Commun. Math. Phys. 390, 1311-1339 (2022) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04289-3 Math ematical

Physics
)]

Check for
updates

On Moffatt’s Magnetic Relaxation Equations

Rajendra Beekie!, Susan Friedlander?, Vlad Vicol!

I Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
E-mail: beekie @cims.nyu.edu E-mail: vicol@cims.nyu.edu

2 Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA.
E-mail: susanfri@usc.edu

Received: 5 May 2021 / Accepted: 26 November 2021
Published online: 25 January 2022 — © The Author(s), under exclusive licence to Springer-Verlag GmbH
Germany, part of Springer Nature 2021

Abstract: We investigate the stability properties for a family of equations introduced by
Moffatt to model magnetic relaxation. These models preserve the topology of magnetic
streamlines, contain a cubic nonlinearity, and yet have a favorable L? energy structure.
We consider the local and global in time well-posedness of these models and establish
a difference between the behavior as t — oo with respect to weak and strong norms.
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1. Introduction

In the 1960s V.I. Arnold developed a new set of geometric ideas concerning the incom-
pressible Euler equations governing the flow of an ideal fluid. In the following decades
the subject of topological hydrodynamics flourished. Following Arnold’s seminal work
[Arn66] there was an enormous body of literature on the subject. We refer to only a few of
the many important papers including Ebin and Marsden [EM70], Holm, Marsden, Ratiu,
and Weinstein [HMRWS85], and Arnold and Khesin [AK98]. This geometric perspective
views the incompressible Euler equations as the geodesic equations of a right-invariant
metric on the infinite-dimensional group of volume preserving diffeomorphisms. Of
particular importance are the fixed points of the underlying dynamical system, namely
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steady fluid flows, and their topological richness [EPS12,Gav19,CLV19]. Moreover, as
with any dynamical system, of fundamental importance is the question of accessibility
of these equilibria. In this paper, we discuss a mechanism of reaching these equilibria
not through the Euler vortex dynamics itself, but via a topology preserving diffusion
process, called magnetic relaxation.

The magnetic relaxation equation (MRE) considered here was introduced by Moffatt
[Mof85,Mof21] to describe a topology-preserving dissipative equation, whose solutions
are conjectured to converge in the infinite time limit towards ideal Euler/magnetostatic
equilibria (see also Brenier [Bre14]); we recall the motivation in Sect. 1.1 below. We are
interested in understanding the long time behavior for

4B+u-VB=B-Vu (1.1a)
(=AYYu=B-VB+Vp (1.1b)
divu =divB =0 (1.1¢)

where the unknowns are the incompressible velocity vector field u, the magnetic vector
field B, and the fluid pressure p. We consider the problem posed on T¢ = [—x, 7 ]¢
with d € {2, 3}, and u is taken to have zero mean on T4, The parameter y > 0 is a
regularization parameter of the constitutive law B +— u: the case y = 0 corresponds
to a Darcy-type regularization (as was done in [Mof85,Bre14,Mof21]), the case y = 1
corresponds to a Stokes-type regularization, while the general case y > 0 may be
alternatively used in numerical simulations to smoothen the velocity gradients. This
constitutive law may be written as

u=(—A)"P(B-VB) = (—A)"VPdiv(B ® B) (1.2)

where P is the Leray projector (onto divergence-free vector fields). We emphasize that
the topology of the vector field B is preserved under the vector transport Eq. (1.1a)
irrespective of the regularization parameter y in the constitutive law (1.1b). We note that
if div By = 0, then the vector transport Eq. (1.1a) preserves the incompressibility of B
at all later times.

From a mathematical perspective, the analysis of the MRE system (1.1) is unusually
challenging. Not only is it an active vector equation, versus the more familiar active
scalar equations in fluid dynamics [CMT94,CCGO09], but the nonlinearity is cubic
in B. Some of the interesting special features of MRE are discussed in the article of
Brenier [Brel4]. Brenier presents a concept of dissipative weak solutions for MRE
when the regularization parameter y is set to zero. It is shown in two space dimensions
that the initial value problem admits such global dissipative weak solutions, and that
they are unique whenever they are smooth. However, not even the local existence of
strong solutions to (1.1) is known.

Besides local well-posedness, in this paper we examine the long-time behavior of the
magnetic relaxation Eq. (1.1), and show that although the velocity field u(-, ¢) converges
to 0 as t+ — oo (for a sufficiently large regularization parameter y), there are many
open questions regarding the sense in which the magnetic field B(, t) itself converges
ast — oo (weak vs strong convergence; see Remark 4.2). In two dimensions, we give
a specific example of asymptotic stability to a simple two dimensional steady state.
In contrast, for a specific class of two-and-a-half-dimensional solutions we illustrate
instability for the MRE system (1.1), by showing that the the magnetic current V x B
grows unboundedly as ¢+ — oo. Our results are presented in Sect. 1.2 below.
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1.1. Motivation behind magnetic relaxation. There are certain well known analogies be-
tween Euler equilibria and equilibria of incompressible magnetohydrodynamics (MHD).
Recall that the ideal incompressible MHD equations are

&B+u-VB=B-Vu (1.3a)
qu+u-Vu+Vp=B-VB (1.3b)
divu =divB =0. (1.3¢)

The equilibrium equation for magnetostatics is obtained by setting B = B(x) andu = 0
in (1.3) to give

Vp=B-VB, divB=0. (1.4)

In comparison, the equilibrium equation for incompressible Euler steady states is ob-
tained by setting ¥ = u(x) and B = 0 in (1.3) to give

u-Vu+Vp =0, divu =0. (1.5)

Clearly, any vector field B that satisfies (1.4) is also an equilibrium solving (1.5) upon
changing the sign of the pressure, and vice-versa. However, this analogy between mag-
netic and fluid steady states (1.4)—(1.5) does not extend to the evolution of perturbations
about these steady states, as governed by the ideal MHD system on the one hand, re-
spectively the pure Euler dynamics on the other hand. For example, stability issues
for Euler steady flows are not the same as the stability for magnetostatic equilibria
[HMRW85,Mof86,SV93,FVI5].

In [Arn74], Arnold suggested a process which demonstrates the existence of an
Euler equilibrium that has the same topological structure as an arbitrary divergence
free magnetic field. The idea is to use the evolution dynamics of the magnetic field to
reach an Euler/magnetic equilibria which preserves Kelvin circulation. This concept was
developed by Moffatt [Mof85] (see also the excellent recent overview [Mof21]). The
magnetic relaxation procedure envisioned by Moffatt preserves the streamline topology
of an initial divergence free three-dimensional vector By(x), but abandons the constraint
that B(x, t) should remain smooth as ¢t — oo. In this model, the magnetic field evolves
under the frozen field Eq. (1.3a) via a vector field u(x, ) which is related to B(x, t)
by a suitable constitutive law, which has two properties: that u(x, ¢t) formally decays
to 0 as time goes to infinity, and the vector fields u and j x B are parallel with non-
negative proportionality factor (here j = V x B is the current field). Moffatt introduced
the concept of ropological accessibility which is weaker than topological equivalence'
because it allows for the appearance of discontinuities in the magnetic field (current
sheets) as t — 00. As an example of a constitutive law relating u to B, Moffatt [Mof85,
Mof21], also Brenier [Brel4], suggested

u=B-VB+Vp,

which may be used in conjunction with (1.3a) to show that the magnetic energy satisfies

d
o IBII7, = — llul?, .

! Here, we say that By and B are topologically equivalent, if By (X («)) = Vo X (a)Bo(«) for a volume
preserving diffeomorphism & — X (). In contrast, to say that By is topologically accessible from By means
that (see e.g. in [Mof21, Section 8.2.1]) By = lim;—, oo B(:, 1), where B is a solution of (1.3a) with initial datum
By and some solenoidal vector field u, under the additional property that [ | [ B - (B - Vu)dx|dt < oo.
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Hence the energy of B is strictly monotonically decreasing, until # = 0. Note that
|B(-, t)||;2 is bounded from below uniformly in time, solely in terms of the initial
magnetic helicity [Arn74] (see Remark 2.1).

1.2. Main results. The main results in this paper are as follows.

In Sect. 2 we prove local existence for solutions of the MRE system (1.1) in Sobolev
spaces H*. This result holds for any y > 0 and dimension d > 2, for Sobolev exponents
s > d/2 + 1. Theorem 2.2 follows from the dissipative nature of (1.1), exhibited in its
L? energy estimate, by using two commutator estimates at the level of H°.

