-modules
V which admit both a symmetric and a skew-symmetric non-degenerate H-
invariant bilinear form are exactly the H-modules of the form V ∼= W ⊕ W ∗

for finite-dimensional H-modules W .

Proof. It only remains to show that modules of the form W ⊕W ∗ admit forms
as required. Let (·, ·) : W ∗ ⊗ W → C be the natural pairing. By definition of
the contragredient action of H on W ∗, the pairing is H-invariant. We define
the forms α, β by

α(y + x, y′ + x′) := (y, x′) + (y′, x), β(y + x, y′ + x′) := (y, x′) − (y′, x).

Then since (·, ·) is H-invariant, α and β are H-invariant. By definition, they
are non-degenerate, bilinear and also symmetric and skew-symmetric, respec-
tively.

Remark 4.3. One might want to look for Hopf–Hecke algebras constructed
from completely reducible orthogonal H-modules V with a non-degenerate
H-invariant skew-symmetric bilinear form. Then Proposition 4.2 tells us that
these modules are exactly the ones of the form W ⊕ W ∗.

Now if we take H to be the universal enveloping algebra of the Lie algebra
of a reductive algebraic group, a class of such Hopf–Hecke algebras called
infinitesimal Cherednik algebras is defined in [EGG].

Remark 4.4. The infinitesimal Hecke algebras of Sp2n with the standard mod-
ule V = C2n classified in [EGG, Sec. 4.1.2] and studied in [Kh1, TK, DT, LT]
are not Hopf–Hecke algebras, since the module does not have a non-degenerate
invariant symmetric form; this follows from the above discussion, for instance,
because we saw that a simple module cannot have a symmetric and a skew-
symmetric non-degenerate invariant form at the same time.

However, the infinitesimal Hecke algebras of the orthogonal groups On

([EGG, Ts]) and the infinitesimal Cherednik algebras GLn are Hopf–Hecke
algebras. In the following, we will study the Dirac cohomology of the in-
finitesimal Cherednik algebras for the groups GLn, whose representation the-
ory has been investigated in [EGG, DT, LT, Ti] (see Remark 4.8). It seems a
promising approach to use the Dirac operator to explore the somewhat less
known representation theory of infinitesimal Hecke algebras of the orthogonal
groups, which we hope to pursue in a future project.
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4.2. Infinitesimal Cherednik algebras of GLn as Hopf–Hecke

algebras

For a fixed n ≥ 1 and with F = C we consider the general linear group
G = GLn(C), its Lie algebra g = gln(C) and its universal enveloping alge-
bra H = U(g). We consider the standard Lie algebra (and hence H-)module
h = Cn. We define the H-module V := h ⊕ h∗, where h∗ is the usual contra-
gredient module, and we denote the pairing of h∗ and h by (·, ·).

The following definitions are from [EGG]:

Definition 4.5. For all m ≥ 0, x ∈ h∗ and y ∈ h, let rm(x, y) be the
coefficient of τm in the expansion of the polynomial function A �→ (x, (1 −
τA)−1 · y) det(1 − τA)−1 in S(gl∗n) viewed as an element in S(gl∗n) � S(gln) �
U(gln), where the first identification is via the trace pairing gln × gln →
C, (A, B) �→ Tr(AB) and the second identification is via the symmetrization
map.

Let ξ(z) =
∑

m≥0 ξmzm be a polynomial. We define a map κ = κξ :
V ∧ V → H by

(4.1) κ(x, x′) = κ(y, y′) = 0, κ(y, x) :=
∑

m≥0

ξmrm(x, y),

for all x, x′ ∈ h∗, y, y′ ∈ h. Let Iκ be the ideal of T (V ) � H generated by
elements of the form vw − wv − κ(v, w) for v, w ∈ V . The algebra

Hξ := (T (V ) � H)/Iκ

is called infinitesimal Cherednik algebra.

There is an alternative definition of κ in terms of ξ as explained in [EGG,
Sec. 4.2] (see also [DT, Sec. 3.1]):

Definition 4.6. Let ξ̃ be the polynomial

(4.2) ξ̃(z) :=
1

2πn
∂n(znξ(z)) =

∑

m≥0

1

2πn

(m + n)!

m!
ξmzm.

Also, we define the notations 〈v, w〉H := vT w, which is an Hermitian inner
product on h, and |v| := (

∑

i |vi|
2)1/2 for all v ∈ h, the Euclidean norm.

For every non-zero v ∈ h, let v ⊗ v denote the rank-one endomorphism
v〈·, v〉H of h viewed as an element in gln, so ξ̃(v ⊗ v) can be viewed as an
element in S(gln) or U(gln).
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We need the following lemma which is essentially contained in [EGG,
Sec. 4.2].

Lemma 4.7. With the definitions as above,

(4.3) κ(y, x) =

∫

|v|=1
(x, (v ⊗ v) · y)ξ̃(v ⊗ v) dv for all x ∈ h∗, y ∈ h.

Proof. We recall results from [EGG, Sec. 4.2]: Let Fm ∈ S(g∗) be defined by

Fm(A) :=

∫

|v|=1
〈A · v, v〉m+1

H dv for all A ∈ gln.

According to the computations in [EGG, Sec. 4.2], Fm(A) equals the coeffi-
cient of τm+1 in

2πn (m + 1)!

(m + n)!
det(1 − τA)−1.

As explained in [EGG, Sec. 4.2], under the identification S(g) � S(g∗),

∫

|v|=1
(x, (v ⊗ v) · y)(v ⊗ v)m dv =

∫

|v|=1
(x, (v ⊗ v) · y)〈A · v, v〉m

H dv

=
1

m + 1
dFm|A(y ⊗ x) = 2πn m!

(m + n)!
rm

where A ∈ g symbolizes the argument of a polynomial function in S(g∗), and
where rm is the coefficient of τm in (x, (1 − τA)−1 · y) det(1 − τA)−1.

Now if we write ξ̃(z) =
∑

m≥0 ξ̃mzm, then by definition, ξ̃m = 1
2πn

(m+n)!
m! ξm

for all m ≥ 0, so

∫

|v|=1
(x, (v ⊗ v) · y)ξ̃(v ⊗ v) dv =

∑

m≥0

2πn m!

(m + n)!
ξ̃mrm(x, y)

=
∑

m≥0

ξmrm(x, y).

