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Abstract
Weapply themethod of controlled Lagrangians by potential shaping to Euler–Poincaré
mechanical systems with broken symmetry. We assume that the configuration space is
a general semidirect product Lie groupG�V with a particular interest in those systems
whose configuration space is the special Euclidean group SE(3) = SO(3)�R

3. The key
idea behind thework is the use of representations ofG�V and their associated advected
parameters. Specifically, we derive matching conditions for the modified potential
exploiting the representations and advected parameters. Our motivating examples are
a heavy top spinning on amovable base and an underwater vehicle with non-coincident
centers of gravity and buoyancy. We consider a few different control problems for
these systems, and show that our results give a general framework that reproduces our
previous work on the former example and also those of Leonard on the latter. Also,
in one of the latter cases, we demonstrate the advantage of our representation-based
approach by giving a simpler and more succinct formulation of the problem.
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1 Introduction

1.1 Motivating example

The main goal of this paper is to stabilize equilibria of those mechanical systems
whose configuration space is a semidirect product Lie group, but whose symmetry is
broken by an external force. While our main results apply to a class of mechanical
systems in any finite-dimensional semidirect product Lie group S = G� V with a Lie
group G and a vector space V , our main source of motivation is those systems that
are naturally defined on the special Euclidean group SE(3) := SO(3) � R

3 but do not
possess the full SE(3)-symmetry.

Although SE(3) is the natural configuration of rigid body dynamics, one rarely
uses the group explicitly in its formulation, because one can usually decouple the
dynamics into the translational one of the center of mass and the rotational one about
it. Furthermore, the rotational dynamics possesses the SO(3)-symmetry because the
gravity does not affect it.

This is not the case with the systems shown in Fig. 1. For the underwater vehicle
(see, e.g., Leonard [18,19], Leonard and Marsden [20], Woolsey and Leonard [31]
and Chyba et al. [12], Smith et al. [28]), the rotational and translational dynamics
are coupled due to the interactions between the vehicle and the surrounding water.
The heavy top rotating on a movable base (which is assumed to be a point mass for
simplicity) from our previous work [13] is essentially the same: One needs to take into
account interactions between the rotational dynamics of the top and the translational
dynamics of the base. Therefore, one needs to formulate both systems on SE(3).

gg

Fig. 1 a Underwater vehicle: The configuration space is the semidirect product SE(3) := SO(3) � R
3,

i.e., rotations around the center of buoyancy (CB) and its translational positions. The center of mass (CM)
is not coincident with the CB; this breaks the SE(3)-symmetry that the system would otherwise possess.
b Heavy top on a (point-mass) movable base: Just like the underwater vehicle, the configuration space is
SE(3), rotations around the junction point and the translational positions of the base; the gravity breaks the
SE(3)-symmetry
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Moreover, the gravity breaks the symmetry of both systems. The underwater vehicle
is subject to both buoyancy and gravity, which usually act on different centers of the
body. One is therefore compelled to select either of them—say the center of buoyancy
here—as the center of rotation; then, the gravity breaks the SE(3)-symmetry. For the
heavy top on a movable base, the natural center of the translational and rotational
motions would be the junction point of the top and the base, but the center of mass of
the top is not at the junction point, thereby breaking the SE(3)-symmetry as well.

The broken symmetry implies that the standard Euler–Poincaré or Lie–Poisson
theory does not directly apply to these systems. To remedy the broken S-symmetry,
one needs to introduce advected parameters via a representation of S on the dual X∗
of an appropriate vector space X . From the Lagrangian point of view, this results in
the Euler–Poincaré equation with advected parameters on s× X∗; see Holm et al. [16]
and Cendra et al. [9].

The advantages of the Euler–Poincaré equationwith advected parameters are: (i) the
resulting equations are defined on a vector space s × X∗ as opposed to the tangent
bundle T S of the Lie group S; (ii) the reduced Lagrangian defined on s × X∗ tends
to have a simpler expression than the original one defined on T S. As a result, the
Euler–Poincaré equation with advected parameters is amenable to the method of con-
trolled Lagrangians [1,3–5,10,11,14,15,25,26], because a simpler expression of the
Lagrangian on a vector space facilitates the derivation of the matching condition.

1.2 Main results and outline

We apply the method of controlled Lagrangians—using potential shaping particularly
—to the Euler–Poincaré equation with advected parameters. This work is a companion
paper to our paper [13] that focused on kinetic shaping of such systems. Our main
results are matching conditions as well as the resulting control laws for such systems
using potential shaping for a class of mechanical systems on a semidirect product Lie
group S = G� V with broken symmetry. The key idea is the use of representations of
the Lie group S and their associated advected parameters and momentum maps. We
demonstrate the generality and applicability of the theory by deriving those controls
used in some existing works.

We note that thematching conditionwe seek here is less general thanwhat is usually
referred to as matching conditions (see, e.g., Blankenstein et al. [1]) in which one
obtains a PDE for the controlled Lagrangian. Our matching conditions are simplified
due to a specific form of potential shaping ansatz, and also do not systematically
characterize the stability of the system. Instead, our matching conditions provide the
first step towards stability: The matching must be followed by an analysis of stability
conditions for each specific system in order to find an explicit stabilizing control
law. It would be an interesting future work to generalize our approach to encompass
stabilization without assuming a specific ansatz for the controlled Lagrangian.

The idea of potential shaping has been around for quite a while and has been
studied quite extensively in various settings; see, e.g., van der Schaft [30], Nijmeijer
and van der Schaft [14,24], Blankenstein et al. [1], Ortega et al. [25–27], Bloch et
al. [2,5], Bullo and Lewis [8, Section 10.4], Spong and Bullo [29], and Woolsey and
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Techy [32]. However, none of those works address matching conditions for the Euler–
Poincaré equation with advected parameters in general, nor stresses the role of Lie
group representations.

The paper proceeds as follows: We first give a brief survey of semidirect product
Lie groups in Sect. 2 in order to make the paper self-contained as well as to set
the notation straight, because notations involving various representations used in the
semidirect product theory can be quite confusing.

In Sect. 3, we build on Sect. 2 to formulate the basic equations of mechanical
systems on semidirect product Lie groupswith broken symmetry—the Euler–Poincaré
equation with advected parameters. We then work out the examples shown in Fig. 1
to illustrate the ideas. We also show how to track additional advected parameters.
This idea is important in stabilizing an equilibrium that is characterized by additional
variables than the original variables of the system.

In Sect. 4, we consider controlled Euler–Poincaré equation with advected param-
eters with potential shaping, and derive matching conditions as well as the resulting
control laws. Particularly, we consider the following two settings:

(i) The controlled system becomes a simpler system with less advected parameters.
This boils down to considering a subrepresentation of the original representation
used to describe the original advected parameters.

(ii) The controlled system involves additional advected parameters—hence addi-
tional representations. Specifically, an operational goal of the system naturally
gives rise to an equilibrium defined in terms of the original configuration vari-
ables and additional advected parameters.

So in both cases, it boils down to using proper representations.As a result, thematching
conditions we derive are in terms of those momentum maps associated with these
representations.

The first setting is rather restrictive because one can manage to reduce advected
parameters in limited circumstances. On the other hand, the second setting would
have more applications because one has much more freedom in introducing additional
advected parameters than reducing them, oftentimes for practical purposes.

As an example of the first setting, we find the ad hoc potential shaping applied to
the system in Fig. 1b from our work [13]. For the second one, we obtain those controls
found by [19] to stabilize a desired steady motion as well as to prevent translational
drift in underwater vehicles. Particularly, in finding the control to prevent translational
drift, our use of representation of SE(3) on R

4 ×R
4 results in a simpler formulation of

the problem than in Leonard [19], thereby demonstrating the efficacy of our approach.

