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Abstract
We analyze the shock formation process for the 3D nonisentropic Euler equa-
tions with the ideal gas law, in which sound waves interact with entropy waves
to produce vorticity. Building on our theory for isentropic flows in [3,4], we give
a constructive proof of shock formation from smooth initial data. Specifically,
we prove that there exist smooth solutions to the nonisentropic Euler equations
which form a generic stable shock with explicitly computable blowup time, lo-
cation, and direction. This is achieved by establishing the asymptotic stability of
a generic shock profile in modulated self-similar variables, controlling the inter-
action of wave families via: (i) pointwise bounds along Lagrangian trajectories,
(ii) geometric vorticity structure, and (iii) high-order energy estimates in Sobolev
spaces. © 2022 Wiley Periodicals LLC.
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1 Introduction
The three-dimensional Euler equations of gas dynamics, introduced by Euler

in [12], are a hyperbolic system of five coupled equations, and can be written as

t x x k(1.1a)

t x divx(1.1b)

tk x k(1.1c)

for spacial variable x x x x , temporal variable t , velocity
, density , and entropy k . The

pressure1 k is a function of both density and entropy,
with equation-of-state given by the ideal gas law

k �
� k

where the adiabatic constant � . If smooth initial conditions are prescribed at
an initial time t , then a classical solution to (1.1) exists up to a finite time , the
lifespan, when a singularity or blowup develops [27]. The mechanism of blowup
for smooth solutions to (1.1) as , including rate, direction, locus, and profile
is heretofore unknown.

Our primary aim is the detailed analysis of the formation of the first shock or
blowup for smooth solutions to (1.1). We prove that for an open set of initial
conditions, smooth solutions to (1.1) evolve steepening wavefronts and form an
asymptotically self-similar cusp-type first shock with explicit rate, location, and
direction. The major difficulty in the analysis of the nonisentropic Euler dynamics
stems from the interaction of sound waves, entropy waves, and vorticity waves.
Nonisentropic flows can have a misalignment of density and entropy gradients,
thus leading to dynamic vorticity creation, even from irrotational initial data.

To highlight the challenge created by the interaction of different wave families,
we must examine the evolution of the vorticity vector, which we shall now derive.
To do so, it is convenient to write the Euler equations using the sound speed. We
introduce the adiabatic exponent

�

1 The evolution equation for can be replaced with the equation for pressure given by t
x � divx .
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so that the sound speed can be written as k and
. We define the scaled sound speed by

(1.2)
k

and write the Euler equations (1.1) as a system for k as follows:

t x x xk(1.3a)

t x divx(1.3b)

tk x k(1.3c)

We let curlx denote the vorticity vector, and define the specific vorticity

vector by . A straightforward computation shows that is a solution to

t x x x xk(1.4)

The term x xk on the right side of (1.4) can also be written as x x
and is referred to as baroclinic torque. Clearly, the potential vorticity, the compo-
nent of in the direction of the density gradient, can only be generated by vortex
stretching, whereas baroclinic vorticity modes are produced from the interaction
of acoustic waves and entropy waves. This (baroclinic) vorticity production is the
fundamental mechanism for the excitation and stabilization of both the Rayleigh-
Taylor and Richtmyer-Meshkov instabilities, and plays a fundamental role in at-
mospheric science as well as numerous flows of engineering significance.

Of course, it is possible to simplify the Euler dynamics in a manner that still
retains the steepening of sound waves, but removes complications associated to
the interaction of different wave families. This can be achieved by considering
the subclass of flows for which the entropy is a constant; such flows are called
isentropic, and the pressure is a function of density alone: �

�. Note that
for isentropic flow, baroclinic torque vanishes, and thus the specific vorticity is
Lie-advected as a vector field. Acoustic modes can no longer interact with entropy
waves to create vorticity; rather, vorticity is merely advected. As such, two further
subclasses of flows exist: irrotational flow and flow with advected vorticity. For
irrotational flow, only sound waves propagate, while for initial data with vorticity,
there is an interaction between acoustic modes and vorticity modes that must be
carefully analyzed, as controlling the growth of vorticity is essential to the study
of shock formation. For nonisentropic dynamics, the presence of baroclinic torque
creates a fundamentally new challenge in the estimation of the growth of vortic-
ity. Why? Because as the first shock forms, the magnitude of baroclinic torque
becomes infinite! Even though the baroclinic torque blows up, using geometric
coordinates adapted to the steepening wave front we are able to obtain a number
of cancellations in the vorticity equation, which allow us to prove that the vortic-
ity remains bounded up to the time of shock formation. Furthermore, irrotational

initial data can be chosen with non-zero baroclinic torque such that vorticity is
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instantaneously produced and remains nontrivial throughout the shock formation
process. By a significant extension of the methodology we developed in [3, 4], we
shall prove the following:

THEOREM 1.1 (Rough statement of the main theorem). For an open set of smooth

initial data with a maximally negative gradient of size O , for sufficiently

small, there exist smooth solutions to the nonisentropic 3D Euler equations (1.1)
that form a shock singularity at time O . The first singularity occurs

at a single point in space, whose location can be explicitly computed, along with

the precise time at which it occurs. The blowup profile is shown to be a cusp

with regularity, and the singularity is given by an asymptotically self-similar

shock profile that is stable with respect to the topology for . If

an irrotational initial velocity is prescribed, vorticity is instantaneously produced,

and remains bounded and nontrivial up to the blowup time .

A precise statement of the main result will be given below as Theorem 3.2.

1.1 Prior results
In one space dimension, the theory of finite-time blowup of smooth solutions

and shock formation to the Euler equations is well established. The literature is too
vast to provide a review here. See, for example, [11, 13–17, 19, 26]. In contrast, in
multiple space dimensions and with no symmetry assumptions, only the isentropic

shock formation problem has been studied: shock formation was established for
irrotational flows by [7, 9] (see also [8]), for 2D isentropic flows with vorticity
by [3, 18], and for 3D isentropic flows with vorticity by [4]. Under a spherical
symmetry assumption, which reduces the nonisentropic Euler equations to a 1D
system, the shock formation process was studied in [30]. For nonisentropic flow in
multiple space dimensions and without symmetry assumptions, prior to this paper
it was only known that solutions have a finite lifespan [27].

As we noted above, one of the major difficulties in the analysis of nonisen-
tropic flows is due to the interaction of multiple wave families: sound waves, vor-
ticity waves, and entropy waves. Indeed, the analysis of quasilinear hyperbolic
systems with multiple wave speeds is just emerging. As stated in [29], prior to
the results in [3, 4, 18, 29], there have been no constructive proofs of shock for-
mation for a quasilinear hyperbolic system in more than one spatial dimension,
featuring multiple wave speeds. We note that the irrotational (isentropic) Euler
equations can be written as a scalar quasilinear wave equation with only one wave
speed; formation of shocks for systems with a single wave speed have been studied
by [1, 2, 7, 9, 24, 25, 28].

Finally, we mention that there are other possible blowup mechanisms for the Eu-
ler equations; for example, a precise characterization of implosion for spherically
symmetric isentropic flow has recently been given in [21, 22].
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1.2 Main ideas in the proof
Because of the presence of multiple wave speeds, multiple wave families, and

their nonlinear interactions, the Euler dynamics offer a rich tapestry of dynamic
behavior, and yet when zooming in on the formation of the first shock, the Euler
solution shares fundamental features with the wave-steepening blowup of the 3D
Burgers solution. For this reason, our study of the mechanism of shock formation
for smooth solutions of (1.3) as makes use of a blowup profile , one
example of a stable stationary solution to the 3D self-similar Burgers equation

(1.5)

which has an explicit representation. If we consider the 3D Burgers equation
in physical spacetime variables x , then a smooth solution

that forms a first shock at is given by2

(1.6)
x x x

x x x

with and . Explicit properties of the blowup profile together
with the solution for x t give precise information of the blowup mechanism as

, including the blowup time , the blowup location x , and the blowup
direction . We note that we have made a particular choice of direction for our
Burgers solution ; specifically, we have chosen to let the wave steepen along the

blowup direction, whereas we could have used the profile to form a blowup
in any direction.

Although the nonisentropic Euler system is significantly more complicated, we
are nevertheless able to use the Burgers stationary solution to describe the
blowup mechanism for smooth solutions of (1.3) as . This requires a num-
ber coordinate and variable transformations that are constructed upon two geomet-
ric principles: first, we build into our transformations a family of time-dependent
modulation functions whose purpose is to fight against the destabilizing action of
the finite-dimensional symmetry groups of the Euler equations, and second, we
design a coordinate system which both follows and deforms with the steepening
Euler solution.

Let us now elaborate on these ideas. The blowup profile has an ex-
plicit formula which shows that is a global minimum for , and
with the following properties verified: , ,

, , and

(1.7)

2 In fact, as established in Appendix A.1, there are many closely related stable self-similar solu-
tions to the Burgers equations which allow for a slight modification of .
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Positive-definiteness of the Hessian of at is a genericity condition for
the blowup mechanism, and has been used in the study of blowup for quasilinear
wave equations [1] and discussed in [5, 7] as an important selection criterion for
stable shocks.

Returning now to the identity (1.6), if the initial time is fixed to be for
, we can set ; the initial condition for is then given by

x x x x

With x x x , we see that the prop-
erties of at show that , x

, x , x , x , and the genericity
condition (1.7) is also satisfied so that x x . We see that for the 3D
Burgers equation, if we start with a maximally negative slope equal to at time

and x , then the first shock occurs at time and x , and by
virtue of (1.6), the blowup mechanism is self-similar

x(1.8)

Of course, no such formula as (1.6) exists for the Euler equations, but we can
nevertheless use the properties of to develop a new type of stability theory for
the Euler equations in self-similar variables.

Thus, the first step in our proof of shock formation for the nonisentropic Euler
equations is the mapping of the physical space-time coordinates x t to modulated

self-similar space-time coordinates , together with a succession of transfor-
mations that map the original variables k into geometric Riemann-like vari-
ables , in which the dynamically dominant variable mimics
the properties of near the blowup location . The use of modula-
tion functions for the analysis of self-similar dispersive equations was pioneered
in [20, 23]. The initial data is prescribed at self-similar time log , and
we require log to verify the same conditions as at the point

for all multi-indices . Just as we noted above, we are now making
a choice of blowup direction; the initial data is chosen so that its maximal neg-
ative slope is in the -direction, but unlike the Burgers solution, the rotational
symmetry of the Euler dynamics does not preserve this direction. In fact, the var-
ious symmetries of the Euler equations prevent these conditions on to
be maintained under the natural evolution, and for this reason, ten time-dependent
modulation functions are used to ensure that for
and for all log . Of these ten modulation functions, seven of them are as-
sociated to symmetries of the Euler equations (see section 1.3 in [4]), and three
of the modulation functions are associated to a spatially quadratic time-dependent
parametrization x x x x x x of the steep-
ening front, where the matrix modulates the curvature, and denotes the in-
duced second-fundamental form. Associated to this parametric surface x x
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is a time-dependent orthonormal basis N T T representing the normal and tan-
gential directions. The steepening front moves in the N-direction and the dominant
Riemann variable is defined as N . With respect to coordinates ,
which themselves depend on , the variable is associated to the dominant
self-similar variable by a formula which is analogous to (1.6):

log

where modulates the blowup time and converges to as . Differenti-
ating in the direction N of the steepening front, it can be shown that

N as(1.9)

where modulates the blowup location. The blowup (1.9) is the geometric
analogue of (1.8), and requires a well-defined limit as which, in turn,
requires that remains well defined for all log .

It therefore becomes clear that in order to establish stable self-similar shock for-
mation, we must prove global existence of solutions to the Euler equations in self-
similar coordinates , and the majority of our work is devoted to this end. The
understanding of the damping/antidamping structure of the Euler equations in self-
similar coordinates along Lagrangian trajectories is key to our analysis; the
undifferentiated Euler equations have antidamping terms, but upon spatial differ-
entiation, damping emerges, and the more derivatives that are applied, the stronger
the damping becomes. A consequence of this observation is that pointwise bounds
for lower-order derivatives cannot rely on either damping or traditional Eulerian-
type analysis, but rather on sharp (lower) bounds on the motion of the three families
of trajectories associated to the three wave speeds present. In self-similar coordi-
nates, almost all of the trajectories in these three wave families escape to infinity

and having sharp rates-of-escape for each family can be combined with spatial de-
cay properties of the Riemann-type function to close a system of highly
coupled bootstrap bounds for derivatives up to order 2.

On the other hand, it is not possible to close estimates for the Euler equations us-
ing only pointwise bounds due to inherent derivative loss, and higher-order energy
estimates must therefore be employed. Modified energy estimates are performed
for a system of variables comprised of , �, and �, where , , and

are the self-similar versions of , , and k, respectively. The use of these vari-
ables removes the hyperbolic degeneracy associated to vanishing density. Com-
bined with the weighted pointwise bounds for lower-order derivatives, we prove
global existence in a modified -norm, .
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While for the subclass of irrotational flows the above two types of estimates suf-
fice, for rotational flows it is essential to obtain uniform bounds for the vorticity
all the way to the blowup time. Even for isentropic dynamics, in which the spe-
cific vorticity is Lie-advected, analysis in self-similar coordinates appears to create
logarithmic losses in temporal decay (see [4]). Instead, the specific vorticity is
estimated in physical coordinates using geometric components N T T ,
which yield a cancellation at highest order. For the nonisentropic dynamics, an
additional difficulty arises because the vorticity equation (1.4) is forced by the
baroclinic torque x xk, which blows up as . Indeed, from formula
(2.25) below, and the bounds established in Sections 6 and 7, we may show that
the tangential components of the baroclinic torque term satisfy

T x xk

A main feature of our proof is to show that in spite of the fact that the Lie-
advection for the specific vorticity is forced by a diverging term, remains uni-
formly bounded up to . This is achieved by noting that the divergence of the
velocity gains a space derivative when integrated along trajectories with speed ,
and by taking advantage of certain cancellations that arise due to our geometric
framework.

Finally, we examine baroclinic vorticity production. We prove that even if the
initial velocity is irrotational, vorticity is instantaneously produced due to the baro-
clinic torque, and our analysis shows that this created vorticity remains non-trivial
in an open neighborhood of the steepening front all the way up to the first shock.
We thus provide a constructive proof of shock formation for Euler in the regime in
which vorticity is created, and not simply Lie advected.