In Sect. 3 we prove global existence in H® when the regularization parameter satisfies
y > d/2 + 1. For such y, Theorem 3.1 shows that the magnetic relaxation question is
well-posed, because we can speak of a global in time solution. We recall that the natural
values of y coming from physical arguments are y = 0 (corresponding to a Darcy-type
approximation) or y = 1 (corresponding to a Stokes-type approximation); unconditional
global existence in this range of y remains open.

In Sect. 4 we investigate the possible behavior of the solutions in Sect. 3 as t —
oco. We prove in Theorem 4.1 that the velocity field u(-, t) converges to 0, strongly,
asymptotically as time diverges. The specific form of this relaxation is given by (4.1).
We note, however, we do not obtain a rate for the convergence. Also, it remains open to
prove that the vector B(-, ) itself converges to a steady Euler (magnetic) weak solution.

In Sect. 5 we consider the MRE system ford = 2 and y = 0. We study the asymptotic
stability of a special magnetostatic state, B = ey, under Sobolev smooth perturbations.
The evolution equation for the perturbations is given by (5.5), which is an active vector
equation with a cubic nonlinearity. Equation (5.5) has some similarities with the equation
for the perturbation of a linearly stratified density in the two dimensional incompressible
porous media equation (IPM); the former being, however, an active scalar equation with
a quadratic nonlinearity. In the context of IPM, Elgindi [Elg17] studied the asymptotic
stability of the same special steady state and proved that solutions must converge (i.e. re-
lax) as + — o0 to a stationary solution of the IPM equation; see also the work [CCL19]
in the case of a bounded domain. In Theorem 5.1 we employ some of these ideas to
prove asymptotic stability (relaxation) of MRE in this special two dimensional setting.

In Sect. 6 we turn to the three dimensional MRE system. We observe that there is an
interesting class of exact solutions to (1.1) when y = 0, which has analogies to the well
know exact solutions of the three dimensional Euler equation, which are in fact two-and-
a-half dimensional, cf. Yudovich [Yud74] or DiPerna and Majda [DM87]. In the case
of the Euler equation the construction of the exact solution is based on a non-constant
coefficient transport equation, which produces a two-and-a-half dimensional flow whose
vorticity grows unboundedly in time (linearly in time for shear flows [Yud74, Yud00],
or exponentially in time for cellular flows [EM20]). In contrast, for the MRE system
the construction of the exact solution is based on a non-constant coefficient heat-type
equation, which has a rank 1 diffusion matrix. By choosing the spatial dependence of
the initial data appropriately, in Theorem 6.1 we construct an example of a magnetic
field B(-, t) which converges (relaxes) in L?ast — cotoa steady solution B, but this
limiting solution is not smooth and exhibits magnetic current sheets; as such, the current

j(,t) =V x B(-, t) grows as t% in L2 Additionally, in Theorem 6.4 we show that in
the presence of hyperbolic dynamics, for instance along the separatrix of a cellular flow,
the current j (-, r) may even grow exponentially in time, for all time, which is a strong
type of instability.
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Clearly relaxation of the MRE system (1.1) is a very subtle matter. We further illustrate
this in Sect. 7, where we discuss a number of open problems.

2. Local Existence in Sobolev Spaces for all y > 0

The dissipative nature of (1.1), already alluded to in the introduction, is seen by inspecting
the magnetic energy estimate

S IBI, /W (B - Vu) /Td”( )
—— [ (ayu=vp) == lulfy,. @
Integrating in time, we deduce that
2 ! 2 2
sup ||B<-,s)||Lz+2/ - I, ds < 1Boll2, 22)
s€[0,1] 0

forall# > O such that the solution is sufficiently smooth on [0, #] to justify the integration
by parts manipulations in (2.1).

Remark 2.1. (A global lower bound for the magnetic energy) . We note that no matter
the level of regularization in the constitutive law B — u in (1.1b), the magnetic helicity

H() = / A(x,t) - B(x, t)dx,
Td

is still a constant function of time,? as long as the solutions remain sufficiently smooth.
Here we have denoted by A the zero mean vector potential for B defined in terms of
the Biot-Savart law A = (—A)~!V x B. Indeed, it is not hard to see that (1.1a) implies
that %H =2 de B - (u x B)dx = 0. This observation and the Poincaré inequality
||A||L2(Td) < ||B||L2(Td), imply the so-called Arnold inequality [Arn74]

IB(, [)”%2 > [HO)I, (2.3)

forall # > 0. Therefore, while (2.1) shows that the magnetic energy is strictly decreasing
as long as u s 0, (2.3) also shows that the magnetic energy is bounded from below for
all time, by a constant that depends only on the magnetic helicity of the initial datum.

Theorem 2.2. (Local existence in Sobolev spaces) Lety > 0ands > d/2+ 1. Assume
that By € H*(T9) is divergence free. Then, there exists Ty > (C ||Bollys) ™2 such
that the active vector Eq. (1.1) has a unique solution B € C°([0, Ty.); H*(T%)), with
associated velocityu € C°([0, T,); H*~ 27 (T9)) N L2((0, T); H** (T¢)). Moreover,
B satisfies the bound (2.2) and also

t
IBC, )%, < I Boll%, exp (c /0 IV, $)ll oo + IVBC, )30 ds) (2.4)

fort € [0, Ty), where C > 0 is a constant which only depends on s, y, and d.

2 Note in contrast that the cross-helicity frﬂ-d u - Bdx is expected to vanish as t — oo since B(-, t) remains
uniformly bounded in L2, while u(-,t) > 0in L2
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Proof of Theorem 2.2. We use the notation A = (—A)'/2, and [A, B] = AB — BA for
the commutator of two operators. From (1.1), we then obtain

d 2 2
q B + el ey

=/ Afu-AS(B.VB+vp)+/ ASB~AS(B-Vu)—/ A*B-A°(u-VB)
Td Td Td
=/ Asu-AS(B-VB)+/ ASB.(B.VASM)+/ A’B-[A,B-V]u
Td Td Td
—/ A*B-[A,u-V]|B
Td

:/ Asu-[AS,B~V]B+/ ASB.[AS,B.V]u—/ A°B-[A*,u-V]B.
Td Td Td

(2.5)
Now, from [Lil9, Corollary 5.2, equation (5.1)], by choosing p = p; = pa = 2 and

P2 = p3 = 00, this result states that for all s > 0 we have the following generalization
of the Kato-Ponce commutator estimate:

IT8%, gl S 18° £l gllioe + 1V £l | 457 2.6)

L2

Applying the estimate (2.6) for the pairs (f, g) € {(B, VB), (B, Vu), (u, VB)}, since
[V, AS] = 0 we obtain that

I[A* B-V]B| . S IBlgs VBl (2.72)

[[A% B - V]u] o+ [[A% u- V]B] 2 S 1Bl [Vull oo + 1V Bll oo ull s -
(2.7b)

By combining (2.5) and (2.7), we arrive at

1d 2 2 2
3 a7 1Bl + llul S Ml gs 1Bl s VBl oo + 1Bl IVullpeo (2.8)

Hs+y ~

Since ¥ > 0 and u has zero mean on T¢ we have that lull gs S Null gssy , while the
condition s > d/2 + 1 implies that || Vu| ;o < llull s and [[VB|l e S || Bll 5. Thus,
estimate (2.8) readily implies that there exists a constant C = C(y, s, d) > 0 such that

% IBIZ,, + lul%,., < CIBIY, - (2.9)
From the a-priori estimates (2.1) and (2.9), the local existence of C? H; solutions of
(1.1) readily follows from a standard approximation procedure, and the local time of
existence is at least as large as (C || Bol| Hs)_z. Note that since H~! is an algebra, we
immediately obtain from (1.1b) that u € COH} """ while from (2.9) we obtain that
u e L?H;CHV. Interestingly, when y > 1, the former information (the uniform in time

one) provides more regularity in space than the latter one (the integrated in time one).
The bound (2.4) is an immediate consequence of (2.8), since s > d/2+ 1 and y > 0.
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3. Global Existence for y > d/2 + 1

Theorem 3.1 (Global existence for the strongly regularized system). Let y, s > d/2+1.
Assume that By € H*(T?) is divergence free. Then, the local in time solution established
in Theorem 2.2 is in fact global in time, meaning that T, = +00, and we have that

IBC DI, = 1Bol. exp (€172 1Boll 2
X exp (Ct <||VBOII%OO +C12 ||Bo||6Loo) exp (c;l/Z ||Bo||L2)) 3.1)

forallt > 0, where C = C(y, s,d) > 0 is a constant.

Proof of Theorem 3.1. Estimate (2.4) shows that the local in time H® solution may be

uniquely continued past 7 if fOT IVu(, s)llpe + IVB(, s)||%C>C ds < oo. Thus, the
global existence of smooth solutions is established if we show that the Lipschitz norm
of u is integrable in time, and that the Lipschitz norm of B is square integrable in time.

