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symmetry; semidirect product; underwater vehicle

1. INTRODUCTION

The goal of this paper is to stabilize a class of unstable
equilibria of an ellipsoidal bottom-heavy underwater vehi-
cle; see Fig. 1a. This system is very similar to the heavy top
spinning on a movable base in Fig. 1b from our previous
work Contreras and Ohsawa [2020] in the following sense:

(i) Their configuration space is the semidirect product
Lie group SE(3) := SO(3)⋉R3.

(ii) One cannot decouple the dynamics into those in
SO(3) and R3 as in the standard rigid body dynamics
because of their interactions.

(iii) Their SE(3)-symmetry is broken by the gravity.

In fact, we may write the equations of motion for both
systems as Euler–Poincaré equations with advected pa-
rameters.

In Contreras and Ohsawa [2020], we found feedback con-
trols that can be applied to the base to stabilize the up-
right spinning position of the heavy top by extending the
method of controlled Lagrangians (see, e.g., Blankenstein
et al. [2002], Bloch et al. [Oct 2001, 2001, Dec 2000], Chang
et al. [2002], Chang and Marsden [2004], Hamberg [1999,
2000], Ortega et al. [1998, 2001]) to the Euler–Poincaré
equations with advected parameters.

Despite the similarity to the heavy top on a movable
base, the underwater vehicle poses its own challenge.
Particularly, according to Kirchhoff’s theory of rigid body
interacting with potential flow, the body-fluid interactions
result in the so-called added mass and added inertia;
see Leonard [1997a], Leonard and Marsden [1997]. They
depend on the shape of the vehicle, and in general the
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Fig. 1. (a) Bottom-heavy underwater vehicle (see, e.g.,
Leonard [1997a,b], Leonard and Marsden [1997]); its
center of mass (CM) is below the center of buoyancy
(CB). (b) Heavy top spinning on a (point-mass)
movable base Contreras and Ohsawa [2020]. In both
systems, the configuration space is the semidirect
product Lie group SE(3) := SO(3) ⋉ R3, and the
gravity breaks the symmetry of the system.

Stabilization of Mechanical Systems on
Semidirect Product Lie Groups with
Broken Symmetry via Controlled

Lagrangians ⋆

César Contreras and Tomoki Ohsawa

Department of Mathematical Sciences,
The University of Texas at Dallas,
Richardson, TX 75080-3021 USA

(e-mail: cxc145430@utdallas.edu, tomoki@utdallas.edu)

Abstract: Motivated by the problem of stabilizing bottom-heavy underwater vehicles, we find
the matching condition for controlled Lagrangians via the kinetic shaping for mechanical systems
on a semidirect product Lie group with broken symmetry. Of particular interest is the problem
of stabilizing a steady translational motion of an underwater vehicle. We show that the control
by the kinetic shaping stabilizes the equilibrium, and also that an additional dissipative control
renders it asymptotically stable.

Keywords: Stabilization; controlled Lagrangians; Euler–Poincaré mechanical systems; broken
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systems as Euler–Poincaré equations with advected pa-
rameters.

In Contreras and Ohsawa [2020], we found feedback con-
trols that can be applied to the base to stabilize the up-
right spinning position of the heavy top by extending the
method of controlled Lagrangians (see, e.g., Blankenstein
et al. [2002], Bloch et al. [Oct 2001, 2001, Dec 2000], Chang
et al. [2002], Chang and Marsden [2004], Hamberg [1999,
2000], Ortega et al. [1998, 2001]) to the Euler–Poincaré
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translational component of the mass matrix is not a
multiple of the identity matrix as in the heavy top on a
movable base.

We generalize our previous work to accommodate this
difference, and show that the resulting control by the ki-
netic shaping stabilizes the class of unstable equilibria from
Leonard [1997a] corresponding to steady translational mo-
tions of the vehicle. We also find an additional dissipative
control that helps achieve the asymptotic stability.

2. SEMIDIRECT PRODUCT LIE GROUPS

We start with a brief summary of semidirect product Lie
groups. This section is a condensed version of [Contreras
and Ohsawa, 2021, Section 2].

2.1 Semidirect Product Lie Groups and Lie Algebras

Let G be a Lie group, V be a vector space, and GL(V ) be
the set of all invertible linear transformations on V . Let
λ : G → GL(V ) be a (left) representation of G on V , i.e.,
λ(g1g2) = λ(g1)λ(g2) for any g1, g2 ∈ G. We then define
the semidirect product Lie group S := G ⋉ V under the
multiplication

s1 · s2 = (g1, x1) · (g2, x2) = (g1g2, λ(g1)x2 + x1).

Let g be the Lie algebra of G. Then the representation λ
induces the Lie algebra representation λ′ : g → gl(V ) as
follows:

λ′(ξ)v :=
d

dt
λ(exp(tξ))v

∣∣∣∣
t=0

= λi
αkξ

αvk

= ξV (v),

where ξV is the infinitesimal generator on V corresponding
to ξ. Then we have the semidirect product Lie algebra
s = g⋉ V equipped with the commutator

ad(ξ,v)(η, w) := [(ξ, v), (η, w)]

= (adξ η, λ
′(ξ)w − λ′(η)v).