Remark 4.8. In fact, [EGG, Thm. 4.2] says that (T (V )�H)/Iκ has the PBW
property if and only if κ is of the described form (for some polynomial ξ).
Since we will see that V is an orthogonal U(gln)-module, the Hopf–Hecke
algebras AH,V,κ with H = U(gln) and V = h⊕h∗ are exactly the infinitesimal
Cherednik algebras.

We also note that the presentation of infinitesimal Cherednik algebras
is in “reverse order” here: In [EGG], it is first explained that infinitesimal
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Cherednik algebras for a reductive algebraic group G over C are parametrized
by G-invariant distributions on the closed subscheme of “complex reflections”
Φ ⊂ G defined by ∧2(1 − g|h) = 0 which are supported at 1. It is shown
that for G = GLn, those distributions are parametrized by polynomials. The
relation between the polynomials and the resulting deformations is computed
to be (4.3). After evaluating the integral, the equivalent formulation (4.1) is
given.

The center of these algebras has been shown to be a polynomial algebra
in n variables in [Ti]. Their representation theory has been studied and, in
particular, their finite-dimensional irreducible modules have been classified
in [DT]. Universal infinitesimal Cherednik algebras, which are the analogs of
infinitesimal Cherednik algebras with ξ1, . . . , ξn viewed as formal parameters,
have been identified with W -algebras of the same type and a 1-block nilpotent
element in [LT].

We want to see that Hξ is a Hopf–Hecke algebra in our notation and we
want to find a description of D2.

Definition 4.9. Let (·, ·) : h∗ ⊗ h → C be the natural pairing, which is
g-invariant. We define a form 〈·, ·〉 on V by

〈x + y, x′ + y′〉 := (x, y′) + (x′, y) for all x, x′ ∈ h∗, y, y′ ∈ h.

We pick dual bases (xi)i, (yi)i of h∗ and h, respectively, and we define

(vk)k := (x1, . . . , xn, y1, . . . , yn), (vk)k := (y1, . . . , yn, x1, . . . , xn).

Lemma 4.10. In the situation as in the definition, 〈·, ·〉 is a symmetric g-
invariant bilinear form on V , i.e., V is an orthogonal H-module and Hξ is a
Hopf–Hecke algebra, and (vk)k, (vk)k is a pair of dual bases for V with respect
to 〈·, ·〉.

Proof. 〈·, ·〉 makes V an orthogonal H-module with the described pair of
dual bases, because the natural pairing (·, ·) is g-invariant, as we have seen
in Proposition 4.2 already.

By construction, Hξ has the PBW property, so it is a Hopf–Hecke alge-
bra.

Recall from the discussion in Section 3 that we can associate a pin cover
to the Hopf–Hecke algebra Hξ which, as H = U(gln), splits and is hence
completely described by an algebra map γ : H → C. To make this more
concrete:
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Proposition 4.11. The pin cover H̃ of H splits, so H ′ ∼= H as algebras, we

can identify H with a Hopf subalgebra of H̃ and γ : H̃ → C, ΔC : H̃ → H ⊗C

restrict to algebra maps γ : H → C and ΔC = (idH ⊗γ) ◦ Δ : H → H ⊗
C (abusing notation). Furthermore, γ(Eij) = 1

4(yixj − xjyi) ∈ C for the

elementary matrix Eij in gl(h) � gln which sends yj to yi, and the gln-action

on C = C(V ) via γ coincides with the action induced from the action on the

tensor algebra T (V ).

Proof. As discussed in Section 3, the pin cover splits, because H is the uni-

versal enveloping algebra of a Lie algebra. Consequently, H can be identified

with a Hopf subalgebra of H̃, H ′ ∼= H, and we have the restricted algebra

maps as asserted.

To verify γ(Eij) = 1
4(yixj − xjyi), we realize that the action of Eij on

V = h ⊕ h∗ can be expressed as

〈xj , ·〉yi − 〈yi, ·〉xj ,

a skew-symmetric operator on V . Now γ(Eij) is given as the image of this

operator under φ−1 in Biv ⊂ C (see Remark 3.5), which is just 1
4(yixj −xjyi),

as desired.

We can verify that the gln-action on C which we obtain through this

algebra map coincides with the gln-action which is induced by the gln-action

on the tensor algebra.

We recall the definitions of the Casimir element Ω =
∑

k vkvk in A = Hξ

and of the Dirac element D =
∑

k vk ⊗ vk in A ⊗ C (Definition 3.1) for

any pair of dual bases (vk)k and (vk)k, so, in particular, for the choice made

in Definition 4.9.

Lemma 4.12. Let D ∈ A ⊗ C be the Dirac element for A = Hξ. Then

(4.4) D2 = Ω ⊗ 1 − 2

∫

|v|=1
ξ̃(v ⊗ v) ⊗ γ(v ⊗ v) dv.

Proof. We invoke Lemma 3.2 to obtain

D2 = Ω ⊗ 1 + 1
2

∑

k<l

κ(vk, vl) ⊗ [vk, vl] = Ω ⊗ 1 + 1
2

∑

i,j

κ(yj , xi) ⊗ [xj , yi]

= Ω ⊗ 1 − 2
∑

i,j

κ(yj , xi) ⊗ γ(Eij),
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where Eij = yi ⊗xj as above is an element in gln for all i, j. Using the integral
formula (4.3) for κ, we obtain

∑

i,j

κ(yj , xi) ⊗ γ(Eij) =
∑

i,j

∫

|v|=1
ξ̃(v ⊗ v) ⊗ (xi, (v ⊗ v)yj)γ(Eij) dv

=

∫

|v|=1
ξ̃(v ⊗ v) ⊗ γ(v ⊗ v) dv,

as desired.

In the following, we want to find an even more explicit expression for D2

in terms of polynomials derived from ξ̃, which will allow us to prove that
D satisfies the Parthasarathy condition and hence Hξ is a Barbasch–Sahi
algebra. We need some auxiliary lemmas.

From now on, all polynomials are univariate with complex coefficients
unless otherwise stated.

Definition 4.13. For any ε ∈ C, we define ∇ε, a difference operator on
polynomials, by

∇εf(z) := f(z + ε) − f(z + ε − 1).

For k ≥ 0, let Bk(z) be the k-th Bernoulli polynomial defined by the gener-
ating series

∑

k≥0

Bk(z)
tk

k!
=

tetz

et − 1

([AbS, Eq. 23.1.1]). We recall that Bk satisfies ∇1Bk(z) = Bk(z+1)−Bk(z) =
kzk−1 ([AbS, Eq. 23.1.6]).

