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Abstract
During morphogenesis, a featureless convex cerebellum develops folds. As it does so, the cortex
thickness is thinnest at the crest (gyri) and thickest at the trough (sulci) of the folds. This
observation cannot be simply explained by elastic theories of buckling. A recent minimal model
explained this phenomenon by modeling the developing cortex as a growing fluid under the
constraints of radially spanning elastic fibers, a plia membrane and a nongrowing sub-cortex
(Engstrom et al 2019 Phys. Rev. X 8 041053). In this minimal buckling without bending
morphogenesis (BWBM) model, the elastic fibers were assumed to act linearly with strain. Here,
we explore how nonlinear elasticity influences shape development within BWBM. The nonlinear
elasticity generates a quadratic nonlinearity in the differential equation governing the system’s
shape and leads to sharper troughs and wider crests, which is an identifying characteristic of
cerebellar folds at later stages in development. As developing organs are typically not in isolation,
we also explore the effects of steric confinement, and observe flattening of the crests. Finally, as a
paradigmatic example, we propose a hierarchical version of BWBM from which a novel
mechanism of branching morphogenesis naturally emerges to qualitatively predict later stages of
the morphology of the developing cerebellum.

1. Introduction

When morphogenesis is viewed through the lens of a physicist, one of the typical mechanistic routes to take
is morphoelasticity induced by varying internal stresses [1]. Shape change in response to internal stresses,
within elastic objects which tend to retain shape, provides us with a large collection of shapes. Differential
growth can be a source of such an internal stress. This reasonable viewpoint is made manifest in the
widespread use of the Euler buckling instability in purely elastic materials to explain the onset of folds in
morphogenesis problems [2] as diverse as cerebra [3–8], intestinal crypts and villi [9, 10], airway mucus
wrinkles [11, 12], tooth ridges [13] and hair-follicle patterns [14]. Recent work accounting for cerebellar
foliation falls under the same framework [15, 16]. These models typically predict a characteristic length
scale between folds and state quantitative agreement between prediction and observation to validate such an
approach.

On the other hand, tissue fluidity in early stages of developing embryos has emerged as a driver of shape
change in both zebrafish and the insect Tribolium castaneum [17, 18]. Fluids, unlike elastic solids, do not
retain their shape. Then how does fluidity—the antithesis of elasticity—affect the shape of the developing
organ? Presumably biological systems have figured out ways to combine elements of elasticity and fluidity to
bring about an even more complex collection of shapes at later stages of development. The buckling
without bending morphogenesis (BWBM) model is one such model affirming the cleverness of biological
systems [19]. Its origin is rooted in explaining recent quantitative observations of the developing murine
cerebellum, a much less studied component of the brain as compared to the cerebrum.
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Figure 1. Schematic of the BWBM model. The radial glial cells span the cerebellum and Bergmann glial cells span the cortex and
resist thickness variations in the cortex. The area of the sub-cortex does not grow as fast as the cortex and so it is approximated as
nongrowing over some time scale.

Vertebrate brains are typically divided into three different sectors—the forebrain, the midbrain, and the
hindbrain. While the forebrain consists of the cerebrum, the hypothalamus, and the thalamus, the
hindbrain contains the spinal cord, medulla oblongata, and the cerebellum. Since the shape of the forebrain
varies more across species than the midbrain and hindbrain, its development has been the focus of much
study. On the other hand, by studying conserved patterns in the hindbrain, we gain complementary insight
into the morphogenetic processes of the brain.

To be specific, let us characterize the difference in shape between the cerebrum and cerebellum. First, the
shape of the cerebellum has an approximate cylindrical symmetry, whereas such a symmetry is absent in the
cerebrum. Second, mammalian cerebellums of all sizes produce folds [20], whereas small mammalian
cerebrums do not show folds [21]. Given that the overall size of both organs increases with increasing
species size, it is possible that the differences in shape arises via different physical shape change mechanisms.
If so, do different physical shape change mechanisms lead to different emergent functionalities of the two?
Moreover, the conservation of the number of the 8–10 primary lobes of the cerebellum across species
demands a treatment on its own footing as it suggests a scale invariant shape change mechanism. Number
of secondary folds however, can differ across species.

Recent experimental observations of the developing murine cerebellum found that the proliferating cells
in the cerebellar cortex are motile with neighbor exchanges on the order of minutes [22]. It was also
observed that the developing cerebellar cortex varies in thickness with the trend being that the cortex is
thinnest at the crest (gyri) and thickest at the trough (sulci). Moreover, the developing cerebellum is under
tension and not under compression as evidenced by both radial and circumferential cuts. While these
observations cannot be explained by elastic wrinkling theories, all three of these findings can be explained
by the linear BWBM model in which a growing cerebellar cortex is fluid-like and the sub-cortex is a
nongrowing core [19]. The cortex is under tension due to the presence of radial glial cells spanning the
cerebellum as well as the pial membrane. Finally, Bergmann glial cells spanning the cortex attempt to
maintain constant thickness of the cortex. See figure 1. Cell growth in the presence of such constraints
drives a featureless convex cortex to form folds. In addition, the BWBM model also offers an explanation
for the length scale invariance of the formation of cerebellum folds to understand the conservation of 8–10
primary lobes across vertebrate species spanning a range of sizes [19].

