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Global decline in ocean memory over the 21st century

Hui Shi'*, Fei-Fei Jin?*, Robert C. J. Wills3, Michael G. Jacox*?, Dillon J. Amaya®, Bryan A. Black®,
Ryan R. Rykaczewski’’%, Steven J. Bograd*, Marisol Garcia-Reyes', William J. Sydeman'

Ocean memory, the persistence of ocean conditions, is a major source of predictability in the climate system beyond
weather time scales. We show that ocean memory, as measured by the year-to-year persistence of sea surface
temperature anomalies, is projected to steadily decline in the coming decades over much of the globe. This global
decline in ocean memory is predominantly driven by shoaling of the upper-ocean mixed layer depth in response to
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global surface warming, while thermodynamic and dynamic feedbacks can contribute substantially regionally. As the
mixed layer depth shoals, stochastic forcing becomes more effective in driving sea surface temperature anomalies,
increasing high-frequency noise at the expense of persistent signals. Reduced ocean memory results in shorter lead
times of skillful persistence-based predictions of sea surface thermal conditions, which may present previously un-
known challenges for predicting climate extremes and managing marine biological resources under climate change.

INTRODUCTION

More than two-thirds of Earth’s surface is covered by ocean, with a
mostly thin (~50 m) layer of relatively warm, near-surface water on
top of colder deep water. Despite the relative shallow depth of this
surface mixed layer, the large specific heat of water in comparison
to the overlying atmosphere results in sea surface temperatures
(SSTs) varying much more slowly than the fast fluctuations of air tem-
perature. The temporal persistence of anomalous ocean conditions—
known as ocean memory and often measured by autocorrelation—has
been noted as an important source of predictability in the climate
system (1-4).

The depth of the upper-ocean mixed layer (MLD) is a key con-
trol on the persistence of SST anomalies on seasonal to interannual
time scales. Deeper mixed layers have greater heat content, which
confers thermal inertia, a source of memory that lengthens auto-
correlation time scales of SST variability (2, 5, 6). The MLD is set by
buoyancy contrasts between the surface water and the underlying
deep water and is driven by mechanical stirring by the winds and
buoyancy forcing at the surface (7, 8). Processes at the air-sea inter-
face and in the ocean act to dissipate or reinforce SST anomalies so
as to modify their persistence, and they can be roughly categorized
into two groups: (i) thermodynamic feedbacks (9-12) or recurring/
persistent atmospheric circulation anomalies (13-15), which act
through surface heat fluxes, and (ii) ocean dynamical processes, such
as horizontal heat advection by ocean currents (16-18), entrainment
or vertical mixing of waters at the base of the mixed layer, and re-
emergence due to seasonal variations of the MLD (1, 19-21).

Observations and model projections for future scenarios show a
reduction in the climatological MLD from continued greenhouse
warming (22-26), mainly due to increasing upper-ocean stability
(27). Here, using a comprehensive suite of Earth system models
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from the Coupled Model Intercomparison Project phase 6 (CMIP6)
(28), we examine the hypothesis that this shoaling of the MLD may
reduce upper-ocean memory in the coming decades, making annual
mean SST less predictable. On the basis of a simple stochastic model
of SST variability (2, 29), we develop a mathematical expression that
attributes the ocean memory decline primarily to changes in MLD,
with secondary contributions from changes in air-sea feedbacks,
mixing, and dynamical processes. Comparing the ocean memory
decline with changes in SST variance, we further infer changes in the
intensity of noise (i.e., random excitation of SST fluctuations) in the
future climate system. Last, we discuss the implication of these find-
ings for climate and ecosystem prediction.

RESULTS

Future change in year-to-year ocean memory

The 1-year autocorrelation of annual mean SST anomalies [hereafter
referred to as A(1)] is used as a simple metric of the year-to-year
ocean memory (Materials and Methods). The SST anomalies are
defined as deviation from the long-term trends (Materials and
Methods). The climatological A(1) is generally large and positive
(up to 0.6 in CMIP6 models), except in the equatorial Eastern Pacific
and parts of the Indo-Pacific warm pool. A(1) can even be negative
in regions where the quasi-periodic climate modes such as the
El Nifo-Southern Oscillation (ENSO) and the Indian Ocean Dipole
(I0D) dominate (Fig. 1A).