Lemma 4.14. Let p be a polynomial and ε ∈ C. Then there is a polynomial
f satisfying ∇εf(z) = p(z) and f is characterized by this relation uniquely up
to the constant term.

Proof. To construct f , we write p(z) =
∑

i≥0 piz
i. Then

∇εf(z) = p(z) ⇔ ∇1f(z) = p(z + 1 − ε) =
∑

i≥0

pi

i + 1
(i + 1)(z + 1 − ε)i,

hence f(z) :=
∑

i≥0
pi

i+1Bi+1(z + 1 − ε) + f0 satisfies this recurrence relation
for any scalar f0.

For uniqueness, let g be another polynomial satisfying the same recurrence
relation. Then fd = f − g is a polynomial satisfying ∇εfd(z) = 0. Hence
fd attains the same value at, say, all integers, so it has to be a constant
polynomial.
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Lemma 4.15. For a fixed polynomial p, let f be a polynomial satisfying
∇1/2f(z) = p(z). Then

(4.5) p(z)ω = f(z + ω) + 1
2p(z) − f(z + 1

2) in C[z, ω] mod (ω2 − 1
4)·

Proof. We claim that for every polynomial p, there are polynomials f, q such
that

(4.6) p(z)ω = f(z + ω) + q(z) in C[z, ω] mod (ω2 − 1
4).

First we note that it is enough to show this for polynomials p of the form
p(z) = (k + 1)zk, because those form a basis. Consider k = 0. Then p(z)ω =
ω = (z +ω)−z, which verifies the claim. Assume the claim is true for all non-
negative integers 0 ≤ k < K for some K ≥ 1, and hence for all polynomials
p of degree at most K − 1. We consider p(z) = (K + 1)zK and f(z) = zK+1,
then

p(z)ω = f(z + ω) + p′(z)ω + q(z)

for polynomials p′, q with deg p′ ≤ K − 1, because ω2 ≡ 1
4 and the coefficients

of zKω equal (K + 1) on both sides. This proves the claim by induction.
We assume now f, q are as in (4.6). Then we can substitute ω = ±1

2 to
get

(4.7) q(z) = ±1
2p(z) − f(z ± 1

2).

However, the two choices of substitution should yield the same result, so

1
2p(z)− f(z + 1

2) = −1
2p(z)− f(z − 1

2) ⇔ f(z + 1
2)− f(z − 1

2) = p(z).

Choosing the positive sign in (4.7) together with (4.6) yields

p(z)ω = f(z + ω) + 1
2p(z) − f(z + 1

2),

as desired.

Lemma 4.16. Let v be a vector in h with |v| = 1, and let v ⊗ v be the
corresponding rank-one matrix in gln. Then γ(v ⊗ v)2 = 1

4 in C(V ).

Proof. We write v =
∑

i viyi, then by linearity of γ,

γ(v ⊗ v) =
∑

i,j

vivjγ(Eij)= 1
4

∑

i,j

vivj [yi, xj ] = 1
4

[

∑

i

viyi,
∑

i

vixi

]

= 1
4 [v, v∗],
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where v and v∗ :=
∑

i vixi can be regarded as elements of V or of C(V ), and

where we used the value of γ(Eij) as discussed in Proposition 4.11.

Now in C(V ), v2 = 〈v, v〉 = 0, (v∗)2 = 〈v∗, v∗〉 = 0 and vv∗ + v∗v =

2〈v, v∗〉 = 2. Hence,

γ(v ⊗ v)2 = 1
16(vv∗vv∗ + v∗vv∗v − v(v∗)2v − v∗v2v∗)

= 1
16(v(2 − vv∗)v∗ + v∗(2 − v∗v)v) = 1

8(vv∗ + v∗v) = 1
4 ,

as desired.

We are ready to give a refined formula for D2.

Definition 4.17. Let fξ(z) be the polynomial uniquely defined by fξ(0) = 0

and

∇0fξ(z) = fξ(z) − fξ(z − 1) = ξ̃(z) = 1
2πn ∂n(znξ(z))

(the first and the last equality being the definitions of ∇0 and ξ̃, respectively).

Furthermore, we define α, β ∈ U(gln) by

α :=

∫

|v|=1
−ξ̃(v ⊗ v) + 2fξ(v ⊗ v) dv, β :=

∫

|v|=1
2fξ(v ⊗ v − 1

2) dv,

and t′
1 = 1

2(Ω + α).

Remark 4.18. Let us compare this with objects studied in [DT]: The polyno-

mial fξ corresponds to the polynomial called “2πnf” there and the element

t′
1 is the Casimir element studied and denoted by the same symbol in the

reference. In [Ti], it is proved that the center of Hξ is freely generated by a

total of n (“higher Casimir”) elements (see Equation (4.14) below).

In [DT] it is in particular shown that t′
1 is central in Hξ. We include

a slightly different argument for this statement when proving the following

formula of D2 and the Parthasarathy condition for A.

Proposition 4.19. Let f := fξ, α, β as in the definition. Then we have the

following formula for D2:

(4.8) D2 = (Ω + α) ⊗ 1 − ΔC(β) = 2t′
1 ⊗ 1 − ΔC(β).

Furthermore, t′
1 is central in Hξ and β is central in H. In particular, D

satisfies the Parthasarathy condition and Hξ is a Barbasch–Sahi algebra.
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Proof. We fix v ∈ h with |v| = 1 and define elements z := (v ⊗ v) ⊗ 1, ω :=

1 ⊗ γ(v ⊗ v) in A ⊗ C. Then z + ω = ΔC(v ⊗ v) and ω2 = 1
4 by Lemma 4.16.

We observe that ∇1/2f(z − 1
2) = ∇0f(z) = ξ̃(z) by the definition of f = fξ.

So we can apply Lemma 4.15 to obtain

ξ̃(v ⊗ v) ⊗ γ(v ⊗ v) = f(ΔC(v ⊗ v) − 1
2) + (1

2 ξ̃(v ⊗ v) − f(v ⊗ v)) ⊗ 1,

which yields the new formula for D2 when substituted into (4.4).

