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ABSTRACT. — Let F be either R or a finite extension of Qp, and let G be a finite
central extension of the group of F-points of a reductive group defined over F'. Also
let 7 be a smooth representation of G (Fréchet of moderate growth if FF = R). For
each nilpotent orbit O we consider a certain Whittaker quotient w¢ of 7. We define
the Whittaker support WS(7) to be the set of maximal © among those for which
o # 0.

In this paper we prove that all O € WS() are quasi-admissible nilpotent orbits,
generalizing results of Mceglin and Jiang—Liu—Savin. If F' is p-adic and 7 is quasi-
cuspidal then we show that all O € WS() are F-distinguished, i.e. do not intersect
the Lie algebra of any proper Levi subgroup of G defined over F.

We also give an adaptation of our argument to automorphic representations, gen-
eralizing results of Ginzburg—Rallis—Soudry, Shen, and Cai, and confirming some
conjectures of Ginzburg.

Our methods are a synergy of the methods of the above-mentioned authors, and
of our own earlier work.

RESUME. — Soit F' le corps R, ou une extension finie de Qp, et soit G une
extension centrale finie du groupe des F-points d’un groupe réductif fini sur F.
Soit aussi m une representation lisse de G (Fréchet a croissance modérée dans le
cas F' = R). Pour chaque orbite nilpotente O, on considére un certain quotient de
Whittaker wo de 7. Nous définissons le support de Whittaker WS(7) comme étant
I’ensemble des O maximales parmi celles pour lesquelles w7 # 0.

Dans cet article, nous prouvons que toutes les O € WS(7) sont des orbites
nilpotentes quasi-admissibles, généralisant les résultats de Mceglin et de Jiang—Liu—
Savin. Si F' est p-adique et m est quasi-cuspidale, alors nous montrons que toutes
les O € WS(7) sont F-distinguées, c’est-a-dire qu’elles ne rencontrent 1’algebre de
Lie d’aucun sous-groupe de Levi de G défini sur F'.
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240 Raul GOMEZ, Dmitry GOUREVITCH & Siddhartha SAHI

Nous donnons aussi une adaptation de nos méthodes aux représentations auto-
morphes, généralisant ainsi des résultats de Ginzburg—Rallis—Soudry, Shen et Cai,
et confirmant certaines conjectures de Ginzburg.

Nos méthodes combinent celles des auteurs susmentionnés et de nos propres
travaux antérieurs.

1. Introduction

The study of Whittaker and degenerate Whittaker models for represen-
tations of reductive groups over local fields evolved in connection with the
theory of automorphic forms (via their Fourier coefficients), and has found
important applications in both areas. See for example [15, 16, 19, 29, 32,
35, 49, 53, 59, 61].

Let F be either R or a finite extension of @, and let G be a finite central
extension of the group of F-points of a connected reductive algebraic group
defined over F. Let Rep™(G) denote the category of smooth representations
of G (see Section 2.3 below). Let g denote the Lie algebra of G and g*
denote its dual space. To every coadjoint nilpotent orbit O C g* and every
m € Rep™(G) we associate a certain generalized Whittaker quotient m¢
(see Section 2.5 below). Let WO(7) denote the set of all nilpotent orbits O
with 7o # 0 and WS(7) the set of maximal orbits in WO(7r) with respect
to the closure ordering.

We recall the notion of admissible nilpotent orbit. It has to do with
splitting of a certain metapletic double cover of the centralizer G, for any
© in the orbit. We also define a weaker notion of a quasi-admissible orbit.
See Section 2.6 below for both notions.

For split p-adic groups, admissibility is also related to the notion of a
special nilpotent orbit in the sense of Lusztig (see Section 6.2 below). In
particular, for p-adic classical groups the two notions are equivalent ([44]).

THEOREM 1.1 (Section 6). — Let m € Rep™(G) and let O € WS(x).
Then O is a quasi-admissible orbit.

Note that in the Archimedean case, O is not always admissible, e.g. for
minimal representations of U(2,1), see Section 6.2 below. The notions of
admissible and quasi-admissible also differ for the split real forms of F; and
FEg, though we do not know whether the non-admissible quasi-admissible
orbits appear in Whittaker supports of representations. For the symplectic
and orthogonal groups the two notions are equivalent.
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PROPOSITION 1.2 (Section 6.2). — Let G be either Sps,,(F'), or O(V)
or SO(V) (for a quadratic space V over F), and let O C g* be a nilpotent
orbit. Then the following are equivalent.

(a) O is admissible
(b) O is quasi-admissible
(c¢) O is special

We deduce this proposition from [44, 50]. It is possible that the notions
of admissible and quasi-admissible are equivalent for all G in the case when
F' is non-Archimedean. In this case, and under the additional assumption
that G is classical, it is shown in [31, 41] that all O € WS(7) are admissible,
for any m € Rep™(G). For exceptional G, a slightly weaker result is shown
in [31].

For p-adic F' it is conjectured that if G is algebraic then all orbits in
WS(7) are special. For classical G this follows from [31, 41]. For G = G3(F)
this follows from [31, 37]. For F' = R the analogous statement does not
hold. Namely, [58] constructs a small unitary irreducible representation =
of G3(R). We show in Section 6.2 that WS(r) is also small, i.e. consists
of the minimal orbit for G5. This orbit is non-special but admissible. For
classical algebraic groups over all local fields, all special orbits are quasi-
admissible. It is possible that this holds for all groups.

It is quite probable that if G is algebraic and 7 is admissible and has
integral infinitesimal character then all O € WS(w) are special, cf. [4, The-
orem D] and [5, Theorem 1.1].

We also prove that for quasi-cuspidal 7 € Rep™(G), the orbits in WS(m)
are F-distinguished. Here, F' is non-Archimedean, and 7 is quasi-cuspidal
if all its Jacquet reductions vanish (i.e. rpm = 0 for any parabolic subgroup
P C @) and a nilpotent orbit O C g* is F-distinguished if the corresponding
orbit in g does not intersect the Lie algebra of a Levi subgroup of any proper
parabolic subgroup P C G defined over F.

THEOREM 1.3 (Section 5.2). — Let F' be non-Archimedean and m €
Rep™ (@) be a quasi-cuspidal representation. Then all O € WS(r) are F-
distinguished.

For classical G, it was shown in [41] that all the orbits in the Whit-
taker support of all tempered admissible (finitely generated) m are F-
distinguished. For a similar result in the case F' = R see [26].

One of our basic tools is Lemma 4.8 below, that follows from the Stone—
von-Neumann theorem. An analogous lemma first appeared in the non-
Archimedean case in [17, Lemma 2.2], and is sometimes referred to as the
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“root exchange” Lemma. We also use [6, Lemma 5.10] (see Lemma 4.5 be-
low) and its Archimedean analog Proposition 3.1 that we prove in Section 3
below using some properties of modules over algebras of Schwartz functions
established in [9]. Two more central tools we use are the deformation tech-
nique of [20] and the notion of quasi-Whittaker quotients introduced in this
paper, see Section 4.1 below. For our strategy of proof see 1.4 below.

1.1. Additional results

Let v = (f, h,e) be an sly-triple. Let G, be the centralizer of v in G,
and év be its metaplectic cover (see Section 2.6 below). Let ¢ € g* be
given by the Killing form pairing with f. Then é.y acts on the generalized
Whittaker quotient 7, = 7, (see Section 2.6 below).

We denote by M., the subgroup of G generated by the unipotent ele-
ments. Let ,]\Z denote the preimage of M., under the projection @; — Gy.

THEOREM 1.4 (Section 5.1). — Let m € Rep™(G) and assume that
G - p € WS(m). Then

(i) If F is non-Archimedean then fZ\Z; acts on m, by £1d.
(ii) If F is Archimedean then the action of M. on the dual space m}, is
locally finite.

Let S € g be such that the adjoint action ad(S) diagonalizes over Q and
ad(S)*(¢) = —2¢. We will call such pairs (S, ¢) Whittaker pairs. Follow-
ing [42] we attach to (S, ) a certain degenerate Whittaker quotient g .
If S = h then this is the generalized (a.k.a. neutral) Whittaker quotient
(see Section 2.5 for the definitions).

THEOREM 1.5 (Section 4). — Let m € Rep™(G) and let (S,¢) be a
Whittaker pair such that G - ¢ € WS(w). Then mg, # 0. Moreover, if
F' is non-Archimedean then the epimorphism m, — 7g , constructed in
[20, Theorem A] is an isomorphism.

The special case of p-adic F' and admissible 7 follows from [20, 42, 57].

Another natural question to ask is: given WS(), what smaller orbits lie
in WO(m)? In the case of GL,, the answer is: all the orbits lying in the
closure of orbits in WS(7). For general reductive groups we deduce from
Theorem 1.5 a partial result, see Theorem 7.4 below.
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1.2. Global case

We also provide global analogs of Theorems 1.1-1.5, see Section 8 below.
These analogs generalize several results from [8, 18, 31, 54]. In particular,
this puts restrictions on Whittaker supports of cuspidal representations,
confirming conjectures from [15, Section 4]. We also provide an analog of
Theorem 7.4 and deduce the following corollary.

COROLLARY 1.6. — Let K be a number field and let m be an automor-
phic representation of GL,,(K). Let O € WS(r) and let O’ C O, where O
denotes the Zariski closure of O in gl,(K). Then O’ € WO(m).

For a certain analogous statement for SL, (K) see Corollary 8.10 below.
For other groups, we only have a partial result (see Theorem 8.9 below).

1.3. Open questions

Let us summarize some open questions that arise naturally from the
results discussed above.

(1) Over a non-archimedean F, do there exist representations of linear
reductive groups with non-special Whittaker support?

(2) Over a non-archimedean F', are all special orbits admissible?

(3) Analogs of the two questions above over a global field K.

(4) Over R, do non-admissible quasi-admissible orbits of split groups
appear in Whittaker supports of representations?

(5) Over all fields, are all special orbits quasi-admissible?

(6) Given WS(7), how does WO(r) look like?

Another deep conjecture, posed in [42], says that for any irreducible ,
all the orbits in WS(7) lie in the same orbit over the algebraic closure. This
is conjectured for all global and local fields, but known only in some exam-
ples, in particular for GL,, see [42, Chapter II] for the non-Archimedean
case and [52, Theorem D] and [20, Theorem B]| for the Archimedean case.
For further open questions we refer the reader to [15, Section 5], and [24,
Section 1].

1.4. Structure of the paper

In Section 2 we give the necessary preliminaries on sls-triples, smooth
representations, oscillator representations, Schwartz induction, generalized
and degenerate Whittaker models and covering groups.

TOME 71 (2021), FASCICULE 1
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In Section 3 we prove several statements on non-generic m € Rep™(B).

Here, B is a Borel subgroup of the metaplectic group SLs(R), and we say
that 7 is non-generic if it has no non-zero functionals equivariant under the
nilradical N of B by a non-trivial unitary character. Over p-adic fields, [6,
Lemma 5.10] implies that the action of N on 7 is trivial. Over R we prove
in Proposition 3.1 that for any non-generic 7, the action of the Lie algebra
nof N on 7* is locally nilpotent.