The condition y > 1+d/2 implies by the Sobolev embedding that H” C Lip. Thus,
from (2.2) we deduce

t t
/0||Vu<-,s>||Loods5/0 luC-o )l gy ds < 12 1 Boll 2 - (3.2)

Once u satisfies (3.2), we may use the following classical fact: the solution B of (1.1a)
is given by the vector transport formula

B(X(a,t),t) = Vo X (o, t)Bo(ar) (3.3)

where X («, t) is the ’]I‘d—periodic flow of the vector field u; that is, the solution of the
ODEs

%X(a, t) =u(X(a,t),1), X(a,0) =« (3.4)

and & € T denotes a Lagrangian label. Differentiating (3.4) with respect to « and
appealing to (3.2), we deduce that

t
IVX (1)l < exp ( /0 IVu(, $)ll L ds> <exp (cﬂ/2 ||Bo||Lz) . (39

Thus, upon composing (3.3) with the back-to-labels map X! (x, ), and appealing to
(3.5), we obtain that

IBC. Ol < 1 Bollz exp (€172 [1Boll2) (3.6)

forall t > 0.
It remains to estimate the L° norm of V B. For this purpose we differentiate (1.1a)
with respect to x, and contract the resulting equation with V B to deduce

(0 +u - V)|VB|*> < 4|Vu||VB|? +2|V?ul||B||VB] .

By the maximum principle, we obtain that

t
IVB(-, D)l oo < [IVBoll o exp <2/O IVu (-, $)ll oo dS>
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t t
+/O Hvzu(.,s)HLoo IBC, $)ll 1 exp (2/ ||vu(.,s/)||Loods/>ds.
3.7)

Thus, we need a bound on the L norm of the Hessian of u. For this purpose we note
that the condition y > d/2 + 1 trivially implies that y > 3/2, and thus the bound

[V arpave| | Stel

holds for every integrable T¢-periodic 2-tensor ¢. Combining the above estimate with
the constitutive law (1.2), we obtain

[V2ucn| . S1BCD @ Ol SIBC DI
for all + > 0. From the above display, (3.2), (3.6), and (3.7) we deduce
IVBC. 0l = (IVBoll + Ct I Bolli~ ) exp (Cr12 1Boll2) . 38)

for all + > 0, where C > 0 is a sufficiently large constant which depends on y and d.
The bounds (3.2) and (3.8) conclude the proof of global existence of H* solutions.
Taking into account the estimate (2.4) we also obtain the bound (3.1).

Remark 3.2. The condition y > d/2 + 1 implies that for 0 < ¢ < 2(y —d/2 — 1) we
have the bound

[V 7 Pdive|| e S llglp (3.9)

holds for every integrable ’]I‘d-periodic 2-tensor ¢. Combining (3.9), (1.2), and (2.2) we
first deduce that

IVuG, Ollce SIBC,0Y @ BC, Ol SIBC DI S 1Boll?s (3.10)

for all + > 0. We note that this bound is pointwise in time, in contrast to (3.2) which is
time integrated.

4. Convergenceast — ocofory > d/2 +1

In view of Theorem 3.1, we know that if the initial datum lies in H* (’]I‘d) and the
regularization parameter y in (1.2) is sufficiently large, namely y > d/2 + 1, then the
system (1.1) has global existence of solutions. In this section we discuss the possible
behavior of these solutions as t — oco.

Our first result shows that as ¢t — oo, the velocity field u (-, #) converges to 0.

Theorem 4.1 (Asymptotic behavior for the velocity). Let y,s > d/2 + 1 and assume
that By € H*(T?) is divergence free. Then the zero mean velocity field u associated to
the magnetic field B € C°([0, 00); H*(T)) has the property that

lim [Vu(, )] =0. @.1)
11— 00
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Proof of Theorem 4.1. The proof is based on the bound (3.10), on the energy inequality
(2.2), and on a bound for the time derivative of u, which we claim satisfies

19 (. )l ce < I1Boll7 (4.2)

for all # > 0. In order to prove (4.2) we apply a time derivative to (1.1b), and replace
0 B in the resulting formula via (1.1a), to arrive at

(=A)" du; — 0;(9;p) = 9,(B;9;B;)

=0;0,(B;B;)

= 8j(8,BjB,- + B0 B;)
3j ((BiOxuj — uxd Bj) B + Bj(Brogu; — urdy B;))

(B BiOguj + BjBiogu; — up Bk Bj — ukBj&kB,')

= a, (Bi Bxdguj + BjBrdgui) — 9; (urdx(B; Bj))

dj (Bi Brdxuj + BjBiogu;) — 9;0x (ux Bi Bj)
for every component i € {1, ..., d}. Therefore, we have established that

du = (—A)VPdiv (B® (B - V)u+(B-V)u® B)—(—A) ?Pdivdiv (B ® B ® u).

Since y > 1+d/2, we may again use inequality (3.9) along with the Poincaré inequality,
and deduce from the above formula for 9;u that

13:u (-, )llce SNBBRVu)(-, )llpt +1(BRBQu)(-, 1)1

SUBC D7y s Dllyroo
5 ”BO”iZ(Td) .

In the last inequality above we have appealed to (2.2) and (3.10). Thus, we have shown
that (4.2) holds.

In order to conclude the proof, we note that the energy inequality (2.2) and the Sobolev
embedding H” C L gives that

o0
/0 DI S 1BollZs s -
Combined with (4.2), the above estimate shows that

lim Ju(-, D)L =0.
—>00

The conclusion (4.1) now follows by interpolating the L norm of Vu between the L>°
norm of u, which vanishes as t — oo as shown above, and the C¢ norm of Vu, which
is uniformly bounded by (3.10).

Remark 4.2. (Relaxation towards Euler steady states?) Since (4.1) shows that
IVu(-, t)|| ~ vanishes as t — o0, it is tempting to conjecture (as was already done
by Moffatt [Mof85]) that as t — oo the magnetic field B(-, ¢) relaxes to a steady state
B which solves (1.1b) with the left hand side equals to zero; that is, B is a stationary
solution of the incompressible Euler equations. The purpose of this remark is to argue
that the information provided in Theorem 4.1 does not appear to be sufficient to conclude
this statement. By (2.2) and weak compactness we do have the existence of subsequences
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tx — oo such that the associated magnetic fields Bx(x) = B(x, t;) converge weakly in
L?; say By — B, for some (weakly) incompressible vector field B. Additionally, (2.1)
shows that the sequence {||Bi||;2}x>1 is strictly decreasing and non-negative, so that
there exists £ > 0 with limg_ oo || Bk |l 2 = E; in fact E > 0 in view of the Arnold
inequality (2.3) as long as the initial datum is topologically nontrivial. Of course, we
do not know whether || B||;> equals to E, or else we’d have strong L? convergence as
k — o0. The additional information provided by Theorem 4.1 and (1.1b) gives that
Pdiv (Br ® Bx) — 0. These facts do not, however, seem to imply that Pdiv (B ® B) = 0
in the sense of distributions, which would be the condition that B is a stationary Euler
flow. Indeed, we may only deduce that

Pdiv (B ® B) = Pdiv (B — By) ® B) +Pdiv (B ® (B — By))
+Pdiv (By ® Bx) — Pdiv (By — B) ® (Bx — B)) .

The first three terms on the right side of the above do converge to 0 weakly as k — oo (the
first two terms by the assumption that By — B, and the third term due to Theorem 4.1).
However, we do not have enough information to conclude that the fourth term converges
to 0 as k — oo; the information that (By — B) ® (Bx — B) is a symmetric non-negative
tensor, which is uniformly bounded in L', is not sufficient; the enemy is || B|[;2 < E.

Remark 4.3. (Time integrability of ||Vu(-, t)|| ) From (2.2) and the Sobolev embed-
ding H” C W0 we may deduce that [|[Vu(-, #)| ~ € L2(0, 00). It remains however
an open problem to show that the Lipschitz norm of u decays sufficiently fast to ensure
that |Vu(-, 1) .~ € L'(0, 00). If this faster decay were true, then in view of the H!
energy estimate for (1.1), which after exploring a few cancelations can be shown to be

1d 2 2 2
5 77 IVBI: + Ml < 3UVBIT: 1 Vull o
would imply that || VB(-, #)|| 2 is uniformly bounded in time. In turn, such information
would be sufficient to extract as + — oo limit points B, which are stationary solutions
of the Euler equations. We note, however, that_at least when y = 0, in Theorem 6.1 we
show, for suitable choices of initial data, the H! norm of B does not remain uniformly
bounded in time. Thus it is not possible for the Lipschitz norm of u to be integrable in
time. Whether this situation is generic remains an open problem.

