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Abstract. We prove non-uniqueness for a class of weak solutions to the Navier—Stokes equations
which have bounded kinetic energy, integrable vorticity, and are smooth outside a fractal set of
singular times with Hausdorff dimension strictly less than 1.
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1. Introduction

Throughout this paper we consider the incompressible three-dimensional Navier—Stokes
equations:

d;v+diviv®@v)+Vp—Av =0, (1.1a)
divv =0, (1.1b)
V|s=0 = vo, (1.1¢)

on the torus T3 = [—, w]3. We consider solutions of zero mean, i.e. fT3 v(x,t)dx =0
forall ¢t € [0, T']. The notion of weak solution of (1.1) that we work with in this paper is that
of distributional solution which has bounded kinetic energy, and is strongly continuous in
time:

Definition 1.1 (Weak solution). Given any zero mean initial datum vy € L2, we say that
v € CO([0, T); L?(T?)) is a weak solution of the Cauchy problem for the Navier—Stokes
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equations (1.1) if the vector field v(-, ¢) is weakly divergence-free for all ¢ € [0, T'), has
zero mean, and

T
/v0'¢(~,0)dx—|—// v-(0r¢+ (v-V)p + Ap)dxdt =0
T3 o JT3

for any ¢ € C{°(T3 x [0, T)) such that ¢(-, ¢) is divergence-free for all 7.

In view of C°([0, T); L?(T3)) regularity, by [14] the above defined weak solutions
are also mild or Oseen solutions (see also [30, Chapter 6]). That is, for ¢ € [0, T') we have

t
V(1) = e Pug + / eTTOAPL div(v(-, s) ® V(- 5)) ds. (1.2)
0

Here Py is the Helmholtz projector and e?2 £ is the heat extension of f. Our main result
is as follows.

Theorem 1.1 (Main result). There exists a B > 0 such that the following holds. For T > 0,
letu™ 4@ e C2([0, T]; H3(T?)) be two strong solutions of the Navier—Stokes equations
(1.12)=(1.1b) on [0, T, with data u™ (0, x) and u® (0, x) of zero mean. There exists a
weak solution v of the Cauchy problem for (1.1) on [0, T] with initial datum v|;=¢ =
uM|,_o, which has the additional regularity

ve o, T]; H3(T3) n wh+B(T3)),
and such that
v=u® on[0,T/3] and v=u® on[2T/3,T].

Moreover, for every such v there exists a zero Lebesgue measure set X7 C (0, T] with
Hausdorff (in fact box-counting) dimension less than 1 —  such that

v e C®(((0, T]\ Br) x T3,
In particular, the weak solution v is almost everywhere smooth.

The outline of the proof of Theorem 1.1 is given in Section 2, while the detailed
estimates are made in Sections 3-5.

Remark 1.2 (Non-uniqueness of weak solutions for strong initial data). Theorem 1.1
immediately implies that weak solutions of the Cauchy problem for the Navier—Stokes
equation (1.1), in the sense of Definition 1.1, are not unique.

The cheap way to see this is to take any 7 > 0, u!) = 0, and u® to be any non-
trivial mean-zero solution of the Navier—Stokes equation on [0, T'] (e.g. a shear flow).
Then the weak solution v given by Theorem 1.1 is non-trivial on [0, T'], and thus 0 is
not the only weak solution with zero initial datum. Conversely, if we take u‘!) to be any
non-trivial solution to the Navier—Stokes equation, and u® = 0, Theorem 1.1 gives a
counterexample to backward (in time) uniqueness for weak solutions of (1.1) in the sense
of Definition 1.1.
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More generally, we emphasize that Theorem 1.1 proves the non-uniqueness of weak
solutions to the Cauchy problem for the Navier—Stokes equation (1.1) for any strong ini-
tial datum. To see this, consider any vo € H? and take T = c||vo|| ;5. where ¢ > O'is a
sufficiently small universal constant (cf. Proposition 3.1). Then there exists a unique solu-
tion u™ e C°([0, T]; H?) to the Cauchy problem (1.3) below with datum vo. Moreover
lu®(T)|| 2 < |lvoll,2. However, using Theorem 1.1 one can glue to this solution the
shear flow u® (x1, x5, x3,1) = (Ae ™" sin(x3),0,0). Then if A is chosen such that Ae~7 >
2||voll 2, we have [[v(T)| 2 = [u@P ()2 > |vollz2 = [u™M(T)|| 2. Therefore v is a
weak solution to (1.3) with datum vy, but v is not equal to the smooth solution u® at
time 7. )

While for the above argument we have considered vy € H3, it is clear that The-
orem 1.1 also implies the non-uniqueness of weak solutions to the Cauchy problem for
(1.1) for any initial datum for which one has unique local in time solvability of (1.1)
(examples include vy € H'/2 [16]; vy € L3 with zero mean [24]; vo € BMO™! which
is small and has zero mean [26]; see [29] for further details). Indeed, for any such initial
datum the unique local in time solution (! is smooth in positive time, and hence for any
e >0 we have uV (., ¢) € H?3. We then apply Theorem 1.1 on the time interval [e, T,
rather than [0, T'], in order to glue the strong solution to a shear flow with kinetic energy
which is either strictly larger, or strictly less, at time 7.

1.1. Background

We make a few comments concerning different notions of solution to the Navier—Stokes
equation, other than in Definition 1.1 (see [30] for a more detailed discussion). The
weakest notion of solution to the Cauchy problem for (1.1) is that of a very weak solu-
tion: these are distributional solutions of (1.1) which only lie in C2, , (0, T'; L?), and are
weakly divergence-free. However, one typically proves the existence of solutions which
are stronger than this.

Indeed, for any L2 initial datum v, Leray [31] constructed a distributional solution
v € CO (0. 00: L?) N L2(0, 0o: H') which obeys the energy inequality [[v(1)[2, +
2! [Vu(@)|2,dt < |lv(s)|?, forae.s > 0andallz > 5. See also the work of Hopf [19]
on bounded domains. These are the Leray—Hopf weak solutions. One nice feature of
Leray—Hopf weak solutions is that they possess epochs of regularity, i.e. many time inter-
vals on which they are smooth. In fact, already Leray [31] observed that these weak
solutions are smooth almost everywhere in time, since the putative singular set of times,
37, has Hausdorff dimension < 1/2. This fact follows directly from two ingredients:
the fact that for vy € H! the maximal time of existence of a unique smooth solution is
bounded from below by c||ve ||;‘l , and a Vitali-type covering lemma which may be com-
bined with the L? H! information provided by the energy inequality. Scheffer [42] went
further to prove that the 1/2-dimensional Hausdorff measure of X7 is 0. These results
were strengthened to bounds on the box-counting dimension for X7 [27,41]. See [30,40]
for further references.
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Remark 1.3 (Weak solutions with partial regularity in time). We note that while the weak
solutions constructed in Theorem 1.1 are not Leray—Hopf, they give the first example of a
mild/weak solution to the Navier—Stokes equation whose singular set of times X7 C (0, 7]
is both non-empty and has Hausdorff (in fact, box-counting) dimension strictly less than 1.
This is in contrast with the prior work [5], where X7 has dimension 1. It is an interesting
open problem to construct weak solutions to (1.1), in the sense of Definition 1.1, where
the 1/2-dimensional Hausdorff measure of the non-empty set of singular times is 0.

A fundamental step towards understanding the uniqueness and smoothness of weak
solutions was to introduce the concept of a suitable weak solution by Scheffer [42] and
Caffarelli-Kohn—Nirenberg [6]. Suitable weak solutions obey a localized in space-time
version of the energy inequality, and they have partial regularity in space and time: the
putative singular set of points in space-time has 1-dimensional parabolic Hausdorff meas-
ure 0. See the reviews [30,40] for more recent extensions and further references.

The uniqueness of suitable weak solutions or of Leray—Hopf weak solutions is an
outstanding open problem. The weak-strong uniqueness result of Prodi—Serrin [39, 43]
states that if there exists a weak/mild solution v € L°L2 N L2 H} N L? L% of the Cauchy
problem for (1.1) with 2/p + 3/g < 1! and p < oo, and if u is a Leray—-Hopf weak
solution with the same initial datum, then ¥ = v. This is a conditional uniqueness result
within the class of Leray—Hopf weak solutions. Moreover, the solutions are smooth in
positive time [28]. The L L3 endpoint was established in [13]. Similar weak-strong
uniqueness results hold within the class of mild solutions, except the ¢ = 3 endpoint
which requires continuity in time [14, 17,34]. See [30, Chapter 12] for further references.
A very interesting conjecture of Jia—Sverak [22,23] essentially states that the Prodi—Serrin
uniqueness criteria are sharp, and that the non-uniqueness of Leray—Hopf weak solutions
may already be expected in the regularity class L?"Li"’o. Compelling numerical evidence
in support of this conjecture was recently provided by Guillod—Sverdk [18]. A related
interesting open problem is to establish the non-uniqueness of mild/weak solutions to
(1.1) in the regularity class C2L% N L2H], for any ¢ € [2,3).

We conclude this subsection by revisiting the non-uniqueness result of Remark 1.2,
for rough initial data:

Remark 1.4 (Non-uniqueness of very weak solutions for any L? initial datum). If instead
of the weak solutions of Definition 1.1 we consider very weak solutions of (1.1), so they
only lie in C2, , (0, T; L?), then Theorem 1.1 implies that non-uniqueness for the Cauchy
problem holds for any L? initial datum of zero mean, within the class of very weak solu-
tions. Indeed, for any such datum, by the work of Leray there exists a very weak solution u
to the Cauchy problem for (1.1), which is in fact smooth most of the time. Pick any regu-
lar time 7o > 0 of u, and let vy = u(fo) € H>. We then apply the argument of Remark 1.2

IThe Lf L% norm, for 2/p 4+ 3/¢q = 1, is invariant under the Navier—Stokes scaling map
v(x,1) = v, (x,1) = Av(Ax, A%r). Spaces that obey these properties are called scaling critical
spaces. Since the Leray—Hopf energy space L‘ZX’L)ZC N L%H; obeys 2/o0 +3/2=2/2+3/6 =
3/2 > 1, we may call the system (1.1) energy supercritical.
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on the time interval [to, to + T], with u(!) being the unique local in time smooth solution
of (1.1) with initial datum vq at time #o. Note that by weak-strong uniqueness, the Leray
solution u is in fact equal to " on [to, fo 4+ T]. In view of Theorem 1.1 we can construct
a very weak solution v which is equal to u on [0, ¢y + 7/3], and equal to a shear flow
of our choice on [tg + 27'/3, T]. This solution v is smooth except for a set of times of
Hausdorff dimension < 1, and is different from the Leray solution u.

1.2. The energy supercritical hyperdissipative Navier—Stokes equation

The proof of Theorem 1.1 uses essentially the fact that the kinetic energy space is super-
critical with respect to the natural scaling invariance associated to (1.1). In fact, the proof
applies mutatis mutandis to the energy supercritical o-hyperdissipative Navier—Stokes
equation

;v +diviv @ v) + Vp + (—=A)%v = 0, (1.3a)
divv =0, (1.3b)
V|r=0 = Vo. (1.3¢)

Here we consider the energy supercritical regime a € [1,5/4). Indeed, (1.3) is invariant
under the scaling map v(x,t) > v (x,1) = A2*"1v(Ax, A2%t), and the energy norm
L% L2 is invariant under this map for @ = 5/4. Definition 1.1, with Ag replaced by
—(—=A)%¢p, gives the notion of a weak solution for (1.3). Our result is:

Theorem 1.5 (The hyperdissipative problem). For« € [1,5/4) there exists f = (o) >0
such that Theorem 1.1, and thus also Remark 1.2, holds with system (1.1) replaced by the
more general system (1.3).