Then one can find the momentum map J : T ∗V ∼= V ×
V ∗ → g∗ associated with the cotangent lift of the G-action
λ on V as follows:

⟨J(v, a), ξ⟩ = ⟨a, ξV (v)⟩ ⇐⇒ Jk
αjv

jakξ
α = akλ

k
αjξ

αvj ,

which results in Jk
αj = λk

αj , i.e.,

J(v, a) = λk
αjv

jak. (1)

This is nothing but the so-called diamond operator ⋄ : V ×
V ∗ → g∗ (see Cendra et al. [1998], Holm et al. [1998] and
[Holm et al., 2009, §7.5]), i.e., v ⋄ a = J(v, a).

Let us also find an expression for the dual λ′(ξ)∗ of λ′(ξ):

⟨λ′(ξ)∗a, v⟩ = ⟨a, λ′(ξ)v⟩
⇐⇒ (λ′(ξ)∗a)kv

k = aiλ
i
αkξ

αvk,

which gives
(λ′(ξ)∗a)k = λi

αkξ
αai.

Wemay now write the coadjoint representation on the dual
s∗ of s as follows:

ad∗(ξ,v)(µ, a) =
(
ad∗ξ µ− J(v, a), λ′(ξ)∗a

)

=
(
cβγαξ

γµβ − λi
αjv

jai, λ
j
βiξ

βaj

)
.

(2)

Example 1. (S = SE(3) = SO(3)⋉R3). Consider the rep-
resentation λ : SO(3) → GL(R3) = GL(3,R) defined by the
standard matrix-vector multiplication, i.e., λ(R)x = Rx.
Then, in terms of the hat map

ˆ( · ) : R3 → so(3); a → â :=

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
,

we have

λ′(Ω̂)v = λ′
v(Ω̂) =

d

dt
exp(tΩ̂)v

∣∣∣∣
t=0

= Ω̂v

= Ω× v

= εiαkΩ
αvk.

Therefore, we have λi
αk = εiαk. Note that, using the above

identification of R3 with so(3), the structure constants
satisfy cαβγ = εαβγ as well. As a result, we may write the
coadjoint action as follows:

ad∗(Ω,v)(µ,a) =
(
εγβα Ωβµγ − εkαj v

jak, ε
j
βi Ω

βaj
)

= (µ×Ω+ a× v, a×Ω).

3. EULER–POINCARÉ EQUATION WITH
ADVECTED PARAMETERS

3.1 Recovering Broken Symmetry of Lagrangian

Consider a mechanical system defined on a semidirect
product Lie group S = G⋉V with Lagrangian LΓ0

: TS →
R with parameters Γ0 ∈ X∗, where X∗ is the dual of a
vector space X. Specifically, we consider the Lagrangian
of the following form:

LΓ0
(s, ṡ) =

1

2
⟪ṡ, ṡ⟫− UΓ0

(s),

where ⟪ · , · ⟫ is a left-invariant metric on TS, i.e., for any
s, s0 ∈ S and any ṡ ∈ TsS,

⟪TsLs0(ṡ), TsLs0(ṡ)⟫ = ⟪ṡ, ṡ⟫,
where L stands for the left translation, i.e., Ls0(s) = s0s
for any s0, s ∈ S, and TL is its tangent lift. So the kinetic
term is S-invariant.

Suppose however that the potential is not S-invariant, i.e.,
there exist s0, s ∈ S such that UΓ0(s0s) ̸= UΓ0(s). This
breaks the S-symmetry of the Lagrangian LΓ0 .

We further suppose that we can fix this in the following
way: Define an extended potential U : S×X∗ → R so that
U(s,Γ0) = UΓ0

(s) for any s ∈ S, and let κ : S → GL(X)
be a representation of S on X, and κ∗ : S → GL(X∗) be
the induced representation on the dual X∗. We assume
that κ helps us recover the S-symmetry of the potential as
follows: For any s0, s ∈ S and any Γ ∈ X∗,

U(s0s, κ(s)
∗Γ) = U(s0s,Γ).

Now let us define an extended Lagrangian L : TS×X∗ → R
by setting

L(s, ṡ,Γ) :=
1

2
⟪ṡ, ṡ⟫− U(s,Γ),

and also define the action

Ψ: S× (TS×X∗) → TS×X∗;

(s0, (s, ṡ,Γ)) → Ψs0(s, ṡ,Γ) := (s0s, TsLs0(ṡ), κ
∗(s0)Γ).
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Let us also find an expression for the dual λ′(ξ)∗ of λ′(ξ):

⟨λ′(ξ)∗a, v⟩ = ⟨a, λ′(ξ)v⟩
⇐⇒ (λ′(ξ)∗a)kv

k = aiλ
i
αkξ

αvk,

which gives
(λ′(ξ)∗a)k = λi

αkξ
αai.

