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Abstract
We consider the 3D isentropic compressible Euler equations with the ideal gas
law. We provide a constructive proof of the formation of the first point shock
from smooth initial datum of finite energy, with no vacuum regions, with non-

trivial vorticity present at the shock, and under no symmetry assumptions. We
prove that for an open set of Sobolev-class initial data that are a small per-
turbation of a constant state, there exist smooth solutions to the Euler equations
which form a generic stable shock in finite time. The blowup time and location
can be explicitly computed, and solutions at the blowup time are smooth except
for a single point, where they are of cusp-type with Hölder regularity. Our
proof is based on the use of modulated self-similar variables that are used to en-
force a number of constraints on the blowup profile, necessary to establish global
existence and asymptotic stability in self-similar variables. © 2022 Wiley Peri-
odicals LLC.
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1 Introduction
A fundamental problem in the analysis of nonlinear partial differential equa-

tions concerns the finite-time breakdown of smooth solutions and the nature of the
singularity that creates this breakdown. In the context of gas dynamics and the
compressible Euler equations that model those dynamics, the classical singular-
ity is a shock. In this paper, we provide a detailed analysis of the self-steepening
mechanism that leads to the first singularity, a point shock. For the isentropic com-
pressible Euler equations in three space dimensions with vorticity, this has been a
longstanding open problem.

In particular, we give a precise description of the open set of initial data from
which smooth solutions to the Euler equations form a stable generic shock in finite
time, in which the gradient of velocity and gradient of density become infinite at
a single point, while the velocity, density, and vorticity remain bounded. In the
process, we shall provide the exact blowup time, location, and direction of the
singularity, as well as the regularity of the generic blowup profile. Away from this
single blowup point, the solution remains smooth. This is the first result of this
type for the Euler equations in three-space dimensions (see [20, 22] for the one-
dimensional isentropic case, and [3] for the case of two-dimensional isentropic
and azimuthal Euler equations). The mathematical framework that we develop in
this work plays a fundamental role in the analysis of the full nonisentropic Euler
system [4].

Let us now introduce the mathematical description. The three-dimensional isen-
tropic compressible Euler equations are written as

t divx x(1.1a)

t divx(1.1b)

where x x x x and t are the space and time coordinates,
respectively. The unknowns are the velocity vector field ,
the strictly positive density scalar field , and the pressure

, which is defined by the ideal gas law

The sound speed is then given by where . The
Euler equations (1.1) are a system of conservation laws: (1.1a) is the conservation
of momentum and (1.1b) is conservation of mass. Defining the scaled sound speed
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by , (1.1) can be equivalently written as the system

t x x(1.2a)

t x divx(1.2b)

We let curlx denote the vorticity vector, and we shall refer to the vector
as the specific vorticity, which satisfies the vector transport equation

t x x(1.3)

Our proof of shock formation relies upon a transformation of the problem from
the original space-time variables x t to modulated self-similar space-time coor-
dinates , and on a change of unknowns from to a set of geometric
Riemann-like variables in the self-similar coordinates. The singularity
model is characterized by the behavior near of the stable, stationary solu-
tion (described in Section 2.7) of the 3D self-similar Burgers
equation

(1.4)

For a fixed , the vector given by

x x x t t
x

t
x

t
x

t

is the solution of the 3D Burgers equation in original variables, t x ,
forming a shock at a single point at time t . An explicit computation shows
that the Hessian matrix is strictly positive definite. This genericity
condition provides stability of the shock profile for solutions to the Euler equations
as we will explain in detail below.

A precise description of shock formation necessitates explicitly defining the set
of initial data which leads to a finite-time singularity, or shock. Additionally, from
the initial datum alone, one has to be able to infer the following properties of the
solution at the first shock: (a) the geometry of the shock set, i.e., to classify whether
the first singularity occurs along either a point, multiple points, a line, or a surface;
(b) the precise regularity of the solution at the blowup time; (c) the explicitly com-
putable space-time location of the first singularity; (d) the stability of the shock.
For the last condition (d), by stability, we mean that for any small, smooth, and
generic (meaning outside of any symmetry class) perturbation of the given initial
data, the Euler dynamics yields a smooth solution which self-steepens and shocks
in finite time with the same shock set geometry, with a shock location that is a
small perturbation, and with the same shock regularity; that is, properties (a)–(c)
are stable. As an example, the solution is stable: the shock occurs at a single
point, and any small generic perturbation of (as we will prove) also develops
a shock at only a single point, and with the same properties as those satisfied by

. On the other hand, a simple plane wave solution of the Euler equations that
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travels along the x -axis and is constant in x x produces a finite-time shock
along an entire plane, but a small perturbation of this simple plane wave solution
can produce a very different shock geometry (any of the sets from condition (a) are
possible).

Our main result can be roughly stated as follows:

THEOREM 1.1 (Rough statement of the main theorem). For an open set of

smooth initial data without vacuum, with nontrivial vorticity, and with a maxi-

mally negative gradient of size O , for sufficiently small, there exist

smooth solutions of the 3D Euler equations (1.1) which form a shock singularity

within time O . The first singularity occurs at a single point in space, whose

location can be explicitly computed, along with the precise time at which it occurs.

The blowup profile is shown to be a cusp with regularity, and the singularity

is given by an asymptotically self-similar shock profile which is stable with respect

to the topology for .

A precise statement of the main result will be given below as Theorem 3.1.

1.1 Prior results on shock formation for the Euler equations
In one space dimension, the isentropic Euler equations are an example of a

system of conservation laws, which can be written in terms of the Riemann in-
variants and introduced in [30]; the functions and

are constant along the characteristics of the two wave speeds and
. Using Riemann invariants, Lax [21] proved that finite-time shocks

can form from smooth data for general genuinely nonlinear hyperbolic sys-
tems. The proof showed that the derivative of must become infinite in finite
time, but the nature of the proof did not permit for any classification of the type of
shock that forms. Generalizations and improvements of Lax’s result were obtained
by John [18], Liu [23], and Majda [25] for the 1D Euler equations. Again, these
proofs showed that either a slope becomes infinite in finite time or that (equiva-
lently) the distance between nearby characteristics approaches zero, but we note
that a precise description of the shock was not given. For 1D isentropic Euler, a
precise description and classification of the first singularity was given by Lebaud
[22] and later in Kong [20], while a classification of all possible stable singularities
was given by Caflisch-Ercolani-Hou-Landis [5]. See the book of Dafermos [13]
for a more extensive bibliography of 1D results.

For the 3D Euler equations, Sideris [31] formulated a proof by contradiction
(based on virial identities) that regular solutions to (1.1) have a finite lifespan;
in particular, he showed that O exp is an upper bound for the lifespan (of 3D
flows) for data of size . The proof, however, did not reveal the type of singularity
that develops, but rather, that some finite-time breakdown of smooth solutions must
occur.

The first proof of shock formation for the compressible Euler equations in the
multidimensional setting was given by Christodoulou [8] for relativistic fluids and
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with the restriction of irrotational flow, and later by Christodoulou-Miao [10] for
nonrelativistic, irrotational flow.1 This geometric method uses an eikonal function,
whose level sets correspond to characteristic surfaces; it is shown that in finite time,
the distance between nearby characteristics tends to zero. For irrotational flows, the
isentropic Euler equations can be written as a scalar second-order quasilinear wave
equation. The first results on shock formation for 2D quasilinear wave equations
that do not satisfy Klainerman’s null condition [19] were established by Alinhac
[1,2], wherein a detailed description of the blowup was provided. The first proof of
shock formation for fluid flows with vorticity was given by Luk-Speck [24] for the
2D isentropic Euler equations. Their proof uses Christodoulou’s geometric frame-
work and develops new methods to study the vorticity transport. In [8, 10, 24],
solutions are constructed which are small perturbations of simple plane waves. It
is shown that there exists at least one point in space-time where a shock must form,
and a bound is given for this blowup time; however, since the construction of the
shock solution is a perturbation of a simple plane wave, there are numerous pos-
sibilities for the type of singularity that actually forms. In particular, their method
of proof does not distinguish between these different scenarios. To be precise, a
simple plane wave solution of the 2D isentropic Euler equations that travels along
the x -axis and is constant in x produces a finite-time shock along a line, but a
small perturbation of this simple plane wave solution can produce a very differ-
ent singular set, with blowup occurring on different spatial sets such as one point,
multiple points, or a line.

In our earlier work [3], we considered solutions to the 2D isentropic Euler equa-
tions with O vorticity and with azimuthal symmetry. Using modulated self-
similar variables, we provided the first construction of shock solutions that com-
pletely classify the shock profile: the shock is an asymptotically self-similar, stable,
generic 1D blowup profile, with explicitly computable blowup time and location,
and with a precise description of the Hölder regularity of the shock. Az-
imuthal symmetry allowed us to use transport-type bounds, which simplified
the technical nature of the estimates, but the proof already contained some of the
fundamental ideas required to study the full 3D Euler equations with no symmetry
assumptions.

1.2 The variables used in the analysis and strategy of the proof
We now introduce the variables used in the analysis of shock formation. For

convenience we first rescale time t , as described in (2.1). Associated to cer-
tain modulation functions (described in Section 1.3 below), are a succession of
transformations for both the independent variables and the dependent variables.
In order to dynamically align the blowup direction with the -direction, a time-
dependent rotation and translation are made in (2.5), which maps x to , with

, , and transformed to , , and via (2.6) and (2.8). Fundamental to the

1 For the restricted shock development problem, in which the Euler solution is continued past the
time of first singularity but vorticity production is neglected, see the discussion in section 1.6 of [9].
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analysis of stable shock formation, we make a further coordinate transformation
given by (2.15); this mapping modifies the -variable by a function

which is quadratic in space and dynamically mod-
ulated by . The parametrized surface can be viewed as
describing the steepening shock front near , and provides a time-dependent
orthonormal basis along the surface, given by the vectors the unit normal vector
N and the two unit tangent vectors T , and T defined in (2.14)
and (2.13). Together with the coordinate transformation , the functions ,

, and are transformed to , , and using (2.16) and (2.20). Moreover, the
Riemann variables N and N , as well as the tangential
components of velocity T are introduced in (2.22).

Finally, we map to the modulated self-similar coordinates using the
transformation (2.25). The variables , , and are mapped to their self-similar
counterparts , , and via (2.32), (2.32), and (2.35), while , , and are
mapped to the self-similar variables , , and in (2.26).

As a consequence of this sequence of coordinate and variable changes, the Euler
equations in the original variables (1.2) for the unknowns x t x t become
the self-similar evolution (2.34) for the unknowns . Of crucial
importance for our analysis is the evolution of the self-similar Riemann-type vari-
ables in (2.28), which encode the full Euler dynamics
in view of (2.33). The key insight into our analysis is that the self-similar La-
grangian trajectories associated to the -equation escape exponentially fast to-
wards spatial infinity if their starting label is at a fixed (small) distance away from
the blowup location , whereas the Lagrangian trajectories for and es-
cape towards infinity independently of their starting label, spending at most an
O time near . This exponential escape towards infinity is what allows
us to transfer information about spatial decay of various derivatives of into in-
tegrable temporal decay for several damping and forcing terms, when viewed in
Lagrangian coordinates. As opposed to our earlier work [3], these pointwise esti-
mates for do not close by themselves, as there is a loss of a derivative
when the equations are analyzed in . This difficulty is overcome by using the
energy structure of the 3D compressible Euler system, which translates into a fa-
vorable estimate for the self-similar variables , for sufficiently large
(e.g., is sufficient).

Coupled to the evolution we have a nonlinear system of 10 ODEs
which describe the evolution of our 10 dynamic modulation variables , , , ,

, , , , , , whose role is to dynamically enforce constraints for ,
, and at ; cf. (5.1).

For all , or equivalently , the above-described transformations are
explicitly invertible. Therefore, our main result, Theorem 3.1, is a direct conse-
quence of Theorem 3.4, which establishes the global-in-self-similar-time stability
of the solution , in a suitable topology near the blowup profile ,
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along with the stability of the 10 ODEs for the modulation parameters. In turn,
this is achieved by a standard bootstrap argument: fix an initial datum with certain
quantitative properties; then postulate that these properties worsen by a factor of at
most for some sufficiently large constant ; to conclude the proof, we a poste-
riori show that in fact the solutions’ quantitative properties worsen by a factor of at
most . Invoking local well-posedness of smooth solutions [25] and continuity-
in-time, we then close the bootstrap argument, yielding global-in-time solutions
bounded by .

The global existence of solutions in self-similar variables, together
with the stability of the , leads to a precise description of the blowup of a certain
directional derivative of . For the dynamic modulations functions mentioned
above, the function converges to the blowup time , the vector converges
to the blowup location , and the normal vector N converges to N as .
Moreover, we will show that

(1.5)
N x

as

Thus, it is only the derivative of in the N direction that blows up as ,
while the tangential directional derivatives T x and
T x remain uniformly bounded as . Addi-

tionally, we prove that the directional derivative N x of and
remain uniformly bounded as . Thus, (1.5) shows that the wave profile
steepens along the N direction, leading to a single point shock at the space-time
location .

1.3 Modulation variables and the geometry of shock formation
The symmetries of the 3D Euler equations lead to dynamical instabilities in the

space-time vicinity of the shock, which are amplified when considering self-similar
variables [15]. Our analysis relies crucially on the size of this invariance group. We
recall that the 3D Euler equations are invariant under the 10-dimensional Lie group
of Galilean transformations consisting of rotations, translations, and rigid motions
of space-time, as well as the two-dimensional group of rescaling symmetries. Ex-
plicitly, given a time shift t , a space shift x , a velocity shift (Galilean
boost) , a rotation matrix , a hyperbolic scaling parameter

, a temporal scaling parameter , and a solution of the 3D
compressible Euler system (1.2), where as before , the pair of func-
tions

new x t
x x t t t

new x t
x x t t t
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also solve the 3D Euler system (1.2), and hence, these transformations define the
12-dimensional group of symmetries of the 3D Euler equations. For simplicity we
sacrifice of of these degrees of freedom: we fix a temporal rescaling since we
choose to prove that an initial slope of size (negative) causes a blowup in time

O (just as for the 1D Burgers equation); we discard the degree of freedom
provided by hyperbolic scaling since it is not necessary for our analysis to fix the
determinant of to be constant in time; we also only utilize two of the three
degrees of freedom in the rotation matrix since we choose a particular
basis for the plane orthogonal to the shock direction; lastly, we discard two Galilean
boosts as we do not need to modulate to be constant in time. This leaves
us with a 7-dimensional group of symmetries which we use at the precise shock
location. Additionally, since in self-similar coordinates our blowup is modeled by
the shear flow in the -direction, using a quadratic-in- shift function, we are also
able to modulate translational instabilities away from the shock in the directions
orthogonal to the shock.

A fundamental aspect of our analysis is to show that there is a correspondence
between the instabilities of the Euler solution and the symmetries discussed above.
Thus, in order to develop a theory of stable shock formation, it is of paramount
importance to be able to modulate away these instabilities. This idea was success-
fully used in [26–28] in the context of the Schrödinger equation, and in [29] for the
nonlinear heat equation. We also note here recent applications of modulated self-
similar blowup techniques in fluid dynamics: [11, 12, 14] for the Prandtl equations
and [7, 16, 17] for the incompressible 3D Euler equation with axisymmetry.

In the aforementioned works, the role of the modulation variables is to en-
force certain orthogonality conditions which prohibit the self-similar dynamics
from evolving toward the unstable directions of a suitably defined weighted energy
space. Rather than enforcing orthogonality conditions, we shall instead employ a
generalization of the idea that we previously introduced in [3] in the setting of the
2D Euler equations with azimuthal symmetry, in which the modulation functions
are used to dynamically enforce pointwise constraints at precisely the blowup lo-
cation for a Riemann-type function . For the 2D Euler equations with azimuthal
symmetry, we required only three modulation functions to enforce constraints on

and its first two derivatives. In the 3D case considered herein, for which no
symmetry assumptions are imposed, the 7 remaining invariances of 3D Euler cor-
respond to 7 modulation functions , , , whose role is to
enforce 7 pointwise constraints for a 3D Riemann-type function and its
first-order and second-order partial derivatives at . We describe the one-to-
one correspondence between symmetries and pointwise constraints at as
follows:

The amplitude of the Riemann variable is modulated via the unknown
t by a Galilean boost of the type t , whose role is to enforce the

constraint .
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The time-shift invariance of the equations is modulated via the unknown
t , which allows us to precisely compute the time at which the shock

occurs. This modulation function enforces the constraint .
The invariance of the equations under the remaining 2-dimensional or-
thogonal rotation symmetry group is modulated via the modulation vector

t t t , allowing us to precisely compute the direction of
the shock and its orthogonal plane. This modulation vector enforces the
constraint .
The space-shift invariance of the equations is modulated via the vector

, thereby allowing us to precisely compute the location of the shock.
Dynamically, the modulation vector enforces the constraint

The remaining three modulation functions

t t t

which correspond to -dependent spatial shifts, are used to enforce the con-
straint . Geometrically, these three functions modulate the second
fundamental form of the shock profile in the directions orthogonal to the shock
direction.