2 Semidirect product Lie groups

Although the concept of semidirect productLie groups is fairlywell known, derivations
of concrete formulas in such Lie groups can be quite involved, and are usually not
covered with details in standard references. So we give a short survey of semidirect
product Lie groups using SE(3) := SO(3) � R

3 as a running example to illustrate
concrete calculations. Our main references here are Cendra et al. [9], Holm et al. [16],
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Marsden et al. [22,23]. This section overlaps with the companion paper [13], but is
included for completeness as well as to set the notation.

2.1 Semidirect product Lie groups and Lie algebras

Let G be a Lie group, V be a vector space, and GL(V ) be the set of all invertible
linear transformations on V . Let ρ : G → GL(V ) be a (left) representation of G on V ,
i.e., ρ(g1g2) = ρ(g1)ρ(g2) for any g1, g2 ∈ G. We define the semidirect product Lie
group S := G � V under the multiplication

s1 · s2 = (g1, x1) · (g2, x2) = (g1g2, ρ(g1)x2 + x1).

Therefore, for any element s = (g, x) ∈ S, its inverse is defined by

s−1 = (g, x)−1 =
(
g−1,−ρ(g−1)x

)
.

Example 1 (SE(3) = SO(3) � R
3) Consider the representation

ρ : SO(3) → GL(R3) = GL(3, R); ρ(R)x = Rx

defined by the standard matrix-vector multiplication. Then, we can define the special
Euclidean group SE(3) := SO(3) � R

3 under the following group multiplication:

(R1, x1) · (R2, x2) = (R1R2, R1x2 + x1).

One may think of (R2, x2) as the rotational and translational configurations of a rigid
body in R

3, and then may see the above operation as the rotation by R1 followed by
the translation by x1 applied to the old configuration (R2, x2). Another way of looking
at SE(3) is that it is the matrix group

SE(3) =
{
(R, x) :=

[
R x
0T 1

]
| R ∈ SO(3), x ∈ R

3
}

under the standard matrix multiplication.

2.2 Induced representations

The representation ρ induces several other representations as well. First, the dual
ρ∗ : G → GL(V ∗) is defined so that, for any g ∈ G, any α ∈ V ∗, and any x ∈ V ,

〈
ρ∗(g)α, x

〉 =
〈
α, ρ(g−1)x

〉
,

where 〈 · , · 〉 : V ∗ ×V → R is the natural dual pairing. This yields ρ∗(g) = ρ(g−1)∗,
and indeed defines a left representation of G on V ∗.
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Let g be the Lie algebra of G. Then, the Lie group representation ρ also gives rise
to the Lie algebra representation ρ′ : g → gl(V ) as follows:

ρ′(ξ)v := d

dε
ρ(exp(εξ))v

∣∣∣∣
ε=0

= ξV (v),

where ξV is the infinitesimal generator on V corresponding to ξ . In fact, as shown in
[21, Proposition 9.1.6], ρ′ is a Lie algebra homomorphism, i.e., for any ξ, η ∈ g,

ρ′([ξ, η]) = [ρ′(ξ), ρ′(η)].
The Lie algebra s of S is the semidirect product Lie algebra g � V equipped with

the following commutator or adjoint operator:

ad(ξ,v)(η,w) := [(ξ, v), (η,w)] = (
adξ η, ρ′(ξ)w − ρ′(η)v

)
.

Let us next find the coadjoint representation on the dual s∗ of the Lie algebra s. To
that end, we first would like to find the so-called diamond operator (see Cendra et al.
[9], Holm et al. [16], and Holm et al. [17, §7.5]). Let us fix v ∈ V in ρ′(ξ)v to regard
ξ �→ ρ′(ξ)v as a linear map ρ′

v : g → V , i.e.,

ρ′
v(ξ) := ρ′(ξ)v.

Then, its dual map (ρ′
v)

∗ : V ∗ → g∗ is defined so that, for any α ∈ V ∗ and ξ ∈ g,

〈
(ρ′

v)
∗(α), ξ

〉 = 〈
α, ρ′

v(ξ)
〉
.

The diamond operator 	: V × V ∗ → g∗ is then defined as

v 	 α := (ρ′
v)

∗α. (1)

The diamond operator is actually the momentum map associated with the cotangent
lift of the action defined by the representation ρ. In fact, for any α ∈ V ∗ and any
ξ ∈ g,

〈
(ρ′

v)
∗α, ξ

〉 = 〈
α, ρ′

v(ξ)
〉

= 〈
α, ρ′(ξ)v

〉

=
〈
α,

d

dε
ρ(exp(sε))v

∣∣∣∣
ε=0

〉

= 〈α, ξV (v)〉
= 〈J(v, α), ξ 〉,

where J : T ∗V ∼= V × V ∗ → g∗ is the momentum map associated with the cotangent
lift of the G-action ρ on V . Therefore,

v 	 α := (ρ′
v)

∗α = J(v, α). (2)
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Using the diamond operator or the momentum map J, we may write the coadjoint
representation on the dual s∗ of S as follows:

ad∗
(ξ,v)(μ, α) =

(
ad∗

ξ μ − J(v, α), ρ′(ξ)∗α
)
, (3)

where ρ′(ξ)∗ is the dual map of ρ′(ξ), i.e.,

〈
ρ′(ξ)∗α, v

〉 = 〈
α, ρ′(ξ)v

〉
.

Example 2 (SE(3) = SO(3) � R
3) Identifying (R3)∗ with R

3 via the dot product, the
dual ρ∗ is defined as

(
ρ∗(R)α

) · x = α · ρ(R−1)x = α · (R−1x) = (Rα) · x,

and so ρ∗(R)α = Rα.
Let us introduce the hat map to identify so(3) with R

3:

ˆ( · ) : R
3 → so(3); a �→ â :=

⎡
⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤
⎦ .

Then, we have âb = a × b, and [â, b̂] is identified with a × b. The Lie algebra
representation ρ′ is then

ρ′(�̂)v = ρ′
v(�̂) = d

dε
exp(ε�̂)v

∣∣∣∣
ε=0

= �̂v = � × v. (4)

As a result, we can express the commutator as

ad
(�̂,v)(η̂,w) = [(�̂, v), (η̂,w)] =

(
[�̂, η̂], �̂w − η̂v

)

or in terms of vectors in R
3,

ad(�,v)(η,w) = [(�, v), (η,w)] = (� × η, � × w − η × v).

Let us find the diamond operator. We have, for any �̂ ∈ so(3),

〈
(ρ′

v)
∗α, �̂

〉
= (ρ′

v)
∗(α) · � = α ·

(
ρ′
v(�̂)

)
= α · (� × v) = (v × α) · �,

and so

v 	 α = (ρ′
v)

∗(α) = v × α.
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We may also find the dual ρ′(�̂)∗ as follows:

〈
ρ′(�̂)∗α, v

〉
=

〈
α, ρ′(�̂)v

〉
= α · (� × v) = (α × �) · v,

and so

ρ′(�̂)∗α = α × �.

As a result, we may write the coadjoint action as follows:

ad∗
(�,v)(μ,α) = (μ × � − v × α, α × �).

3 Mechanical systems on semidirect product Lie groups with broken
symmetry

3.1 Broken symmetry

Let S := G�V be a semidirect product Lie group, and La0 : T S → R be a Lagrangian
with parameters a0 ∈ X∗, where X∗ is the dual of a vector space X . Specifically, we
assume that the Lagrangian takes the following form:

La0(s, ṡ) = 1

2
⟪ṡ, ṡ⟫−Ua0(s),

where ⟪ · , · ⟫ is a left-invariant metric on T S, i.e., for any s, s0 ∈ S and any ṡ ∈ TsS,

⟪TsLs0(ṡ), TsLs0(ṡ)⟫ = ⟪ṡ, ṡ⟫,

where L stands for the left translation, i.e., Ls0(s) = s0s for any s0, s ∈ S, and T L is its
tangent lift. On the other hand, the potential is not S-invariant, i.e.,Ua0(s0s) �= Ua0(s)
for some s0, s ∈ S, and thus breaks the S-symmetry.