Wemay now write the coadjoint representation on the dual
s∗ of s as follows:

ad∗(ξ,v)(µ, a) =
(
ad∗ξ µ− J(v, a), λ′(ξ)∗a

)

=
(
cβγαξ

γµβ − λi
αjv

jai, λ
j
βiξ

βaj

)
.

(2)

Example 1. (S = SE(3) = SO(3)⋉R3). Consider the rep-
resentation λ : SO(3) → GL(R3) = GL(3,R) defined by the
standard matrix-vector multiplication, i.e., λ(R)x = Rx.
Then, in terms of the hat map

ˆ( · ) : R3 → so(3); a → â :=

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
,

we have

λ′(Ω̂)v = λ′
v(Ω̂) =

d

dt
exp(tΩ̂)v

∣∣∣∣
t=0

= Ω̂v

= Ω× v

= εiαkΩ
αvk.

Therefore, we have λi
αk = εiαk. Note that, using the above

identification of R3 with so(3), the structure constants
satisfy cαβγ = εαβγ as well. As a result, we may write the
coadjoint action as follows:

ad∗(Ω,v)(µ,a) =
(
εγβα Ωβµγ − εkαj v

jak, ε
j
βi Ω

βaj
)

= (µ×Ω+ a× v, a×Ω).

3. EULER–POINCARÉ EQUATION WITH
ADVECTED PARAMETERS

3.1 Recovering Broken Symmetry of Lagrangian

Consider a mechanical system defined on a semidirect
product Lie group S = G⋉V with Lagrangian LΓ0

: TS →
R with parameters Γ0 ∈ X∗, where X∗ is the dual of a
vector space X. Specifically, we consider the Lagrangian
of the following form:

LΓ0
(s, ṡ) =

1

2
⟪ṡ, ṡ⟫− UΓ0

(s),

where ⟪ · , · ⟫ is a left-invariant metric on TS, i.e., for any
s, s0 ∈ S and any ṡ ∈ TsS,

⟪TsLs0(ṡ), TsLs0(ṡ)⟫ = ⟪ṡ, ṡ⟫,
where L stands for the left translation, i.e., Ls0(s) = s0s
for any s0, s ∈ S, and TL is its tangent lift. So the kinetic
term is S-invariant.

Suppose however that the potential is not S-invariant, i.e.,
there exist s0, s ∈ S such that UΓ0(s0s) ̸= UΓ0(s). This
breaks the S-symmetry of the Lagrangian LΓ0 .

We further suppose that we can fix this in the following
way: Define an extended potential U : S×X∗ → R so that
U(s,Γ0) = UΓ0

(s) for any s ∈ S, and let κ : S → GL(X)
be a representation of S on X, and κ∗ : S → GL(X∗) be
the induced representation on the dual X∗. We assume
that κ helps us recover the S-symmetry of the potential as
follows: For any s0, s ∈ S and any Γ ∈ X∗,

U(s0s, κ(s)
∗Γ) = U(s0s,Γ).

Now let us define an extended Lagrangian L : TS×X∗ → R
by setting

L(s, ṡ,Γ) :=
1

2
⟪ṡ, ṡ⟫− U(s,Γ),

and also define the action

Ψ: S× (TS×X∗) → TS×X∗;

(s0, (s, ṡ,Γ)) → Ψs0(s, ṡ,Γ) := (s0s, TsLs0(ṡ), κ
∗(s0)Γ).
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Then we see that the extended Lagrangian now possesses
the S-symmetry, i.e., L ◦Ψs0 = L for any s0 ∈ S.

3.2 Euler–Poincaré Equation with Advected Parameters

Let us define (with an abuse of notation) the reduced
potential

U : X∗ → R; U(Γ) := U(e,Γ),

as well as the reduced Lagrangian ℓ : s×X∗ → R as

ℓ(ξ, v,Γ) := L(e, (ξ, v),Γ) = K(ξ, v)− U(Γ)

with the kinetic energy term K defined as

K(ξ, v) :=
1

2
⟪(ξ, v), (ξ, v)⟫

=
1

2
Gαβξ

αξβ +Gαjξ
αvj +

1

2
Gijv

ivj .
(3)

We also define Giβ := Gβi component-by-component so
that Gαjξ

αvj = Giβv
iξβ .

The Euler–Poincaré equation with advected parameters
(see Cendra et al. [1998], Holm et al. [1998] and [Holm
et al., 2009, §7.5]) are then given by

d

dt

(
δℓ

δ(ξ, v)

)
= ad∗(ξ,v)

δℓ

δ(ξ, v)
+K

(
δℓ

δΓ
,Γ

)
,

dΓ

dt
= κ′(ξ, v)∗Γ,

where we defined, for any smooth function f : E → R on a
real vector space E, its functional derivative δf/δx ∈ E∗

at x ∈ E such that, for any δx ∈ E, under the natural
dual pairing ⟨ · , · ⟩ : E∗ × E → R,〈

δf

δx
, δx

〉
=

d

dt
f(x+ t δx)

∣∣∣∣
t=0

.