1.4 Outline
The remainder of the paper is structured as follows:

In Section 2, we describe the changes of variables that transform the Euler
system from its original form (1.1) to its modulated self-similar version in
Riemann-type variables (2.28). Certain tedious aspects of this derivation
are postponed to Appendix A.2. Herein, we also introduce the self-similar
Lagrangian flows used for the remainder of the paper; we define the self-
similar blowup profile and collect its principal properties, and we record
the evolution equations for higher-order derivatives of the vari-
ables.
In Section 3, we state the assumptions on the initial datum in the original
space-time variabl
In Section 5, we show how the dynamic constraints of , , and
at translate precisely into a system of 10 coupled nonlinear ODEs for
the time-dependent modulation parameters , given by poly-
nomials and rational functions with coefficients obtained from the deriva-
tives of the functions evaluated at ; cf. (5.40) and (5.41).
In Section 6, we improve the bootstrap assumptions (4.1a) and (4.1b) for
our dynamic modulation variables. The analysis in this section crucially
uses the explicit formulas derived earlier in Section 5.
In Section 7, we collect a number of technical estimates to be used later in
the proof. These include bounds for the -velocity components
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defined in (2.29), the -velocity components given by
(2.30), the forcing terms from (2.31), and also the forcing terms
arising in the evolution of .
In Section 8, we close the bootstrap on the spatial support of our solu-
tions; cf. (4.4). Additionally, we prove a number of Lagrangian estimates

which are fundamental to our analysis in or weighted spaces for
the system. We single out Lemma 8.2, which proves that tra-
jectories of the (transport velocity of the) evolution, which start a small
distance away from the origin, escape exponentially fast towards infinity.
Additionally, Lemma 8.3 proves that the flows of the transport velocities
in the and equations are swept towards infinity independently of their
starting point, and spend very little time near .
In Section 9, we establish pointwise estimates on the self-similar specific
vorticity and the scaled sound speed . The bounds on rely on the
structure of the equations satisfied by the geometric components N, T ,
and T .
In Section 10, we improve the bootstrap assumptions for and stated
in (4.11) and (4.12). The most delicate argument required is for the bound
of ; we note in Lemma 10.1 that this vector may be computed from
the specific vorticity vector, the sound speed, and quantities which were
already bounded in view of our bootstrap assumptions.
In Section 11, we improve on the bootstrap assumptions for and ,
cf. (4.6) and (4.7a)–(4.9). This analysis takes advantage of the forcing
estimates established in Section 7 and the Lagrangian trajectory estimates
of Section 8.
In Section 12, we give the proof of the energy estimate stated earlier in
Proposition 4.3. As opposed to the analysis which precedes this section and
which relied on pointwise estimates for the system, for the en-
ergetic arguments presented here, it is convenient to work directly with the
self-similar velocity variable and the scaled sound speed , whose evo-
lution is given by (2.38) and whose derivatives satisfy (12.3). It is here that
the good energy structure of the Euler system is fundamental. In our proof,
we use a weighted Sobolev norm to account for binomial coefficients, and
appeal to some interpolation inequalities collected in Appendix A.3.
In Section 13, we use the above established bootstrap estimates to conclude
the proofs of Theorem 3.4, and as a consequence of Theorem 3.1. Herein,
we provide the definition of the blowup time and location, establish the
Hölder regularity of the solution at the first singular time, and show
that the vorticity is nontrivial at the shock. Moreover, we establish conver-
gence to an asymptotic profile, proving that lim A

for all fixed , where A denotes a stable stationary solution of the self-
similar 3D Burgers equation. The 10-dimensional family of such solutions,
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parametrized by a symmetric -tensor A , is constructed in Proposition A.1
of Appendix A.1. Additionally, we give a detailed proof of the statement
that the set of initial conditions for which Theorem 3.1 holds contains an
open neighborhood in the topology, as claimed in Theorem 3.2.

2 Self-Similar Shock Formation
Prior to stating the main theorem (cf. Theorem 3.1 below), we describe how

starting from the 3D Euler equations (1.1) for the unknowns , which are func-
tions of the spatial variable x and of the time variable t , we arrive at
the equations for the modulated self-similar Riemann variables , which
are functions of and log . This change of variables is per-
formed in the following three subsections, with some of the computational details
provided in Appendix A.2.

2.1 A time-dependent coordinate system
In this section we switch coordinates, from the original space variable x to a new

space variable , which is obtained from a rigid body rotation and a translation. It
is convenient for our subsequent analysis to perform and -dependent rescaling of
time, by letting

t t(2.1)

Throughout the rest of the paper we abuse notation and denote the time variable
defined in (2.1) still by .

In order to align our coordinate system with the orientation of the developing
shock, we introduce a time-dependent unit normal vector2

with , so that is close

to . Associated with these parameters we introduce the skew-symmetric matrix
whose first row is the vector , first column is , and has
entries otherwise. In terms of we define the rotation matrix

Id(2.2)

whose purpose is to rotate the unit vector onto the vector . Since
, we have that the vectors form a time-dependent

orthonormal basis for , and for convenience we sometimes write for
. Geometrically, the vectors span the plane orthogonal to the

shock direction , and we will for ease of notation denote .

2 Frequently we will use the notation to denote the last two coordinates of a vector
, i.e., .
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It is convenient at this stage to record the formula for the time derivative of .
One may verify that

(2.3)

where the matrices and are defined explicitly in (A.14) and (A.15). For
compactness of notation it is convenient to define the skew-symmetric matrix

, written out in components as

(2.4)

where the skew-symmetric matrices and are stated explicitly in (A.16)
and (A.17), respectively.

In addition to the vector , which determines the rotation matrix , we
also define a time-dependent shift vector

The point dynamically tracks the location of the developing shock.
In terms of and we introduce the new position variable

x(2.5)

and the rotated velocity and rescaled sound speed as

x x(2.6)

From (2.5) and (2.6), after a short computation detailed in Appendix A.2 below,
we obtain that the Euler equations (A.18) are written as

(2.7a)

div(2.7b)

where

the matrix is given by (2.4), and the matrix and vector are yet to be
determined.

Similarly, defining the rotated specific vorticity vector by

(2.8) x

we have that is a solution of

(2.9)

Deriving (2.9) from (1.3) fundamentally uses that is skew-symmetric.

Remark 2.1 (Notation). It will be convenient to denote the last two components
of a three-component vector simply as . For instance, the gradient operator
may be written as and the velocity vector as

. Moreover, for a matrix , we will denote by the
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matrix whose first column is set to . We will also use the Einstein summation
convention, in which repeated Latin indices are summed from to , and repeated
Greek indices are summed from to . We shall denote a partial derivative
by and will be denoted simply by . We note that the derivative
notation shall always denote a derivative with respect to .

2.2 Coordinates adapted to the shock
We shall next introduce one further coordinate transformation that will allow

us to modulate -dependent shifts, and simultaneously parametrize the steepening
shock front by a quadratic profile. Specifically, coordinates will be transformed
to new coordinates , so that with respect to , the local parabolic geometry near
the steepening shock is flattened. The new coordinate satisfies .

In order to understand the geometry of the shock, we define a time-dependent
parametrized surface over the -plane by

(2.10)

where the function is a spatially quadratic modulation

function defined as

(2.11)

The coefficients t are symmetric with respect to the indices and , and their
time evolution plays a crucial role in our proof. A derivative with respect to t is
denoted as as

(2.12)

Associated to the parametrized surface (2.10), we define the unit-length tangent
vectors

T J J J J J T J J J J J(2.13)

and the unit-length normal vector

N J(2.14)

where
J

It is easy to verify that N T T form an orthonormal basis and that N T T
and N T T . With respect to the parametrized quadratic surface ,
the second fundamental form is given by the 2-tensor J , and hence the
modulation functions are dynamically measuring the curvature of the steep-
ening shock front.

Using the function we now introduce a new transformation that we
call the sheep shear transform. The new space coordinate is defined as

(2.15)
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so that the surface defined in (2.10) is now flattened. Note that we are only mod-
ifying the -coordinate, and since N J T are independent of , these functions
are not affected by the sheep shear transform. We write instead of
and the similar notation overload is used for N J, and T.

In terms of this new space variable , the velocity field and the rescaled sound
speed are redefined as

(2.16a)

(2.16b)

Before stating the equations obeyed by and , which involve many -dependent
parameters, for the sake of brevity, we introduce the notation

(2.17)

where are fixed parameters of our problem. Note that for (i.e.,
) we have .

With the notation introduced in (2.16) and (2.1), the system (2.7) becomes

J N J N(2.18a)

JN

J N J N(2.18b)

NJ

where in analogy to (2.16) we have denoted

(2.19)

In particular, note that . Similarly,
we define the sheared version of the rotated specific vorticity vector by

(2.20)

so that the equation (2.9) becomes

(2.21)
J N J N

JN

2.3 Riemann variables adapted to the shock geometry
The Euler system (2.18) has a surprising geometric structure which is discov-

ered by introducing Riemann-type variables. For this purpose, we switch from the
unknowns to the Riemann variables defined by

N N T(2.22)
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so that

N(2.23)

The Euler sytem (2.18) can be written in terms of the new variables
as

J N J J

N N T

T T N T N

NN T T N T NN
(2.24a)

J N J J

N N T

T T N T N

NN T T N T NN
(2.24b)

J N J J

N T

T NN T T NN T T

NN T NN T T
(2.24c)

At this stage we comment on the temporal transformation (2.1): its purpose is to
ensure that the coefficient of in (2.24a), when evaluated at , is equal
to 1, in analogy to the 1D Burgers equation.

2.4 Modulated self-similar variables
In order to study the formation of shocks in the Riemann form of the Euler

equations (2.24), we introduce the following (modulated) self-similar variables:

log(2.25a)

(2.25b)

for(2.25c)
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Note the different scaling of the first component versus the vector of the second
and third components . We have the following useful identities:

2.5 Euler equations in modulated self-similar variables
Using the self-similar variables and , we rewrite the functions , , and

defined in (2.22) as

(2.26a)
(2.26b)
(2.26c)

where is a modulation function whose dynamics shall be given below. We
also change the function defined in (2.19) to self-similar coordinates by letting

, so that

(2.27)

Next, we derive the system of equations obeyed by , , and . We introduce
the notation

With the self-similar change of coordinates (2.25)–(2.26), the Euler system (2.24)
becomes
(2.28a)

(2.28b)

(2.28c)

where we have introduced the notation

J J N(2.29a)
J

J J N(2.29b)
J

J J N(2.29c)
J
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for the terms in the transport terms,

N(2.30a)

N N T

N(2.30b)

N N T

N(2.30c)

N N T

for the terms in the transport terms, and the forcing terms are written as

T T N T N

N N T T N

T NN(2.31a)

T T N T N

N N T T N

T NN(2.31b)

NN T T

NN T T

NN T NN T T(2.31c)

Here and throughout the paper we are using the notation and
.

In (2.31) we have also used the self-similar variants of and defined by

and(2.32)

so that

N and(2.33)

From (2.18), (2.25), (2.32), (2.32) we deduce that are solutions of

JN(2.34a)

NJ(2.34b)

Finally, we defined the self-similar variant of the specific vorticity via

(2.35)
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2.6 Transport velocities, vorticity components, and Lagrangian flows
Upon writing the 3D transport velocities in (2.28) as the vector fields

V(2.36a)

V(2.36b)

V(2.36c)

the system (2.28) may be written as

V

V

V

where the gradient is taken with respect to the -variable. The system (2.34) takes
the form

V JN(2.38a)

V NJ(2.38b)

Having defined the transport velocities, we now define associated Lagrangian
flows by

V(2.39a)
V(2.39b)
V(2.39c)

for log . With denoting either , , or , we shall denote trajec-
tories emanating from a point at time by

with(2.40)

2.7 The globally self-similar solution of 3D Burgers
We recall (cf. [6]) that

1d(2.41)

is the stable globally self-similar solution of the 1D Burgers equation. We define

B B
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Then, as done in two dimensions by Collot, Ghoul, and Masmoudi [12],

(2.42)
B

1d B

B
1d B

is an example of a stable self-similar solution to 3D Burgers equation

(2.43)

with an explicit representation given by (2.42). As will be explained in Section
13.4, in order to establish the asymptotic profile for , a solution to (2.28a),
we shall construct the 10-dimensional family of stable self-similar solutions to 3D
Burgers of which (2.42) is one example.

Properties of
We will make use of the fact that the Hessian matrix of at the origin

is given by

(2.44)

and that the bounds

hold. We introduce the weight function

(2.45)

which has the property that (and its derivatives) accurately captures the as-
ymptotic growth rate of (and its derivatives) as . For the esti-
mate the Taylor series at the origin has to be analyzed more carefully, and for this
function we use the modified weight function

(2.46)

With this notation, we note that the function satisfies the weighted estimates

(2.47a)

(2.47b)
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Genericity condition
In view of (2.44), the matrix is positive definite and satisfies the

genericity condition

(2.48)

The condition (2.48) is equivalent to the nondegeneracy condition (15.2) described
by Christodoulou in [8], and so is an example of a generic shock profile. In
particular, proposition 12 of Collot-Ghoul-Masmoudi [12] proves that the linear
operator obtained by linearizing the self-similar 2D Burgers equation about the 2D
version of is spectrally stable.

2.8 Evolution of higher-order derivatives
Higher-order derivatives for the -system

We now record, for later usage, the equations obeyed by applied to , , and
, when . For a multi-index , we write .

Then, for , applying to (2.28), we arrive at the differentiated system

1 J

V(2.49a)

J V(2.49b)

J V(2.49c)

where the forcing terms are given by

1 J

1 J(2.50)
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for the evolution, and by

1 J

J(2.51a)

1 J

J(2.51b)

for the and evolutions. In (2.49) we have extracted only the leading-
order damping terms on the left side of the equations. Indeed, note that the forcing
terms defined above contain terms which are proportional to . How-
ever, because the factors in front of these terms decay exponentially in , we have
included them in the force.

Higher-order derivatives for
Additionally, it is useful to consider the evolution of

(2.52)

and its derivatives. For the case of no derivatives, we have

(2.53)
J V

J

For , applying to (2.53), we obtain that the function obeys

(2.54)
J

V
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where the forcing terms are given by

J

1 J

J(2.55)

3 Main Results
3.1 Data in physical variables

We set the initial time to be , which corresponds to t , and
we first define the initial conditions for the modulation variables. We define

(3.1)

where

(3.2)

We note that is a given parameter of the problem, while will be chosen
suitably in terms of the initial datum via (3.24).

Next, we define the initial value for the function as

x x x

and according to (2.13) and (2.14), we define the orthonormal basis N T T
by

N J J(3.3a)

T J J J J J

T J J J J J(3.3b)

As a consequence of (3.2) and (3.3), we see that

N T(3.4)
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From (3.1), (2.5), and (2.15), we have that at , the sheared variable is
given by

x x x x(3.5)

The remaining initial conditions are for the velocity field and the density (which
yields the rescaled sound speed):

x x x x

According to (2.16) and (2.22) (see also (A.20)) we introduce the initial datum for
our Riemann-type variables in both the x- and the -variables:

x x N x x(3.6a)
x x N x x(3.6b)
x x T x(3.6c)

It is more convenient (and equivalent in view of (3.6)) to state the initial datum
assumptions in terms of the functions , instead of the standard variables

and .
First, we assume that the support of the initial data , defined in

(3.6), is contained in the set X , given by

X x x(3.7)

This condition is equivalent to requiring that N , , and T
are compactly supported in X . In view of the transformation (3.5) and the bound
(3.2), the functions of defined in (3.6), namely , have spatial support
contained in the set .
This larger set corresponds to the set X (defined in (4.4)) under the transfor-
mation (2.25).