We define the shorthand Mv := v ⊗ v ∈ gln for any v ∈ h to show now

that Ω + α is central in A. First we note that

Ω + α =
∑

i

(xiyi + yixi) + α =
∑

i

(2xiyi + [yi, xi]) + α

=
∑

i

(2xiyi +

∫

|v|=1
(xi, Mv · yi)ξ̃(Mv) dv) + α

= 2
∑

i

xiyi + 2

∫

|v|=1
f(Mv) dv,

where we use that
∑

i(xi, (v ⊗ v) · yi) =
∑

i |vi|
2 = 1. Also, when verifying

centrality, it suffices to consider a set of algebra generators, say, the elements

of h, h∗ and gln, respectively.

So let us fix y, v ∈ h such that |v| = 1 and M := Mv. We regard M as

an element in a universal enveloping algebra, so Mk denotes a tensor power

of M for all k ≥ 0. If μ : gl⊗k
n → gln is the matrix multiplication, we have

μ(Mk) = M for all k ≥ 1, so we can compute in A = T (V ) � U(gln):

Mky =
k

∑

i=0

(

k

i

)

(μ(Mk−i) · y)M i = yMk +
k−1
∑

i=0

(

k

i

)

(M · y)M i

= yMk + (M · y)(M + 1)k − (M · y)Mk,

because M is a primitive element, so the coproduct of Mk is just
∑k

i=0

(k
i

)

Mk−i ⊗ M i. Hence,

[Mk, y] = (M · y)((M + 1)k − Mk)

for all k ≥ 0 and hence for any polynomial q,

[q(M), y] = (M · y)∇1q(M).
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In particular,

[

∫

|v|=1
f(Mv) dv, y

]

=

∫

|v|=1
(Mv ·y)∇1f(Mv) dv =

∫

|v|=1
(Mv ·y)ξ̃(Mv +1) dv.

On the other hand,

[

∑

i

xiyi, y

]

=
∑

i

[xi, y]yi = −
∫

|v|=1

∑

i

(xi, Mv · y)ξ̃(Mv)yi dv

= −
∫

|v|=1
[ξ̃(Mv), Mv · y] + (Mv · y)ξ̃(Mv) dv

= −
∫

|v|=1
(Mv · y)ξ̃(Mv + 1) dv,

where we have used that Mv · (Mv · y) = Mv · y. So indeed, Ω + α commutes
with any y ∈ h. A parallel argument shows that Ω + α commutes with any
x ∈ h∗. (Alternatively, this follows from the existence of an anti-involution of
Hξ sending yi ↔ xi and Eij ↔ Eji as described in [DT, Sec. 2].)

Furthermore, we have seen already that Ω commutes with elements from
gln, so it remains to show that α and β are central in U(gln), too. Let q
be any polynomial and consider the element hq =

∫

|v|=1 q(Mv) dv in U(gln).
We note that hq is invariant under the adjoint action of U(h) ⊂ GL(h), the
unitary group of h with respect to 〈·, ·〉H , because QMvQ∗ = MQv for all Q ∈
U(h), v ∈ h and the integral is invariant under the transformation v �→ Qv.
Now gln is just the complexified Lie algebra of U(h), so the center of U(gln)
is just the space of U(h)-invariants in U(gln). Hence hq is central in U(gln),
and in particular, α and β are central in H = U(gln).

Now D satisfies the Parthasarathy condition, because (Ω+α)⊗1 is central
in A ⊗ C and β is in H = Heven (see Section 3).

Corollary 4.20. There is an algebra map ζ : Z(Hξ) → Z(U(gln)) relating
the central characters and Dirac cohomology for Hξ-modules, in the following
sense: For any Hξ-module M with non-zero Dirac cohomology HD(M) and
with a central character, the central character equals φ ◦ ζ for any (non-zero)
irreducible gln-submodule (φ, N) of HD(M).

Proof. This is [Fl, Thm. 4.3] in the special case considered here.

4.3. Dirac cohomology for Hξ

Having seen that Hξ is what we call a Barbasch–Sahi algebra, we can explore
the Dirac cohomology of its modules. Here we will focus on finite-dimensional
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irreducible modules, which have been studied in [DT].
In the following, we identify λ = (λ1, . . . , λn) ∈ Cn with the gln-weight

λ1E∗
11 + · · · + λnE∗

nn. We denote the set of dominant integral gln-weights by
Λ+, that is, λ ∈ Λ+ if and only if (λi − λi+1) is a non-negative integer for all
1 ≤ i < n. For λ ∈ Λ+, let Vλ be the finite-dimensional irreducible highest
weight gln-module with highest weight λ.

Let S be the spin module of the Clifford algebra C = C(V ) (which is
unique, since dim V is even). Then S is a gln-module via the algebra map
γ : U(gln) → C which is defined by γ(Eij) = 1

4(yixj − xjyi) for all elementary
matrices Eij ∈ gln (see Proposition 4.11). We have the following information
on the structure of S as a gln-module via γ (see [Ko1, Prop. 3.17]):

Lemma 4.21. The weights of S are exactly the weights (s1, . . . , sn) in {±1
2}n,

and all weight spaces are one-dimensional. Hence S ∼= Λ(h) ⊗ (−1
2 Tr) as gln-

modules.

Proof. We can take S to be the left ideal generated by u := y1 . . . yn in C(V ),
which is irreducible (this is explained, for instance, in [Ko1, Sec. 3]). Hence,
a basis of S is given by the elements xe1

1 . . . xen
n u for exponents e1, . . . , en ∈

{0, 1}. We can compute directly

γ(Eii)xi = 1
4(yixi − xiyi)xi = −1

4xiyixi = −1
2xi,

γ(Eii)yi = 1
4(yixi − xiyi)yi = 1

4yixiyi = 1
2yi,

and γ(Eii) commutes with xj or yj in C(V ) for all j �= i, so

γ(Eii)x
e1
1 . . . xen

n u = 1
2(−1)eixe1

1 . . . xen

n u

for all 1 ≤ i ≤ n. Similarly, we find that Ei,i+1x1 . . . xju = 0 for all 1 ≤ i < n
and 1 ≤ j ≤ n, i.e., x1 . . . xju is a highest weight vector, which yields the
desired description of S as a gln-module.

From here we can go on to compute the action of D2 and the Dirac coho-
mology for all finite-dimensional irreducible Hξ-modules. These were classified
in [DT] and we now recall the classification.

Definition 4.22 (M(λ), L(λ)). For any gln-weight λ, let M(λ) be the Verma
module of Hξ defined by

M(λ) = Hξ/(HξEij + Hξyk + Hξ(Ekk − λk))i<j,k,

where Eij ∈ gln are the elementary matrices as before, and let L(λ) be the
unique irreducible quotient (which exists similar to the classical case).