Note also that K : X × X∗ → s∗ is the momentum map
associated with the above action κ defined in a similar
manner to J:

⟨K(x,Γ), (ξ, v)⟩ = ⟨Kg∗(x,Γ), ξ⟩+ ⟨KV ∗(x,Γ), v⟩
= ⟨Γ, κ′(ξ, v)(x)⟩,

where we split the components of K into those in g∗ and
V ∗ as Kg∗ and KV ∗ . Then, using the formula (2) for the
coadjoint action on s∗, we have

d

dt

(
δℓ

δξ

)
= ad∗ξ

δℓ

δξ
− J

(
v,

δℓ

δv

)
+Kg∗

(
δℓ

δΓ
,Γ

)
,

d

dt

(
δℓ

δv

)
= λ′(ξ)∗

δℓ

δv
+KV ∗

(
δℓ

δΓ
,Γ

)
,

dΓ

dt
= κ′(ξ, v)∗Γ.

(4)

Example 2. (Underwater vehicle). Consider the underwa-
ter vehicle shown in Fig. 1a in ideal potential flow. Fol-
lowing Leonard [1997a,b], Leonard and Marsden [1997],
the configuration space is S = SE(3), i.e., rotations about
the center of buoyancy and its translational positions. Let
{ei}3i=1 and {Ei}3i=1 be the orthonormal spatial/inertial
and body frames, respectively; the origin of the body frame
is at the center of buoyancy. The orientation R ∈ SO(3)
of the vehicle is defined so that Ei = Rei for i = 1, 2, 3.
Note that our definitions of e3 and E3 are the opposite of
those in Leonard [1997a,b], Leonard and Marsden [1997].
Letting x ∈ R3 be the position of the center of buoyancy
in the spatial frame, we have an element (R,x) ∈ SE(3)
giving the orientation and the position of the vehicle.

The kinetic energy of the system is given in the form (3);
see Section 5.1 below for more details. On the other hand,
assuming the neutral buoyancy, the potential term is given
as

Ue3(R,x) = mgle3 · (Rχ) = mglχ · (R−1e3),

where lχ is the position vector—l being its length and
χ being the unit vector for the direction—of the cen-
ter of mass measured from the center of buoyancy; see
Fig. 1a. Hence we define the extended potential U : SE(3)×
(R3)∗ → R by setting

U((R,x),Γ) := mglχ · (R−1Γ)

so that U((R,x), e3) = Ue3
(R,x).

Also define the representation

κ : SE(3) → GL(R3); κ(R,x)y := Ry.

Then, identifying (R3)∗ with R3 via the inner product, we
have

κ∗(R,x)Γ = RΓ.
As a result we recovered the SE(3)-symmetry: For any
(R0,x0), (R,x) ∈ SE(3) and any Γ ∈ R3,

U((R0,x0) · (R,x), κ∗(R0,x0)Γ) = U((R,x),Γ).

Hence we may define the reduced potential U : (R3)∗ → R
as

U(Γ) := U((I,0),Γ) = mglχ · Γ,
and the reduced Lagrangian ℓ : se(3)× (R3)∗ → R as

ℓ(Ω,v,Γ) =
1

2
⟪(Ω,v), (Ω,v)⟫−mglχ · Γ.

The representation κ gives rise to the momentum map

K(y,Γ) =
(
Kso(3)∗(y,Γ),K(R3)∗(y,Γ)

)
= (y × Γ,0).

As a result, the Euler–Poincaré equation (4) with advected
parameters gives

Π̇ = Π×Ω+P× v −mglχ× Γ,

Ṗ = P×Ω,

Γ̇ = Γ×Ω

(5)

as in Leonard [1997a,b], Leonard and Marsden [1997],
where we defined the the angular and linear impulses as

Πα :=
∂ℓ

∂Ωα
= GαβΩ

β +Gαjv
j

and

Pi :=
∂ℓ

∂vi
= GiβΩ

β +Gijv
j ,

respectively.

4. CONTROLLED LAGRANGIAN AND MATCHING

4.1 Controlled Euler–Poincaré Equation with Advected
Parameters

Consider the controlled Euler–Poincaré equation with ad-
vected parameters:

d

dt

(
δℓ

δξ

)
= ad∗ξ

δℓ

δξ
− J

(
v,

δℓ

δv

)
+Kg∗

(
δℓ

δΓ
,Γ

)
+ ug∗

,

d

dt

(
δℓ

δv

)
= λ′(ξ)∗

δℓ

δv
+KV ∗

(
δℓ

δΓ
,Γ

)
+ uV ∗

,

dΓ

dt
= κ′(ξ, v)∗Γ.

(6)

Note that, for our special case of interest with S = SE(3),

the control ug∗
= uso(3)∗ is a torque whereas uV ∗

= u(R3)∗

is a linear force. Hence we refer to ug∗
and uV ∗

as a torque
and a force, respectively, for the general case as well.

