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Abstract: We investigate the stability properties for a family of equations introduced by
Moffatt to model magnetic relaxation. These models preserve the topology of magnetic
streamlines, contain a cubic nonlinearity, and yet have a favorable L2 energy structure.
We consider the local and global in time well-posedness of these models and establish
a difference between the behavior as t → ∞ with respect to weak and strong norms.
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1. Introduction

In the 1960s V.I. Arnold developed a new set of geometric ideas concerning the incom-
pressible Euler equations governing the flow of an ideal fluid. In the following decades
the subject of topological hydrodynamics flourished. Following Arnold’s seminal work
[Arn66] therewas an enormous body of literature on the subject.We refer to only a few of
the many important papers including Ebin andMarsden [EM70], Holm,Marsden, Ratiu,
andWeinstein [HMRW85], and Arnold and Khesin [AK98]. This geometric perspective
views the incompressible Euler equations as the geodesic equations of a right-invariant
metric on the infinite-dimensional group of volume preserving diffeomorphisms. Of
particular importance are the fixed points of the underlying dynamical system, namely

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-021-04289-3&domain=pdf


1312 R. Beekie, S. Friedlander, V. Vicol

steady fluid flows, and their topological richness [EPS12,Gav19,CLV19]. Moreover, as
with any dynamical system, of fundamental importance is the question of accessibility
of these equilibria. In this paper, we discuss a mechanism of reaching these equilibria
not through the Euler vortex dynamics itself, but via a topology preserving diffusion
process, called magnetic relaxation.

The magnetic relaxation equation (MRE) considered here was introduced byMoffatt
[Mof85,Mof21] to describe a topology-preserving dissipative equation, whose solutions
are conjectured to converge in the infinite time limit towards ideal Euler/magnetostatic
equilibria (see also Brenier [Bre14]); we recall the motivation in Sect. 1.1 below. We are
interested in understanding the long time behavior for

∂t B + u · ∇B = B · ∇u (1.1a)
(−#)γ u = B · ∇B + ∇ p (1.1b)

div u = div B = 0 (1.1c)

where the unknowns are the incompressible velocity vector field u, the magnetic vector
field B, and the fluid pressure p. We consider the problem posed on Td = [−π,π]d
with d ∈ {2, 3}, and u is taken to have zero mean on Td . The parameter γ ≥ 0 is a
regularization parameter of the constitutive law B '→ u: the case γ = 0 corresponds
to a Darcy-type regularization (as was done in [Mof85,Bre14,Mof21]), the case γ = 1
corresponds to a Stokes-type regularization, while the general case γ > 0 may be
alternatively used in numerical simulations to smoothen the velocity gradients. This
constitutive law may be written as

u = (−#)−γP(B · ∇B) = (−#)−γPdiv (B ⊗ B) (1.2)

where P is the Leray projector (onto divergence-free vector fields). We emphasize that
the topology of the vector field B is preserved under the vector transport Eq. (1.1a)
irrespective of the regularization parameter γ in the constitutive law (1.1b). We note that
if div B0 = 0, then the vector transport Eq. (1.1a) preserves the incompressibility of B
at all later times.

From a mathematical perspective, the analysis of the MRE system (1.1) is unusually
challenging. Not only is it an active vector equation, versus the more familiar active
scalar equations in fluid dynamics [CMT94,CCGO09], but the nonlinearity is cubic
in B. Some of the interesting special features of MRE are discussed in the article of
Brenier [Bre14]. Brenier presents a concept of dissipative weak solutions for MRE
when the regularization parameter γ is set to zero. It is shown in two space dimensions
that the initial value problem admits such global dissipative weak solutions, and that
they are unique whenever they are smooth. However, not even the local existence of
strong solutions to (1.1) is known.

Besides local well-posedness, in this paper we examine the long-time behavior of the
magnetic relaxation Eq. (1.1), and show that although the velocity field u(·, t) converges
to 0 as t → ∞ (for a sufficiently large regularization parameter γ ), there are many
open questions regarding the sense in which the magnetic field B(·, t) itself converges
as t → ∞ (weak vs strong convergence; see Remark 4.2). In two dimensions, we give
a specific example of asymptotic stability to a simple two dimensional steady state.
In contrast, for a specific class of two-and-a-half-dimensional solutions we illustrate
instability for the MRE system (1.1), by showing that the the magnetic current ∇ × B
grows unboundedly as t → ∞. Our results are presented in Sect. 1.2 below.
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1.1. Motivation behindmagnetic relaxation. There are certainwell known analogies be-
tweenEuler equilibria and equilibria of incompressiblemagnetohydrodynamics (MHD).
Recall that the ideal incompressible MHD equations are

∂t B + u · ∇B = B · ∇u (1.3a)
∂t u + u · ∇u + ∇ p = B · ∇B (1.3b)

div u = div B = 0 . (1.3c)

The equilibrium equation for magnetostatics is obtained by setting B = B̄(x) and u = 0
in (1.3) to give

∇ p̄ = B̄ · ∇ B̄ , div B̄ = 0 . (1.4)

In comparison, the equilibrium equation for incompressible Euler steady states is ob-
tained by setting u = ū(x) and B = 0 in (1.3) to give

ū · ∇ū + ∇ p̄ = 0 , div ū = 0 . (1.5)

Clearly, any vector field B̄ that satisfies (1.4) is also an equilibrium solving (1.5) upon
changing the sign of the pressure, and vice-versa. However, this analogy between mag-
netic and fluid steady states (1.4)–(1.5) does not extend to the evolution of perturbations
about these steady states, as governed by the ideal MHD system on the one hand, re-
spectively the pure Euler dynamics on the other hand. For example, stability issues
for Euler steady flows are not the same as the stability for magnetostatic equilibria
[HMRW85,Mof86,SV93,FV95].

In [Arn74], Arnold suggested a process which demonstrates the existence of an
Euler equilibrium that has the same topological structure as an arbitrary divergence
free magnetic field. The idea is to use the evolution dynamics of the magnetic field to
reach an Euler/magnetic equilibria which preserves Kelvin circulation. This concept was
developed by Moffatt [Mof85] (see also the excellent recent overview [Mof21]). The
magnetic relaxation procedure envisioned by Moffatt preserves the streamline topology
of an initial divergence free three-dimensional vector B0(x), but abandons the constraint
that B(x, t) should remain smooth as t → ∞. In this model, the magnetic field evolves
under the frozen field Eq. (1.3a) via a vector field u(x, t) which is related to B(x, t)
by a suitable constitutive law, which has two properties: that u(x, t) formally decays
to 0 as time goes to infinity, and the vector fields u and j × B are parallel with non-
negative proportionality factor (here j = ∇ × B is the current field). Moffatt introduced
the concept of topological accessibility which is weaker than topological equivalence1

because it allows for the appearance of discontinuities in the magnetic field (current
sheets) as t → ∞. As an example of a constitutive law relating u to B, Moffatt [Mof85,
Mof21], also Brenier [Bre14], suggested

u = B · ∇B + ∇ p ,

which may be used in conjunction with (1.3a) to show that the magnetic energy satisfies

1
2
d
dt

‖B‖2L2 = −‖u‖2L2 .

1 Here, we say that B1 and B0 are topologically equivalent, if B1(X (α)) = ∇αX (α)B0(α) for a volume
preserving diffeomorphism α '→ X (α). In contrast, to say that B1 is topologically accessible from B0 means
that (see e.g. in [Mof21, Section 8.2.1]) B1 = limt→∞ B(·, t), where B is a solution of (1.3a)with initial datum
B0 and some solenoidal vector field u, under the additional property that

´∞
0

∣∣´Td B · (B · ∇u)dx
∣∣ dt < ∞.
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Hence the energy of B is strictly monotonically decreasing, until u ≡ 0. Note that
‖B(·, t)‖L2 is bounded from below uniformly in time, solely in terms of the initial
magnetic helicity [Arn74] (see Remark 2.1).

1.2. Main results. The main results in this paper are as follows.
In Sect. 2 we prove local existence for solutions of the MRE system (1.1) in Sobolev
spaces Hs . This result holds for any γ ≥ 0 and dimension d ≥ 2, for Sobolev exponents
s > d/2 + 1. Theorem 2.2 follows from the dissipative nature of (1.1), exhibited in its
L2 energy estimate, by using two commutator estimates at the level of Hs .

In Sect. 3 we prove global existence in Hs when the regularization parameter satisfies
γ > d/2 + 1. For such γ , Theorem 3.1 shows that the magnetic relaxation question is
well-posed, because we can speak of a global in time solution. We recall that the natural
values of γ coming from physical arguments are γ = 0 (corresponding to a Darcy-type
approximation) or γ = 1 (corresponding to a Stokes-type approximation); unconditional
global existence in this range of γ remains open.

In Sect. 4 we investigate the possible behavior of the solutions in Sect. 3 as t →
∞. We prove in Theorem 4.1 that the velocity field u(·, t) converges to 0, strongly,
asymptotically as time diverges. The specific form of this relaxation is given by (4.1).
We note, however, we do not obtain a rate for the convergence. Also, it remains open to
prove that the vector B(·, t) itself converges to a steady Euler (magnetic) weak solution.

In Sect. 5we consider theMRE system for d = 2 and γ = 0.We study the asymptotic
stability of a special magnetostatic state, B̄ = e1, under Sobolev smooth perturbations.
The evolution equation for the perturbations is given by (5.5), which is an active vector
equationwith a cubic nonlinearity. Equation (5.5) has some similarities with the equation
for the perturbation of a linearly stratified density in the two dimensional incompressible
porous media equation (IPM); the former being, however, an active scalar equation with
a quadratic nonlinearity. In the context of IPM, Elgindi [Elg17] studied the asymptotic
stability of the same special steady state and proved that solutions must converge (i.e. re-
lax) as t → ∞ to a stationary solution of the IPM equation; see also the work [CCL19]
in the case of a bounded domain. In Theorem 5.1 we employ some of these ideas to
prove asymptotic stability (relaxation) of MRE in this special two dimensional setting.