Hopf–Hecke algebras, inf. Cherednik algebras, and Dirac cohomology 1583

The following says that the Dirac cohomology determines λ both for
Verma modules and their irreducible quotients.

Lemma 4.23. There is an irreducible gln-submodule with highest weight λ +
(1

2 , . . . , 1
2) in the Dirac cohomology of both M(λ) and L(λ), and λ+(1

2 , . . . , 1
2)

is the highest gln-weight occurring.

Proof. Let M be M(λ) or L(λ), let m be the image of 1 ∈ Hξ in the factor
space M and define u := y1 . . . yn ∈ S as above. Then yim = yiu = 0 for all
i. Hence, the Dirac operator D =

∑

i xi ⊗ yi + yi ⊗ xi acts as 0 on m ⊗ u in
M ⊗ S.

On the other hand, we observe that since M(λ) is isomorphic to (a quo-
tient of) S(n−) ⊗ S(h∗) as a gln-module, where n− is the span of {Eij}i>j ,
both M and S are direct sums of their gln-weight spaces and both have a
unique maximal weight λ and (1

2 , . . . , 1
2), respectively. But xi lowers the gln-

weight for each i, so the vector m ⊗ u of weight λ + (1
2 , . . . , 1

2) cannot be in
the image of the Dirac operator.

Hence, the image of m ⊗ u in HD(M) generates a (non-zero) irreducible
gln-submodule of highest weight λ + (1

2 , . . . , 1
2).

Definition 4.24 (hk, Ta, ∇, wp, ρ, C(p, μ)).

• For k ≥ 0, let hk = hk(z1, . . . , zn) be the complete homogeneous sym-
metric polynomial hk of degree k in the variables z1, . . . , zn, that is,

hk(z1, . . . , zn) :=
∑

l1+···+ln=k,li≥0

zl1
1 . . . zln

n .

• For a ∈ C, let Ta be the translation operator for polynomials, i.e.,
Tap(z) := p(z + a) for any polynomial p. Let ∇ := ∇1/2 (see Defini-
tion 4.13), that is, ∇ = T1/2 − T−1/2.

• For any polynomial p, let wp be the polynomial uniquely defined by

∇n−1zn−1w(z) = 2πnp(z).

• Let ρ := (n−1
2 , n−1

2 − 1, . . . , −n−1
2 ) ∈ Cn be the Weyl vector of gln.

• For any polynomial p and any dominant integral gln-weight μ, let C(p, μ)
denote the scalar by which the central element

∫

|v|=1 p(v⊗v) dv of U(gln)
(see Proposition 4.19 and its proof) acts on Vμ, the finite-dimensional
irreducible gln-module with highest weight μ.

Proposition 4.25. For any polynomial p, any μ ∈ Λ+ and any a ∈ C,

(4.9) C(p, μ) =
∑

k≥0

wp
khk(μ + ρ) and C(Tap, μ) = C(p, μ + (a, . . . , a)).
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Proof. The first identity is proven in [DT, Sec. 3.2] using the Weyl character

formula by taking a suitable limit. To derive the second identity from the

first, let us note that

∇n−1zn−1wTap(z) = Ta(2πnp(z)) = Ta∇n−1zn−1wp(z).

Now Ta commutes with ∇n−1, which annihilates polynomials of degree at

most n − 2. Hence, for any k ≥ 0,

Ta∇n−1zn−1zk = ∇n−1(z + a)k+n−1 = ∇n−1zn−1
∑

0≤i≤k

(

k + n − 1

i

)

aizk−i.

(4.10)

We claim that similarly,

(4.11) hk(z1 + a, . . . , zn + a) =
∑

0≤i≤k

(

k + n − 1

i

)

aihk−i(z1, . . . , zn).

If n = 1, then the claim is clearly true. Assume it is true for n − 1, then the

expression on the left-hand side can be simplified to be

∑

0≤i≤k

hi(z1 + a, . . . , zn−1 + a)(zn + a)k−i

=
∑

i1+i2+i3+i4=k

(

i1 + i2 + n − 2

i1

)

ai1hi2(z1, . . . , zn−1)

(

i3 + i4

i4

)

zi3
n ai4

=
∑

i2+i3+i=k

(

k + n − 1

i

)

aihi2(z1, . . . , zn−1)zi3
n

=
∑

0≤i≤k

(

k + n − 1

i

)

aihk−i(z1, . . . , zn),

where all summation indices are non-negative and where we used the identity

∑

i1+i4=i

(

n1 + i1

i1

)(

n2 + i4

i4

)

=

(

n1 + n2 + i + 1

i

)

for arbitrary integers n1, n2, a special case of the Rothe–Hagen identity (see

[Go, Eq. (3)]). This proves the claim by induction.
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The identities (4.10) and (4.11) directly imply that for all weights μ,

∑

k≥0

wTap
k hk(μ) =

∑

k≥0

∑

0≤i≤k

(

k + n − 1

i

)

aiwp
khk−i(μ)

=
∑

k≥0

wp
khk(μ1 + a, . . . , μn + a),

which is equivalent to the second identity in (4.9).

Definition 4.26 (w, P ). Let w = w(z) := wfξ(z) and let P be the multivariate
polynomial

P (μ) := C(fξ, μ) =
∑

m≥0

wkhk(μ + ρ).

Note that eventually, w and P depend only on the deformation parameter
ξ of Hξ.

Definition 4.27 (Λ+
ξ , ν). Furthermore, we define the set

Λ+
ξ := {λ ∈ Λ+ : ∃k ∈ Z≥0 : P (λ) = P (λ − (0, . . . , 0, k + 1))},

and for any λ ∈ Λ+
ξ , we define ν = ν(ξ, λ) ∈ Zn

≥0 by letting νi be the minimal
non-negative integer such that λ′ := λ− (0, . . . , 0, νi +1, 0, . . . , 0) is either not
a dominant weight or P (λ) = P (λ′) for every 1 ≤ i ≤ n.

The set Λ+
ξ parametrizes the finite-dimensional irreducible Hξ-modules,

each of which can be thought of as a rectangular grid of irreducible gln-
modules:

Proposition 4.28 ([DT, Thm. 3.2, Thm. 4.1]). The finite-dimensional irre-
ducible modules of Hξ are given (up to isomorphism) by the set {L(λ)}λ∈Λ+

ξ
.