We would like to match this control system with the Euler–
Poincaré equation with advected parameters for a different
reduced Lagrangian ℓτ,σ,ρ : s×X∗ → R:

d

dt

(
δℓτ,σ,ρ
δξ

)
= ad∗ξ

δℓτ,σ,ρ
δξ

− J

(
v,

δℓτ,σ,ρ
δv

)

+Kg∗

(
δℓτ,σ,ρ
δΓ

,Γ

)
,

d

dt

(
δℓτ,σ,ρ
δv

)
= λ′(ξ)∗

δℓτ,σ,ρ
δv

+KV ∗

(
δℓτ,σ,ρ
δΓ

,Γ

)
,

dΓ

dt
= κ′(ξ, v)∗Γ.

(7)

4.2 Controlled Lagrangian

Now we would like to find the controlled Lagrangian ℓτ,σ,ρ
such that (7) gives (6). Then we determine the controls
(ug∗

, uV ∗
) such that (6) and (7) become equivalent. As a

result, the dynamics of the controlled system (6) is de-
scribed by the “free” system (7) with the new Lagrangian
ℓτ,σ,ρ.

Specifically, we would like to seek the controlled La-
grangian of the form

ℓτ,σ,ρ(ξ, v,Γ) := Kτ,σ,ρ(ξ, v)− U(Γ),

where Kτ,σ,ρ is the modified kinetic energy as in Bloch
et al. [2001]: Using the kinetic energy K and the metric
tensor G from (3), in index notation,

Kτ,σ,ρ(ξ, v) := K(ξ, v)+
1

2
∆αβξ

αξβ +∆iβv
iξβ +

1

2
∆ijv

ivj

with

∆αβ :=
(
Giβ + σijτ

j
β

)
τ iα +∆iβ

(
GikGkα + τ iα

)
,

∆iβ := ρij
(
GjkGkβ + τ jβ

)
−Giβ ,

∆ij := ρij −Gij ,

where Gij stands for the inverse of the matrix Gij and we
use the same convention for other matrices too; σ, ρ, and
τ are constant matrices—σ and ρ being symmetric—to be
determined below.

4.3 Matching Condition for Control by Linear Forces

Suppose that we would like to stabilize the system by
applying external (linear) forces to the system. Practically
speaking, the system is either pushed by some external
means or controlled by jets attached to the body; the latter
is more amenable to our formulation because our equations
are written in the body frame.

Assuming that there is no torque applied to the system
as a control, we have ug∗

= 0 (see Contreras and Ohsawa
[2021] for matching with ug∗ ̸= 0 and uV ∗ ̸= 0 with a
potential shaping). In order to satisfy this condition, it is
sufficient to impose

δℓτ,σ,ρ
δξ

=
δℓ

δξ
, J

(
v,

δℓ

δv
− δℓτ,σ,ρ

δv

)
= 0. (8)

The first condition is equivalent to ∆αβξ
β +∆αjv

j = 0 for
any ξ ∈ g and any v ∈ V . Hence this reduces to ∆αβ = 0
and ∆αj = 0. Then ∆iβ = 0 as well, but then this gives

τ iβ =
(
ρij −Gij

)
Gjβ , (9)

whereas substituting ∆iβ = 0 into ∆αβ = 0, we obtain(
Giβ + σijτ

j
β

)
τ iα = 0. We see that this is satisfied if Giβ +

σijτ
j
β = 0, but then this in turn is satisfied if

σij = Gij − ρij . (10)

On the other hand, the second condition in (8) is written
as, using (1), λk

αjv
j(∆kβξ

β +∆klv
l) = 0. Taking ∆iβ = 0

and the expression for ∆kl into account, we have λk
αj(ρkl−

Gkl)v
jvl = 0. Since this holds for any v ∈ V , it implies

that λk
αj(ρkl −Gkl) is skew-symmetric with respect to the

indices (j, l), i.e.,

λk
αl(ρkj −Gkj) = −λk

αj(ρkl −Gkl). (11)

As a result, we have the following: Under the matching
conditions (9)—(11) and the feedback control

ug∗
= 0, uV ∗

i = (Gij − ρij)v̇
j − λj

βi(Gjk − ρjk)ξ
βvk,

the systems (6) and (7) are equivalent. This result is a
slight generalization of the main result from Contreras and
Ohsawa [2020], in which we assumed that S = SE(3).

Remark 3. We may get rid of the acceleration term v̇ from
the above feedback control law because we can rewrite (7)

so that (ξ̇, v̇) is given in terms of functions of (ξ, v,Γ).

Example 4. (S = SE(3)). As seen in Example 1, λi
αk =

εiαk in this case, and so the third matching condition (11)
becomes εkαl(ρkj − Gkj) = −εkαj(ρkl − Gkl). One may
select ρ so that ρij − Gij becomes a non-zero constant
multiple of the identity matrix, i.e.,

ρij = Gij −K δij for some K ∈ R\{0}.
Then the above condition becomes εjαl = −εlαj , which is
trivially satisfied. The feedback control then becomes

uso(3)∗ = 0, u(R3)∗ = K(v̇ +Ω× v). (12)

Note that we do not impose the assumption that Gij

is a constant multiple of the identity here as we did in
Contreras and Ohsawa [2020]; this is important in the
application to underwater vehicles as we shall see below.

