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Abstract

We consider the 3D isentropic compressible Euler equations with the ideal gas
law. We provide a constructive proof of the formation of the first point shock
from smooth initial datum of finite energy, with no vacuum regions, with non-
trivial vorticity present at the shock, and under no symmetry assumptions. We
prove that for an open set of Sobolev-class initial data that are a small L°° per-
turbation of a constant state, there exist smooth solutions to the Euler equations
which form a generic stable shock in finite time. The blowup time and location
can be explicitly computed, and solutions at the blowup time are smooth except
for a single point, where they are of cusp-type with Holder C s regularity. Our
proof is based on the use of modulated self-similar variables that are used to en-
force a number of constraints on the blowup profile, necessary to establish global
existence and asymptotic stability in self-similar variables. © 2022 Wiley Peri-
odicals LLC.
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1 Introduction

A fundamental problem in the analysis of nonlinear partial differential equa-
tions concerns the finite-time breakdown of smooth solutions and the nature of the
singularity that creates this breakdown. In the context of gas dynamics and the
compressible Euler equations that model those dynamics, the classical singular-
ity is a shock. In this paper, we provide a detailed analysis of the self-steepening
mechanism that leads to the first singularity, a point shock. For the isentropic com-
pressible Euler equations in three space dimensions with vorticity, this has been a
longstanding open problem.

In particular, we give a precise description of the open set of initial data from
which smooth solutions to the Euler equations form a stable generic shock in finite
time, in which the gradient of velocity and gradient of density become infinite at
a single point, while the velocity, density, and vorticity remain bounded. In the
process, we shall provide the exact blowup time, location, and direction of the
singularity, as well as the regularity of the generic blowup profile. Away from this
single blowup point, the solution remains smooth. This is the first result of this
type for the Euler equations in three-space dimensions (see [20,22] for the one-
dimensional isentropic case, and [3] for the case of two-dimensional isentropic
and azimuthal Euler equations). The mathematical framework that we develop in
this work plays a fundamental role in the analysis of the full nonisentropic Euler
system [4].

Let us now introduce the mathematical description. The three-dimensional isen-
tropic compressible Euler equations are written as

(1.1a) di(pu) + divk(pu ® u) + Vip(p) =0,
(1.1b) dip + divx(pu) = 0,
where x = (X1,X2,X3) € R3 and t € R are the space and time coordinates,

respectively. The unknowns are the velocity vector field u : R? x R — R3,
the strictly positive density scalar field p : R*> x R — R4, and the pressure
p :R3 xR — R, which is defined by the ideal gas law

p(p) = 2p”, y>L

The sound speed c(p) = //3p is then given by ¢ = p* where @ = VT_I The
Euler equations (1.1) are a system of conservation laws: (1.1a) is the conservation
of momentum and (1.1b) is conservation of mass. Defining the scaled sound speed
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by o = é 0%, (L.1) can be equivalently written as the system
(1.2a) o + (U - Vou + aocVyo =0,
(1.2b) 0o + (u-Vy)o + ao divyu = 0.

We let @ = curly u denote the vorticity vector, and we shall refer to the vector
(= % as the specific vorticity, which satisfies the vector transport equation

(1.3) 3¢+ (- Vi)l — (- Vi )u = 0.

Our proof of shock formation relies upon a transformation of the problem from
the original space-time variables (x, t) to modulated self-similar space-time coor-
dinates (y, s), and on a change of unknowns from (u, o) to a set of geometric
Riemann-like variables (W, Z, A) in the self-similar coordinates. The singularity
model is characterized by the behavior near y = 0 of the stable, stationary solu-
tion W = W(y1, y2. y3) (described in Section of the 3D self-similar Burgers
equation

(L4) =W+ Gy + W) 0y, W + 33205, W + 3330y, W = 0.

For a fixed T, the vector v = (v1, v3, v3) given by

B N X1 X2 X3
vi(x1,x2,x3,0) = (T t)zw((T 032 (T —0l/2° (T _t)l/z)’

vy =0, v3 =0,

is the solution of the 3D Burgers equation in original variables, d;v + (v-Vy)v = 0,
forming a shock at a single point at time t = 7. An explicit computation shows
that the Hessian matrix dy, VyZI/I_/| y=o 1s strictly positive definite. This genericity
condition provides stability of the shock profile for solutions to the Euler equations
as we will explain in detail below.

A precise description of shock formation necessitates explicitly defining the set
of initial data which leads to a finite-time singularity, or shock. Additionally, from
the initial datum alone, one has to be able to infer the following properties of the
solution at the first shock: (a) the geometry of the shock set, i.e., to classify whether
the first singularity occurs along either a point, multiple points, a line, or a surface;
(b) the precise regularity of the solution at the blowup time; (c) the explicitly com-
putable space-time location of the first singularity; (d) the stability of the shock.
For the last condition (d), by stability, we mean that for any small, smooth, and
generic (meaning outside of any symmetry class) perturbation of the given initial
data, the Euler dynamics yields a smooth solution which self-steepens and shocks
in finite time with the same shock set geometry, with a shock location that is a
small perturbation, and with the same shock regularity; that is, properties (a)—(c)
are stable. As an example, the solution W is stable: the shock occurs at a single
point, and any small generic perturbation of W (as we will prove) also develops
a shock at only a single point, and with the same properties as those satisfied by
W. On the other hand, a simple plane wave solution of the Euler equations that
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travels along the x-axis and is constant in (X5, X3) produces a finite-time shock
along an entire plane, but a small perturbation of this simple plane wave solution
can produce a very different shock geometry (any of the sets from condition (a) are
possible).

Our main result can be roughly stated as follows:

THEOREM 1.1 (Rough statement of the main theorem). For an open set of
smooth initial data without vacuum, with nontrivial vorticity, and with a maxi-
mally negative gradient of size O(1/e), for ¢ > 0 sufficiently small, there exist
smooth solutions of the 3D Euler equations which form a shock singularity
within time O(g). The first singularity occurs at a single point in space, whose
location can be explicitly computed, along with the precise time at which it occurs.
The blowup profile is shown to be a cusp with C /3 regularity, and the singularity
is given by an asymptotically self-similar shock profile which is stable with respect
to the H* (R3) topology for k > 18.

A precise statement of the main result will be given below as Theorem [3.1

1.1 Prior results on shock formation for the Euler equations

In one space dimension, the isentropic Euler equations are an example of a 2 x 2
system of conservation laws, which can be written in terms of the Riemann in-
variants 7 = ¥ — ¢/a and w = u + ¢/a introduced in [30]]; the functions z and
w are constant along the characteristics of the two wave speeds A; = u — ¢ and
A2 = u + c. Using Riemann invariants, Lax [21] proved that finite-time shocks
can form from smooth data for general 2 x 2 genuinely nonlinear hyperbolic sys-
tems. The proof showed that the derivative of w must become infinite in finite
time, but the nature of the proof did not permit for any classification of the type of
shock that forms. Generalizations and improvements of Lax’s result were obtained
by John [18]], Liu [23]], and Majda [25]] for the 1D Euler equations. Again, these
proofs showed that either a slope becomes infinite in finite time or that (equiva-
lently) the distance between nearby characteristics approaches zero, but we note
that a precise description of the shock was not given. For 1D isentropic Euler, a
precise description and classification of the first singularity was given by Lebaud
[22] and later in Kong [20]], while a classification of all possible stable singularities
was given by Caflisch-Ercolani-Hou-Landis [5]. See the book of Dafermos [/13]]
for a more extensive bibliography of 1D results.

For the 3D Euler equations, Sideris [31]] formulated a proof by contradiction
(based on virial identities) that C'! regular solutions to have a finite lifespan;
in particular, he showed that &'(exp(1/¢)) is an upper bound for the lifespan (of 3D
flows) for data of size €. The proof, however, did not reveal the type of singularity
that develops, but rather, that some finite-time breakdown of smooth solutions must
occur.

The first proof of shock formation for the compressible Euler equations in the
multidimensional setting was given by Christodoulou [8] for relativistic fluids and
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with the restriction of irrotational flow, and later by Christodoulou-Miao [|10]] for
nonrelativistic, irrotational ﬂowH This geometric method uses an eikonal function,
whose level sets correspond to characteristic surfaces; it is shown that in finite time,
the distance between nearby characteristics tends to zero. For irrotational flows, the
isentropic Euler equations can be written as a scalar second-order quasilinear wave
equation. The first results on shock formation for 2D quasilinear wave equations
that do not satisfy Klainerman’s null condition [[19] were established by Alinhac
[1,2], wherein a detailed description of the blowup was provided. The first proof of
shock formation for fluid flows with vorticity was given by Luk-Speck [24] for the
2D isentropic Euler equations. Their proof uses Christodoulou’s geometric frame-
work and develops new methods to study the vorticity transport. In [8,[10}24]],
solutions are constructed which are small perturbations of simple plane waves. It
is shown that there exists at least one point in space-time where a shock must form,
and a bound is given for this blowup time; however, since the construction of the
shock solution is a perturbation of a simple plane wave, there are numerous pos-
sibilities for the type of singularity that actually forms. In particular, their method
of proof does not distinguish between these different scenarios. To be precise, a
simple plane wave solution of the 2D isentropic Euler equations that travels along
the x;-axis and is constant in X, produces a finite-time shock along a line, but a
small perturbation of this simple plane wave solution can produce a very differ-
ent singular set, with blowup occurring on different spatial sets such as one point,
multiple points, or a line.

In our earlier work [3], we considered solutions to the 2D isentropic Euler equa-
tions with &(1) vorticity and with azimuthal symmetry. Using modulated self-
similar variables, we provided the first construction of shock solutions that com-
pletely classify the shock profile: the shock is an asymptotically self-similar, stable,
generic 1D blowup profile, with explicitly computable blowup time and location,
and with a precise description of the C '/5 Holder regularity of the shock. Az-
imuthal symmetry allowed us to use transport-type 1.°° bounds, which simplified
the technical nature of the estimates, but the proof already contained some of the
fundamental ideas required to study the full 3D Euler equations with no symmetry
assumptions.

1.2 The variables used in the analysis and strategy of the proof

We now introduce the variables used in the analysis of shock formation. For
convenience we first rescale time t — ¢, as described in (2.1). Associated to cer-
tain modulation functions (described in Section below), are a succession of
transformations for both the independent variables and the dependent variables.
In order to dynamically align the blowup direction with the e;-direction, a time-
dependent rotation and translation are made in (2.5), which maps x to X, with

u, o, and ¢ transformed to #, &, and E via (2.6) and (2.8). Fundamental to the

I'For the restricted shock development problem, in which the Euler solution is continued past the
time of first singularity but vorticity production is neglected, see the discussion in section 1.6 of [9].
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analysis of stable shock formation, we make a further coordinate transformation
X v x given by (2.15); this mapping modifies the X;-variable by a function
f(x2,X3,1) = %qﬁvy(t)?c'v?c'y which is quadratic in space and dynamically mod-
ulated by ¢y (¢). The parametrized surface ( f (X2, X3, 1), X2, X3) can be viewed as
describing the steepening shock front near x = 0, and provides a time-dependent
orthonormal basis along the surface, given by the vectors the unit normal vector
N(x.?) and the two unit tangent vectors T2(X,¢), and T3(X, ) defined in (2.14)
and (2.13). Together with the coordinate transformation X + x, the functions i,

&, and ¢ are transformed to #, &, and E using (2.16) and (2.20). Moreover, the
Riemann variables w = 12 -N + 6 and z = 1 - N — &, as well as the tangential
components of velocity a, = i - T" are introduced in (2.22).

Finally, we map (x, ¢) to the modulated self-similar coordinates (y, ) using the

transformation (2.25). The variables 1, &, and E are mapped to their self-similar
counterparts U, S, and  via (2.32), (2.32), and (2.35), while w, z, and a,, are
mapped to the self-similar variables e =/2W + «, Z, and A4, in (2.26).

As a consequence of this sequence of coordinate and variable changes, the Euler
equations in the original variables for the unknowns (u(x,t), o (X, t)) become
the self-similar evolution (2.34) for the unknowns (U(y, s), S(y,s)). Of crucial
importance for our analysis is the evolution of the self-similar Riemann-type vari-
ables (W(y,s), Z(y,s), A(y, s)) in (2.28), which encode the full Euler dynamics
in view of (2.33). The key insight into our analysis is that the self-similar La-
grangian trajectories associated to the W-equation escape exponentially fast to-
wards spatial infinity if their starting label is at a fixed (small) distance away from
the blowup location y = 0, whereas the Lagrangian trajectories for Z and A es-
cape towards infinity independently of their starting label, spending at most an
O(1) time near y = 0. This exponential escape towards infinity is what allows
us to transfer information about spatial decay of various derivatives of W into in-
tegrable temporal decay for several damping and forcing terms, when viewed in
Lagrangian coordinates. As opposed to our earlier work [3], these pointwise esti-
mates for (W, Z, A) do not close by themselves, as there is a loss of a V derivative
when the equations are analyzed in L°°. This difficulty is overcome by using the
energy structure of the 3D compressible Euler system, which translates into a fa-
vorable H* estimate for the self-similar variables (U, S), for k sufficiently large
(e.g., k > 18 is sufficient).

Coupled to the (W, Z, A) evolution we have a nonlinear system of 10 ODEs
which describe the evolution of our 10 dynamic modulation variables «, t, na, n3,
€1, &2, E3, 22, P23, P33, whose role is to dynamically enforce constraints for W,
VW, and V2W at y = 0; cf. (5.1).

For all s < o0, or equivalently r < Tk, the above-described transformations are
explicitly invertible. Therefore, our main result, Theorem is a direct conse-
quence of Theorem [3.4] which establishes the global-in-self-similar-time stability
of the solution (W, Z, A), in a suitable topology near the blowup profile (W, 0,0),
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along with the stability of the 10 ODEs for the modulation parameters. In turn,
this is achieved by a standard bootstrap argument: fix an initial datum with certain
quantitative properties; then postulate that these properties worsen by a factor of at
most K for some sufficiently large constant K; to conclude the proof, we a poste-
riori show that in fact the solutions’ quantitative properties worsen by a factor of at
most K /2. Invoking local well-posedness of smooth solutions [25]] and continuity-
in-time, we then close the bootstrap argument, yielding global-in-time solutions
bounded by K /2.

The global existence of solutions (W, Z, A) in self-similar variables, together
with the stability of the W, leads to a precise description of the blowup of a certain
directional derivative of w. For the dynamic modulations functions mentioned
above, the function 7(¢) converges to the blowup time 7%, the vector £ (¢) converges
to the blowup location £, and the normal vector N(¢, - ) converges to N as t — 7.
Moreover, we will show that

(N(1,62(1), §3(0)) - M)w(§ (1), 1) = €*0y, W(0, 5)

— —00 ast — Tx.

(1.5)

- __1
(@)t
Thus, it is only the derivative of w in the N direction that blows up as ¢t — 7,
while the tangential directional derivatives (T2 (¢, £2(¢), £3(¢)) - Vi)w(£(¢),¢) and
(T3(t,&(2). £3(2)) - V)w(E(?), t) remain uniformly bounded as t — T. Addi-
tionally, we prove that the directional derivative N(¢, £5(¢), £3(¢)) - Vx of z and a
remain uniformly bounded as ¢ — T,. Thus, shows that the wave profile
steepens along the N direction, leading to a single point shock at the space-time
location (£, Tx).

1.3 Modulation variables and the geometry of shock formation

The symmetries of the 3D Euler equations lead to dynamical instabilities in the
space-time vicinity of the shock, which are amplified when considering self-similar
variables [[15]]. Our analysis relies crucially on the size of this invariance group. We
recall that the 3D Euler equations are invariant under the 10-dimensional Lie group
of Galilean transformations consisting of rotations, translations, and rigid motions
of space-time, as well as the two-dimensional group of rescaling symmetries. Ex-
plicitly, given a time shift ty € R, a space shift xo € R3, a velocity shift (Galilean
boost) vg € R3, a rotation matrix R € SO(3), a hyperbolic scaling parameter
A € Ry, a temporal scaling parameter it € R4, and a solution (u, o) of the 3D
compressible Euler system (1.2), where as before 0 = (1/a)p®, the pair of func-
tions

1 R(x —x¢ —tv t—t
unew(xvt) = _RTM ( ( 0 0), 0) + v,
% A Ap

Fnen(X.0) 10 R(x —x¢9 —tvg) t—tp
new X? = - ’ ’
% A Ap
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also solve the 3D Euler system (1.2), and hence, these transformations define the
12-dimensional group of symmetries of the 3D Euler equations. For simplicity we
sacrifice 5 of 12 of these degrees of freedom: we fix a temporal rescaling since we
choose to prove that an initial slope of size (negative) !/s causes a blowup in time
e 4+ O(g?) (just as for the 1D Burgers equation); we discard the degree of freedom
provided by hyperbolic scaling since it is not necessary for our analysis to fix the
determinant of 9y, Vyz W to be constant in time; we also only utilize two of the three
degrees of freedom in the rotation matrix R € SO(3) since we choose a particular
basis for the plane orthogonal to the shock direction; lastly, we discard two Galilean
boosts as we do not need to modulate 4, (0, 5) to be constant in time. This leaves
us with a 7-dimensional group of symmetries which we use at the precise shock
location. Additionally, since in self-similar coordinates our blowup is modeled by
the shear flow in the x1-direction, using a quadratic-in-X shift function, we are also
able to modulate translational instabilities away from the shock in the directions
orthogonal to the shock.

A fundamental aspect of our analysis is to show that there is a correspondence
between the instabilities of the Euler solution and the symmetries discussed above.
Thus, in order to develop a theory of stable shock formation, it is of paramount
importance to be able to modulate away these instabilities. This idea was success-
fully used in [26H28]| in the context of the Schrédinger equation, and in [29] for the
nonlinear heat equation. We also note here recent applications of modulated self-
similar blowup techniques in fluid dynamics: [|11}|{12}{14]] for the Prandtl equations
and [7,/16}/17]] for the incompressible 3D Euler equation with axisymmetry.

In the aforementioned works, the role of the modulation variables is to en-
force certain orthogonality conditions which prohibit the self-similar dynamics
from evolving toward the unstable directions of a suitably defined weighted energy
space. Rather than enforcing orthogonality conditions, we shall instead employ a
generalization of the idea that we previously introduced in [3] in the setting of the
2D Euler equations with azimuthal symmetry, in which the modulation functions
are used to dynamically enforce pointwise constraints at precisely the blowup lo-
cation for a Riemann-type function W. For the 2D Euler equations with azimuthal
symmetry, we required only three modulation functions to enforce constraints on
W and its first two derivatives. In the 3D case considered herein, for which no
symmetry assumptions are imposed, the 7 remaining invariances of 3D Euler cor-
respond to 7 modulation functions «,7 € R, £ € R3, 7 € R2, whose role is to
enforce 7 pointwise constraints for a 3D Riemann-type function W(y, s) and its
first-order and second-order partial derivatives at y = 0. We describe the one-to-
one correspondence between symmetries and pointwise constraints at y = 0 as
follows:

e The amplitude of the Riemann variable W is modulated via the unknown
k (t) by a Galilean boost of the type (k(t), 0, 0), whose role is to enforce the
constraint W(0, s) = 0.
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The time-shift invariance of the equations is modulated via the unknown
7(t), which allows us to precisely compute the time at which the shock
occurs. This modulation function enforces the constraint 3; W(0, s) = —1.
The invariance of the equations under the remaining 2-dimensional or-
thogonal rotation symmetry group is modulated via the modulation vector
n(t) = (n2(t), n3(t)), allowing us to precisely compute the direction of
the shock and its orthogonal plane. This modulation vector enforces the
constraint 6), W(0,s) = 0.

The space-shift invariance of the equations is modulated via the vector
& (1), thereby allowing us to precisely compute the location of the shock.
Dynamically, the modulation vector £ enforces the constraint

31V, W(0,5) = 0.

The remaining three modulation functions

$22(0), h23(1), P33(t) € R,

which correspond to (x5, x3)-dependent spatial shifts, are used to enforce the con-
straint \V/yz W(0,s) = 0. Geometrically, these three functions modulate the second
fundamental form of the shock profile in the directions orthogonal to the shock
direction.

1.4 Outline

The remainder of the paper is structured as follows:

In Section 2| we describe the changes of variables that transform the Euler
system from its original form to its modulated self-similar version in
Riemann-type variables (2.28). Certain tedious aspects of this derivation
are postponed to Appendix [A.2. Herein, we also introduce the self-similar
Lagrangian flows used for the remainder of the paper; we define the self-
similar blowup profile W and collect its principal properties, and we record
the evolution equations for higher-order derivatives of the (W, Z, A) vari-
ables.

In Section 3} we state the assumptions on the initial datum in the original
space-time variabl

In Section we show how the dynamic constraints of W, VW, and VW
at (0, s) translate precisely into a system of 10 coupled nonlinear ODEs for
the time-dependent modulation parameters k', 7,1y, §; . ¢y, given by poly-
nomials and rational functions with coefficients obtained from the deriva-
tives of the functions (W, Z, A) evaluated at y = 0; cf. (5.40) and (5.41).
In Section [6] we improve the bootstrap assumptions and (4.1b) for
our dynamic modulation variables. The analysis in this section crucially
uses the explicit formulas derived earlier in Section [5]

In Section [/} we collect a number of technical estimates to be used later in
the proof. These include bounds for the y{-velocity components (gw, gz,
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gu) defined in (2.29), the y,-velocity components (hy, hz, hy) given by
(2.30), the (W, Z, A) forcing terms from (2.31), and also the forcing terms
arising in the evolution of W=w-W.

In Section |8, we close the bootstrap on the spatial support of our solu-
tions; cf. (4.4). Additionally, we prove a number of Lagrangian estimates
which are fundamental to our analysis in L°° or weighted L°° spaces for
the (W, Z, A) system. We single out Lemma [8.2] which proves that tra-
jectories of the (transport velocity of the) W evolution, which start a small
distance away from the origin, escape exponentially fast towards infinity.
Additionally, Lemma proves that the flows of the transport velocities
in the Z and U equations are swept towards infinity independently of their
starting point, and spend very little time near y = 0.

In Section @ we establish pointwise estimates on the self—smnlar specific
vorticity C and the scaled sound speed S. The bounds on C rely on the
structure of the equations satisfied by the geometric components { -N, é‘ -T2,
and { T3,

In Section we improve the bootstrap assumptions for Z and A stated
in (4.11) and (4.12). The most delicate argument required is for the bound
of 81 A; we note in Lemma [10.1 that this vector may be computed from
the specific vorticity vector, the sound speed, and quantities which were
already bounded in view of our bootstrap assumptions.

In Section we improve on the bootstrap assumptions for W and W,
cf. and (4.7a)-(@.9). This analysis takes advantage of the forcing
estimates established in Section [7|and the Lagrangian trajectory estimates
of Section [8]

In Section we give the proof of the Hk energy estimate stated earlier in
Proposition[4.3] As opposed to the analysis which precedes this section and
which relied on pointwise estimates for the (W, Z, A) system, for the en-
ergetic arguments presented here, it is convenient to work directly with the
self-similar velocity variable U and the scaled sound speed S, whose evo-
lution is given by (2.38) and whose derivatives satisfy (12.3). It is here that
the good energy structure of the Euler system is fundamental. In our proof,
we use a weighted Sobolev norm to account for binomial coefficients, and
appeal to some interpolation inequalities collected in Appendix [A.3]

In Section[I3] we use the above established bootstrap estimates to conclude
the proofs of Theorem and as a consequence of Theorem [3.1] Herein,
we provide the definition of the blowup time and location, establish the
Holder !/3 regularity of the solution at the first singular time, and show
that the vorticity is nontrivial at the shock. Moreover, we establish conver-
gence to an asymptotic profile, proving that limg_.eo W(y,s) = Wy (y)
for all fixed y, whereW,, denotes a stable stationary solution of the self-
similar 3D Burgers equation. The 10-dimensional family of such solutions,
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parametrized by a symmetric 3-tensor <7, is constructed in Proposition[A.T
of Appendix [A.T. Additionally, we give a detailed proof of the statement
that the set of initial conditions for which Theorem 3.1 holds contains an
open neighborhood in the H ® topology, as claimed in Theorem

2 Self-Similar Shock Formation

Prior to stating the main theorem (cf. Theorem below), we describe how
starting from the 3D Euler equations for the unknowns (u, p), which are func-
tions of the spatial variable x € R and of the time variable t € / C R, we arrive at
the equations for the modulated self-similar Riemann variables (W, Z, A,), which
are functions of y € R3 and s € [~loge, 0o). This change of variables is per-
formed in the following three subsections, with some of the computational details
provided in Appendix [A.2!

2.1 A time-dependent coordinate system

In this section we switch coordinates, from the original space variable x to a new
space variable X, which is obtained from a rigid body rotation and a translation. It
is convenient for our subsequent analysis to perform and -dependent rescaling of
time, by letting

(2.1) te> M=y

Throughout the rest of the paper we abuse notation and denote the time variable
defined in still by z.

In order to align our coordinate system with the orientation of the developing
shock, we introduce a time-dependent unit normal Vecto

n=n(t) = (n1(t),n2(t),n3(t)) = (n1(2).7(1)),
with 712 = |n2|? + |n3|?> < 1,sothatny = /1 —n3 —n% = /1 —|n|?is close

to 1. Associated with these parameters we introduce the skew-symmetric matrix R
whose first row is the vector (0, —n,, —n3), first column is (0, 725, n3), and has 0
entries otherwise. In terms of R we define the rotation matrix

2.2) R=R(t)=1d+ R(t) + L= "D g2y
ler x n(1)]?
whose purpose is to rotate the unit vector ey onto the vector n(f). Since R €
SO(3), we have that the vectors {R(t)e1, R(t)ea, R(t)es} form a time-dependent
orthonormal basis for R3, and for convenience we sometimes write &; = Re; for
i € {1,2,3}. Geometrically, the vectors {e3, €3} span the plane orthogonal to the
shock direction 7, and we will for ease of notation denote n = €.

2Frequently we will use the notation 7 to denote the last two coordinates of a vector n =
(n1,n2,n3),ie.,n = (na,n3).
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It is convenient at this stage to record the formula for the time derivative of R(¢).
One may verify that

(2.3) R(t) = na(ORP (1) + 3 (1) R (1)

where the matrices R and R® are defined explicitly in (A.14) and (A.15). For
compactness of notation it is convenient to define the skew-symmetric matrix Q =
RT R, written out in components as

Q4 0y = R Ry = 1aRPRy; + 13RD Ry = 1,0P 111308

where the skew-symmetric matrices Q® and Q@) are stated explicitly in (A.16)

and (A.17), respectively.

In addition to the vector 72(¢), which determines the rotation matrix R(t), we
also define a time-dependent shift vector

E=E0) = (), 50, 60) = E1(0).£0)).

The point £(¢) € R3 dynamically tracks the location of the developing shock.
In terms of R(¢) and £(¢) we introduce the new position variable

(2.5) = RT(Ox-§0)
and the rotated velocity and rescaled sound speed as
(2.6) 0@ = RT(ux,1), && 1) =o0(x,1).

From (2.5) and (2.6), after a short computation detailed in Appendix [A.2 below,
we obtain that the Euler equations (A.18) are written as

(2.72) 1399, — Qi + (T + i) - Vi)il + a6 V5o = 0,
(2.7b) 129,65 + ((T + i) - V5)G + aFdivgil = 0,
where

3%, 1) := 0% — RTE,
the matrix O is given by (2.4), and the matrix R(r) and vector £(r) are yet to be

determined. »
Similarly, defining the rotated specific vorticity vector ¢ by

2.8) EE.1) = RT ()¢ (x.0),
we have that Z is a solution of
(2.9) ey, ¢ — 00+ (@ +1)-VR) ¢ — (C- VR)ii = 0.

Deriving (2.9) from (1.3) fundamentally uses that O is skew-symmetric.

Remark 2.1 (Notation). It will be convenient to denote the last two components
of a three-component vector v simply as v. For instance, the gradient operator
may be written as V = (91, d2,3d3) = (91, \V/) and the velocity vector as i =
(1, Un,u3) = (Uy, ﬁ) Moreover, for a 3 x 3 matrix R, we will denote by R the
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matrix whose first column is set to 0. We will also use the Einstein summation
convention, in which repeated Latin indices are summed from 1 to 3, and repeated
Greek indices are summed from 2 to 3. We shall denote a partial derivative 9%, F
by F,; and 0%, will be denoted simply by F,,. We note that the -,; derivative
notation shall always denote a derivative with respect to X.

2.2 Coordinates adapted to the shock

We shall next introduce one further coordinate transformation that will allow
us to modulate X-dependent shifts, and simultaneously parametrize the steepening
shock front by a quadratic profile. Specifically, coordinates X will be transformed
to new coordinates x, so that with respect to x, the local parabolic geometry near
the steepening shock is flattened. The new coordinate satisfies X = X.

In order to understand the geometry of the shock, we define a time-dependent
parametrized surface over the X, X3-plane by

(2.10) (f(X2,X3.1),X2,X3)

where the function f:R? x [—5.T%) — IR? is a spatially quadratic modulation
function defined as

@11) fED =360, (X5,

The coefficients ¢y, (t) are symmetric with respect to the indices v and y, and their
time evolution plays a crucial role in our proof. A derivative with respect to t is
denoted as as

(2.12) fG 1) = 1duy (T

Associated to the parametrized surface (2.10), we define the unit-length tangent
vectors

2 _ (1, (f.2)? —fiafoa 3 _ (fiza =fiafi (f3)*
@13) T = (LN Skl T (L k- ).

and the unit-length normal vector

(2.14) N=J""(0~f2.~f3).
where
2 2,1

J=0+ | 27+ 13092
It is easy to verify that (N, T2, T3) form an orthonormal basis and that N x T? = T3
and N x T3 = —T2. With respect to the parametrized quadratic surface ( ():5), ):5),
the second fundamental form is given by the 2-tensor J_lqﬁv,,(t), and hence the
modulation functions ¢, () are dynamically measuring the curvature of the steep-
ening shock front.

Using the function f (X, X3,?) we now introduce a new transformation that we
call the sheep shear transform. The new space coordinate x is defined as

(2.15) X1 =X1 — f(X2.X3,1), X2 =X2, X3=X3,
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so that the surface defined in (2.10) is now flattened. Note that we are only mod-
ifying the X1-coordinate, and since N, J, T are independent of X1, these functions
are not affected by the sheep shear transform. We write f(X,¢) instead of f (5vc’ 1)
and the similar notation overload is used for N, J, and T.

In terms of this new space variable x, the velocity field and the rescaled sound
speed are redefined as

(2.16a) wu(x,t) = u(x,t) = (x1 + f(x2,x3.1), X2, x3,1),
(2.16b) G(x,t) = 6(X, 1) = 0(x1 + f(x2.x3.1). X2, X3,1).