For each λ ∈ Λ+
ξ , the central (Casimir) element t′

1 acts on L(λ) by the scalar
P (λ) and

L(λ) =
⊕

0≤ν′≤ν

Vλ−ν′

as gln-modules, where ν = ν(ξ, λ) is as defined above and ν ′ ∈ Zn
≥0 runs over

all tuples satisfying 0 ≤ ν ′
i ≤ νi for all 1 ≤ i ≤ n.

We can use this result to obtain the structure of L(λ) ⊗ S: let us fix
the deformation parameter ξ, the highest weight λ ∈ Λ+

ξ and ν = ν(ξ, λ) as
above.
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Definition 4.29 (θk(a), mμ). For any dominant integral gln-weight μ, we
define

mμ :=
∏

1≤i≤n

θνi
(λi + 1

2 − μi), where θk(a) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 a �∈ {0, . . . , k + 1}

1 a ∈ {0, k + 1}

2 a ∈ {1, . . . , k}

for a ∈ C, k ∈ Z≥0.

Proposition 4.30. For each λ ∈ Λ+
ξ ,

L(λ) ⊗ S =
⊕

μ

mμVμ

as gln-modules, where the sum ranges over all dominant integral gln-weights
μ; in particular, the weights occurring with non-zero mμ are those satisfying

μi ∈ {λi + 1
2 , λi − 1

2 , . . . , λi − νi − 1
2} for all 1 ≤ i ≤ n.

Proof. Let λ′ be a dominant integral gln-weight and Vλ′ the corresponding
irreducible highest weight gln-module. Then by the Pieri rule, Vλ′ ⊗ Λ(h)
decomposes as

⊕

{Vμ : μ ∈ Λ+, μi − λ′
i ∈ {0, 1} ∀1 ≤ i ≤ n}.

Now since L(λ) =
⊕

0≤ν′≤ν Vλ−ν′ and S = Λ(h) ⊗ (−1
2 Tr), L(λ) ⊗ S decom-

poses as

(4.12)
⊕

0≤ν′≤ν

⊕

{Vμ : μ ∈ Λ+, μi − (λi − ν ′
i) ∈ {±1

2} ∀1 ≤ i ≤ n}.

To determine the multiplicity of a weight μ, we count the number of ways we
can write μi as λi − ν ′

i ± 1
2 for some 0 ≤ ν ′

i ≤ νi, for each i. This number is
just θνi

(λi + 1
2 − μi).

Proposition 4.31. For each λ ∈ Λ+
ξ , the kernel of D2 acting on L(λ) ⊗ S is

the gln-module

⊕

{mμVμ : P (λ) = P (μ − (1
2 , . . . , 1

2))}.

Proof. We recall that

D2 = 2(
∑

i

xiyi +

∫

|v|=1
fξ(v ⊗ v) dv) ⊗ 1 − 2ΔC(

∫

|v|=1
fξ(v ⊗ v − 1

2) dv)
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according to Proposition 4.19. The sum of the two terms in parentheses is
just the central Casimir element t′

1 in Hξ which acts on L(λ) by the scalar
C(fξ, λ) = P (λ), because all yi act as 0 on the irreducible gln-submodule of
L(λ) with highest weight λ. Let us consider an irreducible gln-submodule of
L(λ) ⊗ S with highest weight μ. Then 1

2D2 acts on it by the scalar

P (λ)−C(T−1/2fξ, μ) = P (λ)−C(fξ, μ−(1
2 , . . . , 1

2)) = P (λ)−P (μ−(1
2 , . . . , 1

2)).

Definition 4.32 (λ(I), λ(i), I+). For any I ⊂ {1, . . . , n}, we define λ(I) ∈ Cn

by

λ
(I)
j := λj + 1

2 −

{

νj + 1 j ∈ I

0 j �∈ I
for all 1 ≤ j ≤ n

and for any 1 ≤ i ≤ n, λ(i) := λ({i}).

Note that λ(∅) = λ + (1
2 , . . . , 1

2) and that according to Definition 4.29

and Proposition 4.30, the set Λ+ ∩ {λ(I)}I consists exactly of those weights
μ, for which mμ = 1, that is, for which L(λ) ⊗ S has a unique irreducible
gln-submodule of the respective highest weight. Let us denote the unique sub-
modules by V (I) whenever λ(I) is dominant. These modules can be thought of
as the extremal vertices of the rectangular grid formed by all gln-submodules
of L(λ) ⊗ S.

Lemma 4.33. V (∅) and V (i) are contained in the kernel of D2 whenever λ(i)

is dominant.

Proof. Clearly

P (λ(∅) − (1
2 , . . . , 1

2)) = P (λ)

and

P (λ(i) − (1
2 , . . . , 1

2) = P (λ1, . . . , λi − νi − 1, . . . , λn) = P (λ),

by the definition of ν (Definition 4.17) if λ(i) is dominant.

To say more, we need the following observation:

Lemma 4.34. Let h(z1, z2) denote a linear combination of complete homoge-
neous symmetric polynomials in two variables. Consider d1, d2 ≥ 0, a1, a2 ∈ C

satisfying a1 − a2 ∈ R>0,

r := h(a1, a2) = h(a1, a2 − d2),

and one of the following conditions:
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• a1 − d1 − a2 = 0
• a1 − d1 − a2 ∈ R>0 and h(a1 − d1, a2) = r.

Then h(a1 − d1, a2 − d2) = r.

Proof. First we note that we can express the complete homogeneous sym-
metric polynomial hk(z1, z2) of any degree k ≥ 0 as the quotient (zk+1

1 −
zk+1

2 )/(z1 − z2) as long as z1 �= z2. Hence, if we write h =
∑

k≥0 skhk with
coefficients (sk)k and if we define the polynomial p(z) :=

∑

k≥0 skzk+1, then
h(z1, z2) = (p(z1) − p(z2))/(z1 − z2) as long as z1 �= z2.

Next, let us record that

(4.13) r = s1/t1 = s2/t2 ⇒ r = (s1 + s2)/(t1 + t2)

for all s1, s2, t1, t2 ∈ C such that t1, t2, and their sum are non-zero.

Now if d1 = 0 or d2 = 0, the statement is trivial, so may assume d1 and
d2 are positive. Also we may assume a2 < a1 = 0 for the proof, because
the general statement follows from this special case using an argument shift
and (4.11).