5. APPLICATION

5.1 Underwater Vehicle

Consider the underwater vehicle from Example 2; see
also Leonard [1997a,b], Leonard and Marsden [1997]. In
addition to the assumptions mentioned in Example 2, we
assume that the shape of vehicle is ellipsoidal, and the
body frame introduced in Example 2 is aligned with the
principal axes of the body, and also that the center of mass
is aligned with the third principal axis E3 and is bottom
heavy.

Then we have

Gαβ = diag(I1, I2, I3), Gαj = mlχ̂,

Gij = diag(m1,m2,m3)

with χ = (0, 0,−1). We are further assuming that the
semi-axis along the principal axis E2 is longer than others
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Note that, for our special case of interest with S = SE(3),

the control ug∗
= uso(3)∗ is a torque whereas uV ∗

= u(R3)∗

is a linear force. Hence we refer to ug∗
and uV ∗

as a torque
and a force, respectively, for the general case as well.

We would like to match this control system with the Euler–
Poincaré equation with advected parameters for a different
reduced Lagrangian ℓτ,σ,ρ : s×X∗ → R:

d

dt

(
δℓτ,σ,ρ
δξ

)
= ad∗ξ

δℓτ,σ,ρ
δξ

− J

(
v,

δℓτ,σ,ρ
δv

)

+Kg∗

(
δℓτ,σ,ρ
δΓ

,Γ

)
,

d

dt

(
δℓτ,σ,ρ
δv

)
= λ′(ξ)∗

δℓτ,σ,ρ
δv

+KV ∗

(
δℓτ,σ,ρ
δΓ

,Γ

)
,

dΓ

dt
= κ′(ξ, v)∗Γ.

(7)

4.2 Controlled Lagrangian

Now we would like to find the controlled Lagrangian ℓτ,σ,ρ
such that (7) gives (6). Then we determine the controls
(ug∗

, uV ∗
) such that (6) and (7) become equivalent. As a

result, the dynamics of the controlled system (6) is de-
scribed by the “free” system (7) with the new Lagrangian
ℓτ,σ,ρ.

Specifically, we would like to seek the controlled La-
grangian of the form

ℓτ,σ,ρ(ξ, v,Γ) := Kτ,σ,ρ(ξ, v)− U(Γ),

where Kτ,σ,ρ is the modified kinetic energy as in Bloch
et al. [2001]: Using the kinetic energy K and the metric
tensor G from (3), in index notation,

Kτ,σ,ρ(ξ, v) := K(ξ, v)+
1

2
∆αβξ

αξβ +∆iβv
iξβ +

1

2
∆ijv

ivj

with

∆αβ :=
(
Giβ + σijτ

j
β

)
τ iα +∆iβ

(
GikGkα + τ iα

)
,

∆iβ := ρij
(
GjkGkβ + τ jβ

)
−Giβ ,

∆ij := ρij −Gij ,

where Gij stands for the inverse of the matrix Gij and we
use the same convention for other matrices too; σ, ρ, and
τ are constant matrices—σ and ρ being symmetric—to be
determined below.

4.3 Matching Condition for Control by Linear Forces

Suppose that we would like to stabilize the system by
applying external (linear) forces to the system. Practically
speaking, the system is either pushed by some external
means or controlled by jets attached to the body; the latter
is more amenable to our formulation because our equations
are written in the body frame.

Assuming that there is no torque applied to the system
as a control, we have ug∗

= 0 (see Contreras and Ohsawa
[2021] for matching with ug∗ ̸= 0 and uV ∗ ̸= 0 with a
potential shaping). In order to satisfy this condition, it is
sufficient to impose

δℓτ,σ,ρ
δξ

=
δℓ

δξ
, J

(
v,

δℓ

δv
− δℓτ,σ,ρ

δv

)
= 0. (8)

The first condition is equivalent to ∆αβξ
β +∆αjv

j = 0 for
any ξ ∈ g and any v ∈ V . Hence this reduces to ∆αβ = 0
and ∆αj = 0. Then ∆iβ = 0 as well, but then this gives

τ iβ =
(
ρij −Gij

)
Gjβ , (9)

whereas substituting ∆iβ = 0 into ∆αβ = 0, we obtain(
Giβ + σijτ

j
β

)
τ iα = 0. We see that this is satisfied if Giβ +

σijτ
j
β = 0, but then this in turn is satisfied if

σij = Gij − ρij . (10)

On the other hand, the second condition in (8) is written
as, using (1), λk

αjv
j(∆kβξ

β +∆klv
l) = 0. Taking ∆iβ = 0

and the expression for ∆kl into account, we have λk
αj(ρkl−

Gkl)v
jvl = 0. Since this holds for any v ∈ V , it implies

that λk
αj(ρkl −Gkl) is skew-symmetric with respect to the

indices (j, l), i.e.,

λk
αl(ρkj −Gkj) = −λk

αj(ρkl −Gkl). (11)

As a result, we have the following: Under the matching
conditions (9)—(11) and the feedback control

ug∗
= 0, uV ∗

i = (Gij − ρij)v̇
j − λj

βi(Gjk − ρjk)ξ
βvk,

the systems (6) and (7) are equivalent. This result is a
slight generalization of the main result from Contreras and
Ohsawa [2020], in which we assumed that S = SE(3).