The system (1.3) was first considered by Lions [32,33] for « in the critical and subcrit-
ical regime o > 5/4. He proved the existence and uniqueness of Leray weak solutions for
any L? initial datum. These solutions are regular in positive time. In [45] it was proved that
slightly below the critical threshold & = 5/4 the existence of a globally regular solution
still holds when the right-hand side of the first equation in (1.3) is replaced by a logar-
ithmically supercritical operator. For o € [3/4, 1) and (1, 5/4) partial regularity results
a la Caffarelli-Kohn—Nirenberg were established in [25,44] and [8]. These works show
the existence of a weak solution whose putative singular set (in space-time) has (5 — 4)-
dimensional Hausdorff measure 0. In the opposite direction, the recent works [7,12] prove
the non-uniqueness of Leray weak solutions to (1.3) in the parameter ranges o < 1/5,
respectively o < 1/3. The non-uniqueness of weak solutions in the sense of Definition 1.1
is also shown to hold for o < 1/2.

We note that very recently, by adapting the arguments in [5], Luo and Titi [35] demon-
strated the non-uniqueness of very weak solutions for (1.3) in the parameter range « €
(1,5/4). Compared to [35], the weak solutions constructed in this paper have the addi-
tional property that their set of singular times has Hausdorff dimension strictly less than 1.
Together, the uniqueness result of [33], and the non-uniqueness results of [35] and of this
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work, confirm the well-posedness criticality of the exponent & = 5/4 within the class of
weak solutions defined in Definition 1.1.

We give the proof of Theorem 1.5 for general values of & < 5/4. Theorem 1.1 follows
by restricting to o = 1.

2. Outline of the proof

The proof of Theorem 1.5 proceeds via a convex integration scheme based on the scheme
introduced in [5], which is itself built on a long line of work initiated by De Lellis and
Székelyhidi Jr. [10], culminating in the eventual resolution of Onsager’s conjecture by
Isett [20] (cf. [1-4,9,11,21]). Such a scheme is used to inductively define a sequence of
approximate solutions converging to a weak solution of (1.3). The principal new idea of
this paper is to create good regions in time where the approximate solutions are strong
solutions to (1.3) and are untouched in later inductive steps. This is achieved by employ-
ing the method of gluing introduced by Isett [20] (cf. [4]). Taking the countable union of
the good regions over each inductive step, one forms a fractal set, whose complement has
Hausdorff dimension strictly less than 1. This is explained in detail in Sections 2.1 and 2.2
below. The concept of good regions is partially inspired by similar concepts introduced
in [1] (cf. [3]). An additional novelty of the present work is the introduction of intermit-
tent jets which replace the intermittent Beltrami flows of [5] as the fundamental building
blocks on which the convex integration scheme is based (see Sections 2.3 and 4.1).

2.1. Inductive estimates and main proposition

For every ¢ € N we will construct a solution (vg, Icéq) to the Navier—Stokes—Reynolds
system

v + div(vg ® vg) + Vpg + (=A)v, = div R, (2.1a)
divy, =0, (2.1b)

o
where Ry is a trace-free symmetric matrix. The pressure p, is normalized to have zero
mean on T3 and is explicitly given by the formula

pg = div ATV div(Ry — vy ® vy). 2.2)

Here we use the convention that for a 2-tensor S = (S )13 j=1 the divergence contracts
on the second component, i.e. (divS)’ = ;5. The summation convention on repeated
indices is used throughout.

Fix a sufficiently large integer b = bh(a) > 0.> Depending on this choice of b, fix a
sufficiently small parameter 8 = B(a, b) > 0.° In particular, Bb < 1.

2For instance, it is sufficient to take b(5 — 4«) > 1000, which satisfies (4.43).
3For instance, it is sufficient to require that 20051)2 <5 — 4a; this satisfies both (4.43) and (5.7).
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The size of the Reynolds stress 13q will be measured in terms of a size parameter
38 .
§g = AP a;% 2.3)

where A4 is a frequency parameter defined by

Ag = a®?
where a >> 1 is a large real number to be chosen later. Note that §; = /\’f = aP? is large
if a is sufficiently large.
For every ¢ > 0 we assume that R, obeys the estimates
”Rl]”Ll(T3) f A;5R5q+1, (243)
IRl g3 T3y < AJ. (2.4b)

for some eg > 0 to be chosen later, which depends only on the values of «, 8, and b. For
the approximate velocity field vy, we assume that

lvgllz2¢r3) < 253/2 - 5;/2, (2.52)

log 33y < Ag- (2.5b)
These inductive estimates will ensure that the approximate solutions v, converge strongly
in C(0, T; L?) to a weak solution v of the Navier—Stokes equations (1.3).

Consider T > 0 and fix the parameter sequences {7, }4>0 and {, }4>1 defined in (2.7)
and (2.8) below, which obey the heuristic bounds

Vg1 €17 K Vg K 1. (2.6)
In particular, for ¢ > 1 we make the choices
9 = 2,718, 2.7)
Tg = A SR = A TR, (2.8)
For the special case ¢ = 0 we set tp := T/15. For ¥}y we do not need to assign a value.
In order to ensure that the singular set of times has Hausdorff dimension strictly less

than 1, at every ¢ > 0 we split the interval [0, T'] into a closed good set €@ and an open
bad set B@ = [0, T]\ €“, which obey the following properties:

(i) €@ =10, T/3]U[2T/3,T].
(i) €9V c @ foreveryg > 1.

(iii) B9 is a finite union of disjoint open intervals of length 57,.*

4Observe that this condition is consistent with property (i) and the definition rg = 7/15.
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(iv) For g > 1, the bad sets obey
|8@| < |89 V10, /9,. (2.9)
(v) The velocity fields obey
if 1e€9 forsomeq’ <gq. then vy (t) = vy (7). (2.10)
(vi) The residual Reynolds stress obeys
Ry(t) =0 forallf € [0, T] such that dist(r, @) < z,. @.11)

Due to (2.11) and the parabolic regularization of the Navier—Stokes equation (cf. (3.4)
below), v, is a C* smooth exact solution of the Navier—Stokes equation on €D Tn
addition, (2.10) implies that v = v, on § @\ {0}, and thus the limiting solution v is C*
smooth on (@ \ {0}) x T3. This justifies that the singular set of times, 7, obeys

Yr C ﬂ B@D. (2.12)

q=>0

It thus follows from (2.9) and the definitions of 7, and ¥, in (2.7) and (2.8) that

@ (0) T 107y = —er/4 _erWI-1)
B89 <189 [] <1077 [ 7,7/ < 10560

g'=1 q q’=0
__°R__
< T1092, 507D (2.13)

Here we have also used the definition of A4, and the fact that b > 2. To estimate the
box-counting (Minkowski) dimension of X7, we note that for every ¢ > 0, the set X7 is
covered by B, which itself consists of disjoint intervals of length 574. Due to (2.13),
the number of such intervals is at most

__°%R
T1072, "7V (57,7,

By (2.12), and the superexponential growth of A,, we conclude that

log(T) + ¢ log(10) — % log(Xq) — log(574)

dimpx (X7) < lim
g—>00

“log(57,)
b
1o i 500 980
o —log(z)
b
-1 ‘R 1— R 1. (2.14)

T8 —1)(7 ter/atBb) 64

This implies that X7 also has box-counting dimension strictly less than 1.
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Proposition 2.1 (Main Iteration Proposition). There exists a sufficiently small parameter
er =¢r(a, b, B) € (0,1) and a sufficiently large parameter ag = ao(c, b, B,eRr) > 1 such
that for any a > aq satisfying the technical condition (2.24) below, the following holds:
Let (vg, I%q) be a pair solving the Navier-Stokes—Reynolds system (2.1) in T3 x [0, T
satisfying the inductive estimates (2.4)—(2.5), and with the corresponding set €9 with
the properties (i)—(vi) listed above. Then there exists a second pair (Vg+1, 1344_1) solving
(2.1) and a set €9V which satisfy (2.4)~(2.5) and (i)—(vi) with q replaced by q + 1. In
addition

g1 — vgllL> < 8377 (2.15)

2.2. Gluing stage

The first stage of proving Proposition 2.1 is to start with the approximate solution (v, I(éq)
which obeys (2.4)—(2.5) and (2.11), and construct a new glued pair (v, Rq), which solves

(2.1), obeys bounds (2.4)—(2.5) up to a factor of 2, and has the advantage that Rq =0on
T3 x 8U@+D,
Specifically, the new velocity field v, is defined as

O (. 1) = Y mi(O)vi(x, 1),

where the 7; are certain cutoff functions with support in [f;, j+1 + T4+1] (With
t; = ¥4411) that form a partition of unity (see (3.26) below), and the v; are exact solu-
tions of the Navier—Stokes equation with initial datum given by v; (f;—1) = v4(fi—1). Due
to parabolic regularization, these exact solutions v; are C ® smooth in space and time on
the support of 7;, so that v, inherits this C* regularity. This is in contrast to (v, ﬁq),
which is only assumed to be H?> smooth. Trivially, in the regions where a cutoff 7; is
identically 1, v, is an exact solution to (1.3).

Observe that property (2.11) ensures that v, is already an exact solution of (1.3) on a
large subset of [0, T'], namely the z,-neighborhood of €D In particular if #;_; and #; both
lie within this neighborhood, then by uniqueness of the Navier—Stokes equation in C to H 3,
we have v; = v; 41 = vg4 on the overlapping region supp 7; 1; 1. Hence v, = v, is an exact
solution there. In order to single out overlapping regions where v, is not necessarily an
exact solution of (1.3) we introduce the index set

€ ={i €{l.....ng41}:there exists € [ti_y.tir1 + Tg41] With Ry(£) # 0}, (2.16)
We then define
B+ = U t —2tg41. 4 + 37441). (2.17)
i€€ori—1€€

By the discussion above, it will follow that v, is an exact solution on the complement of
BYtD thatis, €@+D We prove in Section 3 below that the above defined good and bad
sets at level g + 1 obey the postulated properties (i)—(iv).

In Section 3 we prove the following proposition:
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Proposition 2.2. There exists a solution (v, Rq) of (2.1) such that

by =v; onT3xg@D, (2.18)
and moreover the velocity field v, satisfies
15112 < 265/ — 812, (2.19a)
101173 < 245, (2.19b)
15 — vgll> < Pg+1A8 < L6212, (2.19c)
_N
”ai‘/[DNﬁq||L°°(T/3,2T/3;H3) S Tq_%l?q_ﬁ‘f A; =< Tq% Nl;, (2.19d)

o
and the stress tensor Ry satisfies

R,(1) =0 forallt € [0, T] with dist(t, ¢ 9V) < 27,44, (2.20a)
IRG L1 < Tyt 191 Ay 8 2841 < AR 48441, (2.20b)
o _N
10X DN Ryl s < T, M7 0, 28 2 < o MV 12, (2.20¢)

forall M, N > 0.

2.3. Convex integration stage
o

In this step we start from the pair (vg, Rq), and construct a new pair (Vg41, 134“) with
Iz’qﬂ obeying (2.11) atlevel ¢ + 1, and which obeys the bounds (2.4)—(2.5) atlevel ¢ + 1.

The perturbation w, 41 := vy+1 — ¥, Will be constructed to correct for R,. Moreover,
wy+1 will be designed to have support outside a 7,4 1-neighborhood of €@+ _ this

ensures properties (v) and (vi) in Section 2.1 will be satisfied. As in [5], the perturbation

wy 41 Will consist of three parts: the principal part wfli) 1> the divergence corrector w‘(fll,

()
and the temporal corrector w, . ;.

The principal part wé’f 1 Will be constructed as a sum of intermittent jets W(g) (defined

in (4.4), Section 4.1). The use of intermittent jets replaces the use of intermittent Beltrami
waves in [5]. The principal difference between intermittent jets and intermittent Beltrami
waves is that the definition of the former is in physical space rather than frequency
space. Consequently, intermittent jets are comparatively simpler to define and they can
be designed to have disjoint support, mimicking the advantageous support properties of
Mikado flows, as introduced in [9]. We note that the intermittent variants of the d — 1-
dimensional Mikado flows found in [36, 37], lying in d-dimensional space, are insuffi-
ciently intermittent to be used as building blocks for a 3-D Navier—Stokes convex integra-
tion scheme.’ Intermittent jets are inherently 3-dimensional (in space), with the trade-off

SFor Navier-Stokes in dimensions greater than 3, they are however applicable, as demonstrated
in [36].
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that they are time dependent. We note in passing that it is likely that the convex integration
results [37,38] on the transport equation may be improved utilizing intermittent jets.