By the end of the 21st century, CMIP6 climate models project
that A(1) will decrease throughout most of the world’s oceans under
the Shared Socioeconomic Pathway SSP5-8.5 scenario, with some
regions experiencing ocean memory reductions of up to 100% (Fig. 1B),
as measured by A(1). Large areas of the North Pacific Ocean show a
robust decrease in A(1), especially in the northeast, where the A(1) is
reduced by about 50% on average. The western equatorial Atlantic
Ocean, the North Atlantic Ocean off the U.S. east coast, the Caribbean
Sea, and the mid-latitude South Atlantic Ocean also show reductions
of A(1) of similar magnitude. An especially pronounced and broad-
scale reduction in A(1) is projected to occur in the region spanning
the Indian Ocean, South China Sea, and waters near the Maritime
Continent (Fig. 1B).

These changes in A(1) are broadly reproduced within the Com-
munity Earth System Model Large Ensemble (CESM1-LE; Fig. 1E)
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Fig. 1. Declining year-to-year ocean memory through the 21st century. (A) Climatological 1-year autocorrelation, A(1), of annual SST anomalies at the end of the
19th century (1870-1899). The magenta lines bound regions of statistically significant A(1) (correlation = 0.3, degree of freedom = 28). (B) Change in A(1) from 1870-1899
to0 2071-2100 under SSP5-8.5 scenario. Values are averaged over individual realizations from 20 different climate models from the CMIP6 multimodel ensemble (MME).
The magenta lines bound regions of statistically significant A(1) in 2071-2100. Changes outside the gray dotted area are robust (Materials and Methods). White regions
over ocean have seasonal or permanent sea-ice cover (Materials and Methods). (C) Global mean A(1) in 30-year rolling windows from observations and CMIP6 simulations
from the historical and future (SSP) scenarios. Gray shadings show the range of values across models in percentiles: 25 to 75% (dark) and 5 to 95% (light). The dashed line
is the A(1) averaged over the preindustrial control runs from the CMIP6 MME, with an error bar (cadet blue) showing the uncertainty in the MME (MME UNC.) (Materials
and Methods). Error bars are also shown to quantify the cross-model spread (purple) and internal variability (salmon) (Materials and Methods). (D to F) Same as (A) to (C)
but calculated with the 40-member Community Earth System Model Large Ensemble (CESM1-LE). (D) The climatological A(1) for 1920-1949 period and (E) change in
A(1) between 1920-1949 and 2071-2100in Representative Concentration Pathway (RCP) 8.5 scenario. In (F), the colored dashed line is the global mean A(1) with the
fourth-order polynomial detrending, as used for the MME (Materials and Methods). Error bars show uncertainty in the ensemble mean (LE UNC.) and the spread due to

internal variability (V).

(30), where 40 ensemble members with different realizations of
internal variability allow for a better separation of the anthropo-
genically forced climate response and internal variability. In the
CESM1-LE, a reduction in A(1) is found throughout the Pacific
Ocean and South Atlantic Ocean, but the overall decrease is weaker
than in the CMIP6 multimodel mean (Fig. 1E; cf. Fig. 1B). The
CESM1-LE also shows isolated regions of increased A(1) in the
North Atlantic and eastern Indian Ocean. The differences between
CESM1-LE and the CMIP6 ensemble are particularly large in the
Indian Ocean. These differences suggest that the amplitude and
regional features of the memory change are model dependent.
Despite some differences, both CMIP6 models and the CESM1-LE
highlight common regions where, by the end of the 21st century,
annual mean SST in 1 year will no longer be a significant predictor
of annual mean SST in the following year. The size of the area with
significant A(1) shrinks in the Pacific Ocean in particular. There is
also a reduction in the area of significant A(1) in high latitudes of
the North Atlantic (Fig. 1, A, B, D, and E).