In Section 4 we prove Theorem 1.5. The proof uses the epimorphism
W, - Ws, constructed in [20]. Here, W,, and Wg , are degenerate Whit-
taker models, that define the quotients 7, and mg, as the coivariants
T, = W, ® ) and w5, = (Ws,, @ ) (see Section 2.5 below). Let
us recall the construction of the epimorphism W, —» Wg,,. One can show
that S can be presented as h 4+ Z, where h is a neutral element for ¢ and Z
commutes with h and ¢. Consider a deformation Sy = h + tZ, and denote
by u; the sum of eigenspaces of ad(S;) with eigenvalues at least 1. We call
a rational number 0 < ¢t < 1 regular if u; = uz4. for any small enough
rational e, and critical otherwise. Note that there are finitely many criti-
cal numbers, and denote them by t; < --- < t,,. Denote also tg := 0 and
tn+1 = 1. For each t we define two subalgebras [;,t; C u;. Both [ and v,
are maximal isotropic subspaces with respect to the form w,, t; contains
all the eigenspaces of Z in u; with positive eigenvalues and [; contains all
the eigenspaces with negative eigenvalues. Note that the restrictions of ¢
to I; and tv; define characters of these subalgebras. Let L; := Exp([;) and
R, := Exp(t;) denote the corresponding subgroups and x, denote their
characters defined by . The Stone-von-Neumann theorem implies

(1.1) Ws, o ~ indf, (x,) ~ ind%, (x,)-

This is an analog of the root exchange Lemma [17, Lemma 2.2]. We show
that for any 0 <i < n, v, C l;,,. This gives a natural epimorphism

WStmO — deti (X%") - 1ndL‘i+1 (X‘P) - WSHH"P'
Altogether, we get
Wh,e = WSf,OW - WStl-,cp T WSthW = Ws.e-
This sequence of epimorphisms naturally defines a sequence of epimor-
phisms
(1.2) Th = TSy = TSy = 0 P TS, o = TS,p

We see that for each i, TSy 0 is the quotient of mg, o by the group
A; = Ly, /Ry, that we show to be commutative. By Proposition 3.1 and
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[6, Lemma 5.10] discussed above, in order to prove the theorem it is enough
to show that 7g,  is a non-generic representation of A;. For that purpose
we show that every unitary character of A; is given by some ¢’ € g* with
ad*(Sy, ., )¢’ = —¢' such that ¢’ does not lie in the tangent space to O at
. We then define a quasi-Whittaker quotient TSey 1 pr' and show that
its dual is the space of (4;, x,’)-equivariant functionals on Ts,, - Then we
generalize (1.2) to quasi-Whittaker quotients, construct some additional
epimorphisms and deduce the vanishing of TS0y 000! from the vanishing
of mo: for all O’ # O with O C O’. We find quasi-Whittaker quotients
to be an important new notion. For an additional evidence for that see
Remark 4.7.

To prove Theorem 1.4 we show in Section 5.1 that the action of any

subgroup of 6‘; isomorphic to a quotient of SLy(F) is locally finite. By a
corollary from Proposition 3.1 and [6, Lemma 5.10] it is enough to show
that it is non-generic. To show that we choose an sly-triple (e’,h/, ') in
the Lie algebra of such a subgroup and let ¢’ € g denote the nilpotent
element given by the Killing form pairing with f’. Consider the deformation
Sy == h+th'. For t > 1/2, ¢’ acts trivially on the Whittaker quotient 7g, .
We show that the action of ¢’ commutes with the maps in (1.2), and deduce
that 7g, , has no (€, ¢’)-equivariant functionals for any ¢ > 0.

In Section 5.2 we deduce Theorem 1.3 from Theorem 1.5, by way of
contradiction. Namely, for any not F-distinguished O we find a Whittaker
pair (S, ¢) with ¢ in O such that g, is a quotient of a Jacquet module of
m, and thus vanishes. By Theorem 1.5 we get O ¢ WS(7).

In Section 6 we discuss quasi-admissible orbits. In Section 6.1we deduce
Theorem 1.1 from Theorem 1.4 in the following way. We first note that
W, () is a genuine representation of M\;, which by Theorem 1.4 has a
finite-dimensional irreducible subrepresentation p. Then we construct from
p a finite-dimensional genuine representation of @ and extend it trivially to
é;. In Section 6.2 we state several geometric results from [44, 45, 47, 50, 51]
and discuss the connection between the notions of special, admissible and
quasi-admissible. We also deduce from Theorem 1.4 and from [39] that the
Whittaker support of minimal representations is also minimal.

In Section 7 we formulate and prove Theorem 7.4 that provides informa-
tion on WO(7) given WS(r). The proof is based on the method of Section 4,
including the quasi-Whittaker quotients, and on Theorem 1.5. We deduce
that for 7 € Rep™(GL,(F)), the set WO(7) is closed under the closure
order. We also prove a partial analog for SL,, (F).
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In Section 8 we formulate global analogs of Theorems 1.1-1.5 and explain
how to adapt the proofs from Section 4-7 to the global case. For example,
[6, Lemma 5.10] is replaced by the Fourier decomposition. Our exposition
follows [27, Chapter 5.
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2. Preliminaries
2.1. Notation

Let F' be either R or a finite extension of Q, and let g be a reductive
Lie algebra over F'. We say that an element S € g is rational semi-simple
if its adjoint action on g is diagonalizable with eigenvalues in Q. For a
rational semi-simple element S and a rational number r we denote by g> the
r-eigenspace of the adjoint action of S and by g*; the sum @w>r g>. We
will also use the notation (g*)J and (g*)gr for the corresponding grading
and filtration of the dual Lie algebra g*. For X € g or X € g* we denote
by gx the centralizer of X in g, and by Gx the centralizer of X in G.

If (f, h,e) is an sly-triple in g, we will say that e is a nil-positive element
for h, f is a nil-negative element for A, and h is a neutral element for e. For
a representation V of (f, h,e) we denote by V¢ the space spanned by the
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highest-weight vectors and by V7 the space spanned by the lowest-weight
vectors.
From now on we fix a non-trivial unitary additive character

(2.1) x:F—8S!

such that if F' = R we have x(z) = exp(2miz) and if F' is non-Archimedean
the kernel of y is the ring of integers.

2.2. sly-triples

We will need the following lemma which summarizes several well known
facts about slo-triples.

LEMMA 2.1 ([7, Section 11] or [34]).

(i) Any nilpotent element is the nil-positive element of some sly-triple
in g.

(ii) If h has a nil-positive element then e is a nil-positive element for h
if and only if e € gh and ad(e) defines a surjection gt — gh. The
set of nil-positive elements for h is open in g.

(iii) If e is nilpotent then h is a neutral element for e if and only if e € gh
and h € Tm(ad(e)). All such h are conjugate under G..

(iv) If (f,h,e) and (f', h,e) are sly-triples then f = f'.

(v) If (f, h,e) is an sly-triple and Z commutes with two of its elements
then it commutes also with the third one.

It is easy to see that the Lemma 2.1 continues to hold true if we replace
the nil-positive elements by nil-negative ones (and g} by g”,).

DEFINITION 2.2. — We will say that h € g is a neutral element for
@ € g* if h has a nil-positive element in g, ¢ € (g*)",, and the linear map
ai — (g*)", given by x + ad*(z)(y) is an epimorphism. We also say that
0 € g is a neutral element for 0 € g*.

Note that if we identify g with g* in a G-equivariant way and assume
@ # 0, this property becomes equivalent to ¢ being a nilnegative element
for h, or —h being a neutral element for .

2.3. Schwartz induction
For non-Archimedean F' we will work with [-groups, i.e. Hausdorff topo-

logical groups that have a basis for the topology at the identity consisting
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of open compact subgroups. This generality includes F-points of algebraic
groups defined over F', and their finite covers (see [6, Section 1]).

For F = R we will work with affine Nash groups, i.e. groups that are
given in R™ by semi-algebraic equations, and so is the graph of the multipli-
cation map. This generality includes R-points of algebraic groups defined
over R, and their finite covers (see [9, Section 1.1], [2, Section 2,3], [13],
[55, Section 3]).

Notation 2.3. — If G is an Il-group, we denote by Rep®™(G) the cate-
gory of smooth representations of G in complex vector spaces. For V,W &€
Rep™(G), V@ W will denote the usual tensor product over C and V* will
denote the linear dual.

If G is an affine Nash group, we denote by Rep®™(G) the category of
smooth nuclear Fréchet representations of G of moderate growth. This is
essentially the same definition as in [9, Section 1.4] with the additional
assumption that the representation spaces are nuclear (see e.g. [56, Sec-
tion 50]). For V,W € Rep™(G), V @ W will denote the completed projec-
tive tensor product and V* will denote the continuous linear dual, endowed
with the strong dual topology.

DEFINITION 2.4. — If G is an l-group, H C G a closed subgroup and
7 € Rep™(H), we denote by ind%(m) the smooth compactly-supported
induction as in [6, Section 2.22].

If G is an affine Nash group, H C G a closed Nash subgroup and w €
Rep™ (H), we denote by ind$ (r) the Schwartz induction as in [9, Section 2].
More precisely, in [9] du Cloux considers the space S(G,m) of Schwartz
functions from G to the underlying space of w, and defines a map from
S(G,7) to the space C*°(G, ) of all smooth m-valued functions on G by
f — f, where

o) = /h w0 (e

and dh denotes a fixed left-invariant measure on H. The Schwartz induction
ind% (7) is defined to be the image of this map. Note that ind%(r) €
Rep™(G).

From now till the end of the Subsection 2.3 let G be either an [-group or
an affine Nash group, and H' C H C G be closed (Nash) subgroups.

LEMMA 2.5 ([6, Proposition 2.25 (b)] and [9, Lemma 2.1.6]). — For any
7w € Rep™(H') we have

ind%, () ~ ind$ ind%, (7).
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COROLLARY 2.6. — For any m € Rep®™(H) we have a natural epimor-
phism ind$, (| g) — ind% (7).

DEFINITION 2.7. — For m € Rep™(G), denote by mg the space of coin-
variants, i.e. quotient of m by the intersection of kernels of all G-invariant
functionals. Explicitly,

g =n/{n(g)v—v|vem ge G},
where the closure is needed only for F' = R.

Note that if 7/ =R and G is connected then wg = 7/gem which in turn
is equal to the quotient of Hy(g,7) by the closure of zero.

LEMMA 2.8. — Let p € Rep™(H), 7 € Rep™(G). Consider the diagonal
actions of H on (7 ® p) and of G on 7 ® ind% (p). Then

(r @ pArAG ) H = (7 @ indF (p))a-

Proof. — Tt is easy to see (cf. [20, Appendix A]) that the integration
map f — f gives the following natural isomorphism of representations of
G, where G acts on functions by left shifts, and coinvariants are taken under
the diagonal action on the representation and by right multiplication on
the argument: f(x) := p(h)f(zh):

S(G,p® Ap)g = ind%(p).
Substituting in this formula G itself as the subgroup H, we obtain S(G, )¢

2R Aal.
We also have a natural isomorphism of representations of G x G x G

S(G,m) =SG) @

In the non-Archimedean case this is evident, and in the Archimedean case
this is [9, Proposition 1.2.6]. We will also use the linear automorphism of
S(G, ) given by

T(f)(z) = m(2)f(z)
Note that T intertwines the action of G x G on S(G,7) given by f(91:92) (1)

:= m(g2) f (g7 "xg2) with the action given by f(91:92)(x) := 7(g1) f (g7 2 g2).
Altogether we have

(r®@ind%(p))e = (1@ S(G)® p@ An)axu
= (S(G,m)@p@An)e xu = (TR pRAg @ AG )y U
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2.4. Oscillator representations of the Heisenberg group

DEFINITION 2.9. — Let W,, denote the 2n-dimensional F-vector space
(F™)*@ F™ and let w be the standard symplectic form on W,,. The Heisen-
berg group H, is the algebraic group with underlying algebraic variety
W, x F and with the group law given by

(w1, z1)(wa, 22) = (w1 + wa, 21 + 22 + (1/2)w(wy, w2)).
Note that Hy = F'.
DEFINITION 2.10. — Let x be the additive character of F, as in (2.1).
Extend x trivially to a character of the commutative subgroup 0 F"®F C
H,,. The oscillator representation w, is the unitary induction of x from

0@ F"@F to Hy,. Define the smooth oscillator representation o, to be the
space of smooth vectors in tw,,.

LEMMA 2.11 (see e.g. [20, Corollary 2.4.5]). — o, = indgé‘Fn@F(X)

THEOREM 2.12 (Stone-von-Neumann). — The oscillator representation
wy, is the only irreducible unitary representation of H,, with central char-
acter x.

COROLLARY 2.13. — Let L C W be a Lagrangian subspace. Extend x
trivially to the abelian subgroup L & F C H,,. Then indfégF X = oy.

2.5. Degenerate Whittaker models

Let G be a finite central extension of the group G®& of F-points of a
reductive algebraic group defined over F. Let G*! denote the corresponding
adjoint algebraic group.

LEMMA 2.14 ([43, Appendix I]). — Let U C G*# be a unipotent sub-
group, and U be the preimage of U in G. Then there exists a unique open
subgroup U’ C U that projects isomorphically onto U.

We will therefore identify the unipotent subgroups of G®& with their
liftings in G.
DEFINITION 2.15.

(i) A Whittaker pair is an ordered pair (S, ) such that S € g is ra-
tional semi-simple, and ¢ € (g*)°,. Given such a Whittaker pair,
we define the space of degenerate Whittaker models Wg , in the
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following way: let u := ggl. Define an anti-symmetric form w, on
g by wy(X,Y) := ¢([X,Y]). Let n be the radical of w,l|,. Note
that u,n are nilpotent subalgebras of g, and [u,u] C 9§2 C n. Let
U := Exp(u) and N := Exp(n) be the corresponding nilpotent sub-
groups of G. Let w' := nNKer(y), N’ := Exp(n’). If o = 0 we define

(2.2) Ws,0 := ind§(C).