The linear BWBM model provides a quantitative framework for the onset of shape change that manifest
as smooth cortex oscillations in the developing cerebellum. However, as the shape of the cerebellum
continues to evolve, we observe cusped sulci and wide gyri (see figure 2). The linear BWBM model, which
can be mapped to a forced, simple harmonic oscillator, cannot account for such nonlinear phenomena.
These observations necessitate the exploration of nonlinear elasticity within the BWBM model, particularly
in the context of tensioned radial glial cells given that robust nonlinearities have been observed in stretched
cells [23]. In addition to exploring the effect of nonlinear springs in the BWBM model, we will also explore
the impact of spatial confinement on shape change, which imposes a different form of nonlinearity in the
BWBM model. Finally, since we are exploring stages of shape development beyond the onset of shape
change, we note the hierarchy of folds that emerges in the developing cerebellum. This hierarchy manifests
itself as folds within folds. As the developing cerebellum grows in size, this leads to a type of branching
morphogenesis. While branching morphogenesis has been thought of in the context of developing lungs,
kidneys, and other organs [24, 25], a hierarchical version of BWBM, given its scale invariant solutions,
naturally emerges as a potential candidate to explain branching morphogenesis within the cerebellum.

The outline of the manuscript is as follows. In section 2, we review the linear BWBM model focusing on
the early stages of shape change in the developing cerebellum. Section 3 discusses the effect of nonlinear
springs that describe the radial fibrous glial cells and its role in sharpening the sinusoidal sulci of the linear
model. Section 4 discusses the effect of steric hindrances on the flattening of gyri and section 5 discusses the
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Figure 2. Visual comparison of experiment and model. The morphogenesis of cerebellum involves the development of folds in an
initially featureless convex cerebellum. The top row shows midsagittal cross-sections of mouse cerebellum prior to birth. Scale
bar is 200 μm. The arrowheads are from the original figures in reference [28] and indicate fissures. Reprinted with permission
from Springer Nature. The linear BWBM model reproduces the smooth sinusoidal like folds that occur at the onset of folding.
The BWBM model with nonharmonic radial glial springs reproduces the sharp cusped sulci that we see at the later stages of
cerebellar development. Note that time is not explicit in the quasi-static BWBM. We start from system parameters describing the
unstable state and minimize the energy while obeying constraints to arrive at the nonlinear BWBM configuration. We use brain
folding terminology—gyri (sulci) and oscillator terminology—crests (troughs) interchangeably to refer to hills (valleys) of
oscillations respectively. Parameters: c = 0.1, 0.155, ε = 0.6, ρ = 31.3, t̃0 = 0.1, 0.37, k̃r1 = 0,−0.97, k̃r2 = 0, 1.05 for the linear
and nonlinear BWBM respectively. [̃r, dr̃/dθ]θ=0 is [2.01,−0.83]. Reprinted with permission from [28]: Springer Nature.
“Cellular and Genetic Programs Underlying Cerebellum Development” by Alexandra L. Joyner et al., © 2017.

hierarchy of subsequent folds emerging at even later stages of cerebellar development. Section 6 summarizes
the work and addresses its implications.

2. Linear buckling without bending morphogenesis model

Within a timespan of a day, the featureless, convex developing cerebellum begins to develop folds. The
BWBM model provides a physical basis for the onset of these folds. Unlike the cerebrum, the cylindrical
symmetry of the cerebellum allows for two-dimensional modeling of its sagittal cross section. The
two-dimensional BWBM model [19] offers a quasi-static description of the foliation i.e. it does not describe
the dynamics of growth but determines the final equilibrium shape for a given set of parameters. As the
parameters change with time, so does the shape. In polar coordinates, the radius of the cerebellum and the
thickness of the cortex, otherwise known as the external granular layer, are represented with r, t respectively
(see figure 1). The energy functional for the bi-layer model with θ parametrizing the two degrees of
freedom is,

E

[
r, t,

dt

dθ

]
=

∫
dθ

{
kr0 (r − r0)2 − kt(t − t0)2 + β

(
dt

dθ

)2
}
. (1)

Here, all the constants kr0 , kt ,β, r0, t0 are positive. The first term represents the elastic contribution of the
radial glial fibrous cells spanning the cerebellum and the elastic pial membrane surrounding the cerebellum.
Moreover, kr is the elastic modulus for this term with r0 as its rest length radius. The second term is a
growth potential for the cortex with kt controlling the contribution of the term and t0 setting the rest length
thickness. The third term represents the Bergmann glial fibrous cells resisting thickness variations of the
cortex with β being the accompanying elastic modulus. Note that the third term is not a bending energy
term. A bending energy term would involve the curvature as given by the second derivative with θ, unlike
the first derivative used here. Finally, given the slower growth of the sub-cortex/core, as compared to the
cortex, we demand that the area of the sub-cortex does not change, at least over the time scale of the onset
of the foliation, i.e. a day. In other words,

1

2

∫
dθ(r − t)2 = A0 = constant. (2)

It is the area conservation that sets up the competition between the radial elastic energy of the glial fibers
and pial membrane with the growth potential term.

The extremum of the variational problem subject to this constraint yields a pair of coupled
Euler–Lagrange equations for r, t. The solution to these equations are linear sinusoidal functions of the
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form,
t(θ) = T sin(nθ + φ),

r(θ) =

(
1

1 − ε

)
r0(θ) −

(
ε

1 − ε

)
t(θ),

(3)

where

n =
√
ρ
(
1 + εc/(1 − ε)

)
,

T =
√

2ε

√
A0

π
−
(

a − t0

1 − ε + εc

)2

.

The dimensionless constants are c := kr0/kt , ε :=μ/kr0 and ρ := kt/β.
The linear BWBM model successfully explains the cortex thickness oscillations being out of phase with

the sub-cortex deformation for a developing cerebellum which leads to a thinner cortex at the crest and a
thicker cortex at the trough. This model also allows the amplitude of the cortex thickness oscillation to be
the same size or even greater than the amplitude of the substrate oscillations. Such phenomena is in
contrast to elastic wrinkling models which fail to wrinkle for thicker cortices at the trough [26].