3.2 Recovery of symmetry

Suppose that we can recover the broken S-symmetry of the potential in the following
way: Let us first define the extended potential U : S × X∗ → R so that U (s, a0) =
Ua0(s) for any s ∈ S, and let σ : S → GL(X) be a representation of S on X , and
σ ∗ : S → GL(X∗) be the induced representation on the dual X∗. We assume that we
can find an appropriate σ so that we can recover the S-symmetry of the potential, i.e.,
for any s0, s ∈ S and any a ∈ X∗,

U
(
s0s, σ (s0)

∗a
) = U (s, a).
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Now let us define the extended Lagrangian L : T S × X∗ → R by setting

L(s, ṡ, a) := 1

2
⟪ṡ, ṡ⟫−U (s, a),

and also define the action

	 : S × (T S × X∗) → T S × X∗;
(s0, (s, ṡ, a)) �→ 	s0(s, ṡ, a) := (

s0s, TsLs0(ṡ), σ
∗(s0)a

)
.

Then, we see that the extended Lagrangian now possesses the S-symmetry, i.e., L ◦
	s0 = L for any s0 ∈ S.

Remark 1 It is the variables in the dual space X∗ that have a practical importance
here, whereas the variables in X are auxiliary in nature. In the Lagrangian semidirect
product theory [9,16], the significance of having the dual space X∗ (as opposed to
X ) for the parameters is not particularly clear. However, in the Hamiltonian theory
[22,23], one can formulate the system as the Lie–Poisson equation on (s � X)∗, and
hence, it is rather natural to have the dual space X∗ here; see [16] for a comparison of
the Lagrangian and Hamiltonian theories.

We will also later need the momentum map K : X × X∗ → s∗ associated with the
above action σ . It is defined analogously to J from (1) and (2) as follows:

K(x, a) = (
Kg∗(x, a), KV ∗(x, a)

) := (σ ′
x )

∗a, (5)

where we split the components of K into those in g∗ and V ∗ as Kg∗ and KV ∗ .

3.3 Euler–Poincaré equation with advected parameters

Once the S-symmetry is recovered as shown above, one may define (with an abuse of
notation) the reduced potential U : X∗ → R so that U

(
σ(s−1)a

) = U
(
e, σ (s−1)a

)
,

i.e.,

U (a) := U (e, a),

and hence also define the reduced Lagrangian 
 : s × X∗ → R as


(ξ, v, a) := L(e, (ξ, v), a) = 1

2
⟪(ξ, v), (ξ, v)⟫−U (a). (6)

Then, one may reduce the variational principle from T S × X∗ to s × X∗ (see [9,16]
and [17, §7.5]) to obtain the Euler–Poincaré equation with advected parameters:

d

dt

(
δ


δ(ξ, v)

)
= ad∗

(ξ,v)

δ


δ(ξ, v)
+ K

(
δ


δa
, a

)
, ȧ = σ ′(ξ, v)∗a.
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Fig. 2 Underwater vehicle

Note that, for any smooth function f : E → R on a real vector space E , we define
its functional derivative δ f /δx ∈ E∗ at x ∈ E such that, for any δx ∈ E , under the
natural dual pairing 〈 · , · 〉 : E∗ × E → R,

〈
δ f

δx
, δx

〉
= d

dε
f (x + εδx)

∣∣∣∣
ε=0

.

For example, if E = R
n and (Rn)∗ is identified with R

n via the dot product, δ f /δx is
the gradient ∂ f /∂x.

Using formula (3) for the coadjoint action on s∗ as well as the expression for K in
(5), we have

d

dt

(
δ


δξ

)
= ad∗

ξ

δ


δξ
− J

(
v,

δ


δv

)
+ Kg∗

(
δ


δa
, a

)
,

d

dt

(
δ


δv

)
= ρ′(ξ)∗ δ


δv
+ KV ∗

(
δ


δa
, a

)
,

da

dt
= σ ′(ξ, v)∗a.

(7)

Example 3 (Underwater vehicle; see Leonard [18,19], Leonard and Marsden [20])
Consider the underwater vehicle shown in Fig. 2. The configuration space is S = SE(3),
i.e., rotations about the center of buoyancy and its translational positions; see Fig. 1a.
More specifically, let {ei }3i=1 and {Ei }3i=1 be the orthonormal spatial/inertial and body
frames, respectively; the body frame is attached to the body at the center of buoyancy
(CB) and is taken to be the principal axes of the body; see Fig. 2. Then, by defining
the matrix R so that Ei = Rei for i = 1, 2, 3 gives an element R ∈ SO(3). Note that
{Ei }3i=1 is time-dependent whereas {ei }3i=1 is fixed. Moreover, specifying the position
of the center of buoyancy in the spatial frame as x ∈ R

3, we have an element (R, x)
in SE(3) that specifies the orientation and the position of the vehicle.
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The metric ⟪ · , · ⟫ defining the kinetic energy is left-invariant, and is given as (see
[18–20] for details)

⟪(�, v), (�, v)⟫ = [
�T vT

] [
J D
DT M

] [
�

v

]
, (8)

where � and v are body angular velocity and the velocity of the center of buoyancy
seen from the body frame. As a result, we may define the angular and linear impulses
[18–20]:

� := δ


δ�
= J� + Dv, P := δ


δv
= DT� + Mv. (9)

On the other hand, assuming the neutral buoyancy, the potential term is given as

Ue3(R, x) = mgle3 · (Rχ) = mglχ · (R−1e3),

where lχ is the position vector—l being its length and χ being the unit vector for the
direction—of the center of mass measured from the center of buoyancy; see Fig. 2.
Hence, we define the extended potential U : SE(3) × (R3)∗ → R by setting

U (R, x,�) := mglχ · (R−1�)

so that U (R, x, e3) = Ue3(R, x).
Also define the representation σ : SE(3) → GL(R3) by

σ(R, x)y := Ry.

Identifying (R3)∗ with R
3 via the inner product, we have

(
σ ∗(R, x)�

) · y = � ·
(
σ((R, x)−1)y

)
= � ·

(
R−1y

)
= (R�) · y.

Therefore, we have

σ ∗(R, x)� = R�.

As a result, we have, for any (R0, x0), (R, x) ∈ SE(3) and any � ∈ R
3,

U
(
(R0, x0) · (R, x), σ ∗(R0, x0)�

) = mglχ · ((R0R)−1R0�)

= mglχ · (R−1�)

= U (R, x,�),

hence recovering the SE(3)-symmetry. Then, we may define the reduced potential
U : (R3)∗ → R as

U (�) := U (I , 0,�) = mglχ · �,
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and the reduced Lagrangian 
 : se(3) × (R3)∗ → R as


(�, v,�) := 1

2
⟪(�, v), (�, v)⟫− mglχ · �.