In Sect. 6 we turn to the three dimensional MRE system. We observe that there is an
interesting class of exact solutions to (1.1) when γ = 0, which has analogies to the well
know exact solutions of the three dimensional Euler equation, which are in fact two-and-
a-half dimensional, cf. Yudovich [Yud74] or DiPerna and Majda [DM87]. In the case
of the Euler equation the construction of the exact solution is based on a non-constant
coefficient transport equation, which produces a two-and-a-half dimensional flowwhose
vorticity grows unboundedly in time (linearly in time for shear flows [Yud74,Yud00],
or exponentially in time for cellular flows [EM20]). In contrast, for the MRE system
the construction of the exact solution is based on a non-constant coefficient heat-type
equation, which has a rank 1 diffusion matrix. By choosing the spatial dependence of
the initial data appropriately, in Theorem 6.1 we construct an example of a magnetic
field B(·, t) which converges (relaxes) in L2 as t → ∞ to a steady solution B̄, but this
limiting solution is not smooth and exhibits magnetic current sheets; as such, the current
j (·, t) = ∇ × B(·, t) grows as t 14 in L2. Additionally, in Theorem 6.4 we show that in
the presence of hyperbolic dynamics, for instance along the separatrix of a cellular flow,
the current j (·, t) may even grow exponentially in time, for all time, which is a strong
type of instability.
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Clearly relaxation of theMREsystem (1.1) is a very subtlematter.We further illustrate
this in Sect. 7, where we discuss a number of open problems.

2. Local Existence in Sobolev Spaces for all γ ≥ 0

Thedissipative nature of (1.1), already alluded to in the introduction, is seen by inspecting
the magnetic energy estimate

1
2
d
dt

‖B‖2L2 =
ˆ
Td

B · (B · ∇u) = −
ˆ
Td

u · (B · ∇B)

= −
ˆ
Td

u ·
(
(−#)γ u − ∇ p

)
= −‖u‖2

Ḣγ . (2.1)

Integrating in time, we deduce that

sup
s∈[0,t]

‖B(·, s)‖2L2 + 2
ˆ t

0
‖u(·, s)‖2Ḣγ ds ≤ ‖B0‖2L2 (2.2)

for all t > 0 such that the solution is sufficiently smooth on [0, t] to justify the integration
by parts manipulations in (2.1).

Remark 2.1. (A global lower bound for the magnetic energy) . We note that no matter
the level of regularization in the constitutive law B '→ u in (1.1b), the magnetic helicity

H(t) =
ˆ
Td

A(x, t) · B(x, t)dx ,

is still a constant function of time,2 as long as the solutions remain sufficiently smooth.
Here we have denoted by A the zero mean vector potential for B defined in terms of
the Biot-Savart law A = (−#)−1∇ × B. Indeed, it is not hard to see that (1.1a) implies
that d

dtH = 2
´
Td B · (u × B)dx = 0. This observation and the Poincaré inequality

‖A‖L2(Td ) ≤ ‖B‖L2(Td ), imply the so-called Arnold inequality [Arn74]

‖B(·, t)‖2L2 ≥ |H(0)| , (2.3)

for all t ≥ 0. Therefore, while (2.1) shows that the magnetic energy is strictly decreasing
as long as u -≡ 0, (2.3) also shows that the magnetic energy is bounded from below for
all time, by a constant that depends only on the magnetic helicity of the initial datum.

Theorem 2.2. (Local existence in Sobolev spaces) Let γ ≥ 0 and s > d/2 + 1. Assume
that B0 ∈ Hs(Td) is divergence free. Then, there exists T∗ ≥ (C ‖B0‖Hs )−2, such
that the active vector Eq. (1.1) has a unique solution B ∈ C0([0, T∗); Hs(Td)), with
associated velocity u ∈ C0([0, T∗); Hs−1+2γ (Td))∩L2((0, T∗); Hs+γ (Td)). Moreover,
B satisfies the bound (2.2) and also

‖B(·, t)‖2Ḣ s ≤ ‖B0‖2Ḣ s exp
(
C
ˆ t

0
‖∇u(·, s)‖L∞ + ‖∇B(·, s)‖2L∞ ds

)
(2.4)

for t ∈ [0, T∗), where C > 0 is a constant which only depends on s, γ , and d.

2 Note in contrast that the cross-helicity
´
Td u · Bdx is expected to vanish as t → ∞ since B(·, t) remains

uniformly bounded in L2, while u(·, t) → 0 in L2.
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Proof of Theorem 2.2. We use the notation & = (−#)1/2, and
[
A, B

]
= AB − BA for

the commutator of two operators. From (1.1), we then obtain

1
2
d
dt

‖B‖2
Ḣ s + ‖u‖2

Ḣ s+γ

=
ˆ
Td

&su · &s(B · ∇B + ∇ p) +
ˆ
Td

&s B · &s(B · ∇u) −
ˆ
Td

&s B · &s(u · ∇B)

=
ˆ
Td

&su · &s(B · ∇B) +
ˆ
Td

&s B · (B · ∇&su) +
ˆ
Td

&s B ·
[
&s, B · ∇

]
u

−
ˆ
Td

&s B ·
[
&s, u · ∇

]
B

=
ˆ
Td

&su ·
[
&s, B · ∇

]
B +

ˆ
Td

&s B ·
[
&s, B · ∇

]
u −

ˆ
Td

&s B ·
[
&s, u · ∇

]
B .

(2.5)

Now, from [Li19, Corollary 5.2, equation (5.1)], by choosing p = p1 = p4 = 2 and
p2 = p3 = ∞, this result states that for all s > 0 we have the following generalization
of the Kato-Ponce commutator estimate:

∥∥[
&s, f

]
g
∥∥
L2 !

∥∥&s f
∥∥
L2 ‖g‖L∞ + ‖∇ f ‖L∞

∥∥∥&s−1g
∥∥∥
L2

. (2.6)

Applying the estimate (2.6) for the pairs ( f, g) ∈ {(B,∇B), (B,∇u), (u,∇B)}, since[
∇,&s] = 0 we obtain that

∥∥[
&s, B · ∇

]
B

∥∥
L2 ! ‖B‖Ḣ s ‖∇B‖L∞ (2.7a)

∥∥[
&s, B · ∇

]
u
∥∥
L2 +

∥∥[
&s, u · ∇

]
B

∥∥
L2 ! ‖B‖Ḣ s ‖∇u‖L∞ + ‖∇B‖L∞ ‖u‖Ḣ s .

(2.7b)

By combining (2.5) and (2.7), we arrive at

1
2
d
dt

‖B‖2
Ḣ s + ‖u‖2

Ḣ s+γ ! ‖u‖Ḣ s ‖B‖Ḣ s ‖∇B‖L∞ + ‖B‖2
Ḣ s ‖∇u‖L∞ . (2.8)

Since γ ≥ 0 and u has zero mean on Td we have that ‖u‖Ḣ s ! ‖u‖Ḣ s+γ , while the
condition s > d/2 + 1 implies that ‖∇u‖L∞ ! ‖u‖Ḣ s and ‖∇B‖L∞ ! ‖B‖Ḣ s . Thus,
estimate (2.8) readily implies that there exists a constant C = C(γ , s, d) > 0 such that

d
dt

‖B‖2
Ḣ s + ‖u‖2

Ḣ s+γ ≤ C ‖B‖4
Ḣ s . (2.9)

From the a-priori estimates (2.1) and (2.9), the local existence of C0
t H

s
x solutions of

(1.1) readily follows from a standard approximation procedure, and the local time of
existence is at least as large as (C ‖B0‖Hs )−2. Note that since Hs−1 is an algebra, we
immediately obtain from (1.1b) that u ∈ C0

t H
s−1+2γ
x , while from (2.9) we obtain that

u ∈ L2
t H

s+γ
x . Interestingly, when γ ≥ 1, the former information (the uniform in time

one) provides more regularity in space than the latter one (the integrated in time one).
The bound (2.4) is an immediate consequence of (2.8), since s > d/2 + 1 and γ ≥ 0.
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3. Global Existence for γ > d/2 + 1

Theorem 3.1 (Global existence for the strongly regularized system). Let γ , s > d/2+1.
Assume that B0 ∈ Hs(Td) is divergence free. Then, the local in time solution established
in Theorem 2.2 is in fact global in time, meaning that T∗ = +∞, and we have that

‖B(·, t)‖2Ḣ s ≤ ‖B0‖2Ḣ s exp
(
Ct1/2 ‖B0‖L2

)

× exp
(
Ct

(
‖∇B0‖2L∞ + Ct2 ‖B0‖6L∞

)
exp

(
Ct1/2 ‖B0‖L2

))
(3.1)

for all t ≥ 0, where C = C(γ , s, d) > 0 is a constant.

Proof of Theorem 3.1. Estimate (2.4) shows that the local in time Hs solution may be
uniquely continued past T if

´ T
0 ‖∇u(·, s)‖L∞ + ‖∇B(·, s)‖2L∞ ds < ∞. Thus, the

global existence of smooth solutions is established if we show that the Lipschitz norm
of u is integrable in time, and that the Lipschitz norm of B is square integrable in time.

The condition γ > 1+d/2 implies by the Sobolev embedding that Hγ ⊂ Lip. Thus,
from (2.2) we deduce

ˆ t

0
‖∇u(·, s)‖L∞ ds !

ˆ t

0
‖u(·, s)‖Ḣγ ds ! t1/2 ‖B0‖L2 . (3.2)

Once u satisfies (3.2), we may use the following classical fact: the solution B of (1.1a)
is given by the vector transport formula

B(X (α, t), t) = ∇αX (α, t)B0(α) (3.3)

where X (α, t) is the Td -periodic flow of the vector field u; that is, the solution of the
ODEs

d
dt

X (α, t) = u(X (α, t), t), X (α, 0) = α (3.4)

and α ∈ Td denotes a Lagrangian label. Differentiating (3.4) with respect to α and
appealing to (3.2), we deduce that

‖∇X (·, t)‖L∞ ≤ exp
(ˆ t

0
‖∇u(·, s)‖L∞ ds

)
≤ exp

(
Ct1/2 ‖B0‖L2

)
. (3.5)

Thus, upon composing (3.3) with the back-to-labels map X−1(x, t), and appealing to
(3.5), we obtain that

‖B(·, t)‖L∞ ≤ ‖B0‖L∞ exp
(
Ct1/2 ‖B0‖L2

)
(3.6)

for all t > 0.
It remains to estimate the L∞ norm of ∇B. For this purpose we differentiate (1.1a)

with respect to x , and contract the resulting equation with ∇B to deduce

(∂t + u · ∇)|∇B|2 ≤ 4|∇u||∇B|2 + 2|∇2u||B||∇B| .
By the maximum principle, we obtain that

‖∇B(·, t)‖L∞ ≤ ‖∇B0‖L∞ exp
(
2
ˆ t

0
‖∇u(·, s)‖L∞ ds

)
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+
ˆ t

0

∥∥∥∇2u(·, s)
∥∥∥
L∞ ‖B(·, s)‖L∞ exp

(
2
ˆ t

s

∥∥∇u(·, s′)
∥∥
L∞ ds′

)
ds .