1.3 Outline
In Section 2, we introduce a succession of variable changes and Riemann-type

variables which allow then allow us to write the Euler equations in modulated self-
similar coordinates. A precise specification of the data and the statement of the
main results is then given in Section 3. In Section 4, we introduce the bootstrap
assumptions for the modulation functions as well as the primary variables solving
the self-similar Euler equations; these bootstrap assumptions consist of carefully
chosen weighted (in both space and time) bounds. A fundamental aspect of our
proof requires a detailed estimates for the rates of escape of the trajectories cor-
responding to the different wave speeds, and Section 5 is devoted to this analysis.
In Section 6, we establish pointwise bounds for the vorticity, and in Section 7
we show that there exists irrotational initial velocity fields from which vorticity is
created and remains nontrivial at the first shock. Energy estimates in self-similar
variables are established in Section 8, using the modified variables (2.41). In Sec-
tion 9, we establish weighted (pointwise) estimates for functions appearing in the
forcing, damping, and transport of the differentiated Euler system. In turn, these
weighted bounds allow us to close the bootstrap assumptions for , , , , and
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their partial derivatives, and this is achieved in Sections 10–11, while in Section
12, we close the bootstrap bounds for the dynamic modulation functions. Finally,
in Section 13, we explain how all of the obtained bounds are used to prove The-
orem 3.2; in particular, we show that lim A for any fixed

, where A is a stable stationary solution to the self-similar 3D Burg-
ers equations. A family of such stationary solutions is constructed in Appendix A,
which also contains an interpolation inequality that is used throughout the paper,
as well as some detailed computations leading to the evolution equations for the
modulation functions.

2 Transforming the Euler Equations
into Geometric Self-Similar Variables

We now make a succession of variable transformations for both dependent and
independent variables. We begin by rescaling time as

t t(2.1)

We next introduce ten modulation variables which satisfy a coupled system of
ODEs that will be given in (12.12)–(12.13). For each time , they are defined
as follows:

rotation matrix from to the direction of steepening front

translation vector used to fix the location of the developing shock

2x2 symmetric matrix giving the curvature of the shock front
scalar used to track exact the blowup time
scalar used to fix the speed of the developing shock

The matrix is defined in terms of two time-dependent rotation angles
and as follows. We define

and a skew-symmetric matrix whose first row is the vector , first
column is , and has entries otherwise. In terms of , we define the
rotation matrix

Id(2.2)

It is the two angles and whose evolution is given in (12.12).
Using these modulation functions, we next proceed to make a succession of

transformations of both the independent and dependent variables, finally arriving
at a novel modulated self-similar form of the dynamics.
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2.1 Rotating the direction and translating the location
of the steepening wavefront

We introduce the new independent variable

x(2.3)

and corresponding dependent variables as

x x k k x(2.4)

It follows that (1.3) is transformed to

k(2.5a)

div(2.5b)

k k(2.5c)

where

and(2.6)

The density and pressure in this rotated and translated frame are given by

x x(2.7)

satisfy

div(2.8a)

� div(2.8b)

and we also have the alternative form of the momentum equation

k(2.9)

This follows from the form of the momentum equation given by

t x
k

x

where, from (1.2), we have used that k .
Similarly, defining the transformed specific vorticity vector by

(2.10) x

we have that solves

k(2.11)

Deriving (2.11) from (1.4) fundamentally uses that is skew-symmetric, and the
fact that the cross product is invariant to rotation.
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2.2 Coordinates adapted to the shape of the steepening wavefront
We next define a quadratic surface over the -plane given by the graph

(2.12)

which approximates the steepening shock, and where

(2.13)

Associated to the parametrized surface (2.12), we define the unit-length normal
and tangent vectors3

N J(2.14a)

T J J J J J(2.14b)

T J J J J J(2.14c)

where J .4

In order to ‘flatten’ the developing shock front, we make one further transfor-
mation of the independent space variables5

(2.15)

and define the transformed dependent variables by

(2.16a)

(2.16b)

(2.16c)

k k k(2.16d)

(2.16e)

We shall also make use of the -dependent parameters

(2.17a)

(2.17b)

where .

3 As we noted in [4], N T T defines an orthonormal basis and T T N, N T T ,
and N T T .

4 Here and throughout the paper we are using the notation and .
5 Note that only the - coordinate is modified.
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Using the time rescaling from (2.1), the system (2.5) can be written as (2.16) as

J N J N

(2.18a)

JN JN k k

J N J N

(2.18b)

NJ

k J N J N k k

(2.18c)

where in analogy to (2.16), we have denoted

(2.19)

Note in particular the identity . The
density equation (2.8a) becomes

(2.20)
J N J N

NJ

the pressure equation (2.8b) is transformed to

(2.21)
J N J N

� NJ

and the alternative form of the momentum equation (2.9) is written as

(2.22)
J N J N

k
JN

Similarly, the transformed specific vorticity vector is

(2.23)

so that the equation (2.11) becomes

(2.24)
J N J N

JN k
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Note that the gradient appearing on the right side is with respect to . We record
for later use that

(2.25)
k T T k T T k N

T Nk N T k T N T k T Nk T

where
N N and T T

2.3 Riemann variables adapted to the shock geometry
Just as for the isentropic Euler equations that we analyzed in [4], the nonisen-

tropic Euler system (2.18) has a rad geometric structure arising from the use of
Riemann-type variables, defined by

N N T(2.26)

so that

N(2.27)

The Euler system (2.18) can be written in terms of k as6

J N J J

(2.28a)

N N T

T T N T N T NN

NN T T N J k N k
(2.28b)

J N J J

N N T

T T N T N T NN

NN T T N J k N k
(2.28c)

J N J J

N T

T NN T T NN T T

NN T NN T T T k
(2.28d)

6 The time rescaling (2.1) sets the coefficient of in (2.28b) to , which provides a conve-
nient framework to study the -equation as a perturbation of Burgers-type evolution.
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k J N J N k k

(2.28e)

2.4 Euler equations in modulated self-similar Riemann-type variables
Finally, to facilitate the analysis of shock formation, we introduce the (modu-

lated) self-similar variables:

log(2.29a)

(2.29b)

for(2.29c)

Using the self-similar variables and , we rewrite the functions , , , k,
and , defined in (2.26) and (2.19), as

(2.30a)
(2.30b)
(2.30c)

k(2.30d)
(2.30e)

so that

(2.31)

Introducing the parameter

the Euler system (2.28) is written in self-similar coordinates as
(2.32a)

(2.32b)

(2.32c)

(2.32d)

where the transport functions are defined by

J J N J
(2.33a)

J J N J
(2.33b)
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J J N J
(2.33c)

the transport functions are given as

N N N T
(2.34a)

N N N T
(2.34b)

N N N T
(2.34c)

and the forcing functions are

T T N T N

N N T T N

T NN J N
(2.35a)

T T N T N

N N T T N

T NN J N
(2.35b)

NN T T

NN T T T

NN T NN T T
(2.35c)

In (2.35) we have also used the self-similar variants of , , and k, which, together
with the self-similar variant of , are given by

(2.36a)

(2.36b)

(2.36c)

(2.36d)

so that

N and(2.37)
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The system (2.32) may be written as

V

V

V

V

where the transport velocities are abbreviated as

V(2.39a)

V(2.39b)

V(2.39c)

2.5 Self-similar Euler equations in terms of velocity, pressure, and entropy
From (2.18), (2.21), (2.22), (2.29), (2.36a), (2.36c) we deduce that

are solutions of

V

JN(2.40a)

V NJ(2.40b)
V(2.40c)

For the purpose of performing high-order energy estimates, it is convenient to
introduce

P � � H �(2.41)

and re-express the system of equations (2.40) as the following P H -system:

V H P JN P P

(2.42a)

P V P P JN(2.42b)
H V H(2.42c)

Finally, we define the self-similar variant of the specific vorticity via

(2.43)

2.6 Evolution of higher-order derivatives
Higher-order derivatives for the -system

We shall also need the differentiated form of the system (2.32), which we record
here for convenience. For a multi-index , we use the notation
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. We have that

1 J V

(2.44a)

J V(2.44b)

J V(2.44c)

J V(2.44d)

where and the forcing terms are

(2.45)
1 J

1 J

for the evolution, and

1 J

J(2.46a)

1 J

J(2.46b)
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1 J

J(2.46c)

for the , , and evolutions.

Higher-order derivatives for
We let denote a particular self-similar, stable, stationary solution of the

3D Burgers equation, given by

1D(2.47)

where is the Japanese bracket, and where 1D is the stable
globally self-similar solution of the 1D Burgers equation, i.e., 1D is a solution
to 1D 1D . We refer the reader to [6], [10], and section 2.7 of [4] for
the explicit form of 1D and for properties of . We note that is one
example from the 10-dimensional family A of stable stationary solutions to the
self-similar 3D Burgers equation, which are given by Proposition A.1 in Appendix
A.1. The symmetric -tensor A represents A for . The function
is in fact equal to A for the case that A , A A , and all other
components vanish.

Of paramount importance to our analysis is the evolution of the perturbation

(2.48)

which satisfies

(2.49)
J V

J

Applying to (2.49), we obtain that obeys

(2.50)
J

V
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for , where the forcing term is given by

(2.51)

J

1 J

J

2.7 Constraints and the evolution of dynamic modulation variables
The use of modulated self-similar variables allows us to ensure that the evolution

of in (2.32a) maintains the constraints

(2.52)

for all log . This is achieved by choosing our time-dependent dynamic
modulation parameters to satisfy a -by-
coupled system of ODEs, which we describe next.

At time the modulation parameters are defined as

(2.53)

where is defined in (3.29) and is defined by (3.8). In order to determine the
time derivatives of our modulation parameters, we use the explicit form of the
evolution equations for , , and (cf. (2.32a) and (2.44a)), which are
evaluated at and take into account the constraints in (2.52). Note that in this
subsection we only collect the equations which implicitly define the evolution of
the modulation parameters; only in Section 12 do we untangle the coupled nature
of these implicitly defined ODEs to actually define the evolution of the constraints
(cf. (12.12) and (12.13)), and prove that the resulting ODEs are globally well-
posed.

Throughout the paper, for a function , we shall denote by .
We make a preliminary observation regarding the value at for the forcing
terms that appear in the evolution (2.44a) for . Using (2.52) it is not hard
to check that for any with or we have that

(2.54)

Therefore, it is sufficient to know the derivatives up to order of and at
; these derivatives may be computed explicitly, and for convenience of the

reader we have listed them in Appendix (A.3); see equations (A.7), (A.8), (A.9),
(A.10), (A.10), (A.11), and (A.11). Next, we turn to the evolution equations for the
modulation parameters.
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First, we evaluate the equation for in (2.32a) at to obtain a definition
for . Using (2.32a) and (2.52) we obtain that

(2.55)

Second, we evaluate the equation for at and obtain a formula for .
Indeed, using that , we obtain from (2.44a) with
that

(2.56)

Third, we turn to the evolution equation for at , which allows us to
compute . Evaluating (2.44a) with at and using (2.54) we obtain
for that

(2.57)

It is not immediately apparent that (2.57) determines . In order to see this one
has to inspect the explicit formula for in (A.7c), and to note that

terms which are all small (bounded by to a positive power). This
is explained in (12.3) below. Note that once is known, we can determine
thorough an algebraic computation; this will be achieved in (12.5) below.

Fourth, we analyze the evolution of at . This constraint allows us
to compute and , which will in turn allow us to express ; we initially
focus on computing and . Evaluating (2.44a) with at
for , and using (2.54), we obtain

(2.58)

On the left side of the above identity we recognize the matrix

H(2.59)

acting on the vector with components , , and . We will show (see (12.14)
below) that the matrix H remains very close to the matrix diag for all

log , and thus it is invertible. Therefore, we can express

H(2.60a)

H(2.60b)

Once (2.60) is obtained, we may derive the evolution for . Indeed, from (2.34a),
(2.13) evaluated at , the definition of in (2.31), the constraints in (2.52),
and the identities N , T we have that

(2.61)
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Similarly, from the definition of in (2.33a), (2.13), and the constraints in
(2.52), we deduce that

(2.62)

Since the matrix is orthogonal (hence invertible), it is clear that (2.60), (2.61),
and (A.7a) determine .

Lastly, we use the evolution of at in order to determine . Eval-
uating (2.44a) with at and using (2.54), we obtain

(2.63)

for . Using (2.60a) and (2.60b) we rewrite the above identity as

H

H(2.64)

As with (2.57) earlier, it is not immediately clear that (2.64) determines the evolu-
tion of . In order to see this, we need to inspect the precise definition of
(cf. (A.7e) below), which yields that terms which are
smaller (by a positive power of ). Details are given in (12.10) below.

The computations in this subsection derive implicit definitions for the time deriv-
atives of our ten modulation parameters. In Section 12 we will show that the re-
sulting system of ODEs for the modulation parameters is in fact solvable globally
in time.

3 Main Results
3.1 Data in physical variables x

It is convenient to set . This corresponds to t . We define
initial conditions for the modulation variables as follows:

(3.1)

where

(3.2)

Next, we define the initial value for the parametrization of the front by

x x x
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and according to (2.14), we define the orthonormal basis N T T by

N J where J(3.3a)

T J J J J J

T J J J J J

(3.3b)

From (3.2) and (3.3) we deduce

N T(3.4)

At , the variable is given by

x x x x(3.5)

which is a consequence of (3.1), (2.3), and (2.15).
The remaining initial conditions are for the velocity field, density, and entropy

which then provides us with the rescaled sound speed:

x x x x k x k x x
k

Following (2.16) and (2.26), we introduce the Riemann-type variables at initial
time as

x x N x x(3.6a)
x x N x x(3.6b)
x x T x(3.6c)

Using (3.5) and the fact that x and that , it follows
that

x x x(3.7)

As we will explain below, we will require that x , x ,
, and that x , and thus from (3.7), we find that

x x(3.8)

which shows that (3.2) holds.
In order to establish the formation of a stable self-similar shock, we shall stipu-

late conditions on the initial data. It is convenient to first explain these conditions
in self-similar variables, and we now proceed to do so.
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3.2 Data in self-similar variables
At log we have that , and thus the self-similar variables are

given by

x x and x(3.9)

Second, we use (2.30), (3.1), and (3.6), to define

log x log x

log x log k x

This initial data is supported in the set X , given by

X(3.10)

At , we shall mimic the behavior of and assume that at initial time
log ,

log log(3.11a)

log log(3.11b)

We define a sufficiently large parameter (which is in par-
ticular independent of ), a small length scale , and a large length scale L by

log(3.12a)

L(3.12b)

For we shall prove that is well approximated by its series expansion
at , while for L we show that and track and ,
respectively.