We also find

σ ′(�, v)y = σ ′
y(�, v) = �̂y = � × y, (10)

and thus

(
σ ′(�, v)∗�

) · y = � · (
σ ′(�, v)y

) = � · (� × y) = (� × �) · y,

resulting in

σ ′(�, v)∗� = � × �. (11)

Similarly,

(
(σ ′

y)
∗�

)
· (�, v) = � · σ ′

y(�, v) = � · (� × y) = (y × �) · �,

and so we obtain, using (5),

K(y,�) = (
Kso(3)∗(y,�),K(R3)∗(y,�)

) = (σ ′
y)

∗� = (y × �, 0). (12)

Therefore, the Euler–Poincaré equation (7) with advected parameters gives

d

dt

(
∂


∂�

)
= ad∗

�

∂


∂�
− J

(
v,

∂


∂v

)
+ Kso(3)∗

(
∂


∂�
,�

)
,

d

dt

(
∂


∂v

)
= ρ′(�)∗ ∂


∂v
+ K(R3)∗

(
∂


∂�
,�

)
,

d

dt
� = σ ′(�, v)∗�,

or more concretely,

�̇ = � × � + P × v − mglχ × �,

Ṗ = P × �,

�̇ = � × �

(13)

as in [18–20].
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Fig. 3 Heavy top on a movable base

Example 4 (Heavy top on movable base; see Contreras and Ohsawa [13]) Consider
the heavy top rotating on a movable base shown in Fig. 3. The configuration space
is again S = SE(3), where the body frame is attached to the top at the junction point
with the base (which is assumed to be a point mass M for simplicity). The setting is
almost the same as the underwater vehicle, and the kinetic energy is also defined in a
similar manner.

The only major difference is that the potential term depends not only on the orien-
tation of the top but also on the height of the system:

Ue3(R, x) = mglχ · (R−1e3) + m̄gx · e3
= g

[
mlχ m̄

] [
R−1 0
xT 1

] [
e3
0

]

= gm ·
(
sT e3

)
,

where

m̄ := M + m, s = (R, x) =
[
R x
0T 1

]
,

m :=
[
mlχ
m̄

]
∈ R

4, e3 :=
[
e3
0

]
∈ R

4.

The potential Ue3 is then clearly not SE(3)-invariant.
Let us define the extended potential U : SE(3) × (R4)∗ → R by setting

U (R, x, a) := gm ·
(
sT a

)
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so that U (R, x, e3) = Ue3(R, x). Also define the representation σ : SE(3) → GL(R4)

by

σ(s)y := sy =
[
R x
0T 1

] [
y
y4

]
=

[
Ry + y4x

y4

]
. (14)

We note in passing that this representation was also used in the optimal-control for-
mulation of the Kirchhoff elastic rod under gravity by [6,7].

Identifying (R4)∗ with R
4 via the inner product, we have

(
σ ∗(s)a

) · y = a ·
(
σ(s−1)y

)
= a ·

(
s−1y

)
=

(
(sT )−1a

)
· y.

Therefore, we have

σ ∗(s)a = (sT )−1a.

As a result, we have, for any s0, s ∈ SE(3),

U
(
s0s, σ

∗(s0)a
) = gm ·

(
(s0s)

T (sT0 )−1a
)

= gm ·
(
sT a

)

= U (s, a),

that is, we have recovered the SE(3)-symmetry. Therefore, writing a = (�, h) ∈
(R4)∗—h is the height of the base in the inertial frame—we may define the reduced
potential U : (R4)∗ → R as

U (�, h) = U (e, (�, h)) = gm · (�, h) = mglχ · � + m̄gh. (15)

Moreover,

σ ′(�, v)y = σ ′
y(�, v) = (� × y + y4v, 0),

and thus

(
σ ′(�, v)∗a

) · y = a · (σ ′(�, v)y
)

= (�, h) · (� × y + y4v, 0)

= � · (� × y) + y4� · v
= (� × �) · y + (� · v)y4,

and so

σ ′(�, v)∗a = (� × �, � · v).
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Similarly,

(
(σ ′

y)
∗a

)
· (�, v) = a ·

(
σ ′
y(�, v)

)

= � · (� × y) + y4� · v
= (y × �) · � + (y4�) · v,

and so we obtain, using (5),

K(y, a) = (
Kso(3)∗(y, a),K(R3)∗(y, a)

) = (σ ′
y)

∗a = (y × �, y4�). (16)

Therefore, the Euler–Poincaré equation (7) with advected parameters gives

d

dt

(
∂


∂�

)
= ad∗

�

∂


∂�
− J

(
v,

∂


∂v

)
+ Kso(3)∗

(
∂


∂a
, a

)
,

d

dt

(
∂


∂v

)
= ρ′(�)∗ ∂


∂v
+ K(R3)∗

(
∂


∂a
, a

)
,

da

dt
= σ ′(�, v)∗a,

or more concretely,

�̇ = � × � + P × v − mglχ × �,

Ṗ = P × � − m̄g�,

�̇ = � × �,

ḣ = � · v,

as we have obtained in [13].

3.4 Tracking additional advected parameters

In control applications of the Euler–Poincaré equation (7) with advected parameters,
one is often interested in tracking and stabilizing more variables in addition to the
dynamical variables (ξ, v, a) ∈ s× V ∗. Suppose that these additional variables b live
in the dual Y ∗ of a vector space Y . Being rather ancillary in nature, these variables can
oftentimes be described as advected parameters via a representation τ : S → GL(Y ).
Note that it does not alter the equations of motion (7), i.e., one simply augments the
equations of motion (7) with

ḃ = τ ′(ξ, v)∗b. (17)

Example 5 (Desired steady motion in underwater vehicle [19, Section 4.1]) Suppose
that, for practical purposes, one would like to have the vehicle stay close to the desired
orientation Rd ∈ SO(3) and the desired velocity vd ∈ R

3\{0} in the body frame.
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Fig. 4 The desired velocity vd is a fixed vector in the body frame, and w3 := Rdvd/‖vd‖ is the fixed unit
vector in the spatial frame indicating the direction of the desired velocity when the vehicle is in the (fixed)
desired orientation Rd ∈ SO(3). On the other hand, �(t) := R(t)Tw3 is the time-dependent vector in the
body frame that indicates the direction of w3 seen from the body frame, where R(t) ∈ SO(3) indicates the
orientation of the vehicle at time t

The push-forward of the unit vector vd/‖vd‖ by Rd gives the fixed unit vector
w3 := Rdvd/‖vd‖ in the spatial frame. Then, the pull-back of w3 by R(t) ∈ SO(3)
gives the time-dependent unit vector �(t) := R(t)Tw3 in the body frame at any time
t ; see Fig. 4. Then, one can think of the deviation of�(t) from vd/‖vd‖ as an indicator
of deviation from the desired steady motion.

Specifically, if R(0) = I then �(t) := R(t)T�(0). This suggests that we set
Y = R

3 anddefine the representation τ : SE(3) → GL(R3) so that τ(R, x)∗� = RT�.
In fact, defining τ(R, x)y = Ry would result in the desired expression. Note that
τ is exactly the same representation as σ from Example 3. As a result, we have
τ ′(�, v)y = � × y, and so τ ′(�, v)∗� = � × � in view of (10) and (11). Hence,
the additional Eq. (17) becomes

�̇ = � × �.

As we shall see later, one may augment the Euler–Poincaré equation (13) with the
above equation to formulate the problem of finding a control to stabilize the direction
of �, thereby achieving the stability of the desired steady motion.

Example 6 (Translational drift in underwater vehicle [19, Section 4.2]) Suppose that,
instead of tracking the desired velocity and orientation, one would like to track unde-
sired drift of the underwater vehicle in those directions perpendicular to the direction
w3 of the desired velocity in the spatial frame.

We show how to exploit representations and advected parameters to formulate
the problem; this results in a more succinct formulation of the problem from [19,
Section 4.2]. As we shall see in Example 9 below, our formulation still yields the same
control law as that of [19].