;’2 1> the intermittent jets W) will be weighted by functions a g):

(»)
wi = Za(s) We).
£

In the definition of w

where ag) are constructed such that
. 2 1
div(wi?, ® wi, + Ry) ~ ﬁatPHP?é" (Z“é)m/@)'zg)
£

+ (pressure gradient) + (high frequency error)  (2.21)

for some large parameter . As is typical in convex integration schemes, the high fre-

o
quency error can be ignored since its contribution to R4 can be bounded using the gain

®

g+1 is then

associated with solving the divergence equation. The temporal corrector w
defined to be

1
@ ._
wily = = PP (2 aly oo %).
H

where Py is the Helmholtz projection, and P is the projection onto the functions with
zero mean. Thatis, Py f = f — V(A div f) and Pyo f = f — fT3 f. Hence

(p) (p)

div(w,; ® wyyy + Ry) + B,w;t}rl ~ (pressure gradient) + (high frequency error).

Finally, the divergence corrector w;‘il is designed so that div(w(p )+ w;‘zl) =0, and

: q+1
hence the perturbation
© ._ . ® (©) @)
Wat1 = Wagy + Woig + Wely

is divergence-free.
The intermittent jets will be defined to have support confined to ~ (£14441) cyl-

4 ()
[J_/\q+1 q+1

inders of diameter ~ ﬁ and length ~ . In particular, the support of w
q

has measure ~ {3 . Using the heuristic that lwi,|l,2 should be roughly || R,

q+1 Ll
by the L? de-correlation result in Lemma 4.5 below, one would expect an L? estimate
-1 -1
1wl ~ 8Y2 2P e 72, (2.22)

Indeed, we will prove estimate (2.22) for p = 2 and prove a slightly weaker estimate

for 1 < p < 2 (see Proposition 4.4). Utilizing (2.22), one may heuristically estimate the

o
contribution of (—A)"‘w;ﬁ_) , to the new Reynolds stress Ry 1:

— 1/2 ,2/p—1,1/p—1/2 —
VI A @D o~ 1w llwaa-rs ~ 87637~ ey /P12 02251,

with p > 1 arbitrarily close to 1. Here we see the necessity of the 3-dimensionality of the
intermittent jets.
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In order to ensure that an identity of the form (2.21) holds, the cylinder supports of
the intermittent jets will be shifting at a speed €1 A441 1. Heuristically, one would then

expect that in order to ensure that the contribution of 9, w;{? , o Icéq_H is small, one would
need to impose an upper bound on the choice of ©. One then needs to choose p carefully
in order to balance different contributions to the Reynolds stress error. Explicitly, we will
define the parameters u, £, and £ by

)L;‘f‘Hl@” 201 20013
K=—g Coi=2,,00 0 =R (2.23)

With these choices, we have
O <0 < A
since o < 5/4. For technical reasons, we will require that A;41£1 € N. This may be

achieved by assuming that
25—20«

a”2% e N, (2.24)

where we recall that we have previously assumed that b € N.

2.4. Proof of Theorem 1.5

Let u™ and u® be two zero-mean solutions of the Navier—Stokes equations (with differ-
ent, zero-mean initial data), as in the statement of the theorem. Also, let b, B, €g, and ag
be as in Proposition 2.1. Let n: [0, T] — [0, 1] be a smooth cutoff function such that n = 1
on [0,2T/5]and n = 0on [3T/5, T].

Define

vo(x, 1) = n(uV (x, 1) + (1 = n(©))u®(x,1).
0 =0 RV —u®) —n(1 —@® —u®) & @V -u®). @225

where a Q%) b denotes the traceless part of the tensor a ® b, and R is a standard inverse
divergence operator acting on vector fields v which have zero mean on T3 as

(RV)FE = @A™ 0" + 8 AT 0F) — L(Skg + 00 AT div AT Y (2.26)

for k,£ € {1,2,3}. The above inverse divergence operator has the property that Rv(x) is a
symmetric trace-free matrix for each x € T3, and &R is a right inverse of the div operator,
i.e. div(Rv) = v. When v does not obey fT3 v dx = 0, we abuse notation and denote
Rv 1= R(v — [p3 vdx). Note that VR is a Calder6n-Zygmund operator, and R obeys
the same elliptic regularity estimates as |V|~!.

Observe that the pair (v, 130) obeys the Navier—Stokes—Reynolds system (2.1) for a
suitable zero-mean pressure scalar po which may be computed by solving a Poisson equa-
tion. Moreover, let ag, 8 and b be as in Proposition 2.1. Then choosing a > ay sufficiently
large, the pair (v, I%O) satisfies (2.4)—(2.5). From the definition (2.25), it follows that 130
is supported on the interval [27/5, 3T /5]. Since by definition € = [0, T/3] U [2T/3,T]
and tp = T/15, we obtain property (2.11).
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For ¢ > 1 we inductively apply Proposition 2.1. The bounds (2.5b) and (2.15) and
interpolation yield

1-8/3 /3
Ivg+1 = vall ;=" P Uvgsill s + gl ga)?”

¢

o0
> lvgrt —vgll e <

q=0 0

<
Il

—BL 4B/
AT <

M2

<
0

Q
I

for0 < B’ < %, where the implicit constant is universal (independent of a). Hence the
limit

. /
v:i= lim v4 € H?
q—>o0

exists. Since ||134||L1 — 0 as ¢ — oo, and since v, — v also in L& L>TA" for some
B >0, it is straightforward to show that v is a weak solution of the Navier—Stokes
equation. Moreover, as a consequence of properties (i) and (v) from Section 2.1 and the
definition of vy we have

v=u® on[0,7/3] and v=u® on[27/3,T].

The argument leading to (2.14) implies that the singular set of times of v has box-
counting dimension (and hence Hausdorff dimension) less than e¢r/64. Finally, the
claimed C,Ole AHBY regularity on v, for some B” > 0, follows from the maximal reg-
ularity of the heat equation (fractional heat equation if o > 1), once we note that
1P (v & v)|p14s7 S ||v||12v-16’ if B” is chosen suitably small. The theorem then holds

with B = min{B”,p’,eg/64} > 0.

3. Gluing step

3.1. Local in time estimates

It is well-known that Navier—Stokes equations are locally (in time) well-posed in H 3,
which is a scaling subcritical space. Moreover, away from the initial time, parabolic reg-
ularization takes place. We summarize these facts in the form that is suitable for the
applications in this paper.

Proposition 3.1. Let vo = v|;=;, € H3(T3) have zero mean on T3, and consider the
Cauchy problem for (1.3) with this initial condition. There exists a universal constant
¢ € (0, 1] such that if t; > tg is such that

0<tny (3.1)

—lo= T,
lvollgs
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then there exists a unique strong solution to (1.3) on [to, t1), and it obeys the estimates

1
sup o)1 +2 [ 100)1Ey dr < ool (3.20)

t€fto,n] to
sup  [[v()]l g3 < 2|vollg3- (3.2b)

tefto,t1]
Moreover, assuming that
c

0<t;—tp < . (3.3)

lvoll 3 (1 + [[voll2) 3=

we have

N
sup |t — 1o 22 TMYOM DN v (@)l 3 < llvoll g (3.4)
te(to,t1]

forany N > 0and M € {0, 1}. The implicit constant may depend on o, N, M .

Proof. The energy inequality gives a global in time control on ||v(¢)||;2:

1d
5 ol < =l

From the Gagliardo—Nirenberg—Sobolev and the Poincaré inequalities, and using V - v
= 0 we obtain

5 EII Vs + 101 s1a S 10151V 0llzee + [0l gallAv]iZa < 0l
which gives the bound (3.2b) for a time interval [z, 1] with #; that obeys (3.1). The bound
(3.2b) is subcritical, in the sense that an L% H3 a priori estimate is sufficient to establish
the uniqueness of the solution. The higher regularity claimed in (3.4) follows from the
mild form of the solution

t

V(1) = e TRy / e~ IEAY P div(v(s) ® v(s)) ds, (3.5)
fo

and properties of the fractional heat equation which may be derived from Plancherel.

Let us first focus on the case M = 0. For « = 1, estimate (3.4) is well-known, and
follows from the instantaneous gain of analyticity of the solution [15], or a small modific-
ation of the argument below. For o > 1 we briefly sketch the argument. Using Gallilean
invariance, let us only consider the case tp = 0. From the inequality

luvligs < llullgsllvilzee + lullzevlims

1/2 1/2 1/2 1/2
< Mull g ol 2 10033 + Tl )2 el 3 ol s (3.6)
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the formulation (3.5) and the boundedness of the Leray projector Py on L2, we obtain

1 1 —H(—A)X
12| Dv(1) | g3 < 12| De™ T |12, 2 |vo | g3

o / ID2e= =D ()2 v (s)I1L5 ds

3/2 1/2
< Ioollgs + 125 ool /2 uo 4 / e

L 1/2|

1/2
2 ||uo| / )

< Ivollgra (1 + 117 |vo||

< Ivollga(1 + 175 ||vo|| ||vo|I 1),

from which (3.4) with N = 1 and M = 0 follows in view of (3.3). In order to treat the
case N > 2 and M = 0, we first note that for | <n < N — 1 by induction on N we have

n n

. . : —i n1/2 —j..n1/2

ID" (0 @ )z £ > _ID7v® D" Tvllga £ ID7vllga | D"l 31 D" v]})5
j=0 j=0

-3
i —7 1/2 1/2 1/2 1/3 1/6
§:|va||Hs||D" To 21D 3013 + 1 D" 2] sl D22 vl vl
0

1/2 1/6 1/3 1/2 1/2
D" Ml s | Dl IS vl 5 + 1D vl s vl 3 vl

< llvollZ5t =33 -+ |lugl| 4%~ %+ 2w ug |1

5/3,— L 1/3 3/2 1/2

+ loll3/3e 3+ 3@ |lug 1152 + llwol3/36 =3 w115
_n 1/2 1/2
< voll 326735 (luo | /3037 + lvo VD).

Using the above estimate with n = N — 1 we obtain
N N —t(—A)¥
12 [ DY)l gs < 12 [ DN e D 1o, pa]lvoll

t
+ 1 / | D28 o, 2 DV (s) ® v($) a2
t/2

N t/2
P / IDNHL DD (s) @ v(s) s ds
0

1/2 1/2
ua ool Y255 + [lvo)l

< lvollzza + 1% oo )22 // L2 g
t/2

([—S)ots 20(

t/2 d

N 1/2 N
T 135 o ||UO||// P
0 —s) 20

1/2 1/2)

5
< lvoll s (1 + 153 Jlvol g + 17727 g | }/3 o

from which (3.4) follows in view of (3.3).
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To obtain the desired bounds for M = 1, let us consider the case N = 0 first. Using the
equation, the already established bounds for M = 0 and N > 0, the Gagliardo—Nirenberg—
Sobolev inequalities, and the fact that the Leray projector is bounded on L2, we find that

1/2 1/2
3@ g3 < =D vz + VOO s llv@l 3 1o @) )5
5/6 1/6
N O IO EAIGIIE
. 3/2 1/2 11/6 1/6
< llvollggs + 11728 o123 1ol + tllvoll 14 C vl 1,

and the desired bound follows from the assumption (3.3). The remaining cases N > 1 are
treated in a similar manner, using the Leibniz rule. We omit the details. n

3.2. Stability estimates

In this section we estimate the difference between an approximate solution v, and an
exact solution of the Navier—Stokes equation. Let R be the inverse divergence operator
defined in (2.26). The main result is:

Proposition 3.2. Fix o € [1,5/4) and an integrability index py € (1,5/4). Assuming the
parameter & is sufficiently large, depending on py, the following holds.