3. Nonlinear elasticity

While the linear BWBM model addresses the onset of shape change, a next follow up question to ask
is—what are the limitations of the linear BWBM model in explaining the more dramatic shape changes in
the developing cerebellum at later stages of development? As the radial glial cells and the pial membrane
become more stretched by the developing crests, the enhanced stretching may lead to detachment of the
radial glial cells from the pial membrane or may lead to nonlinear elastic effects. It has long been known
that stretched cells act as nonlinear springs [23] and that collagen, which is one of dominant fibrous
proteins constituting the pial membrane exhibits nonlinear elasticity as strain increases [29]. Such effects
are not addressed in the linear BWBM model. It would therefore be prudent to examine the role of
nonlinear elasticity in the BWBM model. To do so, we promote the radial spring constant kr0 to kr(r), a
radially dependent spring ‘constant’-

kr(r) := kr0 + kr1 (r − r0) + kr2 (r − r0)2. (4)

The above three terms correspond to quadratic, cubic and quartic energy terms of the radial glial spring
potential energy. The cubic energy term brings an asymmetry in the radial spring energy across r0 and the
quartic energy term counteracts the destabilizing effect of the cubic term. The more general form of the
uncoupled differential equation where every spring constant is allowed to be nonlinear is explored in
appendix A.1. We nondimensionalize the problem as Ẽ :=E/(kr0 r2

0), r̃ := r/r0, t̃ := t/r0, t̃0 := t0/r0 and

K̃r(r) :=
kr(r)

kr0

= 1 + k̃r1 (̃r − 1) + k̃r2 (̃r − 1)2, (5)

where k̃r1 = kr1 r0/kr0 and k̃r2 = kr2 r2
0/kr0 . The nondimensional energy functional with dimensionless

variables and coefficients is,

Ẽ

[
r̃, t̃,

d̃t

dθ

]
=

∫
dθ

{
K̃r(r)(̃r − 1)2 − 1

c
(̃t − t̃0)2 +

1

ρc

(
dt̃

dθ

)2
}

, (6)

whose minimization is subject to the constraint,

1

2

∫
dθ(̃r − t̃)2 =

A0

r2
0

= dimensionless constant. (7)

The variational problem at hand is,

δ

[
Ẽ − ε

∫
dθ(̃r − t̃)2

]
= 0. (8)

The corresponding Euler–Lagrange equations are

K̃r(r)(̃r − 1) − ε(̃r − t̃) +
K̃ ′

r(r)

2
(̃r − 1)2 = 0, (9)
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1

ρc

d2 t̃

dθ2
+

1

c
(̃t − t̃0) − ε(̃r − t̃) = 0. (10)

For the purpose of numerically solving these coupled differential equations, we may as well stop here.
However, the exercise of uncoupling the differential equations points to an important source of
nonlinearity. Towards finding it, we differentiate equation (9) twice with θ to arrive at

[
K̃r(r) + 2(̃r − 1)K̃ ′

r(r) +
(̃r − 1)2

2
K̃ ′′′

r (r) − ε

](
d2r̃

dθ2

)

+

[
3K̃ ′

r(r) + 3(̃r − 1)K̃ ′′
r (r) +

(̃r − 1)2

2
K̃ ′′′

r (r)

](
dr̃

dθ

)2

= −ε
d2t̃

dθ2
.

(11)

Here we see the nonlinear term (dr̃/dθ)2. This is a consequence of the inhomogeneous radial spring
constant and the coupling between the Euler–Lagrange equations brought about by the Lagrange multiplier
in equation (8). Solving equation (9) for t̃, we have,

t̃ = r̃ − 1

ε

[
(̃r − 1)K̃r(r) +

K̃ ′
r(r)

2
(̃r − 1)2

]
. (12)

Substituting equation (12) in equation (10) leads to,

d2 t̃

dθ2
= ρ

[({
(̃r − 1)K̃r(r) +

K̃ ′
r(r)

2
(̃r − 1)2

}
− r̃

)(
1 + εc

ε

)
+ εcr̃ + t̃0

]
. (13)

Substituting, equation (13) in equation (11), we find the shape equation of the system to be,

[
K̃r(r) + 2(̃r − 1)K̃ ′

r(r) +
(̃r − 1)2

2
K̃ ′′

r (r) − ε

](
d2 r̃

dθ2

)

+

[
3K̃ ′

r(r) + 3(̃r − 1)K̃ ′′
r (r) +

(̃r − 1)2

2
K̃ ′′′

r (r)

](
dr̃

dθ

)2

− ρεr̃ + ρ(1 + εc)

[
(̃r − 1)K̃r(r) +

(̃r − 1)2

2
K̃ ′

r(r)

]
+ ρεt0 = 0.

(14)

The importance of the term (dr̃/dθ)2, a source of nonlinearity in equation (14), lies in the robustness of its
appearance. Irrespective of the form of nonlinearity in kr(r), we retain this nonlinear term whereas the
coefficients in equation (14) correspondingly vary (see appendix A.1). Such a nonlinearity is also seen when
one attempts to uncouple the Lotka–Volterra equations [30].

We use the RK45 method of scipy.integrate package in python for numerical integration of all
differential equations in this paper. For generating the phase-portraits in figure 7, we use XPPAUT [31].

Results of numerical integration in figures 3(a) and (b), show asymmetric oscillations—sharper sulci
and smooth gyri. This holds true even with k̃r1 = 0, i.e. with no explicit imposed asymmetry in the energy
functional (see equation (6)). This points to the possible role of the (dr̃/dθ)2 nonlinearity in bringing about
asymmetric oscillations. In the context of explaining the sharp sulci in the cerebral cortex of larger
mammals, the sulcification instability in nonlinear elastic materials has been used [7]. Here we observe, sans
an elastic instability, sharper sulci in comparison to their sinusoidal counterparts. Even under the influence
of these nonlinearities, the system robustly retains the thicker cortical troughs and thinner cortical crests
observed in the linear BWBM model. For small k̃r1 , k̃r2 , the number of folds do not change appreciably in
comparison to the linear BWBM model.