Shietal,, Sci. Adv. 8, eabm3468 (2022) 6 May 2022

A major decline in the global ocean memory is projected in three
different future pathways in the CMIP6 simulations and in the
CESM1-LE (Fig. 1, C and F). The trends of global mean A(1) (50°N
to 50°S) from 2000 to 2100 range from —0.10 (P < 0.05, SSP3-7.0)
to —0.13 (P < 0.05, SSP5-8.5) per century. Under continued green-
house gas forcing, A(1) evolves similarly through the middle of the
21st century in all scenarios, after which A(1) begins to stabilize in
SSP3-7.0. The global ocean memory decline qualitatively agrees with
the shoaling trend of global mean MLD in model projections (fig.
S1C), although there are some differences in the dominant regions
of MLD shoaling and reduced A(1) (fig. S1B). It is worth noting that
the observed ocean memory appears to be larger and more sig-
nificant than those in the models (Fig. 1C and fig. S2), especially
before around 1950. This may be partially due to the inadequacy in
capturing relatively small-scale SST variance as a result of sampling
in SST reconstruction.

While future anthropogenically forced changes in global ocean
A(1) are apparent, there also exists a large degree of internal variability
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(Fig. 1, C and F, error bars and shading). However, as greenhouse
gas concentrations continue to increase, the forced signal will be-
come increasingly evident relative to this spread. Under the current
trends, there would very likely be a historically unprecedented
reduction in global ocean memory by the end of the 21st century.

Processes contributing to ocean memory decline
We explore the mechanisms contributing to ocean memory decline
using a simple stochastic model of SST variability (2), defining the
damping rate (r) as an alternative way to represent A(1), where
r=—In A(1), and increases in damping rate correspond to decreases
in ocean memory. This applies to all ocean regions where the SST
variability is dominated by the red noise process. In some regions,
other processes also affect the SST autocorrelation (e.g., in situ or
remotely forced oscillatory variability), leading to very small or even
negative A(1). In these cases, the damping rate is set to a constant
corresponding to a threshold value of A(1) (Materials and Methods).
We then use a mixed layer heat budget (Materials and Methods) to
decompose damping rate changes (R) into contributions from three
terms: (i) MLD changes (H), (ii) changes in the SST-surface-heat
flux feedback (Q), and (iii) changes in ocean mixing and dynam-
ics (M + D).

Positive R is projected (i.e., reduced ocean memory) in most parts
of the world’s oceans in CMIP6 future warming scenarios (Fig. 2A).
In the tropical belt, R is less pronounced or negative compared with

projected changes in the A(1) (Fig. 1B). This is because the A(1)
changes in these regions involve both changes in the damping rate
and the periodicity of tropical oscillatory modes. In these cases, the
actual change in memory is more accurately represented by R (Fig. 2A).
Admittedly, our crude determination of the damping rate in equa-
torial regions is subject to some errors (Materials and Methods), but
these issues should not influence the extratropics, where A(1) is
generally large. Averaged over the globe, ocean memory loss is quan-
tified with an increase in the damping rate by 0.39 year ! between
1870-1899 and 2071-2100. Stronger memory loss is found in the
mid-latitudes (0.44 yearfl), relative to the tropics (0.25 yearfl; Fig. 2E).