For q > 0, assume that (vq, 134) is a CYH3 smooth solution of (2.1) which obeys the
estimates (2.4)—(2.5). Let ty € [0, T'] and define

Vg .= Uq|t=t0~
Assume that t1 > tg is such that [tg, t;] C [0, T] and
0<t—to <85'A"% 3.7)

Then, in view of (2.5b) and Proposition 3.1, there exists a unique CYH32 smooth zero-
mean solution v of the Cauchy problem for (1.3) on [to, t1], with initial datum vy.
Moreover, there exists a constant C = C(pg, @) > 0 such that for any p € [po, 2] and
all't € (1o, 1],

19(t) = vg )l < Clt 1ol [1V1Rg | pooy sy (3.82)
|Ro(1) = Rvg()lles = Clt = to] | Rg oo o,nier. (3.8b)
In particular, letting
Po =1+ €(1.5/4) (3.9)
from the bounds (3.8a)—(3.8b) we obtain the following stability estimate:

Corollary 3.3. Fixa € [1,5/4). Assuming that a > 1 is sufficiently large, depending only
on eg, if t; € (to, T] obeys (3.7), then

v = vg ll oo oy 1:22) < 101 — fol A3 (3.10a)
IR — vg)ll oo o :rty < 111 — tolAg R/ 48q 41, (3.10b)
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Proof of Corollary 3.3. We show that estimates (3.8) imply (3.10). Recall that the
stress Ry has zero mean. For p € (1,2] and § € [0, 1] by interpolation we have the inequal-

g 1-4§/3 §/3 1 1-1 .
ities | VIS £, S 1A1 21155, and L £l S ULF 1P 11f | se’?. Moreover, since

H?* C L% and H3® C W3P, we obtain the Gagliardo—Nirenberg-type inequality
VIR, < IR BT with y= L2 3.11
VIR || Lo < IRGIT 1RGN 3" wi V=T, (3.11)

The implicit constant depends only on p and §.
In order to prove (3.10a), we use (3.8a) and apply estimate (3.11) with § = 1 and
p = 2. We deduce from (2.4) that

o 1.1
19182 % ("800 25T

from which estimate (3.10a) follows, since §34+1 < )tf , and B is sufficiently small. The
leftover power of A, may be used to absorb any constants.

Similarly, in order to prove (3.10b), we use (3.8b), the bound (3.11) with § = 0 and
P = po, and the embedding L?° C L', to obtain

1Rgller < IRgliro < (g 8ge) /7o) o= Dro
< (A;eRSq_H)1—(po—1)/P0)LZ(P0—1)/p0
_ A;3€R/48q+1 (A;ER/4(8q—_il_l/\;R+7)(P0—1)/170)
< /\;38R/45q+1A;ER/4+(170—1)(8R+7+2/3b)
< /’\;38R/48q+IA‘;‘E'R/4+8(PO_1)_
In the last inequality above we have used the definitions of §,41 and A4, and the fact that

po > 1. Estimate (3.10b) follows from the assumption (3.9) on pg, upon using the leftover
power of A, to absorb the implicit constants. ]

Proof of Proposition 3.2. For simplicity, by temporal translation invariance it is sufficient
to consider the case 1o = 0.

In order to prove (3.8a) weletu = v, —v andg = p; — p. Thendivu =0, u|;—o =0,
and u obeys the equation

du + (—A)u = PdivR, — P divo ® u + u ® vy). (3.12)

where P is the Leray projector. Then, since u(0) = 0, the solution of (3.12) may be written
in integral form as

t o
u(t) = / eI P div(R, —v @ u —u ® vy)(s) ds. (3.13)
0
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Next, we use the fact that for p € [1,2], ¢ > 0, and any periodic function ¢ of zero
mean we have

e " C2G e < plLr, (3.14a)
AV 1

Ve T 1p < F||¢||Lp, (3.14b)
2a

where the implicit constant only depends on «. These estimates follow from L! bounds
for the Green’s function of the fractional heat equation. We will also frequently use the
Gagliardo—Nirenberg estimates

IVl < Il 1o 10s, (3.15a)
lellzoe < ol lely5, (3.15b)

which hold for zero-mean periodic functions ¢.
‘We return to (3.13) and obtain

t
lu@)|Lr < / e~ P div(R, — v @ u — u & vy)(s)||Lr ds
0

t ° 1
s/o VIR0l + WS+ u 8w Olr ds

t ° 1
< C1/ IIVIRG ()| r + ——— (0 ILoe + g ()L u(s)llLr ds.  (3.16)
0 (t —s)2a

for a suitable constant C; > 0 which only depends on py, since p € [po,2] and o € [1,5/4].
Next, we claim that if z; > 0 is chosen sufficiently small, depending on ||v| e and
[lvg llLee, then

lu(@)lLr < 2C11|||VIRg(s) ||Loo([0,t1];L,,) forall t € (0,14]. (3.17)

This estimate follows from Gronwall’s inequality and the following bootstrap argument.
Assuming that the bound (3.17) holds, we claim that the same estimate holds with the
constant 2C replaced by the smaller constant 3Cy /2. Indeed, inserting (3.17) in (3.16)
we obtain

ult 1 1 ' sds
|<|) ®lz> = 5 + ;(||U||L°° + ||Uq||L°°)/ —
2C1t”|V|R‘I(S)HL°°([o,t1];LP) 0 (t—s)2a
1 20 ;_1
< — ' 2a oo o). 3.18
=5t 51 (lvllzes + llvglizee).  (3.18)

Thus if we ensure that

l_*_L*l
4t 2 (lvlleee + llvglleee) < 1/4, (3.19)
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then (3.18) shows that (3.17) holds with constant 3Cy /2, as desired. However, by (3.15b)
we know that

1/2 1/2 1/2 1/2
lvllzoe + llvglizes < CrllvlS v l5E + lvgl} 2 lvgll 3
for some universal constant C; > 0, and further, using (2.5) and (3.2), we obtain
1/2 1/2 1/2 1/4
lvllzoe + llugllzee < Cr(llvoll )2 Cllvoll )2 + llvg 135 llvgll1/3) < 4C185/*A2.

To conclude, we use (3.7), which shows that the left side of (3.19) is bounded from above
by
48y 225 4155402 = 16015, 4 (8ot~ % < 16C18,1* < 1/4,

by letting a, and hence Jy, be sufficiently large. Here we have used & > 1 and §p, A4 > 1.
Thus, we have shown that (3.17) holds.
In order to prove (3.8b) we denote

z = A" curlu.

Since divu = 0 we have curl z = —u, and the Calderén—Zygmund inequality yields
|Ru@)|lLr < ||z(t)||L». Thus our goal is to obtain L? estimates for z(¢). We apply
A~ curl to the equation obeyed by u (it is convenient to rewrite (3.12) without Leray
projectors, and add a pressure gradient term, which is then annihilated by the curl oper-
ator) and obtain

0z +v-Vz 4 (—A)%z
= A~ curl div ng + [A7 eurl, v - V]curl z + A7 curl(curl z - V)
= A 'curldiv Ry + A" curldiv((z x V)v) + AV div((z - V)v)
+ A7 curl div(((z x V)vg)T). (3.20)
For the last term on the right side of (3.20) we have used the identity
(curl z - V)v, = div(((z x V)vy)T),
which written for the i component is
((curl z - V)vq)i = ejklakzlajvf] = 8k(ejklzlajvfl) - ejk,z’ajakv; = ak(ekl,zla,- v;)
=: 0, ((z X V)vq)ki.

Here we have used the fact that the transposition of two indices in €;z; results in a (—1)
factor. Moreover, we have also spelled out the commutator term on the right side of (3.20)
as

[A™ curl,v- V]curlz = A7 curldiv((z x V)v) + A7V div((z - V)v),
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which written for the i component is

(A curl, v - V]curl )| = €% A719; (v 3 (curl 2)F) + 0™, 2"
= e,,-kek,,,A—la_, (V"3 0;2") + V" Oz’
= —€ijk€kin AT 0j0m (910™2") + €ijkekin AT 00, (V" Inz") + V™ 2’
= A—le,-,-ka,»(ekn,am(a,v’"z")) - e,-,-ke,,lkA—la,»a,(v’"amz") + 0"z
= A—leijka,-(am(ek,,,z”a,v'")) + AT19;0, (V" 0,,2")
= A€k 0 (Om(ekniz"010™)) + AT10; 0 (2" 040™).
Here we have also used the fact that €5z = 0 if two of the indices i, j, or k repeat, and
that €;jx €21k = 8in8j1 — 8i18j,, where the §’s refer to the Kronecker symbol.

Using (3.20), upon placing the v - Vz = div(v ® z) term on the right side, and using
z(tp) = 0, the solution to (3.20) may be written in integral form as

t o
z(t):/o eI (A curldiv Ry + A7 curldiv(((z x V)vg) T ) —div(v ®2)) (s) ds

t
+/ e U= (A_l curl div((zx V)v)+ A~V div((z-V)v))(s)ds.  (3.21)
0

From (3.14) and the boundedness of Calder6n—Zygmund operators on L7, similarly to
(3.16) we conclude that

t ° 1
lz(Dlr < /O (“Rq(s)”L” + (2 x V)vg)(s) e + ﬁll(v ® 2)(s)|Lr

I —5)2

+ (G x V)v)$)lLr + (- V)U)(S)Ilm) ds

° t
< Cit||Rgllzeeo,13;27) + Cr(l[VvgllLe + IIVvllLoo)/ Iz(s)llL» ds
0

Tlz(s)llze

+ Ci[vllze 1
0 (t—s5)2«

ds (3.22)

where C; depends only on pg and «, since p € [po, @]. Next we claim that if #; is chosen
sufficiently small, then

lz(@)llLr <2Cit||RgllLoo(o,,:07) forallt € (0,4]. (3.23)

The argument is similar to the one for u(¢), so we only sketch the details. Assume that
(3.23) holds. Then from (3.22) we obtain

lz(®lLr

2C1t|RgllLoe(0,61:LP)

L
< > +1(IVvgllee + [ VollLee) + 20172 [z, (3.24)

N =
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Therefore, if we ensure that 71 is small enough that

(3.25)

1
1 (IVogllLes + Vol + 1 3 g < 3

then (3.24) implies

lz(®lLr

- <1
2C1t|RgllLoe(0,61:LP)

+

[0S

1
-2

which shows that the bootstrap assumption was justified, and thus (3.23) holds on [0, T'].
Denote by C; the universal constant in the Gagliardo—Nirenberg inequalities (3.15). By
also appealing to (2.5), (3.2), and our assumption (3.7) for #1, we find that the left side of
(3.25) is bounded from above by

1/6 5/6 1/6 5/6 + oL 1/2 1/2
Cit(lvg ) 1vg 1575 + Il vl 6+ Cutp T 122l

<4Ci1 81/12k10/3+2c ti+751/412
<4C, 8_“/12 _2/3 + 20185 1/4(80A4) % <60, 5y V4 <15

once we ensure that @, and hence 8y, is sufficiently large. This concludes the proof of
(3.23). ]

3.3. Proof of Proposition 2.2
We first define a C* smooth partition of unity {n; };Z ‘”1 such that 0 <7n; <1and

ng+1
Z ni(t) =1 foreveryt e [T/3,2T/3]. (3.26)
i=0

Denoting
ti = Vg+1i,

this may be achieved by letting 7; also have the following properties:
(i) n; has supportin [t;, t; 11 + T4+1],

(ii) n; is identically 1 on [t; + T441. ti4+1],

(iii) n; satisfies the estimate

10 nillLee S 7 (3.27)

where the implicit constant is independent of 7,41, U441, and 7.

As a consequence of the above properties, we see that 7;7; = 0 whenever |i — j| > 1,
and

supp(nini—1) C [ti,ti + Tg+1].
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Having constructed the partition of unity {n; ?igl, we next construct exact solutions v;

of the Navier—Stokes equation for suitably defined data.