(3.7)

Thus, we need a bound on the L∞ norm of the Hessian of u. For this purpose we note
that the condition γ > d/2 + 1 trivially implies that γ > 3/2, and thus the bound

∥∥∥∇2(−#)−γPdiv ϕ
∥∥∥
L∞ ! ‖ϕ‖L∞

holds for every integrable Td -periodic 2-tensor ϕ. Combining the above estimate with
the constitutive law (1.2), we obtain

∥∥∥∇2u(·, t)
∥∥∥
L∞ ! ‖B(·, t) ⊗ B(·, t)‖L∞ ! ‖B(·, t)‖2L∞ ,

for all t > 0. From the above display, (3.2), (3.6), and (3.7) we deduce

‖∇B(·, t)‖L∞ ≤
(
‖∇B0‖L∞ + Ct ‖B0‖3L∞

)
exp

(
Ct1/2 ‖B0‖L2

)
, (3.8)

for all t > 0, where C > 0 is a sufficiently large constant which depends on γ and d.
The bounds (3.2) and (3.8) conclude the proof of global existence of Hs solutions.

Taking into account the estimate (2.4) we also obtain the bound (3.1).

Remark 3.2. The condition γ > d/2 + 1 implies that for 0 < ε < 2(γ − d/2 − 1) we
have the bound

∥∥∇(−#)−γPdiv ϕ
∥∥
Cε ! ‖ϕ‖L1 (3.9)

holds for every integrable Td -periodic 2-tensor ϕ. Combining (3.9), (1.2), and (2.2) we
first deduce that

‖∇u(·, t)‖Cε ! ‖B(·, t) ⊗ B(·, t)‖L1 ! ‖B(·, t)‖2L2 ! ‖B0‖2L2 , (3.10)

for all t > 0. We note that this bound is pointwise in time, in contrast to (3.2) which is
time integrated.

4. Convergence as t → ∞ for γ > d/2 + 1

In view of Theorem 3.1, we know that if the initial datum lies in Hs(Td) and the
regularization parameter γ in (1.2) is sufficiently large, namely γ > d/2 + 1, then the
system (1.1) has global existence of solutions. In this section we discuss the possible
behavior of these solutions as t → ∞.

Our first result shows that as t → ∞, the velocity field u(·, t) converges to 0.
Theorem 4.1 (Asymptotic behavior for the velocity). Let γ , s > d/2 + 1 and assume
that B0 ∈ Hs(Td) is divergence free. Then the zero mean velocity field u associated to
the magnetic field B ∈ C0([0,∞); Hs(Td)) has the property that

lim
t→∞

‖∇u(·, t)‖L∞ = 0 . (4.1)
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Proof of Theorem 4.1. The proof is based on the bound (3.10), on the energy inequality
(2.2), and on a bound for the time derivative of u, which we claim satisfies

‖∂t u(·, t)‖Cε ! ‖B0‖4L2 (4.2)

for all t ≥ 0. In order to prove (4.2) we apply a time derivative to (1.1b), and replace
∂t B in the resulting formula via (1.1a), to arrive at

(−#)γ ∂t ui − ∂i (∂t p) = ∂t (Bj∂ j Bi )
= ∂ j∂t (Bj Bi )
= ∂ j (∂t B j Bi + Bj∂t Bi )

= ∂ j
(
(Bk∂ku j − uk∂k B j )Bi + Bj (Bk∂kui − uk∂k Bi )

)

= ∂ j
(
Bi Bk∂ku j + Bj Bk∂kui − uk Bi∂k B j − uk B j∂k Bi

)

= ∂ j
(
Bi Bk∂ku j + Bj Bk∂kui

)
− ∂ j

(
uk∂k(Bi B j )

)

= ∂ j
(
Bi Bk∂ku j + Bj Bk∂kui

)
− ∂ j∂k

(
uk Bi B j

)

for every component i ∈ {1, . . . , d}. Therefore, we have established that

∂t u = (−#)−γPdiv (B ⊗ (B · ∇)u+(B · ∇)u ⊗ B)−(−#)−γPdiv div (B ⊗ B ⊗ u).

Since γ > 1+d/2, wemay again use inequality (3.9) along with the Poincaré inequality,
and deduce from the above formula for ∂t u that

‖∂t u(·, t)‖Cε ! ‖(B ⊗ B ⊗ ∇u)(·, t)‖L1 + ‖(B ⊗ B ⊗ u)(·, t)‖L1

! ‖B(·, t)‖2L2(Td )
‖u(·, t)‖W 1,∞

! ‖B0‖4L2(Td )
.

In the last inequality above we have appealed to (2.2) and (3.10). Thus, we have shown
that (4.2) holds.

In order to conclude the proof,we note that the energy inequality (2.2) and the Sobolev
embedding Hγ ⊂ L∞ gives that

ˆ ∞

0
‖u(·, t)‖2L∞ ! ‖B0‖2L2(Td )

.

Combined with (4.2), the above estimate shows that

lim
t→∞

‖u(·, t)‖L∞ = 0 .

The conclusion (4.1) now follows by interpolating the L∞ norm of ∇u between the L∞
norm of u, which vanishes as t → ∞ as shown above, and the Cε norm of ∇u, which
is uniformly bounded by (3.10).

Remark 4.2. (Relaxation towards Euler steady states?) Since (4.1) shows that
‖∇u(·, t)‖L∞ vanishes as t → ∞, it is tempting to conjecture (as was already done
by Moffatt [Mof85]) that as t → ∞ the magnetic field B(·, t) relaxes to a steady state
B̄ which solves (1.1b) with the left hand side equals to zero; that is, B̄ is a stationary
solution of the incompressible Euler equations. The purpose of this remark is to argue
that the information provided in Theorem 4.1 does not appear to be sufficient to conclude
this statement. By (2.2) andweak compactness we do have the existence of subsequences
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tk → ∞ such that the associated magnetic fields Bk(x) = B(x, tk) converge weakly in
L2; say Bk ⇀ B̄, for some (weakly) incompressible vector field B̄. Additionally, (2.1)
shows that the sequence {‖Bk‖L2}k≥1 is strictly decreasing and non-negative, so that
there exists Ē ≥ 0 with limk→∞ ‖Bk‖L2 = Ē ; in fact Ē > 0 in view of the Arnold
inequality (2.3) as long as the initial datum is topologically nontrivial. Of course, we
do not know whether ‖B̄‖L2 equals to Ē , or else we’d have strong L2 convergence as
k → ∞. The additional information provided by Theorem 4.1 and (1.1b) gives that
Pdiv (Bk ⊗ Bk) ⇀ 0. These facts do not, however, seem to imply that Pdiv (B̄⊗ B̄) = 0
in the sense of distributions, which would be the condition that B̄ is a stationary Euler
flow. Indeed, we may only deduce that

Pdiv (B̄ ⊗ B̄) = Pdiv ((B̄ − Bk) ⊗ B̄) + Pdiv (B̄ ⊗ (B̄ − Bk))

+ Pdiv (Bk ⊗ Bk) − Pdiv ((Bk − B̄) ⊗ (Bk − B̄)) .

The first three terms on the right side of the above do converge to 0 weakly as k → ∞ (the
first two terms by the assumption that Bk ⇀ B̄, and the third term due to Theorem 4.1).
However, we do not have enough information to conclude that the fourth term converges
to 0 as k → ∞; the information that (Bk − B̄)⊗ (Bk − B̄) is a symmetric non-negative
tensor, which is uniformly bounded in L1, is not sufficient; the enemy is ‖B̄‖L2 < Ē .

Remark 4.3. (Time integrability of ‖∇u(·, t)‖L∞ ) From (2.2) and the Sobolev embed-
ding Hγ ⊂ W 1,∞ we may deduce that ‖∇u(·, t)‖L∞ ∈ L2(0,∞). It remains however
an open problem to show that the Lipschitz norm of u decays sufficiently fast to ensure
that ‖∇u(·, t)‖L∞ ∈ L1(0,∞). If this faster decay were true, then in view of the Ḣ1

energy estimate for (1.1), which after exploring a few cancelations can be shown to be

1
2
d
dt

‖∇B‖2L2 + ‖u‖2
Ḣγ+1 ≤ 3 ‖∇B‖2L2 ‖∇u‖L∞ ,

would imply that ‖∇B(·, t)‖L2 is uniformly bounded in time. In turn, such information
would be sufficient to extract as t → ∞ limit points B̄, which are stationary solutions
of the Euler equations. We note, however, that at least when γ = 0, in Theorem 6.1 we
show, for suitable choices of initial data, the Ḣ1 norm of B does not remain uniformly
bounded in time. Thus it is not possible for the Lipschitz norm of u to be integrable in
time. Whether this situation is generic remains an open problem.

5. 2D Stability of the State B D e1 and u D 0

We consider the MRE system (1.1) in two space dimensions with γ = 0. In this section
we study the asymptotic stability of the steady state

B = e1 and u = 0 ,

under Sobolev smooth perturbations.We note that for theMHD systemwith viscosity but
no resistivity onR2, i.e. for (1.3)with#u added to (1.3b), the stability of (u, B) = (0, e1)
was proved for Sobolev smooth perturbations with certain admissibility conditions for
the initial data of magnetic perturbations in [LXZ15] (see also [RWXZ14] where the
admissibility conditions were removed). These works make use of the fact that at the
linearized level u satisfies

∂2t u − #∂t u − ∂21u = 0 .
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For the magnetic relaxation Eq. (1.1), this favorable structure is no longer available since
u is completely determined from B through (1.1b). Linearizing around (u, B) = (0, e1)
instead leads to the partially dissipative equation

∂t B = ∂21 B . (5.1)

This motivates the use of a different approach to proving global existence for the per-
turbations, as in [Elg17].

The perturbation of the magnetic field around the steady state e1 is written as b, i.e.
we consider

b := B − e1 . (5.2)

From (1.1b), with γ = 0, we deduce that

u = ∂1b + v (5.3)

where the nonlinear part of the velocity, denoted as v, is given by

v := b · ∇b + ∇ p , div v = 0 . (5.4)

Inserting the ansatz (5.2)–(5.4) into (1.1) we obtain the evolution equation for the per-
turbation of the magnetic field

∂t b + v · ∇b − b · ∇v − ∂21b = b · ∇∂1b − ∂1b · ∇b + ∂1v.