The function x is chosen such that

the minimum (negative) slope of occurs in the -direction(3.8a)

x attains its global minimum at x(3.8b)

and

x x(3.9)

and moreover that

x x(3.10)

Additionally we shall require that satisfies a number of weighted estimates,
and that it is close to a rescaled version of . For this purpose, we introduce the
rescaled blowup profile with respect to the coordinate , defined by

(3.11)
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and we set

x x x x x log

We assume that for x such that x x , the following bounds
hold:

x x x(3.12a)

x x x x(3.12b)

x x(3.12c)

Furthermore, for x such that x x , we assume the fourth-
derivative estimates

x x for(3.13)

while at x , we assume that

x for(3.14)

For x X such that x x we assume that

x x x(3.15a)

x x x x(3.15b)

x x(3.15c)

Finally, we assume that for all x X , the second derivatives of satisfy

x x x x(3.16a)

x x x x x(3.16b)

x x x x(3.16c)

and moreover at x we assume that

x(3.17)

For the initial conditions of and we assume that

(3.18)
x x x x x

x x x x x x x

and3

(3.19) x x x x x x x

3 The bound for x in (3.19) can be replaced by a bound that depends on , thus permitting
arbitrarily a large initial vorticity to be specified.
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For the initial specific vorticity, we assume that

curlx x
x(3.20)

Lastly, for the Sobolev norm of the initial condition we assume that for a fixed
with we have

x x x(3.21)

We note cf. (3.5) that the map x x is an O perturbation of the
identity map, and that for any , by (3.2) and the support property (3.7) we
have . Additionally, from the previous assumptions we
have X X X . Thus, by appealing to the
definition (3.6), the Faá di Bruno formula, and Sobolev interpolation, we deduce
from (3.21) that

(3.22)

holds, upon taking to be sufficiently small in terms of .
At this stage it is convenient to define the coefficients from (3.1). From the

change of variables, (3.5), and the fact that , we have that

x x x(3.23)

In order that our initial data at the blowup location behave just as the blowup profile
(in self-similarcoordinates) at theblowuppoint, weshall insist that .

From the identity (3.23) and using the second equality in (3.10), we achieve this
by setting

x x(3.24)

Hence, the condition (3.17) automatically implies (3.2).
We note that in view of (3.6), (3.7), (3.15a), (3.18), the fact that

, which implies , and the identity x
x x , we have that

x

for all x ; that is, upon taking to be sufficiently small in terms of , we
have that the initial density is strictly positive.
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3.2 Statement of the main theorem in physical variables
THEOREM 3.1 (Formation of shocks for Euler). Let , . There exist

a sufficiently large and a sufficiently small

such that the following holds:
Assumptions on the initial data. Let x and x denote the initial data for

the Euler equations (1.1), and let and curlx . The modulation

functions have initial conditions given by (3.1), where is given by (3.24). Define

N T T by (3.3) and by (3.6). Assume that are

supported in the set X defined in (3.7), and that and for a

fixed . Furthermore, suppose that the functions , , , and satisfy

the conditions (3.2)–(3.21).
Shock formation for the 3d Euler equations. There exists a time O ,

unique modulation functions that solve (5.40) and

(5.41), and a unique solution to

(1.1) that blows up in an asymptotically self-similar fashion at time at a single

point . By letting N T T be defined in terms of the modulation

functions by (2.13) and (2.14), with the new space variable defined by

(2.5), and with given by (2.6), where , we let

N N T(3.25)

as functions of . Then, the following results hold

The blowup time O and the blowup location O are explicitly

computable, with defined by the condition and with

the blowup location given by lim . The amplitude modulation

function satisfies O where lim .

For each , we have N N x T T x O

We have sup N T .

There holds

lim N and

N

as .

At the time of blowup, has a cusp-type singularity with Hölder

regularity.

We have that only the N derivative of N and blow up, while the other

first-order derivatives remain uniformly bounded:

lim N N lim N(3.26a)
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sup T T

N T(3.26b)

Let x x with x x so that x is the La-

grangian flow. Then there exists constants , such that x x

for all .

The density remains uniformly bounded from below and satisfies

for all

The vorticity satisfies for all for

a universal constant , and if on the set , then

at the blowup location there is nontrivial vorticity, and moreover

on the set

We note that the support property (3.7) on the initial data as well as the condi-
tions (3.8)–(3.10) preclude the set of initial data satisfying the hypothesis of Theo-
rem 3.1 from containing a nontrivial open set in the topology. However, using
the symmetries of the Euler equations, these conditions may be relaxed in order to
prove the following:

THEOREM 3.2 (Open set of initial conditions). Let F denote the set of initial

data satisfying the hypothesis of Theorem 3.1. There exists an open neighborhood

of F in the topology, denoted by F , such that for any initial data to the Euler

equations taken from F , the conclusions of Theorem 3.1 hold.

The proofs of Theorems 3.1 and 3.2 are given in Section 13. We remark that
Theorem 3.1 is a direct consequence of Theorem 3.4, stated below, which estab-
lishes the stability of the self-similar profile under a suitable open set of pertur-
bations.

3.3 Data in self-similar variables
The initial datum assumptions in the x-variable made in Section 3.1 imply cer-

tain properties of the initial datum in the self-similar coordinates . In this subsec-
tion, we provide a list of these properties.

First, we see that at the initial self-similar time, which is given as log
since by (3.1) we have , the self-similar variable is defined by (2.25) as

x x and x(3.27)

Second, we use (2.26), (3.1), and (3.6) to define log log and
log as

(3.28)
log x log x

log x
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Next, from (3.2), (3.5), and the fact that are supported in the
set X defined in (3.7), we deduce that the initial data for is supported
in the set X , given by

X(3.29)

The factor of present in (3.7) allows us to absorb the shift of x by x .
Next, let us consider the behavior of at , which corresponds to x .

By (3.9), (3.10), (3.23), (3.24), and (3.28) we deduce that

log log(3.30a)

log log(3.30b)

These constraints on at will be shown to persist throughout the self-
similar Euler evolution.

At this stage, we introduce a sufficiently large parameter .
In terms of and , we define a small length scale and a large length scale L
by

log(3.31a)

L(3.31b)

Note that is independent of . The region denotes a Taylor series
region, where is essentially dominated by its series expansion at , while
the annular region L denotes a region where and closely
resemble and .

For the initial datum of given, in view of (3.28), by

log log x

it follows from (3.12), along with (3.2), (3.5), (3.7), and (3.27) that for L
we have

log(3.32a)

log(3.32b)

log(3.32c)

where we recall that , and the partial derivatives are taken
with respect to the -variable. Similarly, we have from (3.13), the chain rule, and
the fact that , that for ,

log for(3.33)

while from (3.14) we deduce that at , we have

log for(3.34)
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For in the region L X , from (3.15), (3.27), and (3.28), we deduce
that

log(3.35a)

log(3.35b)

log(3.35c)

while for the second derivatives of , globally for all X , we obtain from
(3.16), (3.27), and (3.28) that

log for and(3.36a)

log(3.36b)

Remark 3.3. A comment regarding the introduction of the parameter L is in order.
By (3.32) we know that and closely track and for all such that

L . But the functions and do not decay as
(we only have the bounds (2.47) available), and thus neither do and . At
first sight this may seem contradictory with the fact that (3.29) imposes that is
supported in the set X . However, no contradiction ensues: we have chosen L
to be a sufficiently small power of exactly in order to leave enough distance
from the boundary of the set L to the boundary of the set X , so
that and have enough room to attain their compact support.

For the initial conditions of and we deduce from (3.7), (3.18), (3.19), (3.27),
and (3.28) that

log
if and
if and

(3.37)

log
if and
if and

(3.38)

For the initial specific vorticity in self-similar variables, we have that

(3.39)

Lastly, for the Sobolev norm of the initial condition, we deduce from (3.22), (3.27),
and (3.28) that

log log log(3.40)

for all .

3.4 Statement of the main theorem in self-similar variables
and asymptotic stability

THEOREM 3.4 (Stability and shock formation in self-similar variables). Let ,

. Let be sufficiently large. Consider the system of
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equations (2.28) for . Suppose that at initial (self-similar) time

log , the initial data log are supported in the

set X , defined in (3.29), and satisfy the conditions (3.30)–(3.40). In addition, let

the modulation functions have initial conditions which satisfy (3.1)–(3.2).
Then, there exist a sufficiently large , a sufficiently small

, a unique global-in-time solution to (2.28), and a

unique solution to (5.40) and (5.41). Moreover,

are supported in the time-dependent cylinder X defined in (4.4),
log log for , and

we have

log log

for a constant . The modulation functions obey the

bounds in (4.1). The Riemann function remains close to the generic and

stable self-similar blowup profile ; upon defining the weight function

, we have that the perturbation satisfies

for all and log . Furthermore, for all ,

and the bounds (4.8) and (4.9) hold. Additionally, satisfies the bounds

given in (4.6) and (4.16).
The limiting function A lim is a well-defined blowup

profile, with the following properties:

A is a smooth solution to the self-similar 3D Burgers equation (1.4),
which satisfies the bounds (4.6) and (4.13b).

A satisfies the same genericity condition as given by (2.48).
A is uniquely determined by the parameters:

A lim with .

The amplitude of the functions and remains O for all log , while

for each , and as , and and

satisfy the bounds (4.11) and (4.12).
The scaled sound speed in self-similar variables satisfies

for all log

and for a universal constant , the specific vorticity in self-similar vari-

ables satisfies

where is defined in (2.40).
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4 Bootstrap Assumptions
As discussed above, the proof of Theorem 3.4 consists of a bootstrap argument,

which we make precise in this section. For sufficiently large, depending on
and on , and for sufficiently small, depending on , , and , we postulate
that the modulation functions are bounded as in (4.1), that are supported
in the set given by (4.4), that satisfies (4.6), obeys (4.7)–(4.9) and and
are bounded as in (4.11) and (4.12), respectively. All these bounds have explicit
constants in them. Our goal in subsequent sections will be to show that the these
estimates in fact hold with strictly better prefactors, which in view of a continuation
argument yields the proof of Theorem 3.4.

4.1 Dynamic variables
For the dynamic modulation variables, we assume that

(4.1a)

(4.1b)

for all . We note that thanks to the bootstrap assumptions (4.1)
the map log defined in (2.25) is a bijection from
to log (see also Section 13.1 for details), and thus it is always possible
to switch between the Eulerian time and the self-similar time ; this is done
implicitly throughout the paper. In particular, we note that is the maximal
time interval on which we have .

From (2.4), (A.16)–(A.17), and the bootstrap assumptions (4.1), we directly
obtain that

(4.2)

for all . Moreover, we note that as a direct consequence of the
estimate in (4.1b), we have that

(4.3)

since can be made sufficiently small for all log .

4.2 Spatial support bootstrap
We now make the following bootstrap assumption that have support

in the -dependent cylinder defined by

X for all log(4.4)

Recall from (2.45) and (2.46) the definition of the weight functions

and
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Using these, for X , we have the estimate

(4.5)

for all , which allows us to convert temporal decay to spatial decay.

4.3 bootstrap
We postulate the following derivative estimates on

if
1 L 1 L if and

if and

if and
if and

(4.6)

Next, we assume that the solution remains close to the self-similar profile
in the topology defined by the following bounds. For this purpose, it is

convenient to state bootstrap assumptions in terms of , as defined in (2.52). For
L , we assume that

(4.7a)

(4.7b)

(4.7c)

where the parameter L is as defined in (3.31b). Furthermore, for we
assume

log

log(4.8a)

log(4.8b)

while at , we assume that

(4.9)

for all log . In (4.8a) and (4.8b), the parameter is chosen as in (3.31a).
Note that with this choice of , the bounds (7.25), (11.28), and (11.32) hold.

Remark 4.1. In the region L , the first three bounds stated in (4.6) follow
directly from the properties of stated in (2.47), and those of in (4.7). The
bounds for and are immediate. The estimate for is a bit more delicate
and uses the explicit bound .
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LEMMA 4.2 (Lower bound for J ).

J and J for all log(4.10)

PROOF OF LEMMA 4.2. By the definition of J and the bootstrap assumption
(4.1a) and (4.4), we have

J
J
J J

Moreover, using (2.47) for the function and (4.6) for , we deduce that

min

for all . The last inequality follows from an explicit computation. To
conclude, we write

min J J min J

thereby finishing the proof. ⇤
4.4 and bootstrap

We postulate the following derivative estimates on and :

if and

if and
(4.11)

if and

if and
(4.12)

4.5 Further consequences of the bootstrap assumptions
The bootstrap bounds (4.1), (4.5), (4.6)–(4.9), (4.11), and (4.12) have a number

of consequences, which we collect here for future reference. The first is a global-
in-time -based Sobolev estimate:

PROPOSITION 4.3 ( estimate for , , and ). For integers and for a

constant ,

(4.13a)

(4.13b)

for all log .

The proof of Proposition 4.3, which will be given at the end of Section 12, relies
only upon the initial data assumption (3.40), on the support bound (4.5), on
estimates for and when , on pointwise bounds for ,
and on bounds. That is, Proposition 4.3 follows directly from (3.40) and the
bootstrap assumptions (4.1), (4.5), (4.6), (4.11), and (4.12).
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The reason we state Proposition 4.3 at this stage of the analysis is that the
estimates and linear interpolation yield useful information for higher-order deriva-
tives of , which are needed in order to close the bootstrap assumptions
for high-order derivatives. These bounds are summarized in the following:

LEMMA 4.4. For integers , we have that

if and

if

(4.14)

if and

if

(4.15)

if and

if and

(4.16)

PROOF OF LEMMA 4.4. First, we consider the case and .
By Lemma A.3 (applied to the function ), (4.12), and Proposition 4.3,

(4.17)

where we have taken sufficiently small for the last inequality. Similarly, for
we apply Lemma A.3 to ; together, (4.12) and (4.17) provide

bounds for , and hence we find that

For the estimate of , in the case and , we have that

where we have again absorbed using . The second estimate for
in (4.15) for the case that is completely analogous to the correspond-
ing estimate for .

We next estimate for . To do so, we decompose
such that and , and further assume that min . In order
to apply the Gagliardo-Nirenberg inequality, we rewrite
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and we set for the case and otherwise. Since
and , it immediately follows from (4.6) that

Now we apply Lemma A.3 to the function , appealing to the estimate
(4.6), and to the Leibniz rule to obtain

where we have used that for the last inequality as is required by Proposi-
tion 4.3. We next estimate the norm of . To do so, we shall use the
fact that has support in the set X defined in (4.4). From the Leibniz
rule and (A.25), we obtain

X

X

Using (4.6) and Proposition 4.3, the terms are bounded as

for all . Moreover, applying (4.5), and using that we
have

X

with the usual abuse of notation for . Combining the
above estimates, we obtain the inequality

for sufficiently small, since . From the above estimate the bound (4.16)
immediately follows. ⇤

Finally, we note that as a consequence of the definitions (2.33), the following
estimates on N and .
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LEMMA 4.5. For X we have

(4.18) N

if

if and

if and

if and

if and

if and

while for and we have

N

PROOF OF LEMMA 4.5. We consider the estimates on N. The estimates
on are completely analogous. By definition (2.33)

N 1

Here we used . Now we simply apply (4.6), (4.8b), (4.11), Lemma 4.4,
and (4.5) to conclude. ⇤

5 Constraints and Evolution of Modulation Variables
5.1 Constraints

The shock is characterized by the following ten constraints on , which we
impose throughout the evolution, by suitably choosing our dynamic modulation
variables

(5.1)

These constraints are maintained under the evolution by suitably choosing our ten
time-dependent modulation parameters: and .

5.2 Evolution of dynamic modulation variables
The ten modulation parameters at time are defined as

(5.2)

where is as in (3.10) and is defined by (3.24). In order to determine the
definition for the time derivatives of our seven modulation parameters, we will use
the explicit form of the evolution equations for , and . These are
ten equations, consistent with the fact that we have ten constraints in (5.2). For
convenience, we first state these evolution equations.
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The evolution equations for and
From (2.49a) we deduce that the evolution equations for are

J J

(5.3a)

J J

(5.3b)

J J

(5.3c)

where we have denoted

(5.4a)

(5.4b)

(5.4c)

Applying the gradient to (5.3a), we arrive at the evolution equation for ,
given by

J

J(5.5a)

J

J(5.5b)

J

J(5.5c)

where

(5.6a)

J(5.6b)

J(5.6c)

Lastly, differentiating in the direction equations (5.5b)–(5.5c) we obtain the evo-
lution equation for

J



38 T. BUCKMASTER, S. SHKOLLER, AND V. VICOL

J(5.7a)

J

J(5.7b)

J

J(5.7c)

where

J(5.8a)

(5.8b)
J J

J(5.8c)

The functions and their derivatives, evaluated at
Throughout this section, for a function we denote as .
From (2.11)–(2.12) evaluated at , the definition of in (2.27), the defini-

tion of in (2.29a), and the constraints in (5.1), we deduce that4

(5.9)

and the gradient of evaluated at is given by

(5.10)

(5.11)

while the Hessian of evaluated at equals

(5.12)

(5.13)

N

J(5.14)

4 Here we have used the identities: N , N , and N .



FORMATION OF POINT SHOCKS FOR 3D COMPRESSIBLE EULER 39

Similarly, using (2.11)–(2.12), (2.30a), and the constraints in (5.1) we have that5

(5.15)

Then, using (5.4), (5.6), and (5.9)–(5.9), for any with or
we have that

Lastly, appealing to (2.11)–(2.12), (2.31a), we have the following explicit ex-
pressions6 for the forcing term evaluated at is given by

(5.16)

the gradient of at is

(5.17)

T(5.18)

and lastly, the Hessian of at is given by

(5.19)

5 Here we have used the identities: N , T , T , N , and T .
6 Here we have used the identities: N , T , N , N ,

N , T , T N , T N , N , and N .
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T

(5.20)

T

T

N

T

N

N N

T

N N N(5.21)

The equations for the constraints
The evolution equations for , , and at yield the equations

from which we will deduce the definitions of our constraints , , , , and . In
this subsection, we collect these equations. Then we untangle their coupled nature
to actually define the constraints.