Let {w1,w2} be an orthonormal basis for span{w3}⊥ in the spatial frame defined so
that {w1,w2,w3} is a right-handed system, i.e.,w1×w2 = w3. Then, the driftwewould
like to track (and would like to later prevent with controls) is δ(t) = (δ1(t), δ2(t)) :=
(x(t) · w1, x(t) · w2) ∈ R

2 at any time t ; see Fig. 5.
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Fig. 5 Fix an orthonormal basis {w1,w2} for span{w3}⊥, where w3 is defined in Fig. 4. Then, 
i (t) :=
R(t)Twi gives the directions ofwi seen from the body frame for i = 1, 2, whereas δ(t) := (x(t) ·w1, x(t) ·
w2) gives the undesired drift of the vehicle. The vector �(t) is not tracked in this problem but is shown as
a reference because {
1(t), 
2(t), �(t)} defines an orthonormal basis for the body frame

Notice that, defining
i (t) := R(t)Twi ∈ R
3 and writing�i (t) = (
i (t), δi (t)) ∈

R
4 for i = 1, 2, we have

[
�1(t) �2(t)

] =
[

1(t) 
2(t)
δ1(t) δ2(t)

]
=

[
R(t)Tw1 R(t)Tw2
x(t) · w1 x(t) · w2

]

=
[
R(t)T 0
x(t)T 1

] [
w1 w2
0 0

]

= s(t)T W ,

where we wrote s(t) =
[
R(t) x(t)
0T 1

]
and W := [ w1 w2

0 0

]
.

This suggests us to set Y = R
4 × R

4 and consider the representation τ : SE(3) →
GL(R4×R

4) so that τ(s)∗(�1,�2) = (sT�1, sT�2). In fact, we see that τ(s)(y, z) =
(sy, sz) would do, and then since τ is two copies of the representation σ from (14),
we have, writing y = (y, y4) and z = (z, z4),

τ ′(�, v)(y, z) = τ ′
(y,z)(�, v) =

([
� × y + y4v

0

]
,

[
� × z + z4v

0

])
. (18)

Therefore, we have

τ ′(�, v)∗(�1,�2) =
([


1 × �


1 · v
]

,

[

2 × �


2 · v
])

.

Hence Eq. (17) for tracking additional variables becomes, for i = 1, 2,


̇i = 
i × �, δ̇i = 
i · v.

Our formulation is much simpler than that of [19]; yet it turns out to be equivalent
to hers. To see this, let us first set Q := [w1 w2 w3]T . Then, Q ∈ SO(3) because
{w1,w2,w3} is a right-handed orthonormal basis. Therefore, we have QQT = I or
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Qwi = ei for i = 1, 2, 3; specifically QRdvd = ‖vd‖ e3, i.e., this is the same Q
defined in [19]. Then

δi = xTwi = xT QT ei = (Qx)T ei .

So δ = (δ1, δ2) gives the first two components of Qx; but then this implies that δ is
nothing but the first two components of b̃ in [19]. Notice that our evolution equation
for δ is much simpler than that for b̃ in [19]. This demonstrates the advantage of our
geometric approach using representations and advected parameters. We shall continue
the comparison in Example 9 below to show that our formulation yields the same
control law in a simpler form as well.

4 Potential shaping andmatching conditions

4.1 Controlled Euler–Poincaré equation with advected parameters

Let I ⊂ R be the time interval of interest, and apply control u = (ug∗ , uV ∗) : I →
g∗ ×V ∗ to the Euler–Poincaré equation (7) augmented with the Eq. (17) for additional
variables b to track, i.e.,

d

dt

(
δ


δξ

)
= ad∗

ξ

δ


δξ
− J

(
v,

δ


δv

)
+ Kg∗

(
δ


δa
, a

)
+ ug∗ ,

d

dt

(
δ


δv

)
= ρ′(ξ)∗ δ


δv
+ KV ∗

(
δ


δa
, a

)
+ uV ∗

(19)

coupled with either just

da

dt
= σ ′(ξ, v)∗a, (20a)

or, with additional advected parameters b to track,

da

dt
= σ ′(ξ, v)∗a,

db

dt
= τ ′(ξ, v)∗b. (20b)

We note that the control is applied only to the g∗ × V ∗-part of the equation, not to the
X∗-part for the advected parameters.

Our goal is to find a control that stabilizes an equilibrium of the above set of equa-
tions. The first step towards the goal is the matching using the controlled Lagrangian
considered in various settings [1–5,10,11,14,15,25,26]. More specifically, we would
like to find a new Lagrangian 
̃—called the controlled Lagrangian—such that its cor-
responding uncontrolled Euler–Poincaré equation becomes identical to the original
controlled system (19) with (20a) or (20b).

We are particularly interested in the potential shaping, i.e., we seek the new
Lagrangian 
̃ by changing only the potential term in the original Lagrangian 
 in
(6).
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In the sections to follow, we will show two different types of matching via potential
shaping. In Sect. 4.2, we will show how one can reduce Eq. (20a) using a subrepresen-
tation so that the controlled system becomes the Euler–Poincaré equation involving
less advected parameters. In Sect. 4.3, we will show how to incorporate the additional
advected parameter b in (20b) into the control so that one can achieve stability in the
system involving more advected parameters.

4.2 Matching via potential shaping I: reducing to subrepresentation

In our previous work [13] on the heavy top on a movable base from Example 4 (see
also Example 7 below), we used an ad hoc potential shaping to slightly simplify the
system, and then applied a kinetic shaping to stabilize an equilibrium of the system.
We generalize this idea in this subsection.

Suppose that σ : S → GL(X) has a subrepresentation σ |X̃ : S → GL(X̃) with some
subspace X̃ ⊂ X . Let K̃ : X̃ × X̃∗ → s∗ be the corresponding momentummap, and as
a result, the Euler–Poincaré equation with the Lagrangian 
̃ : s × X̃∗ → R becomes

d

dt

(
δ
̃

δξ

)
= ad∗

ξ

δ
̃

δξ
− J

(
v,

δ
̃

δv

)
+ K̃g∗

(
δ
̃

δã
, ã

)
,

d

dt

(
δ
̃

δv

)
= ρ′(ξ)∗ δ
̃

δv
+ K̃V ∗

(
δ
̃

δã
, ã

)
,

dã

dt
= σ ′(ξ, v)∗ã.

(21)

Now our goal is the matching between the controlled Eqs. (19) with (20a) and the
above Eq. (21). Note, however, that this is not a strict equivalence; it rather effectively
discards some components of the original advected parameters:

Theorem 1 (Matching via Subrepresentation) Let 
 : s× X∗ → R be the Lagrangian
defined in (6), and 
̃ : s × X̃∗ → R be the controlled Lagrangian defined with a
modified potential Ũ : X̃∗ → R as


̃(ξ, v, ã) = 1

2
⟪(ξ, v), (ξ, v)⟫− Ũ (ã). (22)

The controlled Euler–Poincaré equation (19) and (20a) match the Euler–Poincaré
equation (21) if and only if the control u = (ug∗ , uV ∗) and the potential U satisfy

ug∗ = K̃g∗

(
δŨ

δã
, ã

)
− Kg∗

(
δU

δa
, a

)
,

uV ∗ = KV ∗
(

δU

δa
, a

)
− K̃V ∗

(
δŨ

δã
, ã

)
.

(23)
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Proof We see that δ
̃/δξ = δ
/δξ and δ
̃/δv = δ
/δv, and thus the matching is
achieved if and only if the control u = (ug∗ , uV ∗) and K̃ satisfy

Kg∗
(

δ


δa
, a

)
+ ug∗ = K̃g∗

(
δ
̃

δã
, ã

)
, KV ∗

(
δ


δa
, a

)
+ uV ∗ = K̃V ∗

(
δ
̃

δã
, ã

)
.

These conditions reduce to (23) in view of the Lagrangians (6) and (22). ��
We note that the matching condition (23) implies that the expressions for

Kg∗(δU/δa, a) and KV ∗(δU/δa, a) contain variables ã only. Although this is rather
restrictive, it is what happens in the example from our previous workmentioned above:

Example 7 (Potential shaping for heavy top on movable base [13]) Let us apply con-
trols to the system from Example 4:

�̇ = � × � + P × v − mglχ × �,

Ṗ = P × � − m̄g� + u(R3)∗ ,

�̇ = � × �,

ḣ = � · v,

(24)

Note that we do not have any control in the first set of equations, i.e., uso(3)∗ = 0
because we would like to stabilize the system by applying controls only to the base
(not to the top); see Fig. 1b.