The contribution of MLD changes (H) to R is predominantly
positive (Fig. 2B) and best explains the increased damping rate over
most of the global oceans (Fig. 2A). The substantial loss of upper-
ocean thermodynamic memory is thus primarily driven by surface
warming-induced shoaling of global MLDs, which reduces the ef-
fective heat capacity of the ocean surface layer. The reduced MLD
and ocean memory are projected for both the winter and summer
seasons (figs. S3 and S4), further confirming shoaling of MLD under
year-round warming as the common mechanism, regardless of the
seasonal variations of the MLD. Changes in SST-surface-heat flux
feedback (Q) lead to large damping rate changes in the tropical
oceans, most evidently in the equatorial eastern Pacific, Atlantic Nifio,
and IOD regions (Fig. 2C). In these regions, the ENSO, Atlantic Niflo,
and IOD are active, and the contributions from Q and M + D largely
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Fig. 2. Causes of ocean memory decline. Changes from 1870-1899 to 2071-2100in (A) damping rate (R, year™"); (B) MLD term (H); (C) SST-surface—heat flux feedback
term (Q); (D) mixing and dynamic term (M + D); and (E) contribution of each term to R over the global oceans (50°N to 50°S), the tropics (10°N to 10°S), and mid-latitudes
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SSP5-8.5 scenario.
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offset (Fig. 2, C and D). This cancellation between dynamics and
thermodynamics is likely due to mean state changes that are known
to generate similar cancellations in the ENSO growth rate simulated
by climate models (31). Changes in ocean mixing and dynamics
(M + D) contribute mostly in regions where active convection exists,
e.g., in the Greenland-Iceland-Norwegian Seas, or in regions of
strong upwelling, e.g., along the equator (Fig. 2D). The partial can-
cellation of Hand M + D terms (Fig. 2, B and D) in the high-latitude
North Atlantic likely indicates that a reduction in ocean heat trans-
port convergence and vertical mixing contribute to the locally en-
hanced MLD shoaling in this region.

In the global mean, H is the main contributor to the increase in
R (70%), followed by Q (21%), and M + D (9%). In the tropics, Q
also contributes to the increase in R and is largely offset by the de-
crease in M + D. In the mid-latitudes, both H and M + D contribute
to the R increase, and the contribution from Q is minimal. There-
fore, on the global scale, future ocean memory decline is predomi-
nantly driven by future shoaling in mixed layer thermal inertia (i.e.,
the MLD), with the other feedbacks playing a relatively minor role.
On the regional scale, however, both the SST-surface-heat flux
feedback and ocean mixing and dynamics can contribute substan-
tially to the memory decline together with the MLD changes.

Consequences for SST variability

Year-to-year SST variations consist of two components: (i) slow
variations due to ocean memory/persistence or remote forcing,
which are reflected in a large autocorrelation and level of predict-
ability, and (ii) noise, which are the random fluctuations associated
with stochastic forcing and are largely unpredictable. To separate
these components of SST variance, we use the Frankignoul and
Hasselmann (2) model to compute an expression for the fractional
change in annual SST variance (GéST) expressed as the difference
between the fractional change of noise variance ((512\,) and that of the
damping rate (r; Materials and Methods). While the persistent/
predictable part of the overall SST variance decreases in the future
(—21%), the increase in the noise/unpredictable part of the SST vari-
ance is larger (24%; Fig. 3B). As a result, the overall SST variance
shows a slight increase (3%) in the future (Fig. 3, A and B).

Further decomposing 63 into a component that is driven by sto-
chastic heat flux forcing (e.g., atmospheric turbulent heat fluxes) ((512;,
Materials and Methods) shows that the amplitude/variance of the
stochastic forcing itself will decrease slightly (—1%) in the future

(Fig. 3B). This suggests that the SSTs will become more sensitive to
stochastic heat flux forcing (i.e., stochastic forcing becomes more
effective at driving SST changes), such that o3, increases without an
increase in the actual forcing.

Just as the shoaling of the MLD is the main reason for the decline
in ocean memory, it is also the reason for the increase in noise variance
(Materials and Methods). The reduced MLD (-25%; Fig. 3B) in-
creases the effectiveness of stochastic forcing (i.e., heat fluxes at the
ocean surface or mixed layer bottom) at generating SST anomalies,
even when the amplitude of the forcing itself (i.e., the magnitude of
heat flux anomalies) decreases. For example, although some studies
have reported that the variance of the atmospheric winds become
smaller under warming (32), they would more effectively lead to
changes in SST's because they are driving a shallower ocean mixed
layer. The net result is a slight increase in year-to-year SST variability,
and a reduced “signal-to-noise” ratio as the fraction of persistent/
predictable SST variance is reduced in a warmer climate.