At this stage it is convenient to introduce the notation

P b b c c and R b b c c

to denote a linear function in the parameters c c with (bounded in ) coeffi-
cients which depend on b b through a smooth polynomial (for P ), respec-
tively, rational functions (for R ), and on the derivatives of and evaluated at

. In particular, these bounds can depend on the constant . Throughout this
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section, we will implicitly use the bootstrap estimates (4.11) and (4.12) to establish
these uniform bounds on the coefficients, which in turn yields local well-posedness
of the coupled system of ODE for the modulation variables.

The subscript denotes a label, used to distinguish the various functions P
and R . We note that all of the denominators in R are bounded from below by
a universal constant. It is important to note that the notation P and R is never
used when explicit bounds are required.

First, we evaluate the equation for at to obtain a definition for . Using
(2.28a) and (5.1) we obtain that

(5.22)

Using the above introduced notation, upon recalling the definition (5.16) we deduce
that (5.22) may be written schematically as

P(5.23)

Once we compute and (cf. (5.32a)–(5.32b) below) we will return to the
formula (5.23).

Next, we evaluate the equation for at and obtain a formula for .
From (5.3a), (5.4a), and using that , we obtain that

(5.24)

Using the above introduced notation, upon recalling the explicit functions (5.10)
and (5.17) we deduce that (5.24) may be written schematically as

P(5.25)

Once we compute and (cf. (5.32a)–(5.32b) below) we will return to (5.25).
We turn to the evolution equation for at , which gives that . Note

that once is known, we can determine through an algebraic computation;
this will be done later. Evaluating (5.3b)–(5.3c) at and using (5.4b)–(5.4c)
we obtain for that

(5.26)
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By appealing to (5.11) and (5.18), and placing the leading-order term in on one
side, we obtain

(5.27)

T

We schematically write (5.27) as

P(5.28)

Note that once is known, we can determine and by recalling from (2.4),
(A.16), (A.17) that

Id(5.29)

where . Since the vector is small (see (4.1a) below), and the
matrix on the left side is an O perturbation of the identity matrix, we obtain
from (5.29) a definition of , as desired.

Next, we turn to the evolution of at . This constraint allows us
to compute and , which in turn allows us to express . First we focus
on computing and . Evaluating (5.5) at and using (5.6), for

we obtain

(5.30)

On the left side of the above identity we recognize the matrix

H(5.31)

acting on the vector with components , , and . We will show that the
matrix H remains very close to the matrix diag for all log , and
thus it is invertible (see (6.1) below). Therefore, we can express

H(5.32a)

H(5.32b)
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Inspecting (5.12)–(5.13) and (5.19)–(5.20) and inserting them into (5.32b), we ini-
tially obtain the dependence

R H

Note that although appears on both sides of the above, the dependence on the
right side is paired with a factor of , and the functions are them-
selves expected to be for all log (cf. (4.1a) below). This allows us to
schematically write

R(5.33)

Returning to (5.32a), inspecting (5.12)–(5.13) and (5.19)–(5.20), and using (5.33)
we also obtain the dependence

R(5.34)

Upon inspecting (5.9) and (5.15), and noting the invertibility of the matrix in
(2.2) it is clear why (5.32a)–(5.32b) allow us to compute . Indeed, from (5.9),
(5.15), (5.32a)–(5.32b), and the fact that Id we deduce that

(5.35)

for . Using (5.33) and (5.34), we may then schematically write

R(5.36)

Lastly, we record the evolution of at . From this constraint we
will deduce the evolution equations for . Evaluating (5.7) at , using the
definitions (5.8), we obtain

for . Using (5.32a) and (5.32b) we rewrite the above identity as

(5.37)
H

H

Note that is determined in terms of through the first term on the
right side of (5.14)

(5.38)

N J

and (5.32a) is used to determine . In light of (5.21), (5.34) and of (5.38), we
may schematically write

R
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which may be then combined with (5.28) and (5.33) to yield

R(5.39)

thus spelling out the dependences of on the other dynamic variables.

Solving for the dynamic modulation parameters
The computations of the previous subsection derive implicit definitions for the

time derivatives of our ten modulation parameters, in terms of these parameters
themselves and of the derivatives of and at the origin. The goal of this subsec-
tion is to show that this system of ten coupled nonlinear ODEs has a local existence
of solutions, with initial datum as given by (5.2). In Section 6 it will be then shown
that the system of ODEs for the modulation parameters is in fact solvable globally
in time, for all log .

By combining (5.28) and (5.33) with (5.29) and recalling (5.39), we obtain that

R and R

Therefore, since , and the functions P and P are linear in and
, then as long as , , and remain bounded, and is taken to be sufficiently

small (in particular, for short time after log ), we may analytically solve
for and as rational functions (with bounded denominators) of , and , with
coefficients that only depend on the derivatives of and at . We write this
schematically as

E and E(5.40)

Here the E and E are suitable smooth functions of their
arguments, as described above. With (5.40) in hand, we return to (5.23) and (5.25),
which are to be combined with (5.33) and with (5.36) to obtain that

E E and E(5.41)

for suitable smooth functions E E and E of , with coefficients which
depend on the derivatives of and at .

Remark 5.1 (Local solvability). The system of ten nonlinear ODEs described in
(5.40) and (5.41) are used to determine the time evolutions of our ten dynamic
modulation variables. The local-in-time solvability of this system is ensured by the
fact that E , E , E , E , and E are rational functions of , , and ,
with coefficients that only depend on and with , and moreover
that these functions are smooth in the neighborhood of the initial values given by
(5.2); hence, unique solutions exist for a sufficiently small time. We emphasize
that these functions are explicit, once one traces back the identities in Section 5.2,
which will play a crucial role in Section 6, when we prove the bootstrap (4.1).
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6 Closure of Bootstrap Estimates for the Dynamic Variables
In this section, we close the bootstrap assumptions on our dynamic modulation

parameters, meaning that we establish (4.1a) and (4.1b) with constants that are
better by at least a factor of .

The starting point is to obtain bounds for and , by appealing to (5.32a)–
(5.32b). The matrix H defined in (5.31) can be rewritten as

H

diag

From the bootstrap assumption (4.9) we have that for all
log , and thus

H(6.1)

for all log . Next, we estimate . Using (5.19), (5.20), the bootstrap
assumptions (4.1a)–(4.3), the bound (4.11)–(4.15), and the fact that T

, after a computation we arrive at

(6.2)

Moreover, from (5.12), (5.13), (4.1a), (4.1b), the first line in (4.11), the previously
established bound (6.2), and the fact that , that

(6.3)

The bounds (6.1) and (6.3) are then inserted into (5.32a)–(5.32b). After absorbing
the term into the left side, we estimate

(6.4)

The bound (6.4) plays a crucial role in the following subsections.

6.1 The estimate
From (5.24), the definition of in (5.10), the definition of in (5.17),

the bootstrap estimates (4.1a)–(4.3), (4.11), (4.12), and the previously established
bound (6.4), we obtain that

(6.5)
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where we have that , and have used a power of to absorb the implicit
constant in the first inequality above. This improves the bootstrap bound for in
(4.1b) by a factor of . Integrating in time from to , where , we also
improve the bound in (4.1a) by a factor of , thereby closing the bootstrap.

6.2 The estimate
From (5.22)–(4.3), the bound (6.4), the definition of in (5.16), and the esti-

mates (4.11) and (4.12), we deduce that

Upon using a factor of to absorb the implicit constant in the above estimate,
we improve the bootstrap bound in (4.1b) by a factor of . Integrating in time,
we furthermore deduce that

(6.6)

for all , since . Upon taking to be sufficiently small in terms
of and , we improve the bound in (4.1a).

6.3 The estimate
In order to bound the vector, we appeal to (5.35) to (6.4), to the cases

in (4.11) and (4.12), and to the bound Id , which follows from (2.2) and
the estimate in (4.1a), to deduce that

(6.7)

upon taking to be sufficiently small in terms of and . The bootstrap estimate
for in (4.1b) is then improved by taking sufficiently large, in terms of , while
the bound on in (4.1a) follows by integration in time.

6.4 The estimate
Using (5.38), the fact that N J , the bootstrap assumptions

(4.1a), (4.1b), (4.9), the bounds (4.2), and the previously established estimate (6.4),
we obtain

Using the definition of in (5.21), appealing to the bootstrap assumptions
(and their consequences) from Section 4, the previously established estimate (6.4),
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and the fact that T N J N , it is not hard to
show that

In fact, a stronger estimate holds (cf. (7.11) below), but we shall not use this fact
here. Combining the above two estimates with the bounds in (4.11), we derive

(6.8)

Upon taking sufficiently large to absorb the implicit constant in the above es-
timate, we deduce , which improves the bootstrap in (4.1b) by a
factor of . Integrating in time on , an interval of length , and using
that by (3.17) and (3.24) we have log thus improving the bootstrap
in (4.1a) by a factor of .

6.5 The estimate
First we obtain estimates on by appealing to the identity (5.27). Using the

bootstrap assumptions (4.1a), (4.1b), (4.11), (4.12), the estimates (4.2) and (6.4),
and the fact that T , we obtain

(6.9)

upon taking sufficiently small, in terms of . Moreover, using the bootstrap
assumption , we deduce that the matrix on the left side of (5.29) is
within of the identity matrix, and thus so is its inverse. We deduce from (5.29)
and (6.9) that

(6.10)

upon taking to be sufficiently large to absorb the implicit constant. The closure
of the bootstrap is then achieved by integrating in time on .

7 Preliminary Lemmas
We begin by recording some useful bounds that will be used repetitively through-

out the section.
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LEMMA 7.1. For X and for we have

N N T T

J J(7.1)

N(7.2)

Moreover, we have the following estimates on :

(7.3)

if

if and

if and

if and

else

for all X .

PROOF OF LEMMA 7.1. The estimates (7.1) follow directly from the definitions
of , N, T, and J, together with the bounds on given in (4.1a) and the inequality
(4.5). Similarly, (7.2) follows by using the estimate in (4.1b). To obtain the
bound (7.3), we recall that is defined in (2.27), employ the bounds on and
given by (4.1b) and (4.2), and note the fact that Id , which follows from
(4.1a) and the definition of in (2.2). ⇤
7.1 Transport Estimates
LEMMA 7.2 (Estimates for , , , , , and ). For sufficiently

small and X , the function and its derivatives satisfy

if

if and

if or

(7.4)

while and obey

if

if and

if or

(7.5)

and lastly, the functions , , and satisfy the bounds

(7.6)
if

if and

if or
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Furthermore, for we have the lossy global estimates

(7.7)
(7.8)

for all X .

PROOF OF LEMMA 7.2. Recalling the definition of in (2.29a), and apply-
ing (4.3), and (7.1), (7.3) the inequality , and the fundamental theorem of
calculus, we obtain that

N

where in the second and third inequalities we have used (4.2), (4.5), (4.11), and
(6.4). Thus we obtain (7.4) for the case . Similarly, for the case , we
have

(7.9)

J J J N

1

1

where in the last line we invoked (7.1). Hence (7.4) is concluded by invoking (4.11)
and (7.3).

Now consider the estimates on and as defined in (2.29b) and (2.29c).
We note that

J J

J J

The bounds in (7.5) now follow directly from (7.4), the bound in (4.1b), the
estimate (4.3), the support estimate (4.5), the J bounds in (7.1), and the bootstrap
assumptions (4.11).

Now consider , which is defined in (2.30a). For the case , applying
(4.1b), (4.3), and (7.1), we obtain that

where in the second inequality we have also appealed to (4.5), (4.6), (4.11), and
(4.12), and where we have used the fact that . This last inequality
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is obtained using the fact that we need only bound . Using definition (2.27),
because of the bounds (4.1a) and (4.2), it remains to bound . Restricting
(2.29a) and (2.30a) to , and with given by (2.11) and using (5.1), we find
that

Hence, by (4.12) and (6.4), we see that .
Similarly, invoking the same set of inequalities together with (7.3), for the case

that , we obtain

(7.10)

N

N N T

1

1 1

1

Finally, applying (4.5), (4.6), (4.11), (4.12), and (4.14) we obtain the estimate on
. The estimates on and are completely analogous since the only differ-

ence between these functions and lies in the different combinations of the
and parameters.

The estimates (7.7) and (7.8), follow as a consequence of (7.9), (7.10), (4.6),

(4.11)–(4.15), and the estimate
which holds for in view of Lemma A.3, Proposition 4.3, and of (4.6).

⇤
7.2 Forcing estimates
LEMMA 7.3 (Estimates on , , and ). For X we have the

force bounds

if

if and

if and

if and

(7.11)

if

if and

if and

(7.12)
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Moreover, we have the following higher-order estimate at

for(7.13)

and the bound on

(7.14)

if

if and

if and

if and

holds for all L .

PROOF OF LEMMA 7.3. By the definition (2.31a) we have

T T N T N

N N T T N

T NN

N

N

where we invoked (4.2), (7.1), and (7.2). Combining the above estimate with
(4.12), (4.14), (7.3), and Lemma 4.5 we obtain the bounds claimed in (7.11) for

. Using the same set of estimates we also obtain

(7.15)

for , which we shall need later in order to prove (7.13), and

(7.16)

for and , which we shall need later in order to prove the last case
of (7.14). Comparing (2.31b) and (2.31a), we note that the estimates on
claimed in (7.11) only differ from the ones by a factor of .

Now we consider the estimates on . By definition (2.31c), we have

NN T T

NN T T

NN T NN T T

N
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N

N

(7.1) and (7.2). Combining the above bound with the estimates (4.12), (7.3), and
with Lemma 4.5, we obtain our claim (7.12).

By definitions (2.53) and (4.1b),

1 J

1

1

(7.17)

where we used (4.3) and (7.1) to bound

J J J

Finally, applying (4.5), (7.4), (7.6)–(7.8), (7.11), and (7.16), we can bound all the
remaining terms in (7.17) to obtain (7.14). Note that in the estimate (7.4) we
have used that L , while in bounding , we have used (4.5)
in order convert the temporal decay of to spatial decay, as well as absorbing
the and gaining the extra factor of .

Now let us consider the estimate (7.13). By definition (2.53) and the explicit
formula for (in particular, even derivatives of vanish at as well as )
and the explicit formula for J, we obtain

J

J
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where we used (4.3), (7.1), (7.7), (7.6), and (7.15). Using the identity (5.26), and
applying (7.4) and (7.11), we obtain

Combining the two estimates above we obtain (7.13). ⇤
COROLLARY 7.4 (Estimates on the forcing terms). Assume that . Then, we

have

if

if

if

if and

if and

if and

(7.18)

if

if and

if and

if and

if and

(7.19)

if

if and

if and

(7.20)

Moreover, we have the following higher-order estimate:

for(7.21)

and the following estimates on :

for and L(7.22)

for and L(7.23)

log for and(7.24)

PROOF OF COROLLARY 7.4. First we establish (7.18). Note that in this esti-
mate , and thus by definition (2.50) we have

1 J
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I I

In order to estimate I , we utilize (4.6), (7.4), (7.6), and for obtain

I 1 1 1

1 1

where in the last inequality we invoked (4.5).
Next, we consider the I term. We first note that I when . From

(4.6) and (7.1), using that and that , we have

I 1

Combining the above three estimates with (7.11) and (4.5), we obtain (7.18). Here
we have used that for and the case of (7.11), ,
which is where the assumption arises from.

Similarly, for , from (2.51) we have

1 J J

I 1
J

I

First, we note that by (7.11) the available estimates for are consistent with
(7.19) since and thus . Second, we note that for ,
by (4.6), (4.11) and (7.1), we have

J 1 1

a bound which is consistent with (7.19). Next, in order to estimate I we utilize
(4.11), (7.5), (7.6), and (4.5), we obtain

I 1

Lastly, we consider I . We first note that for , we have I whenever
. For , from (4.6), (4.11), and (7.1), we have

I 1 1

Upon inspection, we note that the bounds for I and I obtained above are con-
sistent with (7.19), thereby concluding the proof of this bound.
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In order to prove the estimate, we use the definition (2.51), with
and , and ignore the subindex to arrive at

1 J J

I 1 J I

The bounds for previously established in (7.20) are the same as the desired
bound in (7.12). Moreover, for , by (4.6), (4.12), and (7.1),

J

which is consistent with the last bound in (7.20). In order to bound I , we appeal
to (4.12), (4.14), (7.5), and (7.6) to deduce

I 1
which is consistent with (7.20) in view of (7.1). Lastly, from the same bounds and
using (4.6), we arrive at

I J 1 1

1 1
which combined with (7.1) completes the proof of (7.20).