For every 1 <i < ng41 we define v;(x, ) to be the unique smooth solution of the
Cauchy problem for the Navier—Stokes equation (1.3) with initial condition equal to v,
att;—_1:

d,v; +div(v; ® v;) + Vpi + (—A)%v; =0, (3.28a)
divv; =0, (3.28b)
Vi (ti—1) = vg(ti-1). (3.28¢)

In view of (2.5), and Proposition 3.1, this solution v; is uniquely defined and obeys the
estimates

lvi ()2 < llvg(ti-1)ll 2 < 285> — 812, (3.292)
i ()| 3 < 2llvg (tim1) | g3 < 24, (3.29b)
N
|t =11 |2 MNP DV v (1) 3, S Ag (3.29¢)

forall N > 0, M € {0, 1} and all

Cc

t>t;_; suchthat 7r—t,_; < o < - (3.30)
42387 T 24(1 + 28/ a1
where ¢ € (0, 1) is the universal constant from (3.3), and « > 1. Note that the definitions
(2.3), (2.7), and the fact that § < 1, imply that
1/2 1/2
S5 1 S 1 AP
)L; /\280 )&3 - 1380 /\2 - 1380

Vi1 = (3.31)

Therefore, assuming that 69 = Afﬂ Ao 28 > Ag is sufficiently large, depending on the uni-
versal constant ¢, by (3.31) we find that

c
30441 = w1asl/2’
8)&q80

which is consistent with (3.30). Therefore for all 1 <i < n,4; the exact solutions v; (x, 1)
are smooth and well-defined for all € (¢;_1, t;+2] D supp(n;). Moreover, since

t € supp(n;) = Vg1 =1 —tim1 < 30g41,

from (3.29¢) we obtain the bound

_N _
sup )||8§”DNvi(t)||H3 <ado, M forl <i <nga, (3.32)
tesupp(n;

where the implicit constant depends only on N > 0 and M € {0, 1}.
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o

At this stage we glue the solutions v; together in order to construct (v, Rq). We define
the divergence-free (note that the cutoffs 7; are only functions of time) velocity and the
interpolated pressure as

ng+1
g, 1) = > ni()vi(x,1) forallt € [T/3/.2T/3], (3.33)
i=1
ng+1
PV (1) = Z ni(t)pi(x,t) forallr € [T/3/,2T/3],
i=1

where p; is the pressure associated to the exact solution v;. Also we let
Ug(x,t) =vg(x,t) =vo(x,t) forallt € [0,T/3]U[2T/3,T]. (3.34)
P, 1) = pg(x.1) = po(x.t) forallt €[0,T/3]U[2T/3,T].

Here we have used [0, T/3] U [2T/3, T] = §©, and the inductive assumption (2.10).

Having defined v,, we next prove that (2.18) holds. For t € § ©) this holds by con-
struction. In view of (3.26), it suffices to show that if for some i € {1,...,n,441} we have
t € supp(n;) N €D, then v; (t) = vq(t). For this purpose recall by (2.5b) and (2.11) that
Vg is a strong solution of the Navier—Stokes equation for all ¢ such that dist(z, @) < 4.
Moreover, v; solves the Cauchy problem (3.28), so by the uniqueness of solutions in
C to H 3 of the Navier—Stokes equation, we only need to ensure that dist(¢;_1, ‘g(‘])) < 1.
This follows from the fact thatr € @ and0 <7 —1;,_1 < 304+1 < 14. The last inequality
trivially holds by (2.7) and (2.8) for ¢ > 1, and by taking a sufficiently large for ¢ = 0.
Thus, we have proven that (2.18) holds.

At this stage we show that the set 8@+ defined in (2.17), and hence implicitly
gt =10, 7]\ BYtD, obey properties (ii)—(iv) with ¢ replaced by g + 1. In order to
prove (ii), assume that 1 € @ N (1; — 27441, ti + 31441) forsome i € {1,...,ng41}.
Due to (2.11) we know that Icéq(t’) = 0forall |t —t'| < 14. Since 1y > 20441 + 37441,
which holds by (2.7) and (2.8) for ¢ > 1, and by taking a sufficiently large for ¢ = 0,
we find that 134 = 0 on [ti_2, ti+1 + T4+1]- Hence, by the definition (2.16) we have
i,i —1¢%¢€. Thus, t ¢ BYtD and so t € §@*D as desired. Property (iii) holds by
definition (2.17), since 1441 is much smaller than ¢;4 ;. In order to prove property (iv),
we need to estimate the cardinality of the set € defined in (2.16). By definition, if i € €,
there exists ¢ € [ti_1, ;41 + Tg4+1] such that 134 (t) # 0, and thus by property (2.11) we
have dist(¢, §?) > 7,. Therefore, 8 > (t — ,,t + 74) D [t;, ti+1]. By the pigeonhole
principle we obtain

|B@|
Vg1

card(€) < .
Estimate (2.9) at level g + 1 then follows from (2.17).

At this stage we remark that property (v) will also hold at the end of the convex
integration stage. For this purpose, we remark that in the convex integration stage we do
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not add a perturbation to the solutions on the good set @t 5 §@ je. Vg+1(2) =vg4(t)
fort € §@+t1 5 6@ Assuming for the moment this feature of our construction, property
(2.18) established above and the inductive (2.10) shows that (2.10) holds at level g + 1.

We now derive the formula for supp(R,). Note that on [0, 7/3] D [to, 2] and on
[27/3,T] D [tn,41~15 tn,,,] the function v, = v, is a smooth solution of the Navier—
Stokes equation, and hence automatically

o

Rq =0 on [IOaIZ]U[tanrl—l’tanr]L

Fori > 2, on the interval [¢;,;+1] we have

g = (1= n)vict +mivi, pSY = (I —ni)piet + 0 pi.

and similarly to [4, Section 4.2], we obtain

3;0q + div(ig ® Ty) + (—A)*Dg + ViV
= (1 = 1i)drvi—1 + n:9¢v; + 9, (vi — vi—1)
+ (1= n;)*div(vi—y ® vi—1) + 1] div(v; ® v;)
+ 7 (1 —n;) div(vi—1 ® vi +v; ® vi—1))
+ (1 =) (=A)*vi1 + 1: (=8)%v; + (1 =)V pi—1 + 0i V pi
= 0;mi (vi — vi—1) — ni(1 = 1) div((v; —vi—1) ® (Vi — vi-1)). (3.35)
We observe that v; — v;_; has zero mean because the exact solutions of the Navier—
Stokes equations v;, v;—; preserve their average in time, and v, has zero mean by

assumption. Hence we can apply the inverse divergence operator R to v; — v;—; and
fori € {2,...,n441 — 1} define the symmetric traceless 2-tensor

o

Ry = 3:mi R(vi — vie1) — 0i (1 — 1) (v — vi—1) ® (v; —vj—y) forallt € [t ti41],
(3.36)

where we denote by a ® b the traceless part of the tensor @ ® b. We also define the scalar
pressure

Pg = PP —mi(l - ni)(lvi — v |? —/3 lv; — vi_1]? dx) forall t € [t;, ti+1].
T

It follows from (3.35) that the pair (v, Rq) defined by (3.33) and (3.36) solves the Navier—
Stokes—Reynolds system (2.1) on [0, T'] with associated pressure py.

Next, we prove that (2.20a) holds. Note that by construction, n; = 1 on [t; +Tg41,i+1]
foralli €{0,...,n441}, and thus on these sets we have d;7; = n; (1 —n;) = 0. Therefore,

by (3.36) we have Rq (t) =0 whenever t € [t; + T441,%+1] for some i. Thus it suffices to
consider sets of times of the form (¢;,#; + t441).Ifi € € ori — 1 € €, then there is nothing
to prove since by definition (2.17), dist((¢;, t; 4+ t4+1), §¥*D) > 27,,. Hence, consider
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the case i,i — 1 ¢ €. Thus by the definition of €, I3q(t) =0 forall t € [ti—2,tr41 +
Tq+1]. Since v;—1(ti—2) = vg(ti—2) and v;(t;—1) = v4(¢;—1), and since 13q vanishes on
[ti—2, tr4+1 + T4+1], it follows by the bounds (3.29b) and (2.5b) and the uniqueness of
strong solutions to the Navier—Stokes equations that v;_; = v; = vg on (4, t; + Tg41)-

Thus by (3.36) we have Ry41 (1) = 0 for (i, 4; + T441)-
Since in the convex integration stage we do not change the stress on the set

{¢: dist(t, §4tD) < 7,44}, it follows from (2.20a) that Rq+1(l) = Rq7 (t) = 0 for all ¢
such that dist(z, ﬁ(q“)) < 74+41. Thus (2.11), and hence property (vi), will automatically
hold at the end of the convex integration step.

In order to conclude the proof of Proposition 2.2, it remains to prove estimates (2.19)

for v4 and (2.20b)—~(2.20c) for Iéq.
By (3.26), (3.29a), (3.29b), and the definition of v, in (3.33), it follows that (2.19a)
and (2.19b) hold for all t € [T/3,2T/3]. By (3.26), for all t € [T/3,2T /3] we have

ng+1

Tg(x.1) = vg(x.0) = Y ni(0)(vi (x.1) — vg(x.1)). (3.37)

i=0

and at each time ¢ at most two terms in the sum are non-zero. Since v; solves (3.28),
and since ¢ € supp(#;) implies that (3.30) holds, we may appeal to Corollary 3.3, with ¢y
replaced by #;_;, and #; replaced by an arbitrary ¢ € supp(n; ). Here we note that condition
(3.7) is satisfied on supp(7;) due to (3.30). By (3.10a), we obtain

sup v (1) — vg ()2 < 491125,
t€supp(n;)

Since at most two terms appear in (3.37), we may use the remaining power of /\;1 to
absorb any constants, and (2.19c¢) follows on [T/3,2T/3]. Moreover, estimates (2.19a)—
(2.19¢) hold trivially on [0, T'/3] U [2T'/3, T] by the inductive assumptions and definition
(3.34). Thus, we have proven (2.19a)—(2.19c) on [0, T7.

Lastly, (2.19d) follows from the definition (3.33), the Leibniz rule, estimate (3.27) for
the time derivatives landing on the cutoff functions 7;, and estimate (3.32) for the space
and time derivatives landing on the v;. Here we have used 7, > ﬁq_jl. Thus we have
established all the desired bounds for v,.

In order to prove the claimed L' estimate for f(q), i.e. (2.20b), we appeal to the
definition (3.36). For the first term, we use (3.27) and again appeal to Corollary 3.3, this
time to estimate (3.10b), to obtain

10:mi R(vi —vi—1)llp1
= ||3z7h' ”L‘X’(”‘R(vi - Uq)llLoo(supp(ni);Ll) + ”'ﬂ(vifl - vq)”L‘X’(supp(ni);Ll))
< Tq_llﬁq+1l;38’e/45q+1 < %T;ill?qu;SR/quH, (3.38)
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upon using the remaining power of A, ¢R/* 15 absorb any constants. For the second term
in (3.36), we use (3.10a) and obtain
i (1= i) (vi = vie1) @ (Vi = vieD)llL1 =< 10i = Vi1 17 o upp(ns 1 mi):L2)
= 4||Ui - vq”i‘x’(supp(m);Lz) < (19,14_112)2 = %754_41.11911+1/X;8R/28q+1- (3.39)
Here we have used 7541 < U441, the definition (2.7), and g < 1, to conclude
Pgr1Tg+1 < 15145q+1 < /\;l)t;w*m/z%ﬂ,

and using the leftover term )\;1 to absorb any implicit constants in (3.39). Combined,
(3.38) and (3.39) prove (2.20b).

It remains to prove (2.20c). We return to (3.36). For the first term we use (3.32) and
(3.27) to obtain

10 DN (31 R (vi — vi1)) |l 3
M

M-M' M’ N M’ N
<Y MM [ Leo (102 DN v [l oo upptnpy: 3 102 DN i1 | oo (suppar 1 )s %))
M’'=0

I MAM'—114.q—25—M' M—144q— %%
< - - o < - - o
~qu+1 AgUqt ST AqUgit s
M'=0

since 7441 < Uy+1. This bound is consistent with (2.20c). For the second term in (3.36),
since H?3 is an algebra we similarly deduce from (3.32) and (3.27) that

10M DN (5: (1 — i) (vi — viz1) & (Vi — viz1)) || 3

M
—M+M'jqM’ /N
< Z Tq+1+ 107" D™ ((vi —vi—1) ® (v; — Ui—l))||L°°(supp(x,~_lx,:);H3)
M’'=0

< M+M' g—M' 18 4~ 36 M—154 4" 3%
< - - o < - - o
S D2 T MO A S T TIAg0
M'=0

where we have additionally used 7,41 < U441 < A;“, in view of (3.31).
To conclude the proof of Proposition 2.2, we note that the second inequality in (2.19d)
and (2.20c), which bounds the cost of a spatial derivative by 7, ;. instead of A

q+1 ’
follows from the fact that @ € [1,5/4) and 1 < ﬂqjll < tq_jl.