Thus we have

r = p(a2)/a2 = p(a2 − d2)/(a2 − d2).

and −d1−a2 = 0 or −d1−a2 > 0 together with (p(−d1)−p(a2))/(−d1−a2) =
r. Both imply

r = p(−d1)/(−d1),

either directly or with (4.13). Another application of (4.13) now yields

r = (p(−d1) − p(a2 − d2))/(−d1 − (a2 − d2)) = h(−d1, a2 − d2),

as desired.

We have already observed that the set {V (I)}I parametrizes the irre-
ducible gln-submodules of L ⊗ S which are located at the vertices of the
rectangular grid formed by all its irreducible gln-submodules. The following
results mean that these vertices, and hence, the shape of the rectangular grid,
are captured by the Dirac cohomology.

Lemma 4.35. Let M be an Hξ-module and assume N is an irreducible
gln-submodule which appears with odd multiplicity (e.g., multiplicity one) in
ker D2 ⊂ M ⊗ S. Then N appears in HD(M).
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Proof. The action of D is a gln-module map by Lemma 3.8, so D acts on the
multiplicity space of N such that its square is zero. If the multiplicity space
has an odd dimension, this action has a non-trivial cohomology.

Proposition 4.36. V (I) is contained in the Dirac cohomology HD(L(λ)) for
each I ⊂ {1, . . . , n} if λ(I) is dominant.

Proof. By Lemma 4.35 it is enough to show that all V (I) are contained in the
kernel of D2, because these gln-submodules have multiplicity one in L(λ)⊗S.

We have seen in Lemma 4.33 that V (I) lies in the kernel of D2 if |I| ≤ 1,
and we can proceed by induction in |I|. Assume l := |I| ≥ 2, λ(I) ∈ Λ+ and
assume all V (I′) with |I ′| < l and λ(I′) ∈ Λ+ lie in the kernel of D2.

Pick i < j, the two smallest indices in I. Then as λ and λ(I) are dominant
integral, λ(I\{i}) and λ(I\{i,j}) are dominant and λ(I\{j}) is dominant unless
j = i + 1 and (again due to the minimality condition on ν)

λi − νi − 1 = λi+1 − 1.

This means that

P (λ) = P (λ(I\{i}) − (1
2 , . . . , 1

2)) = P (λ(I\{i,j}) − (1
2 , . . . , 1

2)) =: r.

Moreover, if λ(I\{j}) is dominant, then

P (λ(I\{j}) − (1
2 , . . . , 1

2)) = r.

Let us define a1 := λi + ρi, a2 := λj + ρj , d1 := νi + 1, d2 := νj + 1, and

h(z1, z2) :=
∑

k

wkhk(λ1 + ρ1, . . . , z1, . . . , z2, . . . , λn + ρn),

where z1 and z2 are the i-th and j-th argument, respectively. Then the prop-
erties of P we have discussed above mean that r = h(a1, a2) = h(a1, a2 − d2)
and h(a1 − d1, a2) = r if λ(I\{j}) is dominant, or else a1 − d1 = a2.

This means we can apply Lemma 4.34 to conclude that h(a1−d1, a2−d2) =
r, that is, P (λ) = P (λ(I) −(1

2 , . . . , 1
2)), i.e., V (I) lies in the kernel of D2, which

completes the induction step.

Corollary 4.37. Any finite-dimensional irreducible representation of the in-
finitesimal Cherednik algebra Hξ is uniquely determined by its Dirac cohomol-
ogy. The highest weight λ and the dimensions ν of the rectangle formed by
the highest gln-weights can be read off from the Dirac cohomology.
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Proof. λ(∅) is the maximal weight occurring in the Dirac cohomology and
λ = λ(∅) − (1

2 , . . . , 1
2).

For each 1 ≤ i ≤ n, either there is an irreducible gln-submodule in the
Dirac cohomology whose highest weight is of the form λ(∅)−(0, . . . , k, 0, . . . , 0),
where k > 0 is the i-th coordinate, in which case νi = k−1, or there is no such
submodule, in which case νi is maximal among those non-negative integers k
for which λ − (0, . . . , k, 0, . . . , 0) is dominant.

Let us conclude our discussion with examples for n = 1 and n = 2 (cf. the
examples in [DT, Sec. 4]).

Example 4.38. For n = 1, λ is a complex number and ν is a non-negative
integer (minimal) such that P (λ) = P (λ−ν−1). Then L(λ) = Vλ⊕· · ·⊕Vλ−ν .
Hence,

L(λ) ⊗ S = V
λ+

1
2

⊕ 2V
λ−

1
2

⊕ · · · ⊕ 2V
λ−ν+

1
2

⊕ V
λ−ν−

1
2
.

Now the only weights μ occurring in L(λ) ⊗ S such that P (λ) = P (μ − 1
2)

are obviously λ(∅) = λ + 1
2 and λ(1) = λ − ν − 1

2 . So the kernel of D2 and,

by Proposition 4.36, the Dirac cohomology is just V (∅) ⊕ V (1).

Example 4.39. For n = 2, we identify weights with points in the plane and
we consider the gln-weight λ = (2.5, 0.5) together with a polynomial P in two
variables (whose existence we will establish shortly) satisfying

P (λ) = P (λ − (0, 3)) and P (λ − (k, 0)) �= P (λ) �= P (λ − (0, k)) for k = 1, 2.

Then ν1 = 2, because λ − (3, 0) = (−0.5, 0.5) is not dominant and ν2 =
2, because P (λ − (0, 3)) = P (λ) by assumption. Hence the irreducible gln-
submodules occurring in L(λ) form a 3 × 3-grid and their highest weights
are those μ satisfying λ ≥ μ ≥ λ − (2, 2). Each of these irreducible gln-
submodules produces up to 4 irreducible gln-submodules when tensored with
the spin module S, for an irreducible gln-module with highest weight μ they
have highest gln-weights μ + (±1

2 , ±1
2) (see Figure 1).

Now we specialize P (μ) = 27
2 h1(μ + ρ) + h2(μ + ρ) − 3

2h3(μ + ρ)) with the
complete homogeneous symmetric polynomials in two variables h1, h2, h3. We
can check (see the table in Figure 1) that P satisfies the conditions mentioned
so far and also

P (λ) = P (λ − (3, 3)) = P (λ − (1, 1)).