Next, we turn to the proof of the in (7.21)–(7.24). For and
L , we consider the forcing term defined in (2.55), and estimate it as

J 1 J

If , utilizing (4.7a), (4.7b), (4.7c), (7.1), (7.4), (7.6), the explicit
bounds on , and the previously established estimate (7.14), we obtain

where in the last inequality we invoked (4.5) and the fact that L ,
which yields L for , by taking to be
sufficiently small in terms of and . Similarly for , applying the
same set of bounds yields
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Here we have used that , which is a sharper estimate than
what we had written earlier in (2.47). This concludes the proof of (7.22) and of
(7.23).

Consider now the estimate (7.21). Evaluating (2.55) at , applying the
constraints (5.1), the identity (5.26), and using properties of the function at ,
we obtain for that

Then applying (7.4), (7.6), (7.11), (7.13), and (4.9), we obtain

thereby concluding the proof of (7.21).
Lastly, we consider the bound (7.24), which needs to be established only for

. For we consider the forcing term defined in (2.55) and bound it
by using (4.8a), (7.1), (7.4), (7.6), (7.7), (7.8), (7.14), and the explicit bounds of
as

J

J J

where we used to bound the terms on the second line of the first
inequality, and the exponent bound for for the term.
Finally, using (4.8a) and (4.8b), we obtain

log 1 log

log

where we have used that by the definition of in (3.31a) we have

(7.25) log

This concludes the proof of the corollary. ⇤
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8 Bounds on Lagrangian Trajectories
8.1 Upper bound on the support

We now close the bootstrap assumption (4.4) on the size of the support.

LEMMA 8.1 (Estimates on the support). Let denote either , , or .

For any X defined in (3.29), we have that

(8.1a)

(8.1b)

for all log .

PROOF OF LEMMA 8.1. We begin by considering the case that , and
write . Note that by the definitions of (2.36) and (2.39),

J(8.2a)

(8.2b)

log(8.2c)

Applying the estimates (4.3), (4.6), (7.1), and (7.4), we have that

J

(8.3)

where in the penultimate inequality we have invoked (4.5), and for the last in-
equality and have taken sufficiently small to absorb the implicit constant. Thus,
integrating (8.2a) and using the initial condition (8.2c) and the bound (8.3), we find
that

log

Therefore, for X and for taken sufficiently small,

so that (8.1a) is proved.
Similarly, using (8.2b) and (7.6), we conclude that

log log

and hence for X and for taken sufficiently small,

which establishes (8.1b).
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The estimates for the cases are completely analogous, once the
estimate (7.4) is replaced by the estimate (7.5) in the argument above. ⇤

8.2 Lower bound for
LEMMA 8.2. Let be such that . Let log . Then, the

trajectory moves away from the origin at an exponential rate, and we have the

lower bound

(8.4)

for all .

PROOF OF LEMMA 8.2. First, we claim that

(8.5) V for

From the bootstrap , the explicit formula for which yields
, the fundamental theorem of calculus, and the bound (4.7c) we obtain

for all such that L . Together with Lemma 7.2, in which we use an extra
factor of to absorb the implicit constant in the symbol, and (4.3), the above
estimate implies that

V

for all L , upon taking sufficiently small, depending on and .
Similarly, directly from the first bound in (4.6) we have that

for all L , and thus

V

L

for all L such that X , by taking to be sufficiently small.
We now let and use the fact that V , so that

(8.5) implies that

which upon integration from to yields (8.4). ⇤
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8.3 Lower bounds for , , and
We now establish important lower-bounds for or .

LEMMA 8.3. Let denote either or . If

max
(8.6)

then for any X defined in (3.29), there exists an log such that

(8.7) min

In particular, we have the following inequality:

(8.8)
log

for and , where the constant depends only on the choice

of and .

PROOF OF LEMMA 8.3. We first show that if or , we
have the inequality

(8.9) if for any log

If we set for the case , and for
the case , then by definition we have that

J

Since , by taking sufficiently small, by (4.3) and (7.1), we have that
J for ; therefore, applying (4.6) and (7.5), if then

where in the last inequality, we have used (4.5) and taken is sufficiently small.
Since for , then using the lower bound on given by (8.6),
the inequality (8.9) holds.

To prove (8.7), we consider the following two scenarios for :
(1) Either for all log , or .
(2) There exists a smallest log such that and

.
We first consider Case 1. If for all log , then we trivially
obtain (8.7). Otherwise, if log , then as a consequence of (8.9), we
have that

for all log . Thus (8.7) holds with log .
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We next consider Case 2. As a consequence of (8.9), we have that

for all

Thus by continuity, there exists a unique such that . Applying
(8.9) and then by tracing the trajectories either forwards or backwards from the
time , we find that for ,

Hence (8.7) holds for . Suppose that log ; then, by definition,
if log , then , and hence we conclude (8.7).

In order to prove (8.8), we first note that since log , in
order to prove (8.8), by (8.7), it suffices to prove that

I
log

Applying the change of variables , we have that

I

where we have used Young’s inequality for the second-to-last inequality. The im-
plicit constant depends only on and . ⇤

COROLLARY 8.4. Let denote either or . Then, for all

log ,

sup
X log

(8.10)

sup
X log

(8.11)

PROOF OF COROLLARY 8.4. From the estimates in (4.7a) and (8.8) (with
and ), we obtain (8.10). The estimate (8.11) similarly holds with the

help of the second estimate in (4.6). ⇤

9 Bounds for and

We now establish bounds to solutions of the specific vorticity equation (9.2)
and solutions to the sound speed equation (2.38b). We set log .
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9.1 Sound speed
PROPOSITION 9.1 (Bounds on the sound speed). We have that

for all log(9.1)

PROOF OF PROPOSITION 9.1. By (2.33), we have that

By (4.1), (4.5), (4.6), and (4.11), and the triangle inequality,

which concludes the proof. ⇤

9.2 Specific vorticity
From (2.21), we deduce that the normal and tangential components of the vor-

ticity satisfy the system

T v T F N F T(9.2a)

T v T F N F T(9.2b)

where

v v v v J N J N

and

F N T T N v N T N

N T(9.3a)

F T T T(9.3b)

F T T T T v T T T

T T(9.3c)

F N T T N v N T N

N T(9.3d)

F T T T T v T T T

T T(9.3e)

F T T T(9.3f)

PROPOSITION 9.2 (Bounds on specific vorticity). We have the estimate

(9.4)
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PROOF OF PROPOSITION 9.2. By Lemma 7.1,

N T N T(9.5)

The transformations (2.22), (2.26c), and (2.32) together with the bootstrap bounds
(4.12), (4.18), Lemma 7.1, and (7.3) we have that

N v

Together with (4.2), it follows that the forcing functions defined in (9.3) satisfy

F for(9.6)

Now, from the definitions (2.6), (2.8), (2.16), and (2.20), we have that

curl curl

and

curl N T T T T

T T T T

T T T T T T(9.7)

from which it follows that

N
T T T T T T

(9.8)

By (2.32) and (9.1), we have that

(9.9)

Hence, from (3.4), (9.7), and (9.9), we have that

N(9.10)

We let denote the flow of v so that

v for and

and denote by the trajectory emanating from . We define

F F Q N Q T Q T

Then, (9.2) is written as the following system of ODEs:

Q F Q Q F Q

Hence,

Q Q F Q Q F Q Q(9.11)

By Grönwall’s inequality on , with , we deduce from (9.6) and
(9.10) that there exists a universal constant such that

Q Q Q Q
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uniformly for all labels , for a constant . Since N, T , and T form
an orthonormal basis, the above estimate and (9.10), together with the initial da-
tum assumption (3.20), implies that (9.4) holds. The self-similar specific vorticity
bound follows directly from its definition in (2.35). ⇤

10 Closure of Based Bootstrap for and
Having established bounds on trajectories as well as on the vorticity, we now

improve the bootstrap assumptions for and stated in (4.11) and (4.12).
We shall obtain estimates for and that are weighted by an
appropriate exponential factor .

From (2.49b) we obtain that is a solution of

V

where the damping function is given by

J

Upon composing with the flow of V , from Grönwall’s inequality it follows that

(10.1)
log exp

log

log
exp

Similarly, from (2.49c) we have that is a solution of

V

where
J

and hence, again by Gronwall’s inequality, we have that

(10.2)
log exp

log

log
exp

For each choice of present in (4.11) and (4.12), we shall require that the
exponential factor satisfies

(10.3)

which, in turn, shows that

(10.4)
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For the last inequality, we have used the bound J , which follows from (4.3)
and (7.1). Combining (10.3), (10.4), and (8.11), for log we obtain

(10.5) exp exp

Replacing with in (10.4), we similarly obtain that for log ,

(10.6) exp

Then as a consequence of (10.1), (10.2), (10.3), (10.5), and (10.6), we obtain

log

log
exp(10.7)

log
log

(10.8)

and

log
log

(10.9)

10.1 Estimates on
For convenience of notation, in this section we set . We start with the

case , for which we set . Then, the first line of (7.19) combined with
(10.8) and our initial datum assumption (3.37) show that

log
log

This improves the bootstrap assumption (4.11) for , upon taking to be
sufficiently large to absorb the implicit universal constant in the above inequality.

For the case , we set so that (10.3) is verified, and hence
from (3.37), the second case in (7.19), and (10.8), we find that

log
log

log

Now, applying (8.8) with and for , we deduce that

(10.10)

which improves the bootstrap assumption (4.11) for taken sufficiently large.
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We next consider the case that and . For such we let ,
so that

We deduce from (10.7), the third case in (7.19), the initial datum assumption (3.37),
and Lemma 8.3 with and , that

log

log

log

(10.11)

for log , , and . This improves the bootstrap stated in (4.11)
by using the factor to absorb the implicit constant in the above inequality.

We are left to consider for which and . For ,
setting (which satisfies (10.3)) we obtain from (10.8), the forcing bound
(7.19), and the initial datum assumption (3.37) that

log
log

(10.12)

Finally, for we set . As a consequence of (7.19), (3.37), and
(10.8), we obtain

(10.13)
log

log

for . Together, the estimates (10.10)–(10.13) improve the bootstrap bound
(4.11) by taking sufficiently large.

10.2 Estimates on
The goal of this section is to improve on the bootstrap bounds (4.12). The

estimate is more delicate, and is obtained by considering the vorticity equation; we
postpone this estimate to the end of this subsection. In contrast, the estimates
with are very similar to the estimates of , by setting
and utilizing (3.38), (7.20), and (10.9) in place of (3.37), (7.19), and (10.8). We
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summarize these as follows:

log
log

(10.14a)

log

log

log

(10.14b)

log

log
(10.14c)

where we applied (8.8) first with and , and then with
and . Taking sufficiently large, the bounds (10.14) close the bootstrap
assumption for when .

It remains to close the bootstrap assumption on for . For this
purpose we use the vorticity estimate given in Proposition 9.2 and the following
representation:

LEMMA 10.1 (Relating and ). The following identities hold:

J T T N

curl N T curl T T(10.15a)

J T T N

curl N T curl T T(10.15b)

Assuming for now that Lemma 10.1 holds by combining Propositions 9.1 and
9.2 with estimates (4.6), (4.11), (4.12), (4.5), and (7.1), we deduce that

(10.16)

The above estimate thus improves on the bootstrap assumption for by taking
to be sufficiently large in terms of , and then sufficiently small in terms

of . The estimates (10.14) and (10.16) thus improve the bootstrap assumptions
on , and it remains to prove Lemma 10.1.



FORMATION OF POINT SHOCKS FOR 3D COMPRESSIBLE EULER 67

PROOF OF LEMMA 10.1. We note that for the velocity and with respect to the
orthonormal basis N T T we have that

curl T N N T T T N N T T

T T T T N

Now, from the definitions (2.6), (2.8), (2.16), (2.20), (2.32), and (2.35), we have

curl curl

In particular,

curl

curl
(10.17)

We only establish the formula for , as the one for is obtained identically.
To this end, we write

curl T T N N T

By the chain rule and the fact that N is orthogonal to T , we have that

T T T T JN T T

T

The important fact to notice here is that no -derivatives of remain. Similarly,

N N N N JN N N

J N

Hence, it follows that

curl T T N

J T N T

T N J N T

N T T N

T J N

N T NT T N(10.18)

where we have used (2.23), (2.22), and (A.22). The identities (10.17) and (10.18)
and the definition of the self-similar transformation in (2.25) and (2.26) yield the
desired formula for . ⇤

11 Closure of Based Bootstrap for

The goal of this section is to close the bootstrap assumptions that involve ,
and their derivatives, stated in (4.6) and (4.7a)–(4.9).
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11.1 Estimates for for
The fourth derivative

We note that the damping term in (2.54) is strictly positive if . Indeed,
for , we have that

J

J

(11.1)

where we have used (4.3) and (4.10).
Using (11.1) and composing with the flow induced by V whose initial

datum is given at log as log , we obtain from (2.54) that

Appealing to (7.24), the Grönwall inequality, the damping lower bound (11.1), and
our assumption (3.33) on the initial datum, we obtain

(11.2)
log log

log

for all and all log such that . Using a power of
or the extra log factor to absorb the implicit constants, we have thus closed the
bootstrap assumption (4.8b): indeed, by Lemma 8.2 we have that given any
and log , we may write , for some with , and that

for all log .

Estimates for with and
In this subsection we improve on the bootstrap assumptions (4.8a) and (4.9).

First we recall that satisfies the constraints (5.1), and that the power series for
near is given by

O(11.3)

Based on this information, we have that

(11.4)

Consider now the bound on derivatives with at , with the goal of
improving (4.9). Evaluating (2.54) at yields



FORMATION OF POINT SHOCKS FOR 3D COMPRESSIBLE EULER 69

Using (4.8b), (4.9), (6.4), (7.21), and (4.3) we obtain that

(11.5)
log

Therefore, upon integrating in time, using that is independent of , and appeal-
ing to our initial datum assumption (3.34), we have that

log
log

(11.6)

where we have used the bound (11.5) with . In summary, we have shown
that

(11.7)

for all , and all log . This closes the bootstrap bound (4.9).
The estimates for stated in (4.8a) now follow directly from (4.8b),

(11.7), (11.4), and the fundamental theorem of calculus, by integrating from .
To close the bootstrap bound (4.7a) for , we note that the bound follows

by setting in (4.8a), and using that is sufficiently small. For (4.7b), the
bound in the case follows by setting in (4.8a), and using that

. For (4.7c), in the case , the desired bound holds by setting
in (4.8a), and using that log .

11.2 A framework for weighted estimates
In order to close the bootstrap estimates (4.6) and (4.7) for , we will need

to employ carefully weighted estimates. If R is the quantity we wish to estimate
(either or ), we will write the evolution equation for R in the form

(11.8) R R R V R R

where R denotes the damping of the R equation, and R is the forcing term. If
we let

R

denote the weighted version of R (we will use exponents with ), then
satisfies the evolution equation

R V V R(11.9)

and we can expand the definition of D as

(11.10)
R

J

D
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Note that is independent of . By Grönwall’s inequality, and composing with
the trajectories such that for some log with
, we deduce from (11.9) that

exp

exp(11.11)

We note that the term in the definition of in (11.10) satisfies
whenever , and thus this term does not contribute to the right

side of (11.11). Next, we estimate the contribution to the exponential term on
the right side of (11.11), as this contribution is independent of and is a priori not
sign definite. Using (4.6) to bound , (7.2) to estimate J, (4.3) to bound , (7.4)
for , and (7.6) to estimate , we deduce

D

(11.12)

for all log , upon using (4.5) and taking to be sufficiently small in terms
of .

The case L
Composing the upper bound for in (11.12) with a trajectory with

, and using (8.4) and the bound , we obtain from (11.12)
that

D

log log(11.13)

since log , , for all . Combining (11.11) with
(11.13), we deduce that

exp R

exp R(11.14)

To conclude our weighted estimate, we need information on the size of . We
recall that for any log and any L , there exists log
and with L such that . This follows from Lemma 8.2
by following the trajectory ending at backwards in time. We also note that in
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the situation where log , we have . Therefore, is bounded
using information on the initial datum if log , and appealing to bootstrap
bounds which hold for all log and . The bound (11.14) will be
applied in the following subsections for various values of , with , and
with R being either equal to or .

The case LLL
The only difference from the previously considered case comes in the upper

bound (11.13). In this case, we have that for L

D L

L(11.15)

for log and . Combining (11.11) with (11.15), we deduce that

exp R

exp R(11.16)

The bound on will now be obtained from the the previous estimate (11.14)
when log (since in this case L ), or from the initial datum assump-
tion when log (since in this case L ).