4. Convex integration step: the perturbation

4.1. Intermittent jets

Let us recall the following result from [9]:
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Lemma 4.1. For a = 1,2, there exist subsets Ay C S? N Q3 and smooth functions Ve !
N — R such that

R= > R(RE®E)
§€Ay

for every symmetric matrix R satisfying |[R —1d| < 1/2.

Foreach & € A, let Ag € S N Q3 be a vector orthogonal to £. Then for each § € Ag,
{&, Ag, &€ x Ag) C S? N Q3 is an orthonormal basis for R3. Furthermore, since the index
sets {Aq }a=1,2 are finite, there exists a universal natural number N such that

{NAE, NpAg, NaE x Ag) C NpASP NN 4.1)

forevery £ € Aq.
Let ® : R? — R? be a smooth function with support in a ball of radius 1. Moreover,
suppose @ is normalized so that if ¢ = —A® then

1
m/qbz(x,y)arx dy = 1. 4.2)

We remark that by definition ¢ has mean zero. Define ¥ : R — R to be a smooth, mean
zero function with support in the ball of radius 1 satisfying

1
—/wz(z) dz = 1. (4.3)
2
Let ¢¢, , P¢, and Y be the rescalings
(x/€1.y/L1) O(x/Cr,y/C1) v(z/¢)
be, (x,y) = w, Dy, (x,y) = #, Ve, (2) = LA
I L Eﬁ/z
so that ¢y, = —ZiAd)gL, where we will assume £, , ) > 0 to be such that

<KL

By an abuse of notation, let us periodize ®,, and ¥, so that the functions are treated as

functions defined on T2 and T respectively. For a large real number A such that Al € N,
we define Ve g, ¢4, ° T3 xR — R by

Vier = Vee (1)

1
= AZNIZX WZH (NAKJ_A(XS‘F,U«I))QZL (NAEJ_A(X_O[E)AS,NAEJ_A(X_(YE)(sXAE))E,
where ag € R? are shifts that ensure that the functions {V ¢ 1.£y.4,u & have mutually

disjoint supports. In order for such shifts ag to exist, we require £ to be sufficiently
small, depending on the finite sets A,.
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Our intermittent jet is then defined to be

Wiey = Wee 0y a,n(x,1)
= Ve (NALLA(x - § + 1)), (NaALLA(X — ) - Ag, NaloA(x —ag) - (€ X Ag))E.
(4.4)

From the definition, using (4.1) and £; A € N, we find that W(¢) has zero mean, and Wg,)
is (T /€1 7)3-periodic. Moreover, by our choice of g, the W(g) have mutually disjoint
supports, i.e.

Wi ® Wiy =0 whenever € # £ € U Ag. 4.5)
aef{l1,2}

Note that the intermittent jets W) are not divergence-free, but assuming £, < ¢ they
can be corrected by a small term such that the sum with the corrector is divergence-free.
To see this, let us adopt the shorthand notation

Ve = Veuy bpap = Vo (NALLA(x - § + pt)),

ey 1= Peg g = Poy (NALLA(X — ag) - Ag, NaLiA(x — ) - (E X Ag))

B = 0, A =0, (NaLiA(x —ag) - Ag, NaLlid(x — ag) - (§ x Ag)).
and compute

curl curl Vigy = Wg)

1 1
+ )LZNX curl(Pg) curl(Yg)§)) + WVW(S) x curl(®E§). (4.6)

=0 (c)
Wi

Thus ©

div(We) + W) = 0.
Moreover, as long as £; <K €||, W(g) is small compared to W(g). Observe that as a con-
sequence of the normalizations (4.2) and (4.3) we have

]frs Wi (x) @ Wigy(x)dx =§®E.

We also note that by definition W(g) is mean zero. As a consequence, using Lemma 4.1
we have

> 7R ][ W) (x) ® W (x)dx = R 4.7)
ey T3

for every symmetric matrix R satisfying |[R —1Id| < 1/2.
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By scaling and Fubini, we have

_iz (LY (LM
IV vee e < )" ”Z(Zi”) (;”“) SENCRY)

V¥l + 1YY o llLr < /772N, (4.9)

1 1p— o\ M
IVY 0¥ Wegllr + A2 IVN0M Vg lLr < €77 lfﬁ/p I/ZAN(?—”M) . (4.10)

where again we have assumed Zr <M< A
Finally, we note the essential identity

. 1
div(Wey) @ We)) = 2(Wee) - V)€ = ;qﬁé)azwé)& (4.11)
which follows from the fact that by construction W) is a scalar multiple of £,

1
&Y = ﬁazvf@»

and ¢(g) is time-independent.

4.2. The perturbation

In this section we will construct the perturbation w4 1.

4.2.1. Stress cutoffs. Because the Reynolds stress Rq is not spatially homogeneous, we
introduce stress cutoff functions. We let 0 < ¥p, ¥ < 1 be bump functions adapted to the
intervals [0, 4] and [1/4, 4], such that together they form a partition of unity:

)+ D ) =1 where Fi(y) = F(47'y). (4.12)
i>1
for any y > 0. We then define
_ (] Ry(x.0)
X (X, 1) = Yig1(x.1) = Xi (<_;IT>) (4.13)
Aq 5q+1

for all i > 0. Here and throughout the paper we use the notation (4) = (1 + |A[?)!/2
where | 4| denotes the Euclidean norm of the matrix A. By definition the cutoffs y ;) form
a partition of unity,

Y oxb =1 (4.14)
i>0

and we will show in Lemma 4.2 below that there exists an index im,x = imax(¢) such that
Xy = 0 foralli > inyy, and moreover 4™ < 7- 1
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4.2.2. The definition of the velocity increment. Recall from Lemma 4.1 that the functions
) are well-defined and smooth in the 1/2-neighborhood of the identity matrix. In view
of (4.13), this motivates introducing the parameters p; by

pi i= A RIS, 14712 foralli > 0, (4.15)

which have the property that

o

al
Pi

=

< on the support of ;) foralli > 0.

For i > 0 we define the coefficient function ag ; 441 by

1

R, (x,1)
ag) ‘= dgig+1(x,1) == 9(1)Pl~1/2)(i,q+1(x,l))/(g) (Id— qp ) (4.16)

where 6:[0, T] — [0, 1] is a smooth temporal cutoff function with the following properties:
(i) 0(t) = 1 for all ¢ such that dist(, §9V) > 27,44,

(i) 6(¢) = 0 for all # such that dist(t, §“+V) < 7,44,

(i) [[0llcm < 7 f{ , where the implicit constant depends only on M.

To see that a choice for 6 with property (iii) holding is possible, recall from (2.17) that

the bad set B@*Y consists of a finite disjoint union of intervals of length 5t441. From
(i) and (2.20a), we conclude that
t e supp(ﬁq) implies 60(t) = 1. 4.17)

From (ii) we further see that

t € supp(0) D supp(a()) implies dist(l,;‘j’(‘”l)) > Tg41. (4.18)

We note that as a consequence of (4.7), (4.14), (4.16), and (4.17) we have
DY ag f Wy ® Wiy dx =02 ) pixyld — Ry, (4.19)
i>0 SEA(i) T- i>0

which justifies the definition of the amplitude functions a). Note that @ = 1 on the
support of y(; forany i > 1.

By a slight abuse of notation, let us now fix A, 0, £, ¢, and pu for the shorthand
notation Wg), Vig), D), ) and ¥ introduced in Section 4.1:

W = Weey g V© = Vet g hg000
V@©) = Vel £y Ag s
Qi) = Pee Ay PE = Pely Ay
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where £, £, and p are defined in (2.23). Importantly, we see from (2.24) that
Ag+1€1 € N, which ensures the periodicity of W(g), Vig), ), d¢) and Y. Observe
that as a consequence of our parameter choices we have the useful inequality

—4u

—lellz‘”z_/\ e (4.20)

foralla < 5/4.
The principal part of wy4 is defined as

» .
wy = Z Z ag W), 4.21)

i E€h)

where the sum is over 0 <i < in.x(q). Here we write A ;) = A;moa2. Note that [i — j| > 2
implies y; y; =0, and £ # &' implies W(g) ® W(gy = 0. This implies that the summands in
(4.21) have mutually disjoint supports. In order to fix the fact that w(p )

free, we define an incompressibility corrector by

“.1 is not divergence-

1
c(IC-I)-l = Z Z curl(Va(g) X V(S)) + lz_H V(a(g)l//(g)) X curl(CD(E)E) 4.22)
i SGA(,) q

so that by a formula similar to (4.6),

;’_’31 + wéc_i)rl = Z Z curl curl(a ) Vigy), (4.23)
i SEA(Z)

and thus diV(wt(IIfl + w;ﬁ:l) =0.

In addition to the incompressibility corrector w;cll , we introduce a temporal corrector
gll, which is defined by

1
wedy === 3" D7 PrProagedie Vib)- (4.24)

i & €A
Finally, we define the velocity increment wy 41 by

wer1 = wy +wl) Fwl) (4.25)

which is by construction mean zero and divergence-free. The new velocity field vy is
then defined as
Vg1 = Vg + Wqt1. (4.26)

Observe that as a consequence of (4.18),
t € supp(wg+1) implies dist(r, 84Dy > Tg41- 4.27)

Hence vy41 = v4 On €@+ which we recall was required in Section 3.3 to deduce prop-
erty (v) of Section 2.1 for 4+1 Moreover, property (vi) also follows as a consequence
of (4.27) and (2.20a).
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4.2.3. Estimates of the perturbation. This section closely mirrors [5, Section 4.4], and
thus we omit most of the details where the estimates/proofs are mutatis mutandis those
from [5]. There is an analogy between the mollification parameter £ in [5] and the time-
scale 7441 in this paper, in view of parabolic smoothing.

First, similarly to [5, Lemmas 4.1 and 4.2] we state a useful lemma concerning the
cutoffs y(;) defined in (4.13), summarizing their size and regularity:

Lemma 4.2. For g > 0, there exists i, (q) > 0 such that

X)) =0 foralli > ina. (4.28)
Moreover; for all 0 < i < iy,
pi < /\'1341-"”x = Tq_+2v (4.29)
and we have _
Imax
S plPat < aperiies)2 (4.30)
i=0
Additionally, for 0 < i < inax,
lxalez <27, .31)
Ixolley, < 78t (4.32)

forall N > 1, where the implicit constant only depends on N .

Proof. The existence of iy, 1S a consequence of the bound

IRgllLoe < A5, (4.33)

The bound (4.33) follows from (2.20b)—(2.20c) and the Gagliardo—Nirenberg inequality
Il fllzoe < ||f||i/l3||f||§{./§’, which holds for any zero-mean periodic function f € H?, the
definition of 7,41 in (2.8), and the fact that eg < 1. Indeed, we have

2 _ _ _ —1/2
IRgllzoe < (AgoR/ 485 1) 3 (A3 = (A oRI48, ) 3 (AT eRT4s 12 24)213
— AaR/12+22/3
q

and the remaining power of A, 2/3 may be used to absorb A;R/ 12

constant.
The first bound expressed in (4.29) follows from the definition of p; in (4.15), the fact

that by (2.3) we have 8,41 < )L'f , and the fact that @ may be chosen sufficiently large to

and the implicit universal

ensure that 45/\; er/4 < 1. Next, we note that in view of the definition of y(;), for any
i > 1,if (x,t) is such that

(AERT4S L Ry(x.1)) < 4!
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then y)(x,t) = 0. Therefore, by the bound (4.33) and the fact that 8 < 1/4,ifi > 1is
such that

(AerT4s L 28y <29 < 47!
then y(;) = 0. Therefore, in view of the parameter inequality
9 —29-B_—2
)Lq <471 Tot1s

which holds in view of (2.8) and the fact that 86 < 1/4, upon taking a sufficiently large,
we may thus define

Imax(¢) = max{i >0: /\/13 4 < tq_fl}.

With this choice of i the above argument yields (4.28). The bound on iy, claimed in
the second inequality in (4.29) then follows from the above definition.

The bound (4.30) follows from the second estimate in (4.29) which gives an
upper bound on i, the definition (4.15), and using that )L,;ER/M log4(rq_fl) <
8Ag er/16 log,(A4) can be made arbitrarily small if a is chosen sufficiently large, depend-
ing on eR.