Then, the matching conditions (23) become

Kso(3)∗
(

δU

δa
, a

)
= K̃so(3)∗

(
δŨ

δã
, ã

)
,

K(R3)∗

(
δU

δa
, a

)
− u(R3)∗ = K̃(R3)∗

(
δŨ

δã
, ã

)
,

where a = (�, h). Using (16), they give

K̃so(3)∗

(
δŨ

δã
, ã

)
= ∂U

∂�
× �, K̃(R3)∗

(
δŨ

δã
, ã

)
= ∂U

∂h
� − u(R3)∗ = m̄g� − u(R3)∗ .

The first condition suggests us to use the subrepresentation of σ (see (14)) on R
3:

σ̃ : SE(3) → GL(R3); σ̃ (R, x)y := Ry,

because this implies that one should take ã = �; note that this is the σ used for the
underwater vehicle in Example 3. In fact, the corresponding momentummap K̃would
be the same as (12):
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K̃(y,�) =
(
K̃so(3)∗(y,�), K̃(R3)∗(y,�)

)
= (y × �, 0),

and so the first matching conditions yields

∂U

∂�
× � = ∂Ũ

∂�
× �, u(R3)∗ = m̄g�.

This suggests us to define the new potential Ũ in terms of the original one U from
(15) as follows:

Ũ (�) := U (�, 0) = mglχ · �.

As a result, the controlled system (24) becomes

�̇ = � × � + P × v − mglχ × �,

Ṗ = P × �,

�̇ = � × �.

So we effectively dropped the height h from the formulation, and also that this is an
Euler–Poincaré equation on se(3) × (R3)∗ as opposed to se(3) × (R4)∗.

We note that we need to apply additional control to the base to stabilize the upright
spinning position. This was done by kinetic shaping in the companion paper [13] after
applying the above potential shaping.

The above potential shaping is rather simple in hindsight: It is simply applying
the force to the base to cancel the gravitational force. However, it has an important
implication that the system after the potential shaping has one more Casimir than the
original system because the original system is defined on se(3) × (R4)∗ whereas the
new system on se(3) × (R3)∗. One can then apply the kinetic shaping to the new
system maintaining the new Casimir as an invariant. This facilitates the use of the
energy-Casimir method; see [13] for details.

4.3 Matching via potential shaping II: with additional variables

In Sect. 3.4, we showed how to track additional advected parameters. In practical con-
trol problems, the equilibrium to stabilize is sometimes better characterized in terms of
those advected parameters in addition to the original variables. In this subsection, we
continue our discussion from Sect. 3.4 to formulate a matching condition that applies
to such settings.

The idea is to find an alternative form of Lagrangian 
̃ : s × X∗ × Y ∗ → R such
that the corresponding Euler–Poincaré equation matches with (19) along with (20b).
Note that the Lagrangian 
̃ now depends on the additional variables b in Y ∗ as well.
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Therefore, the Euler–Poincaré equation is now coupled with the equation (17) for b:

d

dt

(
δ
̃

δξ

)
= ad∗

ξ

δ
̃

δξ
− J

(
v,

δ
̃

δv

)
+ Kg∗

(
δ
̃

δa
, a

)
+ Mg∗

(
δ
̃

δb
, b

)
,

d

dt

(
δ
̃

δv

)
= ρ′(ξ)∗ δ
̃

δv
+ KV ∗

(
δ
̃

δa
, a

)
+ MV ∗

(
δ
̃

δb
, b

) (25)

along with (20b), where we defined the momentum map M : Y × Y ∗ → s∗ corre-
sponding to the representation τ : S → GL(Y ) as

M(y, b) = (
Mg∗(y, b), MV ∗(y, b)

) := (τ ′
y)

∗b,

just like how we defined the momentum map K in Sect. 3.2.

Theorem 2 (Matching with Additional Variables) Let 
 : s × X∗ → R be the
Lagrangian defined in (6), and 
̃ : s × X̃∗ × Ỹ ∗ → R be the controlled Lagrangian
that differs from 
 by the additional potential term Ũ : X∗ × Y ∗ → R, i.e.,


̃(ξ, v, a, b) = 
(ξ, v, a) − Ũ (a, b) = 1

2
⟪(ξ, v), (ξ, v)⟫−U (a) − Ũ (a, b).

The controlled Euler–Poincaré equations (19) and (20b) match the Euler–Poincaré
equations (25) and (20b) if and only if the control u and the additional potential term
Ũ satisfy

u = −K

(
δŨ

δa
, a

)
− M

(
δŨ

δb
, b

)
. (26)

Proof Equations (20b) for the advected parameters a and b are the same in both sets
of equations because they do not depend on the Lagrangian. Therefore, it boils down
to the matching between (19) and (25).

Clearly, δ
̃/δξ = δ
/δξ and δ
̃/δv = δ
/δv, and thus, (19) and (25) match if and
only if

K

(
δ
̃

δa
, a

)
+ M

(
δ
̃

δb
, b

)
= K

(
δ


δa
, a

)
+ u,

or equivalently

u = K

(
δ
̃

δa
− δ


δa
, a

)
+ M

(
δ
̃

δb
, b

)
= −K

(
δŨ

δa
, a

)
− M

(
δŨ

δb
, b

)
.

��
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Our goal is to find controls u that stabilize those equilibria of the controlled system
that would be either unstable or not even equilibria if uncontrolled. This step imposes
more concrete conditions on the potential Ũ so that one candetermine explicit feedback
control u.

To demonstrate the above result, let us show that it gives a unified framework for
the two stabilization problems from Leonard [19]:

Example 8 (Stabilizing underwater vehicle with desired steady motion [19, Sec-
tion 4.1]) Continuing from Example 5, consider the problem of controlling the
underwater vehicle with a desired steady motion:

�̇ = � × � + P × v − mglχ × � + uso(3)∗ ,

Ṗ = P × � + u(R3)∗ ,

�̇ = � × �,

�̇ = � × �,

(27)

where the equilibrium is given in terms of the desired orientation Rd and the desired
velocity vd in the body frame (see Example 5) as follows:

ζe := (�e, ve,�e,�e) =
(
0, vd, RT

d e3, vd/‖vd‖
)
.

It corresponds to the steady motion at the constant velocity Rdvd in the spatial frame
in the fixed attitude where the center of mass is right below the center of buoyancy.

Note that K is given in (12). For M, recall from Example 5 that the representation
τ is identical to σ from Example 3. Therefore, M here is the same as K in (12) from
Example 3:

M(y,�) = (
Mso(3)∗(y,�), M(R3)∗(y,�)

) = (τ ′
y)

∗� = (y × �, 0),

which is identical to K; this is because X = Y = R
3 and the representations σ and τ

are identical. As a result, (26) yields

u(�,�) = (
uso(3)∗ ,u(R3)∗

) =
(

−∂Ũ

∂�
× � − ∂Ũ

∂�
× �, 0

)
. (28)

Now that we have the controlled system (27) with control (28), we would like to
find a control u that renders ζe a stable equilibrium. The corresponding angular and
linear impulses are (�e,Pe) = (Dvd, Mvd), where D and M are from the kinetic
energy metric (8). Note that (�e, ve,�e) is not an equilibrium of the uncontrolled
system (13). We would like to show that it is a stable equilibrium of the controlled
system so that the desired steady motion ζe of the controlled system becomes stable.