For the initial datum of given by

log log

we suppose that for L ,

log(3.13a)

log(3.13b)

log(3.13c)

where . In the smaller region , we assume that

log for(3.14)

and at , we have that

log for(3.15)
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For in the region L X , we suppose that

log(3.16a)

log(3.16b)

log(3.16c)

while for the second derivatives of , globally for all X , we shall assume
that

log for and(3.17a)

log log for(3.17b)

log(3.17c)

where log .
For the initial conditions of , , and , we require that

log
if and
if and

(3.18)

log
if and
if and

(3.19)

log
if and
if and
if and

(3.20)

Consequently, the initial specific vorticity in self-similar variables satisfies

log N and log T(3.21)

and the initial scaled sound speed satisfies

log(3.22)

Lastly, for the Sobolev norm of the initial condition, we suppose that for all
,

(3.23)
log log

log log

LEMMA 3.1 (Initial datum suitable for vorticity creation). There exists initial da-

tum log with support in the set X defined in (3.10), which satisfies the

bounds (3.13)–(3.17), and which additionally can be chosen to satisfy

(3.24) log

for
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Moreover, associated to this choice of log , letting log and

, there exists an log , such that

(3.25) log

log log log

is irrotational with respect to the physical space variable .

PROOF. The proof of (3.24) is based on the introduction of cutoff functions in
both the -direction and in the -direction, and the multiplication of the globally
self-similar profile by these cutoffs. The only nontrivial part of this argument is
to choose the dependence of the aforementioned cutoffs on .

We start by defining a cutoff function with two parameters. For we
let ⌘ be a smooth nonincreasing function which is identically equal to
for , and vanishes identically for . For the purposes of
this lemma we may take the piecewise linear cutoff function and mollify it with a
compactly supported mollifier with characteristic length which is -dependent. For
example, we may mollify with a mollifier of compact support at scale the
function which equals for , equals for , and is given
by for . In particular, we may
ensure that up to a constant factor of the derivative of ⌘ is given by

on the region , and vanishes outside of this region. Similarly,
the second derivative of this cutoff function is bounded by a constant multiple of

on the region where it does not vanish.
Finally, we define the initial datum log to be a cutoff version of ,

according to

log ⌘ ⌘(3.26)

A lengthy but routine computation which uses properties of the explicit func-
tion (see, e.g., [4, equation (2.48) and remark 3.3]) shows that the function

log satisfies the conditions (3.13)–(3.17). We omit these details, but give
the proof of condition 3.24, which is essential for the vorticity creation argument.
We note that for we have that ⌘ ,
and for we have ⌘ . Thus, in the region
relevant for (3.24), by using (2.47) we have

log 1D(3.27)

The function 1D is explicit, and the Taylor series of its derivative around infinity
is given by 1D O . Using that we are interested
in a region where , and , upon choosing
sufficiently small (so that the Taylor series expansion around infinity is the relevant
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one), we immediately deduce that from (3.27) that

1D

in the region of relevance to (3.24). This establishes the existence of satisfying
(3.24) as well as the bounds (3.13)–(3.17).

Next, for log given by (3.26) and with log , we shall
now prove the existence of an irrotational initial velocity field satisfying
(3.25).

We first set so that N , T , and J , and
. We have that log , and from

(3.25), we see that

In order to ensure that , we define

for and then extend as an even function in . We now define

(3.28)

so that , which implies that curl . We write
(3.28) in self-similar coordinates as

log log

Using the definition of log given in (3.26), a lengthy computation shows
that log satisfies the bounds (3.19) and (3.23). ⇤

3.3 Statement of the main theorem in self-similar variables
and asymptotic stability

THEOREM 3.2 (Stability and shock formation via self-similar variables). For

and , let be chosen sufficiently large. Suppose that at

initial time log , the initial data log
are supported in the set X from (3.10), and obey conditions (3.11)–(3.23). As-

sume that the modulation functions have initial conditions compatible with (3.1)–
(3.2).

There exist sufficiently large,

sufficiently small, unique smooth modulation functions which solve

the system (12.12) and (12.13), and unique global-in-time solutions

to (2.32) with the following properties. The functions are supported

in the time-dependent cylinder X defined in (4.4),

log log for
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and

log

for a constant . The modulation functions lie in

and satisfy the bounds (4.1). The Riemann function remains

close to the generic and stable self-similar blowup profile upon defining the

weight function , the perturbation satisfies

for all and log . Furthermore, for all ,

and the bounds (4.9) and (4.10) hold. Additionally, satisfies the bounds

given in (4.7) and (4.19).
As , converges to an asymptotic profile A which satisfies:

A is a smooth solution to the self-similar 3D Burgers equation (1.5).

A obeys the genericity condition (1.7).

A is uniquely determined by the parameters A lim for

.

The amplitude of the functions , , and remains O for all log ,

while for each , , , and as

, and and satisfy the bounds (4.12), (4.13), (4.14).
The scaled sound speed satisfies

for all log

The specific vorticity satisfies for all log ,

log

where is defined in (5.11). Furthermore, there exists irrotational initial data

from which vorticity is instantaneously created and remains nonzero in a neigh-

borhood of the shock location : see Theorem 7.4 for details.

For concision, the initial data was assumed to have the support property (3.10)
and satisfy the conditions (3.11). By using the symmetries of the Euler equations,
we can generalize these conditions to allow for data in a non-trivial open set in the

topology.

THEOREM 3.3 (Open set of initial conditions). Let F denote the set of initial data

satisfying the hypothesis of Theorem 3.2. There exists an open neighborhood of

F in the topology, denoted by F , such that for any initial data to the Euler

equations taken from F , the conclusions of Theorem 3.2 hold.
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3.4 Shock formation in physical variables x
We shall now interpret the assumptions and results of Theorem 3.2 in the context

of physical variables x . The function

x log

is chosen such that the minimum (negative) slope of occurs in the direction,
and x attains its global minimum at x , and from (3.11), satisfies

x x x x(3.29)

Of course, there are a number of additional conditions on x and its partial
derivatives which exactly correspond to conditions (3.13)–(3.17) by the change of
variables (2.29), but the conditions (3.29) are fundamental to the stable self-similar
point shock formation process.

We shall assume that the support of the initial data , is contained
in the set X x x , which in turn shows that N ,

, and T are compactly supported in X . In view of the coordinate
transformation (3.5) and the bound (3.2), the functions of defined in (3.6), namely

k , have spatial support contained in the set
. This larger set corresponds to the support

condition (3.10) under the transformation (2.29).
For the initial conditions of , , and k , from (3.18)–(3.20), we have that7

x x x x x

x x x x x

k x x k x xk x

together with conditions on higher-order derivatives8 that follow (3.18)–(3.20) and
(3.23).

The initial specific vorticity

log

satisfies condition (3.21), and the initial scale sound speed

log

satisfies (3.22).

7 The bound for x can be replaced by a bound that depends on , thus permitting arbitrarily
large initial vorticity.

8 We deduce from (3.23) that at , the Sobolev norm must satisfy

k

See (3.21)–(3.22) in [4] for details.
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We now summarize the statement of Theorem 3.2 in the physical variables. Sup-
pose that the initial data , , , and k satisfy the conditions stated above and
that is fixed. There exist a sufficiently large and a
sufficiently small such that there exists a time O ,
unique modulation functions , which solve the sys-
tem (12.12) and (12.13), and a unique solution

k

to (1.1) which blows up in an asymptotically self-similar fashion at time , at a
single point . In particular, the following results hold:

(i) The blowup time O and the blowup location O are ex-
plicitly computable, with defined by the condition
and with the blowup location given by lim . The amplitude
modulation function satisfies O where lim .

(ii) For each , we have N N x T T x O

(iii) We have

sup N T

(iv) There holds
lim N

and
N

as .
(v) At the time of blowup, has a cusp-type singularity with Hölder

regularity.
(vi) Only the N derivative of N and blow up, while the other first-order

derivatives remain bounded:

lim N N lim N(3.30a)

sup T T
N T(3.30b)

(vii) Both k and k remain bounded:

sup k k(3.31)

(viii) Let x x with x x so that x is the La-
grangian flow. Then there exists constants , such that x x

for all .
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(ix) The scaled sound remains uniformly bounded from below and satisfies

for all

(x) The vorticity satisfies for all
for a universal constant , and if on the set ,
then at the blowup location there is nontrivial vorticity, and moreover

on the set

4 Bootstrap Assumptions
As discussed above, the proof of Theorem 3.2 consists of a bootstrap argument,

which we make precise in this section. For sufficiently large, depending on
and on , and for sufficiently small, depending on , , and , we postulate that
the modulation functions are bounded as in (4.1), that are supported
in the set given by (4.4), that satisfies (4.7), obeys (4.8)–(4.10), and that ,

, and are bounded as in (4.12)–(4.14). All these bounds have explicit constants
in them. In the subsequent sections of the paper, we prove that the these estimates
in fact hold with strictly better prefactors, which in view of a continuation argument
yields the proof of Theorem 3.2.

4.1 Dynamic variables
For the dynamic modulation variables, we assume that

(4.1a)

(4.1b)

for all .
From (2.6) and (A.4)–(A.5) in [4], and the bootstrap assumptions (4.1), we ob-

tain that

(4.2)

Also, from the estimate in (4.1b), we obtain

(4.3)

upon taking sufficiently small.
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4.2 Spatial support bootstrap
We shall assume that have support in the set

X for all log(4.4)

We introduce the weights

and

as well as the -dependent weight function

For X , we note that

(4.5)

for all . Since , we have , and thus

(4.6)

holds for .

4.3 bootstrap
The bootstrap assumptions on and its derivatives are

(4.7)

if
1 L 1 L if and

if and
if and
if and
if and

Next, for L , we assume that9

(4.8a)

(4.8b)

(4.8c)

where L is defined as in (3.12b). Furthermore, for (as defined in (3.12a))
we assume that

log

log(4.9a)

log(4.9b)

9 While the first three bounds stated in (4.7) follow directly from the properties of stated in
(2.48) of [4], and those of in (4.8), the estimate for makes use of the fact that

.
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while at , we assume that

for all(4.10)

for all log .

LEMMA 4.1 (Lower bound for J ).

(4.11)
J and J

for all log

The proof of this lemma is given in the proof of Lemma 4.2 in [4].

4.4 and bootstrap
The bootstrap assumptions on , , , and their derivatives are:

if and

if and
(4.12)

if and

if and
(4.13)

if and
if and
if and

if and

(4.14)

Remark 4.2. Since satisfies a transport equation, the pointwise bound

(4.15)

follows directly from the initial datum assumption (3.20).

4.5 Further consequences of the bootstrap assumptions
The bootstrap bounds (4.1), (4.5), (4.7)–(4.10), (4.12), and (4.13) have a number

of consequences, which we collect here for future reference. The first is a global-
in-time -based Sobolev estimate:

PROPOSITION 4.3 ( estimate for , , and ). For integers and for

a constant ,

(4.16a)

(4.16b)

for all log .



SHOCK FORMATION AND VORTICITY CREATION FOR 3D EULER 33

The proof of Proposition 4.3, which will be given at the end of Section 8, relies
only upon the initial data assumption (3.23), on the support bound (4.5), on
estimates for , , and when , on pointwise bounds for

, and on bounds. That is, Proposition 4.3 follows directly from (3.23)
and the bootstrap assumptions (4.1), (4.5), (4.7), (4.12), and (4.13).

The reason we state Proposition 4.3 at this stage of the analysis is that the
estimates and linear interpolation yield useful information for higher-order deriva-
tives of , which are needed in order to close the bootstrap assumptions
for high-order derivatives. These bounds are summarized as follows:

LEMMA 4.4. For integers , we have that

if and

if

(4.17)

if and

if

(4.18)

if and

if and

if and

(4.19)

if and

if and

if

(4.20)

PROOF. The bounds for (4.17) and (4.18), as well as the first two estimates in
(4.19), are proven in lemma 4.4 in [4].

We then consider the third estimate in (4.19) and hence estimate for
the case and . We write

:II

Since , it follows from (4.7) that

II

Now we apply Lemma A.2 to the function , appeal to the esti-
mate (4.7), and to the Leibniz rule to obtain that

I
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where we have used that for the last inequality as is required by Proposi-
tion 4.3. We next estimate the norm of . To do so, we shall
use the fact that has support in the set X defined in (4.4). We find that

X

X
(4.21)

Using (4.7) and Proposition 4.3, the terms are bounded as

for all . Moreover, using that
together with (4.5), we have that

X
(4.22)

with the usual abuse of notation for . Combining the
above estimates, we obtain the inequality

(4.23)

for sufficiently small. From the above estimate, we obtain the third inequality in
(4.19).

We next consider the bounds (4.20), and we begin with the case that
and . Applying Lemma A.2 to the function , and using (4.14) and
Proposition 4.3, we have that

We next consider the second inequality in (4.20). In order to estimate the term
we write

I II

Since , it follows from (4.14) that

II
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By Lemma A.2 and (4.14),

I

Following the calculation (4.21), we have that

X

Applying (4.5), we obtain that

X

From (4.14) and Proposition 4.3,

From the above estimates, together with (4.14), we determine that

I

This estimate establishes the second bound in (4.20). For we apply
Lemma A.2 to , and together with (4.14) and Proposition 4.3, we find that

where we have assumed that is taken sufficiently small. ⇤

4.6 Bounds for N and
Finally, we note that as a consequence of the definitions (2.37), we have the

following estimates on N and .

LEMMA 4.5. For X we have

(4.24) N

if

if and

if and

if and

if and

if and

if and

if and

if and
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Additionally, for and we have the bound

N

PROOF. We shall only establish the bounds for N as the estimates for
are obtained in the identical fashion. Since , it follows from (2.37) that

N 1 . The desired bounds are obtained
by an application of (4.7), (4.9b), (4.12), Lemma 4.4, and (4.5). ⇤

PROPOSITION 4.6 ( bound for the sound speed). We have that

for all log(4.25)

PROOF. By (2.37), we have that

By (4.1), (4.5), (4.7), and (4.12), and the triangle inequality,

which concludes the proof. ⇤

4.7 The blowup time and location
The blowup time is defined uniquely by the condition , which by

(2.53) is equivalent to

(4.26)

The estimate for in (4.1b) shows that for taken sufficiently small,

(4.27)

We also note here that the bootstrap assumption (4.1b) and the definition of
ensures that for all . Indeed, when , we have that

, and the function is strictly
increasing.

The blowup location is determined by , which by (2.53) is

In view of (4.1b), for small enough, find that

(4.28)

so that the blowup location is O close to the origin.
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4.8 Hölder bound for
As we proved in [4], the self-similar scaling (2.29) and decay rate (4.7) for

show that

and the Hölder norms of , with , blowup as with a rate
proportional to .