3.1. Assisting-dampening oscillator
In section 3, the nonharmonic radial glial springs generate a shape equation (14) which has several sources
of nonlinearity. Given the assured presence of the quadratic nonlinearity (dr̃/dθ)2 in the shape equation
irrespective of the nonlinearity introduced, we seek to isolate the effect it has in determining the shape of
the system. Towards that end, we study the simple harmonic oscillator with a velocity dependent force in
this section.
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Figure 3. Asymmetry in the widths of gyri (crests) and sulci (troughs). (a) and (b) Numerical solutions in polar and Cartesian
coordinates for BWBM with nonharmonic radial glial springs. Nonsinusoidal sharp sulci can be seen for systems with nonzero
k̃r1 , k̃r2 (green, blue, yellow). (c) Phase space orbits of solutions in (a) and (b). The left-right asymmetry in the orbits seen as a
steeper drop on the left translates to sharper troughs in the coordinate space. (d) Numerical solution in Cartesian coordinates for
the ADO oscillator. Sharper troughs are observed due to the addition of the nonlinear force term (dx/dt)2 to the simple
harmonic oscillator. The acceleration of the oscillator is zero at the points marked with the asterisk. The width of crest and
trough is shown. (e) Numerical and analytical solution of the phase-space orbit for the ADO. The velocity nullcline, in red, is the
locus of points with zero acceleration. The position coordinate (marked in asterisk) at which the nullcline intersects the orbit
decides the widths of crests and troughs in (d). The shape of the orbit is seen to be especially similar to the orbits in (c) for the
cases of k̃r1 = 0, 0.19. (f) Crest-trough asymmetry for the ADO and the BWBM model as a function of their respective tuning
parameters: Γ and −k̃r1 = k̃r2 . The dashed black line is the upper limit of the asymmetry measure. Parameters: five-lobe BWBM
in (a)–(c) and (f): c = 0.1809, ε = 0.9, ρ = 15.6, t̃0 = 0.7. For periodicity in (a), parameter c is appropriately tuned for choices
of k̃r1,2 . Six-lobe BWBM in (f): c = 0.1, ε = 0.6, ρ = 31.3, t̃0 = 0.5. [̃r, dr̃/dθ]θ=0 is [1.1, 0],[1.25, 0] for five-/six- lobe.

The differential equation of motion for a one dimensional, simple harmonic oscillator of mass m with
an external nonlinear forcing term, −γ(dx̃/dt)2 is written as,

m
d2x̃

dt̃2
= −kx̃ − γ

(
dx̃

dt̃

)2

.

The quadratic term assists/dampens the negative/positive velocity respectively bringing an asymmetry in the
problem. We refer to this unphysical oscillator as the ‘assisting-dampening oscillator’ (ADO). The
parameters in this equation and the length scale x0 from the initial condition x̃(0) = x̃0 can be used to
introduce nondimensional variables, x := x̃/x0 and t := t̃/

√
m/k. The equation of motion effectively

determined by a single tuning parameter Γ := γx̃0/m is,

d2x

dt2
= −x − Γ

(
dx

dt

)2

. (15)

The nonlinear forcing term is nonconservative since it cannot be written down as the gradient of a position
dependent potential. This problem can also not be formulated within the framework of Lagrangian
mechanics as this velocity dependent force cannot be represented by a function U(x, ẋ) such that,

−Γẋ2 = −∂U

∂x
+

d

dt

(
∂U

∂ẋ

)
,

where ẋ = dx/dt [32]. However, the time reversal symmetry of equation (15) ensures all trajectories
sufficiently close to the equilibrium point, (x0, y0) = (0, 0) to be closed orbits in the phase space [33]. This
translates to periodic motion in the position-time space (see figure 7).

The second order differential equation (15) can be represented as two coupled first order differential
equations,

dx

dt
= y,

dy

dt
= −x − Γy2.

(16)
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Dividing the set of equations, we have,

y
dy

dx
= −x − Γy2. (17)

In contrast to the differential equation of motion in position-time space (see equation (15)), the
phase-space orbit is represented by a first-order differential equation. This makes finding an exact solution
to the orbit in phase-space simpler. The variable transformation, u = y2 linearizes the above differential
equation as,

du

dx
+ 2Γu = −2x. (18)

The solution to the homogeneous differential equation,

du

dx
+ 2Γu = 0, (19)

is u(x) = Ae−2Γx where A is a constant that needs to be fixed by the initial condition. The particular
solution to equation (18) is u(x) = −x/Γ + 1/(2Γ2). Reverting to y, the total solution satisfying the initial
condition y(−1) = 0 is,

y(x) =
1√
2Γ

√
1 − 2Γx − (1 + 2Γ)e−2Γ(x+1). (20)

In the limit of Γ→ 0, we have y(x) ∼ ±
√

1 − x2 which are semi-circular arcs as expected for a simple
harmonic oscillator.

The numerical integration of the differential equation is presented in figure 3. The sharp troughs in the
position-time space are solely due to the effect of the quadratic nonlinear term (dx/dt)2.

The red lines in figures 3(e) and 7 are velocity nullclines which are the locus of points in phase-space
where the acceleration, dy/dt = d2x/dt2 = 0. From equation (15), it follows that the nullcline is a quadratic
function in x,

x = −Γ

(
dx

dt

)2

. (21)

It is interesting to note that the quadratic nullcline (see figure 7(b)) bears resemblance to a similarly curved
nullcline of the BWBM with nonharmonic springs (see figure 7(d)). The nullcline’s curvature is dictated by
the same quadratic nonlinear term (dx/dt)2 in both cases.