Before stating the equations obeyed by 1 and &, which involve many «-dependent
parameters, for the sake of brevity, we introduce the notation

Q17)  pr=Bi(e) = 5. B2 =Pa@) = {72, B3 =Ba(e) = %5,

where B; = B;i(«) are fixed parameters of our problem. Note that for « > 0 (i.e.,
y > 1) we have 0 < 81, B2, B3 < L.
With the notation introduced in (2.16) and (2.1]), the system (2.7) becomes

(2.18a) atu—2,81Qu—|—2ﬂ1( 55, HJv- N + Jiz - N) 311t
+ 281 (vy + uv)avu +2B36(IN3;16 + 87V9,6) = 0,
(2.18b) 3,6 +2B1(— 2,9 +Jv N+ Jit - N)3 (G + 281 (vy + 1y)0,5
+ 2836 (312 - NJ + dy1i,) =0,
where in analogy to (2.16) we have denoted
(2.19) v(x,t) =0(X,t) =v(x1 + f(x2,x3,1), X2, X3,1).

In particular, note that v; (x, ) = Qi1 (x1 + f(X.1)) + Qivxy — Rjiéj. Similarly,
we define the sheared version of the rotated specific vorticity vector by

(2.20) {(x.1) = TE. 1) = L1 + f(x2.x3.1), X2, %3,1),

so that the equation (2.9) becomes

8,0 — 28108 + 281 (— Zﬂ + v N 8- N)OLE + 281 (vy + 11,)0, ¢
—2B1IN - 011 — 218,011 = 0.

(2.21)

2.3 Riemann variables adapted to the shock geometry

The Euler system (2.18) has a surprising geometric structure which is discov-
ered by introducing Riemann-type variables. For this purpose, we switch from the
unknowns (i, &) to the Riemann variables (w, z, @) defined by

o

(2.22) w=u-N+6, z=u-N—6, a,=u-T",
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so that

(2.23) -N=21w+z2), &=3w-2).

The Euler sytem (2.18) can be written in terms of the new variables (w, z, a2, az)
as

drw + (2,81(—% +Jv-N) +Jw + ﬂsz) 1w
+ (2,31vu + wNy, — B2zN,, + 2,31aVT/‘i) dw
= —2B367T),9,ay + 2814y TYN; + 281 0ija, THN;
(2.24a)
+ 281 (v + 1NNy +ay T ) ay TIN; o — 2836 (ay T}, + 1 - NNy ).
Bz + (261(= 55 +Jv-N) + Bodw + Jz) iz
+ (2B1v + B2wNy + ZNy +2B1a,T)) B,z
= 2B36T},8pay + 2B1ayTYN; + 281044, TIN;
(2.24b)
+ 281 (v + 1NNy +ay T ) ay TIN; o + 2836 (ay Ty, + 10 - NNy ).
By + (2B1(— 55 + 9 N) + Brdw + BiJz) dray
= —2836T,,0,6 + 281 (1 -NN; + @, T} ) T} + 281 045 (@2 - NN; + a, T))TY
(2.24c)
+ B1 (v + 1 - NNy, +2a, T) ) (it - NN; +a, T))T] .

At this stage we comment on the temporal transformation (2.1)): its purpose is to
ensure that the coefficient of wdw in (2.24a), when evaluated at X = 0, is equal
to 1, in analogy to the 1D Burgers equation.

2.4 Modulated self-similar variables

In order to study the formation of shocks in the Riemann form of the Euler
equations (2.24), we introduce the following (modulated) self-similar variables:

(2.25a) s =s(t) = —log(z(t) — 1),
X1 3s
2.25b = X1,l) = ———— = Xx1€ 2,
( ) y1 = y1(x1,1) O 1) 1
(2.25¢) y; = yj(x;.t) S Xje% for j € {2,3}.

IGOENYE
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Note the different scaling of the first component y; versus the vector of the second
and third components y. We have the following useful identities:

—s d .
T—t=e" T = (-1,

2 3(1—1
ey y1 = €2, 3y = 2Dy 08,

ax,,yv =e28yy Iyy = l%fyves-

2.5 Euler equations in modulated self-similar variables

Using the self-similar variables y and s, we rewrite the functions w, z, and a,
defined in (2.22) as

(2.26a) w(x,t) = e 2 W(y,s) + x(t),
(2.26b) z(x,t) = Z(y,s),
(2.26¢) ay(x,1) = Av(y,s),

where x(f) is a modulation function whose dynamics shall be given below. We
also change the function v defined in (2.19) to self-similar coordinates by letting
v(x,t) = V(y,s), so that

. __3s _ _8 . .
227)  Vi(y.s) = Qi 2 yi + ¢ dopyvyn) + €72 Qivyy — Rjikj.

Next, we derive the system of equations obeyed by W, Z, and A. We introduce
the notation

Br = B:(t) = 1_;1@

With the self-similar change of coordinates (2.25)—(2.26), the Euler system (2.24)
becomes

(2.28a)
@s = HW + (gw + 331) 0 W + (hfy + 3yu) duW = Fiy —e 2 ek

(2.28b)  AZ + (gz +3y1) NZ + (hy + Lyu)0.Z = Fyz,

(2.28¢)  3sAy + (gu + 3y1) 14w + (By; + Lyu) 9u Ay = Fav.

where we have introduced the notation

(2.292) gw = BoIW + Bre2(—f +J(k + B2Z +2B1V -N))

= BJW + Gy,
(2.29b) gz = BaBIW + Bre2 (—f +J(Bak + Z +2B1V -N))

= B2BcdW + Gz,
229)  gu = P1BIW + Bee? (—f +J(Bik + B1Z + 2B1V -N))

= ﬂl:BIJW + GU7
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for the terms in the y; transport terms,

(2.30a) hy = Bee N W

+ Bee™2 (2B1Vy + Ny — BaNu Z2B1 4, TV,
(2.30b) Wy = B:Bre *N,W

+ Bre™2 (2B1Vy + BaNuk + NuZ + 2814, T7)
(2.30c) hy; = BeBre "N W

+ Bee™2 21V + BiNuk + BINLZ + 2B14,TY)
for the terms in the y transport terms, and the forcing terms are written as
Fw = —2B38:5T), 0,4y + 2B1Bre 2 A,TIN; + 2ﬂ1ﬂr€_%QijAvT;Ni
+2B1Bre ™2 (Ve + NuU -N + A,T8) A, T/N; .
(231a)  —2B3fre 28 (AyT),, + U -NNy ;1)
Fz = 2B3fe 28T, 0, Ay + 281 Bre ™ AyTING + 281 Bre™ Oy A, TIN;
+2B1Bre™° (Ve + NuU -N+ AT, ) Ay T/N;
(231b)  +2B3Bre°S (AT}, ,, + U -NNy )
Fay = —2B3Pre 2STL9,S + 2B1Bre™ (U -NN; + 4, T) T?
+ 2818267 Qi (U -NNj + A, T)TY
(231c)  +2B1Bre™ (Vu+ U NNy + A, TH) (U -NN; + 4, 7)) T7 .

Here and throughout the paper we are using the notation ¢ ;, = dx,¢ and 9,9 =

dy, @

In (2.31) we have also used the self-similar variants of i and & defined by
(2.32) W(x.0)=U(y,s). and  G(x.0) =S(y.5),
so that

(2.33) U-N=%(K+e_%W+Z) and S:%(K+e_%W—Z).

From (2.18), (2.25), (2.32), (2.32) we deduce that (U, §) are solutions of
dsUi —2B1Bre* QijU; + (gu + 3y1)0y, Ui + (b} + 13,)uUj

(2.34a) +2B:B3IN;e2 501 S + 2B: B35 e"250,8 =0,
35S + (gu + 3y1)1S + (hy + 33,)0,S
(2.34b) + 2B:B3e2 831U -NJ + 2B, B3¢ 250,U, = 0.

Finally, we defined the self-similar variant of the specific vorticity via

(2.35) tx.t) = Q. 5).
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2.6 Transport velocities, vorticity components, and Lagrangian flows
Upon writing the 3D transport velocities in (2.28) as the vector fields

@36 = (w30 bl + ).
3 Yr=(ez Il da + d),
@369 Ho = (o A+ dva k= do)

the system (2.28) may be written as

IsW —3IW + (Vw - VIW = Fy,
asAv + (ni/U ' V)Av = Fyv,

where the gradient is taken with respect to the y-variable. The system (2.34) takes
the form

(2.38a) 3sUi + Yy - VUi + 2B:B3S (IN;e2d,, S + 67%e723,, S)
=2B:P1e ¥ 0;; U;
(2.38b) 35S + (Y - V)S + 2B:B3S(e28y, U -NJ + €723, U,) = 0.

Having defined the transport velocities, we now define associated Lagrangian
flows by

(2393) BSCDW(.Y’ S) = %W(q)W(y’ S)v S), qDW(yv SO) = y’
(2.39b) asq)Z(y’S) = /'I/Z(CDZ(va)’S)’ cDZ(vaO) =Y,
(2.39¢) 0s Py (y.5) = YVu(Pu(y.s).s), Pu(y,s0) =Y.

for sg > —loge. With @ denoting either @, ., or &, we shall denote trajec-
tories emanating from a point yg at time sg by

(2.40) OY0(s) = D(yo.5) with @(yo.50) = yo.

2.7 The globally self-similar solution of 3D Burgers
We recall (cf. [|6]) that

y1 1y 7\ 3 Y1 1 y? 7\3
241) W, (- =+ 2L Y PO el ,
( ) 1a(y1) 5 + 27 + 4 2 T 27 + 4

is the stable globally self-similar solution of the 1D Burgers equation. We define

1 1
e@ V) = - = :% s .
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Then, as done in two dimensions by Collot, Ghoul, and Masmoudi [12],

_ 1 3

W(y) = P Wia(#(¥)2y1)

(2.42) 2(¥) ? )

= —7 Wia(B(y2.y3)2y1) = W(y1,¥2,¥3)
B2(y2.¥3)

is an example of a stable self-similar solution to 3D Burgers equation
(2.43) —IW+ Gy +W)ouW + 1y, 0, W =0,

with an explicit representation given by (2.42). As will be explained in Section
[13.4, in order to establish the asymptotic profile for W(y, s), a solution to (2.28a)),
we shall construct the 10-dimensional family of stable self-similar solutions to 3D
Burgers of which (2.42) is one example.

Properties of W

We will make use of the fact that the Hessian matrix of d; W at the origin y = 0
is given by

B 6 0 0
(2.44) V2 W@O)y=|[0 2 0

00 2
and that the bounds

’

—1<hW =<0, 0<|VIWV]|<

W

hold. We introduce the weight function

6

’

(2.45) n(y) =1+y7 +

y
which has the property that 771/ 6 (and its derivatives) accurately captures the as-
ymptotic growth rate of W (and its derivatives) as |y| — oo. For the d{ W esti-
mate the Taylor series at the origin has to be analyzed more carefully, and for this

function we use the modified weight function
~ .12 -6
(2.46) i) =14y + 3"+ 5[

With this notation, we note that the function W satisfies the weighted L estimates

(2.47a) |76 W | <1, 07| <1, [V o

CRTON M PO N 1 2 NS

A

2
3

’
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Genericity condition
In view of (2.44), the matrix V23, W (0) is positive definite and satisfies the
genericity condition

(2.48) V23, W (0) > 0.

The condition (2.48) is equivalent to the nondegeneracy condition (15.2) described
by Christodoulou in [8], and so W is an example of a generic shock profile. In
particular, proposition 12 of Collot-Ghoul-Masmoudi [12] proves that the linear
operator obtained by linearizing the self-similar 2D Burgers equation about the 2D
version of W is spectrally stable.

2.8 Evolution of higher-order derivatives

Higher-order derivatives for the (W, Z, A)-system

We now record, for later usage, the equations obeyed by 9% appliedto W, Z, and
A, when |y| > 1. For a multi-index y € N2, we write y = (y1,7) = (y1, V2. ¥3).
Then, for |y| > 1, applying 97 to (2.28), we arrive at the differentiated system

(as + w + B¢ (1 + VIIVIZZ)Jalw) W
249%)  + (Y -V)PW = FY,
(2.49b) (9 + IV o BBy W) Z + (V2 - V) Z = FY,
(249¢) (95 + LEREL | B89 00 W) Ay + (Vg - V) 7 Ay = ET,

where the forcing terms are given by

FY = 8" Fy
= Y D@ PGwoidPw + 0" Phi0,0F W)
0<B<y
—Belpi=z Y, (PP w
1=|8|=lyl-2
B=y
(2.50) Bl Y. (NI FPuwadfw
|Bl=ly|-1

B=<y.B1=n1
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for the d¥ W evolution, and by

FY =0 Fz— Y (5076201082 + v P hiyo,0P Z)

0<B<y
_13213‘51|y|22 Z (E)By_ﬂ(JW)BlaﬁZ
0<|B|<|y|-2
B=y
(2.51a) — BB ) (g)ay—ﬂ(JW)alaﬂz
1B]=|y|-1
BS%B1=)’1
EQ = Eg— Y ()07 PGuond® 4, + 07 Pilka,oP a,)
0<B<y
BBl D (5 PUw)adf 4,
0<|B|<lyl-2
B=<y
(2.51b) BB > (g)ay—ﬁ(JW)alaﬁAv
1B]=|y|-1
ﬂSyvﬂl:yl

for the ¥ Z and 97 A, evolutions. In (2.49) we have extracted only the leading-
order damping terms on the left side of the equations. Indeed, note that the forcing
terms defined above contain terms which are proportional to ¥ (W, Z, A). How-
ever, because the factors in front of these terms decay exponentially in s, we have
included them in the force.

Higher-order derivatives for w
Additionally, it is useful to consider the evolution of

(2.52) W(y.s) = W(y.s)— W(y)
and its derivatives. For the case of no derivatives, we have

W + (BJO1 W — DWW + (Vi - V)W

(2.53) R _ _ _ .
= Fy — e 2Bck + (Bed — DW — Gw)o1 W — hiy, 8, W =: Fyy.

For |y| > 1, applying 3% to (2.53), we obtain that the function W obeys

(95 + 2220l 4 gy (4,7 4 0 W)Y W

(2.54) ~ 0
+ Pw -V)I'W = Fy)
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where the forcing terms F, IEI}/ ) are given by

FY = o Fy
— Y (D@ Pewaidf W + 0" Phi0,0F W
0=g<y

+ B P U3 )P W)

—Belp=2 Y, (I PP W
1<|B|<ly|-2
B=y
(2.55) —B: D (g)ay—ﬂ(JW)alaﬂﬁ/.

|BI=]y|—1
B=<y.B1=n

3 Main Results

3.1 Data in physical variables

We set the initial time to be 79 = —&, which corresponds to tg = —%8, and

we first define the initial conditions for the modulation variables. We define
ko :=k(—¢g), 19:=1(—8) =0, & :=&(—¢)=0,

3.1 v .

G.D nog:=n(—e) =0, ¢o:= ¢(—e),
where

(3.2) ko> 1, |po| <e.

We note that «¢ is a given parameter of the problem, while ¢¢ will be chosen
suitably in terms of the initial datum via (3.24).
Next, we define the initial value for the function f as

v 1
Jo(x) = §¢0vuxvxua

and according to (2.13) and (2.14), we define the orthonormal basis (Ng, T%, Tg)
by

_ 1
(3.3a) No = Jg (1, = fos —fo3),  Jo = (1+ | fo,* + 1 fos?)2,

2 Jfo. (fo,)?  —fo.,f0.1
To = (J_OZ I- JO(J02+1)’ JO(J§+1;)’
3 (fo; —Jfo,fo. (fo.5)?
(3.3b) To = ( Jo JoWorD * LT Jo(Jozrl))'

As a consequence of (3.2)) and (3.3), we see that

(3.4 INo—e1] <&, [Tog—ev] <e
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From (3.1), 2.5), and (2.15), we have that at t = —g, the sheared variable x is
given by
(3.5) x1 =x1— fo(X), X2 =X, X3=Xs.

The remaining initial conditions are for the velocity field and the density (which
yields the rescaled sound speed):

ug(x) ;= u(x,—¢), po(x):= p(x,—¢), 0p:= %.

According to (2.16) and (2.22) (see also (A.20)) we introduce the initial datum for
our Riemann-type variables in both the x- and the x-variables:

(3.6a) Wo(x) := uo(x) - No(X) + 0o (x) =: wo(x),
(3.6b) Zo(x) 1= up(x) - No(X) — 00(x) =: zo(x),
(3.6¢) doy(x) 1= up(x) - T"(X) =: agy(x).

It is more convenient (and equivalent in view of (3.6)) to state the initial datum
assumptions in terms of the functions (wy, Zo, do), instead of the standard variables
ug and oyg.

First, we assume that the support of the initial data (wo — k¢, Zo, do), defined in
(3.6), is contained in the set 27g, given by
1

(3.7 Zo = {|x1| < %8%, )V(‘ < 85}.

This condition is equivalent to requiring that ug - Ng — %0, 0o — X2 and ug - TV
are compactly supported in 27g. In view of the transformation and the bound
(3.2), the functions of x defined in (3.6), namely (wg, Zo, @), have spatial support
contained in the set {|xq| < %81/2 + &, %] < €0}  {|x1] < €'/2,|%| < /6.
This larger set corresponds to the set 2 (0) (defined in (4.4))) under the transfor-
mation (2.25).

The function Wy (x) is chosen such that

(3.8a) the minimum (negative) slope of wq occurs in the e -direction,
(3.8b) dx, Wo attains its global minimum at x = 0,

and

3.9) Vi dx, Wo(0) = 0,

and moreover that
(3.10) Wo(0) = ko, 8, Wo(0) = -1 Viio(0) = 0.

Additionally we shall require that wq satisfies a number of weighted estimates,
and that it is close to a rescaled version of W. For this purpose, we introduce the
rescaled blowup profile with respect to the coordinate x, defined by

(3.11) We(x) := 8%W(8_%x1,8_%)?),



24 T. BUCKMASTER, S. SHKOLLER, AND V. VICOL

and we set
_ ~ _ “ v _ 1~
Wo(x) := Wo(X) — We(x1 — fo(X),X) = wo(x) — We(x) = e2W(y, —loge) + ko.

We assume that for x such that ‘ (e73/2x,,e71/2%) ‘ < 26710 , the following bounds
hold:

(3.12a) |[Wo(x) — ko| < %(8 +x] + 6)%’
(3.12b) |05, Wo(x)| < 1i( 3+ 5%
(3.12¢) Niwox)| < etz

Furthermore, for x such that ‘(8_ X1,8_1/ 2)2)‘ < 1, we assume the fourth-
derivative estimates

(3.13) ‘ang(x)‘ 28§—§(3J/1+)/2+J/2) for |y| = 4,
while at x = 0, we assume that
(3.14) YTo(0)| < 162N for |y| = 3.

_3 1. - L
For x € 2°¢ such that ‘(8 2X1, € 2X)‘ > % 10 we assume that

1 1
(3.15a) |To(x) — ko| < (1 +e10)(e* +x} + |X|°)®,
~ L _1
(3.15b) |05, Wo(0)| < (1 +e72)(e* + x2 + [3]°) 73,
(3.15¢) Vo (x)| < 2 + &73.
Finally, we assume that for all x € 27¢, the second derivatives of wy satisfy
~ _3 v 16y —%
(3.16a) ‘8%1 wo(x)‘ <e 2(83 + x3 + ‘x‘ ) 3.
N~ _L o 6 _l
(3.16b) |0, Vo (x)| < 2e72(e + x7 +|X]") 2,
. _1
(3.16¢) V2o (x)| < (e +x2 + [x[°) 7.
and moreover at X = 0 we assume that
(3.17) IV2o(0)| < 1.
For the initial conditions of Z¢ and @y we assume that
~ ~ v . 1
a1) Zo)| <& 19Zo® =1, [WZox)| = 1e2,
) ~ _3 v _1 ¥ 5
9220001 <673, (3, MZo()| < 272 [VPZo()| < 1,
and’

~ ~ Y o~ 1 ¥
(19 @Ml <e @M <1 [Rao®|< et V2o < 1.

3 The bound for dx,ap in (3.19) can be replaced by a bound that depends on kg, thus permitting
arbitrarily a large initial vorticity to be specified.
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For the initial specific vorticity, we assume that

(3.20) |t e < 1.

Lastly, for the Sobolev norm of the initial condition we assume that for a fixed &
with k£ > 18 we have

CETV FAR A e R T el
lyl=k

We note cf. that the map x = x — (fop(X), 0, 0) is an O'(e) perturbation of the
identity map, and that for any n > 0, by and the support property we
have || follc» < | follc2 < 2e. Additionally, from the previous assumptions we
have [|Wollp2(274) + I1ZollL2(27) + ld0llL2¢27) < £z Thus, by appealing to the
definition , the Fad di Bruno formula, and Sobolev interpolation, we deduce
from (3.21) that

622 Y lowolfa + [9zol}s + 9o} = D
lv|=k

holds, upon taking ¢ to be sufficiently small in terms of k.
At this stage it is convenient to define the coefficients ¢g,,, from (3.1). From the

change of variables, (3.5), and the fact that v fo(0) = 0, we have that
(3.23) O, Ox,, wo(0) = 0x, 0x,, Wo(0) + dx; wo(0)Povy.

In order that our initial data at the blowup location behave just as the blowup profile

W (in self-similar coordinates) at the blowup point, we shall insist that ﬁxz we(0) = 0.
From the identity (3.23) and using the second equality in (3.10), we achieve this
by setting

(3.24) $ovy = €0, dx, Wo(0).

Hence, the condition (3.17) automatically implies (3.2).

We note that in view of (3.6), (3.7), (3.15a), (3.18), the fact that |W(y)| <
n/6(y), which implies |, (x)| < (s + x2 + |¥|°)1/€, and the identity 2 p% (x) =
ko + (Wo(X) — ko) — Zo(x), we have that

20%(x) > kg — (1 +&T)(e + x2 + |¥]*)6 —& > o — (1 +£7)(3e)8 —¢
> Ko — 38é

for all x € R3; that is, upon taking ¢ to be sufficiently small in terms of ko, we
have that the initial density is strictly positive.
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3.2 Statement of the main theorem in physical variables

THEOREM 3.1 (Formation of shocks for Euler). Lety > 1, 0 = VT_l There exist

a sufficiently large kg = ko(a) > 1 and a sufficiently small ¢ = e(a, ko) € (0, 1)

such that the following holds:

Assumptions on the initial data. Let ug(x) and po(x) denote the initial data for
the Euler equations (1.1), and let 0o = p§ /o and wo = curl, ug. The modulation
functions have initial conditions given by (3.1), where ¢q is given by (3.24). Define
(No, T%, T(3)) by (3.3) and (Wy,Zo, dov) by (3.6). Assume that (Wy — ko, Zo. do) are
supported in the set 2 defined in (3.7), and that ug € H* and py € H for a
fixed k > 18. Furthermore, suppose that the functions Wy, Zo, do, and wy satisfy
the conditions (3.2)—(3.21).

Shock formation for the 3d Euler equations. There exists a time Ty = O(&?),
unique modulation functions k,t,E,n,¢ € CY(—e, Tx)) that solve (5.40) and
(5.41), and a unique solution (u, p) € C([—¢, Tx); HX) N C1([—e, T); H*Y) 10
(1.1)) that blows up in an asymptotically self-similar fashion at time Ty at a single
point £, € R3. By letting (N(1), T2(¢), T3(¢)) be defined in terms of the modulation
functions by (2.13) and (2.14), with the new space variable X = X(t) defined by
2.5), and with (i, &) given by [2.6), where o0 = %, we let
(3.25) W=u-N+6, Z=u-N—-o, a,=u-T",
as functions of (X,t). Then, the following results hold.:

o The blowup time Ty = O(s?) and the blowup location &« = O(g) are explicitly
computable, with Ty defined by the condition f_T;‘(l — (t))dt = ¢ and with
the blowup location given by &, = lim;_1, £(t). The amplitude modulation
function satisfies |kx — ko| = O(3/%) where Ky = lim;_s, k(7).

o Foreacht € [—e, Ty), we have [N(X, 1) — No()| + [T (X, 1) = T5()| = O(e).

o We have supye—e, 7 [TN= 4o Lo+ [T | oo+ [5— So | oo oo < 1.

o There holds

lin; N-Vzw((t),t) = —co and
t—1 %

2
Ty —t

< |IN- V2w -t o <

ast — Ty.

e At the time of blowup, W(-, Tx) has a cusp-type singularity with C '3 Hélder
regularity.

o We have that only the dy derivative of i - N and p blow up, while the other
first-order derivatives remain uniformly bounded:

(3.262) lim N- Ve -N)(E().1) = lim N-VEB((0).1) = —oo.
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sup I T" - VEp(-, 1)L + IT" - VEE(-, 1)l Lo
te[—e,Tx)

(3.26b) +IN-Vz@ - T (-, )|l L~ < L.

o Let 3;X(x,t) = u(X(x,t),t) with X(x,—¢) = x so that X(x,t) is the La-
grangian flow. Then there exists constants c1, ¢z such that c1 < |V X(x,8)| < ¢2
forallt € [—e, Ty).

o The density remains uniformly bounded from below and satisfies
1B%(-. ) — Lkl <@g forall t € [—e, Tyl.

e The vorticity satisfies |w(-,1)poo| < Co|lw(-,—¢&)||po forall t € [—&, T] for
a universal constant Cy, and if |w(-, —¢€)| > co > 0 on the set B(0,2&"), then
at the blowup location &, there is nontrivial vorticity, and moreover

(-, T)l = & on the set B(0,&7*).

We note that the support property on the initial data as well as the condi-
tions (3.8)—(3.10) preclude the set of initial data satisfying the hypothesis of Theo-
rem [3.1{from containing a nontrivial open set in the H k topology. However, using
the symmetries of the Euler equations, these conditions may be relaxed in order to
prove the following:

THEOREM 3.2 (Open set of initial conditions). Let F denote the set of initial
data satisfying the hypothesis of Theorem There exists an open neighborhood
of F in the H* topology, denoted by %, such that for any initial data to the Euler
equations taken from F, the conclusions of Theorem hold.

The proofs of Theorems [3.1] and [3.2] are given in Section We remark that
Theorem [3.1]is a direct consequence of Theorem stated below, which estab-
lishes the stability of the self-similar profile W under a suitable open set of pertur-
bations.

3.3 Data in self-similar variables

The initial datum assumptions in the x-variable made in Section imply cer-
tain properties of the initial datum in the self-similar coordinates y. In this subsec-
tion, we provide a list of these properties.

First, we see that at the initial self-similar time, which is given as s = —loge
since by (3.1) we have 7y = 0, the self-similar variable y is defined by (2.25) as
(3.27) y1 = 8_%)61 — 2 (x1 — fo(X)) and y = £72% = g2

Second, we use (2.26), (3.1), and (3.6)) to define (W -, —loge), Z(-, —loge) and
Ay (-, —loge) as

W(y,—loge) = &2 (Wo(x) — ko), Z(y,—loge) = Zo(x),

(3.28) -
Ay(y, —loge) = apy(x).
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Next, from (3.2), (3.5), and the fact that (W — «o, Zo, do) are supported in the
set 27¢ defined in (3.7), we deduce that the initial data for (W, Z, A) is supported
in the set 29, given by

(3:29) Lo ={nl<s ' |5 <3}

The factor of % present in (3.7) allows us to absorb the shift of x; by fo(X).
Next, let us consider the behavior of W at y = 0, which corresponds to x = 0.
By (3.9), (3.10), (3.23), (3.24), and (3.28) we deduce that

(3.30a) W(0, —log )0, 1 W(0,—loge) = —1,
(3.30b) VIW(0,—loge) =0, V2W(0,—loge) = 0.

These constraints on W at y = 0 will be shown to persist throughout the self-
similar Euler evolution.

At this stage, we introduce a sufficiently large parameter M = M(«w, ko) > 1.
In terms of M and ¢, we define a small length scale £ and a large length scale .2
by

(3.31a) €= (logM)~>,
(3.31b) & =g T0.

Note that M is independent of ¢. The region |y| < £ denotes a Taylor series
region, where W is essentially dominated by its series expansion at y = 0, while
the annular region £ < |y| < % denotes a region where W and VW closely
resemble W and VIV _

For the initial datum of W = W — W given, in view of (3.28), by

~ — 1
W(y.—loge) = W(y,—loge) = W(y) = & 2 (Wo(x) — ko) ,
it follows from (3.12), along with (3.2), (3.5), (3.7), and (3.27) that for |y| < .&

we have

(3.32) 076 ()| W (y, —loge)| < &0
(3.32b) 3 ()]0 W (v, —loge)| < eTr
(3.32¢) VW (y,—loge)| < 12,

where we recall that n(y) = 1 + yl2 + ‘ y 6, and the partial derivatives are taken
with respect to the y-variable. Similarly, we have from (3.13), the chain rule, and
the fact that £ < 1, that for |y| < £,

(3.33) |87 W (y,—loge)| < &5 for|y| = 4,
while from (3.14) we deduce that at y = 0, we have
(3.34) |87 W (0,—loge)| < &3~ %7 for |y| = 3.
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For y in the region {|y| > Z} N Zy, from (3.15), (3.27), and (3.28), we deduce
that

(3.350) 16 )|W(y, —loge)| < 1+,
(3.35b) 17 () [ W(y. —loge)| < 1 + 72,
(3.35¢) [VW(y.—loge)| < 3.

while for the second derivatives of W, globally for all y € £, we obtain from
(3.16), (3.27), and (3.28) that

(3.362) 73[9 Wy, ~loge)| <1 foryy > land [y| =2,

(3.36b) 7% (n)|V2W(y. —loge)| < L.

Remark 3.3. A comment regarding the introduction of the parameter .Z is in order.
By (3.32) we know that W and VW closely track W and VW for all y such that
ly| < & = ¢ Y10 But the functions W and V¥ do not decay as |y| — o©
(we only have the bounds (2.47) available), and thus neither do W and V. At
first sight this may seem contradictory with the fact that (3.29) imposes that W is
supported in the set 2 (0). However, no contradiction ensues: we have chosen .
to be a sufficiently small power of ¢! exactly in order to leave enough distance
from the boundary of the set {y: |y| < £} to the boundary of the set 2 (0)¢, so
that W and VW have enough room to attain their compact support.

For the initial conditions of Z and A we deduce from (3.7), (3.18), (3.19), (3.27),
and (3.28) that

(3.37) |07 Z(y, —loge)| < %

g2 ify; > 1land|y| = 1,2,
e ify :0andb7‘ =0,1,2,

Nlw

e2 ify; =1land|py| =0,

3.38 3" A(y, —loge)| <
338 19740, ~loge)| = ifyy =0and |[y| =0,1,2.