Assume now that ¢ is non-zero. Then U/N' has a natural struc-
ture of a Heisenberg group, and its center is N/N'. Let x,, denote
the unitary character of N/N' given by x,(exp(X)) := x(¢(X)).
Let o, denote the oscillator representation of U/N’ with central
character X, and a:o denote its trivial lifting to U. Define

(2.3) Ws,, = indfj(0),).

(ii) For a nilpotent element ¢ € g*, define the generalized Whittaker
model W,, corresponding to ¢ to be Wy, ,, where h is a neutral
element for ¢ if ¢ # 0 and h = 0 if ¢ = 0. We will also call
Wh,» neutral Whittaker model. By Lemma 2.1 W, depends only
on the coadjoint orbit of ¢, and does not depend on the choice of
h. Thus we will also use the notation We for a nilpotent coadjoint
orbit O C g*. See [20, Section 5] for a formulation of this definition
without choosing h.

(ili) To m € Rep™(G) associate the degenerate and generalized Whit-
taker quotients by

(2.4) TS, = (Ws,p @) and 1, := (W, @ )g.

LEMMA 2.16. — Let | C 9;1 be a maximal isotropic subalgebra and
L :=Exp(l). Let 7 € Rep™(G). Then

TS = (T ® Xp)L-

Proof. — By Corollary 2.13 and Lemma 2.5 we have Ws,, 2 ind¥ (x.,).
Using Lemma 2.8 we obtain

TS = (indg(xg,) @7 = (T® Xy)L- U

Slightly different degenerate Whittaker models are considered in [20] and
denoted Wg (7). By Lemma 2.16 and [20, Lemma 2.5.2] they relate to mg,
by Ws (m) = Ts,,- We changed the notion in this paper since for p-adic F,
7s,, are the models considered in [42, 57] and for F' = R, 7g,,, are (nuclear)
Fréchet spaces.
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Remark 2.17. — If ' = R, one can define Ws , for any semi-simple S
with real eigenvalues in the same way, and all our proofs will be valid for
this case without changes.

LEMMA 2.18. — Assume that G is an adjoint group, and let S € g be
semi-simple. Then there exists an algebraic group morphism v : F* — G
(defined over F') with dv(1) = S if and only if all the eigenvalues of S in the
adjoint action on g(ﬁ') are integers, where F' denotes the algebraic closure
of F.

Proof. — Embed G into G’ := GL(g) using the adjoint action. Then any
v: F* — @G defines v/ : F* — G’. Note that a semi-simple S’ € g’ equals
dv'(1) for some v/ : F* — G’ if and only if all the eigenvalues of S’ on
g(F) are integers. The “only if” part follows. For the “if” part, note that
if S = dv/'(1) then Im(dv') C g, hence Im(v') € G and thus v/ defines

v : F* — G with the required property. |

COROLLARY 2.19. — Let S € g be rational semi-simple. Then there

exists an algebraic group morphism v : F* — G® and a central element
Z € g such that S — Z € Im(dv).

Proof. — Replacing S by an integer multiple we can assume that all the
eigenvalues of S in the adjoint action on g(F ) are integers. Thus there
exists an algebraic group morphism from F* to the adjoint group of G
which includes the projection of S in its image. O

2.6. Covering groups

Let v = (e, h, f) be an sly-triple in g. Let G, denote the joint centralizer
of the three elements of «y. It is well known that G, is a Levi subgroup of
G¢. Let ¢ € g* be given by the Killing form pairing with f. Recall that
it induces a nondegenerate symplectic form w, on g% and note that G,
acts on g} preserving the symplectic form. That is, there is a natural map

—~—

G — Sp(gh) = Sp(wy). Let Sp(w,) — Sp(w,) be the metaplectic double
covering, and set

— —~

G’y = G’Y XSp(ww) Sp(wg,).

Observe that the natural map CA?; — G defines a double cover of G,. We
denote by M, the subgroup of G, generated by the unipotent elements.
Let M., denote the preimage of M, under the projection G, — G,. Note
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that different choices of v with the same f lead to conjugate groups G
and M,.

One can also define a covering é’; of the group G, = Gy, using the
symplectic form defined by ¢ on g/g?. It is easy to see that this cover
splits over the unipotent radical of G, and that the preimage of G, in 5;
is isomorphic to C/:';, see e.g. [44, Section 4].

DEFINITION 2.20. — Let H be a linear algebraic group defined over F,
and fix an embedding H — GL,,. Denote by Hy the open normal subgroup
of H(F') generated by the image of the exponential map.

Note that Hy does not depend on the embedding of H into GL,,. Note
also that if H is semi-simple and connected then Hy = H(F') and if F =R
then Hy is the connected component of H(F'). For a finite central extension
H' of H, we define H{ to be the preimage of Hy under the projection
H — H.

DEFINITION 2.21 ([44, Section 4]). — We say that a nilpotent orbit
O C g* is admissible if for some (equivalently, for any) choice of ¢ € O,
the covering G, — G, splits over (G,,)o.

As observed in [44], this definition of admissibility is compatible with Du-
flo’s original definition for the Archimedean case, given in [12, Section I1.2].

DEFINITION 2.22. — We say that a nilpotent orbit O C g* is quasi-
admissible if for some (equivalently, for any) ¢ € O, the covering é; — G,
admits a finite dimensional genuine representation, that is, a finite dimen-
sional representation on which the non-trivial element € in the preimage of

1€ G, acts by —1d.

DEFINITION 2.23. — Let us define the action of @ on T,. Since the
adjoint action of G, preserves gh and the symplectic form on it, it preserves
U/N'. Since o, is the unique smooth irreducible representation of U/N’
with central character x,, we have a projective action of G on o,. By [60]
this action lifts to a genuine representation of a:, This gives rise to an
action ofé; on W, by (9f)(z) = g(f(xzg)). This action commutes with
the action of G and thus defines an action ofé; onmy, =W, ®)a.

More generally, for a Whittaker pair (S, ) let G(S,¢) denote the sub-

—_—

group of G corresponding to the Lie algebra (ggo Ng,)®g2,. Then G(S,¢)
normalizes the groups U and N’ corresponding to the pair (S, ¢) and acts
on Ws,, and on g, as above.
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It is well known that the metaplectic cover splits over the Siegel parabolic
corresponding to any Lagrangian. Indeed, the Weil representation on the
Siegel parabolic is given by the action on the Heisenberg group by automor-
phisms (in the realization of the representation functions on the Heisenberg
group as in Lemma 2.11). These considerations imply the following lemma.

LEMMA 2.24. — Let (S, @) be a Whittaker pair, let [ C g3, be a maxi-
mal isotropic subalgebra and L := Exp([). Let G’ denote the normalizer of
L in G(S, ). Then

(i) The metaplectic cover of G(S, ¢) splits over G'.

(ii) The action of G' on Wg,, defined by splitting the metaplectic cover
corresponds under the isomorphism Ws ,, 2 ind (x,,) to the action
(9/)(x) = f(zg).

(iii) For any m € Rep™(G), the action of G’ on 7g,, defined by splitting
the metaplectic cover corresponds under the isomorphism

Tse = (T® Xp)L

from Lemma 2.16 to the action on (7 ® x,)r, given by action on
representatives in .

3. Some Archimedean technical lemmas

Let P>(R) denote the group of affine transformations of the line. Let N
denote the unipotent radical of P>(R) and n denote the Lie algebra of N.
Let B° denote the connected component of the identity in P»(R)

PROPOSITION 3.1. — Let V € Rep™(B°). Suppose that V is not gen-
eric, i.e. (V*)N¥ = 0 for any non-trivial unitary character v of N. Then n
acts locally nilpotently on V*.

In the p-adic case, an analogous lemma is proven by Bernstein and
Zelevinsky using l-sheaves. We will prove this proposition in Section 3.1
using [9, Section 2|. Let us now derive some corollaries.

COROLLARY 3.2. — Let V € Rep™(B°) be non-zero. Then (V*)N:¥ #£ 0
for some (possibly trivial) unitary character ¢ of N.

—~—

Let Mp denote the metaplectic group SLa(R), and s := Lie(Mp) = sl2(R)
denote its Lie algebra.
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COROLLARY 3.3. — Let V € Rep®™(Mp) be non-zero and non-generic.
Then any A\ € V* generates a finite-dimensional subrepresentation, and V
has a (non-zero) finite-dimensional quotient. In particular, every irreducible
genuine V' € Rep™ (Mp) is generic.

Proof. — Choose a standard basis e, h, f for s. Let B denote a Borel
subgroup of SLy(R) and Bc M p denote its preimage. Note that the con-
nected component of B is isomorphic to BY as a Nash group. Thus Propo-
sition 3.1 implies that both e and f act locally nilpotently on V*. By e.g.
[3, Lemma C.0.3] this implies that any A € V* generates a finite-dimensional
subrepresentation W. This W non-degenerately pairs with a quotient of V',
and thus this quotient is finite-dimensional. O

Remark 3.4. — Under the assumption of the corollary we cannot in gen-
eral claim that the action on V is locally finite. For example, V' could be
the direct product of all irreducible finite-dimensional representations of
SLo(R), with the topology given by projections.

In order to apply Corollary 3.3 we will need the following lemmas.

LEMMA 3.5. — Let m be a Lie algebra generated by ad-nilpotent ele-
ments. Then m has a basis consisting of ad-nilpotent elements.

Proof. — Let v C m denote the subspace spanned by ad-nilpotent ele-
ments. Then v is a module for the Lie group corresponding to m, and thus a
subalgebra (in fact, an ideal) of m. Since t generates m, we obtaint =m. O

Note that if m is semi-simple then ad-nilpotent is the same as nilpotent.

LEMMA 3.6. — Let m be a Lie algebra and V' be an m-module. Suppose
that m has a basis X1,...X,, such that each X; acts locally finitely on V.
Then m acts locally finitely on V.

Proof. — Let U denote the universal enveloping algebra of m. For each
i, let p; denote the subspace of U spanned by all the powers of X;. By the
Poincaré-Birkoff-Witt Theorem, U = p,pn_1 -..p1. By the assumption of
the lemma, for any finite-dimensional subspace W C V', and any i, p; W is
finite-dimensional. By induction we obtain that for any v € V, and k < n,
DPkPk—1 - - - p1v is finite-dimensional. Taking k& = n we obtain that Uv is
finite-dimensional. O

3.1. Proof of Proposition 3.1

LEMMA 3.7. — Let V be a Fréchet module over the Fréchet algebra of
power series C[t]. Then t acts locally nilpotently on the dual space V*.
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Proof. — Any A € V* and v € V define a distribution on R supported
at 0 by &4 (f) := A(fv), where f denotes the Taylor series of f at 0. Then,
for any A € V* there exists k such that t*¢y, = 0, and thus A\(tkv) = 0.
Thus V = UKer(¢*)). Since V is metrizable, the Baire category theorem
implies that Ker(t*\) = V for some k. O

COROLLARY 3.8. — Consider the Fréchet algebra of Schwartz functions
S(R), under multiplication, and let V' be a Fréchet S(R)-module annihilated
by the ideal S(R\ {0}). Let f € S(R) with f(0) = 0. Then f acts locally
nilpotently on V*.

Using Fourier transform we obtain the following corollary.

COROLLARY 3.9. — Let V € Rep™(R). Let

oo

(3.1) A:={feSR)s.t. Vk. / th f(t)dt = 0}.

— 00

Suppose that AV = 0. Then % acts locally nilpotently on V*.

DEFINITION 3.10 ([9, Section 2]). — Let G be an affine Nash group
and X be an affine Nash G-space. A (G,S(X))-module is a representation
E € Rep™(G) with a continuous action m of the Fréchetalgebra S(X)
satisfying gn(f)g~' = n(f9)v, where f9(x) := f(g~'z). We say that E is
non-degenerate if the action map S(X)® E — E has dense image, and for
every v # 0 € E, there exists f € S(X) with 7(f)v # 0.

We denote the category of (G,S(X))-modules by Repg x and the sub-
category of non-degenerate modules by Rep%‘? x-

THEOREM 3.11 ([9, Lemma 2.5.7 and Theorem 2.5.8]). — Let G be an
affine Nash group and X be a transitive Nash G-space. Define S(X) :=
C & S(X). Fix 29 € X and let my, C S(X) denote the maximal ideal
consisting of functions vanishing at x¢. Let E € Rep&‘? x- Then mg E is a
closed proper subspace of E.