5 Bounds on Lagrangian Trajectories
5.1 The Lagrangian flows in self-similar variables

In self-similar variables , we define Lagrangian flows associated to the
transport velocities in (2.39) by

V(5.1a)
V(5.1b)
V(5.1c)

for log . With denoting either , , or , we shall denote trajec-
tories emanating from a point at time by

with(5.2)

Estimates for the support and a lower bound for
Since the bounds for , , and are the same as in [4], the proofs of

the following two lemmas are the same as lemmas 8.1 and 8.2 in [4].
The bootstrap assumption (4.4) on the size of the support is closed as follows:

LEMMA 5.1 (Estimates on the support). Let denote either , , or .

For any X defined in (3.10), we have that

(5.3)

for all log .

We shall also make use of the lower bound given by

LEMMA 5.2. Let be such that . Let log . Then, the

trajectory moves away from the origin at an exponential rate, and we have the

lower bound

(5.4)

for all .

LEMMA 5.3. Given log and , let be such that L
and . Then, we have that

(5.5) and

for all .
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PROOF. Fix and denote and .
According to (5.1) and (2.39), we have that Solving

this ODE on the interval , with arbitrary , we obtain that

Using that by (9.5) we have , and appealing to the assump-
tion , we obtain that

where in the last inequality we have used that log , so that

. This proves the second claim in (5.5).
In order to prove the first claim in (5.5), we again recall (5.1) and (2.39), which

gives In view of the bound established for
and of the information we have from Lemma 5.2, we already know that L
implies that L for all , so that is much
larger than . Thus, from (4.3) and the first bound in (4.7), we have

Similarly, the first estimate in Lemma 9.2, in which we use an extra factor of to
absorb the implicit constant in the symbol, and the previously established bound
(5.3) imply that

Combining the above two estimates with the ODE satisfied by , we derive that

By explicitly integrating the above ODE, and using our earlier observation that
for all , we derive that

which completes the proof. ⇤
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Lower bounds for and
We now establish important lower bounds for or .

LEMMA 5.4. Let denote either or . If

max
(5.6)

then for any X defined in (3.10), there exists an log such that

(5.7) min

In particular, we have the following inequalities:

(5.8)
log

for and , where the constant depends only on the choice

of and .

This is a slight generalization of lemma 8.3 in [4], where we now allow the value
. The only addition to the proof requires an estimate for the integral I in

the proof of lemma 8.3 in [4]. In particular, for , we see that

I

The implicit constant only depends on and .

The time integral of along
An immediate consequence of (5.8) is the following:

COROLLARY 5.5. For all log ,

sup
X log

(5.9)

PROOF OF COROLLARY 5.5. The bound (5.9) follows using the second esti-
mate in (4.7) together with (5.8) with and . ⇤

5.2 The Lagrangian flow
With respect to the independent variables , the transport velocity for in

(2.22) is given by

v v v v J N J N(5.10)

We let denote the flow of v so that

v(5.11a)
(5.11b)

and we denote by the trajectory emanating from .
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Asymptotic nonpositivity for
LEMMA 5.6. For all and log , we have

max(5.12)

PROOF OF LEMMA 5.6. We start with the region L . Here,
due to the bootstrap (4.8b) for and the fact that (see (2.48)
in [4]), we deduce that

(5.13)

upon taking sufficiently small, and using that . Thus, for L
the bound (5.12) holds.

Next, let us consider the region . Here we have that .
Combining this bound with the second line of (4.7), we arrive at

Thus, (5.12) also holds in the region .
It remains to consider the region L . Notice that by the defini-

tion of L log , in this case we have that log . For such a fixed
we trace the particle trajectory of the flow V backwards in time, and write

, where the initial datum is given by the property that
L if log , and L if log . We claim that the second

option is not possible, so that we must have log and L . To see
this, we appeal to Lemma 5.2, which is applicable since L , and which
gives the bound . Thus, in the case that log and

L , this implies

L
log

log log

since log . This yields the desired contradiction, which guarantees that
L and log . At this stage we appeal to the evolution of given

in (2.44a) with , and deduce that satisfies the equation

J V
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Composing with and appealing to Grönwall’s inequality on the interval ,
we obtain that

(5.14)

exp J

exp J

We now use the information that L , and thus . Hence,
the first term on the right side of (5.14) is strictly negative (as the exponential is
positive), so that it does not contribute to the positive part of . We deduce, by
also appealing to the estimate in (9.19) and the bootstrap in (4.7),
that

max

exp J

exp

The proof is completed by appealing to the bound established in (11.32), namely
, which holds for L , and which implies

max exp ⇤

From Lemma 5.6, we immediately deduce the following:

COROLLARY 5.7. For any we have

max N(5.15)

uniformly pointwise in space.

PROOF. Recall that (cf. (2.27) and (2.30a)–(2.30b)) that

N

From (4.12) we know that , and since the function max
is convex and in fact subadditive, we deduce from Lemma 5.6 that

max N max max
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Writing , the desired bound follows from

log

concluding the proof. ⇤
The time integral of along

We next establish the following:

LEMMA 5.8. For all log ,

sup
X log

(5.16)

PROOF. From the definition of the transport velocity v in (5.10), observe that

div v div NJ(5.17)

where we have used the fact that

div JN div

and that from (2.19), div , and that div . Hence, the
conservation of mass equation (2.20) can be written as

v div v(5.18)

and composing (5.18) with the flow given by (5.11), we see that

div v(5.19)

Since

det det div v(5.20)

and det , it follows that

det

Note that using (1.2), (4.25), and (4.15) yields

(5.21)

k

k k k

Therefore, by (5.21) and (5.21), we have that

det

(5.22)

From (5.19) and (5.20), we have that

det det div v det div
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leads to

det exp div(5.23)

Hence,

div for all(5.24)

From (2.30c), (2.36a), (4.13), and (4.24)

(5.25)

It follows from (4.1a) and (5.25) that

(5.26)

Thus, with (9.1a), (5.17), (5.22), and (5.26), we have that

(5.27)
N

J div

By Corollary 5.7, the integral of the positive part of N is small. Therefore, the
above estimate gives a bound on the negative part of N as well. In summary,
by (5.27) and Corollary 5.7, we then have that

N(5.28)

Then, from (2.27) and the bootstrap assumptions (4.1a) and (4.12), we see that
, and in particular, for any X , we have that

sup
X

(5.29)

Since the flow is related to the flow via

and since , using (2.29a), the estimate (5.16) follows. ⇤

The Lagrangian flow
We next introduce the Lagrangian flow associated to the transport velocity in

(2.11), namely, , as the solution to

(5.30a)
(5.30b)
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Note that the flow is related to the flow given in (5.11) via the
transformation

(5.31)

and that is related to the flow by

(5.32)

In this subsection we obtain three results, which play an important role in the
proof of vorticity creation: the first is an estimate on Id , cf. (5.39);
the second is a precise bound on the label such that as
(recall that is the location at which the first singularity occurs), cf. Lemma 7.1;
the third result is a precise lower bound on , cf. Lemma 7.3.

First, we estimate the deformation rate of the flow on the time interval .
The evolution of is given by

(5.33)

We note that using the bounds (9.2), the argument given in (5.22)–(5.27), together
with the identical argument given in section 13 of [4], we may show that there
exists a universal constant (in particular, -independent) such that

(5.34)

The bound (5.34) can, however, be made sharper, and we show (cf. (5.39) below)
that Id uniformly on . In order to prove this, we appeal
to (5.33), from which we subtract Id , and then we contract with Id to
obtain that

(5.35)
Id Id S Id

S Id

We have introduced the notation

S

and for a matrix we denote the Euclidean norm as . Because
of (2.16), which implies that for a vector field we have
J N , using the relation (5.31) between the and Lagrangian trajectories

and respectively , and appealing to (2.26)–(2.27), we note that the following
identities hold

N N J N N N N(5.36a)

N T J N N T(5.36b)

T N T T N(5.36c)

T T T T T(5.36d)
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The first term on the right side of the first line of the above list has the worst
estimate when time integrated, cf. (5.28). Indeed, for all the other terms in the
above list, by appealing to the bootstrap assumptions (4.4)–(4.13) and the estimate
(9.1), we may deduce that their time integrals are O . Combining these estimates
we deduce that

(5.37)

Similarly, using the relations (2.19), (2.30e), (5.31), and the estimate (9.2), we
obtain that the time integral of is O . Summarizing, we have that the
matrix appearing on the right side of (5.35) satisfies

S(5.38)

Using that Id, from (5.35), (5.38), and ODE type bounds, we deduce
that

sup Id S(5.39)

The above bound is merely a quantitative version of (5.34); it will be used in the
proof of Theorem 7.4.

6 Bounds for Specific Vorticity

We now establish bounds to solutions of the specific vorticity equation (6.1)
From (2.24) and (2.25), we deduce that the normal and tangential components

of the vorticity satisfy

T v T F N F T G(6.1a)

T v T F N F T G(6.1b)

where the transport velocity v is defined by (5.10), and

F N T T N v N T N

N T(6.2a)

F T T T(6.2b)

F T T T T v T T T

T T(6.2c)

F N T T N v N T N

N T(6.2d)

F T T T T v T T T

T T(6.2e)
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F T T T(6.2f)

and

G T Nk N T k T k(6.3a)

G N T k T Nk T k(6.3b)

and from (2.14), T J .

PROPOSITION 6.1 (Bounds on specific vorticity). For ,

(6.4)

PROOF OF PROPOSITION 6.1. By the transformations (2.26), (2.30c), and (2.36a)
together with the bootstrap bounds (4.13), (4.24), Lemma 9.1, we have that

(6.5) N v

Hence, these bounds, together with (4.2) and Lemma 9.1, yield the following
bounds on the forcing functions: defined in (6.2)

F for(6.6)

where we have used powers of to absorb powers of .
Now, from the definitions (2.16) and (2.23), we have that

(6.7) curl

curl
and

(6.8)

curl N T T T T

T T T T

T T T T T T

from which it follows that

N
T T T T T T

(6.9)

It follows from (3.4), Lemma 9.1, (5.21), (6.5), and (6.9), we have that

N(6.10)

assuming is taken sufficiently small.
We define

F F G G

Q N Q T Q T

Then, (6.1) is written as the following system of ODEs:

Q F Q G Q F Q G
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Hence,

Q Q F Q Q F Q Q Q G(6.11)

Now, we set Y Q Q . Using (6.6) and (6.10), we see from (6.11) that

Y Y G G

and hence by Gronwall’s inequality,

(6.12)

Y Y

Y G G

Y G G

where we used the bound from (4.1a).
We now prove that G is bounded for all such that .

First note that by (2.30d) and (4.14), we see that

k(6.13)

so it remains for us to bound exp T and exp N . Using
the identities

N J N and T T

and (2.26), we see that

N NJ J N N N

T T N T

From (2.30b), (2.36a), (4.12), and (4.24), we find that

T(6.14)

and additionally with (5.28), we see that

N(6.15)

The estimates (6.13), (6.14), and (6.15) together with (4.25) and (5.21) show that

G(6.16)

From (6.12) and (6.16), we have that

Q Q Q Q Q Q

uniformly for all labels . Since N T T form an orthonormal basis, the above
estimate and (6.10) imply that (6.4) holds. ⇤
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7 Vorticity Creation
We analyze vorticity creation (see Theorem 7.4) through the evolution of the

specific vorticity vector in -variables,

7.1 The blowup trajectory and a bound on the amplification factor
We obtain an estimate for the position of the particle , which is carried by the

flow to the blowup location as .

LEMMA 7.1 (Initial location of particle trajectory leading to blowup). With the flow

defined by (5.30), let denote the trajectory that emanates from the point

. If lim , then

(7.1)

PROOF. We consider the trajectory for which and for no-
tational simplicity, we drop the subscript and use to denote this trajectory.
The main idea is that the initial position of the particle , i.e., , may be com-
puted by passing in the identity , leading
to

(7.2)

By revisiting the right side of (5.30), we obtain a sharp estimate for the right side
of the above identity.

For convenience, in analogy to (2.26) we define

N N T(7.3)

We note that . Furthermore, using (2.6) we have that

(7.4)
N N T T

N N T

First we note that using that is skew-symmetric, that , appealing
to the bounds (4.1b), (4.13), and (4.24), together with (4.27), from the Grönwall
inequality on , we obtain that

(7.5)

This estimate is however not sharp enough; to do better, we need to carefully
bound the term on the right side of (7.4). Note (cf. (2.31)) that we have

. Then, evaluating (2.33a) and (2.34a) at , and using the
definition of the function and our constraints (2.52), we deduce
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in analogy to (2.61) and (A.7a). Using the estimate in (4.1b), the and
estimates in (4.12) and (4.13), and the bound (12.17) for and , which is a
consequence of the bootstrap assumptions, we deduce that

and(7.6)

since for . Returning to (7.4), from (4.2), (4.12), (4.13), and
(7.5), we have that

N T(7.7)

Lastly, by (5.31) we have , and by (2.30a) we have .
Thus, by also appealing to (4.1b), (4.5), (4.7), (9.1a), and the fact that

implies N , we obtain

N N X(7.8)

By inserting the estimates (7.6)–(7.8) into the right side of (7.4), we obtain that

and(7.9)

upon taking to be sufficiently small in terms of , and recalling that
. To conclude the proof of the lemma, we simply combine (7.2) with (7.9) and

the estimate , as given by (4.27). ⇤
Remark 7.2. For the particle trajectory from Lemma 7.1, integrating (7.9) from on

, as opposed to as was done in (7.2), we obtain that

and(7.10)

Here we have again used , which holds in view of (4.1b),
(4.3), and (4.26).

The second preliminary estimate is a lower bound on , as this
quantity plays a key role in our proof of vorticity creation (cf. the estimate for the
term in Theorem 7.4).

