
1.  Introduction
Sea surface temperature (SST) plays a crucial role in the interaction between the ocean and the atmosphere. 
SST patterns drive large scale wind-systems (Bjerknes, 1969), determine the global rainfall distribution (Deser 
et al., 2010; Schmitt, 2018) and influence marine ecosystems (Sunagawa et al., 2015; Thomas et al., 2012). It 
is therefore crucial to understand, how SST will respond to greenhouse warming in terms of its mean state and 
seasonal cycle. The amplitude of the climatological SST seasonal cycle is generally larger in the extratropical 
oceans than the tropical oceans and larger in the Northern Hemisphere (NH) than in the Southern Hemisphere 
(SH) (Figure 1a). The seasonal cycle amplitude of SST is defined as the difference between annual maximum and 
minimum temperature (see Figure S1 in Supporting Information S1).

According to recent observational analyses, annual-mean global SST has increased by about 0.11 (0.09–0.13) °C 
per decade since 1970 (IPCC, 2019). Different versions of the Coupled Model Intercomparison Project demon-
strated that this trend will continue in response to increasing greenhouse gas emissions (Alexander et al., 2018; 
Federation & Lynne, 2013; Gleckler et al., 2012). The projected multi-model mean change in global and annual 
mean SST by the end of the 21st century (2080–2100) relative to the recent past (1985–2005) attains values 
between 1.2°C and 3.0°C for Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios, respectively, 
based on 13 CMIP5 models (Taylor et al., 2012) (Figure 2a). CMIP5 models also simulate a robust decrease of 
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Plain Language Summary  One of the robust projected climate changes in response to global 
warming is the amplification of seasonal cycle of sea surface temperature (SST) with larger warming occurring 
in summer than in winter, especially in the North Atlantic, North Pacific and South Indian Ocean. Here we 
investigate the underlying physical mechanisms using a suite of future greenhouse warming simulations. We 
show that for the high greenhouse gas emission scenario the amplitude of SST seasonality increases over the 
next 80 years by 30% ± 20% globally. Overall mean ocean warming increases the upper ocean stratification, 
which leads to a shoaling of the mixed layer. This implies that climatological air-sea heat fluxes impact a 
smaller ocean volume, which then leads to an increased SST response. Other heat budget terms play only 
a secondary role. The increased temperature seasonality could further impact plankton phenology and the 
climatology of upper ocean CO2.
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Key Points:
•	 �Under the high greenhouse gas 

emission scenario, the seasonal 
amplitude of sea surface temperature 
(SST) is projected to increase by 
30% ± 20% by the end of 21st century

•	 �The intensification of SST seasonality 
is largely due to the shoaling of the 
annual mean mixed layer depth

•	 �The advection term explains about 
10%–40% of the change in SST 
seasonality depending on the region
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the mixed layer depth (MLD) by about 10–15 m (Figure 2c). The CMIP6 models show similar results (Figure S2 
in Supporting Information S1).

In addition to the increase in annual-mean SST, observational analyses show an increasing trend in the ampli-
tude of the SST seasonal cycle for the last 70 years over many ocean basins (Figure 1b). The CMIP5 models 
realistically simulate not only its climatological distribution but also several characteristics of its trend patterns 
(Figures 1c and 1d). Consistent with the observed trend (Figure 1c) recent studies demonstrated a seasonal modu-
lation of the projected SST trends, with stronger warming in summer than in winter (Alexander et al., 2018; Y. Y. 
Chen & Jin, 2018) (see Figure 1d).

It has been suggested that changes in the seasonal cycle of MLD may partly contribute to the stronger SST season-
ality (Alexander et al., 2018). Gallego et al. (2018) showed that the SST seasonality is projected to amplify in 
most of the ocean basins in association with an increase in upper ocean stratification. Yamaguchi and Suga (2019) 
identified a pronounced strengthening of the ratio of summer-versus winter stratification in the mid- and high-lat-
itude ocean in observational records. C. Chen & Wang (2015) presented amplification of SST annual cycle in 
the North Pacific responding to global warming attributable to the decrease of MLD in summer which will trap 
more incoming net heat flux and cause a higher SST increase than in winter. Other studies (e.g., Timmermann 
et al., 2004) suggested that projected changes in meridional SST gradients in the eastern equatorial Pacific can 
lead to an intensification of SST seasonality, with potential repercussions for ENSO (Karamperidou et al., 2020). 

Figure 1.  Climatological amplitude of sea surface temperature (SST) seasonal cycle for 1985–2005 (left panels) and its trend (right panels) from 1950 to 2019 for 
panel (a), (b) the observational (ERSSTv5) data (Huang et al., 2017) and panel (c), (d) the multi-model mean of 13 CMIP5 models, respectively. The seasonal cycle 
amplitude of SST is defined as the difference between annual maximum and minimum temperature. For models, historical simulations are used from 1950 to 2005 
and Representative Concentration Pathway 8.5 runs from 2006 to 2019 to calculate the simulated trend. Black stippling in panels (c and d) indicates that the trend is 
statistically significant at 95% confidence level on the basis of t-test. ERSST stands for Extended Reconstruction of SST. Zonal average of each variable is also shown 
in the right side of map. For CMIP5, multi-model mean (thick solid line) and inter-model spread (gray shading-maximum to minimum) are shown.
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Recently, Liu et al. (2020) suggested that both the direct CO2 and wind effect contribute to the enhancement of the 
SST seasonality based on single model experiments. In Liu et al. (2020), the contribution of the direct CO2 effect 
in the absence of wind change was considered through the reduced wind mixing and warming-induced shoaling 
in the MLD under surface thermal forcing. However, the MLD contributions to the strengthening of SST seasonal 
cycle in their study were mostly inferenced statistically rather than qualitatively with a heat budget analysis.

While SST seasonality under present-day conditions is well understood, the mechanisms controlling the future 
seasonality are unclear. The aim of our study is to determine the mechanisms cause the intensification in the SST 
seasonal cycle and provide a better understanding of the spatial pattern of this amplification. In Section 2, models, 
data and methods used in this study are introduced. Section 3 addresses the main results on the amplification of 
SST seasonal cycle and its main drivers. The final section summarizes the major findings and discusses limita-
tions of our approach which calls for further studies.

2.  Methods
2.1.  Models and Data

This study uses monthly mean SST and MLD, and calculates surface net heat flux using shortwave radiation, long-
wave radiation, latent heat flux and sensible heat flux from historical (1850–2005) and RCP 4.5 and 8.5 simula-
tions (2006–2100) conducted as part of CMIP5 (Taylor et al., 2012). We focus our analysis on 13 out of 45 CMIP5 

Figure 2.  Multi-model mean (line) and inter-model spread (shading) for panel (a), (c) annual mean and panel (b), (d) seasonal cycle amplitude of spatial mean sea 
surface temperature (SST) (left panels) and spatial mean mixed layer depth (right panels) averaged over the globe, respectively, obtained from 13 CMIP5 models, 
respectively, during historical period (1851–2005) and the future (2006–2100). For the future projection, Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 
scenario in CMIP5 are used. The amplitude of seasonal cycle is calculated by subtracting the minimum value from the corresponding maximum value every year. Inter-
model spread is obtained from one standard deviation against multi-model mean. The annual mean and seasonal cycle amplitude of SST based on ERSST from 1854 to 
2019 are also shown in green in panels (a and b).
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