Note that P (λ) = P (λ−(3, 3)) follows already from our previous assumptions
by Lemma 4.34.
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ν
′

2
\ν

′

1
3 2 1 0

0 0 13 19 9
1 −11 1 9 4
2 −11 −3 4 1
3 9 10 13 9

Figure 1: Left: Weights of a finite-dimensional module M (filled dark circles),
of the tensor product M ⊗ S (all circles with dark outlines indicating multi-
plicities), and of the kernel of D2 (shaded circles with dark outlines indicat-
ing multiplicities). According to Proposition 4.36, the three multiplicity-free
weights at the vertices in ker D2 appear in the Dirac cohomology, and as we
discuss in Example 4.39 they, in fact, form the full Dirac cohomology (so the
slightly lighter shaded circles labeled (2, 0) are in the kernel of D2, but not
in the Dirac cohomology). The weight in the top left corner is not dominant.
Right: The values of the polynomial P (μ) = 27

2 h1(μ+ρ)+h2(μ+ρ)− 3
2h3(μ+ρ)

for μ = λ − ν ′.

Hence, the kernel of D2 is the sum of the irreducible gln-submodules of
L(λ) ⊗ S with highest weights (3, 1), (3, −2), (2, 0), or (0, −2) with their
multiplicities 1 or 4, respectively.

By Proposition 4.36, the three modules with multiplicity one also occur
in the Dirac cohomology. Let us determine the contribution of the remaining
weight (2, 0) with multiplicity 4 in L(λ) ⊗ S to the Dirac cohomology.

We view L(λ) as a factor space of Hξ identifying elements of the latter
space with their images under the quotient map and S as the left ideal of C
generated by u = y1 . . . yn, as before. It can then be verified that

m1 := 1 ⊗ x1x2u, m2 := x1 ⊗ x2u − x2 ⊗ x1u,

m3 := x2(x2E21 + (λ1 − λ2)x1) ⊗ u, m4 := (x2E21 + (λ1 − λ2)x1) ⊗ x2u

are four linearly independent highest weight vectors of irreducible gln-sub-
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modules with highest weight (2, 0) in L(λ) ⊗ S. Moreover,

Dm1 = (x1 ⊗ y1 + x2 ⊗ y2)m1 = 2m2

Dm4 = (y1 ⊗ x1 + x2 ⊗ y2)m4 = 2m3 + rm1

for some r ∈ C. This means that D has rank at least 2 on the multiplicity
space of V(2,0) with respect to L(λ) ⊗ S, but as D squares to 0 on this space,
the rank is exactly 2, the action of D decomposes into two Jordan blocks of
eigenvalue 0 and size 2 each, and D has no cohomology on this space.

Hence, the Dirac cohomology for this module equals the sum of those
irreducible submodules in the kernel of D2 which are multiplicity-free, which
is the part of the Dirac cohomology described by Proposition 4.36.

The part of the Dirac cohomology described by Proposition 4.36 is already
the full Dirac cohomology for all examples we computed.

Finally, let us conclude with a description of the map ζ from the cen-
ter of Hξ to the center of U(gln) which relates central characters according
to Corollary 4.20.

Let β1, . . . , βn be the standard generators of the center of U(gln) which can
be obtained as the coefficients of τ in the series expansion of the polynomial
function A �→ det(A − τ), using a suitable identification S(gl∗n) � U(gln), as
explained in [Ti, Sec. 2]. It is shown in [Ti] that the center of Hξ is freely
generated by elements

(4.14) ηi :=
∑

1≤k≤n

[βi, yk]xk − ci

for elements ci = ci(ξ) ∈ Z(U(gln)) for all 1 ≤ i ≤ n.

Definition 4.40. Using Sweedler’s notation Δ(u) = u(1) ⊗ u(2) for elements
u ∈ U(gln), we define for 1 ≤ i ≤ n:

bi :=
∑

k

βi[yk, xk] − [yk, (βi)(1) · xk](βi)(2) − ci ∈ U(gln).

Lemma 4.41. bi is central in U(gln).

Proof. We use that βi and ci are central in U(gln) and
∑

k ykxk is an gln-
invariant element, so for any u ∈ U(gln),

ubi =
∑

k

βi[u(1) · yk, u(2) · xk]u(3)

− [u(1) · yk, (u(2)(βi)(1)) · xk]u(3)(βi)(2)S(u(4))u(5) − uci
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=
∑

k

βi[yk, xk]u − [yk, (βi)(1) · xk](βi)(2)u − ciu = biu,

as desired.

Let HC : Z(U(gln)) → C[λ1, . . . , λn]Sn be the Harish-Chandra isomor-

phism between the center of U(gln) and the symmetric polynomial functions

in n variables. So for any z ∈ Z(U(gln)) and any integral dominant gln-weight

λ, HC(z) is a symmetric polynomial function in n variables and HC(z)(λ) is

its evaluation at λ, which is the scalar by which z acts on V
λ−(

1
2 ,...,

1
2 )

, the

finite-dimensional irreducible gln-module with highest weight λ − (1
2 , . . . , 1

2).

We observe that for any symmetric polynomial function h(λ1, . . . , λn),

there is another symmetric polynomial function h(λ1 − 1
2 , . . . , λn − 1

2). Let us

denote by T the map which is induced by this translation on Z(U(gln)) via

HC.

Proposition 4.42. Then ζ : Z(Hξ) → Z(U(gln)) is the unique algebra map

sending ηi �→ T (bi).

Proof. For all u ∈ U(gln), x ∈ h∗, y ∈ h, we can compute

[u, y]x = uyx − yux = (u[y, x] + uxy) − y(u(1) · x)u(2)

= (u[y, x] + uxy) − [y, u(1) · x]u(2) − (u(1) · x)yu(2)

≡ u[y, x] − [y, u(1) · x]u(2)

modulo Hξh, the left ideal in Hξ generated by h, where we use that hU(gln) =

U(gln)h in Hξ. So

ηi ≡ bi modulo Hξh.

Let us recall that for any deformation parameter ξ and any dominant integral

gln-weight λ, there is a Verma module M(λ) of Hξ (see Definition 4.22). Now

ηi acts on M(λ) by HC(bi)(λ + (1
2 , . . . , 1

2)), since λ is the highest weight

corresponding to an irreducible gln-module in M(λ), and any element from h

acts as 0 on it. On the other hand, we know from Lemma 4.23 that there is an

irreducible gln-submodule with highest weight (λ+(1
2 , . . . , 1

2)) in HD(M(λ)),

on which ζ(ηi) has to act by the same scalar, so

HC(ζ(ηi))(λ + 2(1
2 , . . . , 1

2)) = HC(bi)(λ + (1
2 , . . . , 1

2))

which implies the asserted relation between ηi and its image under ζ.
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