5. 2D Stability of the State B D e; and u D 0

We consider the MRE system (1.1) in two space dimensions with y = 0. In this section
we study the asymptotic stability of the steady state

B =¢ and u=20,

under Sobolev smooth perturbations. We note that for the MHD system with viscosity but
no resistivity on R2,i.e.for(1.3) with Au added to (1.3b), the stability of (u, B) = (0, e1)
was proved for Sobolev smooth perturbations with certain admissibility conditions for
the initial data of magnetic perturbations in [LXZ15] (see also [RWXZ14] where the
admissibility conditions were removed). These works make use of the fact that at the
linearized level u satisfies

32u — Aou — tu=0.
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For the magnetic relaxation Eq. (1.1), this favorable structure is no longer available since
u is completely determined from B through (1.1b). Linearizing around (u, B) = (0, 1)
instead leads to the partially dissipative equation

B =07B. (5.1)

This motivates the use of a different approach to proving global existence for the per-
turbations, as in [Elg17].

The perturbation of the magnetic field around the steady state e; is written as b, i.e.
we consider

b:=B—e. (5.2)
From (1.1b), with y = 0, we deduce that
u=0ob+v (5.3)

where the nonlinear part of the velocity, denoted as v, is given by
v:=b-Vb+Vp, divyv =0. 5.4

Inserting the ansatz (5.2)—(5.4) into (1.1) we obtain the evolution equation for the per-
turbation of the magnetic field

8,b+v~Vb—b~Vv—812b=b~V81b—81b-Vb+81v.

Using (5.4) we arrive at the following system for the magnetic perturbation:

ob+v-Vb—>b-Vv— 812b =2P(b - V0b) (5.52)
v=>b-Vb+Vp (5.5b)
divv=divb =0. (5.5¢)

Before stating our main theorem, it will be useful to introduce notation for the x;-
independent and the x| -dependent components of b. As such, for any function v : T —
R, we define

Poyr (x2) = ]{rlﬂ(xl,xz)dm
Py (x1, x2) := ¥ (x1, x2) — Por(x2) .

With this notation, our main result concerning the system (5.5) is:

Theorem 5.1 (Stability and relaxation). Letk > 4 and m > k +9. Choose § € (0, 1).
There exists €o such that if

lbollgm =& < &0, (5.6)

and Pobg = 0, then we have that (5.5) has a unique global in time smooth solution
(b, v), which satisfies ||b(-, t)||;2 < & and

IPLOC, )l g < dge™ 170N (5.7a)
Pob1 (-, )| rer < 4e (5.7b)
I6G, D)%, < 4ee (5.7¢)

Jort € [0, 00). As a consequence, the total velocity field satisfies u(-,t) — Oast — oo,
whereas the total magnetic field B(-,t) = ey + b(-, t) relaxes to a steady state B with
|B — el grv2 < 4e, both convergences taking place with respect to strong topologies.
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Remark 5.2. (Notation) For simplicity of notation, throughout the proof of Theorem 5.1,
we shall use the notation:

a =a(xy, 1) = Pobi(x2, 1) (5.8a)
f=f1,x2, ) =PLb(x1, x2, 1) (5.8b)
w = w(xy,x2,t) =P v(xg, x2,1). (5.8¢)

We do not introduce new notation for Pyv, but note from (5.5b) and the observation
that Pob, (-, t) = 0 (which will be established in Lemma 5.3 below), we have

Povy = 2P (b2b1) = Po(f2(f1 +a)) = 0 Po(f2f1).

The above identity will be used in the analysis below. Note that with the notation in
(5.8), we have that the stability estimates in (5.7) become

I GOl g < 4ee™ 700 aC, Ol g <de, G, Ol gm < 4ee,  (5.9)

which are the bounds proven below.

5.1. The evolution equations for a and f. Before turning to the proof of Theorem 5.1,

we need to determine the evolution equations for a and f. In turn, this is necessary

because the 81217 dissipative term present in (5.5a) may only be expected to cause decay

of the part of b which is not constant in the x| direction, i.e. for f. Moreover, the precise
coupling between the evolution equations for a and f is crucial to the proof (and is also
the reason why in three dimensions this stability result doesn’t hold). In this direction,
for a we have:

Lemma 5.3 (The a evolution). Assume that (b, v) are smooth solutions of (5.5) and
Pobg = 0. Then, we have

dra = 0P (2 /201 f1 + frwy — w2 f1) = N'(f, w) (5.10)
and Poby (-, t) = 0. Crucially, a does not appear on the right side of (5.10).

Proof of Lemma 5.3. Applying Py to (5.5a) and using that Pyd; 1 = O for any periodic
¥, gives

3;?01?,’ = 321?’0(1)21),’ — Uzbi + 2b281b,’). (5.11)

When i = 2, we appeal to the fact that Py(b291b2) = Pyd; (b% /2) = 0, and to the
assumption Pobs o = 0, to conclude from (5.11) that Ppba(xp,t) = 0 forall t > 0. In
particular, this implies that f, = by. Moreover, since sz f=0and0=divb =div f,
there exists a periodic stream function ¢, such that f = V1 ¢. In particular,

fh=0¢.

Similarly, since divv = 0 and f. v = fo div (b ® b+ ply) = 0, we obtain that there
exists a periodic stream function ¢, such that v = Vl(p. In particular,

vy = wy = 01¢.
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With this information, we return to (5.11) and seti = 1. Since 911 = 91 f1,b2 = f2,
and v» = wy, we have that

Po(bavy — v2by +2b231b1) = Po(fov1 — waby +2 1201 f1)
=Po(fow1 — w2 f1 + 212081 f1) + Po(PLb2Povy — PLvaPoby)

which establishes (5.10), upon noting that Po(P 1 Poyn) = PoynPo(PLy) = 0 for
any 1, ¥2.

The evolution equation for f is more complicated, and is given by the following
lemma.

Lemma 5.4 (The f evolution). Assume that (b, v) are smooth solutions of (5.5) and
Pobg = 0. Then, we have

o f=L(f)+N(f,w) (5.12)

where the linear operator L acts on the vector field f = (f1, fz)T as
L(f) =0 +a)?0 f+(1+a)Vd pL — hadrpre (5.13a)
pL = pria, f) =2(=28)"" (Bad1 f) (5.13b)

where as in (5.8), a = Pyb1. The nonlinear operator N appearing in (5.12) is defined
as

N(f,w) :=adhPL(f-Vf+Vpy)+PL(f-Vw—w-V[f)—Po(fif2)df
+H2PL(f -V )+ VHPLpy + (33Po(f1 f2) fo — 82aPL(f - V fo+ dapn)) €1
pr = pn(f) =2(=AN) " (@1 f1)” + 01 L02./1)). (5.14a)

Proof of Lemma 5.4. We apply PP; to (5.5a) to get
8,f—812f=IP1(b~Vv—v-Vb+2b-V81b+V31p). (5.15)

The goal is to further decompose the right side of (5.15), in order to extract from it all
local and nonlocal terms which are linear in f.

We first determine a decomposition for the pressure. Applying a divergence to (5.4)
gives

—Ap =div (b - Vb) = 2(31b1)? +201b2d2b;

=2((31 f1)* + 31 L f1) +281 frdra (5.16)
N’
=—Apy =:—Apr

where py is the pressure which is nonlinear in f, and py, is the pressure which is linear
with respect to f. Note that both of these pressure terms are uniquely defined once we
impose that they have zero mean on T2, and that they correspond to definitions (5.13b)
and (5.14a).

Next, we compute the velocity in terms of the magnetic perturbation. As noted in
Remark 5.8, we may decompose the velocity field as

v =wy +hPo(f1f2), v2=ws. (5.17)
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Furthermore, by applying P, to (5.4), and using (5.16), we obtain that
w = PJ_(blalb +byoyb + Vp)
=ad f+Vpr+dafre1+P (f-Vf+Vpn). (5.18)

With (5.18) in hand, we now compute the stretching and the advection terms present on
the right side of (5.15). Indeed, from (5.17) and (5.18) for the stretching term in (5.15)
we obtain

P (- V) =P ((@a+ fu)owr + f202(w1 + 2Po(f1/2)))
= adywi + LARPo(fif2) +PL(f - Vwy)

= adi(ad fi + hafr + I pr) +adiPL(f - V fi +d1pn) + £203P0(f112)
+PL(f - Vwy)

= a*d? fi +adradi fo+adipr +adPL(f -V fi +31py) + £33Po(f1 f2)
+PL(f - Vwy)
and similarly,
P (b-Vvy) =P ((a+ f1)oiwz + frdowy)
=adywz2 + P (f - Vwy)
=ad(ady f2+0pr) +adiPL(f - Va+0pn)+PL(f - Vw)
= a3} fr+addapL +adiPL(f -V fo+02pn) + PL(S - Vo) .
On the other hand, for the transport term in (5.15) we have
P (v- Vb)) =P (w1 + 02Po(f1/2))01 f1 + wa02(f1 +a))
=Pr(w -V f1) + 0Po(f1/2)01 f1 + d2aw>
=adyady fr+ dadrpr + halPL(f - Vfr+dpN)
+0Po(f1/2)01f1 +PL(w -V f1),

and
Py (v- Vby) =PL((w1 + 2Py (f1/2))01 f2 + w202b2)
= 0Po(f1/2)01 f2+PL(w-Vf).