Remark 3. We may get rid of the acceleration term v̇ from
the above feedback control law because we can rewrite (7)

so that (ξ̇, v̇) is given in terms of functions of (ξ, v,Γ).

Example 4. (S = SE(3)). As seen in Example 1, λi
αk =

εiαk in this case, and so the third matching condition (11)
becomes εkαl(ρkj − Gkj) = −εkαj(ρkl − Gkl). One may
select ρ so that ρij − Gij becomes a non-zero constant
multiple of the identity matrix, i.e.,

ρij = Gij −K δij for some K ∈ R\{0}.
Then the above condition becomes εjαl = −εlαj , which is
trivially satisfied. The feedback control then becomes

uso(3)∗ = 0, u(R3)∗ = K(v̇ +Ω× v). (12)

Note that we do not impose the assumption that Gij

is a constant multiple of the identity here as we did in
Contreras and Ohsawa [2020]; this is important in the
application to underwater vehicles as we shall see below.

5. APPLICATION

5.1 Underwater Vehicle

Consider the underwater vehicle from Example 2; see
also Leonard [1997a,b], Leonard and Marsden [1997]. In
addition to the assumptions mentioned in Example 2, we
assume that the shape of vehicle is ellipsoidal, and the
body frame introduced in Example 2 is aligned with the
principal axes of the body, and also that the center of mass
is aligned with the third principal axis E3 and is bottom
heavy.

Then we have

Gαβ = diag(I1, I2, I3), Gαj = mlχ̂,

Gij = diag(m1,m2,m3)

with χ = (0, 0,−1). We are further assuming that the
semi-axis along the principal axis E2 is longer than others



110	 César Contreras  et al. / IFAC PapersOnLine 54-19 (2021) 106–112

as shown in Fig. 1a; this results in m1 > m2 and m3 > m2

as shown in [Leonard, 1997a, Appendix B].

The equilibrium of our interest is the steady translational
motion along E2, i.e.,

ζe := (Ωe,ve,Γe) = (0, (0, v0, 0), (0, 0, 1)). (13)

As shown in [Leonard, 1997a, Theorem 2], this equilibrium
is unstable under our assumption that the vehicle is
bottom-heavy with m1 > m2.

5.2 Stabilization

Our goal is to stabilize the equilibrium by applying an

external force control u(R3)∗ to (5):




Π̇ = Π×Ω+P× v −mglχ× Γ,

Ṗ = P×Ω+ u(R3)∗ ,

Γ̇ = Γ×Ω

⇐⇒




Π̇c = Πc ×Ω+Pc × v −mglχ× Γ,

Ṗc = Pc ×Ω,

Γ̇ = Γ×Ω,

(14)

where we defined

Πc :=
∂ℓτ,σ,ρ
∂Ω

, Pc :=
∂ℓτ,σ,ρ
∂v

.

Hence the corresponding energy

Eτ,σ,ρ(Ω,v,Γ) := Kτ,σ,ρ(Ω,v) + U(Γ)

is an invariant of the system. Additionally, the controlled
system has the following invariants called Casimirs:

C1 := Pc ·Pc, C2 := Pc · Γ, C3 := Γ · Γ.

We would like to establish the stability of the equilibrium
ζe using the energy-Casimir method. Specifically, we would
like to find an energy-like invariant

E(Ω,v,Γ) := Eτ,σ,ρ(Ω,v,Γ) + Φ(C1, C2, C3) (15)

with some smooth function Φ: R3 → R so that the
gradient DE(ζe) vanishes and also the Hessian D2E(ζe) is
positive-definite. Then E gives a control Lyapunov function
to establish the stability of the equilibrium ζe.

One can show that the gradient DE(ζe) vanishes if

D1Φ|e =
1

2(K −m2)
, D2Φ|e = 0, D3Φ|e =

mgl

2
,

where Di stands for the derivative with respect to the
variable in the i-th variable, and ( · )|e signifies that the
function is evaluated at the equilibrium ζe.

On the other hand, by evaluating the leading principal
minors of the Hessian D2E|e, one can show that it is
positive-definite if all the components of the Hessian of
Φ at ζe vanish except

D2
11Φ|e =

1

(K −m2)3v20

and also the parameter K in (12) satisfies

m2 < K < min


m3,m1 −

m2l2

I2


. (16)

This implies that one may take

Φ(C1, C2, C3) =
1

2


(C1 − C1|e)2

(K −m2)3v20
+

C1 − C1|e
K −m2

+mgl(C3 − C3|e)



to satisfy the above conditions.

To summarize, we have the following: The unstable equi-
librium (13) of the underwater vehicle is stabilized by the
control (12) with any constant K satisfying the condi-
tion (16).

5.3 Asymptotic Stabilization by Dissipative Control

In order to achieve asymptotic stability, we would like to
apply dissipative control in addition to (12), as is done in,
e.g., Bloch et al. [Oct 2001,D, 2000]. Specifically, let us add
a control ud to (14) as follows:

Π̇c = Πc ×Ω+Pc × v −mglχ× Γ,

Ṗc = Pc ×Ω+ ud,

Γ̇ = Γ×Ω.