Using (5.4) we arrive at the following system for the magnetic perturbation:

∂t b + v · ∇b − b · ∇v − ∂21b = 2P(b · ∇∂1b) (5.5a)
v = b · ∇b + ∇ p (5.5b)

div v = div b = 0 . (5.5c)

Before stating our main theorem, it will be useful to introduce notation for the x1-
independent and the x1-dependent components of b. As such, for any functionψ : T2 →
R, we define

P0ψ(x2) :=
 
T

ψ(x1, x2)dx1

P⊥ψ(x1, x2) := ψ(x1, x2) − P0ψ(x2) .

With this notation, our main result concerning the system (5.5) is:

Theorem 5.1 (Stability and relaxation). Let k ≥ 4 and m ≥ k + 9. Choose δ ∈ (0, 1).
There exists ε0 such that if

‖b0‖Hm = ε ≤ ε0 , (5.6)

and P0b0 = 0, then we have that (5.5) has a unique global in time smooth solution
(b, v), which satisfies ‖b(·, t)‖L2 ≤ ε and

‖P⊥b(·, t)‖Ḣ k ≤ 4εe−(1−δ)t (5.7a)
‖P0b1(·, t)‖Hk+2 ≤ 4ε (5.7b)

‖b(·, t)‖2Ḣm ≤ 4εeεt (5.7c)

for t ∈ [0,∞). As a consequence, the total velocity field satisfies u(·, t) → 0 as t → ∞,
whereas the total magnetic field B(·, t) = e1 + b(·, t) relaxes to a steady state B̄ with
‖B̄ − e1‖Hk+2 ≤ 4ε, both convergences taking place with respect to strong topologies.
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Remark 5.2. (Notation) For simplicity of notation, throughout the proof of Theorem 5.1,
we shall use the notation:

a = a(x2, t) = P0b1(x2, t) (5.8a)
f = f (x1, x2, t) = P⊥b(x1, x2, t) (5.8b)
w = w(x1, x2, t) = P⊥v(x1, x2, t) . (5.8c)

We do not introduce new notation for P0v1, but note from (5.5b) and the observation
that P0b2(·, t) = 0 (which will be established in Lemma 5.3 below), we have

P0v1 = ∂2P0(b2b1) = ∂2P0( f2( f1 + a)) = ∂2P0( f2 f1) .

The above identity will be used in the analysis below. Note that with the notation in
(5.8), we have that the stability estimates in (5.7) become

‖ f (·, t)‖Ḣ k ≤ 4εe−(1−δ)t , ‖a(·, t)‖Hk+2 ≤ 4ε , ‖b(·, t)‖Ḣm ≤ 4εeεt , (5.9)

which are the bounds proven below.

5.1. The evolution equations for a and f . Before turning to the proof of Theorem 5.1,
we need to determine the evolution equations for a and f . In turn, this is necessary
because the ∂21b dissipative term present in (5.5a) may only be expected to cause decay
of the part of b which is not constant in the x1 direction, i.e. for f . Moreover, the precise
coupling between the evolution equations for a and f is crucial to the proof (and is also
the reason why in three dimensions this stability result doesn’t hold). In this direction,
for a we have:

Lemma 5.3 (The a evolution). Assume that (b, v) are smooth solutions of (5.5) and
P0b0 = 0. Then, we have

∂t a = ∂2P0(2 f2∂1 f1 + f2w1 − w2 f1) =: N ′( f, w) (5.10)

and P0b2(·, t) = 0. Crucially, a does not appear on the right side of (5.10).

Proof of Lemma 5.3. Applying P0 to (5.5a) and using that P0∂1ψ = 0 for any periodic
ψ , gives

∂tP0bi = ∂2P0(b2vi − v2bi + 2b2∂1bi ). (5.11)

When i = 2, we appeal to the fact that P0(b2∂1b2) = P0∂1(b22/2) = 0, and to the
assumption P0b2,0 = 0, to conclude from (5.11) that P0b2(x2, t) = 0 for all t ≥ 0. In
particular, this implies that f2 = b2. Moreover, since

ffl
T2 f = 0 and 0 = div b = div f ,

there exists a periodic stream function φ, such that f = ∇⊥φ. In particular,

f2 = ∂1φ .

Similarly, since div v = 0 and
ffl
T2 v =

ffl
T2 div (b ⊗ b + pI2) = 0, we obtain that there

exists a periodic stream function ϕ, such that v = ∇⊥ϕ. In particular,

v2 = w2 = ∂1ϕ .
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With this information, we return to (5.11) and set i = 1. Since ∂1b1 = ∂1 f1, b2 = f2,
and v2 = w2, we have that

P0(b2v1 − v2b1 + 2b2∂1b1) = P0( f2v1 − w2b1 + 2 f2∂1 f1)

= P0( f2w1 − w2 f1 + 2 f2∂1 f1) + P0(P⊥b2P0v1 − P⊥v2P0b1)

which establishes (5.10), upon noting that P0(P⊥ψ1P0ψ2) = P0ψ2P0(P⊥ψ) = 0 for
any ψ1,ψ2.

The evolution equation for f is more complicated, and is given by the following
lemma.

Lemma 5.4 (The f evolution). Assume that (b, v) are smooth solutions of (5.5) and
P0b0 = 0. Then, we have

∂t f = L( f ) + N ( f, w) (5.12)

where the linear operator L acts on the vector field f = ( f1, f2)T as

L( f ) := (1 + a)2∂21 f + (1 + a)∇∂1 pL − ∂2a∂2 pLe1 (5.13a)

pL := pL(a, f ) = 2(−#)−1(∂2a∂1 f2) (5.13b)

where as in (5.8), a = P0b1. The nonlinear operator N appearing in (5.12) is defined
as

N ( f, w) := a∂1P⊥( f · ∇ f + ∇ pN ) + P⊥( f · ∇w − w · ∇ f ) − ∂2P0( f1 f2)∂1 f

+2P⊥( f · ∇∂1 f ) + ∇∂1P⊥ pN +
(
∂22P0( f1 f2) f2 − ∂2aP⊥( f · ∇ f2 + ∂2 pN )

)
e1

pN := pN ( f ) = 2(−#)−1((∂1 f1)2 + ∂1 f2∂2 f1)). (5.14a)

Proof of Lemma 5.4. We apply P⊥ to (5.5a) to get

∂t f − ∂21 f = P⊥(b · ∇v − v · ∇b + 2b · ∇∂1b + ∇∂1 p) . (5.15)

The goal is to further decompose the right side of (5.15), in order to extract from it all
local and nonlocal terms which are linear in f .

We first determine a decomposition for the pressure. Applying a divergence to (5.4)
gives

−#p = div (b · ∇b) = 2(∂1b1)2 + 2∂1b2∂2b1

= 2((∂1 f1)2 + ∂1 f2∂2 f1)︸ ︷︷ ︸
=:−#pN

+ 2∂1 f2∂2a︸ ︷︷ ︸
=:−#pL

(5.16)

where pN is the pressure which is nonlinear in f , and pL is the pressure which is linear
with respect to f . Note that both of these pressure terms are uniquely defined once we
impose that they have zero mean on T2, and that they correspond to definitions (5.13b)
and (5.14a).

Next, we compute the velocity in terms of the magnetic perturbation. As noted in
Remark 5.8, we may decompose the velocity field as

v1 = w1 + ∂2P0( f1 f2) , v2 = w2. (5.17)



1324 R. Beekie, S. Friedlander, V. Vicol

Furthermore, by applying P⊥ to (5.4), and using (5.16), we obtain that

w = P⊥(b1∂1b + b2∂2b + ∇ p)
= a∂1 f + ∇ pL + ∂2a f2e1 + P⊥( f · ∇ f + ∇ pN ) . (5.18)

With (5.18) in hand, we now compute the stretching and the advection terms present on
the right side of (5.15). Indeed, from (5.17) and (5.18) for the stretching term in (5.15)
we obtain

P⊥(b · ∇v1) = P⊥ ((a + f1)∂1w1 + f2∂2(w1 + ∂2P0( f1 f2)))

= a∂1w1 + f2∂22P0( f1 f2) + P⊥( f · ∇w1)

= a∂1(a∂1 f1 + ∂2a f2 + ∂1 pL) + a∂1P⊥( f · ∇ f1 + ∂1 pN ) + f2∂22P0( f1 f2)
+ P⊥( f · ∇w1)

= a2∂21 f1 + a∂2a∂1 f2 + a∂21 pL + a∂1P⊥( f · ∇ f1 + ∂1 pN ) + f2∂22P0( f1 f2)
+ P⊥( f · ∇w1)

and similarly,

P⊥(b · ∇v2) = P⊥((a + f1)∂1w2 + f2∂2w2)

= a∂1w2 + P⊥( f · ∇w2)

= a∂1(a∂1 f2 + ∂2 pL) + a∂1P⊥( f · ∇ f2 + ∂2 pN ) + P⊥( f · ∇w2)

= a2∂21 f2 + a∂1∂2 pL + a∂1P⊥( f · ∇ f2 + ∂2 pN ) + P⊥( f · ∇w2) .

On the other hand, for the transport term in (5.15) we have

P⊥(v · ∇b1) = P⊥((w1 + ∂2P0( f1 f2))∂1 f1 + w2∂2( f1 + a))
= P⊥(w · ∇ f1) + ∂2P0( f1 f2)∂1 f1 + ∂2aw2

= a∂2a∂1 f2 + ∂2a∂2 pL + ∂2aP⊥( f · ∇ f2 + ∂2 pN )
+ ∂2P0( f1 f2)∂1 f1 + P⊥(w · ∇ f1) ,

and

P⊥(v · ∇b2) = P⊥((w1 + ∂2P0( f1 f2))∂1 f2 + w2∂2b2)
= ∂2P0( f1 f2)∂1 f2 + P⊥(w · ∇ f2) .

For the third nonlinear term on the right side of (5.15) we have

P⊥(b · ∇∂1b) = P⊥((a + f1)∂21 f + f2∂2∂1 f )

= a∂21 f + P⊥( f · ∇∂1 f ) .

Gathering the above five displayed equations, we obtain that

Linear terms on right side of (5.15) = a2∂21 f + a∂1∇ pL − ∂2a∂2 pLe1 + 2a∂21 f ,

Nonlinear terms on right side of (5.15) = a∂1P⊥( f · ∇ f + ∇ pN ) + P⊥( f · ∇w − w · ∇ f )

+ 2P⊥( f · ∇∂1 f ) − ∂2P0( f1 f2)∂1 f

+
(
f2∂22P0( f1 f2) − ∂2aP⊥( f · ∇ f2 + ∂2 pN )

)
e1 .