For the third nonlinear term on the right side of (5.15) we have

Py(b-Vaib) = PL((a+ f1)7f + f20201 f)
=ad’f+P (f-Vof).

Gathering the above five displayed equations, we obtain that

Linear terms on right side of (5.15) = a7 f +ad;V pr — dadypres +2adi f
Nonlinear terms on right side of (5.15) = ad1P . (f - Vf+Vpn) +PL(f - Vw —w - Vf)
+2PL(f - Vo1 f) — 0Po(f1/2)01 f
+(L03Po(f1 ) — HaPL(f -V foa+dpn))er -

From the above displayed equations and (5.15), the proof of (5.12) follows. O
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5.2. Properties of the linear operator L(f).

Lemma 5.5. Suppose f(x1, x2) is sufficiently regular such that

divf=0 (5.19a)
Pof =0 (5.19b)
Then
divLf =0
Po(L(f)) =0

Proof of Lemma 5.5. We can write Lf as

Lf =0 ((1+a%0f + (1 +)Vp — 202a02(~A) " B2af)er)

Therefore, assuming f is sufficiently regular, we conclude for each ¢ and x, we have
Po(L(f))(x2, 1) = 0. Furthermore

divLf = (1+a)?3%div f + (1 +a)Ady pr + (1 +a)*d} fo — drad1dapr
+dr(1+a)o102pL
= -2(1 +a)3ad? f +2(1 + a)drad? >
=0, (5.21)
which concludes the proof.

Remark 5.6. (Solvability of the linear equation) Now let us consider the evolution equa-
tion

of=Lf, fli=o=fo, (5.22)

where the initial data fj satisfies (5.19), i.e. it is divergence free and its zero frequency in
the x; variable is trivial. Using Lemma 5.5 and the energy estimates done in Proposition
5.7 we can show that for sufficiently regular initial data fp, the unique solution f of
(5.22) also satisfies (5.19).

Before we state our main semigroup estimate, Proposition 5.7 below, we specify the
function spaces where we consider the evolution of solutions of (5.22). For k € N we
define

HE = {f e HY(T: RY): Pof; =0, ) € {1,2}}. (5.23)

Note that Hé‘ embeds into Hé for any [ < k because Poincare’s inequality holds.

Proposition 5.7. (Linear decay estimates) Let f be a solution of (5.22). For any § €
(0, 1) there exists ey > O such that for any 0 < ¢ < gq if

la(-, Ollwrrro < 4e 1 €[0,T] (5.24)
then

et g g < €170 1 €10, 7] (5.25)

where k is as in Theorem 5.1.
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Proof of Proposition 5.7. Differentiating (5.13a) k times with respect to d1, multiplying
by 8{‘ f, and then integrating gives

1d
571 LA + 11+ ) £117, = (A + @) Vi pr. 8 f) — (824920 pr. 0f f1)
(5.26)

where we have used that a does not depend on x;. Using the definition of p; we have

(L +a)VoX pr, ok £y < 11 +allz VO prii 21108 £11,2
<201 +allzoll2all L= ll9F £112,

(0200201 pr, 0f f1) < 192allz= 19207 prll 210k fll 2 < 20024l 7o 01 1172
(5.27)

where we have used that Poincare’s inequality in the x; variable holds with constant 1.
For the given §, we can take &y small enough such that if ||a||yx+1,c = & < g0 then

Mna f||L2+( >|I8"“f|| , <0. (5.28)
Repeating the same process with a§ gives

1d
5 7 103 2+ 1+ )93 01 £ 17
= Y cax(d5A+a)?05 07 £, 05 )+ Y cax(d§ (1 +a)d5 VaipL, 05 f)

O<d<k 0<d=<k
— Y cax(0§rads pL, 5 )= Y Tia+ Y (Tra—Tsa)
0<d<k 0<d<k O<d<k

We now bound T; 4:

T1.q = cax (05 (1+a)*95 07 f. 05 f)
= —cq k(35 (1 +a)*05 ™40, £, 859, f)
< ca il (L+a)? | 1105~91 f 1 210531 £1l 2
< caxcalld3 (L +a)l=l185 7/ (1 +a)llzoe 18501 £l 210591 fll2 (5.29)

where 0 < d <k and 0 < j <d. Since d is never 0, this ensures either 32'(1 +a) = 82' a
or Bd j (1+a) = 8 /@ which are smaller than & in L. Therefore, by choosing &

sufﬁmently small, we can take these terms as small as we want. Similarly,
Trq = ca i (35 (1 +a)dy Vi pr, 05 f)
< 2¢q4 1108 (1 +a) || Lo 195~ (201 f2) 1121195 £ 11 .2
j+1 k—d—j
< 2¢qkCj k-5 A+ @)l o133 all e l18y 701 fall 21105 £l 2
j+1
= 2eakejk-alldy (1+ @)l allLo 191 1l (5.30)
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and

T34 = Cd,k(3§i+103§_d+lpL, % f1)

< 2¢q 1185 all oo 1954 (Baafo) I 2 105 fill 12

d+1 j+l k—d—j k
< 2cqxcjr—alldy alL=ldy allL=|d, Sallp21105 £l L2

j+1
= 2cakejk-alldg all=1103" all o101 f 1 (5.31)

Combining the estimates for (5.29), (5.30), and (5.31) gives

1d
Mnaffniz +(1+a)d5a fl7, < Ceenalfugg. (5.32)

Combining (5.32) with (5.28) and taking &¢ sufficiently small we conclude
1d

T IIfIIi-,(;; = A=l fllge = -1 = 5)||f||§g (5.33)

which completes the proof.

5.3. Proof of Theorem 5.1. The proof is based on the local existence result in Theo-
rem 2.2, and a standard bootstrap argument for the bounds (5.7). Since Pgpbg = 0 we have
that [ bodxidxy = 0, and by appealing to (5.5a) we see that [, b(-, t)dx1dx; = 0
forall 7 > 0. It follows that || B||7, = [|b]I7, + | T +2 [0 bidxidxy = ||b]|3, +|TJ%.
Therefore, (2.2) and (5.6) imply that

16C, DNz < llboli2 <€ (5.34)

for all + > 0. Moreover, (5.6) and (2.9) show that there exists 7y > 0 such that for
all ¢+ € [0, To] we have that ||b(-, t)|l zm < 2&. This bound may be combined with
(5.34) to conclude that the bounds (5.7) hold on [0, Ty], with all inequalities being strict
inequalities. Due to the local existence result in Theorem 2.2 via a standard continuity
argument we may thus define a maximal time 7 € [Ty, oo] such that the estimates (5.7)
hold on [0, T}). Our goal is to show that T, = co. In order to achieve this we show that
if (5.7) hold on [0, T'] for some T > 0, then we may a posteriori show that these bounds
in fact hold with constants 3¢ instead of 4¢ in (5.7a)—(5.7¢); this then shows T, = oo.
The rest of the proof is dedicated to establishing this implication, and so we fix a time
interval [0, T'], and we assume throughout that (5.7) hold. We recall and use the notation
in (5.8).