Proof of Proposition 3.1. — Let the algebra A from (3.1) act on V
using the identification N ~ R. By Corollary 3.9 it is enough to show that
AV = 0. Suppose by way of contradiction that AV # 0 and let F denote
the closure of AV. Note that Fourier transform defines an isomorphism
A~ SR\ {0}). We further identify R \ {0} with the Nash manifold X
of non-trivial unitary characters of N. The action of P»(R) on X is by
multiplication by the reductive part, and the action of B° has two orbits:
X, and X_.

ANNALES DE L’INSTITUT FOURIER



WHITTAKER SUPPORTS 257

We let S(X) act on E through A, and note that this is compatible with
the action of the group B°. Theorem 3.11 implies that either (E*)N:¥ 2 (
for any v € Xy or (E*)N:¥ 20 for any ¢ € X_. Fix a ¢ with (E*)M¥ #£ 0.
From the short exact sequence

0= (V/IE) - V"= E"—=0
we obtain the exact sequence
(V)W) o (BN o HY (0, (V/E)* @ 9).

Note that n acts locally nilpotently on (V/E)* by Corollary 3.9. Thus
the action of any generator of n on (V/E)* ® v is invertible and hence
H'(n,(V/E)* @ ¢) = 0. Since (E*)N¥ # 0 we obtain that (V*)(N:¥) =£ 0,
which contradicts the conditions of the proposition. Thus AV = 0 and thus
n acts locally nilpotently on V*. g

4. Proof of Theorem 1.5

Fix a Whittaker pair (S, ). Let G - ¢ denote the coadjoint orbit of ¢
and G - ¢ denote its closure.

LEMMA 4.1 (20, Lemma 3.0.2]). — There exists Z € g such that (S —
Z, ) is a neutral Whittaker pair.

Fix Z as in the lemma and let h := S — Z. For any rational number t > 0
define

(4.1) Spo=S,z:=8+({t—-1)Z w =g, v,:=g3 and w, =gy

DEFINITION 4.2. — We call t regular if u; = uyy. for any small enough
€ € Q. Observe that this is equivalent to w; C gz. If t is not regular we
call it critical. For convenience, we will say that 0 is critical.

Note that for any Z and ¢ there are only finitely many critical numbers.
Recall the anti-symmetric form w on g given by w(X,Y) = ¢([X,Y]).

LEMMA 4.3 ([20, Lemma 3.2.6]).

(i) The form w is ad(Z)-invariant.
(ii) The radical of w is Radw = g, = g/ C 920'
(iii) Rad(wl|w,) = Rad(w) N roy.
(iv) Rad(wly,) = v; ® Rad(W|w, )-
(v) w;Ngy, Cup forany t <T.
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Choose a Lagrangian m C g N g7 and let
(4.2) I := m+(utﬂg§0)+Rad(w|ut) and t; := m+ (1w ﬁgi0)+Rad(w|ut).
Note that these are maximally isotropic subspaces.

LEMMA 4.4. — Let 0 < t < T and suppose that there are no critical
numbers in (¢t,T). Then

(4.3) lr =1t (I‘OT N gw).

Moreover, v; is an ideal in lp with commutative quotient and vy is an ideal
in v; with commutative quotient.

Proof. — Decomposing to the eigenspaces of ad(Z) we obtain
(44) w=ma (v, N9g%) @ (0:NgZy) @ (0, N %)
(45) I =ma (vrngZ) @ (or Na%) @ (or N 9Z0) @ (o7 N gy)
Since there are no critical numbers in (¢,7") we have
(4.6) v; N g%y = (w7 NgZ,) @ (o7 N %)
(4.7) or N g2y = (v N gZp) @ (ve N oZy)

This implies [7 = ¢,®(w7Ng,) and vy C t;. The rest is straightforward. O

4.1. Basic comparison lemmas

LEMMA 4.5 ([6, Lemma 5.10]). — Assume that F' # R and let A be a
finite-dimensional vector space over F', viewed as an l-group. Let p be a
smooth representation of A. Suppose that Hom(p, x) = 0 for every non-
trivial smooth character x of A. Then p is a trivial representation.

Our main tools are Lemma 4.5, Proposition 3.1 and the following
notion 4.6 and Lemma 4.8.

DEFINITION 4.6. — We say that (S, ¢, ¢') is a Whittaker triple if (S, ¢)
is a Whittaker pair and ¢’ € (g)S _,.

For a Whittaker triple (S, ¢, ¢') we define a smooth representation of G
that we call a quasi-Whittaker model and denote Ws , o/, in the following
way. Let
U= ggl, v:=g3,,3:=0®((g7)Ng,) and ¢ be the kernel of ¢ + ¢’ on 3.

Then Exp(u)/ Exp(¥) is a Heisenberg group with center Exp(3)/ Exp(£),
and ¢ + ¢ is a character of this center. Let o, . denote the oscillator
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representation corresponding to this character. Continue o, v trivially to
Exp(u) and let Ws o = indgxp(u) 04, denote its Schwartz induction to
G (see Definition 2.4).

Note that for ¢’ = 0 we obtain the degenerate Whittaker model Wg,,.
Note also that ¢’ vanishes on [u,u] and thus ¢ + ¢’ defines the same anti-
symmetric form on u as .

Remark 4.7. — Let a be the first eigenvalue of S bigger than 1. Then

. .G _
Indg,p,0) Xot+¢' = Wa=15,0,0+¢'-

For m € Rep™(Q) define 7g,, = Ws,p,o @ T)g. Recall that if
F = R then ® denotes the completed tensor product. We will say that
m is (S, ¢, ¢')-distinguished if g, o+ # 0. We will denote by QWO() the
set of all orbits O for which there exists a Whittaker triple (S, p,¢’) such
that ¢ € O and 7 is (S, ¢, ¢')-distinguished. The set of maximal orbits in
QWO(m) will be denoted QWS().

Till the end of the subsection we let T > ¢t > 0 be such that there are
no critical numbers in (¢, 7). We also fix ¢’ € (g%)5 , N (g%)57, and ¢ €
(g*)“iLQ N (g*)fg Let L, := Exp(l;), R¢ := Exp(t;) and let x := Xpty/+o
be the character of these groups given by ¢ + ¢’ + .

Similarly to Lemma 2.16 we have

LEMMA 4.8. — (7 @ Xop+¢/ )1, = (T ® Xt )R, = TSy,

Let f € g be the unique nilpotent element corresponding to ¢ by the
Killing form. Let h:= S — Z and let v = (e, h, f) be an sly-triple.

LEMMA 4.9. — Assume that for any non-zero ¢/ € (g*)°7 N (g*)°
we have

TSr w0/ ++y = 0.

Then

(a) IfF is non-Archimedean then (T®x) L, = (T®X)r,. In other words,
any (Ry,x)-equivariant functional on 7 is automatically (L, x)-
equivariant.

(b) If F = R then the commutative Lie algebra a := Irp/v; acts on
((r ® X)R,)* locally nilpotently and thus if (w ® x)r, # 0 then
(T ®X)R.)a = (T @ X)Lr # 0.
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Proof. — Let p := 7R, . The quotient A := Ly /R, acts on p.

(a) We have to show that the action of A on p is trivial, By Lemmas 4.5
and 4.4, it is enough to show that for any non-trivial character
X' of A, Homa(p,x’) = 0. By Lemma 4.4, characters of A are
given by elements of (tor N g,)* = (tv})¢. For ¢’ € (w7.)¢ and the
corresponding character X;}, of A we have

Hom 4 (p, Xib') = (WST7%¢’+¢+¢’)* =0.

(b) Note that for any X € a, the action of the Lie algebra generated by
St and X on p can be extended to the action of the corresponding
subgroup of G. This subgroup is isomorphic to the group Pz(R)
of affine transformations of the line. Thus we use Proposition 3.1
instead of Lemma 4.5 and continue as in (a). O

LEMMA 4.10. — Assume that 7 is (S, @, ¢’ + 1)-distinguished. Then

for some (possibly zero) i € (g*)°7, 7 is (St, ¢+, ¢’ +1')-distinguished.

Proof. — Consider the form '(X,Y) := (¢ + ¥ + ¢')([X,Y]). The re-
strictions of this form to t; and to vr are trivial. Thus there exists a max-
imal totally isotropic subspace | C up with v; C [. Let L := Exp([). Since

vor C vy, the characters of A := L/R; are given by a quotient of (g*)iT1

Thus, by Lemma 4.5 and Corollary 3.2, for some ¢’ € (g*)°7 we have

0 # HomA(FRmX’X’,L[)') = (WST7W+¢7W/+¢/)*' |

4.2. Key propositions

Let S, ¢, h, f,e, Z,S; be as before.

PROPOSITION 4.11. — Let T >t > 0. Let ¢’ € (g*)*_,N(g*)3" ,. Then
we have an epimorphism

ViTS 00" 7 TSr,0,0! -
Moreover, if 7 is not (Ss, ¢, ¢’ + v')-distinguished for any s € (¢,T) and
any non-zero ¢’ € (g*)%5 N (g*)¢ then

(i) If F is non-Archimedean then v is an isomorphism.
(ii) 7 is (St, ¢, ¢')-distinguished if and only if w is (ST, ¢, ¢')-disting-
uished.
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Proof. — Let tg :=1t, t1,...,t,—1 be all the critical values between t and
T and t, :=T. By Lemmas 4.4, 2.8, and 4.8 we have

TSsp,0! =~ (’/T ® X)Rt - (7T ® X)Ltl = (ﬂ— ® X)Rtl -

- (71— ® X)Lt" = TSr 0.
The “moreover” part follows from Lemma 4.9. O

PROPOSITION 4.12. — Let t > 0 and let
%\ St %\ St *\e
n#0€ (@) oN (g N(g").
Suppose that w is (S, ¢, n)-distinguished. Then there exist T > t, ® €

(g)%%, and &' € (g*)iT_2 such that ¢ € G® \ G® and © is (S, ®, ®’)-
distinguished.

Proof. — Since n € (g%)° C g%, we have n € gZ;. Thus for some 5 > ¢
there exist ¢ € (g*)%, N (g*)¢ and ¢’ € (g*)i‘*_2 N (g*)¢ such that ¢ # 0
and n = ¢’ + . Note that ¢’ € (g*)iﬂQ for any s’ € [t, s].

Let ag :=t, let ay,...,a,,_1 be the critical values between ¢ and s and
am := s. We prove the statement by induction on m.

The base case is m = 1, i.e. there are no critical values between t and s.
Take T := s. Then Lemma 4.10 implies that 7g, oty o4 7 0 for some
¢ € (g*)°%. Denote ® := ¢ + ¢ and & := ¢ + 1)/,

Note that ¢ € G®. Indeed, by Corollary 2.19, there exists an algebraic
group morphism v : F* — G2 and a central element Z’ € g such that
Z — 7' € Im(dv). Let A € F* be small and g := v(\). Then Ad*(g)p = ¢
and Ad*(g™)y — 0. Note also that G® = G*4.

Note that ® belongs to the Slodowy slice to Gy at ¢ and thus ¢ ¢ GO.

For the induction step, note that by Lemma 4.9, 7 is (S,,,p,n + ¥")-
distinguished for some (possibly zero) ¥ € (g*)iaf N (g*)¢. The Proposi-
tion 4.12 follows now from the induction hypothesis. O

Note that it is possible that ®' = 0.

Example 4.13. — Let G := GL4(F), h := diag(1,—1,1,-1), Z := diag(0,
0,1,1), t := 3. Identify g with g* using the trace form and let ¢ := f :=
Eo1+FEy3, n := E14, where E;; are elementary matrices. Then e = Fio+Es3y
andnegﬁtlﬂge.We have s =4, m=1, ¢ ' =0,¢y =1, ® = ¢+ 1. Then
® is regular nilpotent and ¢ € G® \ G®. Since g?* = 0, we have & = 0.

For the next proposition we will need a couple of geometric lemmas, and
a definition.
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LEMMA 4.14. — Let ¢ € (g*)%, N (g*)%,. Assume that ¢ + 19 € Ge.
Then ¢+ ¢ € Gge.