For comparison with this unphysical oscillator, we also study a conservative Hamiltonian system and
observe that it is also capable of exhibiting oscillations with sharp troughs. The simplest such system is
obtained by adding cubic and quartic potential energy terms to the simple harmonic oscillator. The former
term provides an explicit asymmetry in the energy functional, and the latter term ensures stability about the
equilibrium point. In appendix A.2, this system is explored numerically and analytically using a
perturbation series constructed via the Lindstedt–Poincaré method [34].

3.2. A measure for crest-trough asymmetry
Stokes, in his study of propagating waves approaching the shore, discussed the development of narrow
crests and wider troughs [35]. In this context, measures for velocity and acceleration skewness have been
proposed and studied. In the folds of cerebellum, which is a stationary spatial oscillation, a similar
asymmetry presents itself in the form of wide gyri/crest and sharp sulci/trough. We propose the following
measure for quantifying the asymmetry in widths-

crest − trough asymmetry :=
tcrest − ttrough

tcrest + ttrough
. (22)

Here, the length the parameter θ traverses between consecutive pair of points at which d2x/dt2 = 0 on the
climbing (falling) wave, and the immediately following falling (climbing) wave defines tcrest (ttrough),
respectively (see figure 3(d)). These points are the points of intersection of the phase-space orbit with the
velocity nullcline (see figure 3(e)). The horizontal mouthed parabolic-shaped nullclines, thus influence the
position of these points of intersection and play a prominent role in bringing the asymmetry between the
widths of the crests and troughs. For the ADO, the velocity nullcline is exactly parabolic (see equation (21)
and figure 7). The parabolic shape of the nullcline is due to the quadratic nonlinearity (dx/dt)2 in
equation (15). For the BWBM model with nonlinear radial glial springs, the nullcline will not be exactly
parabolic due to the presence of other nonlinearities in equation (14).

The measure in equation (22) is bounded within (−1, 1). For a sinusoidal wave, which is perfectly
symmetric, the measure equals zero. For the case of studying this asymmetry in the lobes of the nonlinear
BWBM model, we use θ in lieu of t in equation (22). Studying this asymmetry for the ADO and the
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Figure 4. Space constraint locally flattens the lobes of the linear BWBM model. (a) and (b) Polar and Cartesian representation of
the solutions to the differential equation of the linear BWBM model under a tanh(̃r − r̃c) space constraint (see equation (26)).
The black confining circles in (a) are the confining walls and are represented by dashed lines in (b). (c) Phase-space orbits, unlike
the nonlinear BWBM model and the ADO model, remain symmetric. Parameters: c = 0.07, ε = 0.9, ρ = 15.6, K̃c = 30, q =
104, t̃0 = 7q, r̃0 = 1q. [̃r, d̃r

dθ ]θ=0 is [̃rc, 0].

nonlinear BWBM model for a range of tuning parameters, we see that the asymmetry scales as 1.04 ± 0.05
and the nonlinear BWBM model shows a parameter dependent scaling of 0.61 ± 0.02 and 0.79 ± 0.08 for
two chosen sets of parameters of 5 lobed and 6 lobed systems respectively (see figure 3(f)).

4. Spatial confinement

A cerebellum does not grow in isolation. It encounters steric effects from the cerebrum, brain-stem, and the
skull. The effect of the skull on a growing cerebrum has earlier been studied computationally [36]. We,
therefore, are compelled to explore the effects of steric confinement with the BWBM model, particularly
since there may be interplay between the area conservation of the sub-cortex and the imposed steric effects
at a radial boundary. More specifically, if the lobes are not allowed to grow radially, they may grow
tangentially, making way for sharper folds in the cerebellum. To check for this, we model the steric effects
on the developing cerebellum by incorporating a logistic function (1 + tanh(x))/2 into the energy
functional,

E

[
r, t,

dt

dθ

]
=

∫
dθ

{
kr(r − r0)2 − kt(t − t0)2 + β

(
dt

dθ

)2

+
Kc

2
(tanh[q(r − rc)])

}
. (23)

The constants of the logistic function are omitted as they vanish in the resulting Euler–Lagrange equations.
Here, Kc is the coupling constant, q−1 is the width of the step size of the tanh function and rc is the radial
position of the step. The strength of the steric interaction is taken to be Kcq2, a quantity whose dimensions
matches those of kr. Renormalizing the parameters and variables by q−1 avoids singularities in the
Euler–Lagrange equations in the limit of q → 0. Dividing equation (23) by krq−2, we have,

Ẽ

[
r̃, t̃,

dt̃

dθ

]
=

∫
dθ

{
(̃r − r̃0)2 − 1

c
(̃t − t̃0)2 +

1

ρ c

(
dt̃

dθ

)2

+ K̃c tanh [̃r − r̃c]
2

}
, (24)

where Ẽ :=E/(krq−2), r̃ := qr, t̃ := qt, r̃c := qrc and K̃c = Kcq2/kr. All parameters and variables are now
rendered dimensionless. Given that there is no explicit dependence on q, we can be assured that it won’t
show up in the Euler–Lagrange equation either. The corresponding area conserving constraint is,

1

2

∫
dθ(̃r − t̃)2 = A0q2 = dimensionless constant. (25)

The Euler–Lagrange equation is,

{(1 − ε) − K̃c sech2(̃r − r̃c)tanh(̃r − r̃c)}
(

d2r̃

dθ2

)

+ K̃c sech2(̃r − r̃c) {2 − 3 sech2(̃r − r̃c)}
(

dr̃

dθ

)2

+
{
ρε2c + (1 − ε)γ2

}
r̃ + K̃cγ

2 sech2(̃r − r̃c) + ρεt̃0 − γ2 r̃0 = 0.