For the initial specific vorticity in self-similar variables, we have that
(3.39) [QolLee < 1.
Lastly, for the Sobolev norm of the initial condition, we deduce from (3.22), (3.27),
and (3.28) that
(3.40)  ¢|[W(-,—log 8)||2-,k + | Z(-, —log 8)||2-,k + [ A(-. —loge) IIi-,k <e¢
forall k > 18.
3.4 Statement of the main theorem in self-similar variables
and asymptotic stability
THEOREM 3.4 (Stability and shock formation in self-similar variables). Lety > 1,

o = VT_l Let kg = ko(a) > 1 be sufficiently large. Consider the system of
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equations (2.28) for (W, Z, A). Suppose that at initial (self-similar) time s =
—loge, the initial data (Wo, Zo, Ao) = (W, Z, A)|s=—10g¢ are supported in the
set Xy, defined in (3.29), and satisfy the conditions (3.30)—(3.40). In addition, let
the modulation functions have initial conditions which satisfy (3.1)—(3.2).

Then, there exist a sufficiently large M = M(«a, ko) > |, a sufficiently small ¢ =
e(a, ko, M) € (0, 1), a unique global-in-time solution (W, Z, A) to (2.28), and a
unique solution (k,v,&,n,¢) € Cl([—e, Tx)) to (5.40) and (5.41). Moreover,
(W, Z., A) are supported in the time-dependent cylinder Z (s) defined in (4.4),
(W, Z, A) € C([-loge, +00); HX) N Cl([—1loge, +00); HKY) for k > 18, and
we have

W)+ N ZC ) + S IAC DI,
< A—ke—s—loga + (1 o e—S—lOgé‘)M4k
for a constant A = A(k) € (0, 1). The modulation functions (k,t,§,n, ¢) obey the

bounds in (4.1). The Riemann function W(y, s) remains close to the generic and
stable self-similar blowup profile W; upon defining the weight function n(y) =

1+ y? + ‘)7 6, we have that the perturbation W=W-W satisfies

1

(W (y,)| < elTne(y), [1W ()| <eq 30, [V (y.5)| <3,

1

forall |y| < &7 10 and s > —loge. Furthermore, 3¥ W(O,s) = 0forall|y| <2,
and the bounds {.8) and (4.9) hold. Additionally, W(y, s) satisfies the bounds

given in (4.6) and (4.16).
The limiting function Wo(y) = limg— 100 W(y, ) is a well-defined blowup
profile, with the following properties:

o W is a C® smooth solution to the self-similar 3D Burgers equation (1.4),

which satisfies the bounds (4.6) and (4.13b). .
o Wy () satisfies the same genericity condition as W given by (2.43).

o W, is uniquely determined by the 10 parameters:
o = lim 3*W(0,s) with |a| = 3.
§—>00
The amplitude of the functions Z and A remains O(g) for all s > —loge, while

foreach |y| <k, ¥ Z(-,s8) — 0and IV A(-,s5) —> O ass — +oo, and Z and A
satisfy the bounds (4.11) and (4.12).

The scaled sound speed S(v, s) in self-similar variables satisfies
ISC.5) =%, < % forall s> —loge,

and for a universal constant Cy, the specific vorticity Q(y, ) in self-similar vari-
ables satisfies

2 1Q0(0) I < (D (5), 9)> < ColQo(y0) |,
where ®;° is defined in (2.40).
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4 Bootstrap Assumptions

As discussed above, the proof of Theorem [3.4]consists of a bootstrap argument,
which we make precise in this section. For M sufficiently large, depending on «¢
and on «, and for ¢ sufficiently small, depending on M, kg, and &, we postulate
that the modulation functions are bounded as in (4.1}, that (W, Z, A) are supported

in the set given by ([@.4), that W satisfies (&.6), W obeys @.7)—@.9) and Z and A
are bounded as in (4.11) and (4.12), respectively. All these bounds have explicit
constants in them. Our goal in subsequent sections will be to show that the these
estimates in fact hold with strictly better prefactors, which in view of a continuation
argument yields the proof of Theorem 3.4

4.1 Dynamic variables

For the dynamic modulation variables, we assume that
1 2 1
Lko < k() < 20, [t(1)] < M&, [E(1)| < M 3¢,

(4.12) ()| < M2e2, 16| < M2,

k()] < M2e™3, i) < Me™. [§()] < M3,
(4.1b) ()] < M2e3, |§()] < M2,
for all —e < ¢t < T%. We note that thanks to the bootstrap assumptions (.1)
the map ¢ > s = —log(z(t) — t) defined in (2.25) is a bijection from [—e&, Tx)
to [—loge, 0o) (see also Section |13.1 for details), and thus it is always possible
to switch between the Eulerian time ¢ and the self-similar time s; this is done

implicitly throughout the paper. In particular, we note that (—e, T) is the maximal
time interval on which we have 7(¢) > .

From (2.4), (A.16)—(A.17), and the bootstrap assumptions (4.1), we directly

obtain that
(4.2) 10(6)| < 2M2e2

for all —e < t < T,. Moreover, we note that as a direct consequence of the 7
estimate in (4.1b), we have that

(4.3) 11— Bl = 2L <2Me™ < 2Me

since € can be made sufficiently small for all s > —loge.

4.2 Spatial support bootstrap

We now make the following bootstrap assumption that (W, Z, A) have support
in the s-dependent cylinder defined by

44 Z(s):={lyl < 2e2e35, 7] < 28%6%} forall s > —loge.
Recall from (2.45) and (2.46) the definition of the weight functions

v 16 ~ vi2
n(y) =1+4+y7+ 7" and 75(y) =n0)+ 5|
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Using these, for y € 2 (s), we have the estimate
(4.5) (y) <40ee® & i(y) < 4eved

for all y € R3, which allows us to convert temporal decay to spatial decay.

4.3 W bootstrap

We postulate the following derivative estimates on W

0¥ W(y,s)|
(1 +£320)55(y) if [y| = 0,
75 (3 iz + 215 yjzz ify = 1and 7| =0,
(4.6) <1 ify; = Oand |J| = 1,
M7 () if y1 > land |y| = 2,
Mn_é(y) if y1 =Oand‘)7‘ =2.

Next, we assume that the solution W(y, s) remains close to the self-similar profile
W (y) in the topology defined by the following bounds. For this purpose, it is
convenient to state bootstrap assumptions in terms of W, as defined in (2.52). For
ly| < &, we assume that

~ 1 1
(4.72) (W (y,s)| < etins(y),

~ 1 _ 1
(4.7b) 01 W (y.s)| <e2n73(y),
(4.7¢) VW (y.5)] < e,

where the parameter .Z is as defined in (3.31b). Furthermore, for |y| < £ we
assume

|87 W (v, )| < (log M)*eT0|y|*~ I 1 Met|y3-1]
(4.8) < 2(log M)*eTo 417! Iyl <3,
4.8b) |3 W (y.5)| < 10 (log M)V, vl =4,
while at y = 0, we assume that
(4.9) |87 W(0.5)| <et, |yl =3

forall s > —loge. In and (4.8b), the parameter £ is chosen as in (3.31a).
Note that with this choice of £, the bounds (7.25), (11.28), and (11.32) hold.

Remark 4.1. In the region |y| < %, the first three bounds stated in follow
directly from the properties of W stated in (2.47), and those of W in (4.7). The
bounds for W and VW are immediate. The estimate for d1 W is a bit more delicate
and uses the explicit bound 7~ /3(y) + '/12p=1/3(y) < 7713 (y/2).
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LEMMA 4.2 (Lower bound for Ja1 W).
(4.10) JO\W(y.s) = —1 and IO W(y,s)>—1 forally e R® s> —loge.

PROOF OF LEMMA .2l By the definition of J and the bootstrap assumption

and (4.4), we have
J2-1 1
J+1 J +1

Moreover, using (2.47) for the function d; W and for 91 W, we deduce that

min {1+ 01,1+ 0 W} > 1575 (3) = 558y

0<J—1= ———(($20€73y0)? + (P3ve 2p)?) <ee” |3 <.

for all y € R3. The last inequality follows from an explicit computation. To
conclude, we write

m1n{l—|—J81W1+J31W}>m1n{1+81W1+8 } [J—1]
1>
= 20045
thereby finishing the proof. |
4.4 Z and A bootstrap

We postulate the following derivative estimates on Z and A:

>0,

14yl 3

M 27728 ify; > 1land |y| = 1,2,
(4.11) 10V Z(y.5)| < 221l _ly . -

Me 2 e 2% ify; =0and|y|=0,1,2,

3

Me™2% ify; = land|p| =0,
(4.12) 07 A(y.5)| < 2=y Il .

Me2 ¢ 2% ify; =0and|p|=0,1,2.

4.5 Further consequences of the bootstrap assumptions

The bootstrap bounds (.1)), (@.5), ¢.6)-(.9), @.11), and (4.12) have a number

of consequences, which we collect here for future reference. The first is a global-
in-time L2-based Sobolev estimate:

PROPOSITION 4.3 (H* estimate for W, Z, and A). For integers k > 18 and for a
constant A = A(k),

@132) | ZC.o)| 5 + [AC. )| 5x <2207%e™ + e (1 — e MK,
(4.13b) W) |5 <207 Kele™ + (1 —e™Se )M,
foralls > —loge.

The proof of Proposition which will be given at the end of Section[I2] relies
only upon the initial data assumption (3.40), on the support bound {.5), on L
estimates for 3¥ W and 0¥ Z when |y| < 2, on 37 A pointwise bounds for |y| < 1,
and on V24 bounds. That is, Propositi0n|éﬁ|follows directly from (3.40) and the

bootstrap assumptions (@.1)), (4.5), (4.6), @.11), and (4.12).
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The reason we state Proposition at this stage of the analysis is that the H k
estimates and linear interpolation yield useful information for higher-order deriva-
tives of (W, Z, A), which are needed in order to close the bootstrap assumptions
for high-order derivatives. These bounds are summarized in the following:

LEMMA 4.4. For integers k > 18, we have that

G =k ify1 = land|y| = 2,3,
=35 ir1y| =3,4,5,

(4.14) 07 A(y, )| S {

"G ifyy > land |y| =3,
€_( IV\ l)s lf|)’| — 3’4’5’

(4.15) 107 Z(y.5)| < {

2s 1
%73 ' 0and |y| = 3,
(4.16) Wy, s < 1€ T 0) iy # Oandly|
ex—71n"6(y) ify1 =0and|y| =3.

PROOF OF LEMMA [4.4] First, we consider the case y; > 1 and |y| € {2,3}.
By LemmalA.3 (applied to the function d; A), (4.12), and Proposition}4.3|

2ly 2 2k—3-2|y| 2ly|—2 2k—3—-2|y|

s Avl=2 2
107 All L S 141l 2‘ ||31A||L = < (M?Ke3) 2 (M%)

3_2lyl=1 3_2lyl—1
4.17) < M2ke—(%— s < PR s e~ GBS < (o~ G-F5)s

where we have taken e sufficiently small for the last inequality. Similarly, for
ly| € {3,4,5} we apply Lemma@to V2 4; together, (#.12) and (4.17) provide
bounds for V2 A, and hence we find that

k=3=2]y|

18" Al < 141 5 " 7 IIVZAIIL >

2|y 2k—=3—=2Jy| —
< (Mzke—j)ﬁ (Me_s) T < MZke_(l_lzu;\L%)s

For the estimate of d¥ Z, in the case 1 > 1 and M = 3, we have that

2k—9
107 Z || oo < ||Z||2A 7||81VZ||” 5 < (M e™3) T (Mem30) 37
< MZke_(f_W)s < MZkgﬁe_(%_2k3—7)s < e_(%_zk’3—7)s’

where we have again absorbed M2 using £!/(k=7) The second estimate for ¥ Z
in (4.15) for the case that | y| € {3, 4, 5} is completely analogous to the correspond-
ing estimate for 0¥ A.

We next estimate |0¥ W| for |y| = 3. To do so, we decompose y = y’ + y”
such that |y’| = 1 and |y”| = 2, and further assume that y;’ = min(y1, 2). In order
to apply the Gagliardo-Nirenberg inequality, we rewrite

YW = nuay’ay”w — 3]/(77” 87’”W) _31/’,711« 3"'w,

=:7 =11
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and we set 4 = 1/6 for the case y; = 0 and u = !/3 otherwise. Since |[d17*| <
N % and ‘Vn“‘ < n”_é, it immediately follows from (4.6) that

11| < M.

Now we apply Lemma @ to the function n*3”" W, appealing to the estimate
(.6), and to the Leibniz rule to obtain

2
1115 19" WIIZ 7 "’ Wlliﬁo7 < Ml 9" w| e
where we have used that k& > 18 for the last inequality as is required by Proposi-
tion We next estimate the H%~2 norm of 7#3?” W. To do so, we shall use the
fact that W(-, s) has support in the set .2 (s) defined in (@.4). From the Leibniz
rule and (A.25), we obtain

k—2
I 0" Wil g < > I1DF™72 () D3 W 12

m=0

< Dk—m—2 Dy w .
2| () 2oz I 20-n
k—2

o 1— m+1 m+1

S 2D () VWIS WL

m=0

Using and Proposition[4.3] the W terms are bounded as

1— m+1 m+1

IVW LT IW AT < M2

for allm € {0,...,k — 2}. Moreover, applying (4.5), and using that k > 18 we
have

Dk m—2,. L e 3us

D2 auy S

with the usual abuse of notation LS = 1 for m = k — 2. Combining the
above estimates, we obtain the inequality

11| < M2k (8”63’”3)2]‘ 7 < 626,(“37

for ¢ sufficiently small, since p > %. From the above estimate the bound (4.16)
immediately follows. U

Finally, we note that as a consequence of the definitions (2.33), the following
estimates on U - N and S.
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LEMMA 4.5. Fory € 2 (s) we have

M ifly| =0,
147 _s _1 _
M3 e72n73(y)  ifyr=landlyl = 1,2,
@18) (97U N+ 197s| s 1€ 7, ify1=Oand || = 1.
Me™2n76(y), ifyi =0and |y| =2,
3t 3(y) ifyr # Oand y| = 3,
eC2+T)Sy6 (y) ifyr = Oand Jy| = 3,

while for |y| < £ and |y| = 4 we have
19YU -N| + |97 S| S e 2.

PROOF OF LEMMA [4.5] We consider the estimates on 0¥ U - N. The estimates
on 87 S are completely analogous. By definition (2.33)

07U -N| < [k, =0 + 2|3 W| + |87 Z|.

Here we used || < M /4. Now we simply apply (4.6), (4.8b), @.11), Lemma
and (@.5) to conclude. O

5 Constraints and Evolution of Modulation Variables

5.1 Constraints

The shock is characterized by the following ten constraints on W, which we
impose throughout the evolution, by suitably choosing our dynamic modulation
variables

(5.1) W(,s)=0, 0, W(O0,s)=—1, VW(0,s)=0, V2W(0,s)=0.

These constraints are maintained under the evolution by suitably choosing our ten
time-dependent modulation parameters: no,n3, £1, &2, &3, k., 7, 22, 23 and ¢33.

5.2 Evolution of dynamic modulation variables

The ten modulation parameters at time ¢ = —¢ are defined as
(52  «k(=e)=«ko. t(—&) =§(—&) =nu(—e) =0. ¢pu(—¢) = dovu.

where k¢ is as in (3.10) and ¢y is defined by (3.24). In order to determine the
definition for the time derivatives of our seven modulation parameters, we will use
the explicit form of the evolution equations for W, VW and V2W. These are
ten equations, consistent with the fact that we have ten constraints in . For
convenience, we first state these evolution equations.
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The evolution equations for VW and V2W
From (2.494) we deduce that the evolution equations for VW are

(s + 1+ BJo1 W) 01 W + (BIW + Gw + Z)o W

(5.3a) + 4+ 18w = FY%0,

(05 + BrJO1W) 02 W + (BrdW + G + 2L)01o W
(5.3b) 4L R0 W = FSNO,

(s + BN W) 3 W + (BIW + Gy + 21z W
(5.3¢) 4 1), 03W = FOY
where we have denoted
(5.4a) FPOY = 81 Fy —0,Gwd W — a1k’ 9, W,
(5.4b) FMO = 8, Fyy — 0,Gw W — 32kl 8, W,
(5.4¢) FYOY = 03 Fw — 0:Gwdi W — 03kl 9, W.

Applying the gradient to (5.3a), we arrive at the evolution equation for d; VW,
given by

(5.5 + (BedW + Gw + ZH0n W + (% + bl W = Fg*0,
(as + % + 2,31;J81W) a2 W

(5.56)  + (BedW + Gw + ZH W + (% + hy)dia, W = Fipt?,
(as + % + 2,31;J81W) dizW

(5.50)  + (BedW + Gw + ZH W + (% + hy)dis, W = Fiy®h,

where

FV(I%’O’O) = allFW — 311GW31W - allhl&/auw

(5.6a)  —201Gwdn W — 201y, 81, W,

F‘%},I,O) — 812FW _ 812GW81W — 812}1%8MW — 81GW812W — alhlé/azuw
(5.6b) — 3G W — 02hiy 01, W — Brd2(JW)I11 W,

F‘EI}’O’I) = 813FW — 813GW81W — al?’hlIfVBILW - alGWal3W - alhl;[/a3lLW
(5.6¢) — 03Gw W — 03hiy 01, W — BLas(JW)d W.

Lastly, differentiating in the V direction equations (5.5b)—(5.5¢c) we obtain the evo-
lution equation for VZW

(05 + 5 + Bt W) 922 W
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(5.7a) + (BIW + Gw + 3100 W + (2 + Bl ), W = F?
(3s + % + B W) 23w

(5.7b) + (BedW + Gy + )12 W + (2 + )3, W = FO1D
(8s + % + ,3-5J81W) 03z W

(5.7¢) + (BedW + Gy + 23133 W + (2 + )33, W = FO02

where

FV(I(/)’z’O) = azzFW — 822GWa1W - 822hllfVavaW - 282GW812W

(5.8a) — 2020 02, W — 2B 0:(JW)012 W
FV(IE-)’LI) = O3 Fw — 03Gwa 1 W — 823hl¢V8MW — 03Gw a1 W
(5.8b) — 03l 02y W — 02Gwd13W — 32k, 03, W

— Bz33(UW)012 W — Br02(UW)0 13 W
FI,(I?’O’Z) = 033 Fw — 033Gwa W — 833]’1[&/8””/ —203Gw a1z W
(5.8¢) — 33l 03, W — 2B:03(JW)313W .

The functions Gy, hy , Fy and their derivatives, evaluated at y = 0

Throughout this section, for a function ¢(y, s) we denote ¢(0, s) as ¢°(s).
From (2.11)—(2.12) evaluated at X = 0, the definition of V' in (2.27), the defini-
tion of Gy in (2.29a)), and the constraints in (5.1), we deduce that}

(5.9) 3Gy = e (i + B22° — 281 RjE)),

and the gradient of Gy evaluated at O is given by

(5.10) 301Gy = Bre29,Z°,

(5.11) 3Gy = B2¢28,Z° + 281 01v + 21 Rjy&j by,
while the Hessian of Gy evaluated at y = 0 equals

(5.12) 491Gy = P20, Z°,

(5.13) 400Gl = Bae281,20 —2B1¢7 2 Oy,

3-0yGly = € (= + B2e" 0y 2°
—2B1(Qzybev + Qevdey + Ri&NY )
. s GO
(5.14) —2B1(Q¢y + e 25%%,)-

4 Here we have used the identities: N(l)’v =0, N?L’v = —¢uv, and N(C),/w =0.
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Similarly, using (2.11)—(2.12), (2.30al), and the constraints in (5.1) we have tha
(5.15) B = 2173 (4] — Rjuf)).

Then, using (5.4), (5.6), and (5.9)—(5.9), for any y € N§ with |y| = L or |y| =2
we have that

0.0 _ 0 0
Fy" = 9" Fy, + 9" Gy

Lastly, appealing to (2.11)—(2.12), (2.31al), we have the following explicit ex-
pressionsﬁ for the forcing term Fy evaluated at y = 0 is given by

3-Fyy = —Ba(k — 2°)9,45, + 2B1e72 01, A% — F-hiy’A 0 Ales
(5.16) + 3Bae™2(c = Z(c + Z%) (a2 + ¢33),
the gradient of Fyr at y = Qs
3-01Fy = Ba(e™? +012°), A0 — Balic — Z°)d1, A, + 2B1e73 01,0147,
— (AR 01A + 281672 (014 + e F 0,)AD i
(5.17) —1B3eS((1 + €20, 2%k + 2% + (k — Z2°)(1 — €28, 2))
(P22 + $33).
30 Fyy = =B3((c = Z°)dup Ay — 0, Z°0,,47%) — 2B17° AD v
+ Zﬂle_%QmavAM
- 2,31€_SQM§A2¢MV — B3e722°0, 2%z + ¢33)
—2B1e72((e72 Qv + A — Le™2(k + Z%) ) A9) yu
(5.18) — Bse™ (i — 2°) AT, — ﬂirh‘V‘“V’OBVA‘y’qu,
and lastly, the Hessian of Fyy at y = 0 is given by
3011 Fyy = Ba(e™2 + 01 2°)0, A%, — Ba(ic — Z°)91,4%,
+ Zﬂle_%Q1M311AO
— (2172 + 3-0")d11 AQde
—4P1e72 (0140 + e -3 0u1)81 43¢z,
(5.19) — B3e™2(2%011 Z° — e (1 - ¢°(91 2°))) (h22 + ¢33) .
301 Fiy = =Ba((c = Z) 910, A7, — 910 Z°8,, A7, — 8, Z°81,,4),)
+ Ba(e™2 + 1 Z°)dpu A% — 281672 A%01, AD By —

5 Here we have used the identities: Ng =0, T}i’o = Syu, Tyo =0, Ng vy = =0, and Ti gy =0.
% Here we have used the identities: N = —¢22 — P33, TM,/L =0, N? =0, NO =0,
0 _ Y,0\0 1'0 0 0 \ —
Nuv = ff’uv Tlv = ¢yv, Tzszu =0, T N”w 0,N; v =0,and Ng ), = 0.
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— 281 01 AN Gpuv + 281672 01,010 A% — 281675 0,00 01 AT P
— B3¢ 201 2°3,Z° + 701, Z°) (22 + $33)
— Bae™ ((k — Z%)01 47 — (72 + 0, 2% AY)TES,,
—2B1e72((€72 0y + 3, 4%)1 49
+ (e % O + 91458, 49) gy
— ﬁ%h‘;ﬁoalv@(pw + Bre ™ ((k + Z°)3, 49
(5.20) — (72 =1 Z%A0) prvype
30y Fyy = —2B3(3uy (S8, 4,))° — Bae ™ (ic — 799, AJTES,,
—2B1e 53 A% duy — 2B16 75y AN buv
— B3¢ 39, 2°9,2% (22 + $33) + 281672 01,00 45,
—2B17 Qi AL bey — 217" Qppudy Ay
+ 281677 A%(O1¢(buudey + duybew + buyduc +THm)
+ QluN(l),vy)
— Bae ™ ((k — Z2%)0, A) — 0, Z°A9)TES,,
— %ﬂ3e_37S(K — 7%k + ZO)NZ’MW
- 2,316_% (e_% quaVA(;) + e 2 QuyavAg)¢§u
— 28173 (DAY AY + 8, A%, A + 0,450, 40) ¢z
+2B1e7° (3o (U -NYA) By b + 3y (U -N)Ag) bz )
—2p1e” T AQAQTES, by — A 1000y Al
(5.21) + e R A ($NS Ly + BNG Ly + NG Ly -
The equations for the constraints
The evolution equations for W, VW, and V2W at y = 0 yield the equations
from which we will deduce the definitions of our constraints t, «, 71, £, and ¢. In
this subsection, we collect these equations. Then we untangle their coupled nature

to actually define the constraints.
At this stage it is convenient to introduce the notation

Qo(bl,...,bn |Cl,...,Cn) and %Q(bl,...,bﬂcl,...,cn)

to denote a linear function in the parameters cy, .. ., ¢, with (bounded in s) coeffi-
cients which depend on by, ..., b, through a smooth polynomial (for &), respec-
tively, rational functions (for %), and on the derivatives of Z and A evaluated at
y = 0. In particular, these bounds can depend on the constant M. Throughout this
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section, we will implicitly use the bootstrap estimates (4.11) and (4.12) to establish
these uniform bounds on the coefficients, which in turn yields local well-posedness
of the coupled system of ODE for the modulation variables.

The subscript <> denotes a label, used to distinguish the various functions P
and Z¢. We note that all of the denominators in % are bounded from below by
a universal constant. It is important to note that the notation &?¢ and % is never
used when explicit bounds are required.

First, we evaluate the equation for W at y = 0 to obtain a definition for k. Using

(2.28a)) and (5.1) we obtain that
(5.22) ~GY = FY —e 2Bk = k=e2(Fy+GY).

Using the above introduced notation, upon recalling the definition (5.16) we deduce
that (5.22) may be written schematically as

(5.23) k= Pelid | O, el Le2GY).

Once we compute h’V?, and GI())V (cf. (5.32a)—(5.32b) below) we will return to the
formula (5.23).

Next, we evaluate the equation for d; W at y = 0 and obtain a formula for 7.
From (5.3a), (5.4a), and using that —1 + f; = ;== = 7;, we obtain that

(524) —(l=Bo)=dFy +0iGy = =g (0iFy +dGy).

Using the above introduced notation, upon recalling the explicit functions (5.10)
and (5.17) we deduce that (5.24) may be written schematically as

(5.25) t =P, ¢ |0, 3-hy).

Once we compute h’V?, and GI(/)V (cf. (5.32a)—(5.32b) below) we will return to (5.25).
We turn to the evolution equation for VW at y = 0, which gives that Q'lj. Note

that once Q1 j is known, we can determine 7 through an algebraic computation;

this will be done later. Evaluating (5.3b)—(5.3c) at y = 0 and using (5.4b)—(5.4c)

we obtain for v € {2, 3} that

0,(0,1,0) _ 50,(0,0,1) _ 0 0 _
(5.26) Fyy = Fy; =0 = §HFYy+dGYy =0.



42 T. BUCKMASTER, S. SHKOLLER, AND V. VICOL

By appealing to (5.11) and (5.18), and placing the leading-order term in O on one
side, we obtain

le = _e_%QIMa AO + e_SQMZAgfpuv + e_squAg¢§u
ﬂz e23,Z% + ¢ sAoqu
m((x — Z%03,, A0, — 3,2°9,A0,)

(5.27) %e—%zoa Z% 22 + $33)
B3 0} 407¢,0
+age (k=2 )AKTfL "
+e 7((8 Af, = 3e73 0+ Z0¢1) A9 by
0aq 40 : 0
2[3[3 Iy 9y Ayyu — (25,3 hy — AD)dyv.
We schematically write (5.27) as
(5.28) O =Po.(c.¢| 3 —e2h D.eT5h, e Q).

Note that once le is known, we can determine 71, and 713 by recalling from (2.4)),

(A.16), (A.17) that

1+ i o | [ ii \x _ [O12
ni(1+n n +n _ n@n >

(5.29) n;n3 1 1 +1 21 |:fl3:| = (Id + n1(1+n1))n = |:Q13:| ,
n1(1+ny) n (1+n )

where ny = /1 —n3 — n% Since the vector 7 is small (see (4.1a) below), and the

matrix on the left side is an ¢'(]11|?) perturbation of the identity matrix, we obtain
from (5.29) a definition of 7, as desired.
Next, we turn to the evolution of d; VW at y = 0. This constraint allows us

to compute G%, and h‘IfV’O, which in turn allows us to express S . First we focus

on computing G‘(,)V and h’IfV’O. Evaluating (5.5) at y = 0 and using (5.6), for i €
{1,2,3} we obtain

(5.30) G WO + 1081, WO = 81, FY + 81:GY,.

On the left side of the above identity we recognize the matrix

(5.31) H0(s) == (01 VZW)O(s)

acting on the vector with components G0 h2 0 and h%}o. We will show that the

matrix ##° remains very close to the matrix d1ag(6, 2,2) for all s > —loge, and
thus it is invertible (see (6.1]) below). Therefore, we can express

(5.32a) Goy = (#0101 Fyy + 01:GYy)
(5.32b) Wy® = () 01 FY + 01 GYy).
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Inspecting (5.12)—(5.13) and (5.19)—(5.20) and inserting them into (5.32b), we ini-
tially obtain the dependence
,0 _s s —25; ,0 -
i = ¢ B (@ | €70 00T P) — R OVl by 0 AG.

Note that although h’v?, appears on both sides of the above, the dependence on the
right side is paired with a factor of e™ < &, and the functions ¢¢, are them-
selves expected to be < ¢ for all s > —loge (cf. below). This allows us to
schematically write

(5.33) Gy’ =2 Ry (k. p | e 0,072 P) .

Returning to (5.32al), inspecting (5.12)—(5.13) and (5.19)—(5.20), and using (5.33)
we also obtain the dependence

(5.34) ﬂ%G%, = e 2T (k.p|e*Q,e729).
Upon inspecting (5.9) and (5.15 ) and noting the invertibility of the matrix R in

(2.2) it is clear why m 5.32b) allow us to compute &;. Indeed, from (5.9),
(5.15), (5.324)—(5.32b)), and the fact that RRT = 1d we deduce that

S] = RJI(RTé)l = RJI (ﬁ(l( + ,32Z0) - ﬁe_%G%,)

(5.35)

0 0
for j € {1,2,3}. Using (5.33) and (5.34), we may then schematically write
(5.36) § =% (k¢ e 0,e729).

Lastly, we record the evolution of V2 at y = 0. From this constraint we
will deduce the evolution equations for ¢;. Evaluating (5.7) at y = 0, using the
definitions (5.8), we obtain

G 1oy WO + 10,0, WO = 80y B + 80, Gy
forv,y € {2,3}. Using (5.324)) and (5.32b) we rewrite the above identity as
dvy Gy = (HO) G (91 Fyyy + 01: Gy ) 010y WO
+ () (9 Fyy + 915 Gy ) Dy WO — 8oy Fiy.

(5.37)

Note that q'ﬁv,, is determined in terms of e%BWGI(,)V through the first term on the
right side of (5.14)

¢yv = —ﬂ%e%(G%/al\)y WO + hleV’Oapwy WO - BVJ/FVIO/)
(5.38) + B2e°3yv Z° = 2B1(Qyrv + Q';vqb;y)

+(ge72GY —k = BZOIN L, + 0%, 4¢3 Gy,

and (5.324)) is used to determine GOW. In light of (5.21), (5.34) and of (5.38), we
may schematically write

(l.syv = t@q&,yv (IC,(,b | e—sQ" e_s‘ls) - Q§y¢§v - Q§v¢§'ya
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which may be then combined with (5.28) and (5.33) to yield
(5.39) Gyv = RBpyv (k. ¢ | €50, e75P)

thus spelling out the dependences of ¢ on the other dynamic variables.

