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Abstract: Motivated by the problem of stabilizing bottom-heavy underwater vehicles, we find
the matching condition for controlled Lagrangians via the kinetic shaping for mechanical systems
on a semidirect product Lie group with broken symmetry. Of particular interest is the problem
of stabilizing a steady translational motion of an underwater vehicle. We show that the control
by the kinetic shaping stabilizes the equilibrium, and also that an additional dissipative control
renders it asymptotically stable.
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1. INTRODUCTION

The goal of this paper is to stabilize a class of unstable
equilibria of an ellipsoidal bottom-heavy underwater vehi-
cle; see Fig. 1a. This system is very similar to the heavy top
spinning on a movable base in Fig. 1b from our previous
work Contreras and Ohsawa [2020] in the following sense:

(i) Their configuration space is the semidirect product
Lie group SE(3) := SO(3) x R3.

(ii) One cannot decouple the dynamics into those in
SO(3) and R as in the standard rigid body dynamics
because of their interactions.

(a) Underwater vehicle

(iii) Their SE(3)-symmetry is broken by the gravity.

In fact, we may write the equations of motion for both
systems as Euler—Poincaré equations with advected pa-

ters.
rameters Tg

In Contreras and Ohsawa [2020], we found feedback con-
trols that can be applied to the base to stabilize the up-

right spinning position of the heavy top by extending the

method of controlled Lagrangians (see, e.g., Blankenstein

et al. [2002], Bloch et al. [Oct 2001, 2001, Dec 2000], Chang

et al. [2002], Chang and Marsden [2004], Hamberg [1999, (b) Heavy top spinning on movable
2000], Ortega et al. [1998, 2001]) to the Euler—Poincaré base

equations with advected parameters. ) ]
Fig. 1. (a) Bottom-heavy underwater vehicle (see, e.g.,

Despite the similarity to the heavy top on a movable Leonard [1997a,b], Leonard and Marsden [1997]); its
base, the underwater Vehicle poses its own Challenge. center of mass (CM) is below the center of buoyancy
Particularly, according to Kirchhoff’s theory of rigid body (CB). (b) Heavy top spinning on a (point-mass)
interacting with potential flow, the body-fluid interactions movable base Contreras and Ohsawa [2020]. In both
result in the SO—CaHed added mass and added inertia; Systems’ the Conﬁguration space is the semidirect
see Leonard [1997a], Leonard and Marsden [1997]. They product Lie group SE(3) := SO(3) x R3, and the
depend on the shape of the vehicle, and in general the gravity breaks the symmetry of the system.
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translational component of the mass matrix is not a
multiple of the identity matrix as in the heavy top on a
movable base.

We generalize our previous work to accommodate this
difference, and show that the resulting control by the ki-
netic shaping stabilizes the class of unstable equilibria from
Leonard [1997a] corresponding to steady translational mo-
tions of the vehicle. We also find an additional dissipative
control that helps achieve the asymptotic stability.

2. SEMIDIRECT PRODUCT LIE GROUPS

We start with a brief summary of semidirect product Lie
groups. This section is a condensed version of [Contreras
and Ohsawa, 2021, Section 2].

2.1 Semidirect Product Lie Groups and Lie Algebras

Let G be a Lie group, V be a vector space, and GL(V') be
the set of all invertible linear transformations on V. Let
A: G — GL(V) be a (left) representation of G on V, i.e.,
A(g192) = Mg1)A(g2) for any g1,92 € G. We then define
the semidirect product Lie group S := G x V under the
multiplication

5182 = (g1,71) - (92, 72) = (9192, A(g1) 72 + 71).
Let g be the Lie algebra of G. Then the representation A

induces the Lie algebra representation A': g — gl(V) as
follows:

N(Eo = S\ exp(i€)v

i k
= Ak
= §V (U)7
where &y is the infinitesimal generator on V' corresponding

to £&. Then we have the semidirect product Lie algebra
s = g X V equipped with the commutator

ad(&,v)(nvw) = [(gvv)v (777117)}
= (aden, N'(§w — X' (n)v).
Then one can find the momentum map J: T*V =2 V x

V* — g* associated with the cotangent lift of the G-action
Aon V as follows:
(I(v,a),6) = (a,6v(v)) <= Ty ag® = apdg; €07,

which results in JX; = Ak ie.,

J(v,a) = )\Zjvjak. (1)
This is nothing but the so-called diamond operator ¢: V' x
V* — g* (see Cendra et al. [1998], Holm et al. [1998] and
[Holm et al., 2009, §7.5]), i.e., voa = J(v,a).