(26)

Here γ =
√
ρ(εc + 1). We, again, observe the (dr/dθ)2 term. However, its coefficient is zero for all r �= rc,

thus effectively localizing its effect. Results of numerical integration in figures 4(a) and (b) shows local
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Figure 5. Branching morphogenesis in the cerebellum and length-scale invariance in BWBM foliation. (a) Midline sagittal
cross-section of mouse cerebellum 3 days post birth. Scale bar is 200 μm. Reproduced from [22]. CC BY 4.0. (b) Idealized
geometrical example of hierarchy manifests as a fractal. (c) Representation of branching morphogenesis implemented using the
geometrical idea of (b) and the 4 lobe BWBM systems with elliptical r0 of (d). Each lobe becomes a sub-system of its own and
spawns its own folds. Here, the first and each of the second generation systems are generated numerically with the second
generation overlaying the first after a rescaling factor of 0.28. (d) and (e) Folds in (d) develop transversely to the major axis of the
elliptical r0 (blue) in contrast to (e) which has a circular r0. Parameters: c = 0.0026, ε = 0.6, ρ = 15.6, t̃0 = 0.58, k̃r1 = k̃r2 and
eccentricity e = 0, 06 respectively for the purple and green 4 lobed systems respectively. The initial condition at t = 0 is
[̃r, d̃r

dθ ] = [0.76, 0]. The parameters used for the 6 lobed system is the same as the linear BWBM values in figure 2. The 4 lobed
second generation lobes in (c) are generated using the parameter values corresponding to e = 0.6 in (b).

flattening of the crests/gyri at contact with the confining wall. Interestingly, there are no nonlocal effects of
the confining wall on the lobes, i.e. steric effects do not contribute to the sharpness of the troughs/sulci, at
least for the parameters we study. The area conservation on the sub-cortex is not a strong enough constraint
to effect the shape of the lobes near the troughs as the sub-cortex can still change its shape.

5. A branching hierarchy

Mammalian cerebellums are seen to develop folds irrespective of the size of the organ [20]. This is in
contrast to small mammalian cerebrums which do not develop folds [7, 27]. A feature of the linear BWBM
model is that it offers an explanation for the length scale independence of the folding morphogenesis in the
cerebellum. In the limit of small ε of the linear BWBM model, the number of primary folds N scales as

√
ρ.

Thus, in this limit, the number of folds developed in the cerebellum is independent of the size of the
cerebellum and is determined solely by the material elastic constants. If the material elastic constants do not
dramatically differ across mammalian species, the linear BWBM model can potentially explain the
conservation in the number of primary folds. In this section, we discuss how the linear BWBM can be used
to describe the branching hierarchy within a given cerebellum.

As the gyri/crests of the cerebellar cortex continue to grow, the sulci/troughs sharpen and become
anchored [37]. The anchoring is due to a combination of the radial glial cells and the pial basement
membrane, a thin sheet of extracellular matrix (ECM) made up of collagen, laminin, and other ECM
components [38]. It is known that basement membranes stick together [39], so as the troughs sharpen, the
pial membrane from each side of the trough begins to come into contact and stick to reinforce the
anchoring. The resulting anchoring centers delineate the petal-like projections called lobules [28].

We hypothesize that when the anchoring centers serve as effective boundaries between the lobules, each
lobe becomes its own subsystem. This subsystem then consists of its own subcortex/subcore, all within the
encompassing primary cortex/core geometry. Some of these featureless subsystems go on to develop folds of
their own to, in turn, generate another generation of subsystems and so on. See figure 5(a). In other words,
as the cerebellum continues to develop, a branching hierarchy of subsystems emerges. This branching
hierarchy is yet another distinguishing feature of the cerebellum that sets it apart from the cerebrum. It is to
be noted that even though cerebellums of all sizes demonstrate folds, smaller cerebellums have fewer
hierarchial branchings.

The hierarchical generation of lobules within lobules points to a scale-invariant branching process.
Given that within the framework of BWBM, the formation of crests and troughs do not depend on system
size, this framework offers a natural description for the hierarchy. As the size of the subsystems decreases
with each successive generation, crests and troughs can still form as long as the material properties do not
change. The validity of the two dimensional model to describe growth in three dimensions remains valid
since the cerebellum retains its cylindrical symmetry during development [22].

As an idealized, purely geometric example of the hierarchy, we consider an initial zeroth generation
circle. Along its perimeter, six first generation circles are generated. This process can proceed ad infinitum,
to generate a fractal structure with a fractal dimension of log(3)/log(2). We show four generations of this
hierarchy in figure 5(b).
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In the same vein, using the linear BWBM model, we represent the hierarchy of folds in the cerebellum in
figure 5(c). The ‘zeroth’ generation is the circular r0 (not shown in figure) which generates six first
generation foliations. Each lobe formed within consecutive folds is now considered an independent
subsystem and sets the length scale for the r0 of the following, second generation of lobes.

Figure 5(a) suggests the free part of the first generation lobe i.e. the part that is not sticking to its
neighbors, to be ‘elliptical’ with the major axis of the ellipse being parallel to the outermost exposed edge of
the lobe. This is especially evident for the L678 lobe. To accommodate this visual observation in generating
second generation folds, we employ a geometric non-linearity in the form of an elliptical r0 with an
eccentricity e within the BWBM model. We assume there are no residual stresses and generate a 4 lobed
BWBM system as in figure 5(d). We then use only the top half of this solution to represent the second
generation lobes in figure 5(c).

It is also interesting to note that in figure 5(d), the most prominent fold occurs transversely to the
horizontal major axis of the elliptical r0. This is simply the consequence of the system trying to minimize its
energy contribution from the radial glial springs. For comparison, we show in figure 5(e), a four lobed
system generated formed from a circular r0.