11.3 Estimate for for LLL

We now close the bootstrap bound (4.7a) for L . We let R ,
, so that the weighted quantity is given as . We use

the evolution equation (2.53), so that in this case the quantity R

present in (11.14) equals J , while the forcing term equals to
.

First we estimate the contribution of the damping term. Since J
holds due to (4.3) and (7.1), and since for we may apply to the trajectory
estimate (8.4), by also appealing to the bootstrap assumption for in (4.6) and
the bound , we conclude

(11.17)
J

log
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as in (11.13) for all log . Second, we estimate the forcing term in
(11.14). Using the case in (7.14) we arrive at

log(11.18)

for all log and .
Inserting the bounds (11.17) and (11.18) into (11.14), we deduce that

log(11.19)

where absorbs the implicit constant in (11.18). Using the initial data assumption
(3.32a) if log , and (4.8a) if log , we deduce from (11.19) that

(11.20)
max log

for all L and all log . Here we have used a small power of
to absorb all the and factors. The above estimate shows that (4.7a) may be
improved by a factor larger than 2, as desired.

11.4 Estimate for for LLL

Our goal isto close the bootstrap bound (4.7b) for L . We let R

, , so that the weighted quantity is given as . We use
the evolution equation (2.54) with , so that the quantity R in
(11.14) equals J , while the forcing term .

As in the previous subsection (see estimate (11.17)), we have that the contribu-
tions to (11.14) due to the damping term R are bounded as

J log(11.21)

On the other hand, the forcing term is estimated using (7.22)
pointwise in space as

and thus, similarly to (11.18) we obtain

log(11.22)

Combining (11.21) and (11.22) with (11.14), and using our initial datum assump-
tion (3.32b) when log , respectively (4.8b) for log , we deduce
that

(11.23)
max log
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for all L and all log . Here we have used a small power of
to absorb all the and factors. The above estimate shows that (4.7b) may be
improved by a factor larger than two, as desired.

11.5 Estimate for for LLL

The proof of the bootstrap (4.7c) for is nearly identical to the one
in the previous subsection, so we only present here the necessary changes. We let
R and , so that . Using (2.54) with ,
we obtain that in this case R J , while the forcing term is

. The integral of the damping term arising in (11.14) is bounded using
(11.17) by log . On the other hand, the forcing term is bounded using (7.23)
by . Therefore, as in (11.22), the integral of the forcing term composed
with the flow is bounded as log . Combining these two es-
timates, with our assumptions on the initial datum (3.32c) and (4.8b), we arrive
at

(11.24)
max log

for all L and all log , thereby improving the bootstrap bound
(4.7c).

11.6 Estimate for with for
Our last remaining bootstrap bound is (4.6). Recall that , and

thus, the and cases of (4.6) follow directly from the properties
(2.47) of the function , and the previously established estimates (4.7a)–(4.7c).
Thus, it remains to treat the cases for which , which are the third and
respectively the fifth bounds stated in (4.6).

For , we let R , and we define as

for and
for and

According to these choices we define , and appeal to the evolution
equation (2.49a) to deduce that the quantity R present in (11.14) equals

R
J for and

J for and
(11.25)

We now consider these two cases separately.
The case and is similar to the cases treated earlier: as in (11.17)

we have

J log(11.26)
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and similarly to (11.18), by appealing to (7.18), using that for
, we have

log(11.27)

By inserting the bounds (11.26) and (11.27) into (11.14), we arrive at

log

max

for , where we have also appealed to our initial datum assumption
(3.36b) when log , and to (4.8a) when log . Since by (3.31a) we
have log , we have that

(11.28)

by taking to be sufficiently large, and so we obtain an improvement over the
bootstrap assumption in (4.6).

To conclude, we consider the cases when with . In this case, by
appealing to (11.25) and (11.26), we obtain that

exp R(11.29)

for any log . On the other hand, from (7.18) we deduce that

(11.30)

Combining (11.29) and (11.30) with (11.14), for with we arrive at

max(11.31)

by appealing to our assumptions on the initial datum assumption (3.36a) if
log , and to (4.8a) when log . Since by (3.31a) we have log ,

for sufficiently large, the bound

(11.32)

holds, and we obtain an improvement over the bootstrap assumption in (4.6).

11.7 Estimate for for LLL

The bounds in this section are similar to those in Section 11.3. We use
and R , so that . From (2.28a), we obtain that R
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equals to , while the forcing term equals . In order to
apply (11.16) similarly to (11.15), we use Lemma 8.2 to estimate

L L

while using (7.11) and (4.1b) we derive

Inserting the above two estimates into (11.16), we obtain

In the case log , we have L , and so from (4.7a) and the first
inequality in (2.47) we have that . On the other hand, when

log we use the initial data assumption (3.35a), so that .
In summary, from the above bound we deduce that for any L we have

(11.33)

for sufficiently small, which improves the bootstrap in the first line of (4.6).

11.8 Estimate for for LLL

In order to close the bootstrap for the second bound in (4.6), we proceed sim-
ilarly to Section 11.4. Letting , from the evolution equation (5.3a)
we deduce that the damping term at the exponential in (11.16) obeys

R J

while the forcing term is equal to . Using the bound in (4.6)
for L , and Lemma 8.2 with L , similarly to (11.15) we obtain that

R

On the other hand, from the second bound in (7.18) and the fact that we
similarly deduce that

since L . Combining the above two estimates with (11.16) we deduce that

When log we have L , and may be estimated using the sec-
ond estimate in (2.47), the fact that , and the bootstrap assumption
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(4.7b) as . On the other hand,
when log , we have L , and from the initial datum assumption
(3.35b) we also deduce . Combining these bounds with the
above estimate along trajectories, we deduce that

(11.34)

for all L and log , thereby clsoing the bootstrap bound on the second
line of (4.6) in this -region.

11.9 Estimate for for LLL

Closing the third bootstrap in (4.6) for L is done similarly to Sec-
tion 11.5. In this region we have that and . From (5.3b) and (5.3c)
we deduce that that damping term is given by R J
so that we may use the same estimate for it as in the previous subsection. For the
forcing term we appeal to the fifth case in (7.18), which bounds from above
by , so that

for L . We deduce from (11.16) that

For log we combine the third bound in (2.47) with (4.7c), while for
log we appeal to the initial datum assumption (3.35c) to deduce that

. We deduce that

(11.35)

holds for all L and all log , which closes the bootstrap from the third
line of (4.6).

12 Bounds
DEFINITION 12.1 (Modified -norm). For we introduce the seminorm

(12.1)

where is to be made precise below (cf. Lemma 12.2).

Clearly, is equivalent to the homogenous Sobolev norm , and we have
the inequalities

(12.2)
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12.1 Higher-order derivatives for the -system
In order to estimate we need the differentiated form of the -system

(2.38). For this purpose, fix with , and apply to (2.38) to obtain

V D

JN

JN

F(12.3a)

V D

JN

JN F(12.3b)

where the damping function D is defined as

D(12.4)

the transport velocity V is given in (2.36c), and since the forcing functions
in (12.3) are given by

F(12.5a)

JN

(12.5b)

J JN K

(12.5c)

(12.5d)

JN
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JN

(12.5e)

JN

J JN K(12.5f)

and

F(12.6a)

JN

(12.6b)

(12.6c)

JN

JN(12.6d)

J JN K

JN

(12.6e)

J JN K(12.6f)
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In (12.5) and (12.6) we have used the notation J K to denote the commutator
. Here we have also appealed to the fact that and are quadratic

functions of , whereas JN is an affine function of ; therefore annihilates these
terms.

12.2 Forcing estimates
In order to analyze (12.3) we first estimate the forcing terms defined in (12.5)

and (12.6). We shall sometimes denote a partial derivative with as ,
when there is no need to keep track of the binomial coefficients.

LEMMA 12.2. Consider the forcing functions F and F defined in (12.5) and

(12.6), respectively. Let , fix , and define the parameter from

(12.1) as . Then, for taken sufficiently small we have

F(12.7a)

F(12.7b)

PROOF OF LEMMA 12.2. We shall first prove (12.7a), and to do so, we estimate
each term in the sum (12.5a). We first recall the decomposition of the forcing
function in (12.5b) as the sum

and we recall that by definition we have

NN T N T(12.8)

From (7.1), J , and using (4.3)

(12.9)

for taken sufficiently small. Hence, for the first term in (12.5b) we have that

(12.10)
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where we have used (7.1) on the second inequality, and (4.6), (4.11), (4.12) for the
last inequality.

Next, for the second term in (12.5b) we have

where we have used that . By Young’s inequality, for
,

Note that for each with , and for each with and ,

the term defines a different summand of . Moreover, from
the definition (2.29c), the bounds (4.6) and (7.5) we obtain that .7

Hence,

(12.11)

Similarly, from (7.6) (or alternatively, the definition (2.30c) and the bootstrap
assumptions (4.1)–(4.12)), we have ; hence, it immediately follows
that for taken sufficiently small the contribution from the third term in (12.5b) is
estimated as

(12.12)

7 While here for simplicity we appeal to the second bound in (7.5), we note that this bound just
directly follows from the definitions (2.29c) and (2.27) and the bootstrap assumptions (4.1a), (4.1b),
(4.5), and (4.11). In particular, none of these bounds rely on Proposition 4.3, which is proven in this
section. The same comment applies for the bound .
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Combining (12.10)–(12.12), and using the definition of from Lemma 12.2, we
obtain

(12.13)

where is a small universal constant. We emphasize that our choice of only
enters the proof in the transition from (12.11) to (12.13).

We now estimate the next forcing term in (12.5c) which we have

decomposed as . Our goal is to split off the
from the and contributions to these terms, since the bootstrap assumption

for in (4.12) does not include bounds on the full Hessian . Using (12.8) we
write as

I I I(12.14)

where

I N N

I T

I

First, for the I term in (12.14), by Lemma A.4 for , we have that

(12.15)
I

a b a NN b

where a and b are given by (A.30), and they obey a b . Note
by (2.29c) that does not include any term. Thus, using the bootstrap bounds
(4.1)–(4.11), or alternatively by appealing directly to (4.6), (7.1) and the last bound
in (7.5), and the definition of X in (4.4), we deduce that

X X X(12.16)

since for . Similarly, from the first four bounds in (4.18) (bounds
which do not rely on any estimates) and from (7.1) (which only uses (4.1a) and
(4.5)), we deduce that

N N X X X
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(12.17)

Moreover, by (2.14), (2.29c), and the fact that annihilates and JN , we
have that

J

J N

so that from (4.1a) and (4.4) we obtain

(12.18)

By combining (12.16)–(12.18) we obtain that the right side of (12.15) is bounded
from above as

a b a NN b

a b a b

a b a b a b

Recalling from Lemma A.4 that a b , and using the norm
equivalence (12.2), by Young’s inequality with a small parameter , we have
that the left side of (12.15) is bounded as

(12.19)
I a b a b a b a b

In the last inequality we have used that by definition , is a
fixed universal constant, and is a constant that depends only on ; thus, we may
use a power of (which is taken to be sufficiently large) to absorb all the - and
-dependent constants.

Next, we estimate the I term in (12.14). First, we note that by (A.25) we have

I T

T T
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Then, by appealing to (2.29c), (4.6), (4.12), (7.1), (7.5), (12.2), (12.18), and (A.26),
we deduce

I

since . By taking sufficiently small, in terms of , ,
and , we obtain from the above estimate that

I(12.20)

for all log .
At last, we estimate the I term in (12.14), which is estimated similarly to the

I term as

I

From (2.30c), (4.6), (4.11), (4.12), (7.1), and the Moser inequality (A.26), we have

N N T

On the other hand, by (7.6) we have , while from (4.6), (4.11),
(4.12), and (12.8) we obtain . Combining the above three esti-
mates, we deduce that

I

from which we deduce

I(12.21)

upon taking to be sufficiently large in terms of , and sufficiently large in
terms of . Combining (12.19), (12.20), and (12.21), we have thus shown that

(12.22)
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To estimate the integral with the forcing function defined in (12.5c),
we first note that due to the Leibniz rule and the fact that JN , we have

J JN K JN

for . Hence, by (7.1) we obtain

where we have used (12.8), together with the bounds (4.6), (4.11), (4.12). By
(A.27) applied with , which thus obeys and Young’s
inequality with ,
(12.23)

where we have used to absorb all and dependent constants. Hence, (12.22)
and (12.23) together yield

(12.24)

Now, we turn to the forcing function in (12.5e) which we have decom-

posed as , and bound each of these con-

tributions individually. We first note that the bounds for the integrals with

and are obtained directly from the estimate in (4.18) and the esti-
mate in (4.11), yielding

(12.25)

The bound for the integral with is obtained in the same way as the bound

for F in (12.12). Indeed, as far as our bounds are concerned, behaves

in the same exact way as , and by (4.18) we have , which
is similar to the bound , which was used in (12.12). In order to avoid
redundancy we omit these details and simply claim

(12.26)
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Similarly, the bound for the integral with is obtained in the same way as the

bound for F in (12.11): plays the same role as , whereas by

(4.18) we have , which is better than the bound
that was used in (12.11), reason for which we do not even need to appeal to our
specific choice for this estimate. In order to avoid redundancy we omit these
details and state the resulting bound

(12.27)

The estimates (12.25)–(12.27) together yield

(12.28)

The last forcing term in the equation is , defined by (12.5f). We first

note that the commutator term may be bounded identically to the commutator term

in since may be used interchangeably with in terms of

our estimates. Similarly, the summation term in is treated in the same

way as for the same reasons which we invoked earlier in the

discussion. In summary, the integral with the forcing term is estimated

in the identical manner as used in (12.24), and we obtain that

(12.29)

Combining the estimates (12.13), (12.24), (12.28), and (12.29), and choosing
to be sufficiently small in terms of and , we obtain that

which proves the inequality (12.7a).
Upon comparing the -forcing terms in (12.6) with the -forcing terms in

(12.5), we observe that they only differ by exchanging the letters and in sev-
eral places; hence, inequality (12.7b) is proved mutatis mutandi to (12.7a). To
avoid redundancy we omit these details. ⇤

12.3 The energy estimate
We now turn to the main energy estimate.
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PROPOSITION 12.3 ( estimate for and ). For any integer satisfying

(12.30)

with and as specified in Lemma 12.2, we have the estimate

(12.31)

for all log .

PROOF OF PROPOSITION 12.3. We fix a multi-index with ,
and consider the sum of the inner product of (12.3a) with and the

inner product of (12.3b) with . With the damping function D defined
in (12.4) and the transport velocity V defined in (2.36c), using the fact that is
skew-symmetric we find that

(12.32)

D div V

J N

F F

JN(12.33)

We note that the last integral on the right-hand side of the identity (12.33) arises
via integration by parts as follows:

JN

JN

JN

JN

JN

The second and third integrals on the left-hand side of the identity (12.33) can be
combined. Using (2.36c), given the bounds (4.10), (7.5), and (7.6), the second
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integral on the left-hand side of (12.33) has an integrand with the lower bound

D div V

J

while the third integral on the left-hand side of (12.33) has an integrand with the
lower bound

J N

J

where we have again used (4.10), and the fact that by (2.17) we have .
Hence these two integrals have the lower bound given by

Since by (4.3) , it follows that for taken sufficiently small, by
summing (12.33) over all , we obtain that

F F

JN(12.34)

Recalling that , that J from (7.1), and that
for taken sufficiently small, we find that

JN

Hence, using (4.6), (4.11), and (4.12) we obtain that the second term in (12.34) is
estimated as

JN
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It follows from (12.34), that

F F(12.35)

By Lemma 12.2, for ,

and hence, by (12.30) we have that

and so we obtain that

for all log . This concludes the proof of Proposition 12.3. ⇤
In conclusion of this section, we mention that Proposition 12.3 applied with

log yields the proof of Proposition 4.3.

PROOF OF PROPOSITION 4.3. We recall the identities

N N and T

Therefore, by (7.1), (A.25), using the Poincaré inequality in the -direction, and
the fact that the diameter of X in the direction is for any with

, we obtain

N N

T

J NK J T K

N T X

Summing over all with relates the norm of , , with the
norm of and .

The initial datum assumption (3.40) together with (12.2) thus implies that

log

Thus, from (12.31) and (12.2) we obtain
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and the inequalities (4.13a)–(4.13b) immediately follow by combining the above
inequalities. ⇤

13 Conclusion of the Proof of the Main Theorems
13.1 The blowup time and location

The blowup time is defined uniquely by the condition , which in
view of (5.2) is equivalent to

(13.1)

The estimate for in (4.1b) shows that for taken sufficiently small,

(13.2)

We also note here that the bootstrap assumption (4.1b) and the definition of
ensures that for all . Indeed, when , we have that

, and the function is strictly
increasing.