For i = 0, 1, the bound (4.31) follows from the fact that o, ¥ < 1. For i > 20, we
appeal to the definition of y(;), Chebyshev’s inequality, and the L' estimate on Rq in
(2.20b), to obtain || x¢)|lz1 < 47" The bound (4.31) follows by interpolation.

Estimate (4.32) is a consequence of (2.20c) and [2, Proposition C.1], applied to the
composition with the smooth functions yg(-) and (-) = /1 + (-)2. Indeed, for any i > 0
we obtain

lxallcy, < HAGR*8 4 Ra)lew, + IAG 53 Ry ¢y

S U+ 278 IR e, + R84 I Rgllcr )Y
— —N— - — N
S AR o N+ (GRS T )
N

-N-2 | _-3N —-3N
S+ T+t St

Here we have used (2.8) to get 7541 < 1 and )LZRMS(]_}FIA;‘ < A;+8R/48;Jlr/12 =l . =

Next, we recall from [5, Lemma 4.3] the following bounds on the coefficients a ).

Lemma 4.3. The bounds

1/2~—i 1/2
lag 2 < 0?27 < SqQLl, (4.34)
lallze < p}"> < 8,772, (4.35)
lagllcy, < tgit (4.36)

hold for all 0 <i < inand N > 1.
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Proof. The bound (4.35) follows directly from the definitions (4.16) and (4.15), and the
boundedness of 6, x (), and y(). Using also (4.31), the estimate (4.34) follows similarly.
In order to prove (4.36), we apply derivatives to (4.16), use the bounds previously estab-

lished in Lemma 4.2, use [2, Proposition C.1] and the bound (2.20c) for Rq, combined

with [|0cm < 7. % . The additional factor of rq_il when compared to (4.32) is to absorb
the factor of ,oi1 2 via (4.29). [

As a consequence of Lemma 4.3 and the definitions (4.21), (4.22), and (4.24), we
obtain the following bounds:

Proposition 4.4. The principal part of the velocity perturbation, the incompressibility,
and the temporal correctors obey the bounds

I N2 < 38307, (4.37)
[w®, llyws < 72,27 NP2, 4.38)

1w s + 10l S 52, €372 710N,
S A;E%fi/p_lﬁﬁ/”_l/zlﬁ,"ﬁ, (4.39)

for N e Nand p > 1.

From the second estimate in (4.39) it is clear that the incompressibility and temporal
correctors obey better estimates than the principal corrector.

In order to establish the bound (4.37), it is essential to use the fact that ag) oscillates at
a frequency which is much smaller than that of W(g), which allows us to appeal to the L?
de-correlation lemma [5, Lemma 3.6], which we recall here for convenience:

Lemma 4.5. Fix integers M, k, A > 1 such that

4 Q2m \/gl)M
and A K‘—M

<1 (4.40)

Let p € {1,2}, and let f be a T3-periodic function such that there exists a constants C f
with

ID7 fllLr < CrA/
forall1 < j < M + 4. In addition, let g be a (T /«)3-periodic function. Then
I /gllLr < CrligliLe.

where the implicit constant is universal.

The bounds (4.37)—(4.39) follow by using Lemma 4.5 in the same spirit as [5, Pro-
position 4.5].
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Proof of Proposition 4.4. In order to prove (4.37), we use (4.34) when N = 0, and (4.36)

with AeR/Squ_/lz <t {, for N > 1, to conclude that

1DV a2 < pi?27 02, (4.41)

where the implicit constant depends only on N. Since Wg) is (T /Ag+1£1)? periodic, in
order to apply Lemma 4.5 with A = 7, +1 and k = A441€ 1, we first note that by (2.8) and
(2.23),

5(5—4a)
2 3ht = 2w AT A ] = 2n /3 s
5(5 a) 5—4a
<A P aalE (4.42)

by using the fact that 8 is sufficiently small and b is sufficiently large, depending on «.
For instance, we may take

36 5—4da
< .

d -
A 50

5
58 < (4.43)
In (4.42) we have also used )Ll_lsﬁ 1295 V3 <1, once a is chosen sufficiently large. There-
fore, after a short computation we see that the assumptions of Lemma 4.5 hold with the
aforementioned « and A, with M = 4 in (4.40). Therefore, we only care about N < 4
in (4.41), which also fixes the implicit constant in this inequality, and we may take Cy

to be proportional to pl/ 221 It thus follows from Lemma 4.5 and estimate (4.10) with
M = N =0and p = 2 that

lagyWellz < /0, 27 Wyl 2 < p,/ 27,
Upon summing over i € {0, ..., imax}, and appealing to (4.30), we obtain

1/2 1/2
||w§’f1||L2 < (quérl)t er/6 < 185]{&-1’
by using the small negative power of A, to absorb the implicit constants in the first
inequality.
Consider the estimate (4.38). Observe that by definition (4.21), estimate (4.10) with
M = 0, and the bound (4.36), we have

lw lwvr <30 Z la | cv—~ Wyl ar.

i EGA(,)N/_
Imax
—3(N—-N")—1 2/p 1,1/p—1/24 N’
S I RS
i= OSGA(I)N/_

S B PP (4.44)
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Here we have again used (4.29) in order to sum over i, and we have used the bound
rq_fl < Ag+1 which holds since f is small and b is large.

For the analogous bound on wéﬁl, by (4.8)—(4.10), estimate (4.36), the parameter

estimates T, +31 < Ag+1 and £ < £, and Fubini (recall that ¥z and @) are functions
of one and respectively two variables which are orthogonal to each other), we have

curl(Va(g) X V(ég-)) + V(a(g)lﬂ@)) X Curl(q)(g)f) H

1
2
Ag+1 N2

N+1
< Z lag e n+2-n Ve llwn.p
N’=0
N N-N’'+1
— Y Y laellev-vrin W@y o 1@@ .
¢1+1 N’=0 N”=0
N+1

—3(N+2-N")—1, N’
S Z Tg+1 Aq+1

NI AN SR S YNV § T VRU Sy
- —N'=N")—1,1/p— q p—1yN'—1
2D I B () A

N’=0 N"=0 4l
-1 pl/p—=1/2)2/p—14 N -3
S T+ &y Aq+1(fq+1)‘q+1)

Summing over 0 < i < i, loses an additional factor of 7 +1’ which yields the desired
bound for the first term on the left of (4.39). Similarly, to estimate the summands in
the definition (4.24) of w(t)1 we use (4.8), (4.9), (4.36), the aforementioned parameter
inequalities, and Fubini to obtain

||M_1PHP;£O(“%§)¢(2§) W(zg)S) llww.r

N/
spt Z Z ||a(g)||cN N’||¢(g)||WN”p”‘/f(g)”WN’ N".p
N'=0 N"=0
<, —1_—3(N-N")- 262/” ZAN” (/r—1 L1+ N'=NT
S I T

—1_-2 p2/p—2y1/p—14N
ST T A
Summing over i loses a factor of ¢ 7, +1 (cf. (4.29)), and we obtain the bound for the second
term on the left of (4.39).
For the proof of (4.39), we additionally note that (4.20) and (4.43) imply the parameter
inequalities
S 34— - 1/2 1/2
1 SAg =AM L A =p 1T¢1+1€L1€ 2w 17:q+1£L1€ /< Aq+l ;
(4.45)
which concludes the proof of the proposition. ]

q
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The following bound shows that (2.15) holds, and collects a number of useful bounds
for the cumulative velocity increment w41, which in turn imply that (2.5a) and (2.5b)
hold at level ¢ + 1.

Proposition 4.6. The bounds

1/2
lwg+1llz2 = 4844-17 (4.46)
||Uq+1 Uq”LZ = 8 +17 (4.47)
lwgrillws.r < 12063/ 7700,/P7V228 1) (4.48)

18 wgt1llgz S A)4 (4.49)
holdfor1 < p <ocoands > 0.

Before turning to the proof of the proposition, we note that estimate (4.47) and the
inductive assumption (2.5a) at level ¢ imply that

lvg+1llL> < 285> =812 + 6077 <285/ — 6312 (4.50)

which is a consequence of Z)L < A8 g+1- Thus, (2.5a) holds at level ¢ + 1. Similarly, from

(2.19b) and (4.48) with s =3 and p = 2, and the parameter inequality (4.45), we conclude

lvgeillgs < A8+ 1,242 < APEIEIRE g72 e @.51)
Vg+1lle3 = Tytihg+1 S Ag4 g+1 = *g+1° :

where we have used the fact that b is large and « € [1,5/4). The remaining power of A q—}-/lz
may be used to absorb the implicit constant, and thus (2.5b) holds also at level g + 1.

Similarly to (4.51), we establish two bounds which will be useful in Section 5 for
the proof of Corollary 5.2. First, from (4.48) with s = 9/2 and p = 2, and (2.19d) with
M = 0and N = 2, it follows that

vg+1llLeo(r/3,2m/3:H972) = lWg+1llgor2 + 10g |l Loo(r/3,27/3;H55)
-2 9/2 —2 34 <35
SRy S LY L (4.52)

Here we have also used the parameter inequality (4.45). Similarly, by (4.49) and the bound
(2.19d) with M =1 and N = 0 we obtain

10:vg+1llLoo(r/3,21/3:2) < N10:wg+1llg2 + 10: Vgl Loo(7/3,27/3: %)
5 1 4 5
A T A S S, (4.53)

Proof of Proposition 4.6. The estimates (4.46) and (4.47) are direct consequences of the
already established bounds and the definitions (4.25) and (4.26). Indeed, combining (4.37)
with (4.39) with p = 2 and N = 0, we conclude that

||‘”z1+1||L25q_:L12 <1/2 +A’3+1 o < 3/4,
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since B is sufficiently small (see (4.43)). From (4.46) and (2.19¢) we obtain

_ 1/2
10g+1 = vall2 < 1T — vgllze + llwgs1llz> < 832

as desired. The estimate (4.48) with non-integer values of s follows by interpolation from

the case s € N. Comparing (4.38) with the second inequality in (4.39), we see that the
_5— 4(1

bound for the principal corrector is the worst, since A, 1. 1=t 1, and thus (4.48)
follows directly.

Thus it remains to prove (4.49). An estimate on 0, w;’_?l will clearly dominate an

estimate on B,w;i)l. Hence it suffices to estimate 0; wé’?l and 0; wq +1 First consider

Bzw;{?l. From the bound (4.10) with N =2, M =1, p = 2, estimate (4.36) with N = 3,
and the definition (2.23) of u, we obtain

locwgPilz £ Y lawles, 19 Wellg2
i SGA(,‘)

imax
—11920+2 <
STl A S T AR S 2040
where in the last inequality we have used the fact that (4.45) provides an upper bound
for - +1, and that ¢ < 5/4. In order to estimate B,w( ) 11 we use (4.8) and (4.9), Fubini,

and (4 36) to obtain

loewg Ll < 'Y D (ladyllcz, 1680098 a2 + lagyllcs 6%V Ia2)

i EeAq)

Imax
spt Z Z Z (T ||¢(g)||HN 119 1ﬂ(g)||H2 N+ T_””Qb(g)”HN ||1/f(§)||HN 2)

i= OSEA(”N =0

Imax z A m

1 —
<u IZ( i UZ(—Z”H )/12+1 +r il 1/2l§+1)
- 3/2 1/2

< tidy / A1 +rgiin ey / A1 S Agur-

Here we have used explicitly the parameter choice (2.23), the parameter inequality (4.20),
the first bound in (4.45), the bound Er < 7' < A1, and the inequality ima S 7,7} ®

5. Convex integration step: the Reynolds stress

The main result of this section may be summarized as follows:

Proposition 5.1. There exists an eg > 0 sufficiently small, and a parameter p > 1 suf-
ficiently close to 1, depending only on «, b, and B, such that the following holds: There
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exists a traceless symmetric 2-tensor R and a scalar pressure field p, defined implicitly
in (5.5) below, satisfying

drvgr1 + div(vg41 ® vg41) + VP + (=A)%v,41 = div R, (5.12)
divvg4q = 0. (5.1b)

Moreover R obeys the bound
IRILr S A58 842, (5.2)

where the constant depends on the choice of p and eg, but is independent of q, and R has
the support property

supp(R) C T3 x {t € [0, T]: dist(z, §“9TV) > 7,41}. (5.3)

An immediate consequence of Proposition 5.1 is that the desired inductive estimates
(2.4) and the support property (2.11) hold for the Reynolds stress R, 1, which is defined
as follows.