Solving for the dynamic modulation parameters

The computations of the previous subsection derive implicit definitions for the
time derivatives of our ten modulation parameters, in terms of these parameters
themselves and of the derivatives of Z and A at the origin. The goal of this subsec-
tion is to show that this system of ten coupled nonlinear ODEs has a local existence
of solutions, with initial datum as given by (5.2). In Section[6]it will be then shown
that the system of ODEs for the modulation parameters is in fact solvable globally
in time, for all s > —loge.

By combining (5.28) and (5.33) with (5.29) and recalling (5.39), we obtain that

q’}yv = %qg,yv(/c,qﬁ,ﬁ | e_sﬁ,e_sq'b) and 7, = %’n,v(lc,qb,ﬁ | e_si%,e_S(j;).

Therefore, since e ™ < &, and the functions P, and &, ,, are linear in ¢ /i and
eS¢, then as long as k, ¢, and 77 remain bounded, and ¢ is taken to be sufficiently
small (in particular, for short time after t = —loge), we may analytically solve
for ¢ and 7 as rational functions (with bounded denominators) of «, ¢, and 71, with
coefficients that only depend on the derivatives of Z and A at y = 0. We write this
schematically as

(5.40) byv = Epyv (KK, 0,71)  and  7iy = Enp (K, ¢, 7).

Here the &,y (k. ¢, 1) and &, v (k, ¢, 1) are suitable smooth functions of their
arguments, as described above. With (5.40) in hand, we return to (5.23) and (5.25),
which are to be combined with (5.33) and with (5.36) to obtain that

(541) k=& (k. p.n), T=&Ek ¢.n), and & =& (k. $,0).

for suitable smooth functions &, &7. and & ; of (k. ¢, 1), with coefficients which
depend on the derivatives of Z and A at y = 0.

Remark 5.1 (Local solvability). The system of ten nonlinear ODEs described in
(5.40) and (5.41) are used to determine the time evolutions of our ten dynamic
modulation variables. The local-in-time solvability of this system is ensured by the
fact that &, yv, &u,v, Sk, &, and & ; are rational functions of «, ¢, n2, and n3,
with coefficients that only depend on 87 Z° and 3 A with |y| < 3, and moreover
that these functions are smooth in the neighborhood of the initial values given by
(5.2); hence, unique C! solutions exist for a sufficiently small time. We emphasize
that these functions are explicit, once one traces back the identities in Section
which will play a crucial role in Section[6] when we prove the bootstrap (4.1)).
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6 Closure of Bootstrap Estimates for the Dynamic Variables

In this section, we close the bootstrap assumptions on our dynamic modulation
parameters, meaning that we establish (4.1a) and (4.1b) with constants that are
better by at least a factor of 2.

The starting point is to obtain bounds for G}, and hlIfV’O, by appealing to (5.32a)—
(5.32b). The matrix .7#°° defined in (5.31) can be rewritten as

AO(s) = (0:1V2W)°(s) = 1V W)° + (31 VD) (s)
= diag(6,2,2) + (8; V2W)°(s).
From the bootstrap assumption (4.9) we have that |(81V2W)0(s)| < e? for all
s > —loge, and thus
6.1) () )] <1
for all s > —loge. Next, we estimate 81VFI9V. Using (5.19), (5.20), the bootstrap
assumptions (4.1a)-(4.3), the bound (4.11)—(.15), and the fact that |Tf,j3w| <

|2, after a computation we arrive at
62) |9\VFY| S Meze™ + M2 30-555)5 1 |50  p3ge— 30258,

Moreover, from (5.12), (5.13), (.1a), (.1Db), the first line in (4.11), the previously
established bound (6.2)), and the fact that k& > 10, that

0:VGY | + [0 VEY| < e310VZ0 + M3 + 75 + 2|h;)
(6.3) < Me™ + &2|hy)
The bounds (6.1) and (6.3) are then inserted into (5.32a)—(5.32b). After absorbing

the &2 |h$| term into the left side, we estimate

(6.4) G ()] + |h’(s)| £ Me™™.
The bound (6.4) plays a crucial role in the following subsections.

6.1 The t estimate

From (5.24), the definition of d; G%, in (5.10), the definition of 81F§, in (5.17),

the bootstrap estimates (4.1a)—(4.3), (4.11), (4.12), and the previously established
bound (6.4)), we obtain that

15 0rGY |+ o F3)
<e2(31 2% + e 2|V A | + M|V, A
(6.5) L M2s2e5 ‘31/10‘ + M?ee™ 25| A% + M3ge™s
< MZe™ + Me2e™ + Me 207255)5 | p3geS

)

=7e€

NS
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where we have that £k > 10, and have used a power of M to absorb the implicit
constant in the first inequality above. This improves the bootstrap bound for 7 in
(@.1b) by a factor of 4. Integrating in time from —e to T, where |Tx| < &, we also
improve the 7 bound in (4.1a) by a factor of 2, thereby closing the T bootstrap.
6.2 The k estimate

From (5.22)—(4.3), the bound (6.4)), the definition of FI9V in (5.16), and the esti-
mates (4.11) and (4.12), we deduce that

k| < e2|GY| + ez | FY|
< Me™2 + (ko + Ms)Me%e_% + M3e2e™2 + M%7 3
+e 3(k3 + M22)M2e
< Me 3.

Upon using a factor of M /2 to absorb the implicit constant in the above estimate,
we improve the & bootstrap bound in (4.1b) by a factor of 2. Integrating in time,
we furthermore deduce that

(6.6) I (£) — k| < M2e3

for all ¢t € [—e¢, Tx), since |T«| < &. Upon taking ¢ to be sufficiently small in terms
of M and k¢, we improve the k bound in (4.1a)).

6.3 Theé estimate

In order to bound the S vector, we appeal to (5.35) to (6.4), to the |y| = O cases
in (4.11) and (@.12), and to the bound |R — Id| < &, which follows from (2.2)) and
the ‘ﬁ‘ estimate in (4.1a), to deduce that

|67 S Ko + 120 + e72|GYy | + |A%| + e2|nly°

_5
Sko+Me+ Me 2 < ko,

6.7)

upon taking ¢ to be sufficiently small in terms of M and «g. The bootstrap estimate
for £ in (4.1b) is then improved by taking M sufficiently large, in terms of «, while
the bound on £ in (4.1a) follows by integration in time.

6.4 The q) estimate

Using (5.38), the fact that |N(1’ ol |J?;w| < |¢|?, the bootstrap assumptions
(4.1a), (4.1b), (4.9), the bounds (4.2), and the previously established estimate (6.4,

we obtain
1 s 1
“pyv‘ < 32(M846’ S+ |ava19V|) + €S|avaO|
+ MYe3 4 (Me™3 4o+ | Z0)MA? + M3e2e™ 3

Using the definition of V2FJ, in (5.21), appealing to the bootstrap assumptions
(and their consequences) from Section || the previously established estimate (6.4),
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and the fact that |TZ’,0,,V| + |N(1),;w| + IJ?WI + |Ng ny| < |¢|?, it is not hard to
show that

vy Fy| 5 7%,
In fact, a stronger estimate holds (cf. (7.11) below), but we shall not use this fact
here. Combining the above two estimates with the Z bounds in (4.11), we derive

[byv| < e%(Msie_s te )+ M+ M3
6.8) +(Me™% + ko + eM)M*e? + M52~ %
<M.
Upon taking M sufficiently large to absorb the implicit constant in the above es-
timate, we deduce |¢| < M?/4, which improves the ¢ bootstrap in (4.1b) by a

factor of 4. Integrating in time on [—e&, T4 ), an interval of length < 2¢, and using
that by (3.17) and (3.24) we have |¢(—log¢)| < ¢ thus improving the ¢ bootstrap

in (4.1a) by a factor of 2.

6.5 The 5 estimate

First we obtain estimates on |Q ,| by appealing to the identity (5.27). Using the

bootstrap assumptions (.1a), (@.1b), @.11), (4.12), the estimates (4.2) and (6.4),
and the fact that \szﬁw ‘ < |¢|?, we obtain

1010] < M2e2e7 318, 40| + M*e2e5] 4% + €3[|V 20| + M2e™5|A°)
+ (M|V2A°| + |VZO||VA%)) + M2se™3|Z°||VZ0)
+ M2 A% + &2 (([VAO| + M3ee™2)|A%) M2
+ M3se_SWAO‘ + Mzg(Me—% + |A°|)
69) < Me3,

upon taking ¢ sufficiently small, in terms of M. Moreover, using the bootstrap
assumption ‘ﬁ‘ <M g3/ 2, we deduce that the matrix on the left side of (5.29) is
within ¢ of the identity matrix, and thus so is its inverse. We deduce from (5.29)

and that

(6.10) | < M2

upon taking M to be sufficiently large to absorb the implicit constant. The closure
of the 71 bootstrap is then achieved by integrating in time on [—g, Tx).

7 Preliminary Lemmas

We begin by recording some useful bounds that will be used repetitively through-
out the section.
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LEMMA 7.1. Fory € 2 (s) and for m > 0 we have

IV £ |+ [V (N = No)| + | V(T = Tp)|
@.n + VU= ]+ [T D] S oM s ee7
02 [97 7] + [97R] £ M2 |52 5 ehe

Moreover, we have the following estimates on V :

M ifly| =0,
M2eze735 if|y| = landy; = 1,

(7.3) 07V < {M2e2e=3  if|y| = land y; = 0,
M4e3e=s iflyl =2and y; =0,
0 else.

forall y € Z (s).

PROOF OF LEMMA The estimates (7.1) follow directly from the definitions
of f,N, T, and J, together with the bounds on ¢ given in (4.1a) and the inequality
(4.5). Similarly, (7.2) follows by using the ¢ estimate in (4.1b). To obtain the
bound (7.3), we recall that V is defined in (2.27), employ the bounds on & and Q
given by (4.1b) and (4.2), and note the fact that |R — Id| < 1, which follows from
(@.1a) and the definition of R in (2.2). O
7.1 Transport Estimates
LEMMA 7.2 (Estimates for Gy, Gz, Gy, hw, hz,and hy). For e > O sufficiently
small and y € Z (s), the function Gy and its derivatives satisfy

Me™5 4+ M3|yile™ +e3[3| ifly| =0,
(74) 19"Gw| S { M2e3 ify1 =0and |p| = 1,
Me™2 ify = (1,0,0) or |y| =2,
while Gz and Gy obey
|8 (Gz + (1= Ba)eko)| + |0 (Gu + (1 — Br)e ko))
ezes  ifly| =0,
(7.5) SAM2%5 ify; =O0and|7| =1,
Me™2 ify = (1,0,0) or |y| =2,
and lastly, the functions hy, hz, and hy satisfy the bounds
|0Y hw | + |0V hz| + |0” hy|

(76) e 2 l_f|]/| 207 5
<qe s zjf)/l:Oand‘y‘:l,
e 1 .
e’n7e(y) ify =(1,0,0)o0r|y| =2.
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Furthermore, for |y| € {3, 4} we have the lossy global estimates

lyl—1

(1.7) 187 G| < e~ G=H=s,
(7.8) |07 hw| < e,
forally € Z (s).

PROOF OF LEMMA[7.2] Recalling the definition of Gy in (2.29a)), and apply-
ing (4.3), and (7.1), (7.3) the inequality x < M, and the fundamental theorem of
calculus, we obtain that

G| < Me 3 |3|” + €3k + B2Z + 281V -N|
1,0 s . s
S MeZ |y +e2|i + BoZ® — 281 (RTE) | + [y1le2 101 Z]| oo

v oSS 1 v
+[¥le2IVZlleo + M?e2(e™*[y1] + |¥))
S Me™3 4 M |ple™ + &3]3
where in the second and third inequalities we have used (.2), (4.5), (4.11), and

(6.4). Thus we obtain ((7.4) for the case y = 0. Similarly, for the case y # 0, we
have

10V Gy | S e2 (|07 £ | + M|379] + 3 (JZ)| + |37 IV - N)]).

(7.9) % 6%86_%”’”:0
+eb Y (pimo +0)e 25(|07 P 2| + 7P V).
B=y. B1=0
where in the last line we invoked (7.1)). Hence is concluded by invoking (4.11)
and (7.3).

Now consider the estimates on Gz and Gy as defined in (2.29b) and (2.29¢).
We note that

Gz + (1 - Ba)e>ko
= Gw + (1 — B2)e? (ko — &) + (1 — Brd)c + BdZ) .
Gy + (1 — B1)e3k
= Gw + (1= Br)e? (ko — k) + (1 — Bed)k) + (B2 — P1)Bre2JZ.

The bounds in (7.5) now follow directly from (7.4), the £ bound in (@.1b), the B,
estimate (4.3)), the support estimate (4.5]), the J bounds in (7.1), and the Z bootstrap

assumptions (4.11).
Now consider Ay, which is defined in (2.30a). For the case y = 0, applying

(#.1b), (4.3), and (7.1), we obtain that
lhw| S e S|W| + e 2(|V| + |Z]| + |A]) S s6e™3 + e 3(Me2 + Me) S e~ 2

where in the second inequality we have also appealed to (4.3), (4.6), @.11), and
(@.12), and where we have used the fact that |V| < M ¢!/2. This last inequality
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is obtained using the fact that we need only bound |I7|. Using definition (2.27),
because of the bounds (4.1a) and (4.2), it remains to bound ‘R i ‘ Restricting
(2.29a) and (2.304) to y = 0, and with f given by (2.11) and using (5.1), we find
that

281(RTE), = 21 A5, — 4-e31°.

Hence, by (4.12) and (6.4), we see that |(RT§)M| < Mel/2,
Similarly, invoking the same set of inequalities together with (7.3), for the case
that y # 0, we obtain

10l | S e* 107 (N, W)
e (197 V] + MIDNG] + 107 (N 2)] + (87 (4, T7)))

_1BI+1 _s
< E e” 2 (e 2

(7.10) B<y, B1=0 + (1|ﬂ|=0 + 8)‘8”_5141,‘ )

V 1 IV\+1
+ Mege™ 1),1 0o+ M?s2e”

1)’1 =0

+ Mzsie_zslylzl.

Finally, applying (.5), (4.6), (4.11), (#.12), and (4.14) we obtain the estimate on

hw. The estimates on iz and hy are completely analogous since the only differ-
ence between these functions and Ay lies in the different combinations of the 8;
and > parameters

The estimates (7.7) and (7.8), follow as a consequence of (7.9), (7.10), (.6),
2lyl—4

2lyl—4

#.11)—(4.15), and the estimate [|0Y W |po < ||D2W||L002" -7 ||W|| 2T < MK
which holds for |y| € {3,4} in view of Lemma|A.3, Proposition } and of (4.6).
O

7.2 Forcing estimates
LEMMA 7.3 (Estimates on d¥ Fyy, 0¥ Fz, and 0¥ F4). For y € Z (s) we have the
force bounds

107 Fy | + 2] Fgz|

S

e if lyl =0,

(7.11) < e=’n” 6+W‘+;>(y) ifyi>1land|y| =1,2
M2, ify1 =0and |y| =1,
(=78, ify1 =0and |j| = 2.
M3e™ i1yl =o.

(7.12) |3 Fay| S (M2 + M?p76)e™ ify1 = Oand |7] = 1,
eCU T Ta(y) if |yl =4 and |y| <L
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Moreover, we have the following higher-order estimate at y = 0
(7.13) |07 F)°| 5 G757 for |y =3,

and the bound on F, 7%

e () iflyl =0,

(7.14) ‘Wﬁw‘ < Met ni?zis 8] l:fJ/l = 1 and m =0,
N30, ify1 =0and |y| =1,
L, iflyl =4and|y| < ¢,

holds for all |y| < Z.

PROOF OF LEMMA [1.3] By the definition we have
0¥ Fy |
S 107 (ST, 0, A0) | + 72|07 (A TING) [ + 72|97 (A, TIN;) ||
+e 2[07 (Vi + NuU N+ A, TH) A, TVN; )|
+e72[07 (S (AuTY,, + U -NNy )|
S Y (B[P sVA)| + ed [P a| el (v @ 4)
B=y, B1=0

+e|d P (U -NA)| + e]d" P (A ® A)| +£]d" P (S4)|

+elo” P (sU-N))

where we invoked (4.2), (7.1), and (7.2). Combining the above estimate with
#.12), @.14), (7.3), and Lemma [4.5] we obtain the bounds claimed in (7.11) for

d” Fyy. Using the same set of estimates we also obtain

(7.15) 107 Fyy| S e™2

for |y| = 3, which we shall need later in order to prove (7.13), and
(7.16) 0¥ Fy| < &6

for |y| = 4 and |y| < £, which we shall need later in order to prove the last case
of (7.14). Comparing (2.31b) and (2.31a)), we note that the estimates on 0¥ Fz
claimed in (7.11) only differ from the ones ¥ Fyy by a factor of e™2.

Now we consider the estimates on Fy4. By definition (2.31¢), we have

0¥ Fa, | < e72|0V(ST20,S)| + 5|37 (U - NN; + 4,T)T?)]
+e7*|97((U -NN; + 4, T))T7)|
+e7°[07 (Vi + U NNy + A4, T)) (U -NN; + 4, T)) T7 )|
s Y (S SYS)| + |7 PN + |87 P 4))
B=<y, B1=0
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D I SN RN CRNERET)
B<y, B1=0 a<y—P
x ([P N+ [P a))

(7.1) and (7.2). Combining the above bound with the estimates (4.12), (7.3)), and
with Lemma4.5] we obtain our claim (7.12).

By definitions (2.53) and (.1b),
187 Fw | < 10" Fw| + M?e 11y j=0 + |37 (1 = B )W W)
+ M?|3Y (Gw W) + |07 (hyy, 0, W)
<1 Fwl + M2 Lymg + Me S 25070, (W?)|
B=<y, B1=0
+ Y 0P Gw 07 P o, W + |0P hly 070, W |
B=y
<10 Fwl+ M2 Lo+ Me Y e 3syem 3 )

:353/’ /31=O

a1+ (P Gwlr o+ [P E T
B<y

where we used (4.3) and (7.1) to bound

071 = Bod)] 5 (1= B0l + 0P (1 = 9)| < Mee™ 2.

Finally, applying @.5), (7.4), (7.6)—(7.8), (7.11), and (7.16), we can bound all the
remaining terms in (7.17) to obtain (7.14). Note that in the Gy estimate (7.4) we

have used that |y| < .2 = ¢~1/19 while in bounding d; Fy, we have used
in order convert the temporal decay of d1 Fy to spatial decay, as well as absorbing
the M and gaining the extra factor of gl/e.

Now let us consider the estimate (7.13). By definition (2.53) and the explicit
formula for W (in particular, even derivatives of W vanish at 0 as well as %I/I_/)
and the explicit formula for J, we obtain

(V2 Ep)°) S (V2 Fw)°| + (V3 ((Brd = DV — Gw))°)
+ [(V((Bed = DW — Gw )| + [(Vhw)°|
SIVPF)° + [(V2DO| + |1 = Bl + [(V2Gw)°
+ [(VGw)°| + [(Vhw)°|
e f e £ Me™S 4 eI S 4 (VGw)°| + e~
eI 1 |(VGy)°|

A

A
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where we used (@.3), (7.1), (7.7), (7.6), and (7.15). Using the identity (5.26), and
applying (7.4) and (7.11), we obtain

(VGw)®| < Me™2 + |(VGw)°| < Me™2 + |(VFw)®| < Me2.
Combining the two estimates above we obtain (7.13). O

COROLLARY 7.4 (Estimates on the forcing terms). Assume that k > 18. Then, we
have

e™s iflyl =0,
eSnT2TAS())  ify = (1,0,0),
1
3 ify =(2,0,0),
@y FQs Y /y =200,
M3n73(y) ify1 =land |7| =1,
M2e3y5(y) iy =0and|j] =1,
M3g=3%w=1(y) ifyy = 0and |7] = 2.
e iflyl = 0.
e_%sn_zkas ifyr =1and|y| =1,
(7.19) ‘Féy)‘ N e_%S(M%‘f‘MZ’?_%) ifyr > land |y| = 2,
M2e=35 ifyr = 0and |7 = 1,
e~ Gmm)s ifyi =0and |y| =2,
Mze™ iflyl =0,
(7.20) IFD| < 3 (M5 + M2 8™ ifyy =0and |7] = 1,
TSR (y) ifyr =0and || = 2.
Moreover, we have the following higher-order estimate:
(7.21) |FD0 <G5 for|y| =3
and the following estimates on F, V(ll/ ).
(7122) |FY| 5 e () fory = (1,0,0) and |y| < 2,

(123)  |FY| g6ty 3(y) foryy =0,

)7‘ =land|y| < %,

(724)  |F| S &5 +£10(log M= for fyl = dand |y| < ¢.
PROOF OF COROLLARY [74] First we establish (7.18). Note that in this esti-
mate |y| < 2, and thus by definition (2.50) we have
FY) <10 Fwl+ Y (|07 PGwddPw| + 07 Prly 0,08 w))
0=<f<y
Hly= > [ Puw)n0fw|

1Bl=lyl-1
ﬂSyvﬂl:yl
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=: 10" Fw |+ 1 + S.
In order to estimate .#1, we utilize (4.6), (7.4), (7.6), and for |y| < 2 obtain
S S M3 (3 + MPe2 (Lyjz + Lyicipi=n) + M (L zipp=y +176)
S M3 (€72 465 (Iyjm + Lyiapgian)

where in the last inequality we invoked (4.5).
Next, we consider the %> term. We first note that ., = 0 when y; = 2. From

and (7.1)), using that |y — B| = 1 and that ‘B‘ = |p| — 1, we have

17l

I < 1|y|=2 Z ‘BlaﬁW‘ < MTn_%

|B1=]y]-1
/35%.31:)’1

Combining the above three estimates with (7.11) and (4.5), we obtain (7.18). Here
we have used that for y; > 1 and the |y| € {1,2} case of (7.11) 2yl+1 1

» 2k—5 = 6’
which is where the assumption £ > 18 arises from.
Similarly, for |y| < 2, from (2.51) we have

FP| 5107 Fzl+ Y ([P Gz010P 2| + |07~ Phty0,0P 2] )

0<B<y
F =2 Z @)+ D [P w)ai0P 7]
B1=ly|-1
/3579/31:)/1
=[0"Fz|+ 7 +1

Iy1=2|91Z8» W) + S

First, we note that by (7.11) the available estimates for d¥ Fz are consistent with
(7.19) since k > 18 and thus —% + Ts—s < 0. Second, we note that for |y| = 2,

by @.6), @.11) and (7.1), we have
18107 UW)| < M2e™ 35 (My 61y, + M30 5 1y,51 + s¢73),
a bound which is consistent with (7.19). Next, in order to estimate .#; we utilize
@.11), (7.3), (7.6), and (@.5), we obtain
I < e_%s(Mze_% + M38%1|];|21 + Msén_%).
Lastly, we consider .%,. We first note that for |y| < 2, we have .#, = 0 whenever
ly| = y1. For |y| > y1, from (4.6), (.11), and (7.1), we have
A5 Y |12 s (Upai M2+ LM ) e

1Bl=ly|—1
,BS)’,Ig1=)’1

Upon inspection, we note that the bounds for .#; and .%, obtained above are con-
sistent with (7.19), thereby concluding the proof of this bound.
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In order to prove the ‘F /gy)‘ estimate, we use the definition (2.51), with y; = 0
and ‘)7‘ < 2, and ignore the subindex v to arrive at
EP[ <107 Fal+ Y (|07 GuonoPa) + [0 nf o098 4] )
0<p<y
1y =201 AW+ Y |7 PUW)0,9P 4

1Bl=ly|-1
B=<y,B1=y1=0

=107 F4| + 1 + 1}|=201 407 (UW) + 7.

The bounds for 0¥ F4 previously established in (7.20) are the same as the desired
bound in (7.12). Moreover, for |y| = 2, by @.6), @.12), and (7.1),

101407 UW)| S Me™35 (M6 + se™3),

which is consistent with the last bound in (7.20). In order to bound .#;, we appeal
to (4.12), (@.14), (7.3)), and (7.6) to deduce

B2 M3e2e73S 4 1|y|:2M28%€_(%_%)S,
which is consistent with (7.20) in view of (7.1). Lastly, from the same bounds and
using (4.6), we arrive at

5 S IVEW)|(L1=1101 4] + 1},)=2[81 VA

_35 —(3—%)5'
S lyj=1Me 2" + 1y |=pe 27 %5
which combined with (7.1) completes the proof of (7.20).
Next, we turn to the proof of the ﬁé}/) in (7.21)—(7.24). For |y| = l and |y| <
£, we consider the forcing term FVV([J,/ ) defined in (2.55), and estimate it as
|FD| < |07 Fw| + 8" Gw ||1 W| + |87 hw ||V |
+ (37 @ W) [IW ] + 1y =1 |87 W) 131 W|.

If |y| = y1_= 1, utilizing @.7a), @#.7b), @.7¢), (7.1), (7.4), (7.6). the explicit
bounds on W, and the previously established estimate (7.14), we obtain

‘F’(y)‘ < Metp—itats 1 s 1 1 g1 12 11

WS gon 272k 5 - Meize 2n 3 +eBe " 6 4 ¢lip 3§81177 2,
where in the last inequality we invoked and the fact that |y| < & = ¢~ 1/10,
which yields Msénﬁ < Mes £7>s < el for k > 18, by taking ¢ to be
sufficiently small in terms of k and M. Similarly for |y| = |y| = 1, applying the
same set of bounds yields
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Here we have used that H 771/ 281\V/WH oo < L which is a sharper estimate than
what we had written earlier in (2.47). This concludes the proof of (7.22) and of

(7.23).

Consider now the estimate (7.21). Evaluating (2.55) at y = 0, applying the
constraints (5.1), the identity (5.26), and using properties of the function W at 0,
we obtain for |y| = 3 that

|5 5 [0 B |+ [VG |[00 VWO + Vi, |92 °)
S 19 FY |+ (016 |+ [TEY |+ VA ) (VW] + [V T0)).
Then applying (7.4), (7.6), (7.11), (7.13), and (4.9), we obtain
0 _(Ll__4 _ _s _ _ _(l__4 _
|FI0) <G8 - Me™3 + M2e™ o7 S emGmw)s
thereby concluding the proof of (7.21).

Lastly, we consider the bound (7.24), which needs to be established only for
|y| < £. For |y| = 4 we consider the forcing term defined in (2.55) and bound it

by using (@.8a), (7.1), (7.4), (7.6), (7.7), (7.8), (7.14), and the explicit bounds of W
as

B3] < |07 Fw
+ Y (7P Gw]|0F W | + |07 P |10,,08 W
0=F<r y |9v=F a, W)||aP W)

+ Y Pum|j bW+ D v P uw)|ja0fw)

0<|B|<lyl—2 |Bl=ly|—1
B=<y B=v.Bi=vi
<Mes + Y (e3|VOPIT| + |08 7))
0<f<y
+ Y |wePw+ DD (0P W
0<[B|=lyl-2 |B1=]yl-1
B=<y B=y.Bi=n

where we used W = W + W to bound the terms on the second line of the first

inequality, and the exponent bound % — % < % for k > 18 for the Gy term.

Finally, using (4.8a) and (4.8b), we obtain
~ 1 1 1 1 5
\FIS&')\ < Meo + Me3 + (log M)*e10¢ + 1‘?‘760810(10%1‘4)‘)/‘ !
< £® + Elflo(logM)‘J;‘_1 ,
where we have used that by the definition of £ in (3.31al) we have

(7.25) €< (logM)™>.
This concludes the proof of the corollary. U
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8 Bounds on Lagrangian Trajectories

8.1 Upper bound on the support
We now close the bootstrap assumption (4.4) on the size of the support.

LEMMA 8.1 (Estimates on the support). Let ® denote either ®5°, ®X°, or ®}°.
For any yo € 2y defined in (3.29), we have that

Nl

(8.1a) 1D (s)| < 362637,
(8.1b) |D(s)| <

foralls > —loge.

A=
()

goe=,

NIW W

PROOF OF LEMMA We begin by considering the case that ® = @3, and
write ® = (P, 5)) Note that by the definitions of (2.36) and (2.39),

(8.22) L7 D1(s) = € (BIW + Gw) o O,
(8.2b) 4 (e=35,(s)) = e 3hly 0 @,
(8.2¢) d(—loge) = yy.

Applying the estimates (4.3), (4.6), (7.1)), and (7.4), we have that
1 S 1 _ 1
|BeIW |+ 1Gw| Sne(y) + Me™2 + M2|yile™ + &3] y|

N

1 s _s 1 s 1
<Seoe2 + Me 2 4 ¢e3e2 4 ¢g2e
s
(8.3) <ez,

where in the penultimate inequality we have invoked (4.5), and for the last in-
equality and have taken e sufficiently small to absorb the implicit constant. Thus,

integrating (8.2a) and using the initial condition (8.2¢) and the bound (8.3)), we find

that
N

‘e‘%ﬁbl(s) — 8%3701‘ < / e ds' <e.
—loge
Therefore, for yg € %29 and for ¢ taken sufficiently small,

3 1
e” 25| D (s)| < 3e2,

so that (8.1a)) is proved.
Similarly, using (8.2b) and (7.6)), we conclude that
Ky , S ,
le2D(s) —8%)70‘ < / e Z|hy o ®(s")| ds’ < f e ds’ Le,
—loge —loge

and hence for yg € 2o and for ¢ taken sufficiently small,
e_%‘dv)(s)‘ < %8%,

which establishes (8.1b).
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The estimates for the cases ® = ®2°, ®;° are completely analogous, once the
estimate (7.4) is replaced by the estimate (7.5) in the argument above. O

8.2 Lower bound for @,

LEMMA 8.2. Let yo € R3 be such that |yog| > £. Let so > —loge. Then, the
trajectory ®}° moves away from the origin at an exponential rate, and we have the
lower bound

(8.4) @)(5)] = [vole 5"
forall s > sg.

PROOF OF LEMMA First, we claim that
(8.5) y-Yw(y) = sly[> for|y| = L.

From the bootstrap |3; W| < 1, the explicit formula for W which yields W (0, §) =
0, the fundamental theorem of calculus, and the bound (@.7¢c) we obtain

v v o v 1.
(W) = Wy, ) = WO, )|+ WO, 9)| < [yi| + &3]y

for all y such that |y| < .%. Together with Lemmal7.2} in which we use an extra
factor of M to absorb the implicit constant in the < symbol, and (4.3), the above
estimate implies that

VY =y (BW + Gw + 3y1.h2 + 352.h3 + 373)
> 2+ Ly P — (1 +2M2e) 1| (I1] + T3] 7))
— |y1IM3 (3 + elyi| + €3] 7)) — M2e2 |5
> 1y?

for all £ < |y| < &, upon taking ¢ sufficiently small, depending on M and £.
Similarly, directly from the first bound in (4.6) we have that

W) < (14 20)55(y) < (1 + £20)2]y]
forall |y| > £ = 8_%, and thus
v tw = yE 4 AP = (1 + 2M2) y1|(1+ 620)2|y| = M2 |y — M6y
> Ly — L+ 2M2)2(1 + e20)* |y 2 — Me3|y)> — M3e2 271 |y)?
> 1)y?

forall |y| > % = £10 such that y € Z (s), by taking ¢ to be sufficiently small.
We now let y = ®3°(s) and use the fact that ;P20 (s) = ¥ o 3 (s), so that
(8.5) implies that
351001 = Sl
which upon integration from sg to s yields (8.4). O
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8.3 Lower bounds for ® ., ®,,, and &,

We now establish important lower-bounds for ®2° (s) or ®°(s) = ®;°(s).