From the above displayed equations and (5.15), the proof of (5.12) follows. 34
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5.2. Properties of the linear operator L( f ).

Lemma 5.5. Suppose f (x1, x2) is sufficiently regular such that

div f = 0 (5.19a)
P0 f = 0 (5.19b)

Then

div L f = 0
P0(L( f )) = 0

Proof of Lemma 5.5. We can write L f as

L f = ∂1

(
(1 + a)2∂1 f + (1 + a)∇ pL − 2∂2a∂2(−#)−1(∂2a f )e1

)

Therefore, assuming f is sufficiently regular, we conclude for each t and x2 we have
P0(L( f ))(x2, t) = 0. Furthermore

div L f = (1 + a)2∂21 div f + (1 + a)#∂1 pL + ∂2(1 + a)2∂21 f2 − ∂2a∂1∂2 pL
+ ∂2(1 + a)∂1∂2 pL

= −2(1 + a)∂2a∂21 f + 2(1 + a)∂2a∂21 f2
= 0 , (5.21)

which concludes the proof.

Remark 5.6. (Solvability of the linear equation) Now let us consider the evolution equa-
tion

∂t f = L f , f |t=0 = f0 , (5.22)

where the initial data f0 satisfies (5.19), i.e. it is divergence free and its zero frequency in
the x1 variable is trivial. Using Lemma 5.5 and the energy estimates done in Proposition
5.7 we can show that for sufficiently regular initial data f0, the unique solution f of
(5.22) also satisfies (5.19).

Before we state our main semigroup estimate, Proposition 5.7 below, we specify the
function spaces where we consider the evolution of solutions of (5.22). For k ∈ N we
define

Ḣ k
0 :=

{
f ∈ Hk(T2;R2) : P0 f j = 0, j ∈ {1, 2}

}
. (5.23)

Note that Ḣ k
0 embeds into Ḣ l

0 for any l ≤ k because Poincare’s inequality holds.

Proposition 5.7. (Linear decay estimates) Let f be a solution of (5.22). For any δ ∈
(0, 1) there exists ε0 > 0 such that for any 0 < ε ≤ ε0 if

‖a(·, t)‖Wk+1,∞ ≤ 4ε t ∈ [0, T ] (5.24)

then

‖eLt‖Ḣ k
0 →Ḣ k

0
≤ e−(1−δ)t t ∈ [0, T ] (5.25)

where k is as in Theorem 5.1.
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Proof of Proposition 5.7. Differentiating (5.13a) k times with respect to ∂1, multiplying
by ∂k1 f , and then integrating gives

1
2
d
dt

‖∂k1 f ‖2L2 + ‖(1 + a)∂k+11 f ‖2L2 = 〈(1 + a)∇∂k+11 pL , ∂k1 f 〉 − 〈∂2a∂2∂
k
1 pL , ∂

k
1 f1〉
(5.26)

where we have used that a does not depend on x1. Using the definition of pL we have

〈(1 + a)∇∂k+11 pL , ∂k1 f 〉 ≤ ‖1 + a‖L∞‖∇∂k+11 pL‖L2‖∂k1 f ‖L2

≤ 2‖1 + a‖L∞‖∂2a‖L∞‖∂k+11 f ‖2L2

〈∂2a∂2∂
k
1 pL , ∂

k
1 f1〉 ≤ ‖∂2a‖L∞‖∂2∂k1 pL‖L2‖∂k f ‖L2 ≤ 2‖∂2a‖2L∞‖∂k+11 f ‖2L2

(5.27)

where we have used that Poincare’s inequality in the x1 variable holds with constant 1.
For the given δ, we can take ε0 small enough such that if ‖a‖Wk+1,∞ = ε ≤ ε0 then

1
2
d
dt

‖∂k1 f ‖2L2 +
(
1 − δ

2

)
‖∂k+11 f ‖2L2 ≤ 0. (5.28)

Repeating the same process with ∂k2 gives

1
2
d
dt

‖∂k2 f ‖2L2 + ‖(1 + a)∂k2∂1 f ‖2L2

=
∑

0<d≤k

cd,k〈∂d2 (1 + a)2∂k−d
2 ∂21 f, ∂k2 f 〉 +

∑

0≤d≤k

cd,k〈∂d2 (1 + a)∂k−d
2 ∇∂1 pL , ∂k2 f 〉

−
∑

0≤d≤k

cd,k〈∂d2 ∂2a∂k−d
2 ∂2 pL , ∂k2 f1〉 =

∑

0<d≤k

T1,d +
∑

0≤d≤k

(T2,d − T3,d)

We now bound Ti,d :

T1,d := cd,k〈∂d2 (1 + a)2∂k−d
2 ∂21 f, ∂k2 f 〉

= −cd,k〈∂d2 (1 + a)2∂k−d
2 ∂1 f, ∂k2∂1 f 〉

≤ cd,k‖∂d2 (1 + a)2‖L∞‖∂k−d
2 ∂1 f ‖L2‖∂k2∂1 f ‖L2

≤ cd,kc j,d‖∂ j
2 (1 + a)‖L∞‖∂d− j

2 (1 + a)‖L∞‖∂k−d
2 ∂1 f ‖L2‖∂k2∂1 f ‖L2 (5.29)

where 0 < d ≤ k and 0 ≤ j ≤ d. Since d is never 0, this ensures either ∂
j
2 (1+a) = ∂

j
2 a

or ∂
d− j
2 (1 + a) = ∂

d− j
2 a which are smaller than ε in L∞. Therefore, by choosing ε0

sufficiently small, we can take these terms as small as we want. Similarly,

T2,d := cd,k〈∂d2 (1 + a)∂k−d
2 ∇∂1 pL , ∂k2 f 〉

≤ 2cd,k‖∂d2 (1 + a)‖L∞‖∂k−d
2 (∂2a∂1 f2)‖L2‖∂k2 f ‖L2

≤ 2cd,kc j,k−d‖∂d2 (1 + a)‖L∞‖∂ j+1
2 a‖L∞‖∂k−d− j

2 ∂1 f2‖L2‖∂k2 f ‖L2

≤ 2cd,kc j,k−d‖∂d2 (1 + a)‖L∞‖∂ j+1
2 a‖L∞‖∂1 f ‖2Ḣ k

0
(5.30)
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and

T3,d := cd,k〈∂d+12 a∂k−d+1
2 pL , ∂k2 f1〉

≤ 2cd,k‖∂d+12 a‖L∞‖∂k−d
2 (∂2a f2)‖L2‖∂k2 f1‖L2

≤ 2cd,kc j,k−d‖∂d+12 a‖L∞‖∂ j+1
2 a‖L∞‖∂k−d− j

2 f2‖L2‖∂k2 f ‖L2

≤ 2cd,kc j,k−d‖∂d+12 a‖L∞‖∂ j+1
2 a‖L∞‖∂1 f ‖2Ḣ k

0
. (5.31)

Combining the estimates for (5.29), (5.30), and (5.31) gives

1
2
d
dt

‖∂k2 f ‖2L2 + ‖(1 + a)∂k2∂1 f ‖2L2 ≤ Cε‖∂1 f ‖2Ḣ k
0
. (5.32)

Combining (5.32) with (5.28) and taking ε0 sufficiently small we conclude

1
2
d
dt

‖ f ‖2
Ḣ k
0

≤ −(1 − δ)‖∂1 f ‖Ḣ k
0

≤ −(1 − δ)‖ f ‖2
Ḣ k
0

(5.33)

which completes the proof.

5.3. Proof of Theorem 5.1. The proof is based on the local existence result in Theo-
rem 2.2, and a standard bootstrap argument for the bounds (5.7). SinceP0b0 = 0we have
that

´
T2 b0dx1dx2 = 0, and by appealing to (5.5a) we see that

´
T2 b(·, t)dx1dx2 = 0

for all t ≥ 0. It follows that ‖B‖2L2 = ‖b‖2L2 + |T|2 + 2
´
T2 b1dx1dx2 = ‖b‖2L2 + |T|2.

Therefore, (2.2) and (5.6) imply that

‖b(·, t)‖L2 ≤ ‖b0‖L2 ≤ ε (5.34)

for all t ≥ 0. Moreover, (5.6) and (2.9) show that there exists T0 > 0 such that for
all t ∈ [0, T0] we have that ‖b(·, t)‖Ḣm ≤ 2ε. This bound may be combined with
(5.34) to conclude that the bounds (5.7) hold on [0, T0], with all inequalities being strict
inequalities. Due to the local existence result in Theorem 2.2 via a standard continuity
argument we may thus define a maximal time T∗ ∈ [T0,∞] such that the estimates (5.7)
hold on [0, T∗). Our goal is to show that T∗ = ∞. In order to achieve this we show that
if (5.7) hold on [0, T ] for some T > 0, then we may a posteriori show that these bounds
in fact hold with constants 3ε instead of 4ε in (5.7a)–(5.7c); this then shows T∗ = ∞.
The rest of the proof is dedicated to establishing this implication, and so we fix a time
interval [0, T ], and we assume throughout that (5.7) hold. We recall and use the notation
in (5.8).

5.3.1. Estimates for the nonlinear terms N and N ′ Under the standing assumptions, we
estimate the nonlinear terms N ( f, w) defined in (5.14a) and N ′( f, w) defined in (5.10)
and claim that

‖N ( f, w)(·, t)‖Hk ≤ ε2e− 3
2 (1−δ)t (5.35)

and

‖N ′( f, w)(·, t)‖Hk+2 ≤ ε2e−(1−δ)t . (5.36)
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Prior to establishing (5.35) and (5.36), we claim that the pressure terms in (5.13b)
and (5.14a) satisfy the bounds

‖pL‖Hk+β ! ‖a‖Hk+β ‖ f ‖
m−k−β+1

m−k
Hk ‖ f ‖

β−1
m−k
Hm (5.37a)

‖pN‖Hk+β ! ‖ f ‖
2(m−k−β+1)

m−k
Hk ‖ f ‖

2(β−1)
m−k

Hm (5.37b)

for 1 ≤ β ≤ 10. The estimate for the linear pressure follows directly from (5.13b), the
fact that Hk is an algebra, and interpolation:

‖pL‖Hk+β ! ‖∂2a f2‖Hk+β−1 ! ‖a‖Hk+β ‖ f2‖Hk+β−1 ! ‖a‖Hk+β ‖ f ‖
m−k−β+1

m−k
Hk ‖ f ‖

β−1
m−k
Hm .