Corollary 5.2. There exists a traceless symmetric 2-tensor §q+1 and a scalar pressure

field py11 such that the triple (Vg41, Pg+1, l(éq_,_l) solves the Navier—Stokes—Reynolds
system (2.1) at level g + 1. Moreover,

[Rg+1llr = A;i’i(gqu, (5.4a)
IRg+1llm5 < Agsrs (5.4b)

and I%q_H(Z) = 0 whenever dist(t, §4tV) < Tg+1-
Proof. With R and D defined in Proposition 5.1, we let
Rys1 = RPydivR,  pyi1 = p— A 'divdivR.

It follows from (5.1) and the definitions of the inverse-divergence operator R and of the
Helmholtz projection Py that the (v4+1, pg+1. ng’q_H) solve the Navier—Stokes—Reynolds
system (2.1) at level g + 1. Since the operator RPg div is time-independent, the claimed
support property for 13(14_1, namely (2.11) at level g + 1, follows directly from (5.3).

With the parameter p > 1 from Proposition 5.1, using ||RPg div ||Lr—rr < 1, we
directly bound

o o ~ -2
IRg+1llLt < IRg+1llze < IRILr < AgY " 8q+2.

The estimate (5.4a) then follows since the residual factor /X;fr’f can absorb any constant
if we assume a is sufficiently large. In order to prove (5.4b), we use equation (5.1), the
support property of §q+1 which implies that supp(ﬁqﬂ) C T3 x [T/3,2T/3], and the
bounds (4.50)—(4.53). Combining these, we obtain
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1Rg 1l = IRPo (div B) 112
S 10rvg+1 + div(vg41 ® vg41) + (=A)* Vg1l oo (/3 21/3:H2)
S 10evg+illLee(rysorya; a2y + vg+1 @ va+1llas + vg+illpeo (3,213,592
< 10evg+illpee(r3,21y3;82) + vg+1lla3lvg+iliLee + lvg+1llpoo(r/3or/a;H92)
< 19cvg+1llpee(r/3,2m/3:H2) + ||Uq+1||2/32||vq+l”]L/22 + vg+1llLoe(r/3,21/3:59/2)
A5 +AS LS A <A

For the dissipative term we have used o < 5/4, so that 2o + 2 < 9/2. Using the residual
power of A;i/lz we may absorb any constants and thus (5.4b) follows. ]

5.1. Proof of Proposition 5.1

o

Recall that vg4+1 = wy41 + U4, Where ¥, is defined in Section 3.3 and (9,4, R,) solves
(2.1). Using (4.25) we obtain

divR — VF = (=A)"wgs1 + (WP, +wi)) + div(Ty ® wys1 + w1 ® )
+div(ws, + wi) @ wear + w ® W), + wl))

+divw), ® w + Ry) + 3wl

= div(ﬁlinear + Ecorreclor + ﬁoscillation) + Vq' (55)

Here, the linear error and corrector errors are defined by applying R to the first and
respectively second line of (5.5), while the oscillation error is defined in Section 5.1.3
below. The zero-mean pressure ¢ is defined implicitly in a unique way.

Besides the already used inequalities between the parameters, £1, £ and A441, we
shall use the fact that if p is sufficiently close to 1 then

_ —1,2/p—1,1/p—1/2 - —2a 2/ p—=2,1/p—5/2
Tq-ﬁlkczﬁit-lleJ_/p le/p /+qull¢11+21ae¢/p 5”/11 /

T A P T AT P S AR S (5.6)
To see this, we appeal to the bound (4.45) for 7, —1{1 and the parameter choices (2.23) to
conclude that the left side of (5.6) is bounded from above as

2/p—2,y1/p—1, — — 1/2 — — —3/2 — — —
KJ_/p gn/p (fq—ilkéﬁ-llﬁlen/ +Tq-illt11+21ae|| / + i dg !
+ Al
2/p—2,)1/p—1_— - 1/2 — —3/2 — — — —
SO P e (A2 P+ AL g e AL

3(5—4a) 5—4a 5—4a _5(5—4) _ 28a+1
2

2/p—241/p—1
SEJ_P lep Aq+510 (Aq+1 +’\q+18 +Aq+124 +Aq+124 )

5—4a 5—4a
2/p=2,1/p~1,~>50 —3750
< <
R Eu Agrit S
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where in the last inequality we have chosen p sufficiently close to 1, depending only on «.
To conclude the proof of (5.6), note that

—2eR —2eR 2B —2¢gb—2pb2
Mgk g2 2 Ay Aghn 2 Ay ’

and therefore if we ensure that g and 8 are sufficiently small, depending on « and b only,
such that
5—4a

2erb + 28b% < ,
erb +2pb" = —o0

(5.7)

then the three estimates above imply (5.6).

5.1.1. The linear error. In order to prove (5.2), we first estimate the contributions to R
coming from Rjjnesr. Recalling (4.23), and the bounds (2.19b), (4.10), (4.36), and (4.48),
we obtain
| RinearllLr S IR((=A) wai1)llLr + 1R@: (wFy +w )Lr

+ | R div(Dg ® wgt1 + wg+1 @ Ug)||Lr

S lwgillwza—1o + Y > 18, R curl curl(agey Vig) e + [|5g]lzoe lwg1llLr
i SEA(,‘)

S (1 + [15gllzeo) lwgs1llwza—ro + Y Y [18: curl(age) Vi)l
i el
< (14 15 ) lwg 1 llw2e-t1.

+° > Ulaglcr 18:Viollwrr + laglcz, 1Vellw.»)

i {-‘GA(,j)
4 =2 12a—1,2/p-1)1/p=1/2 | —5 p2/p—1,1/p-1/2,-1 (LlAq+1t
S Agtamted G070 gt g Aq“( 4l )
—8 p2/p—1,1/p—1/24 -1
DTG A
SR a g oy

Here we have used the definition of p from (2.23), and the parameter inequalities )L:]‘ <

o< 22

a+1 < Ay By (5.6), the above estimate is consistent with (5.2).

5.1.2. Corrector error. Next we turn to the errors involving correctors. Appealing to
estimates (4.38) and (4.39) of Proposition 4.4, we have

”Rcorrector”Ll’ = ”fR diV((w;Cil + w;tj-l) ® Wg+1 + w;ﬁ-)l ® (wc(;,)-l + ng-l)) ”Lp

(c) @) (») (c) )
S ||wq+1 + Wyt ||L2P||wq+l 20 + ”wa-)i-l ||L2P||wq+1 + Wyl 20
-5, —1p2/p=3,)1/p=3/2 -5 9 1—2ay2/p—2,1/p—5/2
Stmk T S tgiirger L0 T :

In the last inequality we have appealed to the definition (2.23). Due to (5.6) this estimate
is sufficient for (5.2).
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5.1.3. Oscillation error. In this section we estimate the remaining error, ﬁosoillation» which
obeys

div(ﬁoscillation) +VP = div(w;ﬁ—)l ® w;ﬁ-)] + Rq) + atw;?_]v (59)
where P is a suitable pressure. From the definition of w;i) 1 in (4.21) and of the coeffi-

cients ag) in (4.16), using the disjoint support property of the intermittent jets (4.5), the
fact that Ay N Ay = @, and appealing to the identity (4.19), we have

diV(w;ﬁ_)l ® w;{?l) + div Rq = Z Z div(agyaeyWe @ W) + div Rq
i,J §€M),§ €A

=Y Y div(agWe ® W) + divR,

i EEA(,‘)
=) > diV(a?g)(W@) ® W) —][3 W ® W) dx)) + V(92 Zpix%i))
i,j EEA(Z') T i>0
=3 Y divadyPany e, oW ® W) +V(62 - pid)-
i €A E i0
(&)

Here we use the fact that since W) is (T /€, A)3-periodic, the minimal separation
between active frequencies of W) ® W(g) and the 0 frequency is given by A, (£ . That
is, Pzo(Wey ® W) = Psi, e, 12(Wie) ® Wee)). We further split

E@) = Pro(Poi, 16, 2(Wie) ® Wie) V(agy))) + Prro(afy diviWe ® Weg)))
= Egn + E¢o).
The term R E ¢ 1y, which is the first contribution to Eomnaﬁon, is estimated by using the

fact that the coefficient functions a) are essentially frequency localized inside of the
ball of radius tq_ﬁl & Ag+1€1, in view of (4.36). More precisely, by Lemma 4.3 we

are justified to use [5, Lemma B.1], with the parameter choices A = rq__il, C, = rq_fl,
k = Ag+1£1/2, and L sufficiently large, to conclude

IREg.nlr < IV Een] L,
S IVIT Pro(Panyy 16 12(Wiey @ W) Viage)) | o

-5 -6
< fqt1 ( Tg+1

)IIW(s) ® Wgllzr

~ Ag+1ll (1)1 g+1L)E2
-5
7,321 -5 1—1 42/p=3,1/p—1
S = W lor Wi llor < i hgh 77477
Ag+1€L

In the last inequality above we have used estimate (4.10), and in the second to last
inequality we have used the fact that by taking L sufficiently large, for instance L = 4
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is sufficient in view of the first inequality in (4.45) and the definition of £, in (2.23), we
have t +1( a+1 Agyid J_)Z_L < 1. Summing these contributions over 0 < i < iy, COSts

an additional factor of 7 - +1, and from the third term in (5.6) we find that the bound for
R Eg,1) is consistent w1th (5.2).

It remains to estimate the contribution from the E ¢ ») term. From identity (4.11) we
see that

1
Eg2) = ;P?éo(“(zs)‘f’é)atl”é)g)
1 1
= ﬁazp#o(a%g)‘ﬁ(zgﬂﬁé)g) - EP#O((ata(zg))fﬁ(zg)W(Zg)é)

Hence, summmg in £ and i, pairing with the atw q+1 present in (5.9), recalling the defin-
ition of wq 11 in (4.24), and noting that Id — Py = V(A™ 1 div), we obtain

YN Ego+ 0w,

i EEA(,‘)
! 1
- ; Z Z (Id - PH)atP;éO(a(zg)¢(2g)1/fé)§) - ; Z Z P¢0(at(a(2£))¢(2$)wé)g)
i $eA<i) i EeAg
=Va— Z > Pro(0:(aie) by Vink). (5.10)

i EEA(,)

where g = ﬁ i YCeehy A~ div 8tP¢0(a(2§)¢(2§)1//é)5) is a pressure term. Finally, we

estimate the second contribution to ﬁoscmmion by using (4.8), (4.9), Fubini, (4.29), and
(4.36), to obtain

1
Hﬂ?(;Z ) P#O(at(“é))‘f’(zsﬂ/’é)g)) H S —Z D 190(aie) b v Ellr

i EeAg) i §€hq)

1
< ;Z Y laele; lagliel¢@ 70 1ve 72

i EeAg)

Imax

-1 -5 p2/p—2 l/p 1 —1p2/p—2y1/p—-1
S w qu+1€ < Tq+1M LTI

— 2/p=1y1/p=2

< ﬁﬁéﬁf‘e e (5.11)
In the last equality above we have used the definition of p. Using the bound for the last
term in (5.6), we conclude that the above estimate is consistent with (5.2), which shows
that Rogcillation @lso obeys this inequality.
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5.1.4. The temporal support of R. In order to conclude the proof of Proposition 5.1, we
need to show that (5.3) holds. From (5.5) it follows that

supp(R) C supp(w7}) U supp(w) ;) U supp(w) ) U supp(Ry).

By (2.20a) we know that R,(r) = 0 whenever dist(t, §@*D) < 2¢,,, while by (4.18)
we see that ag)(f) = 0 whenever dist(z, gty < T441. By their definitions, the prin-
cipal (4.21), incompressibility (4.22), and temporal correctors (4.24) are composed only

of terms which contain the coefficient functions a ), and thus similarly to (4.27) we con-

clude that w;’_?l @) = w;cll(t) = wg}rl(t) = 0 whenever dist(t, §4*) < 7,,,. This

proves (5.3).
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