LEMMA 8.3. Let ®(s) denote either ®2°(s) or ®;°(s). If

3

(8.6) Ko > ,

I —max(B1, p2)
then for any yo € 2y defined in (3.29), there exists an sx > —log € such that
8.7 |®1(s)] Zmin(|e% —657*|,€%).
In particular, we have the following inequality:

o
(8.8) f P15 (1 + |@1(s))7%2ds’ < C,
—loge

for 0 < o1 < 12 and 201 < 03, where the constant C depends only on the choice
of o1 and o».

PROOF OF LEMMA [83] We first show that if ®(s) = ®2°(s) or ®;°(s), we
have the inequality

d S S
(8.9 d—qDl(s) < —%ef if ®1(s) <e2 forany s € [—loge, 00).
s

If we set (j, G) = (2, Gz) for the case ®(s) = ®L°(s), and (j, G) = (1, Gy) for
the case ®(s) = ®;°(s), then by definition we have that

d
0= 301 + BifdW o d+ G o d.
N

Since 1, B2 < 1, by taking ¢ sufficiently small, by (4.3) and (7.1)), we have that
|BjBzJ| < 1 for j = 1,2; therefore, applying (4.6) and (7.5), if ®(s) < e then
d S S S
d—<I>1 < %ei + 27)%(@) — (1= Bj)koez + eZe2
s

) ; 1
< %e% —(1- ,Bj)/coe% + e8e2,

(S

where in the last inequality, we have used (4.5) and taken ¢ is sufficiently small.
Since 1 — B > 0 for j = 1,2, then using the lower bound on kg given by (8.6),

the inequality holds.
To prove (8.7), we consider the following two scenarios for yq:

(1) Either ®(s) > ¢%/2 forall s € [—loge, 00), or yg, < 0.
(2) There exists a smallest 5o € [—loge, 00) such that 0 < ®(s9) < e
Yo, > 0.
We first consider Case If ®1(s) > e%/2 forall s € [—loge, 00), then we trivially

obtain (8.7). Otherwise, if ®;(—loge) < 0, then as a consequence of (8.9), we
have that

$/2 and

D1(s) < yo, —ed P <—eb te
for all s € [—loge, 00). Thus (8.7) holds with s, = —loge.
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We next consider Case[2] As a consequence of (8.9), we have that
d

—®dq(s) < —e2 forall s > so.
ds

Thus by continuity, there exists a unique sx > So such that ®(s,) = 0. Applying
and then by tracing the trajectories either forwards or backwards from the
time s, we find that for s € [sg, 00),

|D(s)| > |e3 —e 7 |.

Hence (8.7) holds for s € [sg, 00). Suppose that s9 7# — log &; then, by definition,
if s € [—loge, sg], then ®;(s) > ¢, and hence we conclude (8.7).

In order to prove (8.8), we first note that since ffcl’ogs e@ =75 ds < 1,in
order to prove (8.8)), by (8.7), it suffices to prove that

oo 4 Sx —_
54 ::[ e‘”sl(l + ‘e% —67‘) 2 ds' < C.
—loge

Applying the change of variables r = ¢*'/2, we have that

o,¢]
g = 2/ ) rz"l_l(l + ‘r —e%*‘)_(72 dr
g 2

x0
< [T e e E T a5,
&

where we have used Young’s inequality for the second-to-last inequality. The im-
plicit constant depends only on o7 and o5. O

COROLLARY 8.4. Let ®¥0(s) denote either ®2°(s) or ®}°(s). Then, for all s >
—loge,

S
(8.10) sup / 191 W | 0 ®¥0(s")ds' < eT1.
YoEZp J—loge
S
(8.11) sup / |01 W] o ®Y(s")ds’ < 1.
Yo€Zp J —loge

PROOF OF COROLLARY [8.4. From the estimates in (4.7a) and (8.8)) (with o7 =
0 and o0 = 2/3), we obtain (8.10). The estimate (8.11) similarly holds with the
help of the second estimate in (4.6). O

9 L Bounds for E and S

We now establish bounds to solutions E‘ of the specific vorticity equation (9.2)
and solutions S to the sound speed equation (2.38b). We set So{y) = S(y,—loge).
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9.1 Sound speed
PROPOSITION 9.1 (Bounds on the sound speed). We have that

©.1) |SC.5) = 0,0 < ¥ forall s> —loge.
PROOF OF PROPOSITION[9.1. By (2.33), we have that
S(-,5) =50 = €5k 4 Le=Sw — 7).
By (@.1), {.5), {.6), and {.11), and the triangle inequality,
1
HS(’S) - KTOHLOO 5 £o,

which concludes the proof. U

9.2 Specific vorticity

From (2.21), we deduce that the normal and tangential components of the vor-
ticity satisfy the system

©2a0) 8T 4V Vi@ TD = Far (£ -N) + o (E- TH),
©26) 8 E-T) +v- V€T = TN+ Fu €T,
where

V= (vi,v2,v3) = 281 (— 55 + v N+ Jii - N, va + 1, v3 + )
and
F21 =N-0, T+ 28104 TiN; + vy (N-T%) + 281N, 0x, a2
(9.3a) —2B1Nyit - T2,
(93b)  Fop = 281 T20x, a2 — 261 T200 - T2,
T3 =T8T + 28104 ATV (T3 - T2) + 281 T30y az

(9.3¢) —261Tu - TS,

F31 =N-0,T° + 28105 TIN; + vy (N-T3) + 281N, 0x, a3
(9.3d) — 22BNyl - T,

Fza =T 0T + 28104 TT7 + vy (T2 - T3,) + 281 T2 0y, a3
(9.3¢) —2B1 T - T,

(9.3) F33 =2B1Ty0x,a3 —2B1Toti - T3,

PROPOSITION 9.2 (Bounds on specific vorticity). We have the estimate

9.4) 1EC.0)] 10 = 1R )]z < 2.
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PROOF OF PROPOSITION[9.2] By Lemmal[7.1]
~ ~ 1
9.5) [9N] -+ 18, TH] + |ViN| + [ Ve TH| < &3

The transformations (2.22), (2.26c)), and (2.32) together with the bootstrap bounds
@.12), (4.18), Lemma[7.1] and (7.3) we have that

lillzee < M3, |05, G -N) o < 1. [|0x,allLee < Me . Vg < M.
Together with (4.2), it follows that the forcing functions defined in (9.3)) satisfy
(9.6) |Fij|| o S 1 fori.j e{1,2,3}.

Now, from the definitions (2.6), (2.8), (2.16), and (2.20), we have that

@& (x, 1) ¢(x. 1) = R OEF, 1) = B(F, 1) = curlz #(X, 1) = curlg (x, 1),

and

curlg 7 -N = T,Z.ng 7 -
= T20,,1 -T2 = T30y,
9.7) = Ty, a3 — Tl - T3, — Todx,az + Toii - T2,

from which it follows that

©5) 2N = To0x,a3 —Tou - T3, = Tydx,az + Tout - T3,
' (@G (x, 1)) '

By (2.32) and (9.1), we have that

99) G 1) =9 o < &5,

Hence, from (3.4), (9.7), and (9.9), we have that
(9.10) E-N| S e
We let ¢(x, t) denote the flow of v so that
drdp(x,1) = v(p(x,1),t) fort > —¢gand ¢p(x,—¢) = x,
and denote by ¢*0(¢) the trajectory emanating from xo. We define
Fij = Fijop™, 21 =(ENog™. 25 = E-T)op™. 25 = (- T)og™,
Then, is written as the following system of ODEs:
00Dy = 72,2, 093 = F3;9;.
Hence,
(9.11) 1423 + 23) = 702020 + F11 2,21

By Gronwall’s inequality on [—¢,7), with t < Ty < &, we deduce from and
(9.10) that there exists a universal constant Co > 1 such that

|220)] + |23(1)] = Co (| 22(=2)| + [23(=2)]) + ¢
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uniformly for all labels xg, for a constant Cy € (1, esl/z). Since N, T2, and T> form
an orthonormal basis, the above estimate and (9.10), together with the initial da-
tum assumption (3.20), implies that holds. The self-similar specific vorticity
bound follows directly from its definition in (2.35). O

10 Closure of L*° Based Bootstrap for Z and A

Having established bounds on trajectories as well as on the vorticity, we now
improve the bootstrap assumptions for d¥ Z and 9% A stated in (4.11) and @4.12).
We shall obtain estimates for 3” Z o ®.° and 3” A o ®;? that are weighted by an

appropriate exponential factor e#*.
From (2.49b)) we obtain that e**9" Z is a solution of

3558 Z) + DI (M9 Z) + (Y - V) (€87 Z) = e FY),
where the damping function is given by
Dg’m = 2EREY 4 gy By JOy W

Upon composing with the flow of ¥, from Gronwall’s inequality it follows that
eS10Y Z o dY0(s)|

s
(10.1) S‘E_MW/Z(yo,—IOgs)|exp(_/

—loge

Dg’;ﬂ) o (DJZ’() (S/)ds/)

S S
+ / e‘”/|Féy) o ®°(s")| exp (—/ Dg”“) o (D%Z'O(s”)ds”) ds’.
—loge s’
Similarly, from (2.49¢) we have that e/59” A4 is a solution of

35(e"58” A) + DM (MY A) + (W - V) (eH597 4) = e FD),
where
DY = 4 SOEREI 1 By By 90, W,
and hence, again by Gronwall’s inequality, we have that
e [37 A 0 00 (s)]
102) = e 110" A(yo, —loge)| exp (— /_s

loge
K K

+ / elLs’|F/§V) o (D{,() (S/)| exp (_/ D[gyaﬂ) o q)g’]() (s//)ds//) dS/.
—loge s’

For each choice of y € NS present in (4.11) and (4.12), we shall require that the
exponential factor p satisfies

3y1+y2+ys
(10.3) o< AR

D,EIV,M) o ch’/o (s/)dsl)

which, in turn, shows that

(10.4) DI < 285y1|8, W|.
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For the last inequality, we have used the bound |8;J| < 2, which follows from (4.3)
and (7.1). Combining (10.3), (10.4), and (8.11), for s > s’ > —log & we obtain

S
(10.5) exp (/ D(ZV’“) o & (s) ds/) <exp ((u — —3y'+gz+y3> (s — s/)) <1.
S/
Replacing 8, with 81 in (10.4), we similarly obtain that for s > 5" > —loge,
N
(10.6) exp (— / DY 0 0Y0(s") ds’) <1.
s/

Then as a consequence of (10.1), (10.2), (10.3), (10.5), and (10.6), we obtain
e™S13Y Z o & (s)]
< e "9 Z(yo, —loge)|

s
(10.7) + / | eMS’|Fg’) o q)JZ’O(S/)| exp ((/’L _ 3)’1+gz+)’3) (s — S’)) ds’
—loge

s
(108) e 200~ toge) + [ B FY 0 @2 ds'

—loge
and
e™S137 A o ®°(s)|
S

S Ao —togal + [ IEP 0@ ()Ids .

—loge

(10.9)

10.1 Estimates on Z

For convenience of notation, in this section we set ® = ®>°. We start with the
case y = 0, for which we set ¢ = 0. Then, the first line of (7.19) combined with
(10.8) and our initial datum assumption (3.37) show that

s
Z00)| % 1200~ loge)l + [ e a5
—loge
This improves the bootstrap assumption (4.11) for y = 0, upon taking M to be
sufficiently large to absorb the implicit universal constant in the above inequality.
For the case y = (1,0,0), we set u = % so that (10.3) is verified, and hence

from (3.37), the second case in (7.19), and (10.8), we find that

S
0z o 00)| < e 0200 ~toge) + [ HIFY 002 )lay

—loge

s _ 2
<1 +/ (14 |@1(s)?) 5 ds'.

—loge

Now, applying (8.8) with 01 = 0 and 0, = ﬁ for k > 18, we deduce that

(10.10) 3519, Z 0 d(s)| < 1,
which improves the bootstrap assumption (4.11) for M taken sufficiently large.
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We next consider the case that y; > 1 and |y| = 2. For such y we let u = %,
so that

3yityatys _ 1 1
=75 =3"V="3

We deduce from (10.7), the third case in (7.19), the initial datum assumption (3.37),
and Lemmawith o1 = % and 0, = % that

3 _3
e2*|0VZ o ®(s)| < &7 2]0" Z(yo, —loge)|

* b 2 N2V 6),— L (s—s") 7
+ (M2 +M (1+|®1(s)|) 6)e 2 ds
—loge
. K B 1
<14+m% +/ g%egMz(l +|@1(s)]) 3 ds’
—loge

17| 17

(10.11) <1+MZ +e85M2<M>

for s > —loge, y1 > 1, and |y| = 2. This improves the bootstrap stated in (4.11)
by using the factor M 2 to absorb the implicit constant in the above inequality.

We are left to consider y for which y; = Oand 1 < ‘)5‘ <2.For|y| = ‘ﬂ =1,

setting . = % (which satisfies (10.3)) we obtain from (10.8), the forcing bound
(7.19), and the initial datum assumption (3.37) that

N
(10.12) e%‘VZ o @(s)| S 8_%‘VZ(y0,—log8)‘ + Mz/ e ds' < &2,
—loge

Finally, for |y| = || = 2 we set & = 1. As a consequence of (7.19), (3.37), and
(10.8), we obtain

eSWzZ o (I)(s)‘

(10.13) ~ s 3 )y
< e_l‘sz(yo,—loga)‘ +/ e_(%_zkiﬂs ds' <1,
—loge

for k > 18. Together, the estimates (10.10)—(10.13) improve the bootstrap bound
(@.11) by taking M sufficiently large.

10.2 Estimates on 4
The goal of this section is to improve on the bootstrap bounds (4.12). The d; A
estimate is more delicate, and is obtained by considering the vorticity equation; we

postpone this estimate to the end of this subsection. In contrast, the V™ 4 estimates
with 0 < m < 2 are very similar to the estimates of Z, by setting ® = ®;°

and utilizing (3.38), (7.20), and (10.9) in place of (3.37), (7.19), and (10.8). We
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summarize these as follows:

S
(10.142)  |A o ®(s)| < |A(yo,—loge)| + M2 / e™S'ds' < Mze,
—loge
02

VAo d(s)|

< 8_%WA(y0,—log8)‘

S v
+/ (M% + M2(1 + |c1>1(s’)|)‘%)e—% ds’

—loge

s 1
1 1 1 1,1 y/ -3
Se2 4 M2e2 + M282+8/ e FAHPIEIDTS g/

—loge
(10.14b) < M2g2
e* V240 0(s)| 5 67! [V2A(yo, — log )|
N o 1
(10.14c) +/ eziﬁ(1+|cb1|2) 6 ds’' <1
—loge

where we applied (8.8) first with o = % and o, = %, and then with o7 = %

and 0 = §. Taking M sufficiently large, the bounds close the bootstrap
assumption for 3V A when y; = 0.

It remains to close the bootstrap assumption on d; 4, for v = 2,3. For this
purpose we use the vorticity estimate given in Proposition and the following
representation:

LEMMA 10.1 (Relating A and €2). The following identities hold:

¢TI0 Az = (@S)aQ T3 + LT2 (3, W + €39, 7) — €3N0, 42
(10.15a) — Lk +e72W + Z)(eurlz N) - T3 — A (curlz T2) - T3

e308143 = —(@S)aQ -T2+ LT3 (9, W + €39, 7) — €3N8, 43
(10.15b) + (ke +eT2W + Z)(curlg N) - T2 — As(curlz T3) - T2,

Assuming for now that Lemma [T0.1 holds by combining Propositions [9.1] and
[9.2] with estimates (@.6), (4.11), (4.12), {.5), and (7.1)), we deduce that

1
(10.16) 3501 Ay| S k& + (142 M) + (o + £6 + Me) + Me.

The above estimate thus improves on the bootstrap assumption for d1 A, by taking
M to be sufficiently large in terms of kg, and then ¢ sufficiently small in terms
of M. The estimates (10.14) and (10.16) thus improve the bootstrap assumptions
on A, and it remains to prove Lemma [I0.T.
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PROOF OF LEMMA [10.1. We note that for the velocity 1 and with respect to the
orthonormal basis (N, T2, T?) we have that
curlg 17 = (dpatt - N — Onti - T°)T? — (9227 - N — i - T2) T°
+ (dg2i - T — Oq321 - TA)N.
Now, from the definitions (2.6), (2.8), (2.16), (2.20), (2.32), and (2.35), we have

@8)""(y,)Qy,5) = @8 (x, 1) "E(x, 1) = BE DEE, 1)
=o(X,t) = curlz #(X, 1) = curlz u(x, t).

In particular,
(@8)"(y.5)Q(y. 5) = curlg fi(x.1)
= curlg ({(¥ — f(¥.1), %2, %3, 1)).

We only establish the formula for 91 A3, as the one for 91 A, is obtained identically.
To this end, we write

curlg i - T2 = T705,1(x, 1) - N — N;jdg, i(x. 1) - T°.

(10.17)

By the chain rule and the fact that N is orthogonal to T3, we have that
05,1 (x. )T} = 51T} — fr Oy Ty + O, UTy = IN- T2y, 26 + 0y, 0T,
= 0y, 1(x,0)T3.
The important fact to notice here is that no x;-derivatives of 1 remain. Similarly,
3%, 1(x, 1)Nj = 93, uNy — fi D 1Ny + 0, Ny, = IN - Ny 12 4 9y, %N,
= J0y 1t + 0y, 2(x, £)N,.
Hence, it follows that
curlg 1t - T2 = Tﬁaxvﬁ(x, t)-N
—J0y, (i1 - T?) — Ny oy, u(x,2) - T3
= T30y, (11(x, 1) - N) — Jdx,a3 — Nydy, (i (x,1) - T?)
— 1 (x,1) - (3x,NT) — 35, T° N,
= %Tiaxu(w + z) —Jox, a3 — N, dx, a3
(10.18) + (3w + 2N+ ayT") - (INT? — 913N)

where we have used (2.23), (2.22), and (A.22). The identities (10.17) and (10.18)
and the definition of the self-similar transformation in (2.25) and (2.26) yield the
desired formula for d; As. O

11 Closure of L°° Based Bootstrap for W

The goal of this section is to close the bootstrap assumptions that involve W, w

and their derivatives, stated in and (4.7a)-(4.9).
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11.1 Estimates for ¥ W (y, s) for |y| < £

The fourth derivative
We note that the damping term in (2.54) is strictly positive if |y| = 4. Indeed,
for |y| = 4, we have that

D%) = A drs=l o g (W + 191 W)

= % + y1 + Bd (31W+)/131W)
(11.1) >2+y—(1+2Me)(1+ 1) = 5.

where we have used (4.3)) and (.10).
Using (11.1) and composing with the flow ®3°(s) induced by # whose initial
datum is given at s = —log e as ®;° (—log £) = yg, we obtain from (2.54) that

LW o ®) + (D) 0 &) (3" W 0 @) = F) 0 0.

Appealing to (7.24), the Gronwall inequality, the damping lower bound (11.1), and
our assumption (3.33) on the initial datum, we obtain

1) 97 0 ®22| < &b + £19 (log M) 711 4+ 197 W (30, —log e)|

< aé + E%(logM)M_1

for all |yo| < £ and all s > —loge such that |®}°(s)| < £. Using a power of &
or the extra log M factor to absorb the implicit constants, we have thus closed the
bootstrap assumption (4.8b): indeed, by Lemmal8.2)we have that given any |y| < £
and s > —loge, we may write y = ®°(s), for some yo with || < £, and that
|70 (s")| < £ forall —loge < s’ <s.

Estimates for ¥ W with |y| <3 and |y| < ¢

In this subsection we improve on the bootstrap assumptions (4.8a) and (4.9).
First we recall that W' satisfies the constraints (5.1), and that the power series for
W near y = 0 is given by

W) = —y1 + 3 + y1y3 + y1y3

(11.3) —3y7 —y1ys — 1y —4yiys —4yivi —201y3y3 + 0(y[%).
Based on this information, we have that
(11.4) W(0,s) = VW (0,5) = VW (0,s5) = 0.

Consider now the bound on 3" derivatives with |y| = 3 at y = 0, with the goal of
improving (4.9). Evaluating (2.54) at y = 0 yields

853 W) = FI° — G (918" W)° — hli;(8,,0” W)°
— (14 y1)(1 = Bo) (@ W)°.
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Using (4.8b), (4.9), (6.4), (7.21), and (4.3) we obtain that
105 (87 W)?| < e~ G575 4+ M(log M)*e

1075 + Mese™
(11.5)

1 4
< e G,

Therefore, upon integrating in time, using that W is independent of s, and appeal-
ing to our initial datum assumption (3.34), we have that

S
(11.6) |8VW<o,s)|s|aVW(o,—logs>|+/ 195 (7 W)O(s)|ds” < e,

—loge

Bl

where we have used the bound (11.5) with £ > 18. In summary, we have shown
that

(11.7) |97 W (0,9)] < f5et

forall |y| < 3, and all s > —log&. This closes the bootstrap bound (4.9).
The estimates for 0 < |y| < ¢ stated in now follow directly from (4.8b),
(11.7), (11.4), and the fundamental theorem of calculus, by integrating from y = 0.
To close the bootstrap bound for | y| < £, we note that the bound follows
by setting y = 0 in (4.8a), and using that ¢ is sufficiently small. For (4.7b), the
bound in the case |y| < £ follows by setting y = (1,0, 0) in (4.8a), and using that
M 360 < eTT. For ®.7¢), in the case | y| < £, the desired bound holds by setting

ly| = 1 in (4.8a), and using that (log M)4Z38T10 LT3

11.2 A framework for weighted estimates

In order to close the bootstrap estimates and (4.7) for | y| > £, we will need
to employ carefully weighted estimates. If % is the quantity we wish to estimate
(either 8¥ W or d¥ W), we will write the evolution equation for & in the form

(11.8) 0sH + Dyp B + Vw - VE = Fop,

where Dy denotes the damping of the & equation, and Fy is the forcing term. If
we let

qg: =0z
denote the weighted version of % (we will use exponents p with || < %), then g
satisfies the evolution equation

(11.9) dsq + (D —n"Yw - V') g + Yw - Vq = " Fp.
N’
=:Dy =Fy

and we can expand the definition of &, as
Dg = Dg—3u+3un!
- 4
(11.10) —2un (11 (BIW + Gw) + 3hyy | F]).

—
=,
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Note that D,, is independent of p. By Gronwall’s inequality, and composing with

the trajectories ®3° (s) such that ®°(s¢) = yo for some s¢9 > — log & with |yg| >
£, we deduce from (11.9) that

00932001 < g0 exp( -

S

s
Dy o @{f(s’)ds’)

0
N N

(11.11) +/ |Fg o @32(s)| exp(—f Dg o @) (s")ds")ds'.
S0 s’

We note that the 3un~! term in the definition of D, in satisfies —3un~! o
®70(s) < 0 whenever ;1 > 0, and thus this term does not contribute to the right
side of (LL.1I). Next, we estimate the Dy, contribution to the exponential term on
the right side of (11.11), as this contribution is independent of x and is a priori not

sign definite. Using (4.6) to bound W, (7.2) to estimate J, (4.3) to bound B, (7.4)
for Gy, and (7.6) to estimate Ay, we deduce

_ 1 .14
Dyl < 07 (4ly1ns + [l |Gw | + 3|y, 1yl |7]7)
< 477_»% + Mn_% (Me_% + M%|y1|e_s + S%M) + 6M2n_%e_%

(]

(11.12) <573 4e”

for all s > —loge, upon using (4.5) and taking ¢ to be sufficiently small in terms
of M.

The case £ < |yg| <= Z
Composing the upper bound for Dy in (11.12) with a trajectory ®70(s) with

|yo| > £, and using (8.4) and the bound 27(y) > 1 + |y|2, we obtain from (11.12)
that

M 00 o /
2M/ | Py 0 @32 (s")] ds” < / 10 (1 - ﬁze%(S/_SO)) Y peT3ds
S0 s,

(0]
(11.13) < 65log } + 6% < 70log L,
since so > —loge, £ € (0,1/100], for all || < 1. Combining (IT.TT) with
(11.13)), we deduce that
g 0 @7 (s)|
N

<€77%q(yo)| exp (/ (3 — Dy —3un")o qD¥V(’(S’)dS’)
50

N

(11.14) - exp ( / (B —Dgz—3pn)o @%)(s“)ds“) ds’.
s/

To conclude our weighted estimate, we need information on the size of g(yg). We

recall that for any s > —loge and any £ < |y| < .Z, there exists 5o € [—loge, s

and yo with £ < |yg| < .Z such that y = ®3°(s). This follows from Lemma

by following the trajectory ending at (y, s) backwards in time. We also note that in
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the situation where sg > —loge, we have |yg| = £. Therefore, g(yo) is bounded
using information on the initial datum if so = —loge, and appealing to bootstrap
bounds which hold for all s > —loge and |yg| = £. The bound will be
applied in the following subsections for various values of p, with || < % and

with Z being either equal to W or w.

The case |ygp| > &

The only difference from the previously considered case comes in the upper
bound (11.13)). In this case, we have that for |yo| > £ > 4

s
2Mf ‘QnOQ%)(s/)‘ds’ff
S0 S

0

o0
s’

10(1 + .i”ze%(sl_s"))_% +e 3ds

(11.15) <80.77% 4¢3 <egle,

for s > —loge and || < % Combining (11.11) with (11.15), we deduce that
g o @3 ()]

1 S
< e®®|q(yo)| exp (/ (Bu—Dz —3un")o <I>¥V°(s/)ds/)
S

0

1 S
+e8'° / |Fy 0 ®°(s)|
S0

7

N
(11.16) - exp (/ (3u—Dg —3un"")o cbﬁ;)(s”)ds”) ds’ .
S

The bound on |q(vg)| will now be obtained from the the previous estimate (11.14)
when s¢ > —log ¢ (since in this case |yg| = %), or from the initial datum assump-
tion when sg = —log ¢ (since in this case |yg| > .£).

11.3 Estimate for W (y,s) for{ < |y| < .Z

We now close the bootstrap bound forf < |y| < Z. Welet Z = W,
i = —1/6, so that the weighted quantity ¢ is given as g := n_l/GW. We use
the evolution equation (2.53), so that in this case the quantity 3y — D — 3un™!
present in equals —BJ91 W + 1771, while the forcing term F, equals to
/6 Fyy.

First we estimate the contribution of the damping term. Since |fzJ| < 1 + &!/2
holds due to and (7.1), and since for |yo| > £ we may apply to the trajectory
estimate (8.4), by also appealing to the bootstrap assumption for d; W in and
the bound 771/3(y/2) < 4n~1/3, we conclude

S
/ BelJd1W o @30(s)) + 51" o @ (s")ds’
Y
(11.17) 0 -
< 5/ N3 0 &0 (s")ds' < 4010g%
S

0
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as in (11.13) for all s > 59 > —loge. Second, we estimate the forcing term in
(11.14). Using the vy = 0 case in (7.14) we arrive at
N N
(11.18) / ‘n_%FW‘ o ®0(s")ds’ < 8t13/ 73 0 dYO(s))ds' < &8 log 7
S0 50
forall s > s > —loge and £ € (0, 1/10].
Inserting the bounds (11.17) and (11.18) into (11.14)), we deduce that

(11.19) [(776 W) 0 ®32(s)] < €710 (o) | W (yo. 50)| + Mes L™ 0 log ¢!

where M absorbs the implicit constant in (11.18]). Using the initial data assumption
(3.324) if s = —loge, and if so > —log e, we deduce from (11.19) that

(11.20) n_%(y)|V[~/(y,s)| <110 max{MgTIOK“,S%} + Mséﬁ_llologﬁ_l

1 L
L o171
= 10¢

forall £ < |y| < £ and all s > —loge. Here we have used a small power of &
to absorb all the £ and M factors. The above estimate shows that (4.7a) may be
improved by a factor larger than 2, as desired.

11.4 Estimate for d.W (y,s) for £ < |y| < &

Our goal isto close the bootstrap bound (4.7b) for £ < |y| < Z. We let Z =
IW, u = %, so that the weighted quantity ¢ is given as g := n%al W. We use
the evolution equation (2.54) with y = (1,0, 0), so that the quantity 3 — Dz in
equals —B;J(3; W + 31 W), while the forcing term F, = n1/3f§’0’0).

As in the previous subsection (see estimate (L1.17)), we have that the contribu-
tions to due to the damping term 31 — D are bounded as

N
(11.21) / BN W + 3 W) o D0(s")ds' < SOlog%.
50

On the other hand, the forcing term F,; = n/ 31%; 00) i estimated using (7.22)
pointwise in space as

and thus, similarly to (11.18)) we obtain

N
(11.22) /S |Fgl o ®30(s")ds” S 617 log L.
0

Combining (11.21) and (11.22) with (11.14), and using our initial datum assump-
tion (3.32b) when 59 = —loge, respectively (4.8b) for s > —loge, we deduce
that

n%(y)|31 W(y,s)| < (7150 max{MeTl()£3, STII} + MeTr (150 log¢~!

1

(11.23)
< 1—108 12



FORMATION OF POINT SHOCKS FOR 3D COMPRESSIBLE EULER 73

forall £ < |y| < £ and all s > —loge. Here we have used a small power of &
to absorb all the £ and M factors. The above estimate shows that (4.7b) may be
improved by a factor larger than two, as desired.

11.5 Estimate for §W(y, s)ford <|y| <%

The proof of the bootstrap for |y| > £ is nearly identical to the one
in the previous subsection, so we only present here the necessary changes. We let
Z = VW and ju = 0, sothatg = VIW. Using (2.54) with y € {(0,1,0), (0,0, 1)},
we obtain that in this case 3u — Dy = —B¢Jd1 W, while the forcing term is
Fy = F, V(I}/ ). The integral of the damping term arising in (11.14) is bounded using
by 401log £~!. On the other hand, the forcing term is bounded using (7.23)
by £!1/12=1/3 Therefore, as in (11.22), the integral of the forcing term composed
with the flow ®}2(s) is bounded as < e1/1215g ¢!, Combining these two es-
timates, with our assumptions on the initial datum and (4.8b), we arrive

at
1

WW(y, s)‘ < g1 max{Meﬁﬁz’,elZ} + Mgtz (110 log ¢!