Consequences for persistence-based predictions

To estimate the impacts of memory decline on ocean predictions,
we examined the changes in the damping time scale (Fig. 4), i.e., the
inverse of the damping rate, which is an estimation of lead time for
SST persistence predictions. For example, a damping time scale of
10 months would be equivalent to a lead time of 6.9 months for a
persistence forecast correlation skill of 0.5. The climatological damp-
ing time scale ranges from 2 to 28 months (Fig. 4A). By the end of
the 21st century following the SSP5-8.5 scenario, CMIP6 climate
models project decreases in damping time scale over most of the
world’s oceans (Fig. 4B). For the northeast Pacific Ocean and the
western Atlantic Ocean, damping time scale is reduced by 6 to
8 months from originally 12 to 24 months. Globally, the damping
time scale is reduced from an average of 9.7 to 7.7 months (Fig. 4C).
This translates to a lead time change from 6.7 to 5.3 months for
forecast skill of 0.5, meaning that the previously 2-quarter-lead
forecast would drop to quarter-lead forecasts. The damping time
scale reduction is slightly stronger for the mid-latitudes, which is
2.2 months from 10 to 7.9 months.

DISCUSSION
This study described a projected steady decline of ocean memory
over much of the global oceans throughout the 21st century. To
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explain the global decline in ocean memory and its consequences
for SST variability, we provided an estimation of global changes in
the SST damping rate, attribution of damping rate changes to the
contributions from changes in MLD and thermal-dynamical feed-
backs, and decomposition of the noise component of the SST vari-
ance. We found that globally the MLD shoaling contributes about
two-thirds of the overall ocean memory decline. In the mid-latitudes,
besides the shoaling of MLD, ocean mixing and dynamical processes
also contribute substantially (about half) to the memory decline. In
the tropics, all three processes substantially contribute to memory
change, and the thermal and dynamical processes largely cancel
each other. Estimates of the contributions of different processes are
based on an idealized theoretical framework and use relatively limited
data lengths with annual sampling, thus there remains some degree
of uncertainty in these numbers, especially in regions where oscilla-
tory climate modes or nonlocal dynamics (i.e., remotely forced SST
changes) dominate. While there is a clear dominance of MLD changes
over much of the globe, interesting questions about the other con-
tributing processes remain to be explored, e.g., the reasons for op-
posite changes in SST-surface-heat flux feedbacks and SST variance
in the Atlantic Nifio region versus in the El Nifio and IOD regions
(Figs. 2C and 3A). Positive SST-low cloud feedbacks may decrease
with warming in the major upwelling regions (33). However, this is
only evident in the Peru Current region as an increase in Q (Fig. 2C).

Shietal,, Sci. Adv. 8, eabm3468 (2022) 6 May 2022

In the mid-latitude Pacific Ocean and South Atlantic Ocean, increases
in M + D contribute notably to the increases in R (Fig. 2D), leading
to slightly decreased SST variance in these regions (Fig. 3A). In-
depth, regional-scale studies are needed to understand what specific
dynamical processes are involved and how they will change under
warming. This may also help to reconcile the reduction in year-to-
year ocean memory reported in our study with the previously
reported increase in week-to-week ocean memory (34).

The physical implications of ocean memory decline can be well
understood through changes in the ocean damping time scale, which
is directly associated with lead time for SST persistence predictions.
Over many of the world’s large marine ecosystems (LMEs), SST
anomalies are predictable at lead times of months to more than a
year (35), enabling ecologically and societally relevant forecasts at
seasonal-to-interannual time scales (36). Of particular interest is
the accurate prediction of warm ocean extremes—known as marine
heatwaves (MHWs)—which can markedly affect the distribution
and productivity of marine species and the overall health of marine
ecosystems (37-43). In most LMEs, the dominant source of SST
predictability is persistence—or ocean memory—and differences in
SST forecast skill between regions often reflect differences in per-
sistence (35, 44). Thus, the projected decline in ocean memory is
likely to hinder ocean prediction efforts by reducing the lead times
at which SST forecasts, including those for MHWs, are skillful.
Future warming-induced MLD shoaling may also alter the statistics
of temperature extremes, as the reduced thermal inertia of the mixed
layer enables more rapid and pronounced temperature changes (23),
which combined with reduced lead time for persistence-based pre-
dictions of ocean surface conditions will pose challenges for ecosystem
management and marine hazard preparation.