LEMMA 7.3. With the flow defined by (5.30), let denote the trajectory

that emanates from the point . If and the initial condition satisfies

(3.24), then

(7.11)

PROOF. The proof of the lemma is based on two ideas: first, the time integral in
(7.11) is dominated by values of which are very close to , where we can relate

to its initial datum; second, the flow is related to the self-similar flow
via the relation (5.32), which allows us to appeal to sharp bounds for in

estimating the contribution to (7.11) for . We implement these ideas as
follows.
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We consider the trajectory for which , and for notational
simplicity, we drop the subscript and use to denote this trajectory. The
associated self-similar initial datum variable is given via (2.15) and (2.29) as

(7.12)

Due to Lemma 7.1 we know that satisfies (7.1), and since , we
deduce that

and(7.13)

Note that these bounds are set up precisely to account for the region specified
in (3.24). In view of the precise estimates on the trajectory , we directly
obtain sharp bounds on the self-similar Lagrangian flow emanating from

. Indeed, by the bound in (4.1a), the relation between and in (5.32), and
the bounds (7.10), we have that

(7.14)
and

Next, due to (5.32) and (7.3) we have that

(7.15)

with the usual relation between and from (2.29). Since , we thus
have that the integral we need to estimate in (7.11) may be rewritten as

log
(7.16)

Recall (cf. (4.3)) that , so that we just need to
bound from below the integral of . The remainder of the argument
mimics the proof of Lemma 5.6.

Fix as in (7.13), log , and thus fix a value of . We trace
the particle trajectory of the flow V (not V !) backwards in time, and write

, where the initial datum is given by the property
that L if log , and L if log . We then appeal to
Lemma 5.3 with replacing . The lemma is applicable on the interval

since L and by (7.14) we have .
By (5.5), we thus obtain that for any log we have the estimates

and(7.17)

Let us first consider the case that L and log . Based on (7.17)
we now claim that . If not, then by appealing to the first
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estimate in (7.14), we thus deduce that

which is a contradiction, since . Therefore, from the above
argument and the second bound in (7.14) evaluated at , we have that
L and . Therefore,
the point exactly lies in the region stipulated in (3.24), and so by Lemma 3.1 in
this case we have that

log(7.18)

Next, let us first consider the case that L and log . In this case,
instead of appealing to (3.24) we use the bootstrap (4.8b) and as shown earlier in
(5.13) we deduce

(7.19)

where we used (7.17) with in the last inequality.
Having established (7.18) and (7.19), we use the evolution given in (2.44a)

with and deduce that

J

Integrating this expression on , recalling that by definition we have
, using that by (7.18) and (7.19) we have that by appeal-

ing to the estimate in (9.19) and to the bootstrap in (4.7), we deduce

(7.20)

exp J

exp J

exp

exp

Since L , by (7.17) we have
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and

Inserting these estimates into (7.20), we deduce

(7.21)

The bound (7.21) holds both in the case that log and L , and also
in the case that log and L and . The last
observation is that in either case, the bound (7.21) implies

log(7.22)

Lastly, using (7.22) we bound from below the right side of (7.16) and obtain

log log

log

which completes the proof. ⇤

7.2 Vorticity creation from irrotational data
We now return to the specific vorticity equation (2.11), which we shall now write

as

Def for(7.23)

where we use to denote the baroclinic term in -variables:

k(7.24)

and the (rate of) deformation tensor is defined by

Def

which is the symmetric part of the velocity gradient. In components, Def
.

By definition of the flow in (5.30), so that upon compos-
ing (7.23) with and denoting

(7.25)
⇣ D Def

b

we have

⇣ D ⇣ b(7.26)
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At this stage two observations are in order. First, due to (5.31) we have that ⇣
, so that the bound (6.4) translates into

⇣(7.27)

Second, we note that by (5.36), (5.37), (9.1), and (3.2), for any we
have

D(7.28)

while for we have

D(7.29)

We omit the detailed proofs of (7.28) and (7.29) but note that as already discussed
in the paragraph below (5.36), only the time integral of N N is not O ; and
since N , this corresponds to only the component of the D matrix
as having a time integral which may be larger than O . Taking into account also
the estimate in (4.2), we rewrite

D diag D Dsmall Dmain Dsmall(7.30)

with

Dsmall(7.31)

With this information, since Dmain is a diagonal matrix, we may write the solu-
tion of ODE (7.26) pointwise in as

⇣ Dmain

Dmain b Dsmall ⇣(7.32)

where in view of (7.29)
Dmain Id diag D Id(7.33)

The solution formula (7.32), along with the bounds (7.27), (7.31), and (7.33), show
that vorticity creation is essentially implied by (lower) bounds on b .
This is indeed the main idea in the proof of vorticity creation, which we establish
next.

In the following theorem, we show that when the initial vorticity is zero, the
Euler dynamics instantaneously creates vorticity, and that for appropriately chosen
initial data, the vorticity remains nontrivial at the formation of the shock.

THEOREM 7.4 (Vorticity creation). Consider such that the flow con-

verges to the blowup point as . More generally, consider any satisfying

(7.1). Suppose that the initial datum verifies (3.24), and that the initial baroclinic
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torque at this point, , is nontrivial. For example, this may be ensured by

choosing

k k k(7.34)

If the initial datum is irrotational, i.e. for all , then vorticity

is instantaneously created and remains nonvanishing in the neighborhood of the

shock location . Quantitatively, with the choice (7.34) we have that

k(7.35)

for all in a small neighborhood of the shock location , where

is a constant that only depends on .

PROOF. As alluded to in the discussion preceding the theorem, the proof is
based on following the Lagrangian flow , which arrives at the shock location
as , and study the vorticity production caused by the baroclinic torque term
b. We note that (7.35) is proven by establishing this bound at with

for one component of the vorticity vector, and arguing by continuity, the
fact that the vorticity remains continuous all the way up to the blowup time ensures
that the lower bound holds for in a neighborhood of .

For simplicity of the presentation we provide a lower bound on the third compo-
nent of the vorticity; this is why in assumption (7.34) we have chosen very specific
gradient components for k and . Recall the notation (7.25). Using that the initial
datum is irrotational, from the solution formula (7.32), the bounds (7.27), (7.31),
(7.33), and the fact that the matrix Dmain only has a nontrivial entry, we obtain

⇣ b(7.36)

The remainder of the proof consists of analyzing the time integral of b
.

Let us denote the cofactor matrix associated to and its Jacobian determi-
nant, respectively, by

B Cof det

so that
B

Two components of the cofactor matrix that we shall make use of are given by

B

B

From (5.39), we see that

B and B(7.37)
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Then, transport equation (2.5c) shows that

k k k(7.38)

so that

k k B(7.39)

The point of the first two assumptions in (7.34) is to single out one of the three
elements in the sum over in (7.39), which now reduces to

k k B(7.40)

For the remainder of the proof, we fix to denote the trajectory which collides
with the blowup at time so that . Using (7.40) and recalling
(7.3), we return to (7.24) and obtain that

(7.41)

b

k k

k B B

k B B B

b b b

We first note that by the relation of and , in view of (2.5c) we have
k

(7.42)

so that by (5.21) and the initial assumption on k we have

(7.43)

Combined with (7.37), our bootstrap assumptions derivatives of in (4.12) and on
N and in (4.24), similarly to (7.31) we obtain that the last two terms in (7.41)

have time integrals bounded as

b b(7.44)

In order to conclude the proof, we need to estimate the time integral of the first
term in (7.41), namely, b . This is precisely the reason that Lemma 7.3 was
created. First, we note that by (7.15) and (7.21), we have that for
all ; that is, this term is signed. Taking into account (7.37), (7.43), and
the third assumption in (7.34). we obtain the pointwise-in-time bound

b k(7.45)
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To conclude the proof we combine the assumption k with (7.45) and
(7.11) to deduce

(7.46)
b k

k

where is a constant that depends only on . The point here is that the
lower bound is O , while the error terms in both (7.36) and (7.44) are O .
Combining these estimates we deduce that

⇣ b k(7.47)

upon taking to be sufficiently small. ⇤

8 Bounds
DEFINITION 8.1 (Modified -norm). For we introduce the seminorm

(8.1) P H

H P H

where is to be made precise below (cf. Lemma 8.3).

Clearly, is equivalent to the homogenous Sobolev norm for , P , and
H , and since , we have the quantitative inequalities

(8.2)
P H

P H

The bound (8.2) follows from

H �(8.3)

and the triangle inequality, upon taking sufficiently small. In turn, (8.3) is a
consequence of the definition (2.41) and of the bootstrap (4.14).

Additionally, in order to apply the interpolation inequalities from Appendix A.2,
we need to establish a quantitative equivalence between the seminorm defined
in (8.1) and the classical homogenous norm of the quantities , , and
(recall that these are related to , P , and H via the nonlinear transformation
given in (2.41)). In this direction we have:
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LEMMA 8.2 (Asymptotic equivalence of norms). For sufficiently large in

terms of �, and for sufficiently small in terms of , , and , we have the

estimate

(8.4)

for all log . As a consequence, we also have the estimate

(8.5)

PROOF OF LEMMA 8.2. We directly have

(8.6)

which gives a direct comparison between the norm of and the -part of .
Next, we turn to the H -part of . The chain rule yields H H � .

Applying more derivatives, by the Faà di Bruno formula, we have that there
exists a constant which only depends on , such that pointwise we have the
bound

H H �(8.7)

where the index set is given by

In particular, note that whenever , we must have .
This fact is crucial for the argument below and has to do with the fact that we have
already accounted on the left side for the term with the highest order of derivatives.
In (8.7) as usual we have written to denote for some multi-index
with . Using the interpolation inequality (A.3), for all we
next estimate

(8.8)

Moreover, note that for we have that , so
that these are Hölder conjugate exponents corresponding to an norm. Thus,
applying the norm to (8.7), using the Hölder inequality and the interpolation
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bound (8.8), we obtain

H H �

(8.9)

for some -dependent constant (which may increase from line to line), when-
ever . At this point we use that , we must have

, which is combined with the bootstrap (4.14) to conclude

H H �(8.10)

We next appeal to the pointwise estimate on H in (8.3), and since , we
deduce that

�
H

�
(8.11)

where we have used that , and that is sufficiently small to absorb the
constant in (8.10).

Lastly, we turn to the P-part of . From (2.41) we obtain PH , and
thus, by the binomial formula and the Moser estimate (A.4), we have

H P P H

H P P H

Furthermore, using the interpolation bound (A.5) applied to P and H , and
the -Young inequality, we obtain that for any we have

(8.12)

H P P H

H P P

P H H

P H

H P P H

where the -dependent constant may change from line to line. From the defini-
tions (2.41), the estimates in (4.14), the and bounds in (4.7) and (4.12), the
relations H P H H , and , we deduce

H and P(8.13)
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Taking to be sufficiently small to absorb the and dependent constants, we
obtain from (8.12) and (8.13) that

(8.14)
H P P H

P H

for any constant . Using that (which follows from
the bootstrap assumptions on , , and ), and appealing to (8.3), we obtain

P(8.15)

upon taking to be sufficiently small in terms of and . At last, we combine
(8.14)–(8.15), use the P and H part of the comparison (8.2), choose sufficiently
small depending on and , and then sufficiently small in terms of , , , and

to deduce that

H P H(8.16)

and taking , we also have

H P H(8.17)

Combining (8.6), (8.11), (8.16), and (8.17), we arrive at the proof of (8.4).
The proof of (8.5) follows once we recall the identities N ,

N , which follow from (2.37), and the definition T .
Therefore, by (9.1a), (A.3), using the Poincaré inequality in the -direction, and
the fact that the diameter of X in the -directions is , for any with

, we obtain

N

N T

J NK J T K

N T X

Summing over , and appealing to (8.4), the estimate (8.5) follows. ⇤
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8.1 Higher-order derivatives for the P H -system
In order to estimate we need the differentiated form of the P H -

system (2.42). For this purpose, fix with and apply to (2.42)
to obtain

V D

H P JN P H PJN P

H P JN P P F(8.18a)

P V P D P

J N P PJN

P JN FP(8.18b)

H V H D H FH(8.18c)

where the damping function D is defined as

D(8.19)

the transport velocity V is given in (2.39c), and since the forcing functions
in (8.18) are given by

F J V K J H PK P

H PJN P J H PJN K P

(8.20a)

FP P J V KP J PK

P JN PJN J PJN K
(8.20b)

FH H J V KH
(8.20c)

In (8.20) we have used the notation J K to denote the commutator . Note
that two additional forcing terms are singled out on the left side of (8.18b); this is
because these terms provide a contribution that has to be absorbed in the damping
term.

The energy estimate is obtained by testing (8.18a) with , (8.18b) with
H P , and (8.18c) with H . Adding the resulting differential equations
produces the cancellation of all terms involving derivatives, which upon
integrating by parts allows us to close the energy estimate. This computation is
detailed in Section 8.3 below. Prior to this, in the next subsection we give estimates
for the forcing terms defined in (8.20).
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8.2 Forcing estimates
In order to analyze (8.18) we first estimate the forcing terms defined in (8.20).

This is achieved next:

LEMMA 8.3. Consider the forcing functions defined in (8.20). Let , fix

, and define the parameter from (8.1) to equal .

Then, we have that

F(8.21a)

FP H P(8.21b)

FH H(8.21c)

for taken sufficiently small in terms of , , , , and .

PROOF OF LEMMA 8.3. Throughout this proof, when there is no need to keep
track of the binomial coefficients from the product rule we denote a partial deriva-
tive with simply as .

Upon expanding the commutator terms in (8.20), the forcing functions defined
here may be written as

F F F(8.22a)

FP FP FP(8.22b)

FH FH FH(8.22c)

where the upper index indicates that terms with exactly derivatives are
present, while the upper index indicates that all terms have at most
derivatives on them. These terms are defined by

F

H PJN P PJN H H P

H P P

P H P P P H JN

F F F

(8.23a)

F
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H PJN P

H P P

P H JN P

F F F

(8.23b)

for the evolution, by

FP P P P P

PJN P

P

FP FP

(8.24)

FP P P

PJN

P

JN P

FP FP FP

(8.25)

for the P equation, and by

FH H H H

H(8.26a)

FH H H

(8.26b)

for the H equation.

Proof of (8.21a). We shall first prove (8.21a), and to do so, we estimate sep-
arately the terms in the sum (8.22a). Let us treat the term which contains the
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highest-order derivatives, namely, F . This term is decomposed in three pieces,
cf. (8.23a), and we estimate each piece separately.