(11.24)

< l.13
= j0¢"

forall £ < |y| < _.Z and all s > —loge, thereby improving the bootstrap bound

@.7¢).

11.6 Estimate for ¥ W(y, s) with |y| = 2for |y| > £

Our last remaining W bootstrap bound is (4.6). Recall that W = W + W, and
thus, the |y| = 0 and |y| = 1 cases of follow directly from the properties
(2.47) of the function W, and the previously established estimates (4.7a)—(#.7c).
Thus, it remains to treat the cases for which |y| = 2, which are the third and
respectively the fifth bounds stated in (4.6).

For |y| = 2, we let Z = d¥ W, and we define u as

for|y|=2and y; > 1,
M:

1
3
% for |y| =2and y; = 0.

According to these choices we define ¢ = 5 dY W, and appeal to the evolution
equation (2.49a)) to deduce that the quantity 3 — D4 present in (11.14) equals
—2)"2_1 —Q2y1 — DB W for|y| =2and y; > 1,
—BJoy W for |y| =2and y; = 0.

(11.25) 3u— Dy = %

We now consider these two cases separately.
The case y; = 0 and ‘]?‘ = 2 is similar to the cases treated earlier: as in (11.17)
we have

N
(11.26) /s BelJd1 W] o @3 (s")ds" < 40log }
0
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and similarly to (11.18), by appealing to (7.18), using that —% — Tl—7 > —11—2 for
k > 10, we have

S S
(11.27) / s B o @30(s')ds” < M3 / 12 0 ®)0(s')ds' < M ¢ log 3.
S0 N

0
By inserting the bounds (11.26) and (11.27) into (11.14)), we arrive at
1 = _ 1 = 5.
ne (M| V2W(y,9)| < €16 (yo)| V> W(yo. s0)| + Mt~ Olog }
< g~1o max{M%, ZMSII*OEZ} + M%K_UZ

for £ € (0,1/100], where we have also appealed to our initial datum assumption

(3.36b) when sg = —loge, and to (4.8a) when s > —loge. Since by (3.31a) we
have £ = (log M), we have that

(11.28) 12 < Lys

by taking M to be sufficiently large, and so we obtain an improvement over the
V2W bootstrap assumption in (@.6).

To conclude, we consider the cases when |y| = 2 with y; > 1. In this case, by
appealing to (11.25) and (11.26), we obtain that

s .
(11.29) exp (/ (3/fL —Dgo q)?j‘?(s//)) dS//) < 6_120€S 5
K}

4

for any s > s’ > 59 > —loge. On the other hand, from (7.18) we deduce that

(11.30) Fgl < 3| FP) < M55,

Combining (11.29) and (11.30) with (11.14), for |y| = 2 with y; > 1 we arrive at

1 _ 1 w1 § s'—s
N3 Wy, )] < €73 (50)[8” W(yo,50)| + M 5 Tt 190/ e ds

S0
171
(11.31) < 070 max{M s, 2MeT002) 4+ 2M 5 o190

by appealing to our assumptions on the initial datum assumption (3.36a)) if 5o =

—log &, and to (4.8a) when s > —log ¢. Since by (3.31a) we have £ = (log M),
for M sufficiently large, the bound

(11.32) (7190 < Lys

holds, and we obtain an improvement over the 3¥ W bootstrap assumption in (4.6).

11.7 Estimate for W(y,s) for |y| > &
The bounds in this section are similar to those in Section|11.3, We use . = —
and Z = W,sothatg = n_% W . From (2.28a)), we obtain that 3 — Dy — 3un™

1
6
1
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equals to %r}_l, while the forcing term F; equals n_% (Fw — e_%ﬁr/'c). In order to

apply (LL.16) similarly to (11.15), we use Lemma 8.2]to estimate
N o
/ 21 o @ (s)ds” < f (1+ L2356 =50) g/ < =5 = o6
N

0 S0
while using (7.11) and (4.1b) we derive

N

N / 1
[1Feeiisas < [ ¥ s b,
50 S0
Inserting the above two estimates into (11.16)), we obtain

_1 = 1
[T W 0 @Y (s)] < e (lg(vo)| + 7).
In the case so > —loge, we have |yg| = %, and so from (4.7a) and the first
inequality in (2.47) we have that |g(yo)| < 1 + /11, On the other hand, when

so = —log ¢ we use the initial data assumption (3.354), so that |¢(yo)| < 1+¢&'/11.
In summary, from the above bound we deduce that for any |y| > £ we have

1
(11.33) S W(y,5)| < ™ (1 + 61T +63) <1467
for ¢ sufficiently small, which improves the bootstrap in the first line of (4.6).

11.8 Estimate for d; W(y,s) for |y| = &

In order to close the bootstrap for the second bound in (4.6), we proceed sim-
ilarly to Section|11.4. Letting g = n'/39, W, from the evolution equation (5.3a)
we deduce that the damping term at the exponential in (11.16) obeys

3 — Dop —3un~" < —BJ0 W,

while the forcing term Fy; is equal to r]l/3FI§[}’O’O). Using the d; W bound in (4.6)
for |y| > %, and Lemma|[8.2] with | yo| > .Z, similarly to (L1.15) we obtain that

S N
/ (3 — Dz —3un") o @} (s)ds’ < 3[ 3o D0 (s")ds' < g6,
S0 S0

On the other hand, from the second bound in (7.18) and the fact that £ > 18 we
similarly deduce that

§ 1 s 1 1 3

/ |Fy o D0(s)|ds’ < 88/ n3"27T =5 o O0(s")ds’
S0 S

0

N

1 _ 1 1

588/ 15 0 @Y (s)ds" S €3
S0

since |yg| > .Z. Combining the above two estimates with (11.16)) we deduce that

1
301 W 0 ®3(s)] < €27 (1g(vo)| + 7).

When s¢ > —log e we have |yg| = %, and g(y¢) may be estimated using the sec-
ond estimate in (2.47), the fact that ?)'_1/ 3 < 7]_1/ 3, and the bootstrap assumption
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@.7b) as |q(yo)| < n'/3|8.W| + 771/3‘81W‘ < 1 + £Y12, On the other hand,
when 5o = —loge, we have |yg| > £, and from the initial datum assumption
(3.35b) we also deduce |go(yo)| < 1 + £1/12. Combining these bounds with the
above estimate along trajectories, we deduce that

1
(11.34) 301 W(y,5)| < e (1 + 6 +67) <3

forall |y| > £ and s > —log ¢, thereby clsoing the bootstrap bound on the second
line of in this y-region.

11.9 Estimate for VW(y,s) for |y| > £

Closing the third bootstrap in for |y| = £ is done similarly to Sec-
tion|11.5. In this region we have that & = 0 and ¢ = VW. From (5.3b) and (5.3¢)

we deduce that that damping term is given by 3 — Dy — 3un™! = —BJO W
so that we may use the same estimate for it as in the previous subsection. For the
forcing term we appeal to the fifth case in (7.18), which bounds | F;| from above
by M281/37]_1/3, so that
s
/ ‘Fq o @ﬁ?(s')‘ds’ < 8%

50

for |yo| = £. We deduce from (11.16) that

WW o dP(s)] < ezeﬁ(WW(yo)‘ + 8%).

For s9 > —loge we combine the third bound in (2.47) with (@.7c), while for
so = —loge we appeal to the initial datum assumption (3.35c) to deduce that
‘VW(yo)‘ < %. We deduce that

- 1
(11.35) VW(p.s)| <™ (3 +6%) < 2
holds for all |y| > .Z and all s > —log &, which closes the bootstrap from the third
line of (4.6).

12 H* Bounds

DEFINITION 12.1 (Modified Hk -norm). For k£ > 18 we introduce the seminorm

(12.1)  EX(s) = EZIU.SKs) := > A(Jo7 U 9)II7, + 1107 S(-.9)13,)
lyl=k

where A = A(k) € (0, 1) is to be made precise below (cf. Lemma|12.2).

Clearly, E,f is equivalent to the homogenous Sobolev norm H k. and we have
the inequalities

(12.2) U+ 1S1%6) < EF < IU IRy + 1S 13-
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12.1 Higher-order derivatives for the (U, §)-system

In order to estimate Ey (s) we need the differentiated form of the (U, S)-system
(2.38). For this purpose, fix y € NS with |y| = k, and apply 9” to (2.38) to obtain

05(07 Ui) = 2P1Bre™ Qi (0" Uj) + (Vu - VIO Ui + 20" U
+ Be(B3 + B3y1)IN; 91 Wa"'S
+2BcP3S (INie? 9187 S) + 73579, (87S))
(12.3a) = yg),
950 S) + (Vu - V)'S + 2,,9" S
+ Be(B1 + Bay1)IN; 0V U0 W

(12.3b) + 28838 (e3UN; 3, (8" Uj) + ¢ 733,07 U,)) = F,
where the damping function &, is defined as
(12.4) Dy = i1+ digu) + 5171,

the transport velocity ¥ is given in (2.36¢])), and since |y| > 3 the forcing functions
in (12.3) are given by

(12.5a) 9((}:) _ F((]]i/,U) + F((J;i/—l,U) + F[(]),,/’S) + F((J),-/_I’S),
FPY) = —2B.p1(e2IN; 3 U;ih Uy + =207 Uy 0, Uy)
- Y prtaifau

1Bl=y|-1
B=v.B1=n1
CY Gy,
1B1=ly|-1
<y
) ».0) ».U)
(12.5b) = Fy.o) T Fuoe 1 Fu.e)
(_13U)_ - a
R == 3 (@ eodnti v a,0)
1<|B|<ly|-2
B=<vy
— 2B prez[3”. IN;]U; 1 U;
o py=1U) y—-10)
(12.5¢) = gy Yy 0

(125d)  FY = —2B.pse™3670,897S

—28:B5 Y (§e 267 Psoba,s

1Bl=ly|—1
B<y

+ BeBae3IN;(1 + y1)0, 20" S
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—2BB3 Y. (§)e2d P (SIN)Po S

|Bl=]y|-1
B=<y.B1=v1
. S .S) w.S) .S)
(12.5¢e) =: FU,-(l) + FU,»(z) + FU,~(3) + FU,,(4),

FgTt = 0By Y (P SNDP oS
1slBl=lvi—2 472573V P $9P),9)

B=<y
(12.5f) —2B.B3e2[0” . IN;]S .S,
and
(1263) ﬂé)’) — FS('%S) 4 FéVaU) 4 Féy_las) 4 Féy_l’U),

Fé%s) — _213.5133(6%81/5\.”\]]81[]] + e_%aysaqu)
Z (’)é)ay—ﬁgUaﬂ 9.8

181=ly|—1
ﬂfyaﬂl:yl
(12.6b) - Y (5 Prpofas,
1B1=ly|-1
Y4
(12.6¢) FOY) = —28,B1e7%0,89"U,
—2B:83 ) (g)e—%ay—ﬂsaﬂavm
1B1=ly|-1
<y

+ Be(B1 + Bay1)e2IN; 0,1 Z3" U

(12.6d) —2B:B3 Y. (g)e%ay—/’(SJN.,-)aﬂalu,-,

1Bl=lyl-1
ﬂSyvﬂl:yl

Fg =— 3 ()07 PeudPons + 3Py 0P, s)

1<|Bl<|yl—2
B=y

—2B.B3e2[87,IN;]S0,U;
—2B:pze> . (5 P(SIN)FoU;.

1<|Bl<|yl-2
B=y

(12.6¢) —2B:Bse”r Y (HorPsoPa,u,

1<[B|<|y|-2
<y

(26  FYBY = _28.81e3[37,IN;]U;3,S.
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In (12.5) and (12.6) we have used the notation [a, b] to denote the commutator
ab — ba. Here we have also appealed to the fact that f and V' are quadratic
functions of y, whereas JN is an affine function of y; therefore 3¥ annihilates these
terms.

12.2 Forcing estimates

In order to analyze (12.3) we first estimate the forcing terms defined in (12.5)
and (12.6). We shall sometimes denote a partial derivative 8" with |y| = k as D¥,
when there is no need to keep track of the binomial coefficients.

LEMMA 12.2. Consider the forcing functions ff(y.) and F defined in 12.5) and
Ui S
(12.6), respectlvely Letk > 18, fix 0 < § < ﬁ,
12.1) as A = —=. Then, for ¢ taken sufficiently small we have
12k

and define the parameter A from

(12.7a) 2y A|V|/ | ZD 07U < @+ 8§ EZ + e ML,
lyI=k

(12.7b) 2 3 )L""f |17 9S| < @+ 88)EZ + e~ Mk,
lyI=k

PROOF OF LEMMA [12.2. We shall first prove (12.7a)), and to do so, we estimate
each term in the sum (12.52a). We first recall the decomposition of the forcing

function F; (y’U) n (12.5b) as the sum

Ui,(1) U;,(2) (3)’
and we recall that by definition we have
(12.8) Ui =U-NN; + A, T = 37 2W + 1+ Z)N; + A, TY.
From (7.1), J] < 1 + g%, and using
(12.9) Bebr<(1+ed)y <1

for ¢ taken sufficiently small. Hence, for the first term in (12.5b) we have that

2 3 [ IR o

IvI=k
< 4EZ((1 + e%)e3 [01U | oo + ¢ 3V U |0
<271+ o) (|1 W | o + €3

+ e VW | oo + €73 V2] oo
+2072||VA| oo + e ZILoe + 75| Al Lo0)
(12100 < (2+¢&2)E2,
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where we have used (7.1)) on the second inequality, and (4.6)), (4.11), (4.12) for the
last inequality.
Next, for the second term in (12.5b) we have

2 3 A'V'/ |Fe 07 U]

lyI=k
<Zf 2P oru| Y ()0 Peu||8PaiU]
ly|=k |Bl=ly|—1
B=y.B1=v1
< 3 W0 U Vel e X AT P00,
lyl=k 1BI=ly|-1

B=<y.B1=v

where we have used that |y| — %|,3| = %(I)?I + 1). By Young’s inequality, for
5 >0,

2 3 [ IR v

lyl=k

-y (—4'2'2Wguuimx'f'“uawiHiz+ 3 sx'ﬁ'uaﬂaluuiz).
—k Bl=|y|—

! vy A

Note that for each y with |y| = k, and for each 8 with || = k — 1 and B; = 1,
the term )L‘ﬂ | [ gbteiy H » defines a different summand of EZ. Moreover, from

the definition (2.29¢)), the bounds (4.6) and (7.5) we obtain that IVgu e < 1.
Hence,

(12.11) 23 A|V|/ \F[(]’:jg)) IU;| < (/\“SL2 + §)EZ.
ly|=k

Similarly, from (or alternatively, the definition and the bootstrap
assumptions (#.1)-(@.12)), we have | Vhy || ;oo < &; hence, it immediately follows
that for ¢ taken sufficiently small the contribution from the third term in is
estimated as

(12.12) 2 )" A'Vlf [FD 07Ui| < e2 B2,
lyI=k

7 While here for simplicity we appeal to the second bound in (7.5), we note that this bound just

directly follows from the definitions (2.29c) and (2.27) and the bootstrap assumptions (4.1a), (.1b),
(.5), and (@.11). In particular, none of these bounds rely on Proposition[4.3] which is proven in this

section. The same comment applies for the bound H ﬁhU H oo S &

~
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Combining (12.10)—(12.12)), and using the definition of A from Lemma[12.2, we
obtain

(12.13) 2y Al RJFI(,,V,’U) U <2(1+8+e2)EZ,
lyl=k
where § is a small universal constant. We emphasize that our choice of A only
enters the proof in the transition from (12.11) to (12.13).
We now estimate the next forcing term F[(]’:_l’U) in which we have

decomposed as F((]’;_I’U) = F((J’,'_(ll)’U) + F[(]y_(zl)U) Our goal is to split off the

A from the W and Z contributions to these terms, since the bootstrap assumption
for A in (4.12) does not include bounds on the full Hessian V2 A. Using (12.8) we

write F [(J),/Z11)U) as

(12.14) FY D =+ .0+ .95,

where

Si=— Yy (B Peud’anU-NN,
1<|8|=lyl-2
B=y

== > (5P @:4,T),
1<|B|<ly]-2
<y

Fs=— > () Phyofau
1<IB|<ly|-2
=y

First, for the .#] term in (12.14), by Lemma@for q= %, we have that
> W'/ .71 07 U; |
(12.15) =k '®
S ok P o v 1 o DRG] e 1o 1

where a and b are given by (A.30), and they obey a + b = 1 — 2k1_—4' Note
by (2.29¢)) that gy does not include any A term. Thus, using the bootstrap bounds

(@.1)-@.11), or alternatively by appealing directly to (4.6), (7.1) and the last bound
in (7.5), and the definition of 2 (s) in (4.4), we deduce that

(12.16) HngUHLq(%'(s)) < MH”/_é HLQ(%(S)) + Me_%|3£”(s)|5 <M

since g € [%, 6) for k > 18. Similarly, from the first four bounds in (4.18) (bounds
which do not rely on any A estimates) and from (7.1) (which only uses (4.1a) and
{@.5)), we deduce that

[D2(U -NIN)| Loy S Me3| N | Loy + Me™|2 ()|
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(12.17) < Me™3.

Moreover, by (2.14), (2.29¢)), and the fact that D¥ annihilates f and JN - V, we
have that

D¥gy = 1Bee: DF(J(k + e 2 W + Z))
= 2B1B: D¥(JU -N)O = 28 B1e2 DX (U1 — e 2 ¢y, Uy) |
so that from (4.1a) and (4.4) we obtain
(12.18) |D*gu ;> S e U g

By combining (12.16)—(12.18) we obtain that the right side of (12.15) is bounded
from above as

b 1— 1-b
[P gu]z2D* U] 12 D% | | P2 (W - NN L [ DEU | o
DU e M2 (M e3P U

H 1+a+b

(a+b 1)s
M2 a— b

Recalling from Lemma@that l—a—b= ﬁ € (0, 1), and using the norm

equivalence (12.2), by Young’s inequality with a small parameter § > 0, we have
that the left side of (12.15) is bounded as

- oy (atb—Ds —k(l+a+b)
A|V|/ AU < CeMP P 2 A 2 ETATP
R3

(12.19) ly|=k
<SE} + e SM¥3,

In the last inequality we have used that by definition A = A(k,§), § € (0, 32] is a
fixed universal constant, and Cj, is a constant that depends only on k; thus, we may
use a power of M (which is taken to be sufficiently large) to absorb all the k- and
0-dependent constants.

Next, we estimate the .#, term in (12.14). First, we note that by we have

k—2
1920122 5 31D Dgull aucn D/ (14T 200
J—l

17 17

3 ZugUn |Dgo IF2 191 4, T”Im AT T
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Then, by appealing to (2.29¢), #@.6), @.12), (7.1), (7.5), (12.2), (12.18)), and (A.26),

we deduce

k=2 k—1-j ‘ i s\ K17
12202 £ 3 (31U N0) © 7 (14l e + Mee™ 329) 7T (e 3) 7T
j=1
k2 k k—1—j k k42 o\ L k—1—j
SY (AT2ER) FU(AT2ER + Meem 2 )T (Me™S) KT
j=1

< (Me)FTA™SE, + Me™

since ||Dgy il < 1. By taking & sufficiently small, in terms of M, A = A(k,§),
and k, we obtain from the above estimate that

(12.20) 2 )" A'Vlf |7 Us| < eX EZ + e
lyl=k
for all s > —loge.
At last, we estimate the .#3 term in (12.14), which is estimated similarly to the
4, term as

k=2 )
175022 S Znhm

1 /\1—

IIDhUII ||a AN Uil 5T

Hkl

From (2.30c)), (4.6), (4.1 ), (4.12), (7.1), and the Moser inequality (A.26), we have
180l e < € 3INU NI gpac + ™3 1Ay T |
< Me_%||U||Hk + Mee™ "3,

On the other hand, by (7.6) we have |Dhy ||~ < e™*, while from {.6), (4.11),

(#@.12), and (12.8) we obtain ||§U Lo < ez, Combining the above three esti-
mates, we deduce that

k—1—j i J . k—1-J
_s -2 — R - 5 A/
17502 S Y (Me 3|l gac +¢72) F 7 e Frf U5 T e 2w 0

SMe Ul e +e7°,
from which we deduce
(12.21) 2 )" )U”/ |7 U;| < e3E2 + ¢
lyI=k

upon taking M to be sufficiently large in terms of k, and ¢ sufficiently large in
terms of M. Combining (12.19), (12.20), and (12.21), we have thus shown that

(1222 2y Wlf \F(V (II)U’ U] < (8 + e +e2)E} + M¥*2675,
Iyl=k
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To estimate the integral with the forcing function F =LY defined in (12.50),

Ui, (2)
we first note that due to the Leibniz rule and the fact that D2(JN) = 0, we have
[Ny = Y0 (Ha PNy,
|Bl=k—1,B<y

for |y| = k. Hence, by (7.1) we obtain

22”'/

S 07U S e o [ DF71U o[ DFU
Iyl=k ’

Ui ’(2)

< ce 3| D10 o DRU

where we have used (12.8), together with the bounds (4.6), @.11), (¢.12). By
(A.27) applied with ¢ = DU, which thus obeys ||¢||r =< e2 and Young’s
inequality with § > 0,

(12.23)
2y W'/RJFI(ZE)’U) 00| < sd(em) s |U |} S < SER 4 e
IvI=k

where we have used ¢ to absorb all k¥ and § dependent constants. Hence, (12.22)

and ((12.23)) together yield

(1224) 2 ) l|?|/‘3|Fl(])./_l’U) Ui <208+ eX)EZ + 2 M* 2,
R‘ 1
Iy I=k

Now, we turn to the forcing function F; ((J’:’S) in (12.5¢)) which we have decom-

posed as F [(]’:’S) =F l(]y(f)) +F l(,yé; +F ((,yé; +F ((]y(i;, and bound each of these con-
.8
F,

tributions individually. We first note that the bounds for the integrals with F;/ 1

and F ((Jyé; are obtained directly from the VS estimate in (4.18) and the 01 Z esti-

mate in (4.11), yielding

(1225 2 A""[

».5) ¥,9) . 2 —s 2 1.2
R:;‘(F _|-F )BJ’U,‘ SM e sEk SEzEk.
lyl=k

U;,(1) U;,(3)

The bound for the integral with F [(]yé)) is obtained in the same way as the bound

for 9[(]):?3)) in (12.12). Indeed, as far as our bounds are concerned, 9P d, S behaves
1

in the same exact way as 3£, S, and by #@.18) we have || VS|~ < Me2, which

is similar to the bound |VAy || < e, which was used in (12.12)). In order to avoid

redundancy we omit these details and simply claim

y (».S) 12
(12.26) 2 ) )L""/RJFUI_, 5 07 Ui| < e E}.
lyI=k
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.S
Fuji(a

bound for 35[(}:((]23)/ in (12.11): 8%9,S plays the same role as 3#9; l\]/ , whereas by
(@.18) we have |[VS|pe < /2, which is better than the bound ||Vgy ||r~ < 1
that was used in (12.11), reason for which we do not even need to appeal to our

Similarly, the bound for the integral with is obtained in the same way as the

specific A choice for this estimate. In order to avoid redundancy we omit these
details and state the resulting bound

y .S) ) 1.2
(12.27) 2y A'V'/JFUIM) ;| < e%E.
vl=k R
The estimates (12.25)—(12.27) together yield
y .S) 1.2
(12.28) 2y )L'”/RJFUI, U;| < 3¢ EL.
lyl=k )

The last forcing term in the U equation is F[(Jj:_l’s), defined by (12.5f). We first

note that the commutator term may be bounded identically to the commutator term

in F[(]J;(_z;’U) since $01S may be used interchangeably with U;d1U; in terms of

is treated in the same
S)

our estimates. Similarly, the summation term in

way as F((J),/(_I;’U) for the same reasons which we invoked earlier in the F[(]’I’
l

FU,-

FU[

discussion. In summary, the integral with the forcing term is estimated

in the identical manner as used in (12.24), and we obtain that

(1229) 2 A""[ |FO™19 970, < 2(8 + e1)E} + 2e S M* 2,
R3 '
lyI=k

Combining the estimates (12.13)), (12.24), (12.28), and (12.29), and choosing &
to be sufficiently small in terms of k and §, we obtain that

5% Am[ ED 07U;| < 2+ 88)E2 + e M1
R3
lyl=k

which proves the inequality (12.7a).
Upon comparing the S-forcing terms in (12.6) with the U-forcing terms in

(12.5), we observe that they only differ by exchanging the letters U and S' in sev-

eral places; hence, inequality (12.7b) is proved mutatis mutandi to (12.7a). To
avoid redundancy we omit these details. O

12.3 The H*¥ energy estimate

We now turn to the main energy estimate.
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PROPOSITION 12.3 (H¥ estimate for U and S). For any integer k satisfying
(12.30) k > 18,

with 8 and A = A(k, 8) as specified in Lemma|[12.2, we have the estimate
(12.31) EX(s) < e 2670 E2(50) 4 2e S MK (1 — ¢ 7(5750))
forall s > so > —loge.

PROOF OF PROPOSITION[12.3. We fix a multi-index y € N§ with |[y| = k,
and consider the sum of the L2 inner product of with AI7137 U7 and the
L? inner product of with A17137 S With the damping function 2, defined
in (12.4) and the transport velocity ¥¢; defined in (2.36¢), using the fact that O is
skew-symmetric we find that

(12.32) %/RBMW(WUPJF 1875 ?)
+A'7|/ (22, —div 7y) (|07 U|* + [3¥ S |?)
R3
+ 2817 f (But B3+ 2B3y) 0 W7 SIU N
R;
= 2/\|J7|/R3(9[(]V1_) 3 U; _i_yé)/) 3 S)
(12.33) +4ﬂt,33)t|’7|/ (e2IN; 97 U; 1S + €297 U, 3, S) 37 S.

]R3

We note that the last integral on the right-hand side of the identity (12.33) arises
via integration by parts as follows:

e [ (N0 @78) +e570,075) 57U,
+ 4B:p3 ng (e2IN; 31 (37 Uj) + e 23,(37U,)) 7S
— 4 [ (30 ON-UIS) 50, (070,75)) S
= —48.B3 /Rz(ei(JN QYU )01 S + e 3 (970,37 5)d, )
= _4B.ps ng(eiJNﬂyuals e 307U, 3, )9 S.

The second and third integrals on the left-hand side of the identity (12.33)) can be
combined. Using (2.36¢)), given the bounds (@.10), (7.5), and (7.6), the second



FORMATION OF POINT SHOCKS FOR 3D COMPRESSIBLE EULER 87

integral on the left-hand side of has an integrand with the lower bound
(22, — div 7y ) (1Y S| + 107U %)
= (Iy] =5 +2y1 + Q@y1 — D(BP1IW + 91Gy) — dphY)
(107> + (87U %)
> (Il =3 +2y1 — BBy — Dy — 8%)(|375|2 +19"U %),

while the third integral on the left-hand side of (12.33) has an integrand with the
lower bound

2B(B1 + B3 + 2B3y1)J 1 W 3¥S9YU -N
> —B:(B1 + B3 + 283y W (107 S| + |07 U |?)
> —Bo(1+2B3y1)(197 S| + 87 U|?),
where we have again used (4.10), and the fact that by (2.17) we have 81 + 3 = 1.
Hence these two integrals have the lower bound given by
W[ (y1=5+20 =B = Be =) (97 SP + 07U P).
Since by @3) |8 — 1| < &'/2, it follows that for ¢ taken sufficiently small, by
summing (12.33) over all |y| = k, we obtain that
cddsE,f(s) + (k — 14—5)E,?(s)
y () ()
< > 2 /Rs(‘%" FU; + 7 9S)
lvl=k

(12.34) + > 4ﬂtﬂ3k|7|/g(es/zJNjaijalS +e7297U,9,8)d" S,
R3
lyI=k

Recalling that § = %(e_s/zW + k — Z), that |J| < 1+ Me from (7.1), and that
BBz < (1 + e/ M) (1%5) < 1 for ¢ taken sufficiently small, we find that

e2IN; 3 U;31 S + e 237U, 3,S|[7 S|

4p:p22" [

R3
<21+ MM | U |, |07 S| .
< (|01 W oo + €2 [01Z] oo + e [VW | oo + €72 [ VZ]] o).

Hence, using (4.6)), (4.11), and (4.12) we obtain that the second term in (12.34) is
estimated as

4BeBs Y W'f |€2UN;87U; 81 S + e 307Uy 8, S|187 S| < (2 + 4) Ey,.
R3
lv|=k
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It follows from (12.34)), that
(12.35) LE2(s) + (k —6)EZ(s) <2 ) W/ (R U + FP FS).
PET
By Lemma|12.2, for 0 < § < %,
L E2(s) + (k — 6)ER(s) <22+ 88)EZ + 2 M**~1,
and hence, by (12.30) we have that
d 52 2 —s qr4k—1
LB F2E; <2e7°M ,
and so we obtain that
E,f(s) < e_z(S_SO)Ez(so) + 2e_SM4k_1(l — e_(s_s‘))),
for all s > 59 > —loge. This concludes the proof of Proposition [12.3. O

In conclusion of this section, we mention that Proposition |12.3 applied with
so = —log ¢ yields the proof of Proposition

PROOF OF PROPOSITION 4.3l We recall the identities
DKW =e2D¥(WU -N+S), D¥Z =D¥W -N-S), and A4, =U-T,.

Therefore, by (7.1), (A.25), using the Poincaré inequality in the y-direction, and
the fact that the diameter of 2 (s) in the ¢ direction is dete> for any y with
ly| = k, we obtain

le"20"W —N-9"U — 9" S|l 2 + |0V Z =N-3"U + 9" S| 2
+ ||[oY A, —T"-E)”U||Lz
<2[[0”.N] - Ullz> + I[3”. T"] - Ull.>
k
<Y (IDIN] oo + 1D/ TVl IDF U | 20 (s)) <

2

ey e 2 (4esed) U ||
j=1
S U g

Summing over all y with |y| = k relates the H* norm of W, Z, A with the H¥
norm of U and S.
The initial datum assumption (3.40) together with (12.2) thus implies that

Ei(—logs) <e.
Thus, from (12.31) and (12.2) we obtain
/\k(||U(-,s)||2k +HISCL9)%0) < ERs) < g le 2 p2e S MR (1= e ™)
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and the inequalities (4.13a)—(4.13b) immediately follow by combining the above
inequalities. O

13 Conclusion of the Proof of the Main Theorems

13.1 The blowup time and location

The blowup time 7 is defined uniquely by the condition 7(7%) = T%, which in
view of (5.2) is equivalent to

Ty
(13.1) (1 — #(t))dt = e.

—&

The estimate for 7 in (4.1b) shows that for ¢ taken sufficiently small,
(13.2) | Ty < 2M 22

We also note here that the bootstrap assumption (4.1b) and the definition of 7
ensures that 7(¢) > ¢ for all ¢t € [—e, Tx). Indeed, when 1 = —g, we have that
t(—¢&) = 0 > —¢, and the function ¢t — fig(l —1)dt’ — e = t — ©(¢) is strictly
increasing.