5.3.1. Estimates for the nonlinear terms N and N’ Under the standing assumptions, we
estimate the nonlinear terms N (f, w) defined in (5.14a) and N'(f, w) defined in (5.10)
and claim that

INCEw)C ) g < e2e= 30701 (5.35)
and

IN'Cfy w) (e, )| sz < g2e= 1791, (5.36)
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Prior to establishing (5.35) and (5.36), we claim that the pressure terms in (5.13b)
and (5.14a) satisfy the bounds

m—k—p+1
Ll s < llall grss 1™ ||f||m o (5.37a)
2(m—k—p+1) 2(8—1)
m—k m—k
NIl gies S N g LW gm (5.37b)

for 1 < B < 10. The estimate for the linear pressure follows directly from (5.13b), the
fact that H* is an algebra, and interpolation:

m—k—p+1 1
Tm—k
IpLllgies S N02af2ll gres—1 S llall sl f2ll gres—1 S Nall s £ 1" ||f||

Similarly, from (5.14a) we have

, ) 2m—k—p+1) 28— 1)
%
[Nl gres S @D+ 01202 fill gres—2 SN Iggrapt S NF N ™ I g

Next, we claim that the velocity field w from (5.18) satisfies the estimate

m—k—p—1 B+1 2(m—k—pB—1) 2(B+1)

~k " % %
lwll gres S Nlall grsgen LA W gm0 I e ™ I Il gy (5.38)
H

for g > 0. This bound follows from (5.18), the previously established bounds (5.37b)—
(5.37b), and an algebra + interpolation argument:

lwll gres S Nads fll gres + 102af2 0l gres + 1 -V fll g + IV pLI grss + 1V PN || gess

2
S lall greser I preser + 1 f g + 1PLN grsser + I LI greps

m—k—p—1 Bl 2m—k—p—1) 2(8+1)
S lall grspa F11 IIfIII"};k S A P (a7
m—k—, ;s 2(m—k—p) 28
% -
+ llall st L F N i IIfII”’ Ll A P

The bound (5.38) follows by using the Poincaré inequality (recall that f has zero mean
on T?).

With (5.37b)—(5.37b) and (5.38) available, we next give the proof of (5.35). The right
side of (5.14a) contains ten terms, and as such we estimate

INCf, wllge < Ni+...+ N,

where

24 4
. 2 m—k m—i
Ni = 1adhPL(f -V HOllge S lallgell il S lallgell £ 1 F 1

2= e TR
Ny == [ladiPLVpnlige S llallgellpnllgre S llallgell £1 " IIfII}Sm

N3 == IPL(f - Vw)llge SN lgellwlligra S ||a”H1‘+2||f”Hkm - IIfIIHm +||f||Hk"' " ||f||1”1'mk
N ]P v < < m— k 2 m—| k k

4= PLw-VA)llge S Nwlgell fllge S ||a||1-1k+1 ”f”Hk I g +||f||Hk IIfIIHm
Ns = 19:2Po(fi f2)91 fll e SIS e S IIfIIHk'" w IIfII}ka

No :=2IPL(f - Vo Pllge S 1 e S IIfIIHk”’ ¥ ”f”Hm
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s 2 2
. —k —k
N7 = VLN e S vl S 1F 1™ L1
6

-6 m—k
Ng := [03Po(f1 £2) foll e S N e S A W
2 2

2—
. 2 m—k m—k
No := [102aPL(f - V ) xS llall gt 1 Wgear S Nall st 11 ™™ 1 1

. 2
Nio = [102a0PLpn Il gx S lall gt PN Tt S Nall gt L e s

where the implicit constants only depend on m and k. At this point we use the assumption
that m — k > 9, the standing assumption (5.9), and take ¢ sufficiently small depending
on § to obtain that (5.35) holds.

In a similar fashion, we estimate the nonlinear term in (5.10) as

IN"Cf. w)ll sz < Nj+ Ny + Ny

with

o 8 8
Ny = 2[182Po(f291 f) | sz S ||f||i1k+4 SN I g

7 7
N3 = 2Po(frw) ll grez S N F e lwll giess S IIaIIHk+4||f||i,k’”’k I W gpm
3. 11 11
+ ||f||Hk'"_k 11 g
2— 1 T
Ny = [102Po (w2 f) [l iz S Nlwll griess If W giers S Ml gasa LF 1™ ™ 1L W

ke
AN g™ L g

where the implicit constant depends only on m and k. Once again, using m — k > 9, the
standing assumption (5.9), and the bound [la(?)|| gra < [la(@) || gm < €7, after taking &
sufficiently small depending on § we have that (5.36) holds.

5.3.2. Closing the (5.7a) bootstrap This argument is based on the Duhamel formula,
which allows us via (5.12) to write

t
f@) =€ fo +/ eLUTIN(F, w)(s)ds (5.39)

0
Next, we note that a is a function defined on T, and thus by the Sobolev embedding

we have H**? ¢ wk+l.oo, which shows that (5.9) implies (5.24); thus, we may apply
Proposition 5.7. Applying the H* norm to (5.39), and appealing to (5.35), we arrive at

t
1@l = e [N w0l s
0
t
< se‘<1—5)f+g2/ o~ (1=0)t=9) ,~3(1=8)s g
0

t
< ge (1791 (1 +s/ eé(l‘s)sds>
0

< 2ge” (1701 (5.40)

once ¢ is chosen sufficiently small with respect to §. This bound improves on (5.7a), as
desired.
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5.3.3. Closing the (5.7b) bootstrap By assumption, we have that a|;—o = 0. Integrating
the evolution equation for a in (5.10), and appealing to (5.36), we thus deduce that

t t
. D)l aez < / IN'CFw) e 5)]] s ds < &2 / 0545 < ¢
0 0

for all ¢ € [0, T'], upon choosing ¢ to be sufficiently small in terms of §. This improves
(5.7b) by a constant factor, as desired.

5.3.4. Closing the (5.7c) bootstrap From (2.4), (5.3), (5.6), and the fact that || B|| zs =
Il 75, we deduce that for a constant C,,, which only depends on m, we have

t
¢, DI, < &*exp (cm /O VUG )l oo + IVODC )l + VDG, )] ds)
541
From (5.9), (5.17), (5.38), and the fact that k > d/2 + 1 = 2, we note that

t t
/Onw.,s)nmdss/o DG )l + 1LF G )y ds

1 2 2

t 1
=0z g 2—5= =
S/ laC, )l giert AN e~ W g + NN ™ S W s
0

t
< 52/ emSU=DsHges g < o (5.42)
0

if e is sufficiently small with respect to §. Returning to (5.41), we see that Vo1 b = Vo f,
and since k > 2 +d/2 = 3 and f has zero mean on T2, we have that (5.9) implies

t 1 t
/ IVa1b(- )l ds < / IfCos)llpgeds Se / eIdg S et (5.43)
0 0 0

Lastly, for the third term in (5.41) we similarly note that

t t
/nw(-,s)nioodsg/ laG, )12 + 1 fCo)2eds S et e, (5.44)
0 0

where the implicit constant only depends on m and k. By combining (5.41)—(5.44) we
thus obtain that there exists a constant C,, x > 0, which only depends on m and k, such
that

16 D1, < e?exp (Cui(e +62)) < eexplen)

upon taking ¢ to be sufficiently small, solely in terms of m and k. This bound improves
on (5.7¢), as desired.
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5.3.5. Relaxation in the infinite time limit We recall that the total velocity field has zero
mean on T and is given from (5.3)—(5.4) asu = 91b+v, and v is computed from f and
w via (5.17). Since 015 = 0, f, the fact that ||u(-, t)||yzx — 0 ast — oo, exponentially
fast, now follows from (5.9) and (5.38):

G Ol gt = NuC Ol g S e+ Twll e+ 11121 g
Sgem 70 4 e TR g 2o Ty 2200
1-68
-1
Seem 78,

In order to conclude the proof of the theorem, we note that in view of (1.3a) and the fact
that k > 4, we have

10:Dll -2 = 110 Bl gr—2 S 1B @ ull g1 S Bl g1 Nl -1 < (1 + 161 i) Noall g
and thus in view of (5.7a)—(5.7b) we obtain

1-8
||8[b||Hk—2 5 8e_Tt .
The strong convergence lim;_, o0 b(-, 1) = b, with respect to the H k=2 norm, for an
incompressible vector field » which has norm < 4¢, now follows from the above estimate
and the fundamental theorem of calculus in time. The corresponding limiting relaxation
state for the total magnetic field is then B = e + b.

6. Nonlinear instabilities in 3D

In this section we consider a class of two-and-a-half dimensional exact solutions of
the three-dimensional MRE system (1.1), when y = 0, and show that for suitable
choices of initial conditions, these solutions exhibit infinite time growth of gradients.
These examples draw on an analogy with the 3D Euler equation, for which Yudovich
[Yud74, YudOO] has constructed similar solutions. Theorem 6.1 below gives an example
in which magnetic relaxation holds with respect to the L norm, but fails with respect to
the H'! norm. Furthermore, as in the work of Elgindi and Masmoudi [EM20] we construct
examples where the magnetic current grows exponentially in time, for all time.

To fix notation, for any vector x € R3, we denote by xg its first two horizontal
components, i.e. xg = (x1, x2). We also write div g = Vy- where Vg = (91, d2).