Let us also find an expression for the dual X (&)* of N (€):
(N(§)"a,v) = (a, N (§)v)

= (N(&)*a) 0" = a; A, €27,

t=0

which gives _
N a)y, = Aar€as.

We may now write the coadjoint representation on the dual
s* of s as follows:

ade o) (1, @) = (adg 11 = I(v,0), X(€)"a)
= (cfaf"’ug — X070 as, )\]Blfﬁaj).

(2)

Ezample 1. (S = SE(3) = SO(3) x R3). Consider the rep-
resentation \: SO(3) — GL(R3) = GL(3,R) defined by the
standard matrix-vector multiplication, i.e., A(R)x = Rx.
Then, in terms of the hat map

R 0 —asz a2
(-): R® — 50(3); a—a:=|as 0 —ai|,
—as a1 O

we have

A A d N
N Qv =X,(Q) = 7 exp(t§d)v

= Qv

=Qxv

= €iakQavk.
Therefore, we have X, = €',. Note that, using the above
identification of R3 with so(3), the structure constants
satisfy ¢3., = €%y as well. As a result, we may write the
coadjoint action as follows:

t=0

ad(qv)(p,a) = (76 QP 1y — ¥ 0y v ak, €75, Q% ay)
=(ux+axv,axN).

3. EULER-POINCARE EQUATION WITH
ADVECTED PARAMETERS

3.1 Recovering Broken Symmetry of Lagrangian

Consider a mechanical system defined on a semidirect
product Lie group S = G x V' with Lagrangian Ly, : TS —
R with parameters I'y € X*, where X* is the dual of a
vector space X. Specifically, we consider the Lagrangian
of the following form:

Liy(5,8) = 35,8) — Uny (5)

where { -, - ) is a left-invariant metric on 7T'S, i.e., for any
s,80 € S and any § € T5S,

(TsLso (8), TsLso (8)) = {3, 8),
where L stands for the left translation, i.e., Ls,(s) = sos
for any sg,s € S, and T'L is its tangent lift. So the kinetic
term is S-invariant.

Suppose however that the potential is not S-invariant, i.e.,
there exist sg,s € S such that Up,(sos) # Ur,(s). This
breaks the S-symmetry of the Lagrangian Lr,.

We further suppose that we can fix this in the following
way: Define an extended potential U: S x X* — R so that
U(s,T'g) = Up,(s) for any s € S, and let k: S — GL(X)
be a representation of S on X, and k*: S — GL(X™) be
the induced representation on the dual X*. We assume
that x helps us recover the S-symmetry of the potential as
follows: For any sg,s € S and any I' € X*,

U(sos, k(s)'T) = U(sps,I).
Now let us define an extended Lagrangian L: TSx X* — R
by setting
1
L(s,3,T):= 5((5,3)} - U(s,T),

and also define the action
U:Sx(TSx X*) =TS x X™

(80, (8,8, 1)) = Uy (s,8,T) := (s08, TsLsy ($), 6" (s0)T).



108 César Contreras et al. / IFAC PapersOnLine 54-19 (2021) 106—112

Then we see that the extended Lagrangian now possesses
the S-symmetry, i.e., L o Uy, = L for any sg € S.

3.2 Euler—Poincaré Equation with Advected Parameters

Let us define (with an abuse of notation) the reduced
potential

U: X* = R; UT) :=U(e, ),
as well as the reduced Lagrangian ¢: s x X* — R as
0&,v,T) :== L(e, (§,v),T) = K(&v) —UT)
with the kinetic energy term K defined as

K(E0) = 506 0), 60)
= %G(wﬁ"‘ﬁﬁ + Gajfallj + %Gijvivj.