(17)

This is equivalent to replacing u(R3)∗ by u(R3)∗ + ud in
(14).

Then, along the solutions of (17), the control Lyapunov
function E from (15) is not an invariant any more. In fact,

Ė = (2D1Φ(C1, C2, C3)Pc + v) · ud.

Hence if we set, with a negative-definite 3× 3 matrix N ,

ud = N (2D1Φ(C1, C2, C3)Pc + v), (18)

then we have Ė ≤ 0.

One then needs to employ LaSalle’s invariance principle
to prove that this indeed gives the asymptotic stability of
the equilibrium. This requires a detailed analysis of the
invariant set defined by Ė = 0. We do not present this
analysis here because it is lengthy and involved, and will
present it in our future work. Instead, we will show the
numerical evidence for it in the subsection to follow.

5.4 Numerical Results

Consider an underwater vehicle whose hull is an ellip-
soidal shell with the outer semi-major axes (a1, a2, a3) =
(5, 10, 4) [m] and the inner semi-major axes (a1 − h, a2 −
h, a3 − h) with h ≃ 0.1666 [m] made of steel with density
8000 [kg/m3].

For simplicity, we assume that all extra weight is con-
centrated at the point 1 meter below the center of the
ellipsoids as a point mass with 40% of the weight of the
shell; hence the center of mass is at lχ with l = 2/7 [m]
and χ = (0, 0,−1) = −E3.

Then the total mass of the vehicle is m = 835,245 [kg], and
it is neutrally buoyant assuming that the mass density of
the water is 997 [kg/m3]—the “thickness” h of the hull
is determined that way. Using formulas from [Leonard,
1997a, Appendix B], one obtains

(m1,m2,m3) ≃ (1.330, 0.9860, 1.592)× 106 [kg]

and

(I1, I2, I3) ≃ (2.787, 0.9020, 2.527)× 107 [kg ·m2].

We set K ≃ 1.239× 106 so that (16) is satisfied.

We select an initial condition with a small perturbation to
the equilibrium (13) with v0 = 30 [m/s] as follows:

Ω(0) = (0.5, 0.25, 0.5), v(0) = (1.5, 30, 1.5),

Γ(0) = (cos θ0 sinφ0, sin θ0 sinφ0, cosφ0)

with θ0 = π/3 and φ0 = π/40.

Figure 2 shows the trajectories of Ω, v, and Γ for the
uncontrolled and the non-dissipative controlled systems.
The solution of the uncontrolled system (5) clearly shows
that the equilibrium is unstable, whereas that of the
controlled system (14) stays close to the equilibrium,
indicating that the equilibrium is stabilized.

(a) Body angular velocity Ω (b) Base velocity v in body frame

(c) Vertical upward direction Γ
seen from body frame

Fig. 2. Simulation results comparing the uncontrolled
system (5) (dashed blue) and controlled system (14)
(solid red) for the time interval 0 ≤ t ≤ 50.

Figures 3 and 4 show the time evolutions of (Ω,v,Γ) for
the non-dissipative controlled and dissipative controlled
systems, (14) and (17), respectively; the negative-definite
matrix N in (18) is chosen as N = −106 diag(2, 1, 2). One
sees that, without the dissipation, the solution oscillates
near the equilibrium, whereas the dissipation damps the
solution towards the equilibrium, although rather slowly
for Ω and Γ compared to v.

6. CONCLUSION

We extended the method of controlled Lagrangians with
kinetic shaping to those mechanical systems defined on
semidirect produce Lie groups with broken symmetry.

Our motivating example was an underwater vehicle with
non-coincident centers of buoyancy and gravity.
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Fig. 3. Time evolution of controlled system (14) (without
dissipation). Note that v is plotted for a shorter time
interval to be compared with Fig. 4 below.
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(c) Vertical upward direction Γ
seen from body frame

Fig. 4. Time evolution of dissipative controlled sys-
tem (17). Note that v is plotted for a shorter time
interval because it is damped much faster than the
other two quantities.

We found a matching condition for a class of Euler–
Poincaré equations with advected parameters on (g⋉V )×
X∗.

We combined the resulting control with the energy–
Casimir method to find a control stabilizing one of the
classes of the unstable equilibria of ellipsoidal underwater
vehicles found in Leonard [1997a].

This result also helped us find an additional dissipative
control that renders the equilibria asymptotically stable.
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the non-dissipative controlled and dissipative controlled
systems, (14) and (17), respectively; the negative-definite
matrix N in (18) is chosen as N = −106 diag(2, 1, 2). One
sees that, without the dissipation, the solution oscillates
near the equilibrium, whereas the dissipation damps the
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Euler–Poincaré mechanical systems. IFAC Proceedings
Volumes, 33(2), 51–56.

Cendra, H., Holm, D.D., Marsden, J.E., and Ratiu, T.S.
(1998). Lagrangian reduction, the Euler–Poincaré equa-
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