Recall that and are defined in (2.33c) and (2.34c) and that

NN T N T(8.27)

Also, note that and are quadratic functions of , whereas JN is an affine
function of ; therefore annihilates these terms and we have10

JN JN JN(8.28)

(8.29)

In view of these definitions, using that , , and that
produces a favorable imbalance of , for the first term in (8.23a) we have that

(8.30) J

JN

Estimate (8.30) is the perfect example of the usage of the parameter appearing
in the definition of the energy : it yields a factor of next to the term

in the first term of (8.30). Without this factor, the resulting
coefficient of appearing on the right side of (8.21a) would be larger than ,
which would not allow us to close the energy estimate. But by choosing ,
we have that . Using the definitions of , , and , the bounds
(4.3), (4.5), (4.7), (4.11), (4.12), (4.13), (9.1a), (5.12), the norm equivalence (8.2),
and the interpolation inequality (A.5) applied to , we estimate

J

J J

JN

10 Note that (8.28) holds whenever . This is because NJ NJ ,
with NJ being a cubic polynomial in and a quadratic polynomial in .
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for an arbitrary , upon choosing to be sufficiently small to absorb
the stray powers of and all implicit, -dependent, and -dependent constants.
Combining the above estimates with (8.30), we obtain

(8.31)

Quite similarly, using that , that , and that P produces a
favorable imbalance of , for the second term in (8.23a), we have

(8.32)
H H PJN

PJN H H H P

Using the estimates (9.1a), (8.3), (8.13), and (8.15) we obtain that

H H PJN

PJN H

H H P

Using the above estimates, and recalling our choice of , the bound (8.32)
becomes

(8.33)

upon taking to be sufficiently small. Lastly, for the third term in (8.23a), we
similarly have

(8.34) P H P

P P H JN
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For the second term in (8.34) we recall that JN is an affine function, and thus
JN . From the Leibniz rule, the Moser inequality (A.4), the estimates

(4.1a), (9.1a), (8.3), (8.13), the interpolation bound (A.5), and the norm compari-
son (8.2), we moreover have that

(8.35)

H JN H JN H

JN H JN H H

H H H H

H H H H H

by taking to be sufficiently small in terms of and . From (9.1a), (8.3), (8.35),
the definition of the norm in (8.1), and the Cauchy–Bunyakovsky inequality,
we deduce that

H JN(8.36)

The above estimate is combined with the bound

P P

which follows from (8.13) and (8.15), and with the estimate

P H P P H

which follows from the fact that , the Moser inequality, (8.2), (8.3), (8.13),
and (8.15) to imply that the right side of (8.34) is further estimated as

(8.37)

after taking to be sufficiently small, in terms of , and .
The bounds (8.31), (8.33), and (8.37) provide the needed estimate for the contri-

bution of the F term in (8.22a) to (8.21a). It remains to bound the contribution

from the lwer order term F , which we recall is decomposed in three pieces,
according to (8.23b). Next, we estimate these three contributions.
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The difficulty in addressing the F term defined in (8.23b) arises due to the
fact that the bootstrap assumption for in (4.13) does not include bounds on the
full Hessian . Therefore, we need to split off the (i.e., T ) contributions
from the and contributions (i.e., N) to this term. Using (8.27) we write
the first term in (8.23b) as

F I I I(8.38)

where

I N N

I T

I

We estimate the contributions of the three terms in (8.38) individually.
First, for the I term in (8.38), by Lemma A.3 with , we have that

(8.39)
I

a b a NN b

where a and b obey a b . Note by (2.33c) that does not include
any term. Thus, using the bootstrap bounds (4.1)–(4.12), or alternatively by
appealing directly to (4.7), (9.1a), and the last bound in (9.4), and the definition of
X in (4.4), we deduce that

(8.40)
X X X

since for . Similarly, from the first four bounds in (4.24)
(bounds which do not rely on any estimates) and from (9.1a) (which only uses
(4.1a) and (4.5)), we deduce that

(8.41)
N N X X X

Moreover, from (8.28), the bounds listed above (8.31), the Poincaré inequality
in the -direction, and the fact that the diameter of X in the -directions
is we have that

(8.42)
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By combining (8.40)–(8.42) we obtain that the right side of (8.39) is bounded from
above as

a b a NN b

a b a b

a b a b a b

Recalling from Lemma A.3 that a b , using the norm
equivalence (8.2), by Young’s inequality with a small parameter , we have
that the left side of (8.39) is bounded as

I a b a b a b a b

In the last inequality we have used that by definition , is
a fixed universal constant, and is a constant that only depends on ; thus, we
may use a power of (which is taken to be sufficiently large) to absorb all the
and dependent constants.

Next, we estimate the I term in (8.38). First, we note that by (A.3) we have

I T

T T

Then, by appealing to (2.33c), (4.7), (4.13), (9.1a), (9.4), (8.2), (8.42), and (A.4),
we deduce

I

since . By taking sufficiently small, in terms of , ,
, and , we obtain from the above estimate that

I(8.43)
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for all log .
At last, we estimate the I term in (8.38), which is estimated similarly to the

I term as

I

From (8.29), the bounds (4.7), (4.12), (4.13), (9.1a), and the Moser inequality
(A.4), we have

N N T

On the other hand, by (9.5) we have , while from (4.7), (4.12),
(4.13), and (8.27) we obtain . Combining the above three esti-
mates, we deduce that

I

from which we deduce

I(8.44)

upon taking to be sufficiently large in terms of , and sufficiently large in
terms of . Combining (8.43), (8.43), and (8.44), we have thus shown that

(8.45)

We next turn to the second term in (8.23b), which involves only derivatives of
P , H , and JN. For the first term (the one with an prefactor) we apply the
same bound as in (8.39), while for the second term we use (A.3) to obtain

F

H PJN a
P

b

H PJN a P
b

H P H P P P
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T T
(8.46)

with , and a b . Recalling that P H
N H , the definition of H , our bootstrap assumptions on and ,

exactly as in (8.41) we have the estimate

P X N X

H N X

N H H X

Thus, the Hessian of P obeys the same estimate as the Hesssian of N N in
(8.41). Similarly, by using (9.1a), (8.3), (8.13), and (8.15), as in (8.40) and (8.41),
we have

H PJN X

H P X H P X

The above estimate is exactly the same as the Hessian of bound in (8.40).
Clearly we have that P , and additionally, from the Moser in-
equality (9.1a), (8.3), (8.13), and (8.15) we have that

H PJN H P

which is the same as the bound on the norm of obtained in (8.42). In view
of these analogies, proceeding in exactly the same way as in (8.43), we obtain that
the first term in (8.46) is estimated as

T(8.47)

For the second term in (8.43) we recall that by the Moser inequality, (8.3), and
(8.15) we have H P P H , and by also
appealing to (8.13) we obtain

(8.48)
T H P P

after taking to be sufficiently small to absorb the , , and -dependent constants.
By combining (8.46), (8.47), and (8.48), we obtain that

F(8.49)

At last, we consider the third term in (8.23b). Recall that from (8.13) that
P , and that since JN is linear in , by the Poincaré inequality
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in the -direction and the fact that the diameter of X in the -directions is
, we obtain that H JN H . Thus, by appealing to (9.1a),

(8.2), (8.13), (A.3), and the Poincaré inequality in the -direction we arrive at

(8.50)

F

H JN H JN P P

H P

upon taking to be sufficiently small, in terms of , , and .
The bounds (8.45), (8.49), and (8.50) provide the needed estimate for the con-

tribution of the F term in (8.22a) to (8.21a), thereby completing the proof of
(8.21a). ⇤

Proof of (8.21b). The proof is extremely similar to that of (8.21a). Comparing
the forcing terms in (8.24) with those in (8.23a), and those in (8.25) with those in
(8.23b), we see that they only differ by exchanging with P in several places;
in fact, here we have fewer terms to bound. The contribution from FP is

estimated in precisely the same way as the one from F in (8.31). Similarly,

the contribution from FP is estimated in precisely the same way as the one

from F in (8.33). Note that there is no third term in the definition of FP ,
and thus we do not need to add a to our error estimate, as we had to do for
the forcing in view of (8.37). Next, FP , FP , and FP are bounded

in precisely the same way as F , F , and F in (8.45), (8.49), and
(8.50), respectively. To avoid redundancy, we omit these details. ⇤

Proof of (8.21c.) Again, the proof is similar to that of (8.21a), except that in
(8.26a) and (8.26b) we have much fewer terms. We need to be slightly careful
here, as the H evolution is tested with H , rather than just H , and we
need to ensure that our damping bounds are independent of ! The reason this is
achieved is as follows. For the terms that contain a H , such as the first two
terms in (8.26a), there is no issue as each of the two powers of are paired with
an H . An issue may arise in terms which contain , such as the last
two terms in (8.26a). The important thing to notice here is that each such term is
paired with H . As opposed to P , which satisfies P ,
by (8.13) we have that H . This additional factor of is
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able to absorb all the stray powers of . A similar argument applies to the terms in
(8.26b), showing that the resulting bounds are independent of . The contribution
from FH is estimated in precisely the same way as the one from F in

(8.31), while the contribution of FH is bounded in precisely the same way as
F in (8.45). To avoid redundancy, we omit further details.

8.3 The energy estimate
We now turn to the main energy estimate for the differentiated system (8.18).

PROPOSITION 8.4 ( estimate for , P , and H ). For any integer ,

with and as specified in Lemma 8.3, we have the estimate

(8.51)

for all log .

PROOF OF PROPOSITION 8.4. We fix with , and consider the
sum of the inner product of (8.18a) with , the inner product of
(8.18b) with H , and the inner product of (8.18c) with H .
With the damping function D from (8.19) and the transport velocity V defined
in (2.39c), using the fact that is skew-symmetric and that V H ,
we find that

(8.52)

H P H

D div V H P H

H P J N P

P H J N P

P H J N

H P J N P

J N P

H P P

P

F H FP P FH H
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Integrating by parts in the last two integrals on the left-hand side of (8.52), we get

H P J N P J N P

H P P P

H P J N

H P P

where we have used that J . Therefore, upon rearranging, the energy equality
(8.52) becomes

(8.53)

H P H

D div V H P H

H P J N P

P H J N

P H J N P H

P H P

F H FP P FH H

We shall next obtain a lower bound for the second, third, and fourth integrals on
the right side of (8.53).

For the second integral, we recall (8.19), use (2.39c), and the bounds (4.11),
(9.4), (9.5), and (5.12) to obtain the lower bound

(8.54)

D div V

J

For the third integral, we note that by the definitions (2.37) and (2.41)

H P �(8.55)

and thus, from (4.11), (4.7), (4.12), (4.24), (5.12), the third integral on the left-hand
side of (8.53) has an integrand which is bounded as

H P J N P

H P
(8.56)

JH P
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J �

Lastly, we compute N from (2.37), P from (8.55), and by using (4.11),
(4.7), (4.12), (4.14), (4.24), (5.12), (8.3), and (8.15), the integrand in the fourth
integral on the left-hand side of (8.53) may be estimated as

(8.57)

P H J N P H J N P H

H P

P H P

H P

J N J P H H H P

Combining the bounds (8.54), (8.56), and (8.57), with the energy equality (8.53),
we arrive at

(8.58)

H P H

Dtotal H P H

F H FP P FH H

where we have denoted

Dtotal

The crucial observation here is that because (cf. (2.17)), and appealing
to (4.3), the damping term Dtotal has the lower bound

Dtotal(8.59)

for taken sufficiently small in terms of and . Upon summing over ,
the energy inequality and (8.58) and the damping lower bound (8.59) thus yield

(8.60)
F H FP P FH H
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We are left with estimating the right-hand side of (8.60), which is the content of
Lemma 8.3 above. By Lemma 8.3, for ,

and hence, by since , we have that

and so we obtain that

for all log . This concludes the proof of Proposition 8.4. ⇤
In conclusion of this section, we mention that Proposition 8.4 applied with
log , in conjunction with Lemma 8.2, yields the proof of Proposition 4.3.

PROOF OF PROPOSITION 4.3. The initial datum assumption (3.23) together with
the first bound in (8.5) implies that

log

Thus, from (8.51) the second bound in (8.5), we obtain

by taking sufficiently slow. The inequalities (4.16a)–(4.16b) then follow. ⇤

9 Auxiliary Lemmas and Bounds on Forcing Functions
We record some useful bounds that will be used throughout the section.

LEMMA 9.1. For X and for we have

N N T T

J J(9.1a)

N(9.1b)

Moreover, we have the following estimates on

(9.2)

if

if and

if and

if and

else.
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for all X .

PROOF OF LEMMA 9.1. The estimates (9.1a) follow directly from the defini-
tions of , N, T, and J, together with the bounds on given in (4.1a) and the
inequality (4.5). Similarly, (9.1b) follows by using the estimate in (4.1b). To
obtain the bound (9.2), we recall that is defined in (2.31), employ the bounds on

and given by (4.1b) and (4.2), and the fact that Id , which follows
from (4.1a) and the definition of in (2.2) of [4]. ⇤
9.1 Transport estimates
LEMMA 9.2 (Estimates for , , , , , and ). For sufficiently

small and X , the function satisfies

if

if and

if or

if

(9.3)

the functions and satisfy

if

if and

if or

if

(9.4)

and finally, the functions , , and satisfy the estimates

if

if and

if or and

if

(9.5)

Furthermore, for we have the lossy global estimates

(9.6)
(9.7)

for all X .

PROOF OF LEMMA 9.2. The bounds for the first three cases in (9.3) and (9.4)
are the same as in lemma 7.2 in [4]. It remains to consider the case .
By (2.33), we have that
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so that an application of (4.12) provides the bounds for both (9.3) and (9.4).
For the estimates (9.5), the proof of the first three cases is given in lemma 7.2

in [4]. For the case , by (2.34), we have that

where we have applied (4.12) and (4.17) to attain the desired estimate. ⇤

9.2 Forcing estimates
LEMMA 9.3 (Estimates on , , and ). For X we have the

force bounds

if

if and

if and

if and

if and

(9.8)

if

if and

if and

(9.9)

Moreover, we have the following higher-order estimate at ,

for(9.10)

and the bound on given by

(9.11)

if

if

if and

if and

holds for all L .

PROOF OF LEMMA 9.3. By the definition (2.35a) we have

T T N T N

N N T T N

T NN

J N

I



SHOCK FORMATION AND VORTICITY CREATION FOR 3D EULER 77

The bounds for the first five terms on the right side follow as in the proof of Lemma
7.3 in [4], and we have that

I

if

if and
if and
if and

Invoking (3.4), (4.14), (4.20), (9.1a) and Lemma 4.5, we obtain that

I(9.12)

if
if
if and
if and
if
if and

(9.13)

Using the same set of estimates we also obtain the lossy bound

(9.14) I

for , which we shall need later in order to prove (9.10), and

(9.15) I

for and , which we shall need later in order to prove the last case
of (9.11).

Then, additionally using (4.5), we obtain the stated bounds claimed in (9.8)
for . Comparing (2.35b) and (2.35a), we note that the estimates on
claimed in (9.8) are completely analogous to the estimates one up to a factor
of .