In the terrestrial realm, seasonal-to-decadal predictions of tem-
perature and rainfall usually draw substantial skill from SSTs (45-48).
The persistence of SST's is known to be a crucial factor for skillfully
predicting monsoon variability (49-52) and terrestrial extremes, e.g.,
extreme summer precipitation (53), winter cold days (54, 55), and heat-
waves (56). Therefore, reduced SST persistence under warming likely
renders previously identified predictability sources ineffective and re-
quires searching for different sets of predictors. The previously unknown
challenges in forecasting brought by ocean memory loss are crucial to
address as we prepare for potentially more frequent and intense tem-
perature and hydrological extremes in a warming world (57, 58).

From an applied perspective, fisheries management relies on
estimates of biological parameters to estimate stock size and set
sustainable harvest rates. The demographic of fish, such as recruit-
ment, is well known to be dependent on environmental conditions,
including SST (59, 60), although in most stock assessments they are
assumed to be stable such that a “moving window” of estimates in
the recent past is considered reflective of current environmental
conditions (61). Less memory in ocean temperature may complicate
that approach to management, potentially decreasing the accuracy
of parameters used in stock assessments and management. In that
case, there would be an increased need for alternative approaches in
ecosystem-based fisheries management that aim to include near-
real-time ocean monitoring and detailed understanding of environ-
mental effects on fish population parameters.

The biological implications of changes in ocean memory are more
uncertain, but consequential impacts on populations are likely. Some
species with relatively constant reproductive effort, species with so-
called K-selected life histories (62, 63), are best suited for persistent
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environmental conditions and may flourish during periods of low
variability. In contrast, the so-called r-selected species may “hedge
their bets” and demonstrate multiple major reproductive efforts
during years of rarely occurring optimal conditions (64). This fun-
damental dichotomy in species’ life history attributes may be useful
for understanding and predicting which populations may be nega-
tively or positively affected by future changes in ocean memory.

MATERIALS AND METHODS
Data
We use earth system model output from the CMIP6 (28) and the
CESM1-LE (30). We use CMIP6 output of SST, MLD, surface latent
heat flux, surface sensible heat flux, and surface radiative fluxes
from the preindustrial control simulations, historical simulations,
and various SSP (65) scenarios, including SSP2-4.5, SSP3-7.0, and
SSP5-8.5. We selected a total of 20 CMIP6 models (table S1) that
have all targeted variables across all experiments. We also use SST
data from 40 ensemble members of the CESM1-LE historical and
RCP (Representative Concentration Pathway) (66) 8.5 simulations.
The observational data we used include the monthly SST data
from Met Office Hadley Center’s sea ice and sea-surface tempera-
ture dataset (HadISST) from 1870 to 2019, with 1° resolution (67).
Historical SST observations (1982-2019) from the National Oceanic
and Atmospheric Admistration Optimum Interpolation SST, version 2
(OISSTv2) (68, 69) were also used to identify seasonal and perma-
nent sea ice cover. Regions where OISSTV2 ice concentrations
were greater than zero for more than 15 days in any month were
masked out in all analyses to excluding memory changes due to
changes in sea ice properties. All data were interpolated onto a 5°
grid for analysis.

Year-to-year ocean memory

The lag-1 autocorrelations A(1) of annual (January to December)
SST anomalies were used to represent year-to-year ocean memory.
The A(1) metric is applicable for most parts of the world oceans. In
the equatorial regions, where interannual oscillatory modes tend to
dominate the SST variability, the simple persistence metric A(1)
does not capture predictability associated with the periodicity of
these modes. Therefore, we made modifications when calculating
the damping rate in these regions (next section).