Proof. — By Corollary 2.19, there exists an algebraic group morphism
v: F* — G* and a central element C' € g such that Z — C € Im(dv).
Since Z commutes with ¢ and 1 € (g*)%,, this implies that there exists a
sequence t, — 0 € F with p+t,9 € Gg(¢ + ) for every n. Thus ¢ +t,¢
€ Gy for every n. Consider the decomposition g* = (g*)¢ @ ad”(g)(p).
Since ad(S) preserves all these spaces we have

(6%)% = (g7)° N ()% +ad”(g7) (),
Thus the map

e ((8%)° N (g%)%,) x Gs — (g%)%, given by u(X,g) == X + Ad*(g)¢

is a submersion. Hence its image contains an open neighborhood of ¢. Thus
Im p contains ¢ + t,7 for some n. Since ¢ + t,1 € Gy, and the Slodowy
slice ¢ + (g*)¢ is strongly transversal to Gy, we obtain ¢ +t,1 € Ggyp and
thus ¢ + 9 € Ggp. |

DEFINITION 4.15. — We will say that t > 1 is quasi-critical if either
g7t ¢ af or g5t ¢ gf. We denote by in(S, ) the number of all quasi-
critical t > 1.

Let us now show that in(S, ) does not depend on the decomposition
S=h+2.

LEMMA 4.16 ([7, Section 11]). — Let h' € gg be a neutral element for f.
(i) Im(ad(f)) NKer(ad(f)) is a subalgebra in g, which includes h — b’
and lies in 9}<Lo-
(ii) Let n C g be a subalgebra such that all Y € n are nilpotent and
[h,n] = n. Then exp(ad(n))h = h + n.

LEMMA 4.17. — Let h' € gg be a neutral element for f. Then there
exists a nilpotent element X € gg such that exp(ad(X))(h) =1/

Proof. — Let b :=Im(ad(f)) NKer(ad(f)) N gs. By the previous lemma
this is a subalgebra that includes Y := h’ — h and all its elements are
nilpotent. It is easy to see that [h, b] = b, and thus there exists X € b such
that exp(ad(X))(h) =h+Y =1 O

COROLLARY 4.18. — The number in(S, ¢) depends only on (S, ¢) and
not on h.
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PROPOSITION 4.19. — If ¢ € QWS(n) then 7, # 0.

Proof. — Since ¢ € QWS(w), 7 is (9, ¢, ¢ )-distinguished for some
S’ ¢'. Without loss of generality we can assume S = S’. Suppose first
that Z = 0. In this case we can assume ¢’ € (g*)";. Also, in this case the
form on u = g%, given by w(X,Y) = ¢([X, Y]) has no radical. Thus we can
choose a Lagrangian subspace of u; on which 1)’ vanishes. Thus 7, o # 0
implies 7, , 7# 0.

Now we assume Z # 0 and prove the Proposition 4.19 by induction on
in(S, ¢). For the base assume that in(S,¢) = 0, and let ¢ be such that all
the positive eigenvalues of ¢tZ are bigger than all the eigenvalues of h by at

least 2. Then we have (g*)Z, C (g*);, and (g%)%, C (g*)i’f_z. This implies

(4.8) (6935 = (092 @ (6% N (8")5),

and by Lemma 4.10, 7 is (S, ¢, ¢’)-distinguished for some v’ € (g*)it_2.
By (4.8) we have ¢’ =11 + 12 with ny € (g*)it_1 and 12 € (g*)", N (g*)Z.
Then 7; vanishes on u;, and 7, vanishes on the radical of the form w, on
u;. Thus we can choose a maximal isotropic subspace of u; on which 1)’
vanishes. Thus 7g, o,y = 7s,,,. By Proposition 4.11, 7, maps onto mg, .
Since 7g,, 4 # 0 we obtain 7, # 0.

For the induction step let ¢ > 1 be the smallest quasi-critical number. By

Lemma 4.10, 7 is (S, ¢ + 1, 7’)-distinguished for some 7’ € (g*)3*_, and

some ) € (g*)i}”l N (g%)Z,. Then ¢ € G(p + ). Since p € QWS(r), we
have ¢ € G(¢ + ¢), and by Lemma 4.14 ¢ = g(p + ¢) for some g € Gg,.
Conjugating by g we get in(S, p+1) = in(St, ¢) < in(S, ). The induction
hypothesis implies now that 7, # 0. Thus 7, # 0. g

COROLLARY 4.20. — We have QWS(7) = WS(m).
Example 4.21. — Let G := GLg(F') and
h:=diag(1,—1,1,—1,1,~1), Z:= diag(0,0,3,3,2.5,2.5).
Identify g with g* using the trace form and let
¢ = Eo + Ea3 + Ees, ¢’ = Eiq+ Eus.

Let 7 be (S, ¢, ¢')-distinguished and let us show that ¢ ¢ QWS(7). Then
the first quasicritical value of ¢ is ¢ = 4/3. We have Sy /3 = diag(1, 1,5, 3,

4%,2%). Then Eyy € gf‘;/?’ and Ey5 € gfjj?). By Lemma 4.10, 7 is (S4/3, ¢+
Say3

E14, Ey5)-distinguished, since g_7° = 0. Now, ¢ € G(¢ + E14)\G(¢+ E14)
and thus ¢ ¢ QWS(m).
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Example 4.22. — Let G = GLg(F),S = diag(1,-1,5,3,4%,21), ¢ =
FEo1 + Es3 + Egs + Fha,

¢ = Eu5, h=diag(—1,-3,3,1,1,-1), Z = diag(0,0,0,0,4/3,4/3).

The first quasicritical value of ¢ is 3/2. Now, Proposition 4.11 implies that
any (S, ¢, ¢’)-distinguished representation m is (Ss/2, E21 + Es3 + Eegs +
E14 + Ey5)-distinguished, and thus has Tg,, 1 5,4+ Egs+Erat Egs 7 0-

4.3. Proof of Theorem 1.5

Proof. — First let us show that for all critical ¢ > 0 and all non-zero
¢ € (g")% N (g%)¢ we have 75,0, = 0. Suppose the contrary. Then by
Proposition 4.12 for some T > 0 there exist ® € (g*)°5 and @ € (g*)57,
such that ¢ € G® \ G® and 7 is (St, ®, ®')-distinguished. Thus there
exists O € QWS(m) that includes ® in its closure. By Corollary 4.20 we
have O € WS(r), which contradicts the assumption Gy € WS(w).

Now let 0 = tg < t; < tg < -+ < tn41 = 1 be all the critical ¢ € [0,1]. By

Proposition 4.11, we have a sequence of (G) z-equivariant epimorphisms

(4.9) Mo = TSgp 77 TSy =7 " 7 TS0 77 TS, e = TS

that in the p-adic case are isomorphisms, and in the real case are non-
ZEero. O

Remark 4.23. — Under the assumption that 7 is unitary one might be
able to construct an invariant scalar product on 7, and deduce that the
epimorphism of 7, onto 7g, is an isomorphism also for /' = R.

Example 4.24. — Let G := GL(4, F) and let S be the diagonal matrix
diag(3,1, —1, —3). Identify g with g* using the trace form and let f := ¢ :=
Ey1 + Ey3, where E;; are elementary matrices. Then we have S = h + Z
with h = diag(1, —1,1, —1) and Z = diag(2, 2, —2, —2). Thus S; = diag(1+
2t,—1+2t,1 — 2t, —1 — 2t) and the weights of S; are as follows:

0 2 4t 4t + 2
-2 0 4t — 2 4t
—4t —4t + 2 0 2

—4t -2 —4t -2 0

The critical numbers are 1/4 and 3/4. For ¢ > 3/4, the degenerate Whit-
taker model W, ,, is the induction ind% X, where N is the group of upper-
unitriangular matrices.
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The sequence of inclusions tg C l;/4 ~ t1/4 Cl3/4 = t3/4 is:

0o — 0 - 0 — a -—
0 0 0 O 0 0 0 a
(4.10)0_0_C0*0_
0 0 0 O 0O 0 0 O
0 — % — 0o - — —
OOO*COO*—
0O 0 0 - 0o 0 0 -
0 0 0 O 0 0 0 O

Here, both % and — denote arbitrary elements. — denotes the entries in v
and * those in tv;, = gft. The letter a denotes an arbitrary element, but
the two appearances of a denote the same numbers. The passage from [; /4
to vy /4 is denoted by ~. At 3/4 we have [3/4 = t3/4.

Let 7 € Rep™(G) with Gy € WS(7). The sequence of epimorphisms (4.9)
is given by the sequence of inclusions (4.10). To see that these epimorphisms
are non-zero (and are isomorphisms for F' # R) we need to analyze the dual
spaces to m{ /4 and mg /4 These spaces are spanned by Fy3 + F24 and by
Fs3 respectively. Thus, the dual spaces are spanned by F3; + F42 and by
F39 respectively. Note that the joint centralizer of h, Z and ¢ in G acts on
these spaces by scalar multiplications, identifying all non-trivial elements.
By Proposition 4.11 it is enough to show that mg, , o By +E, = 0 and
TS3/a,p:B32 = 0.

This is guaranteed by Propositions 4.12 and 4.19, but for the sake of the
example let us show this more directly.

First assume by way of contradiction that =g, , , £, # 0. Note that

FEs3y € gﬁlz and that to; = 0. Thus u; = [; = t3/4 and

TS1,04+Esz = TS3,4,0,Es2 # 0.

Note that ® := ¢ + E35 = Fa1 + Ey3 + E32 is a regular nilpotent element,
and S; = S = diag(3,1,—1,—3) is a neutral element for it. Thus 7g # 0,
contradicting the assumption that ® is maximal in WS().

Now assume by way of contradiction that s, , o £y, +Es, 7 0. Note that

E31 + E42 S 9‘212/2 and that m1/2 = 0. Thus [1/2 = U1/2 = t1/4 and

TSy 2, p+Es1+Es2 = TSy 4,0,E31+FEa» 7é 0.

Note that ¥ := ¢ + F31 + Ego = Fo1 + Ey3 + E31 + Ey4o is a regular
nilpotent element, and S; /, = diag(2,0,0, —2) is a neutral element for it.
Thus g # 0, contradicting the assumption that G-¢ is maximal in WO(7).
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5. Proof of Theorems 1.3 and 1.4
5.1. Proof of Theorem 1.4

In the non—Archim/_giean case, it is enough to prove that for any ho-
momorphism v : SLy(F) < ]\A@7 the image acts on 7, by £Id. In the
Archimedean case, by definition of M its Lie algebra m is generated by
nilpotent elements. Thus, by Lemmas 3.5 and 3.6, it is enough to prove
that any nilpotent element of m acts locally finitely on 7. Since any such
nilpotent lies in the image of the differential of a homomorphism of the
form v : SLy(F) — ]\A/[;, it suffices to show that the restriction of 7, to the
image of any v as above is locally finite. By Lemma 4.5 and Corollary 3.3,
in both cases it is enough to show that the restriction of 7, to the image
of v is non-generic.

Fix such a morphism v and let (¢/, i/, f’) be the corresponding slp-triple
in g, and let ¢’ € g* denote the nilpotent element given by the Killing form
pairing with f/. Let Sy :=h+th’. Let 0 =tg < t; <to < -+ < tp41 =2/3
be all the critical ¢ € [0,2/3]. By Corollary 4.20, WS(7) = QWS(n). Thus
© € QWS(7), and Proposition 4.12 implies that

(5.1) 7,05 =0
for any ¢ € (0,1/2) and any non-zero ¢’ € (g*)%4 N (g*)°

By Proposition 4.11, this implies that we have a sequence of epimor-
phisms

(5.2) T = TSy = TSy = " = WSy 0 TS, o= TS,p

that in the p-adic case are isomorphisms, and in the real case are non-
zero. By Lemma 2.24, these epimorphisms commute with the action of
Exp(e’). Let x’ denote the character of Exp(e’) given by ¢', and denote
(75, @)t o' = (T3, 0 )Exp(er),x/- Then (5.2) induces a sequence of epimor-
phisms

(53) (TFA,O)Exp(e’),X’ = (Wst07@)6/7¢/ —» (’/Tstl,@)e/’gp/ — ...
= (s, 0)el o0 = (7"Stn+1,s0)e’,sa’

We note that the last element of the sequence is zero, since €’ € v;, ., and

¢(e’) = 0, and thus Exp(e’) acts trivially on 7, . . In order to show
that the restriction of 7, to the image of v is non-generic it is enough to
show that all the spaces in (5.3) vanish.
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If F' is p-adic then this is straightforward, since in this case all the maps
in (5.2) are isomorphisms, and thus so are the maps in (5.3). Let us show
that in the Archimedean case (7s, ,)e,o = 0, by backwards induction on
i. The base case is i = n + 1. For the induction step, recall that the map

(7s,,_, ) = (7s,,,0) Is given by

TS, >0 = TR, 1 7 Ty, = TS, 10
Consider the dual map (7, »)" < (7R, )" Its image is the space of
invariants under the commutative Lie algebra a := I3, /t;,_,. By Lemma 4.9
and (5.1), a acts locally nilpotently on (7g, | ,)*. Since [¢/,l;] C v, ,, the
actions of ¢’ and of a commute. Thus a preserves the space of (¢, ¢’)-semi-

i—17

invariants ((WRti,l,sa)*>e/’¢/v and acts on it locally nilpotently. But a has
no invariants on this space by the induction hypothesis, since this space of
invariants is dual to (7s,, ), = 0. Thus ((TrRti_lw)*)e/’“"l =0, and thus
(Wsti_l,tp)e',sﬁl =0. O

Remark 5.1. — Let (S,¢) be a Whittaker pair with ¢ € WS(x), and
let G(S,») C G be the subgroup defined in Definition 2.23. The same
argument shows that the cover of the subgroup of G(S,¢) generated by
unipotent elements acts locally finitely on 75 , if F' is Archimedean, and
acts on 7, by £1 if F' is non-Archimedean.