Similarly, from (5.14a) we have

‖pN‖Hk+β ! ‖(∂1 f1)2 + ∂1 f2∂2 f1‖Hk+β−2 ! ‖ f ‖2Hk+β−1 ! ‖ f ‖
2(m−k−β+1)

m−k
Hk ‖ f ‖

2(β−1)
m−k

Hm .

Next, we claim that the velocity field w from (5.18) satisfies the estimate

‖w‖Hk+β ! ‖a‖Hk+β+1‖ f ‖
m−k−β−1

m−k
Hk ‖ f ‖

β+1
m−k
Hm + ‖ f ‖

2(m−k−β−1)
m−k

Hk ‖ f ‖
2(β+1)
m−k
Hm (5.38)

for β ≥ 0. This bound follows from (5.18), the previously established bounds (5.37b)–
(5.37b), and an algebra + interpolation argument:

‖w‖Hk+β ! ‖a∂1 f ‖Hk+β + ‖∂2a f2‖Hk+β + ‖ f · ∇ f ‖Hk+β + ‖∇ pL‖Hk+β + ‖∇ pN‖Hk+β

! ‖a‖Hk+β+1‖ f ‖Hk+β+1 + ‖ f ‖2Hk+β+1 + ‖pL‖Hk+β+1 + ‖pL‖Hk+β+1

! ‖a‖Hk+β+1‖ f ‖
m−k−β−1

m−k
Hk ‖ f ‖

β+1
m−k
Hm + ‖ f ‖

2(m−k−β−1)
m−k

Hk ‖ f ‖
2(β+1)
m−k
Hm

+ ‖a‖Hk+β+1‖ f ‖
m−k−β
m−k

Hk ‖ f ‖
β

m−k
Hm + ‖ f ‖

2(m−k−β)
m−k

Hk ‖ f ‖
2β
m−k
Hm .

The bound (5.38) follows by using the Poincaré inequality (recall that f has zero mean
on T2).

With (5.37b)–(5.37b) and (5.38) available, we next give the proof of (5.35). The right
side of (5.14a) contains ten terms, and as such we estimate

‖N ( f, w)‖Hk ≤ N1 + . . . + N10 ,

where

N1 := ‖a∂1P⊥( f · ∇ f )‖Hk ! ‖a‖Hk‖ f ‖2Hk+2 ! ‖a‖Hk‖ f ‖2−
4

m−k
Hk ‖ f ‖

4
m−k
Hm

N2 := ‖a∂1P⊥∇ pN‖Hk ! ‖a‖Hk‖pN‖Hk+2 ! ‖a‖Hk‖ f ‖2−
2

m−k
Hk ‖ f ‖

2
m−k
Hm

N3 := ‖P⊥( f · ∇w)‖Hk ! ‖ f ‖Hk‖w‖Hk+1 ! ‖a‖Hk+2‖ f ‖2−
2

m−k
Hk ‖ f ‖

2
m−k
Hm +‖ f ‖3−

4
m−k

Hk ‖ f ‖
4

m−k
Hm

N4 := ‖P⊥(w · ∇ f )‖Hk ! ‖w‖Hk‖ f ‖Hk+1 ! ‖a‖Hk+1‖ f ‖2−
2

m−k
Hk ‖ f ‖

2
m−k
Hm + ‖ f ‖3−

3
m−k

Hk ‖ f ‖
3

m−k
Hm

N5 := ‖∂2P0( f1 f2)∂1 f ‖Hk ! ‖ f ‖3Hk+1 ! ‖ f ‖3−
3

m−k
Hk ‖ f ‖

3
m−k
Hm

N6 := 2‖P⊥( f · ∇∂1 f )‖Hk ! ‖ f ‖2Hk+2 ! ‖ f ‖2−
4

m−k
Hk ‖ f ‖

4
m−k
Hm
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N7 := ‖∇∂1P⊥ pN‖Hk ! ‖pN‖Hk+2 ! ‖ f ‖2−
2

m−k
Hk ‖ f ‖

2
m−k
Hm

N8 := ‖∂22P0( f1 f2) f2‖Hk ! ‖ f ‖3Hk+2 ! ‖ f ‖3−
6

m−k
Hk ‖ f ‖

6
m−k
Hm

N9 := ‖∂2aP⊥( f · ∇ f2)‖Hk ! ‖a‖Hk+1‖ f ‖2Hk+1 ! ‖a‖Hk+1‖ f ‖2−
2

m−k
Hk ‖ f ‖

2
m−k
Hm

N10 := ‖∂2a∂2P⊥ pN‖Hk ! ‖a‖Hk+1‖pN‖Hk+1 ! ‖a‖Hk+1‖ f ‖2Hk ,

where the implicit constants only depend onm and k. At this point we use the assumption
that m − k ≥ 9, the standing assumption (5.9), and take ε sufficiently small depending
on δ to obtain that (5.35) holds.

In a similar fashion, we estimate the nonlinear term in (5.10) as

‖N ′( f, w)‖Hk+2 ≤ N ′
1 + N ′

2 + N ′
3

with

N ′
1 := 2‖∂2P0( f2∂1 f1)‖Hk+2 ! ‖ f ‖2Hk+4 ! ‖ f ‖2−

8
m−k

Hk ‖ f ‖
8

m−k
Hm

N ′
2 := ‖∂2P0( f2w1)‖Hk+2 ! ‖ f ‖Hk+3‖w‖Hk+3 ! ‖a‖Hk+4‖ f ‖2−

7
m−k

Hk ‖ f ‖
7

m−k
Hm

+ ‖ f ‖3−
11

m−k
Hk ‖ f ‖

11
m−k
Hm

N ′
3 := ‖∂2P0(w2 f1)‖Hk+2 ! ‖w‖Hk+3 ‖ f ‖Hk+3 ! ‖a‖Hk+4‖ f ‖2−

7
m−k

Hk ‖ f ‖
7

m−k
Hm

+ ‖ f ‖3−
11

m−k
Hk ‖ f ‖

11
m−k
Hm ,

where the implicit constant depends only on m and k. Once again, using m − k ≥ 9, the
standing assumption (5.9), and the bound ‖a(t)‖Hk+4 ! ‖a(t)‖Hm ! eεt , after taking ε
sufficiently small depending on δ we have that (5.36) holds.

5.3.2. Closing the (5.7a) bootstrap This argument is based on the Duhamel formula,
which allows us via (5.12) to write

f (t) = eLt f0 +
ˆ t

0
eL(t−s)N ( f, w)(s)ds . (5.39)

Next, we note that a is a function defined on T, and thus by the Sobolev embedding
we have Hk+2 ⊂ Wk+1,∞, which shows that (5.9) implies (5.24); thus, we may apply
Proposition 5.7. Applying the Ḣ k norm to (5.39), and appealing to (5.35), we arrive at

‖ f (t)‖Ḣ k ≤ εe−(1−δ)t +
ˆ t

0
e−(1−δ)(t−s)‖N ( f, w)(s)‖Ḣ k ds

≤ εe−(1−δ)t + ε2
ˆ t

0
e−(1−δ)(t−s)e− 3

2 (1−δ)sds

≤ εe−(1−δ)t
(
1 + ε

ˆ t

0
e− 1

2 (1−δ)sds
)

≤ 2εe−(1−δ)t , (5.40)

once ε is chosen sufficiently small with respect to δ. This bound improves on (5.7a), as
desired.
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5.3.3. Closing the (5.7b) bootstrap By assumption, we have that a|t=0 = 0. Integrating
the evolution equation for a in (5.10), and appealing to (5.36), we thus deduce that

‖a(·, t)‖Hk+2 ≤
ˆ t

0

∥∥N ′( f, w)(·, s)
∥∥
Hk+2 ds ≤ ε2

ˆ t

0
e−(1−δ)sds ≤ ε

for all t ∈ [0, T ], upon choosing ε to be sufficiently small in terms of δ. This improves
(5.7b) by a constant factor, as desired.

5.3.4. Closing the (5.7c) bootstrap From (2.4), (5.3), (5.6), and the fact that ‖B‖Ḣ s =
‖b‖Ḣ s , we deduce that for a constant Cm which only depends on m, we have

‖b(·, t)‖2Ḣm ≤ ε2 exp
(
Cm

ˆ t

0
‖∇v(·, s)‖L∞ + ‖∇∂1b(·, s)‖L∞ + ‖∇b(·, s)‖2L∞ ds

)
.

(5.41)

From (5.9), (5.17), (5.38), and the fact that k > d/2 + 1 = 2, we note that

ˆ t

0
‖∇v(·, s)‖L∞ ds !

ˆ t

0
‖w(·, s)‖Hk + ‖ f (·, s)‖2Hk+1 ds

!
ˆ t

0
‖a(·, s)‖Hk+1 ‖ f ‖1−

1
m−k

Hk ‖ f ‖
1

m−k
Hm + ‖ f ‖2−

2
m−k

Hk ‖ f ‖
2

m−k
Hm ds

! ε2
ˆ t

0
e− 8

9 (1−δ)s+ 2
9 εsds ! ε , (5.42)

if ε is sufficiently small with respect to δ. Returning to (5.41), we see that∇∂1b = ∇∂1 f ,
and since k > 2 + d/2 = 3 and f has zero mean on T2, we have that (5.9) implies

ˆ t

0
‖∇∂1b(·, s)‖L∞ ds !

ˆ t

0
‖ f (·, s)‖Hk ds ! ε

ˆ t

0
e−(1−δ)sds ! ε

1
2 . (5.43)

Lastly, for the third term in (5.41) we similarly note that

ˆ t

0
‖∇b(·, s)‖2L∞ ds !

ˆ t

0
‖a(·, s)‖2Hk + ‖ f (·, s)‖2Hk ds ! ε2t + ε , (5.44)

where the implicit constant only depends on m and k. By combining (5.41)–(5.44) we
thus obtain that there exists a constant Cm,k > 0, which only depends on m and k, such
that

‖b(·, t)‖2Ḣm ≤ ε2 exp
(
Cm,k(ε

2t + ε
1
2 )

)
≤ ε exp(εt)

upon taking ε to be sufficiently small, solely in terms of m and k. This bound improves
on (5.7c), as desired.
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5.3.5. Relaxation in the infinite time limit We recall that the total velocity field has zero
mean on T2 and is given from (5.3)–(5.4) as u = ∂1b+ v, and v is computed from f and
w via (5.17). Since ∂1b = ∂1 f , the fact that ‖u(·, t)‖Hk → 0 as t → ∞, exponentially
fast, now follows from (5.9) and (5.38):

‖u(·, t)‖Hk−1 = ‖u(·, t)‖Ḣ k−1 ! ‖ f ‖Ḣ k + ‖w‖Ḣ k + ‖ f1 f2‖Ḣ k

! εe−(1−δ)t + ε3e− (1−δ)(m−k−1)−ε
m−k t + ε2e− 2(1−δ)(m−k−1)−2ε

m−k t + ε2e−2(1−δ)t

! εe− 1−δ
2 t .