The point ζe is an equilibrium of the controlled system (27) with control (28) if and
only if

uso(3)∗(�e,�e) = mglχ × �e − Pe × ve
= mglχ × �e − (Mvd) × vd,
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whereas the matching condition (28) yields

uso(3)∗(�e,�e) = −∂Ũ

∂�
(�e,�e) × �e − 1

‖vd‖
∂Ũ

∂�
(�e,�e) × vd.

Therefore, one can achieve matching by requiring Ũ to satisfy

∂Ũ

∂�
(�e,�e) = −mgl(χ + β�e),

∂Ũ

∂�
(�e,�e) = ‖vd‖(M − α I )vd

with arbitrary constantsα, β ∈ R. The simplest formof Ũ that satisfies these conditions
would be

Ũ (�,�) = −mgl(χ + β�e) · � + ‖vd‖((M − α I )vd) · �.

As a result, we obtain the control

uso(3)∗(�,�) = mgl(χ + β�e) × � + � × (‖vd‖(M − α I )vd), u(R3)∗ = 0,

which are exactly Eq. (4) of [19]; note that her r is our −χ . It is shown in [19,
Theorem 4.2] using the energy–Casimir method that this control indeed stabilizes the
equilibrium ζe if α and β satisfy αl > M and lβ > 0.

Example 9 (Preventing drift in underwater vehicle [19, Section 4.2]) Continuing from
Example 6, consider the problemof controlling the underwater vehiclewith a particular
interest in preventing undesired drift:

�̇ = � × � + P × v − mglχ × � + uso(3)∗ ,

Ṗ = P × � + u(R3)∗ ,

�̇ = � × �,


̇i = 
i × �,

δ̇i = 
i · v

(29)

with i = 1, 2. As discussed in Example 6, δ = (δ1, δ2) gives the undesired drift.
Note that K is given in (12). Let us find M. Using (18), we find, for any y =

(y, y4), z = (z, z4) ∈ R
4 and any �i = (
i , δi ) ∈ R

4 with i = 1, 2,

〈
(τ ′

(y,z))
∗(�1,�2), (�, v)

〉
=

〈
(�1,�2), τ

′
(y,z)(�, v)

〉

= 
1 · (� × y + y4v) + 
2 · (� × z + z4v)

= (y × 
1 + z × 
2) · � + (y4
1 + z4
2) · v,

and so

(τ ′
(y,z))

∗(�1,�2) = (y × 
1 + z × 
2, y4
1 + z4
2).
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Hence we obtain the momentum map M : (R4 × R
4) × (R4 × R

4)∗ → se(3)∗ as
follows:

M((y, z), (�1,�2)) = (
Mso(3)∗((y, z), (
1,
2)), M(R3)∗((y, z), (
1,
2))

)

= (τ ′
(y,z))

∗(
1,
2)

= (y × 
1 + z × 
2, y4
1 + z4
2).

As a result, (26) yields

u(�,�1,�2) = (
uso(3)∗ ,u(R3)∗

)

=
(

−∂Ũ

∂�
×� − ∂Ũ

∂
1
×
1 − ∂Ũ

∂
2
× 
2, − ∂Ũ

∂δ1

1 − ∂Ũ

∂δ2

2

)
.

(30)

We would like to stabilize the following equilibrium of the controlled system (29)
with control (30):

ζe := (�e, ve,�e,
1,e,
2,e, δ1,e, δ2,e) =
(
0, vd, RT

d e3, R
T
d w1, R

T
d w2, 0, 0

)
.

Recall from Example 5 that Rd is the desired orientation and vd is the desired veloc-
ity in the body frame, and also from Example 6 that {w1,w2} is a basis for the
orthogonal complement to span{w3 := Rdvd/‖vd‖} in the spatial frame. They are
defined so that {w1,w2,w3} is a right-handed orthonormal basis, and hence so is
{
1,e,
2,e, vd/‖vd‖}.

The point ζe is an equilibrium of the controlled system (29) with control (30) if and
only if

uso(3)∗(�e,�e) = mglχ × �e − Pe × vd

= mglχ × �e − ‖vd‖(Mvd) ×
(
RT
d w3

)

= mglχ × �e − ‖vd‖(Mvd) ×
((

RT
d w1

)
×

(
RT
d w2

))

= mglχ × �e − ‖vd‖(Mvd) × (
1,e × 
2,e)

= mglχ × �e

− ‖vd‖
(

2,e × (Mvd)

) × 
1,e − ‖vd‖
(
(Mvd) × 
1,e

) × 
2,e,

u(R3)∗(�e,�e) = 0,

where we used the shorthand �e = (
1,e, δ1,e,
2,e, δ2,e). On the other hand, the
matching condition (30) yields

uso(3)∗(�e,�e) = − ∂Ũ

∂�

∣∣∣∣∣
e

× �e − ∂Ũ

∂
1

∣∣∣∣∣
e

× 
1,e − ∂Ũ

∂
2

∣∣∣∣∣
e

× 
2,e,
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u(R3)∗(�e,�e) = − ∂Ũ

∂δ1

∣∣∣∣∣
e


1,e − ∂Ũ

∂δ2

∣∣∣∣∣
e


2,e,

where ( · )|e indicates that the function is evaluated at (�e,�e). Therefore, one can
achieve matching by requiring Ũ to satisfy

∂Ũ

∂�

∣∣∣∣∣
e

= −mgl(χ + β�e),
∂Ũ

∂δ1

∣∣∣∣∣
e

= ∂Ũ

∂δ2

∣∣∣∣∣
e

= 0,

∂Ũ

∂
1

∣∣∣∣∣
e

= 
2,e × (‖vd‖(M − α I )vd),
∂Ũ

∂
2

∣∣∣∣∣
e

= (‖vd‖(M − α I )vd) × 
1,e

with arbitrary constants α, β ∈ R; note that 
2,e × vd = ‖vd‖
1,e and vd × 
1,e =
‖vd‖
2,e because {
1,e,
2,e, vd/‖vd‖} is a right-handed orthonormal basis. Using
the shorthand

� = (�1,�2) = (
1, δ1,
2, δ2),

a simple form of Ũ satisfying these conditions would be

Ũ (�,�) = −mgl(χ + β�e) · � + ‖vd‖
1 · (
2 × ((M − α I )vd)) + 1

2
δTKδ

with a positive-definite 2 × 2 symmetric matrix K; note also that δ = (δ1, δ2) ∈ R
2.

As a result, we obtain the control

uso(3)∗(�,�) = mgl(χ + β�e) × � + (
1 × 
2) × (‖vd‖(M − α I )vd),

u(R3)∗(�,�) = −[
1 
2]Kδ.

Note that our formulation uses slightly different variables from those of [19,
Lemma 4.6 and Theorem 4.7], and gives a more succinct form of the controlled
system—a simpler system with less advected parameters. Note also that we obtained
(see Example 12 in the Appendix) a simple expression P · (
1 × 
2) for the rather
awkward-looking Casimir eT3 QRP in [19].

Despite the relative simplicity, our control law turns out to be the same as that
of [19]. To see this, first notice that the their expression for uτ (uso(3)∗ in ours) has
� := RT QT e3 in place of our 
1 × 
2, but then recall from Example 6 that Q :=
[w1 w2 w3]T , and so

� := RT QT e3 = RT [w1 w2 w3]e3 = RTw3 = (RTw1) × (RTw2) = 
1 × 
2,

hence showing that our uso(3)∗ is the same as their uτ . On the other hand, they have

uf = −RT QT J K b̃ with J =
[
1 0 0
0 1 0
0 0 0

]
and a positive-definite 3× 3 matrix K , but then

123



Mathematics of Control, Signals, and Systems (2022) 34:329–359 355

recall from Example 6 their b̃ is related to our δ as b̃ = J Qx = (δ, 0), and so

uf = −RT QT J K J Qx = −
[
RTw1 RTw2 RTw3

] [K 0
0T 0

] [
δ

0

]
= −[
1 
2]Kδ

whereK is the upper left 2×2 submatrix of K . This is nothing but ouru(R3)∗ . Therefore,
our control is the same as the one from [19, Theorem 4.7], and hence stabilizes the
equilibrium under the conditions given there.