We also define G;3 := Gg; component-by-component so
that Gajga’l}j = Glgvzgﬁ

3)

The Euler—Poincaré equation with advected parameters
(see Cendra et al. [1998], Holm et al. [1998] and [Holm
et al., 2009, §7.5]) are then given by

d [ o Y 5t
at (6<s,v>) =adtew 5e 0y T K(érr>

dr , .

dt =K (57 ’U) Fa

where we defined, for any smooth function f: £ — Ron a
real vector space E, its functional derivative 0 f/dx € E*
at x € F such that, for any dx € FE, under the natural

dual pairing (-, -): E* x E > R,

5f _d
<6$,6x> = %f(x—ktéx) -

Note also that K: X x X* — s* is the momentum map
associated with the above action s defined in a similar
manner to J:

<K(l‘, ), (5; U» = <K9* (l‘, F)’ §> + <KV* ('75’ F)’ U>
= <Fa ’{/(fa U)(x»?
where we split the components of K into those in g* and

V* as Ky« and Ky-. Then, using the formula (2) for the
coadjoint action on s*, we have

d (6 . Of o o
i (5e) ~ute 5 -3 (v ) + x5 (Fpr)

d (60 50 50
e e I Nl 4
dt(év) NES5, + Ky (5r’r)’ @)
a
E:K(f,v) I

Ezample 2. (Underwater vehicle). Consider the underwa-
ter vehicle shown in Fig. la in ideal potential flow. Fol-
lowing Leonard [1997a,b], Leonard and Marsden [1997],
the configuration space is S = SE(3), i.e., rotations about
the center of buoyancy and its translational positions. Let
{e;}?_, and {E;}3_; be the orthonormal spatial/inertial
and body frames, respectively; the origin of the body frame
is at the center of buoyancy. The orientation R € SO(3
of the vehicle is defined so that E; = Re; for i = 1,2, 3.
Note that our definitions of e3 and Eg3 are the opposite of
those in Leonard [1997a,b], Leonard and Marsden [1997].
Letting x € R? be the position of the center of buoyancy
in the spatial frame, we have an element (R,x) € SE(3)
giving the orientation and the position of the vehicle.

~

The kinetic energy of the system is given in the form (3);
see Section 5.1 below for more details. On the other hand,
assuming the neutral buoyancy, the potential term is given
as

Uey (R, x) = mgles - (Rx) = mglx - (R e3),
where lx is the position vector—I being its length and
x being the unit vector for the direction—of the cen-
ter of mass measured from the center of buoyancy; see
Fig. la. Hence we define the extended potential U: SE(3) x
(R?*)* — R by setting

U((R.x),T) := mglx - (R™'T)

so that U((R, %), e3) = Ue, (R, x).

Also define the representation
#: SE(3) — GL(R?); k(R,x)y := Ry.
Then, identifying (R3)* with R? via the inner product, we
have
K*(R,x)I' = RT.
As a result we recovered the SE(3)-symmetry: For any
(Ro,%o), (R,x) € SE(3) and any T' € R3,

U((Ro,x0) - (R, %), k*(Rg,%0)T") = U((R, x),T).
Hence we may define the reduced potential U: (R3)* — R
as
and the reduced Lagrangian £: se(3) x (R3)* — R as

(Y T) = J((R.), (2,v)) — maix T.

The representation x gives rise to the momentum map
K(y,T) = (Kso(3)- (¥, T), K(rs)+(y,T))
=(yxT,0).
As aresult, the Euler—Poincaré equation (4) with advected
parameters gives

MM=TIxQ+Pxv—mglx xT,
P=PxQ, (5)
Ir=rxQq

as in Leonard [1997a,b], Leonard and Marsden [1997],
where we defined the the angular and linear impulses as

ol ,
- — B yJ
I, : 500 G’ + Gojv
and Y
= ovt = Giﬁgﬁ + Gijvj’
respectively.

4. CONTROLLED LAGRANGIAN AND MATCHING

4.1 Controlled Euler—Poincaré Equation with Advected
Parameters

Consider the controlled Euler—Poincaré equation with ad-
vected parameters:

d (ol ol ol 4 .
[ =) =adf = — —_— =T g
dt(éf) ad&é{ J(v,&))—FKg (5F’ )+u ,

CANN 5N v
dl’

E = K:/(€7 U)*F
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Note that, for our special case of interest with S = SE(3),
the control u8 = u%°®)" is a torque whereas yv* = y®)"
is a linear force. Hence we refer to u® and u" as a torque

and a force, respectively, for the general case as well.