In order to conclude the proof of the theorem, we note that in view of (1.3a) and the fact
that k ≥ 4, we have

‖∂t b‖Hk−2 = ‖∂t B‖Hk−2 ! ‖B ⊗ u‖Hk−1 ! ‖B‖Hk−1 ‖u‖Hk−1 ! (1 + ‖b‖Hk ) ‖u‖Ḣ k−1

and thus in view of (5.7a)–(5.7b) we obtain

‖∂t b‖Hk−2 ! εe− 1−δ
2 t .

The strong convergence limt→∞ b(·, t) = b̄, with respect to the Hk−2 norm, for an
incompressible vector field b̄which has norm≤ 4ε, now follows from the above estimate
and the fundamental theorem of calculus in time. The corresponding limiting relaxation
state for the total magnetic field is then B̄ = e1 + b̄.

6. Nonlinear instabilities in 3D

In this section we consider a class of two-and-a-half dimensional exact solutions of
the three-dimensional MRE system (1.1), when γ = 0, and show that for suitable
choices of initial conditions, these solutions exhibit infinite time growth of gradients.
These examples draw on an analogy with the 3D Euler equation, for which Yudovich
[Yud74,Yud00] has constructed similar solutions. Theorem 6.1 below gives an example
in which magnetic relaxation holds with respect to the L2 norm, but fails with respect to
the H1 norm. Furthermore, as in thework of Elgindi andMasmoudi [EM20]we construct
examples where the magnetic current grows exponentially in time, for all time.

To fix notation, for any vector x ∈ R3, we denote by xH its first two horizontal
components, i.e. xH = (x1, x2). We also write div H = ∇H · where ∇H = (∂1, ∂2).

6.1. Euler examples. We recall from [Yud74,Yud00] the following two-and-a-half di-
mensional solution of 3D Euler, which exhibits infinite time growth of the vorticity.

The setting is as follows. Consider any stationary state v = v(xH ) of the 2D Euler
equations onT2. These stationary states may be written as v = ∇⊥

Hφ, where the periodic
stream function φ : T2 → R satisfies #Hφ = F(φ) for a sufficiently smooth F . Then,
an exact solution of the 3D Euler system is given by

u(x, t) = (v(xH ), g(xH , t)) (6.1)

where the function g : T2 × R+ → R satisfies the transport equation

∂t g + (v · ∇H )g = 0 . (6.2)
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Indeed, onemayverify that ∂t u+u·∇u = (v·∇Hv, ∂t g+v·∇Hg) = (−∇H p, 0) = −∇ p,
where p = p(xH ) is the pressure associated to the steady solution v.

Shear flow. When v is a shear flow, such as

v(xH ) = (V (x2), 0)

for a smooth function V : T → R, the solution of (6.3) is explicit in terms of its initial
datum g0:

g(xH , t) = g0(x1 − tV (x2), x2) . (6.3)

Thus, combining (6.1) with (6.3), we are lead to the following exact solution of 3D
Euler:

u(x, t) = (V (x2), 0, g0(x1 − tV (x2), x2)) . (6.4)

Even though u(·, t) remains bounded with respect to the L∞ norm, the vorticity ω =
∇ × u has the property that its first component is given by

ω1(x, t) = (∂2u3 − ∂3u2)(x, t) = −tV ′(x2)(∂1g0)(x1 − tV (x2), x2)
+(∂2g0)(x1 − tV (x2), x2) .

It is clear that for suitable choice of the initial datum g0, and for V -≡ constant, we have
that ‖ω1(·, t)‖L∞ " t as t → ∞. As such, in [Yud00], Yudovich calls the solution given
in (6.4) as weakly nonlinearly unstable.

Hyperbolic flow. In analogy with the above example, Elginidi and Masmoudi [EM20]
consider the stationary solution v = v(xH ) appearing in (6.1) to be an eigenfunction of
the Laplacian which displays hyperbolic dynamics near the separatrix; more precisely,
they consider

v = ∇⊥
H (sin x1 sin x2) =

(
− sin x1 cos x2
cos x1 sin x2

)
. (6.5)

In this case, the solution g of the transport equation (6.3) is again bounded, but its
derivative in the x1 direction, restricted to the separatrix {x2 = 0} satisfies the equation

∂t (∂1g)|x2=0 − sin x1∂1(∂1g)|x2=0 = cos x1(∂1g)|x2=0 ,

and as such we have that (∂1g)(0, 0, t) = (∂1g)(0, 0, 0)et . Thus, in this situation the
solution u of 3D Euler given by (6.1) exhibits exponential growth with respect to time
of the first component of the vorticity

‖ω1(·, t)‖L∞ ≥ et |ω1(0, 0, 0)| .
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6.2. MRE examples. The example of Yudovich outlined above, has a direct correspon-
dent for the 3D MRE system. The main observation is that an exact solution of the 3D
MRE Eq. (1.1) with γ = 0 is given by

B = (v, g) , u = (0, 0, (v · ∇H )g) (6.6)

where g = g(xH , t) : T2 × R+ → R satisfies the rank 1 diffusion equation

∂t g = (v · ∇H )
2g . (6.7)

In order to verify this, we start from the ansatz (6.6) and the fact that g is independent of
x3, to immediately see that B and u are divergence free, so that (1.1c) holds.When γ = 0,
and with the ansatz (6.6), the first two components of (1.1b) become 0 = v ·∇Hv+∇H p;
this identity holds because v was chosen to be an exact stationary state of the 2D Euler
equations. On the other hand, the third component of (1.1b) reads u3 = v ·∇Hg, which
justifies the definition of u3 in (6.6). Lastly, in view of (6.6) we have u · ∇B = 0, since
v, g are independent of x3, and B ·∇u = e3(v ·∇H )(v ·∇H )g. Therefore, (6.7) ensures
that (1.1a) holds, as claimed.

Comparing the MRE evolution of g in (6.7) to the Euler evolution of g in (6.3), we
see that the main difference is that g does not solve a transport equation, but rather a
rank 1 diffusion equation. Nonetheless, the gradient of g may still exhibit infinite time
growth, which is what we show next.

Shear flow. The evolution Eq. (6.7) is particularly easy to solve if the 2D Euler steady
state v is chosen to be a shear flow. As such, consider

v(xH ) = (V (x2), 0) (6.8)

for a smooth T-periodic scalar function V . With (6.7), the evolution (6.7) becomes

∂t g = V 2(x2)∂11g (6.9)

which is a heat equation in the (x1, t) variables, with viscosity coefficients that depend
on x2. In particular, if we choose an initial datum g0 which is just a function of x1 and
such that its mean-free part is an eigenfunction of ∂11, i.e.

−∂11g0(x1) = λ2
(
g0(x1) −

 
T
g0

)
(6.10)

for some λ > 0, we have that the solution of Eq. (6.9) is given by

g(x1, x2, t) =
 
T
g0 + exp

(
−λ2V 2(x2)t

)(
g0(x1) −

 
T
g0

)
. (6.11)

We have thus shown that if the 2D Euler steady state is given by the shear flow in (6.8),
and if the initial datum for the third component of the magnetic field is a function that
satisfies (6.10), then for g given by (6.11) the functions

B(x, t) = (V (x2), 0, g(x1, x2, t)) , u(x, t) = (0, 0, V (x2)∂1g(x1, x2, t)) (6.12)

are exact solutions of the 3D MRE Eq. (1.1) with γ = 0.
In particular, the above example shows that solutions of (1.1) with γ = 0 and d = 3

exhibit infinite time growth of gradients, even if the initial datum is a small perturbation
of the steady state B = e3 and u = 0:
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Theorem 6.1 (Example of solution with infinite time growth). There exists an incom-
pressible initial condition (B0, u0) such that B0 − e3 = O(ε) and u0 = O(ε2) in arbi-
trary strong topologies (e.g. real-analytic), and such that the unique solution B of the 3D
MRE Eq. (1.1) with this initial datum and γ = 0 satisfies ‖∇B(·, t)‖L2 = O(ε3/2t1/4)
as t → ∞.

Proof of Theorem 6.1. In (6.12), take V (x2) = ε sin(x2), and g0(x1) = 1 + ε cos(x1).
This corresponds to the initial conditions

B0 = e3 + ε(sin(x2), 0, cos(x1)) and u0 = −ε2(0, 0, sin(x2) sin(x1))

which are clearly divergence free, and smooth. Due to the local existence and uniqueness
theorem, we know that the solution is given by (6.12), where by (6.11) we have

g(x1, x2, t) = 1 + ε cos(x1) exp
(
−ε2 sin2(x2)t

)
.

In particular, by (6.12) and the above formula, we have that

∂2B3(x, t) = −2tε3 sin(x2) cos(x2) cos(x1) exp
(
−ε2 sin2(x2)t

)

and so we may explicitly compute

lim
t→∞

1
C1ε3/2t1/4

‖∂2B3(·, t)‖L2
x1,x2

= 1 (6.13a)

lim
t→∞

1
C2ε2t1/2

‖∂2B3(·, t)‖L2
x1
L∞
x2

= 1 (6.13b)

whereC1=(2π3)1/4,C2=(2π2/e)1/2. Therefore,wehave‖∇B(·, t)‖L2 = O(ε3/2t1/4)
as t → ∞.

Remark 6.2. (Asymptotic behavior with respect to weak topologies) While the Ḣ1 norm
of the solution B defined by (6.12) is growing without bound as time goes to infinity,
we emphasize that its L2 norm remains uniformly bounded. In fact, for the solution in
(6.12) we have the following asymptotic pointwise description

lim
t→∞ B(x, t) → B̄(x) :=

{(
V (x2), 0,

ffl
T g0

)
, if V (x2) -= 0

(V (x2), 0, g0(x1)) , if V (x2) = 0
(6.14)

and limt→∞ u(x, t) = 0. This is thus an example of magnetic relaxation: B converges
to a magnetostatic equilibrium B̄, while u converges to 0, as t → ∞. However, this
relaxation holds with respect to weak topologies only (e.g. L2), and weak nonlinear
instability takes place in stronger topologies (e.g. H1).