The blowup location is determined by €4 = &(T%), which by is

Ti |
bx = §(r)dr.

—&

In view of (4.1b), for & small enough, find that
(13.3) |Ex| < Me,

so that the blowup location is &(¢g) close to the origin.

13.2 Holder bound for w
PROPOSITION 13.1. w € L%®([—¢, T%); C ).

PROOF OF PROPOSITION[13.1. We choose two points y and y’ in 2" such that
y # y’ and define x and x’ via the relations

3s ~ sy ’ 35 1 S
(13.4) yi=e2"x1, y=e2x and y] =e2°xy, Yy =e2x'.

Using the identity and the change of variables (13.4), we see that
lw(x1, X, 1) —w(x), X, 1) _ eT3|\W(y1,¥,s) — WL, ¥, s)l
(Jxy — x| + | = %/[*) % IR AT eS|y — y'|*)e
WG T.s) - WO )
(11— ¥i12 + 2[5 — 377 fe
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so that
lw(xr, X, 1) — w(x], X, 1)

(x1 — X} |2 + |3 = ¥/[*)'Fe
WLV 8) WO 3.9l | WO Y, 8) = W, 7 8)]
1=yl ey —y|”
By the fundamental theorem of calculus and estimate (4.6), we have that
WoLT ) -Wor Tl L0

Y, ly1 = y1|'/ iy, =y’

(13.5)

(13.6) <3,

and similarly for v = 2, 3,

Yv
WLy ) = WOor oyl Ly 1 Widzy

s 3 /11/3 - S 111/
FAY e3|yy — yp|'h n#y, €3|yv — y,|'?
_s /12/3
< sup e 3|y, — v,
Y1#Y]

where we have again used (4.6, which gives the bound |d,, W| < 1. Since both y,,
and y], are in 2 (s), by (.3)

lyw — ¥ < eToed

and hence

W /s , S _W /7 /5S
(13.7) sup Wy J’: ) ()171 Yy )| <1.

PV e3|yy —y)l'/

Combining (13.5)—(13.7), we see that

w(xy, X, 0) —wkx!, ¥t

IUICE L RTIC R
x#x/ |x —x'|'/3

where the implicit constant is universal, and is in particular independent of s (and
thus #). This concludes the proof of the uniform-in-time Holder !/3 estimate for w.

The fact that w has the same Holder !/3 regularity follows from the transfor-
mation x to X given in (2.15), the transformation from w to W given in (A.22),
together with the bound for ¢ (¢) given in (4.1a). O

Remark 13.2. A straightforward computation shows that the C* Holder norms
of w, with @ > 1/3, blow up as t — T with a rate proportional to (7 — )" /2.
13.3 Bounds for vorticity and sound speed

COROLLARY 13.3 (Bounds on density and vorticity). The density remains bounded
and nontrivial and satisfies

(13.8) |5%(-.1) — k0|, o <@&5  forall t € [&, Ty].
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The vorticity has the bound
(13.9) lw(-, )| < C()Ké forallt € [—¢, T,
where Cy is a universal constant. In addition, if we assume that
(13.10) lw(-,—¢€)| > co  on the set B(0,2&”)

for some co > 0, then at the location of the shock we have a nontrivial vorticity,
and moreover

(13.11) (-, T)| = & onthe set B(0,&™").

PROOF OF COROLLARY [13.3. Using the the identities (2.8), (2.20), and (2.35),
we have that

o~ 5(27 t)
Qy,s) =0(X,1) = ==,
p(X, 1)
and hence from Proposition it follows that
51
(13.12) “f( <o
Io(vl) Loe

for t € [—¢, Tx). Next, using the identities (2.6)), (2.16b), and (2.32), we find that

1 ~ L
(@S(y,s))e = (@o(x.1))o = p(X.1),
so that by Proposition[9.1] the estimate (13.8) immediately follows. Then, with the
definition of the transformation (2.6)), we have that
(2 — )" < p(x.1) < (a( + ')
forallt € [—¢&,Tx),x € R3.

The bounds (13.12) and (13.13) together show that (13.9) holds for ¢ taken suffi-
ciently small with respect to k.

From (2.26¢) and 2.33), U = L(k + eTIW + Z)N + 4, T". By (4.5), @.6),
@.11), (.12), and (6.6),

[U] e = 373

(13.13)

Wliee + 31211 + [ Al 1o + 2l =0l + 3lxol

<266 + AM2%63 + IMe+ K0 < K0 4 g5,
Let X(x,t) denote the Lagrangian flow of u: 9, X(x,1) = u(x, X(x,t)) for
t € (—&, Tx) such that X(x, —¢) = x. Then,
d
de
We shall make use of the transformations and to relate d5 derivates

of u(X,t) with dy derivatives of u(x, ). It is convenient to define the normal and
tangent vectors that are function of x, so we set

N (%, 1) = RONK, 1), T (X, 1) = R(OT(X.1).

(13.14) By, X = (g u’ 0 X)dy, XK.
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We then have that u - 4" = 7% - N and

(13.15) Oxg (U = N )N = 05, (U - N)RkakaNm = d%, (- N)N;.
By and Lemma[A.2 we obtain

(13.16) Oy (u - N )M = divg il — T;05;ay — (i -N)Iz, Ny — @y05, T

‘We then write (13.14) as

d ]
EanXl = (ax,‘(u JV)J% + (Ll J/)axkf/% + anava +avaxk<7j.v)

v
w

o X dy, X*,
and expand
O XK =0, X" Ny Ny + O, X" T T,
We then have that

%(anXi 7" 0 X)

= (A Vay + - MNAN - N)M T +(TV + T yuy) - N) o X
x (3, X* M 0 X)
+ ((T"-Vay + (- NWTH - V)N T + (T + TV uy) - TH)
oX
(13.17a)
x (3, X* Tt 0 X),

d—(axjximox)

d
t
= (N -V - )+ ay(N -V TP ) 0 X (3, X* M 0 X)
+ ((T* V- N+ an(TH V)T N+ (N + N yuy)- TH) o X
(13.17b)
X (aijk ZCMOX).

In Lagrangian coordinates, conservation of mass can be written as p o X =
(det VXX)_I,O(). Hence, by (13.13)), there exists Cx > 0 such that

(13.18) o < det(VuX(x,1)) < Cx forall 1 € [, T), x € R,

The kinematic identity

d
m detV, X =detVy X divyuo X

leads to
t
(13.19) det Vi X(x,7) = exp | (divxu o X)(x,t)dt,

—&
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and hence from (3.26b)), (13.18), and (13.19)),

T«
(13.20) o < exp/ (divy u o X)(x,t")dt’' < Cx.

—&

It is clear from the transformations (2.5) and (2.6) that

Tx
(13.21) o < exp/ (divg T 0 X)(X,t")dt’ < Cyx

—&

and from (3.26b), (9.5), (13.21)), and (13.16),

T

(13.22) exp/ (Aj0x, (u-AN))o X dt' < C.
—&

By possibly enlarging the constant C in (13.22), by (2.11), (2.13), (2.14), (3.26b),

and (9.5), we obtain

T
(13.23) exp/ |oldt’ < C,

£

where <> denotes one of the 10 remaining exponential stretchers in (13.17). Con-
sequently, taking the inner product of (13.17a) with dx; X k 7Y o X and summing

this with the inner product of (13.17b)) and dx; X k 4 o X and applying Gronwall,
we find that

18, X5 Moo X124 |0, X* TP 0 X2 = VX |? < C,

since X is the identity map at time t = —e¢. This implies that the eigenvalues of
V X are uniformly bounded from above on the time interval [—e, T), and therefore
by (13.18), the eigenvalues are bounded in absolute value from below by A > 0.
Using the Lagrangian version of (1.3), which is given by

CX(x. 1), 1) = W X(x,1) - o(x),
we see that on the set that {o(x) > co, we have that

(13.24) [E(X(x, 1), )] = Aminco,

Since X(x, Tx) — X(x,—¢) = f_i* u(X(x,s))ds and |[u||pe = ||U||Le, We
have from (13.2) that
| X, To) = X(-, =8) || oo < (T + &)|lul| oo

(13.25) - o 1
< (2M?e* + &) (%2 + £¥) < ekq.

It follows from (13.13) and (13.24) if the condition (13.10) on the initial vorticity
holds, then (13.11) and this conclude the proof. O
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13.4 Convergence to stationary solution

THEOREM 13.4 (Convergence to stationary solution). There exists a 10-dimenonal
symmetric 3-tensor </ such that, with Wy, defined in Appendix@ we have that

the solution W(-, s) of ([2.284) satisfies
lim W(y,s) = W (y)
S§—>00

for any fixed y € R3.

PROOF OF THEOREM [13.4. We will first show that as s — oo, the equation
(2.28a)) converges pointwise to the self-similar Burgers equation

IW —iw + (W +3y)aw + 1y Vw =o.
To do this, we write as
WW —IW + (W + 3y)) W + 13- VW = F,
where
F:=Fy —e 2B¢k + (W — gw) W + hy - VW.

The aim is to show uniform decay of F.

From (2.294), {4.1b), [.3), [@.6), (7.6), and (7.11), we have that
(13.26) |F| Se™2 + |Gwl.

Thus we must show uniform decay of Gy . Recalling the definition of Gy in

(2.29a)), and applying (4.1a), (4.2),.3), (6.4), (7.1), (7.3), together with the fact

that we are taking k < M, we find that
Gw| < Me™3|5)> + el + B2Z + 261V -N|
< Me 3|5 +e2 |k + B2z —281(RTE)1| + [VIIN —eq]
+1011(e™ 1 + 2e 2 ¢uuyvyi) | + 1B2e2(Z — Z° + 281 O1u 0]
SeT 3 (yl+ D)+ [pIVVIpee + 2] Z — 20 —VZ%- §| +18: 2%

+ |,32€%§ZO -y + 261 leyv|
(13.27)
< e_%(l + |y|2) + |,326%VZ0 -y + 2,31Q11)Yv|-

The identity (5.27), together with the bounds {.1)), @4.2), .3), @.11), (4.12), and
(6.4), shows that

(13.28) 182620, 2° + 281 Q10| S €73,
and thus, using (13.26)), (13.27), and (13.28)), we conclude that
(13.29) |F| < e 3(1+|y?).
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With W,, denoting the stationary solution constructed in Appendix E whose
Taylor coefficients about y = 0 match those of limg_, oo W(y, s) up to third order,
we define " .

Woy =W =Wy,
which satisfies the equation
(13.30) (35 + 31 Wy — DYWoy + (W + 291)0: Wey + 1,0, Wy = F.
In particular, since limg_soo D3W(0,s5) = D3W,,(0) for § > 0, there exists 55 >
—log ¢ such that
(13.31) |D3W (0, s5)| <.

An application of LemmalA.3 to the function D?W and the estimate (4.6) yields

4 < 2m477 2 22’::71171 < 10m—11 < 6
(13.32) [ D*W | oo S IWIEE T ID? WL S M 72m=T < M,

for m > 18. Now fix § > 0 and s¢o > s5. We also fix a point yg. Using (13.31),
(13.32), and the fundamental theorem of calculus, we obtain that

(13.33) W (vo,50)| S8+ |yol*M°.

Here, we have made use of the fact that 37 W, (0,s9) = O for |y| <2.
Next, consider the Burgers trajectory ©¥°(s), defined by

(13.34a) Is®Y0 = (W o @Y + 2070, 1%, 10J°), s > so.

(13.34b) Y0 (s9) = yo.

From the bootstrap |3, W] < 1 for [y| < .Z, the explicit formula for W which
yields W (0, y) = 0, the fundamental theorem of calculus, and the bounds (4.6)

and (4.7c), we obtain that
v . ~ . 1.
(W) < IW(y1, §) = WO, )| + [W(0, §)| < [y1] + &T3|y

and therefore y - (W + 3 y1, $y2.3¥3) > 2|y|*> whenever |y| < .Z. It follows

from (13.34) that

for |y| < Z,

| DY (s)|* > 219702
and that
(13.35) DY (5)] > |yoles 650,

Notice, then, that this trajectory will move at least a distance of length 1 in the time
increment § — 5o = —%log|yo| — o0 as |yo| — 0. Moreover, from (13.35), we
have that

(13.36) |®Y0(so — 3 log|yo| + 3 log.£)| = £.

Returning now to the evolution equation (13.30), we shall first consider the case
that |y| < .Z. We use the fact that the antidamping term (91 V[_/ﬁ—%) Wy > —% Wy
since |31 W,/| < 1. As a consequence of the forcing estimate (13.29) and the initial
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condition bound (13.33), we apply the Gronwall inequality on the time interval
s €[50, 50 — %log|y0| + %log Z] to obtain that

3y W0 @] 53 OM ot )

S 1yol = # L2 M (lyol +8) S MOL2 o3,

where we have assumed that s > s is taken sufficiently large so that § < |yo|*.
By continuity of ®70(s), we see from (13.36) that for any y. such that |y4| €
[1yol, -Z], there exists s« € [s0, 80 — %log|yo| + %log.ﬁf] such that

DO (s55) = Y,
and hence by (13.37), we obtain that
~ 3,1
(13.38) (W (ya. )| S MO.L2 | yol7.

By letting |yo| — 0, any point y,« € (0,.Z] is equal to ®Y9(s4) for some yq
approaching the origin. Hence, by continuity, taking s — oo and letting | yg| — 0
in (13.38), we have that for any fixed |y| < .7,

(13.39) lim |[W.(y,s)| = 0.
S—>00

Furthermore the convergence in uniform on the interval [0, .Z].

It remains to establish the convergence as s — oo for the case that |y| > Z.
We fix § > 0. From (13.39), there exists an 59 > —log e sufficiently large such
that

(13.40) |Wer(yo.50)| <8 for |yo| = .2.

We again apply the Gronwall inequality to (13.30), but now on the time interval
s € [s0.50 — %log 38]. We find that

(13.41) Wy 0 @0(s)| < 3679005 < 53,
Forall |y| > & = ¢~ 1/10,
W)I < (1+e20)n8 (y) < (1 + £20)%y],
and so it follows that
yo W+ 3y bya Lya) = v+ Ly — |1+ e20)2y|
> Ly = 11+ ey 2 = Ly,
and hence for |yg| > %,
(13.42) |970(s)| > |yolesC50),
Thus, for sg < s < 59 — %log 8, shows that
(13.43) DO(s) > §715.L.
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By continuity, we see from (13.43)) that for any y such that |y| € [, 8~ 1/15.¥],
there exists s € [sg, So — %log 4] such that

PYO(s) =y,

and hence by (13.41),
W (v, )] < 82.

Thus, for any fixed y, taking § — 0 and s — oo shows that W(y, s) — 0. This
completes the proof. U

13.5 Proof of Theorem 3.4

The system of equations (2.28) for (W, Z, A), with initial data (Wy, Zg, Zy)
satisfying the conditions of the theorem, is locally well-posed. In particular, be-
cause the transformations from to (2.28) are smooth for sufficiently short
time, we use the fact that is locally well-posed in Sobolev spaces and has a
well-known continuation principle (see, for example, [25]): Letting U = (u,0) :
R3 x R — R3 x R, with initial data Uy = U(-, —¢) € H¥ for some k > 3,
there exists a unique local-in-time solution to the Euler equations satisfying
U € C([—&.T), H*). Moreover, if |[U(-,f)|c1 < K < oo forall t € [—,T),
then there exists 71 > T such that U extends to a solution of satisfying U €
C([—e, T1), H k). This implies that (W, Z, A) are continuous in time with values
in H* and define a local unique solution to (2.28) with initial data (Wp. Zg, Zo).
Moreover, the evolution of the modulation functions is described by the system of
ten nonlinear ODEs (5.40) and (5.41). This system also has local-in-time existence
and uniqueness as discussed in Remark In Sections we close the boot-
strap stipulated in Section 4} and thus obtain global-in-time solutions with bounds
given by the bootstrap.

In particular, the closure of the bootstrap shows that solutions (W, Z, A) to
(2.28) exist globally in self-similar time, that (W, Z, A) € C([—log e, +o00); HX)N
C'([—loge, +00); H*~1), and that the estimates stated in Theorem are ver-
ified. Theorem @ shows that limg_s oo W(v,s) = Wy, where W, is a C®
stationary solution of the 3D self-similar Burgers equation described in Appendix
LE. Moreover, W, satisfies the conditions stated in Theorem The bootstrap
estimates then show that the modulation functions are in C'[—e, Tx). This
completes the proof.

Let us now provide a brief summary of the closure of the bootstrap given in
Sections which consisted of the following five steps:

(A) L bounds for 9¥ W in different spatial regions for |y| < 4;
(B) L°° bounds for Q;

(C) L bounds for 0¥ Z and 0¥ A4 for |y| < 2;

(D) L? bounds for 8Y W, ¥ Z, and 3" A for |y| = k, k > 18; and

(E) bounds for the modulation functions.
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(A) We split the analysis for W into three spatial regions in the support 2 (s),
required to close the bootstrap assumptions (4.6)—(4.9). The first region (|y| < £)
was a small neighborhood of y = 0 where the Taylor series of the solution was
used. The second (large) intermediate region (£ < |y| < .£) was chosen so that
W(y,s) and some of its derivatives remained close to W, while the third spatial
region (|y| > .Z) allowed W to decrease to zero at the boundary of 2 (s), while
maintaining important bounds on derivatives.

We began our study in the first region |y| < £. Our analysis relied on the struc-
ture of the equations satisfied by the perturbation function VIN/(y, sy = W(y,s) —
W (y) and its derivatives, given by 8 W by (2.53) and (2.54). As we showed
in (11.1), for |y| = 4 the damping term satisfies D%) > 1/3 and hence using the

bootstrap assumptions, we obtained the L bound (11.2) for all s > — log &, which
closed the bootstrap (4.8b).

The ten time-dependent modulation functions «, t, ny, &, and ¢, solving
the coupled system of ODE given by (5.40) and (5.41) were used to enforce the
dynamic constraints 0¥ W(O, s) = 0 for |y|] = 2. Using these conditions at
y = 0, and the L> bound on 8" W for y = 4, we obtained the bound (11.7)
for |87’W(0, s)| for |y| < 3, and this closed the bootstrap (4.9). The fundamen-
tal theorem of calculus then closed the remaining bootstrap assumption for
ly| < ¢

We next obtained L estimates for 3 W in the region £ < |y| < Z. We relied
on our estimates for trajectories defined in (2.39)-(2.40). In particular, we proved
in Lemma 8.2|that for any yo € R3 such that |yg| > £ and 5o > —loge, ®0(s) >
| y0|e(s_s0) > for all s > so. Thanks to (4.5), we were able to convert temporal
decay to spatial decay so that the exponential escape to infinity of trajectories @
provided the essential time integrability of forcing and damping functions in (2.53)
and (2.54) when composed with ®7°. Specifically, these equations were rewritten
in weighted form as (11.9)—(11.10), and then composed with @32, to which we
applied Gronwall’s inequality. We thus obtained the weighted estimate for
W as well as the weighted estimates for VW in (11.23) and (11.24), which closed
the bootstrap assumptions (4.7), which in turn, as stated in Remark .1} closed the
first three bootstrap assumptions on W in for the region |y| < .Z.

It remained to close the L°° bootstrap assumptions for ¥ W for |y| = 2 in
the region |y| > £. We employed the same type of weighted estimates along
trajectories @) as for the study of VW above, and thus established the bound
which, in conjunction with our choice of £ = (log M)~ satisfying (11.32),
closed the bootstrap assumption in (4.6). Finally, in the third spatial region |y| >
%, using the same type of weighed estimates along trajectories ®;?, we obtained
weighted estimates for W and (11.34)—(11.35) for VW, which closed the
first three bootstrap assumptions in for |y| = £. This completed the L°°
estimates for ¥ W.
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o
(B) The specific vorticity estimates required a decomposition of the vector ¢ into

the normal component E ‘N and the tangential components E TV as was done in (9.2).
We observed that these geometric components of specific vorticity have forcing
functions that are bounded; therefore, in Proposition we established the
upper bound (9.4). For the self-similar sound speed S, we also established the
upper and lower bounds in Proposition

(C) We then closed the bootstrap assumptions (.11) and (4.12) for ¥ Z and
37 A with |y| < 2. To do so, we relied upon Lemma [8.3] wherein we proved that
trajectories ®>° (s) and @, (s) escape to infinity exponentially fast for all yo € 2y,
and also upon Corollary which established the integrability (for all time) of
both 9; W and 3; W along these trajectories. This then allowed us to use weighted
estimates for ¥ Z to obtain the bounds (10.10)—(10.13)), which closed the bootstrap
assumptions (.11). The same type of weighted estimates for A then yielded the
bounds which closed the bootstrap assumptions (@.12) for all |y| < 2 with
y1 = 0. For the latter case, we relied crucially on the previously obtained specific
vorticity estimates. In particular, Lemma [I0.1 proved that bounds on geometric
components of specific vorticity give the desired L.°° bounds on 91 A.

(D) In order to complete the bootstrap argument, we obtained H k—type energy
estimates for the (U, S)-system of equations (2.34). The evolution for the differ-
entiated system (9% U, 37 S) was computed in (12.3)—(12.6). The main idea for
closing the energy estimate was to make use of the L.°° bounds for ¥ W and ¥ Z
with |y| < 2 and for ¥ A with |y| = 1. Together with the damping obtained when
k is chosen large enough, the lower-order L °° bounds effectively linearized the re-
sulting damped differential inequalities which then lead to global-in-time bounds.
Instead of obtaining bounds for the H*-norm directly, we instead obtained bounds
for the weighted norm EZ(s) = Y 11— A7/(107U(-.)[12, + 07 S(-.5)]2,),

where 1 = %, 0<é< 3%, and k > 18. The energy method proceeded in
the following manner: we considered the sum of the L2 inner product of
with A7197 U? and the L2 inner product of with A1713Y'S. We made use
of a fundamental cancellation of terms containing k41 derivatives that lead to
the identity (12.33), obtained the lower-bound on the damping, and employed
the error bounds from Lemma [12.2] This lead us to the differential inequality

%E 2 +2E2 < 2¢7SM*~1 which then yielded the desired H* bound.

(E) Closing the bootstrap assumptions for the modulation variables used the
precise form of the ODE system (5.40) and (5.41) and relied on the bounds W, Z,
A, and some of their partial derivatives at y = 0. The bounds (6.5)—(6.10) closed
the bootstrap assumptions (4.1).

13.6 Proof of Theorem

The blowup time 7% is uniquely determined by the formula (13.1); the blowup
location is defined by £« = £(T%). The bounds (13.2) and (13.3) show that |Tx| =
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O(e?) and |£«| = O(e), respectively. Moreover, «(¢) satisfies (6.6), and from
(3.24) and (4.1a), foreach ¢ € [—¢, Ty), we have that ‘N()'VE, 1)—No(X)|+ ‘T"(??, 1)—
Tg(i)‘ = O(e).

By Theorem (W, Z,A) € C([—loge, +00); HX), and since

U=Le W+ +ZN+ 4,7 and S =1L 2W +x— 2N+ 4,T",

we immediately obtain (U, ) € C([—loge, +00); HX). The identities (2.32) to-
gether with the change of variables (2.25) show that (it, §) € C([—e, T%x): H). It
then follows from the sheep shear coordinate and function transformation, (2.15)
and (2.16), together with the fact that |¢p| = O(¢) from ({.1a) that (i,6) €
C([—¢, Tx); H¥). From the transformations (2.5)) and (2.6) we have that (i, 0) €
C([—&, Tx); HX) and so p € C([—e, Ty): HY).
From the change of variables (2.15), we have that
05, W(X.1) = 0y, w(x, 1), 0z, W(X,1) = Oy, w(x, 1) — Iy, w(x,1)dx, f(X,1),
so that by (2.14), this identity is written as
Iz, W(X, 1) = Oy, w(x,1)IN;j + 8, 0x, w(x, 1).
Hence, we see that
(N-VRW(X. 1) = dx, w(x,1)J + Ny oy, w(x, 1)
=e°0; W(y,s)d + NMBMW()’»S)’

(13.44b) (T" - VOw(X, 1) = T dx, w(x, 1) = T, 3, W(y,s).
Using the definitions of the transformation (2.8)), (2.15), (2.25), and (2.264), the
fact that £(0,¢) = 0, and the constraints (5.1), we see from (13.44a)) that

(N- VR)W(E(), 1) = e 01 W(0,5)d + Nud W(0,5) = —¢* = -
and hence lim;_,7, (N - Vx)w(£(¢),1) = —oo. Moreover, from (3.2)) and (7.1)), we
have that [J| < 1 + & and [N, | < £3/2, and so from (13.44a), it follows that

(13.44a)

< |IN-VW(-, 1) | poo < T*z— ast — Tx.

1
2(T«—1)
By Theorem (3.4} we have that

t

1

%01 2] poe + e 014 oo+ [3VZ] oo < Me? < M2,
¢392, < s,
and hence by the transformation (2.25), (2.26b), and (2.26¢)),
IVez| oo + [|Vxa] 00 S M.
Since

0z, Z(.1) = 0y, 2(x.1) — Oy, 2(x. )y, F(F. 1),
0, A(%.1) = dy,a(x.t) — dx,a(x. )0y, f(F.1),
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we have
[VzZllLe + | Vzd|lLe < M.

By Corollary (13.3, | 5%(-, 1) — a3 HLOO < ael/8 forallt € [—e, Ty], and hence p
is strictly positive and bounded. Now

~ ~ ~ ~~ ~ l(x
BN=l@+2), p=(2@+3)",

and hence (3.26) immediately follows. Finally, Corollary |13.3 establishes the
claimed vorticity bounds.

Remark 13.5. Note that (w, Z, d) as defined by (3.25) are solutions to the system
(A.21). Thus, one may obtain (u, p) as a solution of (I.I) and define (w, Z, @) by
(3.25) or equivalently, one may directly solve (A.21) with the corresponding initial
conditions.

13.7 Open set of initial data, the proof of Theorem

PROOF OF THEOREM Let us denote by Z the set of initial data (uo,00)(x),
or equivalently (Wo, Zo, do)(x), which are related via the identity (3.6)), which sat-
isfies the hypothesis of Theorem the support property (3.7), the Wo(x) bounds
(3.8)-(3.17), the Zo(x) estimates in (3.18), the do(x) bounds in (3.19), the specific
vorticity upper bound (3.20), and the Sobolev estimate (3.21). We will let .# be a
sufficiently small neighborhood of Z in the H* topology. The specific smallness
will be implicit in the arguments given below.

A first comment is in order regarding all the initial datum assumptions that are
inequalities, namely (3.12)—(3.21). These initial datum bounds are technically not
open conditions, since for convenience we have written “<” instead of “<”. How-
ever, we note that all of these bounds can be slightly weakened by introducing a
prefactor that is close to 1 without affecting any of the conclusions of the theorem.
Therefore, we view (3.12)—(3.21) as stable with respect to small perturbations.

This leaves us to treat the assumption that (Wo — ko, Zo,do) are supported in
the set 279 defined by (3.7)), and the pointwise conditions on Wy at x = 0 given
in (3.8)—(3.10). We first deal with the support issue, where we use the finite speed
of propagation of the Euler system. After that, we explain why the invariances of
the Euler equation allow us to relax the pointwise constraints at the origin. Due to
finite speed of propagation, these two matters are completely unrelated: the second
issue is around x = 0, while the first one is for |x| large. Thus, in the proof we
completely disconnect these two matters.

Let (ug,00) € Z and consider a small H* perturbation (itg, 09) which decays
rapidly at infinity, but need not have compact support in 2 ¢. By the local existence
theory in H¥, from this perturbed initial datum

(g + g, 00 + G0) =: (Uo,t0tals T0, total)
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we have a maximal local-in-time C to H ff smooth solution of the 3D Euler system
. Let us denote this solution as (¥otal, Ototal)» and let its maximal time of exis-
tence be Tiom. The standard continuation criterion implies that if f_TS lUotarllc1 <
oo, then the solution may be continued past 7.

In addition to the set 2°¢ defined in (3.7), for n € {1, 2} we introduce the nested
cylinders

i‘ < %ﬁ}.

1
Xn = {|X1| < 2”—1_,’_182,

Clearly 273 C 25 C 271 C 29, and we have

(13.45) dist(241. 25) > £3 foralln € {0,1}.

Let ¥ be a C® smooth nonnegative cutoff function, with ¢+ = 1 on 21 and
v# =0on 2§. Then, we define

(uf), o) (%) = (o + 00) + ¥ (X) (30, 50) (%),
(b, 09)(x) = (1 — ¥ (x))(HHo, To) (%).

By construction, the inner initial value (ug, Og) is compactly supported in 2°¢ and
is a small H¥ disturbance of the data (¢, 09) on 2. Therefore, we can apply
Theorem to this initial datum, and the resulting inner solution (u*, o¥) of the
Euler system (1.2) satisfies all the conclusions of Theorem (with a suitably
defined (wu, Z#, aﬂ) defined as in (3.6)). In particular, we have a bound on the
maximum wave speed due to the bound

(13.46) et Loe + lo* Lo < Ko,

and (u¥,0%) € C([—e, Ty); HX) with T, = O(¢2). The key observation is that
because (ug, ag) is identical to our perturbed initial datum (¢ total. 00, total) ON 21
(the cutoff is identically equal to 1 there), by using the finite speed of propagation
and the uniqueness of smooth solutions to the compressible Euler system, from the

bounds (13.45) and (13.46) we deduce that
(13.47) ¥, 0M)(x,1) = (ol Tow) (X, 1) on 22 X [, Ty).

In particular, because Theorem |3.1| guarantees that the only singularity in (u*, o¥)
occurs at £, = O(¢) at time Ty, we know that

f o
(13.48) [_Ssl’lg*)H(u ) i gy = Ao

for some constant .#j ., which depends polynomially on ¢k in view of (3.21).
It remains to analyze the total solution on the set 2°5. For this purpose, write

(13.49) (ttiotats Orora) (X, £) = (oMY (x, 1) + (u®, 0”)(x, 1)
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and note that (ub, O'b) solves a version of (1.2) where we also add linear terms due
to (u¥, o%):

HT“E)tub + (@® + u¥y - Vu® + ao’Vio?

(13.50a) = (ub . Vx)uﬁ + a0’ Vot + aotV P,

HT“a,ob + ((ub + uf‘) . Vx)ab + ao” divyg u®
(13.50b) = (" - Vot + ao® divy ut + aot divy 1,
(13.50c) (", 0" 1=—e = (g, 59) (x) = (1 =¥ ())(io, 50) (X).