We would like to match this control system with the Euler—
Poincaré equation with advected parameters for a different
reduced Lagrangian £, , ,: s x X* — R:

d (0lrop\ o 0lrg, §lr.op
dt( 3¢ )‘ad5 5¢ J(”’ v )

+ Kg* (547-707’) y F) )

5T
d (6t 50 50 @)
il T,0,p — !/ * T,0,p . T,0,0
dt( 50 ) MO =5, +KV( oT ’F)’

a

< T.

dt K(§7v)

4.2 Controlled Lagrangian

Now we would like to find the controlled Lagrangian /., ,
such that (7) gives (6). Then we determine the controls
(u8 ,u¥") such that (6) and (7) become equivalent. As a
result, the dynamics of the controlled system (6) is de-
scribed by the “free” system (7) with the new Lagrangian
lrgp-

Specifically, we would like to seek the controlled La-
grangian of the form

E’T‘,O’,P(f7 v, F) = KT,U,ﬂ(§7 U) - U(F>7
where K, , is the modified kinetic energy as in Bloch
et al. [2001]: Using the kinetic energy K and the metric
tensor G from (3), in index notation,

1 ) 1 o

KT,a,p(ga ’U) = K(&v ’U) + iAOLBgafﬁ + Alﬁvlgﬁ + iAijvz/U]
with

Aaﬁ = (Gw + (')'ijTé)TZY + Aw (Gikaa + T(i),

Aig = pij (G7*Grp + 75) — Gig,

Aij = pij — Gij,
where G% stands for the inverse of the matrix G;j and we
use the same convention for other matrices too; o, p, and

T are constant matrices—o and p being symmetric—to be
determined below.

4.8 Matching Condition for Control by Linear Forces

Suppose that we would like to stabilize the system by
applying external (linear) forces to the system. Practically
speaking, the system is either pushed by some external
means or controlled by jets attached to the body; the latter
is more amenable to our formulation because our equations
are written in the body frame.

Assuming that there is no torque applied to the system
as a control, we have u8 = 0 (see Contreras and Ohsawa
[2021] for matching with u®" # 0 and «"" # 0 with a
potential shaping). In order to satisfy this condition, it is
sufficient to impose

5lrop 0L 5 Sy,
e ee J(”’av 5 )O' )

The first condition is equivalent to A, z&? +Ag;v7 =0 for
any £ € g and any v € V. Hence this reduces to A,g =0
and A,j; = 0. Then A;z = 0 as well, but then this gives

75 = (07 = GY)Gyg, (9)
whereas substituting A3 = 0 into A,3 = 0, we obtain
(Gw + CfijTé)T(i = 0. We see that this is satisfied if G5 +
O'ijTg = 0, but then this in turn is satisfied if

O,Z_] — GZ] _ p’L].

(10)

On the other hand, the second condition in (8) is written
as, using (1), )\Zjvj(Akﬂgﬁ + Apol) = 0. Taking A;z =0
and the expression for Ay, into account, we have A’; j (pr1—
Gri)vivt = 0. Since this holds for any v € V, it implies
that )\Zj (pri — Gy) is skew-symmetric with respect to the
indices (j,1), i.e.,

Asi(prj — Grj) = —AE;(pr — Gra). (11)

As a result, we have the following: Under the matching
conditions (9)—(11) and the feedback control

ut =0,  uf = (G — pij)¥ — Xy (Gyx — pjr)€"0",
the systems (6) and (7) are equivalent. This result is a

slight generalization of the main result from Contreras and
Ohsawa [2020], in which we assumed that S = SE(3).

Remark 3. We may get rid of the acceleration term o from
the above feedback control law because we can rewrite (7)
so that (€,0) is given in terms of functions of (£, v,T).
Ezample 4. (S = SE(3)). As seen in Example 1, A/, =
g'4k in this case, and so the third matching condition (11)
becomes £* i (pr; — Gij) = —e*0;(prr — Gir). One may
select p so that p;; — G;; becomes a non-zero constant
multiple of the identity matrix, i.e.,

pij = G;j — K 6;; for some K € R\{0}.

Then the above condition becomes €7,; = —Elaj, which is
trivially satisfied. The feedback control then becomes

we® =0, u®) =KE+Qxv). (12)
Note that we do not impose the assumption that G;;
is a constant multiple of the identity here as we did in

Contreras and Ohsawa [2020]; this is important in the
application to underwater vehicles as we shall see below.