Remark 6.3. (The emergence of current sheets in the infinite time limit) We note that
even though the initial datum in the example of Remark 6.2 is smooth, namely B0 =
(V (x2), 0, g0(x1)), the (weak) limiting magnetostatic equilibrium B̄ may contain dis-
continuities in the vertical direction. For instance, take V (x2) = 1x2∈[−π/2,π/2] cos2(x2),
and g0(x1) = sin(x1). Then we have that the B̄ vector field defined in (6.14) is given by

B̄(x) =
{(

cos2(x2), 0, 0
)
, if |x2| ≤ π/2 -= 0

(0, 0, sin(x1)) , if |x2| > π/2 -= 0
,
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which clearly contains a discontinuity along the planes {x ∈ T3 : x2 = ±π/2}. The
associated current field j̄ = ∇ × B̄ is given by the sum of a bounded piece 1|x2|<π/2
(0, 0, sin(2x2)) + 1|x2|>π/2(0,− cos(x1), 0), and a singular part which a Dirac mass
supported on the planes x2 = ±π/2 and has amplitude (± sin(x1), 0, 0).

Hyperbolic flow. While Theorem 6.1 exhibits solutions whose magnetic current
grows algebraically in time as t → ∞, following [EM20] we may show that if v is
chosen to be the cellular flow

v = ∇⊥
H (sin x1 sin x2) =

(
− sin x1 cos x2
cos x1 sin x2

)
, (6.15)

then we can in fact find solutions g of (6.7), and hence of the MRE equations, which
exhibit exponential growth of their gradients. This is the worst growth that they can
sustain, given that (6.7) is an equation linear in g.

Theorem 6.4 (Example of solution with exponential growth). Let v be as in (6.15).
For any initial data g0 ∈ Hk, with k ≥ 3 an integer, which satisfyies ∇Hg0(0, 0) -= 0,
the unique solution of the 3D MRE Eq. (1.1) with initial data B0 = (v, g0) and u0 =
(0, 0, v · ∇Hg0), satisfies

|∇Hg0(0, 0)| et ≤ ‖∇B(·, t)‖L∞ ≤ C ‖B0‖Hk eCt , (6.16)

where C > 0 is a constant which only depends on k.

We note that while the lower bound on the Lipschitz norm of B given by (6.16)
behaves as et , in (3.8) we have obtained an upper bound which behaves as eCt1/2 as
t → ∞; this difference stems from the fact that (6.16) holds for γ = 0, while (3.8)
holds for γ > d/2 + 1 = 5/2. This indicates a different behavior between the MRE
equation (γ = 0 in (1.1)), and the regularized MRE equation (γ > 0 is large).

Proof of Theorem 6.4. With v as defined in (6.15), the g Eq. (6.7) becomes

∂t g = sin2 x1 cos2 x2∂21 g + cos2 x1 sin2 x2∂22 g − 1
2 sin(2x1) sin(2x2)∂1∂2g

+ 1
2 sin(2x1)∂1g + 1

2 sin(2x2)∂2g. (6.17)

The upper bound in (6.16) follows from the energy identity

1
2
d
dt

‖g‖2L2 + ‖(v · ∇)g‖2L2 = 0 ,

the Ḣ k estimate for (6.7)

1
2
d
dt

‖g‖2Ḣ k + ‖(v · ∇)∇kg‖2L2 ! ‖v‖Hk‖v‖Hk+1‖g‖2Hk ! ‖g‖2Hk ,

and the fact that the condition k > 2 implies by the 2D Sobolev embedding that Hk ⊂
Lip.

In order to obtain the lower bound in (6.16), we assume without loss of generality
that ∂1g0(0, 0) -= 0 (the case ∂2g0(0, 0) -= 0 is treated in the same way). Then, we
differentiate (6.17) with respect to x1 and arrive at the equation

∂t (∂1g)(0, 0, t) = (∂1g)(0, 0, t) , (6.18)

The exponential growth for the gradient of g, and hence of B in view of (6.6), with
respect to the supremum norm now directly follows.
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7. Open problems

We conclude the paper by highlighting a number of interesting open problems for the
magnetic relaxation equation.

7.1. Global well-posedness versus finite time blowup. We have shown in Theorem 2.2
that local existence and uniqueness of strong solutions for the MRE Eq. (1.1) holds
irrespective of the regularization parameter γ ≥ 0. However, we were only able to
prove that these solutions remain smooth for all time (necessary in order to consider the
relaxation in the infinite time limit), when γ was sufficiently large, namely γ > d/2+1.
Naturally, one is left to consider:

Q1. For γ ∈ [0, d/2+1] can the local smooth solutions to the active vector Eq. (1.1)
be extended to global ones, or do finite time singularities arise?

We emphasize that for d = 2 and for initial magnetic field B0 of zero mean, we may
identify a zeromean scalarmagnetic stream functionφ = #−1∇⊥·B, so that B = ∇⊥·φ.
Then, the evolution Eq. (1.1a) becomes the active scalar equation

∂tφ + u · ∇φ = 0 (7.1)

where the constitutive law φ '→ u is given by

u = (−#)−γPdiv
(
∇⊥φ ⊗ ∇⊥φ

)
. (7.2)

The active scalar equation (7.1)–(7.2) has a quadratic in φ constitutive law, and thus
a cubic nonlinearity, making the analysis of the 2d MRE equation more cumbersome
when compared to classical models in the canon of active scalar equations, such as SQG
[CMT94] or IPM [CCGO09].

7.2. Magnetic relaxation. Assuming that the answer to Q1 is positive, i.e., that the
smooth solutions to (1.1) are global in time (and thus the evolution (1.1a) truly is topol-
ogy preserving), the fundamental question is whether as t → ∞ the magnetic field
B(·, t) relaxes to an MHD/Euler equilibrium B̄ satisfying (1.4). We have discussed in
Remark 4.2 the fact that the convergence of u(·, t) → 0 as t → ∞, even with respect to
very strong norms, is in general not sufficient to guarantee that weak L2 subsequential
limits of B(·, t) are magnetostatic equilibria, i.e., that they solve (1.4). Also, in view
of Remark 4.3 and of the results in Sect. 6 we have shown that generically we cannot
expect magnetic relaxation with respect to strong norms, such as H1 or Lip. Thus, we
are naturally lead to:

Q2. Given a global in time solution B(·, t) to (1.1), does there exist a weak solution
B̄ ∈ L2(Td) of (1.4) and a subsequence tk → ∞ such that we have the weak
convergence B(·, tk) ⇀ B̄? Furthermore, does the answer change from d = 2
to d = 3, or for various values of γ ?

Furthermore, in [Mof21, Section 8, Question (vii)] Moffatt poses the question:

Q3. For the magnetic relaxation problem (1.1), when the initial field is chaotic, what
is the asymptotic structure of the relaxed field? Equivalently, what is the function
space within which this relaxed field B̄ must reside?
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The examples given in Sect. 6 show that for the two-and-a-half dimensional solutions
constructed via (6.6)–(6.7) the answer to Q2 is positive (see Remark 6.2), but that the
magnetostatic equilibria B̄ may contain current sheets (see Remark 6.3), so that they
are not smooth. In fact, by the maximum principle it follows that all examples of steady
states B̄ arising as infinite time limits from the ansatz (6.6)–(6.7) will lie in L∞ due to
the maximum principle, but our examples show that B̄ cannot in general be expected
to lie in C0. We note also that for generic initial data it remains an open problem to
show that the MRE evolution (1.1) is such that ‖B(·, t)‖L p remains uniformly bounded
in time, for any p > 2. Thus, in general we do not know if the answer to questionQ3 is
better than B̄ ∈ L2.

7.3. Global weak solutions. In the absence of a positive answer toQ1, one may wonder
whether the MRE system (1.1) at least possesses global weak solutions for generic
initial data. Note that in order to define weak solutions a minimal requirement is that
B(·, t) ∈ L2

x , in order to properly define a distribution u via (1.2). However, defining
weak solutions to (1.1a) additionally requires that (B ⊗ u − u ⊗ B) ∈ L1

loc,t,x , which is
for instance true when B(·, t) ∈ L2 if we also know that u(·, t) ∈ L2

x . Note that when
γ is not large (e.g. for γ = 0), we cannot deduce from the square integrability of B
and (1.2) that u is also square integrable (by the Sobolev embedding this would require
γ > d/4 + 1/2). The energy inequality (2.2) comes to the rescue, providing for any
γ ≥ 0 the required square integrability in space, locally in time, for the velocity field.
A natural question thus is:

Q4. Given B0 ∈ L2 and γ ≥ 0 does there exist a global weak solution B ∈ L∞
t L2

x of
(1.1) which satisfies the energy inequality (2.2)? Alternatively, for γ ∈ (d/4 +
1/2, d/2+1], does there exist a global weak solution B ∈ L∞

t L2
x of (1.1) which

does not satisfy energy inequality (2.2)?

The first part of question Q4 is nontrivial because the dissipative term in (2.2) does not
yield robust compactness properties for the vector field B. Note, however, that Brenier
[Bre14], in the two dimensional case and with γ = 0, managed to obtain global in time
measure-valued solutions, a notion of solution which is weaker than the one of a weak
solution, but which retains a weak-strong uniqueness property. Concerning the second
part of questionQ4, we note that the cubic nature of the nonlinear term in (1.1a) and the
geometric properties of the constitutive law (1.1b), prevent the immediate application of
convex integration techniques to the MRE system. Indeed, both the L∞-based convex
integration techniques of De Lellis-Szekelyhidi [DLS12] and the L2-based intermittent
convex integration developed by Buckmaster and the third author [BV21], do not seem
to be directly applicable to the evolution Eq. (1.1), so that a potentially different convex
integration method would need to be developed for the MRE system.

7.4. Other models. A number of other topology preserving diffusion equations have
been proposed in the literature, which all have the property that the steady states are in-
compressible Euler equilibria. We mention for instance the models of Vallis-Carnevale-
Young [VCY89] and Bloch-Marsden-Ratiu [BKMR96]. Other types of coercive damp-
ing mechanisms, which, however, do not preserve the topology of the streamlines, were
considered in [Nis01,Nis03,Pas20]. Most if not all of the questions considered in this
paper (global existence of solutions, relaxation towards Euler steady states as t → ∞)
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could be asked about those models. It would be interesting to compare (analytically
or numerically) the long-time properties of solutions to the models in [VCY89] or
[BKMR96], with those for the MRE equation. Is there any one model better suited
for magnetic relaxation?
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