In particular, the initial condition in has small Sobolev norm and is com-
pactly supported in 2°{ by the definition of the cutoff function v. Additionally, ev-
ery term in (13.50a) and (13.50b) contains either a u” or a o term. Combined with
(13.46), the implication is that as long as the maximal wave speed due to (1”, o) is
bounded, e.g., &'(1), then on the time interval [—e, T%) the support of the solution
(u”, o) cannot travel a distance larger than &(¢). Hence, due to (13.45)), we have
that the support of (u”, o) remains confined to 25, again, conditional on an (1)
bound for ||u’||ze 4 ||o®|zcc (we have such a bound for short time, but it may
not be clear that it holds uniformly on [—e&, T%)). Next, we recall that by using a
standard H 3 energy estimate for the system (13.50), we may prove that

rd [CACio] Ry (Ao 0] A A 0] [y LT P

where the implicit constant only depends on « and k > 18, and we have used the
aforementioned support property of (ub, ab). Since we have previously established
in (13.48) that ||(uﬁ,0ﬁ)||Hk(£-§) < Mk ¢ uniformly on [—¢, T%x), we deduce that
if Ty obeys

2
(13.51) | (44, 50) || 751 exp(2(T + &)ty ) < 1,

then uniformly on [—¢, Tx) we have ||(1”, o®)|| gk—1 < 1; this bound also implies
the desired &'(1) wave speed. To conclude the argument, all we have to do is
to choose our initial disturbance (ifg, 0¢) to have a small enough H k=1 porm (in
terms of ) so that holds. We combined this /(1) bound on the H*~! norm
of the outer solution with (13.47) and (13.49) to deduce that the total solution
(Uiotal, Ototal) behaves extremely tamely on 275, and its behavior is given by the
bounds in Theorem on 2. We have thus proven that one may indeed remove
the strict support condition from the assumptions of Theorem [3.1] as desired.

It remains to show that the pointwise constraints (3.8)—(3.10) on Wy can be
turned into open conditions. First, we note (cf. (3.2)) that Theorem [3.1] allows
for kg to be taken in an open set, and by definition ¢ is taken to be sufficiently
small, thus also in an open set. As a consequence, the conditions on wp(0) and
d1wo(0) in (3.10) are open conditions. It remains to show that by applying an
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affine coordinate change, we may replace the assumptions (3.8)), (3.9), and the last
equation in (3.10) by open conditions.

We start with the last condition in (3.10). We aim to show that if .# is a
sufficiently small neighborhood of F,and B C R¥isa sufficiently small ball
around the origin (with radius depending solely on ¢), then there exists functions
My, m3 : B X % — (—1/2,1/2) such that if we define the vector

(13.52)  m(x.up.00) 1= (my.my.m3) 1= ((1 —m3 —m3)2. my. m3).
then for any x € B and (ug, 0¢) € F
(13.53)  mj(x,ugp, 00)(M(X, up, 09) X V)ug; + (M(x,up,09) x Vx)og = 0.
We denote by (m2, m3) two free variables; i.e., they do not depend on (x, ug, 0g)
and are not to be confused with the pair (m,, m3). In terms of (m5, m3) we define
the vector

1
(13.54) m = (my,mz,m3) := ((1 —m3 —m%)z,mz,mg,).

in analogy to (13.52). Also in terms of (my,m3) we define the rotation matrix
R = R(my,m3) using the definition (2.2) with m replacing n; more explicitly,
replace (13, n3) with (my,m3) in (A.13). Then, using R we define two vectors
which are orthogonal to the vector m defined in (13.54), as

Vg = vﬂ(mz,m?,) = R(mz,mg,)eﬂ for g € {2,3}.

By construction, (m, v, v3) form an orthonormal basis. Then, for each € {2, 3}
define functions

Gg(x,ug,00,ma,m3) :=mj;vg - Vxug; (X) + vg - Vx00(X)
where the summation is over j € {1,2,3}. Thus one can rewrite (13.53) as

(13.55) G(x, ug, 09, Ma(X, ug, 0g), M3(X,ug,0p)) =0
with G = (G2, G3). By (3.10) we have for (uq, 0¢) € F that
(13.56) G(0,ug,00,0,0) = 0.

Moreover, employing the notation V,, f = (9m, f. dms f), for (ug,00) € F we
have by (3.10) that

—31(ug1 + o 0
VmG(O,uO,OOaOaO):[ 1 0()1 0 —31(M01+00)j|

_Mto
. [O 1]-
By (3.9) and (3.17), we have
ViG(0, ug,00,0,0) = (Vx0x, (401 + 00), Vi0x, (Mo1 + 00))|x=0

0 0
= | 85,0, W0(0) By, dxsW0(0) | = O(1).
8)(2 8X3 wo (O) aX3 aX3 iD’O (O)

(13.57)

(13.58)
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Using (3.16), (3.21), and the interpolation Lemma[A.3 we also have
[V G (x, 10,00, m2,m3)| + |Vi Vi G (X, o, 00, m2, m3)|

(13.59) + |VX2G(X, ug, o9, ma,m3)| e .

For every § > 0, if we assume .% is a sufficiently small neighborhood of Z,

then for (ug, 09) € %, we can replace (13.56)-(13.59) with

(13.60a) G(0,up,00,0,0) = 0(9),
(13.60b) VinG(0, 19, 00,0,0) = ¢ 'Id + 0(5),
(13.60c) Vi G(0, ug. 09.0,0) = O(1),
(13.60d) IV2,,G(x, 10,00, ma,m3)| <&

For a fixed (ug,00) € %, now consider the map Wy, 50: R> x (—=1/2,1/2)? —
R3 x R? given by

(13.61) Wyo,00 (X, m2,m3) = (X, G(X, ug, 09, M2, m3))

with gradient with respect to x and m given in block form by

M0
D¥uga0 = [VXG VmG]'

From (13.60b) and (13.60c), we have det(D Wy, o,) > %8_2, for § < 1. Thus,

by the inverse function theorem, for each (ug,09) € %, there exists an inverse
map WV, 01,00 defined in a neighborhood of (0, G(0, ug, 0g, 0, 0)). Moreover, using
(13.60b)—(13.60d), we can infer that the domain of this inverse function W, 01’00
contains a ball around (0, G(0, ug, 09, 0,0)) whose radius can be bounded from
below in terms of ¢, independently of § < 1. In particular, by assuming & to be
sufficiently small in terms of &, as a consequence of (13.56) and (13.60a)), we can
ensure that the domain of W, 01,00 contains a ball B centered at the origin with
radius depending solely on ¢. In other words, assuming .% is a sufficiently small
neighborhood of 7, then v, 01,00 is well-defined on B, where B is independent of

(ug,00) € %. The key step is to define

(M2, m3) := (M2, M3)(X, U0, 00) := Pn¥; ! (x.0),

where P, is the projection of the vector W, 01’(,0 (x, 0) onto its last two components.
Note that as a consequence of (13.60b)-(13.60d), we obtain

(13.62a) | Vi(m2, m3)| < [(DWyp,00) ' S 1.
(13.62b) IVZ2(m2, m3)| < (D Why.00) " | V(D Wy 00)] S €77,

for all x € B, where we reduce the radius of B if required (dependent only on €). In
order to see the first bound we note that DW,,, 5, is a lower triangular matrix. Then

using (13.60b)) we obtain that det(D Wy, ;) > ﬁ Moreover, applying (13.60b)
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and (|13.60c), we can bound the entries of the cofactor matrix by a constant multiple
of 72, from which we conclude

|(D"Iju0,00)_1| = |COfD\I]M0aU()||det(D\Duo,00)|_1 <1

Thus, we have identified the desired functions (mz, m3)(X, U, 0¢) such that (13.55),
and thus holds for all x € B and all (ug, 0¢) € Z.

Next, we turn to relaxing the constraint (3.9). For each (ug, 0¢) € %, we wish
for find x € B such that

H (x,u0,00) := ((Vdguo;)(x)m; (x, 1o, 50)

+ (V8kao)(x))mk(x, Ug,0p) = 0.
Using (3.9), for (ug, 09) € F we have
(13.64) H(0,u0,00) = 0,

(13.63)

where we used the identity m(0, ug, 09) = e1. Moreover, we have
Vil = (V28ju0;) ()m; (x, uo. 00)Mg (X, 0. 00)
+ (VOguo;)(x) ® Va(m; (x, ug, 0o)Mi (X, Uo, 00))
(13.65) + (V?8r.00) ()M (X, 10, 00) + (Vdr00) (x) ® Vimy (X, 0. 00).

For (ug,09) € F and x = 0, by the definition of w, in (3.11) and the property
(2.44) of W, we have

(V23 0;)(0)m; (0,0, 060)M (0, o, 50) + (V>8500)(0)M (0, 140, 00)

(13.66) , 64 0 0
= (V<91 (o1 + 00))(0) = 0 262 0 +Z

0 0 2&72
where by (3.14) and the fact that £ > 18, the remainder % is bounded as

~-

(13.67) (@il <& 370, Bl + 1B <377, | Bl <€,

By (3.9), (3.16), (3.18), (3.19), and (3.21) (which implies by Sobolev embedding
an estimate on 831 ao and Vi dy, do, where we also use that kK > 18) and (13.62)

|(9; 0k 10;)(0) Vi, (M; (X, ug. 50)Mi (0, ug, 00))

+ (0;0%00)(0) Vx,mg (0, ug, 09)|
|01VZo(0)| + 01 Vao(0)], ifi =1
(V2o (0)| + |VVZo(0)| + [V Vap(0)
=310, ifi=1
e 3

10, otherwise

(13.68)

, otherwise

Inserting the bounds (13.66)—(13.68) into identity (13.65) we deduce that
det(V H)(0, 0, 00) > &%,
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for all (ug, 0¢) € Z.

Using a similar computation, whose details we omit to avoid redundancy, for
X € B and all (ug,09) € F, we may use (13.62), (3.13), (3.21), and Gagliardo-
Nirenberg-Sobolev to show

(13.69) IV2H| <e7°.

Therefore, we have established bounds for H similar to those we have established
earlier in for G, which will allow us to again apply the inverse function
theorem. More precisely, let us fix (1o, 09) € .-# and assuming again that .%# is a
sufficiently small neighborhood of Z, the map @y, 5,: R? — R3 given by

(13.70) Dyp,00(x) = H(X, ug, 09)

is invertible in a ball centered at H(x, ug, 0¢), with a radius depending solely on &.
Due to we may ensure that this ball contains the origin, and by appealing
to (13.64)—(13.69) and a similar argument to that used to invert the map in (13.61),
by assuming .# is a sufficiently small neighborhood of Z, the map Py, 4, defined
in is shown to be invertible in a ball containing the origin, whose radius
depends solely on ¢ and so is independent of (ug,09) € %. This shows that for
each (19, 09) € . there exists x¢ in a ball centered on the origin such that
holds.

To conclude, for a given (ug, 09) € % we construct Xg, My = My (Xg, Ug, 00),
and m3 = ms3(Xg, U0, 0p) such that and hold. That is, we have

m x V(m-up(Xo) + 00(x0)) =0 and Vy(m-V(m-ug(xo) + 0o(x0))) = 0.

By the arguments above, we can ensure Xg, My, m3 are uniquely defined in a small
ball around the origin, and they can be made arbitrarily small by assuming that .%#

~

is a sufficiently small neighborhood of .%. Then replacing (1g, 0g) by
(i10,30) (x) = (R uo(R(x + X0), 00(R(x + X0))

where R is the rotation matrix defined in (2.2) with (m,, m3) replacing (n3,n3),
we have that (1o, 6¢) satisfy the conditions

Vi(iio1 +30)(0) =0 and  Vidy, (o1 + 50)(0) = 0.

i.e., the constraint and the last equation in (3.10), which was our goal. To
complete the proof, we note that by construction we have that xg, my, and ms are
small and .% is a sufficiently small neighborhood of 7 ; thus, the global minimum
of dx, (¥o1 + 0p) must be attained very close to 0. By the above formula, x = 0 is
indeed a critical point of dx, (o1 +0p), and using that the nondegeneracy condition
(3.14) is stable under small perturbations, the minimality condition also holds
for (ito, 5p) at x = 0. This completes the proof of Theorem 3.2l O
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Appendix

A.1 A family of self-similar solutions to the 3D Burgers equation

PROPOSITION A.1 (Stationary solutions for self-similar 3D Burgers). Let <7 be a
symmetric 3-tensor such that <\, = My with M/ a positive definite symmetric

matrix. Then, there exists a C° solution W, to
(A1) AW+ R+ W)Wy + LYW, =0,
which has the following properties:

o Wy(0) =0, 31 Wy (0) = —1, 32 W (0) =0,

o 3*W(0) = 0 for || even,
o W (0) = o for |a] = 3.

PROOF OF PROPOSITION[A.1. We first construct an analytic solution W =
W(y1,y) of the 3D self-similar Burgers equation (A.1) for |y| < ro with rg > 0
small and to be specified below. To constrict such a solution, we make the follow-
ing power series ansatz:

T Q@ o o . o
(A.2) Wo)=—yi+ D5 5"+ Y, =) day
le|=3 |e|>5,0dd o

where y® = y{'y5?y3>. We note that the properties listed in the statement of the

proposition are satisfied by any function with a convergent power series expansion
as above.
Inserting (A.2) into (A.I), we deduce that for || > 3

(A.3) —%aa + Z yiagay + %alaa + %(ocz + a3)aqg = 0.
B+y=a+e;
Using that a,, = —1 we obtain the recursive expression for || > 3
_ 2
(A4) da = 3704 Z yiagay.
B+y=a+ter,
B.y#a

To see that the formula provides a recursive definition, we note that since ag = 0,
no term of the type a,, for |v| > |o| appears on the right-hand side. Also note that
the only terms of the type a, for |v| = || that appear on the right-hand side have
the property that ‘f)‘ > ‘&‘

We seek a bound of the type

(A.5) dy < CyCoyCoy DI¥172

for |¢| > 2, where C, are Catalan numbers. The inequality (A.5) is trivial for
the case |o| = 2 since in that case we have a, = 0. Note that by choosing D
sufficiently large, dependent on <7, we obtain (A.5) for all |« = 3|. Finally, for
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|| > 4, we may use that a., does not appear in the sum (A.4) to conclude that

|aa| < ﬁ Z ﬂlcﬂlCO!1+1—,31Cﬁzcaz—ﬁzcﬂzcw3—ﬂ3Dla|_3
B+y=a+te;
B.y#a

2¢ a|—3
< |T|1Ca1+2ca2+lca3+lD| !

S COl1 CCQCOZ:;Dlal_z

where in the second line we used the identity C,4+1 = 27=0 C;Cy—j and in the
third line we used that C,+1 < 4C,, and assumed that D > 512.
From (A.5) and the bound C,, < 4", we conclude that

(A.6) ag < (4D),

from which it immediately follows that the Taylor series (A.2) converges abso-
lutely, with radius of convergence bounded from below by r¢ := (8D)~L.

Next, we substitute the partial sum P, (y) := Zﬁ”:l aqy® of the Taylor series
in (A.2) into (A.I). We consider the expression for the nonlinear term, which by
appealing to (A.3) becomes

n

n
-1
Pat Po= Y agy? Y piayy] T yPy)

1Bl=1 lyl=1
n 2n
= > 0" > nagay+ Y ¥ Y viagay
lel=1  1<|B],ly|<n lo|=n+1  1<|B|,|y|<n
B+y=a+e; B+y=a+te;

2n
= (3P —B01P—3-VP)+ > ¥ Y yiagay.
lel=n+1  1=<|Blly|<n
B+y=a+e;

=%

For the remainder term %, using that |y| < ro = (8D)~! and (A.6), we have that

2n 2n
2
2l < Y Il > yilagllayl = Y0 () @p)lett]
lae|=n+1 1<|Bl,ly|<n la|=n+1
Bt+y=a+te;

o

[ 42\ n—j 24—

<4D Y (PP)27 a2,
j=n+1

which vanishes exponentially fast as # — oco. This shows that W, defined by
(A.2) is an analytic solution of (A.1) for all |y| < ro.
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We next extend this solution to the entire domain, and we do so via trajectories.
Let ®Y0 be the trajectory

(A7) 05D = (3L + Wy 3x2. 3x3) 0 D, D¥O(0) = yo.
Let us choose 0 < § < %0 sufficiently small such that

(A.8) 1 <0iWy(y) <—3,

(A.9) v (B W 1xo, 1x3) = B

forall |y| <.

For any % < |vo| <6 and s > 0, we define
(A.10) Wer 0 @Y = e2 W, (yo).

Let 2 be the domain of W,,. The aim is to prove that W., = R3. First we show
that the definition (A.10) assigns a unique value to every y € Z. In particular,
suppose for a given y, € Z there exists yg, yo such that |vg[, |¥o| < 6 such that

DY (s9) = DO (5p) = ya

for some s0,50 > 0. Without loss of generality, assume sg > 5y. Let us denote
y 1= OYo(5y — s) which satisfies |y| < § by (A.9), and we have

(A.11) D9(s0) = D(s0) = yx.

From (A.7) and (A.10), we have
DX (s) = €35 (yo, + War(yo) (1 — ™)),
®1(s) = €2 (Fo, + W (Fo) (1 — ™)),
$¥0(s) = BT (5) = ¢ 2" .

In particular, substituting s = s¢ into the first two equations and s = 0 into the
second equation we obtain

vo, + Wor(yo)(1 — ™) = yo, + W (30)(1 — %) and  yo, = Yo,
Rearranging the first equation, we have
yo, — Y0, = Wer (o) — Wor (yo)) (1 — e750),

which is impossible by (A.8) and the fundamental theorem of calculus. We must
have yo = Yo, and thus we obtain a unique value for W/ (y.).

Now consider trajectories beginning at a point yg on the ball |yg| = §. Then
differentiating (A.7) in y; and solving explicitly along trajectories 9, we obtain
91 Wy (yo)

81W§/Oq)y0(s) = > —1.

(91 War(yo) + Des — 31 Wy (o) —
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Here we have used that that the Hessian of d; W, at 0 given by V231 W,,(0) is
positive definite, and we have assumed that ¢ is taken sufficiently small. Indeed,
from the above calculation, we further have that

|01 Wy 0 0(s)| < Cre™*

for some C; depending on .7 and §. Then, by Gronwall’s inequality, we can bound
VW, along trajectories by

VW 0 @70(s)| < exp(C1(1 — e™*)| VW (yo)| < Ca.

where again C, depends on &7 and §.
Let us now observe that by the fundamental theorem of calculus,

(1.2C232,2C2y3) - (B + Wy, C232. Cay3)
3T+ 263 [| — (91 W

31 +2C3]5| = Calyl| 7]

7+ C31F| > §1(51.2C2y2.2Cay3) 2.
This, in turn, implies that

(A.12) (D7°,2C2®3°, 2C293°)| = |(vo,,2C2¥0,. 2C2Y0,)|e 3.

v v

A%

By a simple continuity argument, this implies that ¥ = R3 g

A.2 The derivation of the self-similar equation

The goal of this appendix is to provide details concerning the derivation of the
self-similar equations (2.28), starting from the standard form of the equations in
(1.1). This derivation was described in Sections and in this appendix we
include the details that were omitted earlier.

The time-dependent coordinate system

The first step is to go from the spatial coordinate x to the rotated coordinate
X. For this purpose, the rotation matrix R defined in may be written out
explicitly:

ni —no —Hn3
2
n3 _ hon3
(A.13) R=R@()=|n2 1 - 1Fn, 14n,
__hon3 __n3
n3 T+n, T+n;

8Suppose Yy« € 0%; then there exist sequence y;,y; € R3, s; > 0 such that we have the
following: y; — yx, |¥;| =8 and y; = Y (s;). The bound implies that the sequence s; is
uniformly bounded. Then taking a subsequence if necessary, by continuity there exists ¥ satisfying
|¥| = § and sx such that @i(s*) = yx. Thus y« € 2, and we conclude Z is closed. Note that
if y« € 2, then there exists ¥ satisfying |y| = & and s« such that o (s%x) = y«. Furthermore,
by flowing a small ball around y by the vector field (3;—‘ + Wy, %xz, %x3) one can verify that 2
contains a small ball around y.. Thus 2 is open. Since 2 is open, closed, and nonempty, 2 = R3.
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where n1
explicitly as

2
ns

VICOL

V/1—7i|2. The new basis of R> given by &; = Re; is thus given

ey = (n1.na,n3), &= (-n2 1 — 32—, —122),
2
5 non3 "3
€3 = (—n3,—1+n1, 1— 1+n1)'

The time derivative of the matrix R is given (cf. (2.3)) in terms of 715, 713 as

2 1 0
n
0 1 ' _n2(2+2n1—n%—2n%) _n3(1—n§+n1)
R = ni(1+n1)? n1(1+n1)?
0 _n3(1—n§+n1) _ nzn%
(A.14) u ni(1+n1)? ni1(14+n1)?
[—n, —1 0
=1 ~2 1+ o(i)
3
0 -5 0
B 0 ~1
2 2
3 ___ n3n3 _ng(l—nz—i-n])
R( ) = 0 n1(1+n1)2 n1(1+n1)2
1 _nz(l—n%—i-nl) _n3(2+2n1—2n%—n§)
(A.15) B ni(1+n1)? ni(1+n1)?
_—n3 0 —1
_ v 2
=10 (312 —2 |+ o(n| )
1 -

where we recall that by definitionn; =
Q(z) = (R(z))TR and Q(3) = (R(3))TR appearing in

1 — |71]2. With this notation, the matrices

(2.4) may be spelled out as

2
n non3
0 1 + n1(1in1) n1(17+?11)
pi{LEm) ns 4m
(A.16) ETCETT) ~ T 0
0 1 0
=|-1 0 Bt ogiP),
0 -% 0
i 0 nanj 1 ”%
) - ni(1+n1) + nlrg-i-nl)
0 = RIE) 0 B E=R
n n
(A.17) S a=n R 0
[0 0 1
=0 0 -Z|+00rP).
-1 %2 0

Note that both matrices Q(2) and Q(3) are skew-symmetric, and thus so is 0.
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Next we turn to the definitions of # and g in (2.6), which may be rewritten as
u(x.1) = ROTRT (O —E@).1) and  p(x.1) = BRT (O)(x — £, 1),
From the definitions of X, i, and p in (2.5)—(2.6), we obtain that
0%k = Ry Rym%m — Rk,
awfk, = Ry,
L29,u; = Rijil; + Y5 Ryjd,8; + Rijds, i (Rex Rem ¥ — Rexo),
Oxei = RijOx, i Ry,
08,0 = 1429, 5 + 9z, F(Rek Rem¥m — Rk,
axep = 855/\- PRk
Using the above identities and the fact that
RRT =1d implies Ry;Rg; = —RyiRj.
we may write the Euler equations in the basis (¢1, €2, €3) as
(A.182) 12%9,51; — Ry Ryjil; + (Ryj RemSm

— RyjE)0%, 1l + 1105, 11; + 55 05,0°% =0,

(A.18b) 1429, (%) + (Rej Remm — Rej€0)9%, (%)

+110%, (F) + (%)% = 0.
The perturbations (A.18) present over the usual Euler system are only due to the
R(t) and £(¢) terms, arising from our time-dependent change of coordinates. The
first term is a linear rotation term, while the second term alters the transport velocity

to take into account rotation. Using the definitions of Q in (2.4) and & in (2.6), the
system (2.7) now directly follows from (A.18).

The adapted coordinates

We first collect a number of properties of the function f (? ,1) defined in (2.11).
Due to symmetry with respect to vy, we clearly have that

S = ¢vy(f)55y
so that f(0,7) = f., (0,7) = 0, and for the Hessian we have that
,ﬁvy (x,1) = ¢vy(f)-
For the derivative with respect to space and time we have
fvv = ‘lsvy(t)fy-

The following lemma is useful in deriving the equations satisfied by u,6,w,z,
and a,:
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LEMMA A.2 (The divergence operator in the (N, T2, T3) basis).
AL9 div;ﬁzNjagj(ﬁ-N)—{-T}-}agj(ﬁ-Tv)—{-(ﬁ-N)a}guNM
(&.-19) + (- TV)0x, T,

PROOF OF LEMMA [A.2. With respect to the orthonormal basis (N, T2, T3), we
have

divgii = onti -N + Ot - TV = N~,~8;j17,-N,- + T}-)agjﬁiT})
=N '3".(17 -N) + T‘?agj @-T) — ﬁiNﬂNi,ﬂ —ﬁiT})}T;’B
= N;dz, (U -N) —i—T”ij (@ -T") — (1 - N)N; Tﬁ i B
— (@ - T")T{ (NgN; g + T T) 5).-
The equation (A.19) then follows from the following identities:
T/ (NgN' g +TgTVﬂ) =T, forv=23,
N Tﬂ lﬂ — NM‘!M"
For the first identity, we begin by considering the case v = 2:
TF(NgN' g +TRTY ) = NN g T7 + T3T7 5T = —NgN; T7 5 — TRT7T7
2 3
= —(NgN; +T3T7 + T3T;)T7
NN TR AT, =T =T

and clearly the same holds for v = 3. For the second identity, note that

NiTpT; g = —NipTpT} = —N,-ﬂ(T;T-” + NﬂNi)
——N,,(T”T"—i—N N;) =—N;; =—Ngu.
which concludes the proof of the Lemma. U

Besides the above lemma, it is useful to note that under the sheep shear transform
(2.15)—(2.16), a term of the type b - Vg becomes b-Vg+Jb-No g- In particular,
for b = TV, the term involving d1 g disappears and we are left with Y g. This is
a key identity used in the following computations.

Proving that the Euler system in the X variable becomes (2.16)—(2.1) in
the x variable is a matter of applying the above observation, identity (A.19), and
the chain rule. It is also not difficult to prove that becomes (2.21) under this
change of variables.

The adapted Riemann variables

We give the details concerning the derivation of the system (2.24) from (2.7).
We start from (2.7)), in which the space variable is X, and the time is the original
time ¢, i.e., prior to (2.1). We define the intermediate Riemann variables

(A.20) wW=u-N+6, Z=u-N—5, a,=1u-T",
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which are still functions of (X, ¢), so that

-N= %(17)’—1—'2'.), o= %(ﬁ—Z).
The Euler sytem (2.7)) can be written in terms of the variables (w, Z, @2, ds) as
48,0 + (U + 3@+ DN; + §@ —DN; +a@,T})9;w
= —OtaT.];ajZiV + 5vT}}Ni + QijavT;Ni
(A2la) + (T + 2 - NNy, + @, T), )@ TYN;  — a (@, T), , + - NNy ),

28,2+ (T + 5@+ DN —$@—2DN; + 3, T})9;2
= & TY0;d, + Ay TYN; + O1;@, TIN;
(A21b)  + (T + 7 -NNu + @, T3 TNy + a8 @y T}, + - NNy ),

1548,ay + (U + 5@ + DN; + @, T7)9;a,
= —aGT}9;6 + (@ -NN; +a,T)T!
+ Qi (@ -NN; + @, T/)T
(A.21c) + (U + - NNy, + 3, T -NN; + @, THTY .

Next, using the sheep change of coordinates X +> x defined in (2.15), we have
that the Riemann variables defined earlier in (2.22) may be written as

(A.22a) w(x1, X2, x3,1) = wW(xy + f(x2,x3,1),x2,X3,1) = W(X, 1),
(A.22b) z(x1,x2,x3,1) = Z(x1 + f(x2,x3,1),x2,x3,1) = Z(X, 1),
(A.22¢) ay(x1.x2,x3,1) = ay(x1 + f(x2,x3,1),x2,x3,1) = a(x,1),

in analogy to (2.16). Using the new x variable and unknowns (w, z, as, as), the
system (A.21)) takes the form

HT“B,U) + (—f +Ju-N+ %(w +2)+ %J(w —z))81w
+ (v + 5w + DNy + $(w — 2Ny, + a,T))duw
= —a6T})duay + ayTIN; + Qija, TIN;
+ (v + 1 -NNy, + a, T}, )a, TYN
(A.23a) —ad(ayT), , +1u-NNy ),
Bedz+ (—f +Jv-N+ 3w +2) — YW —2))d1z
+ (v + 3w+ 2N — (W — 2N, +a,T},) 0,2
= 6T, duay + ayTYN; + O;a, TIN;
+ (v + 1 -NNp 4+ ay T )ay TYN;
(A.23b) +aday(T), , + 1NNy ).

I



116 T. BUCKMASTER, S. SHKOLLER, AND V. VICOL

Begay + (—f +Jdv-N+ 3w + 2))day
+ (v + 3w + 2Ny + @, T, ) dpay
= —6T),0u6 + (@ -NN; +a, T)T] + Qi (i -NN; + a, T)T}
(A.23c) + (vu + 1NNy 4 @y T7) (@ -NN; 4 a, T)T]
The system (2.24) now directly follows from by using the notation in (2.17).
A.3 Interpolation

In this appendix we summarize a few interpolation inequalities that are used
throughout the manuscript.

LEMMA A.3 (Gagliardo-Nirenberg-Sobolev). Let u : ]Rd — R. Fix1 < g,

r<oo jomeN andL <a <1 Then,if%— +a(———)+—
then
(A24) ID7ullLs < CID™ullE el pa®.

We shall make use of (A.24) for the case that p = 27’.", r = 2,q = oo, which
yields

(A.25) IID’<0|| TS ||<P||1’f1m ||<P||Loo ;

whenever ¢ € H™(R?) has compact support. The above estimate and the Leibniz
rule classically imply the Moser inequality

(A.26) ¢ @ll gm < N@llLocll@l gm + 1@l gmlllLoo.

for all ¢, ¢ € H™(IR3) with compact support. At various stages in the proof we
also appeal to the following special case of (A.24] 24

2
2k—5

(A.27) e ga—z < H‘P\

for ¢ € H*—1(R?) with compact support. Lastly, in Section |12| we make use of
the following:

HAI

LEMMA A4. Letk > 4and0 <[ <k —3. Thenfora+b =1— 57— € (0,1)
and g = $@k=3)

(A28) [D**'g Do 2 5 [ DF 32| DR e[ D76] 1D

PROOF OF LEMMA[A4. For 0 < < k — 3, define

6(2k 29(k 3
q(k) = (—_1) and p:p(k’l)zz(k—2§+(q)—4)l'

This is the only exponent p such that l is an affine function of [, and for / = 0 we

have p = ¢, while for/ = k — 3 we have that p = —=5. By Holder’s inequality,
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we have

ID2* ¢ D" gll2 < 1D e ID T gl 2

By the Gagliardo-Nirenberg-Sobolev interpolation inequality,

(A.292) ID** $lLr S 1D*GI12.11D%6 12,
(A.290) 1D gl 20 5 1D 0l 1D%0l 12"
where the exponents a and b are given by
1 1 l 1 p—2 k—3-1
I_24+L s
(A.30) a=-24 2 3 -4 2 >
114 k= 1 14 k=
q 2 3 q 2 3
Then,a + b = 1 — 52— € (0, 1), and (A.28) is established. O
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