6.1. Euler examples. We recall from [Yud74,YudOO] the following two-and-a-half di-

mensional solution of 3D Euler, which exhibits infinite time growth of the vorticity.
The setting is as follows. Consider any stationary state v = v(xpg) of the 2D Euler

equations on T?. These stationary states may be written as v = V ﬁd), where the periodic

stream function ¢: T? — R satisfies Ay¢ = F(¢) fora sufficiently smooth F. Then,
an exact solution of the 3D Euler system is given by

ux, 1) = (xnp), g(xu. 1)) (6.1)
where the function g: T2 x R, — R satisfies the transport equation

org+(-Vp)g=0. (6.2)
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Indeed, one may verify that ;u+u-Vu = (v-Vyv, 0;g+v-Vgg) = (—Vgp,0) = —=Vp,
where p = p(xp) is the pressure associated to the steady solution v.
Shear flow. When v is a shear flow, such as

v(xg) = (V(x2),0)

for a smooth function V: T — R, the solution of (6.3) is explicit in terms of its initial
datum go:

gxg, 1) = go(x1 —tV(x2), x2). (6.3)

Thus, combining (6.1) with (6.3), we are lead to the following exact solution of 3D
Euler:

ux, 1) = (V(x2),0, golx1 —1V(x2), x2)) . (6.4)

Even though u(-, ) remains bounded with respect to the L° norm, the vorticity «w =
V x u has the property that its first component is given by

w1 (x, 1) = (ouz — Buz)(x, 1) = —tV'(x2)(0180) (x1 — 1V (x2), x2)
+(0280) (x1 — tV(x2), x2) .

It is clear that for suitable choice of the initial datum gg, and for V = constant, we have
that ||w1 (-, )| L =t ast — oo. As such, in [Yud00], Yudovich calls the solution given
in (6.4) as weakly nonlinearly unstable.

Hyperbolic flow. In analogy with the above example, Elginidi and Masmoudi [EM20]
consider the stationary solution v = v(xp) appearing in (6.1) to be an eigenfunction of
the Laplacian which displays hyperbolic dynamics near the separatrix; more precisely,
they consider

(6.5)

. . —sin x| cos x
v = Vi, (sinxg sinxp) = ( ! 2)

COS X1 sin xp

In this case, the solution g of the transport equation (6.3) is again bounded, but its
derivative in the x; direction, restricted to the separatrix {x, = 0} satisfies the equation

07(018)]x,=0 — sin x101(318)|x,=0 = cos x1(918)|x,=0 ,

and as such we have that (3;£)(0,0,1) = (312)(0, 0, 0)e’. Thus, in this situation the
solution u# of 3D Euler given by (6.1) exhibits exponential growth with respect to time
of the first component of the vorticity

w1, D)z > €'|wi(0,0,0)].
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6.2. MRE examples. The example of Yudovich outlined above, has a direct correspon-
dent for the 3D MRE system. The main observation is that an exact solution of the 3D
MRE Egq. (1.1) with y = 0 is given by

B=(,g), u=(0,0,(v-Vg)g) (6.6)
where ¢ = g(xy,1): T2 x R, — R satisfies the rank 1 diffusion equation

dhg=-Vun)g. (6.7)

In order to verify this, we start from the ansatz (6.6) and the fact that g is independent of
x3, to immediately see that B and u are divergence free, so that (1.1c) holds. Wheny = 0,
and with the ansatz (6.6), the first two components of (1.1b) become 0 = v-Vygv+ Vg p;
this identity holds because v was chosen to be an exact stationary state of the 2D Euler
equations. On the other hand, the third component of (1.1b) reads u3 = v - Vg g, which
justifies the definition of u3 in (6.6). Lastly, in view of (6.6) we have u - VB = 0, since
v, g are independent of x3, and B - Vu = e3(v - Vg) (v - Vg)g. Therefore, (6.7) ensures
that (1.1a) holds, as claimed.

Comparing the MRE evolution of g in (6.7) to the Euler evolution of g in (6.3), we
see that the main difference is that g does not solve a transport equation, but rather a
rank 1 diffusion equation. Nonetheless, the gradient of g may still exhibit infinite time
growth, which is what we show next.

Shear flow. The evolution Eq. (6.7) is particularly easy to solve if the 2D Euler steady
state v is chosen to be a shear flow. As such, consider

v(xg) = (V(x2),0) (6.83)
for a smooth T-periodic scalar function V. With (6.7), the evolution (6.7) becomes
g = V3 (x2)on1g (6.9)

which is a heat equation in the (x1, #) variables, with viscosity coefficients that depend
on x3. In particular, if we choose an initial datum go which is just a function of x; and
such that its mean-free part is an eigenfunction of 911, i.e.

—d1180(x1) = A? (gom) - ]fr go> (6.10)

for some A > 0, we have that the solution of Eq. (6.9) is given by

g1, x2,1) = 7[ g0+ exp (—22V2 (i) ) (gom) - 7[ go> : (6.11)
T T

We have thus shown that if the 2D Euler steady state is given by the shear flow in (6.8),
and if the initial datum for the third component of the magnetic field is a function that
satisfies (6.10), then for g given by (6.11) the functions

B(x,1) = (V(x2),0,8(x1,x2,1)),  ux,1) =(0,0, V(x2)d18(x1, x2, 7)) (6.12)

are exact solutions of the 3D MRE Eq. (1.1) with y = 0.

In particular, the above example shows that solutions of (1.1) with y = 0andd =3
exhibit infinite time growth of gradients, even if the initial datum is a small perturbation
of the steady state B = ez and u = 0:
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Theorem 6.1 (Example of solution with infinite time growth). There exists an incom-
pressible initial condition (Bo, ug) such that By — e3 = O(g) and uy = O(¢2) in arbi-
trary strong topologies (e.g. real-analytic), and such that the unique solution B of the 3D
MRE Eq. (1.1) with this initial datum and y = 0 satisfies |VB(-, t)|l;2 = O(321/%)
ast — oo.

Proof of Theorem 6.1. In (6.12), take V (x2) = &sin(xy), and go(x1) = 1 + € cos(xy).
This corresponds to the initial conditions

By = e3 + &(sin(xy), 0, cos(xy)) and wug= —82(0, 0, sin(xp) sin(x1))

which are clearly divergence free, and smooth. Due to the local existence and uniqueness
theorem, we know that the solution is given by (6.12), where by (6.11) we have

g(x1,x2,1) = 1 +¢ecos(xy) exp (—82 sinz(xz)t> .
In particular, by (6.12) and the above formula, we have that
0 B3(x,t) = —2t8° sin(x2) cos(x2) cos(xy) exp (—82 sinz(xz)t>

and so we may explicitly compute

. 1

A% ere 102830 Dl =1 (.13
. 1

rlggo m 102 B3 (-, f)”L)%1 Ly = 1 (6.13b)

where Cy :(2713)1/4,C2=(27t2/e)1/2.Therefore,wehave IVB(,t)|l;2 = O(&3/211/%)
ast — oo.

Remark 6.2. (Asymptotic behavior with respect to weak topologies) While the H' norm
of the solution B defined by (6.12) is growing without bound as time goes to infinity,
we emphasize that its L? norm remains uniformly bounded. In fact, for the solution in
(6.12) we have the following asymptotic pointwise description

(V(x2),0, frgo) » if V(x2) #0

: (6.14)
(V(x2),0, go(x1)) , if V(x2) =0

Jlim B(x, 1) — B(x) := {

and lim,_, o u(x, t) = 0. This is thus an example of magnetic relaxation: B converges
to a magnetostatic equilibrium B, while u converges to 0, as t — oo. However, this
relaxation holds with respect to weak topologies only (e.g. L*), and weak nonlinear
instability takes place in stronger topologies (e.g. H').

Remark 6.3. (The emergence of current sheets in the infinite time limit) We note that
even though the initial datum in the example of Remark 6.2 is smooth, namely By =
(V(x2),0, go(x1)), the (weak) limiting magnetostatic equilibrium B may contain dis-
continuities in the vertical direction. For instance, take V (x2) = 1y,e[—x/2,7/2] cosz(xz),
and go(x1) = sin(x1). Then we have that the B vector field defined in (6.14) is given by

By — {(cosz()fz),(), 0) if o] <7/270
0,0, sin(x1)) , if|x]>7/2#0
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which clearly contains a discontinuity along the planes {x € T3: x = #+m/2}. The
associated current field j = V x B is given by the sum of a bounded piece 1)<n/2
(0, 0, sin(2x2)) + 1jxy|>7/2(0, —cos(x1), 0), and a singular part which a Dirac mass
supported on the planes x; = £ /2 and has amplitude (&£ sin(xy), 0, 0).