6. Discussion

Inspired by cerebellar shape development, we study the effects of nonlinear elasticity, steric confinement,
and a branching hierarchy within the BWBM model. Exploring the effects of nonlinear elasticity of the
fibrous radial glial cells, the interplay between geometry and nonlinearity is seen to give rise to troughs
sharper than the troughs obtained in the linear BWBM model and we arrive at an asymmetry between the
crests (gyri) and the troughs (sulci). This asymmetry can be understood thus: the relatively slow growth of
the sub-cortex is taken into account by demanding area conservation of the sub-cortex in the
two-dimensional BWBM model. The associated Lagrange multiplier couples the radius of the cerebellum
and the thickness of the cortex. Nonlinear radial springs, in association with this coupling, results in the
robust quadratic nonlinear term of the form (dr/dθ)2 in the shape equation. To illustrate the role of the
quadratic nonlinear term in sharpening the sulci, we study the simple harmonic oscillator with the same
form of nonlinearity and observe its sufficiency in achieving sharp sulci. Several other nonlinearities emerge
in the shape equation including a spatially-varying effective ‘mass’ coefficient.

The perspective of cerebellum foliation as the action of a nonlinear oscillator can be a useful one given
the extensive theoretical studies of such oscillators [40, 41]. For BWBM of the cerebellum, the linear model
with constant r0 maps to a forced harmonic oscillator and, for small eccentricities of r0, maps to an
unconventional Duffing oscillator. For nonlinear K̃r(r), we attempt to understand the corresponding
nonlinearity in the context of the ADO. We hope the study of cerebellar foliation as a nonlinear oscillator
problem continues to be fruitful. In a related work, the existence of a new morphological instability in
confined nonlinear elastic sheets was found in the context of a period-doubling bifurcation, exhibiting an
analogy with parametric resonance in another nonlinear oscillator [42].

The period-doubling hierarchy found in the reference [42] is very different from the new hierarchy
found here. The hierarchy found here is one due to boundary conditions in the form of anchoring centers
to create sub-regions, or sub-systems, from which the same type of scale-invariant foliation emerges, at least
in the limit of small ε. Had the foliation mechanism not been scale-invariant in any limit, such as with a
purely elastic system, the smaller sub-lobes would soon become featureless as the number of foliations
depend linearly on the perimeter of the sub-system. Within BWBM, therefore, we have identified a new
scale-invariant branching morphogenesis mechanism. It is not yet clear how generic this new branching
hierarchy mechanism is in terms of moving beyond the cerebellum. Reference [19] addressed potential
applications of BWBM to two-dimensional brain organoids [43] and the developing retina [44].

Referring again to figure 5(a), one of the second generation sublobes labelled L45 does not branch.
Perhaps the material properties are altered in this sublobe so that features do not form. For sublobe L678,
the two new sub-sublobes are not similar in size. This could be due to changes in curvature of the
confinement from growing, surrounding tissue. So far, we have only addressed steric, static confinement.
Certainly, such variabilities from sublobe to sublobe can be explored in less idealized conditions.

We note that within the context of purely elasticity theory, an explanation for the
thicker-sulci/thinner-gyri of the developing cerebellar cortex was recently achieved by the addition of
surface tension [45]. While more energetic contributions can certainly be added to either the purely elastic
model or to the BWBM model, the recent experimental observations needs to be incorporated in the
modeling—the cells in the cortex are motile with cellular rearrangements on the time scale of minutes [22]
and the cerebellum is under tension as it develops (as opposed to compression). These observations render
a purely elastic model suspect. However, the differential growth between the cortex and sub-cortex remains
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central in both classes of models. To make progress, we need further experimental falsification tests to rule
out classes of models.

Finally, given our focus on the cerebellum here, one is led to wonder whether some form of BWBM is
applicable to the cerebrum. As mentioned previously, the cerebrum and the cerebellum have rather different
morphologies. In terms of development in the cerebellum, the predominant growth of the cells is in the
cortex [37]. Many such cells migrate inward to become part of the core of the cerebellum. In the cerebrum,
much of the cell proliferation is in the core and the progenitor cells migrate outward to become part of the
cortex [46, 47]. In this sense, the two organs are inverse to each other. Given the presence of motile cells in
the developing cerebrum, one may wonder whether a purely elastic approach to the developing brain is
reasonable. Without a doubt, the time scales of cell migration decide the contest between elasticity and
fluidity. Under the framework of liquid crystals, earlier work on the developing cerebrum arrived at a
prediction for the bending modulus of the cortex [27]. This approach was based on a revised view of the
axonal tension model for the developing cerebrum [48, 49]. These novel approaches have the potential to
build new inroads in quantitative biology.
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Appendix A

A.1. Uncoupling general Euler–Lagrange equations for r, t
The uncoupled nonlinear differential equation in r for the case of having kr := kr(r) is shown in
equation (14). The form of such an equation is, however, dependent on the choice of nonlinear coefficients.
For general coupled Euler–Lagrange equations, we have

f (r, t) = 0, (27)

t′′ = g(r, t). (28)

Here the prime superscript indicates a derivative with respect to θ. The derivative of equation (27) with
respect to θ gives,

∂f (r, t)

∂r
r′ +

∂f (r, t)

∂t
t′ = 0. (29)

Another derivative yields,

∂f (r, t)

∂r
r′′ +

∂f (r, t)

∂t
t′′ +

∂2f (r, t)

∂r2
r′2 + 2

∂2f (r, t)

∂r∂t
r′t′ +

∂2f (r, t)

∂t2
t′2 = 0. (30)

Equations (27) and (29) can be solved to find t := t(r), t′ = t′(r, r′). The uncoupled differential equation in r
would then be,

∂f (r, t(r))

∂r
r′′ +

∂f (r, t(r))

∂t
t′′(r) +

∂2f (r, t(r))

∂r2
r′2 + 2

∂2f (r, t(r))