5.2. Proof of Theorem 1.3

Proof. — By a quasi-cuspidal © we mean a smooth (not necessarily ad-
missible or finitely-generated) representation such that the Jacquet module
rp(m) vanishes for any proper parabolic subgroup P C G.

Let 7 be quasicuspidal and let O € WS(w). Suppose by way of contra-
diction that O is not F-distinguished. Thus there exists a proper parabolic
subgroup P C G, a Levi subgroup L C P and a nilpotent f € [ such that
@ € O, where ¢ € g* is given by the Killing form pairing with f. Let h be
a neutral element for f in [. Choose a rational-semisimple element Z € g
such that L is the centralizer of Z, p := ggo is the Lie algebra of P, and
all the positive eigenvalues of Z are bigger than all the eigenvalues of h by
at least 2. Note that n := gZ is the nilradical of p. Let S := h + Z. By
construction we have n C giz and thus the degenerate Whittaker quotient
Ts,, is a quotient of rpm. By Theorem 1.5, the maximality of O implies
T3, =~ Tp. Thus rpm does not vanish, in contradiction with the condition
that m is quasi-cuspidal. O
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6. Proof of Theorem 1.1, and relation to admissible and
special orbits

6.1. Proof of Theorem 1.1

Fix a nilpotent ¢ € g*. Let v = (e, h, f) be an sly-triple such that ¢ is
given by pairing with f under the Cartan—Killing form on g.

Let (G4)ss be the subgroup of G generated by the exponents of the
derived algebra for g-, and (G )ss be the corresponding subgroup of G

Let [?7 C (G4)ss be the anisotropic (and hence compact) part.
PROPOSITION 6.1. — If F' =R then

—_~—

(6.1) (G-)es = M, x K, JA(M, N K,),
Proof. — For the Lie algebras we have [g.,g,] = £, ® m,, thus
(6.2) (Gy)ss = My x K\ /A(M, N K,).

Thus, in order to prove (6.1) it is enough to show that M and K commute.
Fix k € K By (6.2), the commutator map m — mkm k1 maps M to
{1 e}. Suppose, by way of contradiction, that the image is non-trivial. Then
M is disconnected and thus M,y >~ Zo x M. Thus for some m € M, C M'w
the commutator map k +— mkm~1k~! is non-trivial. Thus K also splits,
which implies that it commutes with Mv- U

PROPOSITION 6.2. — If M., has a genuine finite-dimensional represen-

—_~—

tation then so does (G-)ss.

Proof. — Let pg be a genuine finite-dimensional representation of M\;

Assume first F' # R. Let C’ denote the kernel of pg and C' denote the
projection of C’ to M.,. Then C is a normal open subgroup of M., and thus
C = M,. Since p is genuine, the projection C' — C' is an isomorphism
and thus defines a splitting of E As in the proof of Proposition 6.1 one
shows that there exists an open subgroup K’ C I’(\; that commutes with C’
and includes e. Since the quotient (K'C")/C’' = K'/(K' N C") is compact,
it has a finite-dimensional genuine representation 7. By composing with
the natural projection, 7 lifts to a representation of K'C". Since K'C" is of

finite index in (G)ss, the induction of 7 to (G )ss is still finite-dimensional
(and genuine).
Assume now that F' = R. Then

g (G)es
(lndﬁj po)‘%’y lnd"’m"’ (pO‘KrﬂW’y)
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By the Peter—Weyl theorem, this implies that the induction has a finite-
dimensional K. ~-isotypic component p. By Proposition 6.1, M preserves p

and thus p is a genuine finite-dimensional representation of (G )ss. O

PropoOSITION 6.3. — If Mvﬂ, has a genuine finite-dimensional represen-
tation then so does G.,.

—_~—

Proof. — Let Z denote the center of @; and let H = Z(GV)SS. Let us
show that H has a finite-dimensional genuine representation. By Proposi-

tion 6.2, (G,)ss has an irreducible genuine finite-dimensional representa-
tion (p1, V1).

Notice that Z N (E;)/gg acts on (p1,V1) by a character, that we will
denote by xi1. By the classical theory of Pontryagin duality for locally
compact abelian groups, we can extend the character X1 to a character of
Z, see [11, Theorem 5]. This defines a genuine action of H on p1. Let p2 b be
the induction of this representation to G Since H has finite index in va
p2 is finite-dimensional. By composing ps with the epimorphism G — Gv’
we obtain a genuine finite-dimensional representation of é;. O

Theorem 1.1 follows now from Theorem 1.4 and Proposition 6.3.

6.2. Admissible, quasi-admissible and special orbits

PROPOSITION 6.4. — Assume that F' is non-Archimedean. Then ¢ is

—~

quasi-admissible if and only if the cover (G,) (see Section 2.6) splits over
an open normal subgroup of finite index.

Proof. — First, if the cover (Gy)o (see Section 2.6) splits over an open
normal subgroup H C (G,)o of finite index then the cover H has a one-
dimensional genuine representation. The induction of this representation

to (G,)o is still genuine and finite-dimensional.

Now assume that G, has a genuine finite-dimensional representation p.
Restrict p to (Gy)o and let C' denote the kernel of the restriction. Then C
is an open normal subgroup. Let us show that it has finite index. Indeed,
since p is finite-dimensional, Lemma 4.5 implies that C includes all the

unipotent elements of (G,)o. Thus, C is cocompact and open and hence
has finite index. Since p is genuine, the restriction of the covering map to
C is one-to-one. Thus, the cover splits over the image of C' in (Gy)o. O
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PROPOSITION 6.5. — All admissible orbits are quasi-admissible.

Proof. — Let O be an admissible orbit, let ¢ € O and let v be a cor-
responding sla-triple. Then, by definition, the cover splits over the group
(Gy)o generated by exponents of g,,. This group includes M., and thus /]\47
splits, and has a genuine character x. By Proposition 6.3 this implies that
O is quasi-admissible. O

Remark 6.6. — Any F-distinguished orbit is quasi-admissible, since for
such orbits M, is trivial. Over non-Archimedean F, F-distinguished orbits
are admissible since the metaplectic cover splits over compact subgroups,
see [38, Theorem 4.6.1]. Over F' = R, the minimal orbit in U(2,1) is R-
distinguished but not admissible. In general, the R-distinguished orbits for
semi-simple groups are classified in [51, Theorems 8-14] (under the name
compact orbits), and comparing this classification with the classification of
admissible orbits given in [50, Theorem 3] for classical groups, and [47, 48]
for exceptional groups, we see that for the groups

(6.3) SU(p, q)(with p,q > 1), EII, EV, EVI, EVIII, EIX

there exist R-distinguished non-admissible orbits("). On the other hand, for
other real simple groups, all R-distinguished orbits are admissible. Thus it is
possible that for simple groups not appearing in the list (6.3) admissibility
is equivalent to quasi-admissibility. We conjecture that quasi-admissibility
is equivalent to the splitting of MVV for all groups.

Let us now discuss the relation to special orbits.

THEOREM 6.7 ([44, Corollaries 5.9 and 6.3], [45, Main Theorem]).

Let F' be non-Archimedean. If G is classical then the set of admissible
orbits coincides with the set of special orbits. If G is split exceptional
different from Eg then the set of admissible orbits includes the set of special
orbits.

Tt is conjectured in [45] that the same holds for Fs.

For ' = R, the sets of special and admissible orbits coincide for orthog-
onal, symplectic and general linear groups. However, for unitary groups all
orbits are special but most orbits are not admissible. See Theorem 6.10
below for these facts. Also, for several exceptional groups, some split and
some non-split, there are special non-admissible orbits and admissible non-
special orbits (see [47, 48]).

M) For SU(m,n), the R-distinguished orbits are the ones described by partitions in which
all rows of the same size have also the same signs, while admissible orbits are described
in Theorem 6.10 (ii) below.
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It is conjectured that in the non-Archimedean case the Whittaker sup-
port consists of special orbits. By [31, 41] this holds for classical (p-adic)
groups.

The analogous conjecture cannot hold for exceptional G if FF = R.
Namely, for the minimal representation myi, of G2(R) constructed in [58],
WS(7) consists of the minimal orbit O;, of Ga, which is admissible but
not special. Let us explain the notion of minimal representation and the
relation to Whittaker support.

DEFINITION 6.8. — We call a smooth representation w of a real reduc-
tive group minimal if its annihilator variety is the closure of the minimal
orbit in g*(C). The annihilator variety is defined to be the set of common
zeros of the symbols of the elements of the annihilator ideal of m in the
universal enveloping algebra of g.

PROPOSITION 6.9. — The Whittaker supports of minimal representa-
tions consist of minimal orbits.

Proof. — Let 7 be a minimal representation. By [39, Corollary 4] this
implies that 7o = 0 unless O = {0} or O is minimal. Since 7 is infinite-
dimensional, Theorem 1.4 implies {0} ¢ WS (7min)- O

The conjecture on speciality of WS(7) also cannot be extended to com-
plex reductive groups.

Let us now prove Proposition 1.2 that states that admissibility, quasi-
admissibility and speciality are equivalent for the groups O(p,q), SO(p, q)
and Sp,,, (R). Our proof is based on Theorem 6.7 and the following theo-
rem from [50]. For the formulation, recall that the nilpotent orbits in real
classical groups are given by signed partitions satisfying certain conditions.
Fortunately, the signs have no effect on the admissibility and speciality.

THEOREM 6.10 ([50, Theorem 3]). — Let O C g* be a nilpotent orbit
and X\ be the corresponding partition.

(i) Let G is one of the groups O(p,q), SO(p,q), U(p,q) or Spy, (R).
Then O is admissible if and only if for each even row (i.e., row with
even length) in A\, the number of odd rows in A, which are shorter
than the even row, is even and for each odd row in A, the number
of even rows in A, which are longer than the odd row, is even.

(ii) Let G = SU(p, q). Then O is admissible if and only if for each even
row (i.e., row with even length) in X\, the number of odd rows in A,
which are shorter than the even row, is even and for each odd row
in A\, the number of even rows in \, which are longer than the odd
row, is even.
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(iii) For all other real classical groups, all nilpotent orbits are admissible.

Proof of Proposition 1.2. — First of all, comparing Theorem 6.10(i) to
the description of special orbits in [10, Section 6.3], and using Theorem 6.7
(for the case F' # R) we see that for the groups O(V), SO(V), and Sp,,, (F)
the set of admissible orbits coincides with the set of special orbits. Next, by
Proposition 6.5, this set is included in the set of quasi-admissible orbits. It
is left to show that non-admissible orbits are not quasi-admissible either.

We will do it for the symplectic group, since the construction for the
orthogonal case is very similar. Let O be a non-admissible orbit and A
be the corresponding partition. Since every odd part in A appears with
even multiplicity, Theorems 6.10 and 6.7 imply that there exists an odd
part A; in A such that the number of even parts bigger than \; (counted
with multiplicity) is odd. Let 2m be the multiplicity of ); in A. By [44,
Section 5.3], the centralizer G, includes a group H isomorphic to Sp,,, (F'),
over which the cover does not split. Since Sps,,(R) is simple and has no
non-trivial algebraic covers, if F' = R then H cannot have genuine finite-
dimensional representations, and thus O is not quasi-admissible. If F' # R
then O is not quasi-admissible by Proposition 6.4. 0

To complete the picture for real classical groups we will need the following
lemma.