To remove the long-term forced response in the CMIP6 data, we
removed a fourth-order polynomial trend from SST data in both
model simulations (1870 to 2100) and observational data (1870 to
2014) as in Hawkins and Sutton (70) [see also (71)]. We then calculate
the climatological A(1) at the end of the 19th century (1870-1899)
and the epoch difference of A(1) between 1870-1899 and 2071-2100.
Area-weighted A(1) in a 30-year rolling window is calculated over
the global oceans to demonstrate the time variations of observed
and simulated A(1). We look at changes in the multimodel-ensemble
mean (MME) and use piControl simulations, i.e., long simulations
with greenhouse gas forcing fixed at preindustrial levels, to quantify
uncertainties due to sampling of internal variability. We calculate
the A(1) in a total of eight nonoverlapping 30-year periods from the
piControl simulations and calculate the multimodel mean uncer-
tainty as the SD of the multimodel means across these eight pre-
industrial control periods. When the MME change between
the future and historical exceeds 1 SD of the multimodel mean, the
change is considered robust. We also calculate the SD across the

Shietal,, Sci. Adv. 8, eabm3468 (2022) 6 May 2022

20 models (in each of the eight periods) to quantify the cross-model
spread. The SD across the eight periods (in each of the 20 models)
represents the spread in multimodel-mean A(1) due to internal
variability.

For the CESM-LE, the forced response is estimated by the
ensemble-mean SST and is removed from the individual ensemble
members. We also calculate the forced response using the fourth-order
polynomial used for the CMIP6 data and find consistent results
(Fig. 1F). There is no cross-model spread for the LE. The internal
variability is represented by the SD across the 40 members, and the
uncertainty in the ensemble mean is the square root of the total
variance due to internal variability divided by 40 (the number of
ensemble members).

Attribution of ocean memory change
According to the stochastic climate model (2, 29), SST anomalies
evolve according to a red noise process
ar _
i rT'+ N (1)
Here, T is the SST anomaly, 7 is the damping rate, and N represents
white noise process (in units of °C s™'). The damping time scale
(r"") quantifies the ocean memory. The damping rate can be related
to A(1), where r takes the unit of year_1

r = —-In A(1)

In regions where A(1) is negative or very close to zero [A(1) < 0.05],
we estimate r as follows

. —In (0.05),for 10°~50°N and S
~ '“In (max(| A(1)],0.05)),for 10°S — 10°N

In the mid-latitudes, we assume the red noise process dominates,
and we use a threshold A(1) to avoid obtaining unrealistically large
r. For the tropics, where the oscillatory process is important, we es-
timate the envelope of the SST autocorrelations by using the larger
absolute value of A(1) and the threshold A(1) to calculate r. We
chose the threshold of A(1) = 0.05 because it is the critical correla-
tion at the 5% significance level for degree of freedom = 30 — 2, and
it satisfies the sampling frequency requirement [A(1) > > 0.01; next
section]. Using threshold A(1) may cause underestimation of r in
the mid-latitudes, especially for the end of the 21st century, when
31% of data points in the mid-latitudes have A(1) smaller than 0.05.
However, the percentage only decreased slightly to 28% when re-
ducing the threshold A(1) to 0.03, indicating that reducing the
threshold A(1) will not substantially enlarge regions included in
mid-latitude calculations. To fully separate the red noise and the
oscillatory processes, more sophisticated methods are required,
which is beyond the scope of this paper. Overall, our approach is a
simple way to account for the oscillatory nature of tropical coupled
modes, and it provides a reasonable estimation of the ocean memory
in the tropical region; it also yields a smoother long-term mean
damping rate (7) globally by avoiding adding noise from regions
with low A(1).

To quantify the different processes that contribute to changes in
the damping time scale and A(1), we examine the heat budget of the
ocean mixed layer
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dar _ Q-Wg(T-Ty)) |
i Coph + D’ + Rsd

Here, Q, is the surface heat flux anomaly, (Wg(T - Tb)), is the
turbulent entrainment flux anomalies (or mixing), where Wg is
the entrainment velocity, T and Ty, are the temperature in and at the
bottom of the mixed layer, respectively. D + Rsd are ocean dynamics
and subgrid-scale residuals, and 4 is the climatological MLD. Con-
stants p and Cp are the density and heat capacity of seawater, respec-
tively. We parameterize the surface heat fluxes Q and the ocean
dynamic terms of this equation in terms of temperature-dependent
feedbacks aq and on 4+ p and noise N and Ny . p whereby we obtain

Q _ %
Coph = T h T + Ng 2)
and
(WE(T-Tv)) | _ _OMDpy
—Cpph +D' +Rsd = A T + Ny (3)

Here, we assume that ocean dynamics and subscale effects can be
represented by a combined mixing flux anomaly. Summing Egs. 2
and 3 and comparing with Eq. 1, r can be expressed in terms of a
temperature-dependent feedback parameter o

r = o/h., where o = 0q + omD
A significant change in A(1) implies a significant change in r.