Hyperbolic flow. While Theorem 6.1 exhibits solutions whose magnetic current
grows algebraically in time as t — oo, following [EM20] we may show that if v is
chosen to be the cellular flow

. . —sin xj cos x
v = Vﬁ (sinxp sinxp) = L 2 , (6.15)
€OS X1 sin xp

then we can in fact find solutions g of (6.7), and hence of the MRE equations, which
exhibit exponential growth of their gradients. This is the worst growth that they can
sustain, given that (6.7) is an equation linear in g.

Theorem 6.4 (Example of solution with exponential growth). Let v be as in (6.15).
For any initial data gy € H¥, with k > 3 an integer, which satisfyies Vi go(0, 0) # 0,
the unique solution of the 3D MRE Eq. (1.1) with initial data By = (v, go) and ug =
(0,0, v - Vg go), satisfies

IVi80(0,0)] ¢' < |VB(, 1)L < C || Boll g " , (6.16)
where C > 0 is a constant which only depends on k.

We note that while the lower bound on the Lipschitz norm of B given by (6.16)

behaves as e, in (3.8) we have obtained an upper bound which behaves as ¢ " as
t — oo; this difference stems from the fact that (6.16) holds for y = 0, while (3.8)
holds for y > d/2 + 1 = 5/2. This indicates a different behavior between the MRE
equation (y = 01in (1.1)), and the regularized MRE equation (y > 0 is large).

Proof of Theorem 6.4. With v as defined in (6.15), the g Eq. (6.7) becomes

2 2

0;g = sin” x| cos? x2312g + cos” x| sin® x2822g — % sin(2x1) sin(2x2)0102g
+ 3 5in(2x1)d1 g + 3 sin(2x2)dg. (6.17)

The upper bound in (6.16) follows from the energy identity
5718152 + 1w Vgl =0,
the H* estimate for (6.7)
1d
5 7 18l + 1@ DIVEITs S Il allvl oo g Wz S gz

and the fact that the condition k > 2 implies by the 2D Sobolev embedding that H¥ ¢
Lip.

In order to obtain the lower bound in (6.16), we assume without loss of generality
that 91g0(0,0) # O (the case d2g0(0,0) # O is treated in the same way). Then, we
differentiate (6.17) with respect to x| and arrive at the equation

9;:(018)(0,0,1) = (81£)(0,0,1), (6.18)

The exponential growth for the gradient of g, and hence of B in view of (6.6), with
respect to the supremum norm now directly follows.
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7. Open problems

We conclude the paper by highlighting a number of interesting open problems for the
magnetic relaxation equation.

7.1. Global well-posedness versus finite time blowup. We have shown in Theorem 2.2
that local existence and uniqueness of strong solutions for the MRE Eq. (1.1) holds
irrespective of the regularization parameter y > 0. However, we were only able to
prove that these solutions remain smooth for all time (necessary in order to consider the
relaxation in the infinite time limit), when y was sufficiently large, namely y > d/2+1.
Naturally, one is left to consider:

Q1. Fory € [0, d/2+ 1] can the local smooth solutions to the active vector Eq. (1.1)
be extended to global ones, or do finite time singularities arise?

We emphasize that for d = 2 and for initial magnetic field By of zero mean, we may
identify a zero mean scalar magnetic stream functiongp = A~ V1. B, sothat B = V1-.¢.
Then, the evolution Eq. (1.1a) becomes the active scalar equation

hp+u-Vo =0 (7.1)
where the constitutive law ¢ +— u is given by
u=(—A)""Pdiv(Vi¢ ® V' ¢). (7.2)

The active scalar equation (7.1)—(7.2) has a quadratic in ¢ constitutive law, and thus
a cubic nonlinearity, making the analysis of the 2d MRE equation more cumbersome
when compared to classical models in the canon of active scalar equations, such as SQG
[CMT94] or IPM [CCGO09].

7.2. Magnetic relaxation. Assuming that the answer to Q1 is positive, i.e., that the
smooth solutions to (1.1) are global in time (and thus the evolution (1.1a) truly is topol-
ogy preserving), the fundamental question is whether as 1 — oo the magnetic field
B(, t) relaxes to an MHD/Euler equilibrium B satisfying (1.4). We have discussed in
Remark 4.2 the fact that the convergence of u(-, ) — 0 as¢ — 00, even with respect to
very strong norms, is in general not sufficient to guarantee that weak L> subsequential
limits of B(-, t) are magnetostatic equilibria, i.e., that they solve (1.4). Also, in view
of Remark 4.3 and of the results in Sect. 6 we have shown that generically we cannot
expect magnetic relaxation with respect to strong norms, such as H' or Lip. Thus, we
are naturally lead to:

Q2. Given a global in time solution B(:, t) to (1.1), does there exist a weak solution
B e LZ(T‘J ) of (1.4) and a subsequence #; — oo such that we have the weak
convergence B(-, ty) — B? Furthermore, does the answer change from d = 2
to d = 3, or for various values of y?

Furthermore, in [Mof21, Section 8, Question (vii)] Moffatt poses the question:

Q3. For the magnetic relaxation problem (1.1), when the initial field is chaotic, what
is the asymptotic structure of the relaxed field? Equivalently, what is the function
space within which this relaxed field B must reside?
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The examples given in Sect. 6 show that for the two-and-a-half dimensional solutions
constructed via (6.6)—(6.7) the answer to Q2 is positive (see Remark 6.2), but that the
magnetostatic equilibria B may contain current sheets (see Remark 6.3), so that they
are not smooth. In fact, by the maximum principle it follows that all examples of steady
states B arising as infinite time limits from the ansatz (6.6)—(6.7) will lie in L due to
the maximum principle, but our examples show that B cannot in general be expected
to lie in C°. We note also that for generic initial data it remains an open problem to
show that the MRE evolution (1.1) is such that || B(-, #)||;» remains uniformly bounded
in time, for any p > 2. Thus, in general we do not know if the answer to question Q3 is
better than B € L2

7.3. Global weak solutions. In the absence of a positive answer to Q1, one may wonder
whether the MRE system (1.1) at least possesses global weak solutions for generic
initial data. Note that in order to define weak solutions a minimal requirement is that
B(.,1) € L%, in order to properly define a distribution u via (1.2). However, defining
weak solutions to (1.1a) additionally requires that (B Qu —u ® B) € Ll which is

loc,t,x?
for instance true when B(-, ) € L? if we also know that u(-, 1) € L%. Note that when
y is not large (e.g. for y = 0), we cannot deduce from the square integrability of B
and (1.2) that u is also square integrable (by the Sobolev embedding this would require
y > d/4 + 1/2). The energy inequality (2.2) comes to the rescue, providing for any
y > 0 the required square integrability in space, locally in time, for the velocity field.
A natural question thus is:

Q4. Given By € L? and y > 0 does there exist a global weak solution B € L® L2 of
(1.1) which satisfies the energy inequality (2.2)? Alternatively, for y € (d/4 +
1/2,d/2+1], does there exist a global weak solution B € L L% of (1.1) which
does not satisfy energy inequality (2.2)?

The first part of question Q4 is nontrivial because the dissipative term in (2.2) does not
yield robust compactness properties for the vector field B. Note, however, that Brenier
[Brel4], in the two dimensional case and with y = 0, managed to obtain global in time
measure-valued solutions, a notion of solution which is weaker than the one of a weak
solution, but which retains a weak-strong uniqueness property. Concerning the second
part of question Q4, we note that the cubic nature of the nonlinear term in (1.1a) and the
geometric properties of the constitutive law (1.1b), prevent the immediate application of
convex integration techniques to the MRE system. Indeed, both the L°°-based convex
integration techniques of De Lellis-Szekelyhidi [DLS12] and the L?-based intermittent
convex integration developed by Buckmaster and the third author [BV21], do not seem
to be directly applicable to the evolution Eq. (1.1), so that a potentially different convex
integration method would need to be developed for the MRE system.

7.4. Other models. A number of other topology preserving diffusion equations have
been proposed in the literature, which all have the property that the steady states are in-
compressible Euler equilibria. We mention for instance the models of Vallis-Carnevale-
Young [VCY89] and Bloch-Marsden-Ratiu [BKMR96]. Other types of coercive damp-
ing mechanisms, which, however, do not preserve the topology of the streamlines, were
considered in [NisO1,Nis03,Pas20]. Most if not all of the questions considered in this
paper (global existence of solutions, relaxation towards Euler steady states as t — 00)
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could be asked about those models. It would be interesting to compare (analytically
or numerically) the long-time properties of solutions to the models in [VCY89] or
[BKMRO6], with those for the MRE equation. Is there any one model better suited
for magnetic relaxation?
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