LEMMA 6.11 ([33, Section 3, Lemma 7]). — Let V' be a Hermitian space
(of arbitrary signature) and SU(V') be the corresponding special unitary
group. Consider V as a real vector space and define a symplectic form
on V to be the real part of the hermitian form. Then the corresponding
metaplectic cover of SU(V') splits.

COROLLARY 6.12. — All nilpotent orbits in SU(p, q) and in U(p, q) are
quasi-admissible.

Proof. — By Proposition 6.3, it is enough to show that M; splits for
any sla-triple v = (e, h, f) in su(p, q). Let W = CP*¢ denote the standard
representation of g and (-,-) denote the fixed hermitian form on W of
signature (p,q). Note that - defines a decomposition W = ®T>O W(r),
where W (r) is the direct sum of all simple v-submodules of highest weight
r. For each r, let H(r) denote the highest weight subspace of W (r), and
define a sesquilinear form on H(r) by (v,w), := (v, f"w) if r is even and
(v, w), :=i(v, ffw) if r is odd. Since f is skew-hermitian, the form (-,-),
is hermitian. Note that (v,w), is non-degenerate for all r and that M, is
isomorphic to [],. SU(H(r)).
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By [44, Section 5.3] (which is written uniformly for all fields F'), the
splitting on M\; is implied by the splitting of the metaplectic cover of
SU(H (r))xSU(H (r")) inside Sp(H (r)®H (r")) for all pairs (r,r’) of different
parity. However, SU(H (r)) x SU(H (")) is a subgroup of SU(H (r) ® H(r"))
and by Lemma 6.11 the metaplectic cover splits on the latter group. O

Theorems 6.7 and 6.10 and Corollary 6.12 imply the following corollary.

COROLLARY 6.13. — For classical groups, all special orbits are quasi-
admissible.

It is possible that all special orbits are quasi-admissible for all groups.

7. Generalized Whittaker models for non-maximal orbits

The notion of quasi-Whittaker model and the method of Section 4 allow
us to relate degenerate Whittaker models corresponding to different nilpo-
tent orbits. Let (h, ) be a neutral pair, let a rational semi-simple Z € g
commute with h and with ¢ and let S : = h + Z.

PROPOSITION 7.1. — Let ¢ € (9*)271 (g%)%,. Then we have an epi-
morphism

Wh.ew = Ws ot

Proof. — The proof is similar to that of Proposition 4.11. Let S; := h+tZ
and let to := 0, t1,...,t,_1 < 1 be all the critical values between 0 and 1
and ¢, := 1. By Lemmas 2.8, 4.4, we have

. .G e
Whew =~ indp, Xptp = IndE, Xety
e .G
~ det1 Xo+v = - > IdL, Xeoryp = Ws oty O
This proposition is strengthened by the following lemma.

LEMMA 7.2. — Let ¢ € (g*)%_,. Then we have a natural isomorphism
Whow = Whe-

Proof. — Since the form w, on g? is non-degenerate, we can choose
' C gi on which ¢ vanishes. Let [ := ' & g,.
Then [ is a maximal coisotropic subspace of gp>1 and ¢ vanishes on [. Let
L := Exp(l). Then Wi, = ind¥ xpiy = ind§ xo = Wi 0. 0

Note that (g*)Z, N (g*)%, = (g*)g_1 (g*)%,. Thus Proposition 7.1 and
Lemma 7.2 imply the following corollary.

a Lagrangian subspace [
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COROLLARY 7.3. — Let ¥ € (g*)%, N (g*)%,. Then we have an epimor-
phism Wi, , — Ws oty

Together with Theorem 1.5 we obtain

THEOREM 7.4. — Let m € Rep™(G) and let O € WS(w). Let (h,p)
be a neutral Whittaker pair. Suppose that there exists a Whittaker pair
(S, ®) such that ® € O, p € (g*),, [h,S] =0, and ® — ¢ € (g*)%,". Then
G- p € WO(m).

This theorem is strongest for the group GL,,. In order to apply it to this
case we will need the following proposition from linear algebra, that we will
prove in the next subsection, following [20, Section 4.2].

PROPOSITION 7.5. — Let g, := gl,,(Q) and let O',O C g} be rational
nilpotent orbits, with O’ C O. Then for any neutral pair (h, ) with ¢ € O’
there exist a rational semi-simple Z € (g,)t N (gn), and ¢ € (gi)Z, N
(g5)"%5% such that ¢ + 1 € O.

COROLLARY 7.6. — Let G be either GL,(F) or GL,(C). Let m €
Rep™(G). Let O € WO(r) and O’ C O. Then O’ € WO(r).

Proof. — Since O € WO(7), there exists O; € WF(r) with O C O;.
Then O C O; as well. Choose a neutral pair (h, ) with ¢ € O and apply
Proposition 7.5 to this pair and the orbit O;. Then set S := h + Z and
® := ¢ + 1. By Theorem 7.4 we obtain O’ € WO(n). O

For admissible 7 this corollary is [20, Theorem D].
In Section 7.2 below we formulate and prove a certain analog of this
corollary for SL,, (F).

7.1. Proof of Proposition 7.5

Let us first introduce some notation. A composition 7 of n is a sequence
of natural (positive) numbers ny,...,nr with > n; = n. The length of 7
is k. A partition A is a composition such that \;y > Ay > --- > \,. For
a composition 1 we denote by 77 the corresponding partition. A partial
order on partitions of n is defined by

J J
(7.1) Az upif Z/\i > Zui for any 1 < j < length(\), length(u).
i=1

i=1
We will use the notation diag(z1,. .., z) for diagonal and block-diagonal
matrices. For a natural number k we denote by Ji € gi the lower-triangular
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Jordan block of size k, and by Ay, the diagonal matrix hy := diag(k— 1,k —

3,...,1—k). For a composition 1 we denote
(1.2) Jy :=diag(Jy,,...,Jn.) € gn and hy := diag(hy,, ..., hy,) € gn.
Note that [hy,, J,] = —2J, and (J,, hy) can be completed to an sly-triple.

Let E;; denote the elementary matrix with 1 in the (4, ) entry and zeros
elsewhere.

Identify g;, with g, using the trace form. Denote by O, the orbit of
Jp. By the Jordan Theorem all nilpotent orbits are of this form. It is well
known that O,, C (’T7 if and only if n? < 2. Here, one can take the closure
O, in any of the topologies on g,, defined by norms on Q, or in the Zariski
topology - all these closures coincide.

LEMMA 7.7. — Let p,q,r € Z withp >r > 0, ¢ > 0. Let Z := diag((p+
q—r)1dp,0g4r)) € Gptger, ¥ i= Epprirp, X i= Jpger +Y and § :=
hp,g+r + Z. Then

X,Yeg%, YVegZ, and X € Opyq,.

Proof. — An operator conjugating X to J,14,, is given in the standard
basis by

€; 1 < { < D
(73) gei; = § €iqr p<is<p+tq O
(71)q+7ﬁ71(61’—q—r —€i—q) PH+g<i<p+gqg+r

LEMMA 7.8 ([20, Lemma 4.2.2]). — Let A, be partitions of n with
A = p. Then there exists an index i < length(\) such that A\; > p; = Aiy1.
Here, if i = length(\) we take \;+1 = 0.

We are now ready to prove Proposition 7.5.

Proof of Proposition 7.5. — We prove the proposition by induction on
n. The base case n = 1 is obvious. For the induction step, assume that the
proposition holds for all n’ < n. Let u < A be the partitions corresponding
to O’ and O. If p has length 1 then A = p and the proposition is obvious.
If 1 has length 2 then the proposition follows from Lemma 7.7. Thus we
assume length(y) > 3. We can also assume that A and g do not have
common parts.

By Lemma 7.8 there exists an index ¢ < length()) such that

(7.4) Ai > i > Aiga-

Let n’ := n—p; and p :== \;+ X131 — ;- Let 1’ be the partition of n’ obtained
from p by omitting p; and A’ be obtained from A by replacing the two parts
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A; and A\;41 by a single part p. It follows from (7.4) that A\; > p > A\iy1,
and thus A is a partition of n’. (7.4) also implies X > p/. Let « be the
reordering of )\ obtained by putting the part p on the first place.

Choose a neutral pair (h/,¢’) in g, with ¢’ € O,. By the induction
hypothesis, there exist a rational semi-simple Z’ € g,,» and ¢’ € (gn/)ﬂJ N
(gn/)}jljzl such that '+’ € Oy . Conjugating by GL,,(Q) we may assume
that o'+’ = J,. This implies that Z’ is diagonal and that the first p entries
are equal. By subtracting a scalar matrix, we may assume that the first p
diagonal entries of Z' are zeroes.

Now let (h,¢) be a neutral pair with ¢ € O,. Conjugating by GL,(Q)
we may assume that

(7.5) © = diag(J,,,¢") and h = diag(h,,,h’).

Let

Z :=diag((\i — Aiy1)1d,,, Z27)),
(76) Y ::EP+/\i+1+17P7

=Y + diag(0, ) € ga.

Let us show that Z and 1 satisfy the requirements of the theorem. In-
deed, we have ¢’ € gga N g}f;Z, by construction and Y € ggo N g}fgz by
Lemma 7.7. To see that ¢ + 3 € O note that ¢ +1v¢ =Y + Jg, where
f1 = p; and B = a;j—; for any j > 1. Decompose Y + Jg = diag(A, Jy~),
where A € gx,4a,,,, and A" is obtained from X by omitting the part p.
By Lemma 7.7 we have A € Oy, »,,, and therefore Y +.Jg = diag(A, Jx) €

O,=0. g

7.2. The case of SL,(F)

First of all, let us fix a set of representatives for nilpotent orbits, for an
arbitrary field L of characteristic zero, after introducing some notation.

For a composition n = (n1,...,mx) we denote d(n) := ged(n,...,Nk)-
For a € L* we denote D, := diag(a,1,...,1)J, and J; := D, J,D;".
Note that [h,, Jj] = —2J and (J, h,) can be completed to an sly-triple.

Denote by Oy the SL,(L)-orbit of Jy.
LEMMA 7.9 ([46, Proposition 4]).

(i) Every orbit is of the form Oy for some composition n and some
aeLX.
(i) Of = OF if and only if both 7 = o and a/b € (LX),
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Identify s, (L) with its dual space using the trace form.

PRrROPOSITION 7.10. — Let L be any field of characteristic zero, g :=
sl (L) and let A > p be partitions. Let d := ged(d(A\),d(n)). Let a,b € L*
such that a/b € (L*). Then for any neutral pair (h, ) with ¢ € O, there
exist a rational semi-simple Z € (g)h N g, and ¥ € gZ, N g"5? such that
e+ e 0f.

Proof. — Since we can multiply a by (L* )4 and b by (L*)4*) without
changing the orbits, we can assume a = b. Then, applying the automor-
phism of sl,,(L) given by conjugation by diag(a,1,...,1), we can assume
a = b = 1. Next, note that, in the notation of Lemma 7.7, the matrix g
in (7.3) that conjugates X to Jpi4,, lies in SL,(Q). Now, the proposition
follows by induction in the same way as Proposition 7.5. (]

By Theorem 7.4 we obtain the following corollary.

COROLLARY 7.11. — Let A > p be partitions. Let d := ged(d(N), d(u)).
Let a,b € F* such that a/b € (F*)?. Let 7 € Rep™(SL,(F)) and assume
that O% € WS(w). Then OZ € WO(r).

Remark 7.12. — In Proposition 7.10, the condition a/b € (L*)? is nec-
essary. Indeed, one can show for n = 4, A = (4),u = (2,2),b = 1 and
a ¢ (L*)% no Z,v € sly(K) satisfy the conditions of the proposition. How-
ever, we do not know whether the condition a/b € (L*)? is necessary for
Corollary 7.11.

8. Global setting
8.1. Basic notions

Let K be a number field and let A = Ak be its ring of adeles. In this
section we let y be a unitary character of A, which is trivial on Kand
such that for any Archimedean place v the restriction x|x, of x to K, is
exp(2mi|z|), and for any non-Archimedean place v, the kernel of x|k, is the
ring of integers. Then x defines an isomorphism between A and A via the
map a — X, where x4 (b) = x(ab) for all b € A. This isomorphism restricts
to an isomorphism

(8.1) AJK={pehlx =1} = {xala€ K} 2 K.

Given an algebraic group G defined over K we will denote its Lie algebra
by g and we will denote the group of its adelic (resp. K-rational) points by
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G(A) (resp. G(K)). We will also define the Lie algebras g(A) and g(K) in
a similar way.