5 Conclusion

Advected parameters help us formulate mechanical systems defined on Lie groups
with broken symmetry in a simple and effective manner. One can also keep track of
additional parameters of practical interests using proper representations and advected
parameters as well. We focused on those mechanical systems on a semidirect product
Lie group G � V—with a particular focus on SE(3) = SO(3) � R

3—with broken
symmetry, and derived matching conditions using potential shaping for controlling
them.

Specifically, we addressed the following two types of problems: (i) applying a
control to reduce the advected parameters to obtain a simpler system; (ii) tracking
and controlling additional advected parameters. In each of these cases, we found a
matching condition for potential shaping. These matching conditions do not encom-
pass stabilization themselves; instead, they must be followed by a stability analysis to
ensure stability.

The example for the first setting is a simple ad hoc potential shaping from our
previous work [13] applied to the heavy top spinning on a movable base. Although
this is a very simple control and does not stabilize the upright spinning position by
itself, it is an important first step that facilitates the kinetic shaping to follow to stabilize
the equilibrium as shown in [13].

On the other hand, the second setting provides more versatility. In fact, our result
gives a unified approach to two different problems on controlling underwater vehicles
from [19], namely stabilization of a desired orientation (Example 8) and prevention of
undesired drift (Example 9). Specifically, we have shown that our general matching
condition reproduces those controls obtained in [19] for both settings. Furthermore,
we have demonstrated the utility of our approach—which stresses the role of repre-
sentations and advected parameters—by showing that it gives a simpler formulation
of the problem of preventing undesired drift than that of [19].

Acknowledgements We would like to thank the reviewers for their helpful comments.

A Lie–Poisson brackets

While this paper focuses on the Lagrangian formulation of mechanical systems with
broken symmetry, one can perform the Legendre transformation to obtain the Hamil-
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tonian formulation of the systems as well. The main advantage of the Hamiltonian
formulation is that it is more useful in finding the Casimirs.

A.1 Lie–Poisson bracket on s∗ = (g � V)∗

Let s = g � V be the Lie algebra of the semidirect product Lie group S := G � V .
The (−)-Lie–Poisson bracket on s∗ is given by (see Marsden et al. [22,23])

{ f , h}s∗ (μ, p) = −
〈
μ,

[
δ f

δμ
,

δh

δμ

]〉
−

〈
p, ρ′

(
δ f

δμ

)
∂h

∂ p
− ρ′

(
δh

δμ

)
∂ f

∂ p

〉
(31)

We denote s∗ equipped with { · , · }s∗ by s∗.

Example 10 (Lie–Poissonbracket on se(3)∗) Ifg = so(3) andV = R
3, then s = se(3).

Using the expression for ρ′ from (4), (31) yields

{ f , h}se(3)∗ (�,P) = −� ·
(

∂ f

∂�
× ∂h

∂�

)
− P ·

(
∂ f

∂�
× ∂h

∂P
− ∂h

∂�
× ∂ f

∂P

)
. (32)

This is essentially the heavy top bracket upon replacing P by �. In our context, P
stands for the linear impulse defined in (9), and so has a different physical meaning
from �.

A.2 Lie–Poisson bracket on (s � X)∗

Wemaydescribe thoseuncontrolledmechanical systemswith broken symmetry shown
in Sect. 3.3 as the Lie–Poisson equation on the dual (s� X)∗ of the semidirect product
Lie algebra s � X . Particularly, using the representation σ defined in Sect. 3.2, the
Lie–Poisson bracket on (s � X)∗ is given by

{ f , h}(s�X)∗ (μ, p, a) = { f , h}s∗ −
〈
a, σ ′

(
δ f

δ(μ, p)

)
∂h

∂a
− σ ′

(
δh

δ(μ, p)

)
∂ f

∂a

〉
.

(33)

Also, by considering a subrepresentation on (s� X)∗, the controlled system (21) with
potential shaping using the matching described in Sect. 4.2 may also be described in
terms of the Lie–Poisson bracket on (s � X̃)∗.

Example 11 (Lie–Poisson bracket on (se(3) � R
3)∗) If s = se(3) and X = R

3, then,
using the bracket (32) and also the expression for σ ′ from (10), (33) gives

{ f , h}(se(3)�R3)∗ (�,P,�) = −� ·
(

∂ f

∂�
× ∂h

∂�

)
− P ·

(
∂ f

∂�
× ∂h

∂P
− ∂h

∂�
× ∂ f

∂P

)

− � ·
(

∂ f

∂�
× ∂h

∂�
− ∂h

∂�
× ∂ f

∂�

)
.
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The uncontrolled underwater vehicle from Example 3 is governed by the Lie–Poisson
equation with respect to this bracket. Note also that the heavy top on a movable base
after potential shaping shown in Example 7 is also described in terms of the same
bracket.

A.3 Lie–Poisson bracket on (s � (X × Y))∗

Matching described in Sect. 4.3 yields Lie–Poisson equation on the extended (s �

(X × Y ))∗ with the additional parameters living in Y ∗. Using the representation τ

defined in Sect. 4.3, we have the Lie–Poisson bracket on (s � (X × Y ))∗ as follows:

{ f , h}(s�(X×Y ))∗ (μ, p, a, b) = { f , h}s∗ − 〈a,〉σ ′
(

δ f

δ(μ, p)

)
∂h

∂a
− σ ′

(
δh

δ(μ, p)

)
∂ f

∂a

−
〈
b, τ ′

(
δ f

δ(μ, p)

)
∂h

∂b
− τ ′

(
δh

δ(μ, p)

)
∂ f

∂b

〉
.

(34)

Example 12 (Lie–Poisson bracket on (se(3)� (R3 × (R4 ×R
4)))∗) Consider the case

with s = se(3), X = R
3, and Y = R

4 × R
4. Using the expression for τ ′ from (18),

(34) gives, using the shorthand �i = (
i , δi ) ∈ R
4 with i = 1, 2,

{ f , h}(se(3)�(R3×(R4×R4)))∗ (�,P,�,�1,�2)

= −� ·
(

∂ f

∂�
× ∂h

∂�

)
− P ·

(
∂ f

∂�
× ∂h

∂P
− ∂h

∂�
× ∂ f

∂P

)

− � ·
(

∂ f

∂�
× ∂h

∂�
− ∂h

∂�
× ∂ f

∂�

)

−
2∑

i=1


i ·
(

∂ f

∂�
× ∂h

∂
i
− ∂h

∂�
× ∂ f

∂
i
− ∂ f

∂δi

∂h

∂P
+ ∂h

∂δi

∂ f

∂P

)

= ∂ f

∂�
·
(

� × ∂h

∂�
+ P × ∂h

∂P
+ � × ∂h

∂�
+

2∑
i=1


i × ∂h

∂
i

)

+ ∂ f

∂P
·
(
P × ∂h

∂�
−

2∑
i=1

∂h

∂δi

i

)
+ ∂ f

∂�
·
(

� × ∂h

∂�

)

+
2∑

i=1

(
∂ f

∂
i
·
(


i × ∂h

∂�

)
+ ∂ f

∂δi

(

i · ∂h

∂P

))
.

This is the Lie–Poisson bracket for the controlled system (29) from Example 9. One
sees from the expression that P ·(
1×
2), ‖�‖2, ‖
i‖2,� ·
i ,
1 ·
2 with i = 1, 2
are Casimirs.
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