The blowup location is determined by , which by (5.2) is

In view of (4.1b), for small enough, find that

(13.3)

so that the blowup location is O close to the origin.

13.2 Hölder bound for
PROPOSITION 13.1. .

PROOF OF PROPOSITION 13.1. We choose two points and in X such that
and define and via the relations

(13.4) and

Using the identity (2.26a) and the change of variables (13.4), we see that
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so that

(13.5)

By the fundamental theorem of calculus and estimate (4.6), we have that

sup sup(13.6)

and similarly for ,

sup sup

sup

where we have again used (4.6), which gives the bound . Since both
and are in X , by (4.5)

and hence

sup(13.7)

Combining (13.5)–(13.7), we see that

sup

where the implicit constant is universal, and is in particular independent of (and
thus ). This concludes the proof of the uniform-in-time Hölder estimate for .

The fact that has the same Hölder regularity follows from the transfor-
mation to given in (2.15), the transformation from to given in (A.22),
together with the bound for given in (4.1a). ⇤
Remark 13.2. A straightforward computation shows that the Hölder norms
of , with , blow up as with a rate proportional to .

13.3 Bounds for vorticity and sound speed
COROLLARY 13.3 (Bounds on density and vorticity). The density remains bounded

and nontrivial and satisfies

for all(13.8)
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The vorticity has the bound

for all(13.9)

where is a universal constant. In addition, if we assume that

on the set(13.10)

for some , then at the location of the shock we have a nontrivial vorticity,

and moreover

on the set(13.11)

PROOF OF COROLLARY 13.3. Using the the identities (2.8), (2.20), and (2.35),
we have that

and hence from Proposition 9.2, it follows that

(13.12)

for . Next, using the identities (2.6), (2.16b), and (2.32), we find that

so that by Proposition 9.1, the estimate (13.8) immediately follows. Then, with the
definition of the transformation (2.6), we have that

(13.13)
x

for all x
The bounds (13.12) and (13.13) together show that (13.9) holds for taken suffi-
ciently small with respect to .

From (2.26c) and (2.33), N T . By (4.5), (4.6),
(4.11), (4.12), and (6.6),

Let x denote the Lagrangian flow of : x x x for
such that x x. Then,

x x x(13.14)

We shall make use of the transformations (2.5) and (2.6) to relate derivates
of with x derivatives of x . It is convenient to define the normal and
tangent vectors that are function of x, so we set

N x N T x T
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We then have that N N and

x N N N N N N(13.15)

By (13.15) and Lemma A.2 we obtain

x N N div T N N T(13.16)

We then write (13.14) as

x x N N N x N x T x T

x

and expand
x x N N x T T

We then have that

x T

N x N N x N T T T N

x N

T x N T x N T T T T

x T

(13.17a)

x N

N x N N x T N x N

T x N T x T N N N T

x T

(13.17b)

In Lagrangian coordinates, conservation of mass can be written as
det x . Hence, by (13.13), there exists such that

det x x for all(13.18)

The kinematic identity

det x det x divx

leads to

det x x exp divx x(13.19)
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and hence from (3.26b), (13.18), and (13.19),

exp divx x(13.20)

It is clear from the transformations (2.5) and (2.6) that

exp div(13.21)

and from (3.26b), (9.5), (13.21), and (13.16),

exp N x N(13.22)

By possibly enlarging the constant in (13.22), by (2.11), (2.13), (2.14), (3.26b),
and (9.5), we obtain

exp(13.23)

where denotes one of the remaining exponential stretchers in (13.17). Con-
sequently, taking the inner product of (13.17a) with x T and summing
this with the inner product of (13.17b) and x N and applying Gronwall,
we find that

x N x T x

since is the identity map at time . This implies that the eigenvalues of
are uniformly bounded from above on the time interval , and therefore

by (13.18), the eigenvalues are bounded in absolute value from below by min .
Using the Lagrangian version of (1.3), which is given by

x x x x

we see that on the set that x , we have that

x min(13.24)

Since x x x and , we
have from (13.2) that

(13.25)

It follows from (13.13) and (13.24) if the condition (13.10) on the initial vorticity
holds, then (13.11) and this conclude the proof. ⇤
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13.4 Convergence to stationary solution
THEOREM 13.4 (Convergence to stationary solution). There exists a -dimenonal

symmetric -tensor A such that, with A defined in Appendix A.1, we have that

the solution of (2.28a) satisfies

lim A

for any fixed .

PROOF OF THEOREM 13.4. We will first show that as , the equation
(2.28a) converges pointwise to the self-similar Burgers equation

To do this, we write (2.28a) as

where

The aim is to show uniform decay of .
From (2.29a), (4.1b), (4.3), (4.6), (7.6), and (7.11), we have that

(13.26)

Thus we must show uniform decay of . Recalling the definition of in
(2.29a), and applying (4.1a), (4.2),(4.3), (6.4), (7.1), (7.3), together with the fact
that we are taking , we find that

N

N

(13.27)

The identity (5.27), together with the bounds (4.1), (4.2), (4.3), (4.11), (4.12), and
(6.4), shows that

(13.28)

and thus, using (13.26), (13.27), and (13.28), we conclude that

(13.29)
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With A denoting the stationary solution constructed in Appendix A.1 whose
Taylor coefficients about match those of lim up to third order,
we define

A A

which satisfies the equation

A A A A(13.30)

In particular, since lim A for , there exists
log such that

(13.31)

An application of Lemma A.3 to the function and the estimate (4.6) yields

(13.32)

for . Now fix and . We also fix a point . Using (13.31),
(13.32), and the fundamental theorem of calculus, we obtain that

A(13.33)

Here, we have made use of the fact that A for .
Next, consider the Burgers trajectory , defined by

(13.34a)
(13.34b)

From the bootstrap for L , the explicit formula for which
yields , the fundamental theorem of calculus, and the bounds (4.6)
and (4.7c), we obtain that

for L

and therefore whenever L . It follows
from (13.34) that

and that

(13.35)

Notice, then, that this trajectory will move at least a distance of length 1 in the time
increment log as . Moreover, from (13.35), we
have that

log log L L(13.36)

Returning now to the evolution equation (13.30), we shall first consider the case
that L . We use the fact that the antidamping term A A A

since A . As a consequence of the forcing estimate (13.29) and the initial
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condition bound (13.33), we apply the Grönwall inequality on the time interval
log log L to obtain that

A

L L
(13.37)

where we have assumed that is taken sufficiently large so that .
By continuity of , we see from (13.36) that for any such that

L , there exists log log L such that

and hence by (13.37), we obtain that

(13.38) A L

By letting , any point L is equal to for some
approaching the origin. Hence, by continuity, taking and letting
in (13.38), we have that for any fixed L ,

(13.39) lim A

Furthermore the convergence in uniform on the interval L .
It remains to establish the convergence as for the case that L .

We fix . From (13.39), there exists an log sufficiently large such
that

(13.40) A for L

We again apply the Gronwall inequality to (13.30), but now on the time interval
log . We find that

A(13.41)

For all L ,

and so it follows that

and hence for L ,

(13.42)

Thus, for log , (13.42) shows that

L(13.43)
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By continuity, we see from (13.43) that for any such that L L ,
there exists log such that

and hence by (13.41),

A

Thus, for any fixed , taking and shows that . This
completes the proof. ⇤

13.5 Proof of Theorem 3.4
The system of equations (2.28) for , with initial data

satisfying the conditions of the theorem, is locally well-posed. In particular, be-
cause the transformations from (1.2) to (2.28) are smooth for sufficiently short
time, we use the fact that (1.2) is locally well-posed in Sobolev spaces and has a
well-known continuation principle (see, for example, [25]): Letting U

with initial data U U for some ,
there exists a unique local-in-time solution to the Euler equations (1.1) satisfying
U . Moreover, if U for all ,
then there exists such that U extends to a solution of (1.2) satisfying U

. This implies that are continuous in time with values
in and define a local unique solution to (2.28) with initial data .
Moreover, the evolution of the modulation functions is described by the system of
ten nonlinear ODEs (5.40) and (5.41). This system also has local-in-time existence
and uniqueness as discussed in Remark 5.1. In Sections 6–12 we close the boot-
strap stipulated in Section 4, and thus obtain global-in-time solutions with bounds
given by the bootstrap.

In particular, the closure of the bootstrap shows that solutions to
(2.28) exist globally in self-similar time, that log

log , and that the estimates stated in Theorem 3.4 are ver-
ified. Theorem 13.4 shows that lim A , where A is a
stationary solution of the 3D self-similar Burgers equation described in Appendix
A.1. Moreover, A satisfies the conditions stated in Theorem 3.4. The bootstrap
estimates (4.1) then show that the modulation functions are in . This
completes the proof.

Let us now provide a brief summary of the closure of the bootstrap given in
Sections 6–12, which consisted of the following five steps:
(A) bounds for in different spatial regions for ;
(B) bounds for ;
(C) bounds for and for ;
(D) bounds for , , and for , ; and
(E) bounds for the modulation functions.
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(A) We split the analysis for into three spatial regions in the support X ,
required to close the bootstrap assumptions (4.6)–(4.9). The first region ( )
was a small neighborhood of where the Taylor series of the solution was
used. The second (large) intermediate region ( L ) was chosen so that

and some of its derivatives remained close to , while the third spatial
region ( L ) allowed to decrease to zero at the boundary of X , while
maintaining important bounds on derivatives.

We began our study in the first region . Our analysis relied on the struc-
ture of the equations satisfied by the perturbation function

and its derivatives, given by by (2.53) and (2.54). As we showed
in (11.1), for the damping term satisfies and hence using the
bootstrap assumptions, we obtained the bound (11.2) for all log , which
closed the bootstrap (4.8b).

The ten time-dependent modulation functions , , , , and solving
the coupled system of ODE given by (5.40) and (5.41) were used to enforce the
dynamic constraints for . Using these conditions at

, and the bound on for , we obtained the bound (11.7)
for for , and this closed the bootstrap (4.9). The fundamen-
tal theorem of calculus then closed the remaining bootstrap assumption (4.8a) for

.
We next obtained estimates for in the region L . We relied

on our estimates for trajectories defined in (2.39)–(2.40). In particular, we proved
in Lemma 8.2 that for any such that and log ,

for all . Thanks to (4.5), we were able to convert temporal
decay to spatial decay so that the exponential escape to infinity of trajectories
provided the essential time integrability of forcing and damping functions in (2.53)
and (2.54) when composed with . Specifically, these equations were rewritten
in weighted form as (11.9)–(11.10), and then composed with , to which we
applied Grönwall’s inequality. We thus obtained the weighted estimate (11.20) for

as well as the weighted estimates for in (11.23) and (11.24), which closed
the bootstrap assumptions (4.7), which in turn, as stated in Remark 4.1, closed the
first three bootstrap assumptions on in (4.6) for the region L .

It remained to close the bootstrap assumptions for for in
the region . We employed the same type of weighted estimates along
trajectories as for the study of above, and thus established the bound
(11.31) which, in conjunction with our choice of log satisfying (11.32),
closed the bootstrap assumption in (4.6). Finally, in the third spatial region
L , using the same type of weighed estimates along trajectories , we obtained
weighted estimates (11.33) for and (11.34)–(11.35) for , which closed the
first three bootstrap assumptions in (4.6) for L . This completed the
estimates for .
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(B) The specific vorticity estimates required a decomposition of the vector into
the normal component N and the tangential components T as was done in (9.2).
We observed that these geometric components of specific vorticity have forcing
functions (9.3) that are bounded; therefore, in Proposition 9.2, we established the
upper bound (9.4). For the self-similar sound speed , we also established the
upper and lower bounds (9.1) in Proposition 9.1.

(C) We then closed the bootstrap assumptions (4.11) and (4.12) for and
with . To do so, we relied upon Lemma 8.3, wherein we proved that

trajectories and escape to infinity exponentially fast for all X ,
and also upon Corollary 8.4 which established the integrability (for all time) of
both and along these trajectories. This then allowed us to use weighted
estimates for to obtain the bounds (10.10)–(10.13), which closed the bootstrap
assumptions (4.11). The same type of weighted estimates for then yielded the
bounds (10.14) which closed the bootstrap assumptions (4.12) for all with

. For the latter case, we relied crucially on the previously obtained specific
vorticity estimates. In particular, Lemma 10.1 proved that bounds on geometric
components of specific vorticity give the desired bounds on .

(D) In order to complete the bootstrap argument, we obtained -type energy
estimates for the -system of equations (2.34). The evolution for the differ-
entiated system was computed in (12.3)–(12.6). The main idea for
closing the energy estimate was to make use of the bounds for and
with and for with . Together with the damping obtained when

is chosen large enough, the lower-order bounds effectively linearized the re-
sulting damped differential inequalities which then lead to global-in-time bounds.
Instead of obtaining bounds for the -norm directly, we instead obtained bounds
for the weighted norm ,

where , , and . The energy method proceeded in
the following manner: we considered the sum of the inner product of (12.3a)
with and the inner product of (12.3b) with . We made use
of a fundamental cancellation of terms containing derivatives that lead to
the identity (12.33), obtained the lower-bound on the damping, and employed
the error bounds from Lemma 12.2. This lead us to the differential inequality

which then yielded the desired bound.
(E) Closing the bootstrap assumptions for the modulation variables used the

precise form of the ODE system (5.40) and (5.41) and relied on the bounds , ,
, and some of their partial derivatives at . The bounds (6.5)–(6.10) closed

the bootstrap assumptions (4.1).

13.6 Proof of Theorem 3.1
The blowup time is uniquely determined by the formula (13.1); the blowup

location is defined by . The bounds (13.2) and (13.3) show that
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O and O , respectively. Moreover, satisfies (6.6), and from
(3.24) and (4.1a), for each , we have that N N x T
T x O

By Theorem 3.4, log , and since

N T and N T

we immediately obtain log . The identities (2.32) to-
gether with the change of variables (2.25) show that . It
then follows from the sheep shear coordinate and function transformation, (2.15)
and (2.16), together with the fact that O from (4.1a) that

. From the transformations (2.5) and (2.6) we have that
and so .

From the change of variables (2.15), we have that

so that by (2.14), this identity is written as

JN

Hence, we see that
N J N

J N
(13.44a)

T T T(13.44b)

Using the definitions of the transformation (2.8), (2.15), (2.25), and (2.26a), the
fact that , and the constraints (5.1), we see from (13.44a) that

N J N

and hence lim N . Moreover, from (3.2) and (7.1), we
have that J and N , and so from (13.44a), it follows that

N as

By Theorem 3.4, we have that

and hence by the transformation (2.25), (2.26b), and (2.26c),

Since
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we have

By Corollary 13.3, for all , and hence
is strictly positive and bounded. Now

N

and hence (3.26) immediately follows. Finally, Corollary 13.3 establishes the
claimed vorticity bounds.

Remark 13.5. Note that as defined by (3.25) are solutions to the system
(A.21). Thus, one may obtain as a solution of (1.1) and define by
(3.25) or equivalently, one may directly solve (A.21) with the corresponding initial
conditions.

13.7 Open set of initial data, the proof of Theorem 3.2
PROOF OF THEOREM 3.2. Let us denote by F the set of initial data x ,

or equivalently x , which are related via the identity (3.6), which sat-
isfies the hypothesis of Theorem 3.1: the support property (3.7), the x bounds
(3.8)–(3.17), the x estimates in (3.18), the x bounds in (3.19), the specific
vorticity upper bound (3.20), and the Sobolev estimate (3.21). We will let F be a
sufficiently small neighborhood of F in the topology. The specific smallness
will be implicit in the arguments given below.

A first comment is in order regarding all the initial datum assumptions that are
inequalities, namely (3.12)–(3.21). These initial datum bounds are technically not
open conditions, since for convenience we have written “ ” instead of “ ”. How-
ever, we note that all of these bounds can be slightly weakened by introducing a
prefactor that is close to without affecting any of the conclusions of the theorem.
Therefore, we view (3.12)–(3.21) as stable with respect to small perturbations.

This leaves us to treat the assumption that are supported in
the set X defined by (3.7), and the pointwise conditions on at x given
in (3.8)–(3.10). We first deal with the support issue, where we use the finite speed
of propagation of the Euler system. After that, we explain why the invariances of
the Euler equation allow us to relax the pointwise constraints at the origin. Due to
finite speed of propagation, these two matters are completely unrelated: the second
issue is around x , while the first one is for x large. Thus, in the proof we
completely disconnect these two matters.