Given a Whittaker pair (S, ¢) on g(K), we set u = 9;1 and n to be the
radical of the form wy|,, where w,(X,Y) = ¢([X,Y]), as before. Let [ C u
be any choice of a maximal isotropic Lie algebra with respect to this form,
and let U = expu, N = expn and L = exp [. Observe that we can extend ¢
to a linear functional on g(A) by linearity and, furthermore, the character
x%(exp X) = x(¢(X)) defined on L(A) is automorphic, that is, it is trivial
on L(K). We will denote its restriction to N(A) simply by x..

Let G be a finite central extension of G(A), such that the cover G — G(A)
splits over G(K). Fix a discrete subgroup I' C G that projects isomorphi-
cally onto G(K). Note that U(A) has a canonical lifting into G, see e.g.
[43, Appendix I].

DEFINITION 8.1. — Let (S,¢) be a Whittaker pair for g(K) and let
U,L,N, x, and Xf,j be as above. For an automorphic function f, we define
its (S, )-Fourier coefficient to be

(8:2) Fso(f) = / Xo(n) "L f(n)dn.

N(A)/N(K)

We also define its (S, ¢, L)-Fourier coefficient to be
(3) Frf= [ o,
L(A)/L(K)

Observe that Fs , and }%‘W define linear functionals on the space of au-
tomorphic forms. For a subrepresentation m of the space of automorphic
forms on G, we will denote their restrictions to m by Fg,,(m) and ]:é‘,w(w)
respectively.(?)

Example 8.2. — Let G = GL3. First let ¢ be given by the trace form
pairing with the matrix Fs; + Es2, where E;; are elementary matrices.
Let h := 2FEy; — 2E33. Then (h, ) is a neutral Whittaker pair. In this
case N = L = U is the group of unipotent upper-triangular matrices and
Fho = Fir, is a classical (non-degenerate) Fourier coefficient.

Now let 9 be given by the trace form pairing with E3; and H = Eq;—E33.
Then (H, 1) is another neutral Whittaker pair. In this case U is the group
of unipotent upper-triangular matrices, while N = {Id+cE3|c € K}.
There are infinitely many choices for L. Two of them are L; = {Id +bE12+
cFi3 | b,C S K} and Ly = {Id+CE13 + dFEs3 | C,d c K}

@) 7o forestall confusion, we emphasize that L here stays for “Lagrangian” (actually,
maximal isotropic), and not Levi.
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One defines quasi-Fourier coefficients in a similar way. In order to adapt
our arguments to the global setting we will have to replace Lemma 4.8 by
the following one.

LEMMA 8.3 (]20, Lemma 6.0.2]). — Let 7 be subrepresentation of the
space of automorphic forms on G. Let (S,¢,¢') be a Whittaker triple.
Then Fg., o (m) # 0 if and only if f§‘7¢’w,(ﬁ) # 0. More specifically, if
Fs,0.0' (f) # 0 for some f € w then }g‘,%w’ (m(w)f) # 0 for some u € U(K).

Also, note that the global analog of Lemma 4.5 is proven by decomposi-
tion to Fourier series. For more details see [27, Section 5.2].

For two nilpotent G(K)-orbits 0,0’ € g(K) we will say O < O if
for any completion F' of K, the closure of O in g(F) includes O’. For a
subrepresentation m of the space of automorphic forms on G, we denote
by WO(7) the collection of all nilpotent G(K)-orbits in g*(K) such that
Fy(m) # 0 for any ¢ € O. We denote the set of maximal orbits in WO(7)
by WS().

8.2. Main results

Repeating the arguments in Section 4-5 we obtain the following theorem.

THEOREM 8.4. — Let 7 be subrepresentation of the space of automor-
phic forms on G, and let ¢ € g*(K) be nilpotent. Assume that G(K) - ¢ €
WS(n), and let f € m. Then

(i) For any rational semi-simple S € g with ad*(S)y = —2¢ there
exists f' € m such that Fg ,(f') # 0.

(ii) If 7 is cuspidal then ¢ does not belong to the Lie algebra of any
proper Levi subgroup of G(K) defined over K.

Remarks 8.5.

e For G = GL,, Part (i) generalizes [8, Proposition 5.3].
e Part (ii) was conjectured in [15, Section 4].

In order to formulate a global analog of Theorem 1.4 and deduce an
analog of Theorem 1.1, we will introduce the global Weil representation w
([60]) and Fourier—Jacobi coefficients, following [27, Section 5.2].

For a symplectic space V over K, wy is the only irreducible unitarizable
representation of the double cover Jacobi group

T(V) := Sp(V(A)) x H(V(A))
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with central character x, where H(V') is the Heisenberg group of V. It has
an automorphic realization given by theta functions

0r(9) = Y wlg9)f(a),
acé(K)

where f € S(E(A)), € is a Lagrangian subspace of V, and g € J(V).

Fix an sly-triple v = (z,h,y) in g(K) and let ¢ € g* be given by
the Killing form pairing with y. Let V := g}, with the symplectic form
wy(A, B) := ¢([A, B]). Then we have a natural map £, : U x C,:'; — J/(\‘_//)
We define a map FJ : 7 Q@ wy — CW(F\@) by

fen— f(ug)fy (€ (u, g))du
U(K)\U(A)

Then, arguing as in Section 5.1 we obtain from Theorem 8.4 (i) the fol-
lowing corollary.

COROLLARY 8.6. — If G(K) - ¢ € WS(n) then the subgroup M\; acts
on the image of F'J by +1d.

COROLLARY 8.7. — If G is quasi-split over K and semi-simple, and f is
not constant then there exists a neutral Whittaker pair (h, ) with ¢ # 0
such that Fj, ,(f) # 0.

Since the Weil representation wy is genuine, the subgroup of /]\4\:y that
acts trivially on the image of F'J projects isomorphically on M.,. This
implies the following corollary.

COROLLARY 8.8. — If G(K) - ¢ € WS(w) then the cover K\/[; splits
over M.,.

Arguing as in the proof of Proposition 1.2 we deduce from this corollary
that if G is classical and linear then all the orbits in WF(7) are special.
This was already shown in [18, Theorem 2.1] and [31, Theorem 11.2].

Finally, the following analog of Theorem 7.4 holds, with an analogous
proof.

THEOREM 8.9. — Let (h,¢) € g(K) x g*(K) be a neutral Whittaker
pair. If there exists a Whittaker pair (S,®) € g(K) x g*(K) such that
G(K)-® € WS(n), ¢ € (g)%,, [h,S] = 0, and ® — ¢ € (g*)3;" then
G(K) - ¢ € WO(m).

As in Section 7, this theorem together with Proposition 7.5 implies Corol-
lary 1.6. Furthermore, Theorem 8.9 and Proposition 7.10 imply the follow-
ing version of Corollary 1.6 for SL,,.
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COROLLARY 8.10. — Let A > p be partitions. Let d := ged(d(N), d(n)).
Let a,b € K* such that a/b € (K*)?. Let m be a subrepresentation of
the space of automorphic forms on SLy,(A) and assume that O € WS(m).
Then O € WO().

The methods of this section are further developed in [21, 23].

8.3. Corollaries for cuspidal representations

Theorem 8.4 (ii) implies the following corollary.

COROLLARY 8.11. — Let 7 be a cuspidal subrepresentation of the space
of automorphic forms on G, and let ¢ € g*(K) s.t. G(K)-p € WS(7). Then
the quotient of the stabilizer of ¢ in G(K) by the center of G(K) is K-
anisotropic. Moreover, assume that G is split and classical, and let A\ be
the partition corresponding to . Let | denote the length of A\. Then

(i) If G = GL,, or G = SL,, thenl =1, i.e. 7 is generic.
(ii) If G = Sp,,, then A is totally even, i.e. consists of even parts only.

(iii) If G = SO,, or G = O,, then A is totally odd, and the multiplicity

of each part does not exceed (I 4+ 1)/2.

Proof. — First assume by way of contradiction that the stabilizer of ¢
in G(K) includes a K-split torus T that is not central in G(K). Let L be
the centralizer of T in G(K). Then L is a proper Levi subgroup and its
Lie algebra includes ¢, contradicting Theorem 8.4 (ii). Thus, the quotient
of the stabilizer of ¢ in G(K) by the center of G(K) is K-anisotropic. This
immediately implies (i).

For (ii) and (iii), let V' denote the standard representation of G(K), w
denote the bilinear form on V and e the sign of w, i.e. w(v,w) = ew(w,v).
Choose an sly-triple v = (e, h, f) € g(K) such that ¢ is given by the Killing
form pairing with f. Then v defines a decomposition

k

V=Pview,

i=1
where V; is the irreducible i-dimensional representation of sly(K) and W is
the multiplicity space of V; in V. Note that m; := dim W; is the multiplicity
of 4 in A (which might be 0). The form w on V defines a bilinear form w;
on each W;, that satisfies w;(v,w) = e(—1)'w;(w,v). Since the center of
G(K) is finite, the stabilizer of ¢ in G(K) is K-anisotropic, thus so is the
centralizer of «, and thus all the (W;,w;) are anisotropic. In particular,
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none of the forms w; is symplectic. This implies that A is totally even in
case (ii) and totaly odd in case (iii).

To finish the proof, assume by way of contradiction that ¢ = 1, A is totally
odd and m; > (I 4+ 1)/2 for some i. Let (H, Q) denote the 2-dimensional
quadratic space with Q(x,y) := 2y and (K, ¢q) denote the one-dimensional
quadratic space with ¢(x) = 2. Let (W, ') := @(W;,w;).Then dim W = I.
Let n = 2k + j, where j € {0,1}. Then

HY & K7 ~ (V,w) ~ (W,w')® H"D/2,

By Witt’s cancelation theorem, this implies H(~9)/2 @ K7 ~ (W,w’). Let
U:=W;nH!=)/2 Then

dmUzm;+(—j)—l=m;i—j>1+1)/2—j=(1-7)/2,
and thus U includes an isotropic vector. This contradicts the condition that
W; is anisotropic. O
For GL,, this is a classical result of Piatetski-Shapiro, and the case of
Sps,, was shown in [18, 54].

Remark 8.12. — Corollary 8.11 implies that the smallest possible parti-
tion in the Whittaker support of a cuspidal automorphic representation
of Sp,,, is 2. This bound is sharp for even n by [28]. For SO,, ,, and O,, ,
we obtain the lower bound 3"/21%/2 if n is even and 5'3("=3)/21(n=1)/2 jf
n is odd. For Op41 , and SO, ,, obtain the lower bound 3n/21n/2+1 jf
is even and 3(*+1)/21(»=1)/2 if p is odd. These bounds are conjectured to
be sharp in [30, Conjecture 2.14].

COROLLARY 8.13. — Let G be a split classical group of rank at least 3.
Let 7 be an irreducible automorphic representation of G, and let m = @), m,,
be its decomposition to local factors. Suppose that for some place v, every
orbit in WS(m, ) lies inside the Zariski closure of a complex next-to-minimal
orbit. Then w cannot be realized in the cuspidal spectrum.

Proof. — It is easy to see that any orbit in WO(r) lies inside some orbit
in WO(m,). Indeed, for any neutral Whittaker pair (A, ¢) and any maximal
isotropic subspace [ C g, the Fourier coefficient F, ,f  isan L(K)-equivariant
functional on 7. Its existence implies the existence of an L(K, )-equivariant
functional on .

Thus, any orbit in WS(7) has a minimal or a next-to-minimal partition.
For GL,,, SL,, and Sp,,, with n > 4 the minimal partition is 211"~2 and
the next-to-minimal one is 221" ~%. Both are different from (n), and include
odd parts if n > 6. For SOy 4, with ¢ € {0,1} and k£ > 2, the minimal
partition is 22125+i=4 and thus includes even parts. There are at most
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two next-to-minimal partitions for SOy k4. One is 3'112%71=3) which has
length | :=n — 2, and for n > 6 we have m :=n—3 > (I +1)/2. The other
is 2412418 (it only appears for k > 4) and it includes even parts. The
Corollary 8.13 follows now from Corollary 8.11. g

Most of Corollary 8.13 can also be deduced from [36]. In [22, Corollary
G] an analogous statement is proven for Eg, E7 and Fg, by expressing any
minimal or next-to-minimal automorphic form on these groups through its
Whittaker—Fourier coefficients, i.e. period integrals over the nilradical of a
Borel subgroup of G against a character of this subgroup, following [1, 40].
We expect this corollary to extend to Fy and G5 as well. Our interest in
minimal and next-to-minimal representations is driven by the special role
played by them and by their Fourier coefficients in string theory, cf. [14,
Part II] and [25].
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