5. APPLICATION
5.1 Underwater Vehicle

Consider the underwater vehicle from Example 2; see
also Leonard [1997a,b], Leonard and Marsden [1997]. In
addition to the assumptions mentioned in Example 2, we
assume that the shape of vehicle is ellipsoidal, and the
body frame introduced in Example 2 is aligned with the
principal axes of the body, and also that the center of mass
is aligned with the third principal axis E3 and is bottom
heavy.

Then we have
Gaﬂ = diag([l, 12,13), Gaj = mlf(,
Gij = diag(ml, ma, mg)

with x = (0,0,—1). We are further assuming that the
semi-axis along the principal axis E5 is longer than others
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as shown in Fig. 1a; this results in my > mgy and m3 > ms
as shown in [Leonard, 1997a, Appendix B].

The equilibrium of our interest is the steady translational
motion along Es, i.e.,

Ce = (Qe, Ve, I'e) = (0, (0, v9,0), (0,0,1)). (13)

As shown in [Leonard, 1997a, Theorem 2], this equilibrium
is unstable under our assumption that the vehicle is
bottom-heavy with m; > ms.

5.2 Stabilization

Our goal is to stabilize the equilibrium by applying an

external force control u®)” to (5):
MM=TIxQ+Pxv—mglx xT,
P=PxQ+u®),

r=rxq
I, =II. x Q + P, x v—mglx x T,
—= { P, =P, xQ, (14)
I'=TxQ,
where we defined
0lr 0lr o,
II. = an, P. = an‘

Hence the corresponding energy
Er6p(2,v,T) =K, ,,(Q,v)+U()
is an invariant of the system. Additionally, the controlled
system has the following invariants called Casimirs:
C,: =P, P, Cy:=P.-T, C;:=T-T.

We would like to establish the stability of the equilibrium
(e using the energy-Casimir method. Specifically, we would
like to find an energy-like invariant

EQ,v,T) :=E,,,(2,v,T') + &(C1, Cs,C3) (15)

with some smooth function ®: R® — R so that the
gradient DE((,) vanishes and also the Hessian D2E((,) is
positive-definite. Then £ gives a control Lyapunov function
to establish the stability of the equilibrium (.

One can show that the gradient DE((,) vanishes if

1 mgl
P Dy®|lo =0,  D3®|, = ——,
2(KC —my)’ 22| 32| 2

where D; stands for the derivative with respect to the
variable in the i-th variable, and (-)|e signifies that the
function is evaluated at the equilibrium (.

qu)|c =

On the other hand, by evaluating the leading principal
minors of the Hessian D?&|., one can show that it is
positive-definite if all the components of the Hessian of
® at (, vanish except

1
(K —m2)30v3

and also the parameter K in (12) satisfies

D%l(ﬂc -

. m2l2
me < K < min { mg,my — 7 .
2

This implies that one may take

(C1 — Cyle)?
(K —ma)3v3

Cl - C’1|e

]C—mg

1
O(Cy,C,,C3) = 2(

+ mgl(Cg — 03|C)>

to satisfy the above conditions.

To summarize, we have the following: The unstable equi-
librium (13) of the underwater vehicle is stabilized by the
control (12) with any constant K satisfying the condi-
tion (16).

5.8 Asymptotic Stabilization by Dissipative Control

In order to achieve asymptotic stability, we would like to
apply dissipative control in addition to (12), as is done in,
e.g., Bloch et al. [Oct 2001,D, 2000]. Specifically, let us add
a control ud to (14) as follows:

HC:HCXQ+PC><V—mglx><I‘,
P. =P, x Q+ud,
I'=CxQ.

(17)

This is equivalent to replacing u®)” by u®)" 4+ ud in
(14).

Then, along the solutions of (17), the control Lyapunov
function &€ from (15) is not an invariant any more. In fact,

£ = (2D19(Cy,Cy,C3)P. 4 v) - u’.
Hence if we set, with a negative-definite 3 x 3 matrix N,
ul = N(2D,®(Cy, Cy, C3)P. + v), (18)
then we have & < 0.

One then needs to employ LaSalle’s invariance principle
to prove that this indeed gives the asymptotic stability of
the equilibrium. This requires a detailed analysis of the
invariant set defined by & = 0. We do not present this
analysis here because it is lengthy and involved, and will
present it in our future work. Instead, we will show the
numerical evidence for it in the subsection to follow.