Let F and consider a small perturbation which decays
rapidly at infinity, but need not have compact support in X . By the local existence
theory in , from this perturbed initial datum

total total
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we have a maximal local-in-time smooth solution of the 3D Euler system
(1.2). Let us denote this solution as total total , and let its maximal time of exis-
tence be total. The standard continuation criterion implies that if total

, then the solution may be continued past .
In addition to the set X defined in (3.7), for we introduce the nested

cylinders

X x x

Clearly X X X X , and we have

dist X X for all(13.45)

Let be a smooth nonnegative cutoff function, with on X and
on X . Then, we define

x x x

x x x

By construction, the inner initial value is compactly supported in X and
is a small disturbance of the data on X . Therefore, we can apply
Theorem 3.1 to this initial datum, and the resulting inner solution of the
Euler system (1.2) satisfies all the conclusions of Theorem 3.1 (with a suitably
defined defined as in (3.6)). In particular, we have a bound on the
maximum wave speed due to the bound

(13.46)

and with O . The key observation is that
because is identical to our perturbed initial datum total total on X

(the cutoff is identically equal to there), by using the finite speed of propagation
and the uniqueness of smooth solutions to the compressible Euler system, from the
bounds (13.45) and (13.46) we deduce that

x total total x on X(13.47)

In particular, because Theorem 3.1 guarantees that the only singularity in
occurs at O at time , we know that

sup X M(13.48)

for some constant M , which depends polynomially on in view of (3.21).
It remains to analyze the total solution on the set X . For this purpose, write

total total x x x(13.49)
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and note that solves a version of (1.2) where we also add linear terms due
to :

x x

x x x(13.50a)

x divx

x divx divx(13.50b)

x x x(13.50c)

In particular, the initial condition in (13.50c) has small Sobolev norm and is com-
pactly supported in X by the definition of the cutoff function . Additionally, ev-
ery term in (13.50a) and (13.50b) contains either a or a term. Combined with
(13.46), the implication is that as long as the maximal wave speed due to is
bounded, e.g., O , then on the time interval the support of the solution

cannot travel a distance larger than O . Hence, due to (13.45), we have
that the support of remains confined to X , again, conditional on an O
bound for (we have such a bound for short time, but it may
not be clear that it holds uniformly on ). Next, we recall that by using a
standard energy estimate for the system (13.50), we may prove that

X

where the implicit constant only depends on and , and we have used the
aforementioned support property of . Since we have previously established
in (13.48) that X M uniformly on , we deduce that
if obeys

exp M(13.51)

then uniformly on we have ; this bound also implies
the desired O wave speed. To conclude the argument, all we have to do is
to choose our initial disturbance to have a small enough norm (in
terms of ) so that (13.51) holds. We combined this O bound on the norm
of the outer solution with (13.47) and (13.49) to deduce that the total solution

total total behaves extremely tamely on X , and its behavior is given by the
bounds in Theorem 3.1 on X . We have thus proven that one may indeed remove
the strict support condition from the assumptions of Theorem 3.1, as desired.

It remains to show that the pointwise constraints (3.8)–(3.10) on can be
turned into open conditions. First, we note (cf. (3.2)) that Theorem 3.1 allows
for to be taken in an open set, and by definition is taken to be sufficiently
small, thus also in an open set. As a consequence, the conditions on and

in (3.10) are open conditions. It remains to show that by applying an
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affine coordinate change, we may replace the assumptions (3.8), (3.9), and the last
equation in (3.10) by open conditions.

We start with the last condition in (3.10). We aim to show that if F is a
sufficiently small neighborhood of F , and is a sufficiently small ball
around the origin (with radius depending solely on ), then there exists functions
m m F such that if we define the vector

(13.52) m x m m m m m m m

then for any x and F

(13.53) m x m x x m x x

We denote by two free variables; i.e., they do not depend on x
and are not to be confused with the pair m m . In terms of we define
the vector

(13.54)

in analogy to (13.52). Also in terms of we define the rotation matrix
using the definition (2.2) with replacing ; more explicitly,

replace with in (A.13). Then, using we define two vectors
which are orthogonal to the vector defined in (13.54), as

for

By construction, form an orthonormal basis. Then, for each
define functions

x x x x x

where the summation is over . Thus one can rewrite (13.53) as

(13.55) x m x m x

with . By (3.10) we have for F that

(13.56)

Moreover, employing the notation , for F we
have by (3.10) that

(13.57)

By (3.9) and (3.17), we have

(13.58)

x x x x x x

x x x x

x x x x

O



FORMATION OF POINT SHOCKS FOR 3D COMPRESSIBLE EULER 105

Using (3.16), (3.21), and the interpolation Lemma A.3 we also have

x x x

x x(13.59)

For every , if we assume F is a sufficiently small neighborhood of F ,
then for F , we can replace (13.56)-(13.59) with

O(13.60a)

Id O(13.60b)

x O(13.60c)

x x(13.60d)

For a fixed F , now consider the map
given by

(13.61) x x x

with gradient with respect to x and given in block form by

Id
x

From (13.60b) and (13.60c), we have det , for . Thus,
by the inverse function theorem, for each F , there exists an inverse
map defined in a neighborhood of . Moreover, using
(13.60b)–(13.60d), we can infer that the domain of this inverse function
contains a ball around whose radius can be bounded from
below in terms of , independently of . In particular, by assuming to be
sufficiently small in terms of , as a consequence of (13.56) and (13.60a), we can
ensure that the domain of contains a ball centered at the origin with
radius depending solely on . In other words, assuming F is a sufficiently small
neighborhood of F , then is well-defined on , where is independent of

F . The key step is to define

m m m m x m x

where m is the projection of the vector x onto its last two components.
Note that as a consequence of (13.60b)-(13.60d), we obtain

x m m(13.62a)

x m m x(13.62b)

for all x , where we reduce the radius of if required (dependent only on ). In
order to see the first bound we note that is a lower triangular matrix. Then
using (13.60b) we obtain that det . Moreover, applying (13.60b)
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and (13.60c), we can bound the entries of the cofactor matrix by a constant multiple
of , from which we conclude

Cof det

Thus, we have identified the desired functions m m x such that (13.55),
and thus (13.53) holds for all x and all F .

Next, we turn to relaxing the constraint (3.9). For each F , we wish
for find x such that

x x m x

x m x
(13.63)

Using (3.9), for F we have

(13.64)

where we used the identity m . Moreover, we have

x x m m x
x x m m x

x m x x xm x(13.65)

For F and x , by the definition of in (3.11) and the property
(2.44) of , we have

(13.66)

m m m

R

where by (3.14) and the fact that , the remainder R is bounded as

(13.67) R R R R

By (3.9), (3.16), (3.18), (3.19), and (3.21) (which implies by Sobolev embedding
an estimate on x and x x , where we also use that ) and (13.62)

(13.68)

x m x m

x m

if
otherwise

if
otherwise

Inserting the bounds (13.66)–(13.68) into identity (13.65) we deduce that

det x
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for all F .
Using a similar computation, whose details we omit to avoid redundancy, for

x and all F , we may use (13.62), (3.13), (3.21), and Gagliardo-
Nirenberg-Sobolev to show

(13.69) x

Therefore, we have established bounds for similar to those we have established
earlier in (13.60) for , which will allow us to again apply the inverse function
theorem. More precisely, let us fix F and assuming again that F is a
sufficiently small neighborhood of F , the map given by

(13.70) x x

is invertible in a ball centered at x , with a radius depending solely on .
Due to (13.64) we may ensure that this ball contains the origin, and by appealing
to (13.64)–(13.69) and a similar argument to that used to invert the map in (13.61),
by assuming F is a sufficiently small neighborhood of F , the map defined
in (13.70) is shown to be invertible in a ball containing the origin, whose radius
depends solely on and so is independent of F . This shows that for
each F there exists x in a ball centered on the origin such that (13.63)
holds.

To conclude, for a given F we construct x , m m x ,
and m m x such that (13.53) and (13.63) hold. That is, we have

m x m x x and x m m x x

By the arguments above, we can ensure x m m are uniquely defined in a small
ball around the origin, and they can be made arbitrarily small by assuming that F
is a sufficiently small neighborhood of F . Then replacing by

x x x x x

where is the rotation matrix defined in (2.2) with m m replacing ,
we have that satisfy the conditions

x and x x

i.e., the constraint (3.9) and the last equation in (3.10), which was our goal. To
complete the proof, we note that by construction we have that x , m , and m are
small and F is a sufficiently small neighborhood of F ; thus, the global minimum
of x must be attained very close to . By the above formula, x is
indeed a critical point of x , and using that the nondegeneracy condition
(3.14) is stable under small perturbations, the minimality condition (3.8) also holds
for at x . This completes the proof of Theorem 3.2. ⇤
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Appendix
A.1 A family of self-similar solutions to the 3D Burgers equation
PROPOSITION A.1 (Stationary solutions for self-similar 3D Burgers). Let A be a

symmetric -tensor such that A M with M a positive definite symmetric

matrix. Then, there exists a solution A to

A A A A(A.1)

which has the following properties:

A , A , A ,

A for even,

A A for .

PROOF OF PROPOSITION A.1. We first construct an analytic solution
of the 3D self-similar Burgers equation (A.1) for with

small and to be specified below. To constrict such a solution, we make the follow-
ing power series ansatz:

A
A

odd

(A.2)

where . We note that the properties listed in the statement of the
proposition are satisfied by any function with a convergent power series expansion
as above.

Inserting (A.2) into (A.1), we deduce that for

(A.3)

Using that we obtain the recursive expression for

(A.4)

To see that the formula provides a recursive definition, we note that since ,
no term of the type for appears on the right-hand side. Also note that
the only terms of the type for that appear on the right-hand side have
the property that .

We seek a bound of the type

(A.5)

for , where are Catalan numbers. The inequality (A.5) is trivial for
the case since in that case we have . Note that by choosing
sufficiently large, dependent on A , we obtain (A.5) for all . Finally, for
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, we may use that does not appear in the sum (A.4) to conclude that

where in the second line we used the identity and in the
third line we used that and assumed that .

From (A.5) and the bound , we conclude that

(A.6)

from which it immediately follows that the Taylor series (A.2) converges abso-
lutely, with radius of convergence bounded from below by .

Next, we substitute the partial sum of the Taylor series
in (A.2) into (A.1). We consider the expression for the nonlinear term, which by
appealing to (A.3) becomes

R

For the remainder term R, using that and (A.6), we have that

R

which vanishes exponentially fast as . This shows that A defined by
(A.2) is an analytic solution of (A.1) for all .
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We next extend this solution to the entire domain, and we do so via trajectories.
Let be the trajectory

(A.7) A

Let us choose sufficiently small such that

A(A.8)

A(A.9)

for all .
For any and , we define

(A.10) A A

Let D be the domain of A . The aim is to prove that A . First we show
that the definition (A.10) assigns a unique value to every D . In particular,
suppose for a given D there exists such that such that

for some . Without loss of generality, assume . Let us denote
which satisfies by (A.9), and we have

(A.11)

From (A.7) and (A.10), we have

A

A

In particular, substituting into the first two equations and into the
second equation we obtain

A A and

Rearranging the first equation, we have

A A

which is impossible by (A.8) and the fundamental theorem of calculus. We must
have , and thus we obtain a unique value for A .

Now consider trajectories beginning at a point on the ball . Then
differentiating (A.7) in and solving explicitly along trajectories , we obtain

A
A

A A
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Here we have used that that the Hessian of A at given by A is
positive definite, and we have assumed that is taken sufficiently small. Indeed,
from the above calculation, we further have that

A

for some depending on A and . Then, by Grönwall’s inequality, we can bound
A along trajectories by

A exp A

where again depends on A and .
Let us now observe that by the fundamental theorem of calculus,

A

A

This, in turn, implies that

(A.12)

By a simple continuity argument, this implies that D .8 ⇤

A.2 The derivation of the self-similar equation
The goal of this appendix is to provide details concerning the derivation of the

self-similar equations (2.28), starting from the standard form of the equations in
(1.1). This derivation was described in Sections 2.1–2.5, and in this appendix we
include the details that were omitted earlier.

The time-dependent coordinate system
The first step is to go from the spatial coordinate x to the rotated coordinate

. For this purpose, the rotation matrix defined in (2.2) may be written out
explicitly:

(A.13)

8 Suppose D ; then there exist sequence , such that we have the
following: , and . The bound (A.12) implies that the sequence is
uniformly bounded. Then taking a subsequence if necessary, by continuity there exists satisfying

and such that . Thus D , and we conclude D is closed. Note that
if D , then there exists satisfying and such that . Furthermore,
by flowing a small ball around by the vector field A one can verify that D
contains a small ball around . Thus D is open. Since D is open, closed, and nonempty, D .
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where . The new basis of given by is thus given
explicitly as

The time derivative of the matrix is given (cf. (2.3)) in terms of , as

(A.14)

O

(A.15)

O

where we recall that by definition . With this notation, the matrices
and appearing in (2.4) may be spelled out as

(A.16)

O

(A.17)

O

Note that both matrices and are skew-symmetric, and thus so is .
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Next we turn to the definitions of and in (2.6), which may be rewritten as

x x and x x

From the definitions of , , and in (2.5)–(2.6), we obtain that

x

x

x

Using the above identities and the fact that

Id implies

we may write the Euler equations in the basis as

(A.18a)

(A.18b)

The perturbations (A.18) present over the usual Euler system are only due to the
and terms, arising from our time-dependent change of coordinates. The

first term is a linear rotation term, while the second term alters the transport velocity
to take into account rotation. Using the definitions of in (2.4) and in (2.6), the
system (2.7) now directly follows from (A.18).

The adapted coordinates
We first collect a number of properties of the function defined in (2.11).

Due to symmetry with respect to , we clearly have that

so that , and for the Hessian we have that

For the derivative with respect to space and time we have

The following lemma is useful in deriving the equations satisfied by , , ,
and :
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LEMMA A.2 (The divergence operator in the N T T basis).

(A.19)
div N N T T N N

T T

PROOF OF LEMMA A.2. With respect to the orthonormal basis N T T , we
have

div N N T T N N T T

N N T T N N T T

N N T T N N T T

T T N N T T

The equation (A.19) then follows from the following identities:

T N N T T T for

N T T

For the first identity, we begin by considering the case :

T N N T T N N T T T T N N T T T T

N N T T T T T

N N T T T T T T T

and clearly the same holds for . For the second identity, note that

N T T N T T N T T N

N T T N N N N

which concludes the proof of the Lemma. ⇤
Besides the above lemma, it is useful to note that under the sheep shear transform

(2.15)–(2.16), a term of the type becomes J N . In particular,
for , the term involving disappears and we are left with . This is
a key identity used in the following computations.

Proving that the Euler system in the variable (2.7) becomes (2.16)–(2.1) in
the variable is a matter of applying the above observation, identity (A.19), and
the chain rule. It is also not difficult to prove that (2.9) becomes (2.21) under this
change of variables.

The adapted Riemann variables
We give the details concerning the derivation of the system (2.24) from (2.7).

We start from (2.7), in which the space variable is , and the time is the original
time , i.e., prior to (2.1). We define the intermediate Riemann variables

N N T(A.20)
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which are still functions of , so that

N

The Euler sytem (2.7) can be written in terms of the variables as

N N T

T T N T N

NN T T N T NN(A.21a)

N N T

T T N T N

NN T T N T NN(A.21b)

N T

T NN T T

NN T T

NN T NN T T(A.21c)

Next, using the sheep change of coordinates defined in (2.15), we have
that the Riemann variables defined earlier in (2.22) may be written as

(A.22a)
(A.22b)
(A.22c)

in analogy to (2.16). Using the new variable and unknowns , the
system (A.21) takes the form

J N J J

N N T

T T N T N

NN T T N

T NN(A.23a)

J N J J

N N T

T T N T N

NN T T N

T NN(A.23b)
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J N J

N T

T NN T T NN T T

NN T NN T T(A.23c)

The system (2.24) now directly follows from (A.23) by using the notation in (2.17).

A.3 Interpolation
In this appendix we summarize a few interpolation inequalities that are used

throughout the manuscript.

LEMMA A.3 (Gagliardo-Nirenberg-Sobolev). Let . Fix ,

, , and . Then, if

then

(A.24)

We shall make use of (A.24) for the case that , , , which
yields

(A.25)

whenever has compact support. The above estimate and the Leibniz
rule classically imply the Moser inequality

(A.26)

for all with compact support. At various stages in the proof we
also appeal to the following special case of (A.24)

(A.27)

for with compact support. Lastly, in Section 12 we make use of
the following:

LEMMA A.4. Let and . Then for a b
and ,

a b a b(A.28)

PROOF OF LEMMA A.4. For , define

and

This is the only exponent such that is an affine function of , and for we
have , while for we have that . By Hölder’s inequality,



FORMATION OF POINT SHOCKS FOR 3D COMPRESSIBLE EULER 117

we have

By the Gagliardo-Nirenberg-Sobolev interpolation inequality,
a a(A.29a)
b b(A.29b)

where the exponents a and b are given by

a b(A.30)

Then, a b , and (A.28) is established. ⇤
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