Now we consider the estimates on . By definition (2.35c), we have that

NN T T

NN T NN T T

NN T T T

I
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Applying the bounds for the first four terms on the right side from lemma 7.3 of [4],
we see that

I

if
if and
if and

(9.16)

Thus, combining the above estimates, we obtain (9.9).
Again, using the same argument as in lemma 7.3 in [4] for , and using

(9.14) yields

(9.17) I

and also for all L ,

(9.18) I

if
if and
if and
if and

The estimate (9.17) verifies (9.10), while combining (9.18) with (4.5), (9.13) and
(9.15) verifies (9.11). ⇤

COROLLARY 9.4 (Estimates on the forcing terms). Assume that . Then, we

have

if

if and

if and

if and

if and

if and

(9.19)

if

if and

if and

if if and

if and

(9.20)

if

if and

if and

(9.21)
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if and

if and

if and

(9.22)

Moreover, we have the following higher-order estimate:

for(9.23)

and the following estimates on :

for and L(9.24)

for and L(9.25)

log for and(9.26)

PROOF OF COROLLARY 9.4. First we establish (9.19). Note that in this esti-
mate , and thus by definition (2.45), we have

I

1 J

I

We will first consider the case , since the estimates are analogous
to the estimates in the previous paper. We have from corollary 7.4 of [4] that

I 1 1 and I 1

Thus combining these estimates with (9.8), we obtain that

if
if
if and
if and
if and

(9.27)

Then applying (4.5) we obtain (9.19) for all cases except .
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For the special case , we have from (4.5), (4.6) (with ), (4.7),
(9.3), and (9.5),

I

From (9.8) and (4.6) (with ), we have that

Thus since I for , we obtain (9.8) for this case.
Similarly, for , from (2.46) we have that

(9.28) 1 J J

I 1 J I

Utilizing the bounds obtained in corollary 7.4 of [4], we have that Utilizing the
bounds obtained in Corollary 7.4 of [4], we have that

J 1 1 for

I 1 for

I 1 1 for

Thus combining the above estimates with (4.5) and (9.8), we obtain that

if
if
if and
if and
if and

The bounds for are obtained in the identical fashion as the bounds for
(7.20) in [4].

To prove the estimate for , from (2.46), we have that

1 J

J
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I 1 J I
(9.29)

Let us further split I as

I

I I

Estimating I , using (4.14) and (9.4), we have that

I

if and
if and
if
if and
if and

if and
if and
if and

Similarly, estimating I , using (4.14) and (9.5), we have that

I

if and
if and
if
if and

if and

if and
if and

if and

For 1 J , using (4.7) and (4.14) yields

J
if and
if and
if and

Next, for I , we have that

I
if and
if and
otherwise



82 T. BUCKMASTER, S. SHKOLLER, AND V. VICOL

Thus combining the above estimates, we attain

if and
if and
if and

where we used (4.6) (with ).
The proof of the bounds (9.23)–(9.26) is exactly the same as the proof of (7.21)–

(7.24) in [4], with the caveat that we have changed the exponent of in (9.24),
which reflects the change in exponent of in the estimate (9.11) for
relative to the corresponding estimate in our previous paper. ⇤

10 Closure of -Based Bootstrap for , , and
Having established bounds on trajectories as well as on the vorticity, we now

improve the bootstrap assumptions for and stated in (4.12) and (4.13).
We shall obtain estimates for and which are weighted by an
appropriate exponential factor .

From (2.44b) we obtain that is a solution of

V

where the damping function is given by

J

Upon composing with the flow of V , from Grönwall’s inequality it follows that

(10.1)
log exp

log

log
exp

Similarly, from (2.44c) we have that and are solutions of

V

where
J

and hence, again by Gronwall’s inequality, we have that

(10.2)
log exp

log

log
exp
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For each choice of present in (4.12) and (4.13), we shall require that the
exponential factor satisfies

(10.3)

which, in turn, shows that

(10.4)

For the last inequality, we have used the bound J , which follows from
(4.3) and (9.1a). Combining (10.3), (10.4), and (5.9), for log , we find
that

exp

exp
(10.5)

Replacing with in (10.4), we similarly obtain that for log ,

(10.6) exp

Then as a consequence of (10.1), (10.3), (10.5), and (10.6),

(10.7) log

log
exp

(10.8) log

log
exp

and

(10.9)
log

log

(10.10)
log

log
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10.1 Estimates on
For convenience of notation, in this section we set . We start with the

case , for which we set . Then, the first line of (9.20) combined with
(10.9) and our initial datum assumption (3.18) show that

log
log

This improves the bootstrap assumption (4.12) for , upon taking to be
sufficiently large to absorb the implicit universal constant in the above inequality.

For the case , we set so that (10.3) is verified, and hence
from (3.18), the second case in (9.20), and (10.9), we find that

log
log

log

log

Now, applying (5.8) with and , we deduce that by taking
sufficiently small,

(10.11)

which improves the bootstrap assumption (4.12) for taken sufficiently large.
For the case that and , we set , so that

We deduce from (10.7), the fourth case in (9.20), the initial datum assumption
(3.18), and Lemma 5.4 with , , and , that

(10.12)
log

log

This improves the bootstrap stated in (4.12) by using the factor to absorb the
implicit constant in the above inequality.

We are left to consider for which and . For ,
setting (which satisfies (10.3)), we obtain from (10.9), the forcing bound
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(9.20), and the initial datum assumption (3.18) that

log
log

(10.13)

Finally, for we set . As a consequence of (9.20), (3.18), and
(10.9), we obtain

(10.14)
log

log

Together, the estimates (10.11)–(10.14) improve the bootstrap bound (4.12) by tak-
ing sufficiently large.

10.2 Estimates on
We shall now set . For the case , we set so that

(10.3) is verified, and hence from (3.20), the second case in (9.22), and (10.10), we
find that

log
log

log

so that applying (5.8) with and , and taking sufficiently small, we
deduce that

(10.15)

which improves the second bootstrap assumption in (4.14).
Next, we study the case that and . For , setting

(which satisfies (10.3)), we obtain from (10.10), the forcing bound (9.22),
and the initial datum assumption (3.20) that

(10.16)
log

log

For we set . As a consequence of (9.22), (3.20), and (10.10),
we obtain

(10.17)
log

log
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For we set so that (10.3) is verified. From (9.22), (3.20),
and (10.8), we apply (5.8) with and to obtain that

log
log

log
log

We next consider the case that . From (2.44d), we have that

J V

and hence

(10.18)
V

where

J

J

Composing with , we find that

log exp

exp

Thanks to (5.16) and (11.8), we have that

exp

and thus using the third case in (9.22), and the initial datum assumption (3.20), it
follows that

log

(10.19)
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Now by definition of the weight , we have that

where we used (4.5) for the second inequality. It follows that

log

log

where we have used the fact that log as well as (5.8) with
and . Hence,

which improves the fourth bootstrap assumption stated in (4.14).

10.3 Estimates on
We can now close the bootstrap bounds (4.13) for . The bounds for the case

that and follow the same argument as given in (10.14) in [4],
whereas the estimate for makes use of estimates for the vorticity.

LEMMA 10.1 (Relating and ). With the self-similar specific vorticity given

by (2.43),

J T T N

curl N T curl T T(10.20a)

J T T N

curl N T curl T T(10.20b)

Propositions 4.6 and 6.1, together with the estimates (4.7), (4.12), (4.13), (4.5),
and (9.1a), and Lemma 10.1 show that

(10.21)

for taken sufficiently large with respect to .
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PROOF OF LEMMA 10.1. We note that for the velocity and with respect to the
orthonormal basis N T T we have that

curl T N N T T T N N T T

T T T T N

Now, from the definitions (2.4), (2.10), (2.16), (2.23), (2.30d), (2.36c), and (2.43),
we have that

k

curl curl

In particular,

(10.22)
curl

curl

We only establish the formula for , as the one for is obtained identically.
To this end, we write

curl T T N N T

By the chain rule and the fact that N is orthogonal to T , we have that

T T T T T

The important fact to notice here is that no -derivatives of remain. Similarly,

N N N N J N

Hence, it follows that

(10.23)

curl T T N J N T

T N N T

T J N

N T NT T N

where we have used (2.27), (2.26), and (7.3). The identities (10.22) and (10.23)
and the definition of the self-similar transformation in (2.29) and (2.30) yield the
desired formula for . ⇤

11 Closure of -Based Bootstrap for
The goal of this section is to close the bootstrap assumptions which involve ,
, and their derivatives, stated in (4.7) and (4.8a)–(4.10).

11.1 Estimates for for
The estimates in this section closely mirror those given in Section 11.1 of [4],

as such will we simply summarize the argument.
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The fourth derivative
Composing with the flow , we have that for that

where

J(11.1)

which is a consequence of (4.3) and (4.11). Then as a consequence of (9.26),
(11.1), and (3.14) and the Grönwall inequality we have that for all and all

log such that the following estimate

log(11.2)

Hence the bootstrap assumption (4.9b) closes assuming the is chosen sufficiently
small relative to .

Estimates for with and
We first consider the estimate on for . Evaluating (2.50) at

and applying (4.9b), (4.10), (12.17), (9.23), and (4.3) yields the estimate

(11.3)
log

Using the initial datum assumption (3.15) and integrating in time, we may show

(11.4)

for all , and all log , closing the bootstrap bound (4.10).
The bootstraps (4.9a) corresponding to , then follow as a conse-

quence of constraints (2.52) which imply

together with the estimates (4.9b), (11.4), and the fundamental theorem of calculus,
integrating from .

Note that the bootstraps (4.8a), (4.8b) and (4.8c), for the case , follows
as a consequence of (4.9a), assuming is sufficiently small.

11.2 A framework for weighted estimates
Let us briefly recall the framework for weighted estimates introduced in Section

11.2 of [4]. For brevity will drop some intermediary calculations. Suppose some
quantity R, satisfies an evolution equation of the form

(11.5) R R R V R R

Weighting R by ,
R
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then satisfies the evolution equation

R V V R(11.6)

where D may be expanded as

R J

D

(11.7)

As a consequence of (4.7), (4.5), (9.1b), (4.3), (9.3), and (9.5) we have for all
log

D(11.8)

assuming to be sufficiently small in order to absorb powers of .
Using the evolution equation (11.6), composing with the trajectories

such that for some log with and applying Grön-
wall’s inequality yields

exp

exp(11.9)

For the special case L , we may may apply (11.8), (5.4), and the
inequality to conclude

(11.10) D log

for all . Consequently, the estimates (11.9) and (11.10) yield

exp R

exp R

(11.11)

We will need to consider two scenarios for the initial trajectory: either log
and or log and . We note that as long as , then

for all as a consequence of Lemma 5.2 .
Now consider the case L . In place of (11.10) for the case L ,

we have the stronger estimate

(11.12) D
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for log , and . Hence (11.9) and (11.12) yield

exp R

exp R

(11.13)

11.3 Estimates of , and for L

The estimates of , and for L mimic
those given in Section 11.3 - 11.4 in [4]. As such, we prove only an abridged
summary of the arguments.

In order to close the bootstrap bound (4.8a) on for , we will use
the framework in Section 11.2 with R , . With these choices, the
weighted quantity , the quantity R present in (11.11)
is J and .

Applying (4.3), (9.1a), (5.4), and (4.7), we have

J log(11.14)

for all log . The estimate (5.4) and (9.11) yield the forcing estimate

log(11.15)

for all log , and .
Combining the bounds (11.14) and (11.15) into (11.11), and using the initial

data assumption (3.13a) if log , or alternatively (4.9a) if log , we
obtain

(11.16)

for all L and all log . Where we have employed small powers of
to absorb all the and factors. The above estimate (11.16) closes the bootstrap

(4.8a).
We now aim to close the bootstrap bound (4.8b) on for L .

For this case, we set R , and hence . By (2.50) with
, we have R J , and .

Similar to the estimate (11.14)), we may bound the the contributions to (11.11)
due to the damping term R by

J log(11.17)
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The contribution due to the forcing is bounded using (5.4) and
(9.24) in order to attain

log(11.18)

Inserting (11.17) and (11.18) into (11.11), and using our initial datum assumption
(3.13b) when log , respectively (4.9b) for log , yields

(11.19)

for all L and all log , where we again have used small powers of
to absorb all the and factors. The above estimate closes the bootstrap (4.8b).
Finally, we aim to close the bootstrap (4.8c) on for . We set

R and , so that . From (2.50) with ,
we have R J and .

The integral of the damping term arising in (11.11) is bounded using (11.14)
by log . The contribution due to the forcing is bounded using (5.4) and
(9.25) in order to attain

log(11.20)

Inserting (11.14) and (11.20) into (11.11), and using our initial datum assumption
(3.13c) and (4.9b), we arrive at

(11.21)

for all L and all log , thereby closing the bootstrap bound
(4.8c). We also note that the bootstrap bound (4.7) for the cases that and

L follow as a consequence of (4.8) together with the bound (2.48)
in [4].

11.4 Estimate for with for
We now consider the case , and establish the third and fifth bounds of

(4.7). Unlike the bounds given in Section 11.6 of [4], the bound for makes
use of two weight functions, and requires a new type of analysis. As such, we now
consider the case that and . We have that

D V

D J

D

from which it follows that

D

V



SHOCK FORMATION AND VORTICITY CREATION FOR 3D EULER 93

where

D V

V

J

D

and therefore

exp D

exp D

(11.22)

Since , we then have that . Moreover, using
(4.5), we see that

and thus, we have that

(11.23)

Again, since , then (4.5) yields

Therefore, we see from the definition (11.7) of D that D D . It follows
from (11.10) that

D D D log

(11.24)

for all . By (11.23) and (11.24), we see that (11.22) is bounded as
(11.25)

With the estimate (9.19) for , we obtain that
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Hence, following (11.12), we see that for ,

By appealing to our initial datum assumption (3.17b) if log , and to (4.9a)
when log , the bound (11.25) shows that

(11.26)

By choosing first sufficiently large, the bootstrap assumption (4.7) is then im-
proved by (11.26).

It remains to consider the case and . The arguments will
mimic those given in section 11.6 of [4], and as such, we provide an abridged
version of those arguments. For the case and , we set ,
whereas, for the case and , we set . Consequently, the
damping term R present in (11.11) is given by

(11.27) R
J for and

J for and

Let us first restrict to the case and . Analogous to (11.14), we
have

J log(11.28)

and analogously to (11.15), applying (9.19), we have

log(11.29)

Substituting the bounds (11.28) and (11.29) into (11.11), and utilizing our initial
datum assumption (3.17c) when log , and to (4.9a) when log , we
deduce

log

where we have assumed that is sufficiently large, used our choice log ,
and assumed is sufficiently small relative to . Thus we close the bootstrap (4.7)
for the case and .