5.4 Numerical Results

Consider an underwater vehicle whose hull is an ellip-
soidal shell with the outer semi-major axes (a1, az,as) =
(5,10,4) [m] and the inner semi-major axes (a1 — h,as —
h,as — h) with h ~ 0.1666 [m] made of steel with density
8000 [kg/m3].

For simplicity, we assume that all extra weight is con-
centrated at the point 1 meter below the center of the
ellipsoids as a point mass with 40% of the weight of the
shell; hence the center of mass is at Ix with | = 2/7 [m]
and x = (0,0, -1) = —Es.

Then the total mass of the vehicle is m = 835,245 [kg], and
it is neutrally buoyant assuming that the mass density of
the water is 997 [kg/m®]—the “thickness” h of the hull
is determined that way. Using formulas from [Leonard,
1997a, Appendix B], one obtains
(m1, ma, m3) ~ (1.330,0.9860, 1.592) x 10° [kg]
and
(I, I, I3) ~ (2.787,0.9020, 2.527) x 107 [kg - m?].
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We set K ~ 1.239 x 10° so that (16) is satisfied.

We select an initial condition with a small perturbation to
the equilibrium (13) with v = 30 [m/s] as follows:
Q(0) = (0.5,0.25,0.5),  v(0) = (1.5, 30, 1.5),
T'(0) = (cos by sin g, sin g sin g, cos o)
with 8y = 7/3 and o = 7/40.

Figure 2 shows the trajectories of €, v, and I' for the
uncontrolled and the non-dissipative controlled systems.
The solution of the uncontrolled system (5) clearly shows
that the equilibrium is unstable, whereas that of the
controlled system (14) stays close to the equilibrium,
indicating that the equilibrium is stabilized.

UL 290 Lo V2

10
100 0

20 20

(a) Body angular velocity 2 (b) Base velocity v in body frame

0.5
Iy 1.0

(¢) Vertical upward direction T
seen from body frame

Fig. 2. Simulation results comparing the uncontrolled
system (5) (dashed blue) and controlled system (14)
(solid red) for the time interval 0 < ¢ < 50.

Figures 3 and 4 show the time evolutions of (€2, v,T) for
the non-dissipative controlled and dissipative controlled
systems, (14) and (17), respectively; the negative-definite
matrix A in (18) is chosen as N' = —10° diag(2, 1,2). One
sees that, without the dissipation, the solution oscillates
near the equilibrium, whereas the dissipation damps the
solution towards the equilibrium, although rather slowly
for © and T" compared to v.

6. CONCLUSION

We extended the method of controlled Lagrangians with
kinetic shaping to those mechanical systems defined on
semidirect produce Lie groups with broken symmetry.

Our motivating example was an underwater vehicle with
non-coincident centers of buoyancy and gravity.

o Qy Qs

Q v
30
0‘61x(1|1||11{ll‘[11|[|1]'11""
AR FRIERIT 20
0.2 IR {3 R
T ‘20" 30 40 ‘5:0"’ 10 \ \
0.20 {HEEE A LA LU L
S IREIEIET ATCRVCTRTL
o6 TITTTLERERFATIVRIVTLTEY SR

(a) Body angular velocity €2 (b) Base velocity v in body frame

- l—‘1 FZ Ffl

020,y
W
»O.QE e

(c) Vertical upward direction T’
seen from body frame

j\\"h A“f

A N J\\ \ ¢
OV SOVV' 40750

Fig. 3. Time evolution of controlled system (14) (without
dissipation). Note that v is plotted for a shorter time
interval to be compared with Fig. 4 below.

— Qy Qg

Q v
0.5 30
0.4 25
0.3 20
0.2 15
018 10
P B (R 500 5
0.2 68 10!

(a) Body angular velocity €2 (b) Base velocity v in body frame

r Iy Iy Iy

1.0
0.8
0.6
0.4f A\
0.2

v .
»0‘2} \19/ 20 30 40 50
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Fig. 4. Time evolution of dissipative controlled sys-
tem (17). Note that v is plotted for a shorter time
interval because it is damped much faster than the
other two quantities.

We found a matching condition for a class of Euler—
Poincaré equations with advected parameters on (gx V') x
X*.

We combined the resulting control with the energy—
Casimir method to find a control stabilizing one of the
classes of the unstable equilibria of ellipsoidal underwater
vehicles found in Leonard [1997a].

This result also helped us find an additional dissipative
control that renders the equilibria asymptotically stable.
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