∂r∂t
r′t′(r) +

∂2f (r, t(r))

∂t2
t′2(r) = 0. (31)

The last two terms for equation (14) is absent and this particular case of nonlinear differential equation is of
the form,

∂f (r, t(r))

∂r
r′′ +

∂2f (r, t(r))

∂r2
r′2 +

∂f (r, t(r))

∂t
g(r, t(r)) = 0, (32)

where the implicit dependence—t(r) is to be taken into account after evaluating the partial derivatives in
t, r. This renders an uncoupled differential equation of motion for r.
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A.2. Higher order corrections to the simple harmonic oscillator
With no loss of generality, we can study the simple harmonic oscillator with cubic and quartic corrections
to the potential energy as,

d2x

dt2
= −x − x2 − Γ′x3, (33)

a single parameter equation where all variables are nondimensionalized. To evolve a perturbative scheme,
we treat the last two terms of the above equation as a perturbation to the simple harmonic oscillator. To
that effect, with ε > 0 we have,

d2x

dt2
= −x − ε (x2 − Γ′x3). (34)

The Lindstedt–Poincaré method [34] introduces angular frequency ω by change of variable τ = ωt. This
allows for coupling between the frequency and amplitude. Equation (34) is now written as,

ω2 d2x

dτ 2
+ x + εx2 − εΓ′x3 = 0. (35)

The series expansions for x and ω are,

x(t) = x0(t) + εx1(t) + ε2x2(t) + . . .

ω = 1 + εω1 + ε2ω2 + . . .
(36)

The boundary conditions are,
x0(0) = A0, ẋ0(0) = 0,

xi(0) = 0, ẋi(0) = 0 i > 0.
(37)

A.2.1. O(ε0)

We substitute the series expansions of equation (36) in equation (35). All the terms at every given order of ε
must add up to zero for equation (35) to hold. The response equation at the zeroth order of ε then is,

d2x0

dτ 2
+ x0 = 0, (38)

which is just the equation of motion of the simple harmonic oscillator. The zeroth order response that
obeys the boundary conditions (37) is,

x0(τ) = A0 cos(τ). (39)

A.2.2. O(ε1)

At the first order of ε we have,
d2x1

dτ 2
+ x1 = x2

0 + Γ′x3
0 − 2ω1

d2x0

dτ 2
. (40)

Solutions of lower order response equations are used to find solutions of higher order response equations.
ω1 is fixed by the demand that the solution to equation (40) be periodic. For this, upon substituting the
zeroth order solution (see equation (39)) in equation (40) we set the coefficient of cos(τ ) in the resulting
rhs of equation (40) to vanish. We obtain

ω1 =
−3Γ′a2

0

8
. (41)

The amplitude-frequency dependence can be seen here. The first order correction to x which obeys the
boundary conditions is,

x1(τ) = A2
0

(
Γ′A0

32
− 1

3
cos(τ)

)
+

A2
0

2
− A2

0

6
cos(2τ) − Γ′A3

0

32
cos(3τ). (42)

A.2.3. O(ε2)

At the second order of ε, we have,

d2x2

dτ 2
+ x2 = 3Γ′x2

0x1 + 2x0x1 − (ω2
1 + 2ω2)

d2x0

dτ 2
− 2ω1

d2x1

dτ 2
. (43)

Carrying out the same procedure at this order, we have,

ω2 =
1

384

(
−9a4

0Γ
′2 + 144a3

0Γ
′ − 12a2

0Γ
′ω1 − 160a2

0 + 128a0ω1 − 192ω2
1

)
, (44)
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Figure 6. Lindstedt –Poincaŕe perturbation method for the cubic and quartic energy corrections to the SHO. O(ε2) curve follows the
leading edge of the numerical solution but doesn’t capture the offset in troughs and the relative difference in widths of crests and
troughs. Here ε = 0.6,Γ′ = 0.25.

and

x2(τ) =− 1

384
a2

0

[
−64 cos(2τ)

(
3a2

0Γ
′ − 2a0 − 8ω1

)]
+ a0

(
cos(3τ)(9a2

0Γ
′2 + 96a0Γ

′ + 216Γ′ω1 + 64)

+ 60a0Γ
′ cos(4τ) + 9a2

0Γ
′2 cos(5τ) − 252a0Γ

′ + 128
)]

.

(45)

The perturbative expansions are compared with numerical solution in figure 6.

A.3. Phase portraits
Closed orbits in phase-space translate to periodic motion in the position-time space. Plotting orbits in
phase space for different initial conditions builds the phase portrait of the system. The x(dx/dt) nullcline
are the locus of points where dx/dt = 0 (d2x/dt2 = 0). The nullclines are generally used to divide the
phase-portrait into regions where the tangent of the orbit points in the same general direction (NW, NE, SE
or SW). The orbit has a vertical (horizontal) tangent when it passes through the x (dx/dθ) nullcline. The
intersection of the nullclines gives the equilibrium point where both the ‘velocity’ and ‘acceleration’ of the
system is zero. The time-reversal symmetry of the governing differential equations (see equations (14), (15)
and (26)) guarantees closed orbits at points close enough to the equilibrium point. This is verified in the
phase-portraits in figure 7.

Figure 7. Phase portraits of BWBM and ADO systems. Blue lines are position nullclines: dr/dt = 0 and red lines are velocity
nullclines: d2r/dt2 = 0. The tangent to the flow lines are vertical when they pass the position nullcline and horizontal when they
pass the velocity nullcline. (a)Linear BWBM (b) ADO (c) Cubic and quartic energy corrections to the SHO (d) BWBM with
nonharmonic springs. In (b)–(d) left–right asymmetric orbits where there is a steeper fall on the left translates to sharper
troughs in position-time space. We see left–right asymmetric orbits with or without bent nullclines (see (b)–(c)).
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