Thus, we express r in two parts after linearization, i.e., the long-term
mean (7) and the change/trend (Ar)

r=7+Ar
The change in r can be further decomposed into components due
to changes in MLD (Ah), changes in the SST-surface-heat flux feed-

back (Aog), and changes in ocean dynamics and mixing (Ao + p)

A

R} {H} {Q} {M+D}

Ar =

The first term (H) is diagnosed by calculating the relative change
(%.h) in MLD between 1870-1899 and 2071-2100 periods in reference
to the long-term mean MLD. The long-term mean damping rate ()
was obtained by averaging the calculated damping rate in 30-year
windows across the 1870-2100 period. The second term (Q) is diag-
nosed by calculating the changes in surface heat flux feedbacks (Aoq)
between 1870-1899 and 2071-2100 periods through linear regression
based on Eq. 2 and weighting the change by the long-term mean
MLD. The third term (M + D) is diagnosed as a residual. All diag-
nostics are done grid by grid over the world oceans.

Here, our estimation of the SST-surface-heat flux feedback is
based on the assumption that surface heat fluxes depend on the
local SST, an assumption that is embedded in the Frankignoul-
Hasselmann model. Surface heat flux changes due to nonlocal cloud
and circulation changes (e.g., teleconnections from ENSO) will not
be captured by this term (they will be captured by the M + D term
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instead). While these dynamic effects may alter the picture on the
regional scale, the estimations of contributions to ocean memory
loss on the global or hemispheric scale will be robust.

Change in variance of noise and stochastic forcing

SST varies on a continuum of time scales. Changes in ocean memory
influence SST variability differently on different time scales.
From the stochastic climate model (2, 29), we can take a Fourier
transform of Eq. 1 to obtain the temperature variance as a function
of frequency

2
2 On 1
10 [ M —
ilf r*1+antr

Integrating over frequencies between 0 and the Nyquist frequency
fnleads to a relationship between the variance of annual mean SST
anomalies (GZT) and the variance of the noise (G?\])

2

o
tan~'2rr ' fy)

2
(e} =
T~ 2nr

In the high-frequency sampling limit (r < n*fy)

2
2 _ SN
Or = E

For the annual anomalies studied here (i.e., fy = 0.5 year '), this
is approximately true for r < 4.9 [note that r = 4.9 corresponds to
A(1) = 0.007]. We can then infer the fractional changes in (5]2\, as

where 63, 67, and 7 are the climatological means, and Aoy, A7,
and Ar are changes.

The noise N (in units of °C year™") can be understood as result-
ing from stochastic forcing (heat flux from the surface and the bottom
of the mixed layer) F of an ocean mixed layer with effective heat
capacity C = pCph, where N and F have the relationship N = g
Therefore, the variance of the stochastic heat flux forcing o7 can be
expressed as

. : 2
Fractional changes in o, can therefore be expressed as

2 2
Aoy _ Aoy AW’
- W’

2 2
Of On

where o3, 6%, and h” are the climatological means, and Aoy, Ao},
and AK? are changes. Therefore, while we find a large increase in oy,
, this results from a decrease in the MLD rather than an increase in
the stochastic heat flux forcing o7

Statistical analysis
The statistical significance of A(1) is calculated with the two-tailed
t test for Pearson correlation with the degree of freedom that equals
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to the sample size minus two (30 — 2 years in the study). The statistical
significance of the global ocean memory trends (P values in the text)
is calculated with a Monte Carlo method, which takes into consid-
eration the relatively high autocorrelation of the global averaged
A(1) time series. We calculated the trends in 5000 time series gener-
ated with the same level of autocorrelation as those of the global
mean A(1) time series and obtained the significance level of the trends
through ranking.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm3468
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