We now turn our attention to the case , with . Applying (11.27)
and (11.28) yields the damping bound

exp R(11.30)

for any log . Substituting (11.30), together with the forcing
estimate (9.19) into (11.11), and appealing to our initial datum assumption (3.17a)
if log , and to (4.9a) when log , we deduce

(11.31)
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where we have assumed that is sufficiently large, used our choice log ,
and assumed is sufficiently small relative to . Thus we close the bootstrap (4.7)
for the case , with .

11.5 Estimate of , , and for L

The estimates of , , and for L are nearly
identical to those given in sections 11.7, 11.8, and 11.9 of [4]. As such, we prove
only an abridged summary of the arguments.

Consider first the estimate on . We set and R , so that
. We have R and .

The contribution of the damping in (11.13) gives us

L

and we have from (9.8) and (4.1b) the forcing bound

Substituting the above two estimates into (11.13), we obtain

where for the case log we used (4.8a) and bound (2.48) in [4], and for
the case log , we used the initial data assumption (3.16a). Thus we close
the bootstrap bound in the first line of (4.7).

For the case we set so that R

J and . Applying (4.7) and Lemma 5.2 yields

R(11.32)

As a consequence of (9.19) and the fact that L , we obtain

Substituting the above two estimates into (11.13), we obtain

where for the case log we used (4.8b) and the bound (2.48) in [4], and
for the case log , we used the initial data assumption (3.16b). Thus we
close the bootstrap bound in the second line of (4.7).

Finally, we consider the estimate of for L . We set and
. The damping term is R J , and so we may
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reuse the estimate (11.32). The forcing term may be bounded directly using the
third case in (9.19), which yields

We deduce from (11.13) that

where for the case log , we used (4.8c) and the bound (2.48) in [4], and
for the case log , we used the initial data assumption (3.16c). Thus we
close the bootstrap bound in the second line of (4.7).

12 Constraints and Evolution of Modulation Variables
12.1 Solving for the dynamic modulation parameters

In Section (2.7) we have used the evolution equations for , , and
at to derive implicit equations for the time derivatives our modulation pa-
rameters. The goal of this subsection is to show that these implicit equations are
indeed solvable with the initial conditions (2.53). For this purpose it convenient to
introduce the notation

P b b c c and R b b c c

to denote a linear function in the parameters c c with coefficients that de-
pend on b b through smooth polynomials (for P ) and rational functions
(for R ), and on the derivatives of , , and evaluated at . The sub-
script denotes a label, used to distinguish the various functions P and R .
We note that all of the denominators in R are bounded from below by a universal
constant. It is important to note that the notation P and R is never used when
explicit bounds are required. Throughout this section, we will use the bootstrap
assumptions in Section 4 to establish uniform bounds on the coefficients, which in
turn, yields local well-posedness of the coupled system of ODE for the modulation
variables.

The definition of in (2.55) may be written schematically using the notation
introduced above as

P(12.1)

where we have used the explicit formula (A.8) to determine the dependence of P .
Once we compute and (cf. (2.60a)–(2.60b) below) we will return to the
formula (12.1). We point out at this stage that in (12.17) below we will show that
both and decay at a rate which is strictly faster than , which shows
that their contribution to will be under control.

Similarly, the definition of in (2.56) may be written schematically as

P(12.2)
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where we have used the explicit formulae (A.7b) and (A.9) to determine the de-
pendence of P .

The schematic dependence of is determined from (2.57). Using (A.7c) and
(A.10) and placing the leading-order term in on one side, we obtain

(12.3)
T

which may be written schematically as

P(12.4)

Note that once is known, we can determine and by recalling from [4,
eqs. (A.4)–(A.5)] that

Id(12.5)

where . Since the vector is small (see (4.1a) below), and the
matrix on the left side is an O perturbation of the identity matrix, we obtain
from (12.5) a definition of , as desired.

Next, we determine the dependence of and . Inspecting (A.7d)–(A.7f)
and (A.10)–(A.11) and inserting them into (2.60b), we obtain the dependence

R H

Note that although appears on both sides of the above, in view of (4.17) the
dependence on the right side is paired with a factor less than , and the
functions are themselves expected to be for all log (cf. (4.1a)
below). This allows us to solve for and schematically write

R(12.6)

Returning to (2.60a), inspecting (A.7d)–(A.7f) and (A.10)–(A.11), and using (12.6),
we also obtain the dependence

R(12.7)
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Next, we determine the dependence of . From (2.60a)–(2.60b), (2.61), (A.7a),
and the fact that Id we deduce that

(12.8)

for . Using (12.6) and (12.7), we may then schematically write

R(12.9)

Lastly, note that is determined in terms of (which we rewrite in
terms of , and via (2.63)) through the first term on the right-side
of (A.7e)

(12.10) N

J

and (2.60a) is used to determine . In light of (A.11), (12.7), and (12.10), we
may schematically write

R

which may be then combined with (12.4) and (12.6) to yield

R(12.11)

thus spelling out the dependences of on the other dynamic variables.
The equations (12.1), (12.2), (12.4), (12.9), and (12.11) only implicitly define

, and . We may, however, spell out this implicit dependence and
arrive at an autonomous system of ODEs for all of our modulation parameters,
cf. (12.12)–(12.13) below.

By combining (12.4) and (12.6) with (12.5) and recalling (12.11), we obtain that

R and R

Therefore, since and the functions P and P are linear in and
, then as long as , , and remain bounded, and is taken to be sufficiently

small (in particular, for a short time after log ), we may analytically solve
for and as rational functions (with bounded denominators) of , and , with
coefficients which only depend on the derivatives of at . We write
this schematically as

E and E(12.12)
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Here the E and E are suitable smooth functions of their
arguments, as described above. With (12.12) in hand, we return to (12.1) and
(12.2), which are to be combined with (12.6) and (12.9) to obtain that

E E E(12.13)

for suitable smooth functions E , E and E of , with coefficients which
depend on the derivatives of , , and at .

Remark 12.1 (Local solvability). The system of ten nonlinear ODEs described in
(12.12) and (12.13) are used to determine the time evolutions of our dynamic
modulation variables. The local-in-time solvability of this system is ensured by
the fact that E , E , E , E , and E are rational functions of and ,
with coefficients that only depend on , , and with , and
moreover that these functions are smooth in the neighborhood of the initial values
given by (2.53); hence, unique solutions exist for a sufficiently small time. We
emphasize that these functions are explicit.

12.2 Closure of Bootstrap Estimates for the Dynamic Variables
Once one traces back the identities in Section 12.1 and Appendix A.3 we may

close the bootstrap assumptions for the modulation parameters, (4.1).
The starting point is to obtain bounds for and by appealing to (2.60a)–

(2.60b). The matrix H defined in (2.59) can be rewritten as

H

diag

From the bootstrap assumption (4.10) we have that for all
log , and thus

H(12.14)

for all log . Next, we estimate . Using (A.10), (A.11), the bootstrap
assumptions (4.1a)–(4.3), the bounds (4.12)–(4.20), and the fact that T

, after a computation we arrive at

(12.15)

Moreover, from (A.7d), (A.7f), (4.1a), and (4.1b), the first line in (4.12), and the
previously established bound (12.15) we establish that

(12.16)
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The bounds (12.14) and (12.16), are then inserted into (2.60a)–(2.60b). After ab-
sorbing the term into the left side, we obtain to estimate

(12.17)

The bound (12.17) plays a crucial role in the following subsections. We note that
for we have , and hence so the bound (12.17) implies that

.

The estimate
From (2.56), the definition of in (A.7b), the definition of in (A.9) ,

the bootstrap estimates (4.1a)–(4.3), (4.12)–(4.14), and the previously established
bound (12.17), we obtain that

(12.18)

where we have used a power of to absorb the implicit constant in the first in-
equality above. This improves the bootstrap bound for in (4.1b) by a factor of .
Integrating in time from to where , we also improve the bound in
(4.1a) by a factor of , thereby closing the bootstrap.

The estimate
From (2.55)–(4.3), the bound (12.17), the definition of in (A.8), the esti-

mates (4.12)–(4.14), and the fact that , we deduce that

Here we have used a small ( -dependent) power of to absorb the implicit constant
in the second estimate above, thereby improving the bootstrap bound in (4.1b)
by a factor of . Integrating in time, we furthermore deduce that

(12.19)

since . Upon taking to be sufficiently small in terms of , we improve
the bound in (4.1a).
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The estimate
In order to bound the vector, we appeal to (12.8), to (12.17), to the

cases in (4.12) and (4.13), to the bound Id , and to the estimate in
(4.1a) to deduce that

(12.20)

upon taking sufficiently small in terms of and . The bootstrap estimate for
in (4.1b) is then improved by taking sufficiently large, in terms of , while the

bound on in (4.1a) follows by integration in time.

The estimate
Using (12.10), the fact that N J , the bootstrap assumptions

(4.1a), (4.1b), (4.10), the bounds (4.2), and the previously established estimate
(12.17), we obtain

(12.21)

Using the definition of in (A.11), appealing to the bootstrap assumptions
(and their consequences) from Section 4, the previously established estimate (12.17),
and the fact that T N J N , after a lengthy com-
putation one may show that

which shows that the term in (12.21) is subdominant when compared
to present in (12.21). In establishing the above estimate it was
crucial that , which from (4.20) since . Combining the
above two estimates with the bounds in (4.12), we derive

(12.22)

Taking sufficiently large to absorb the implicit constant, we deduce ,
which improves the bootstrap in (4.1b) by a factor of . Integrating in time on

, an interval of length , and using that log , we improve
the bootstrap in (4.1a) by a factor of .
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The estimate
First we obtain estimates on , by appealing to the identity (12.3). Using the

bootstrap assumptions (4.1a), (4.1b), (4.12)–(4.14), the estimates (4.2) and (12.17),
and the fact that T , we obtain

(12.23)

upon taking sufficiently small in terms of . Moreover, using the bootstrap
assumption , we deduce that the matrix on the left side of (12.5) is
within of the identity matrix, and thus so is its inverse. We deduce from (12.5)
and (12.23) that

(12.24)

upon taking to be sufficiently large to absorb the implicit constant. The closure
of the bootstrap is then achieved by integrating in time on .

13 Conclusion of the Proof: Theorems 3.2 and 3.3
We first note that the system (2.32) for the unknowns , with ini-

tial data chosen to satisfy the conditions of the theorem, is lo-
cally well-posed. To see this, we note that the transformations from (1.3) to (2.32)
are smooth for sufficiently short time, and that (1.3) is locally well-posed in the
Sobolev space for . Here we have implicitly used that the system of
10 nonlinear ODEs (12.12) and (12.13), which specify the modulation functions
have local-in-time existence and uniqueness as discussed in Remark 12.1. More-
over, solutions to (1.3) satisfy the following continuation principle (see, for exam-
ple, [19]): Suppose k is a solution to (1.3) satisfying the
uniform bound k , then if in
addition is uniformly bounded from below on the interval , there exists

such that k extends to a unique solution of (1.3) on . Con-
sequently, the solution in self-similar variables may be continued so
long as remain uniformly bounded in , the modulation functions
remain bounded, and the density remains bounded from below.

In Sections 5–12, we close the bootstrap assumptions on , , , and
on the modulation functions. By Proposition 4.6, the density remains uniformly
strictly positive and bounded. Thus, as a consequence of the continuation princi-
ple stated above, we obtain a global-in-self-similar-time solution

log log to (2.32) for . This
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solution satisfies the bounds stated in Sections 4.2–4.6. The asymptotic stability of
follows from:

THEOREM 13.1 (Convergence to stationary solution). There exists a -dimensional

symmetric -tensor A such that, with A defined in Appendix A.1, we have that

the solution of (2.32a) satisfies

lim A

for any fixed .

We note that the proof of Theorem 13.1 is the same as the proof of Theorem 13.4
in [4] once we include the contributions of the entropy function , which can be
estimated using (4.14). The limiting profile A satisfies the conditions stated in
Theorem 3.2 due to Proposition A.1.

The remaining conclusions of Theorem 3.2 follow from the statements given in
Sections 4.7 and 4.8 (for the time and location of the singularity, and the regularity
of the solution at this time), Proposition 4.3 (for the vanishing of derivatives of

, , and as ), Proposition 6.1 (for the vorticity upper bounds), and
Theorem 7.4 (for the vorticity creation estimates).

The proof of Theorem 3.3 is the same as the proof of Theorem 3.2 in [4]. The
addition of entropy does not necessitate modifications to that proof as the assump-
tions on the initial entropy in Theorem 3.2 (see (3.20) and (3.23)) are stable with
respect to small perturbations.

Appendix A
A.1 A family of self-similar solutions to the 3D Burgers equation
PROPOSITION A.1 (Stationary solutions for self-similar 3D Burgers). Let A be a

symmetric -tensor such that A M with M a positive definite symmetric

matrix. Then, there exists a solution A to

A A A A(A.1)

which has the following properties:

A , A , A ,

A for even,

A A for .

See appendix A.1 in [4] for the proof of Proposition A.1.

A.2 Interpolation
The following is taken from [4, appendix A.3]. We include the inequalities here

for convenience to the reader.
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LEMMA A.2 (Gagliardo-Nirenberg-Sobolev). Let . Fix

and , and . Then, if

then

(A.2)

We shall make use of (A.2) for the case that , , , which
yields

(A.3)

whenever has compact support. The above estimate and the Leibniz
rule classically imply the Moser inequality

(A.4)

for all with compact support. At various stages in the proof we
also appeal to the following special case of (A.2)

(A.5)

for with compact support. Lastly, in Section 8 we make use of the
following:

LEMMA A.3. Let and . Then for a b
and ,

a b a b(A.6)

See [4] for the proof.

A.3 The functions , , and their derivatives at
Using (2.13), the definition of in (2.33a), and the constraints in (2.52), we

deduce that the first and second derivatives of evaluate at are given by11

(A.7a)

(A.7b)

(A.7c)

(A.7d)

11 Here we have used the identities: T , N , and T , N , and
N , N .
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(A.7e)

N

J(A.7f)

Appealing to (2.13) and (2.35a), which is equivalent to

T T N T N

N T N

T NN J N

we may derive the following explicit expressions for and its derivatives up to
order 2, evaluated at :12 for the case of no derivatives we have

(A.8)

the first derivative of is given by

(A.9)

the first is given by

T

12 Here we have used the identities: N , T , N , N ,

N , T , T N , T N , N , N , and J
.
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the second derivative of at is given by

(A.10)

a derivative combined with a derivative is given by

T

and lastly, the second derivative is given by

T

T N

T N

T

N N

N N N
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(A.11)
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