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Abstract

We analyze the shock formation process for the 3D nonisentropic Euler equa-
tions with the ideal gas law, in which sound waves interact with entropy waves
to produce vorticity. Building on our theory for isentropic flows in [@E{], we give
a constructive proof of shock formation from smooth initial data. Specifically,
we prove that there exist smooth solutions to the nonisentropic Euler equations
which form a generic stable shock with explicitly computable blowup time, lo-
cation, and direction. This is achieved by establishing the asymptotic stability of
a generic shock profile in modulated self-similar variables, controlling the inter-
action of wave families via: (i) pointwise bounds along Lagrangian trajectories,
(ii) geometric vorticity structure, and (iii) high-order energy estimates in Sobolev
spaces. © 2022 Wiley Periodicals LLC.
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1 Introduction

The three-dimensional Euler equations of gas dynamics, introduced by Euler
in [[12f], are a hyperbolic system of five coupled equations, and can be written as

(I.1a) p (B + (u - Viu) + Vp(p, k) =0,
(1.1b) dip+ (u-Vo)p + pdivyu =0,
(1.1¢) ok + (u - Vy)k = 0,
for spacial variable x = (Xp,X2,X3) € R3, temporal variable t € R, velocity

u: R3x R — R3, density p : R> x R — Ry, and entropy k : R x R. The
pressur p = p(p.k) : R* x R — R is a function of both density and entropy,
with equation-of-state given by the ideal gas law

plp.k) = ypvet,

where the adiabatic constant y > 1. If smooth initial conditions are prescribed at
an initial time tg, then a classical solution to exists up to a finite time 7%, the
lifespan, when a singularity or blowup develops [27]]. The mechanism of blowup
for smooth solutions to (1.1)) as # — T, including rate, direction, locus, and profile
is heretofore unknown.

Our primary aim is the detailed analysis of the formation of the first shock or
blowup for smooth solutions to (I.1). We prove that for an open set of initial
conditions, smooth solutions to evolve steepening wavefronts and form an
asymptotically self-similar cusp-type first shock with explicit rate, location, and
direction. The major difficulty in the analysis of the nonisentropic Euler dynamics
stems from the interaction of sound waves, entropy waves, and vorticity waves.
Nonisentropic flows can have a misalignment of density and entropy gradients,
thus leading to dynamic vorticity creation, even from irrotational initial data.

To highlight the challenge created by the interaction of different wave families,
we must examine the evolution of the vorticity vector, which we shall now derive.
To do so, it is convenient to write the Euler equations using the sound speed. We
introduce the adiabatic exponent

v—1

o=

I The evolution equation for p can be replaced with the equation for pressure given by dip + (u -
Vi) p +vpdivyu = 0.
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so that the sound speed ¢(p) = +/%/3 can be written as ¢ = ¢/2p% and p =
% pc?. We define the scaled sound speed o by
(1.2) o= éc = ée%p“,

and write the Euler equations (1.1) as a system for (u, o, k) as follows:

(1.3a) o + (u - Vu + aoVyo = é"—yazvxk,
(1.3b) oo + (u - VYo + ao divxu = 0,
(1.3¢) ok + (u - ok = 0.

We let = curly u denote the vorticity vector, and define the specific vorticity
vector by { = %. A straightforward computation shows that { is a solution to

(1.4) 0l +u-Vol—(€-Vou= %%an x Vik.

The term %%on x Vik on the right side of can also be written as p 3V, px Vi p
and is referred to as baroclinic torque. Clearly, the potential vorticity, the compo-
nent of ¢ in the direction of the density gradient, can only be generated by vortex
stretching, whereas baroclinic vorticity modes are produced from the interaction
of acoustic waves and entropy waves. This (baroclinic) vorticity production is the
fundamental mechanism for the excitation and stabilization of both the Rayleigh-
Taylor and Richtmyer-Meshkov instabilities, and plays a fundamental role in at-
mospheric science as well as numerous flows of engineering significance.

Of course, it is possible to simplify the Euler dynamics in a manner that still
retains the steepening of sound waves, but removes complications associated to
the interaction of different wave families. This can be achieved by considering
the subclass of flows for which the entropy is a constant; such flows are called
isentropic, and the pressure is a function of density alone: p = %py. Note that
for isentropic flow, baroclinic torque vanishes, and thus the specific vorticity ¢ is
Lie-advected as a vector field. Acoustic modes can no longer interact with entropy
waves to create vorticity; rather, vorticity is merely advected. As such, two further
subclasses of flows exist: irrotational flow and flow with advected vorticity. For
irrotational flow, only sound waves propagate, while for initial data with vorticity,
there is an interaction between acoustic modes and vorticity modes that must be
carefully analyzed, as controlling the growth of vorticity is essential to the study
of shock formation. For nonisentropic dynamics, the presence of baroclinic torque
creates a fundamentally new challenge in the estimation of the growth of vortic-
ity. Why? Because as the first shock forms, the magnitude of baroclinic torque
becomes infinite! Even though the baroclinic torque blows up, using geometric
coordinates adapted to the steepening wave front we are able to obtain a number
of cancellations in the vorticity equation, which allow us to prove that the vortic-
ity remains bounded up to the time of shock formation. Furthermore, irrotational
initial data can be chosen with non-zero baroclinic torque such that vorticity is
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instantaneously produced and remains nontrivial throughout the shock formation
process. By a significant extension of the methodology we developed in [3,4], we
shall prove the following:

THEOREM 1.1 (Rough statement of the main theorem). For an open set of smooth
initial data with a maximally negative gradient of size O (1/e), for ¢ > 0 sufficiently
small, there exist smooth solutions to the nonisentropic 3D Euler equations
that form a shock singularity at time Ty = O(¢). The first singularity occurs
at a single point in space, whose location can be explicitly computed, along with
the precise time at which it occurs. The blowup profile is shown to be a cusp
with C'? regularity, and the singularity is given by an asymptotically self-similar
shock profile that is stable with respect to the H™(R3) topology for m > 18. If
an irrotational initial velocity is prescribed, vorticity is instantaneously produced,
and remains bounded and nontrivial up to the blowup time Ts.

A precise statement of the main result will be given below as Theorem [3.2]

1.1 Prior results

In one space dimension, the theory of finite-time blowup of smooth solutions
and shock formation to the Euler equations is well established. The literature is too
vast to provide a review here. See, for example, [[11}{13H17.{19,26]. In contrast, in
multiple space dimensions and with no symmetry assumptions, only the isentropic
shock formation problem has been studied: shock formation was established for
irrotational flows by [7,9] (see also [8]), for 2D isentropic flows with vorticity
by [3,/18], and for 3D isentropic flows with vorticity by [4]. Under a spherical
symmetry assumption, which reduces the nonisentropic Euler equations to a 1D
system, the shock formation process was studied in [30]. For nonisentropic flow in
multiple space dimensions and without symmetry assumptions, prior to this paper
it was only known that C ! solutions have a finite lifespan [27].

As we noted above, one of the major difficulties in the analysis of nonisen-
tropic flows is due to the interaction of multiple wave families: sound waves, vor-
ticity waves, and entropy waves. Indeed, the analysis of quasilinear hyperbolic
systems with multiple wave speeds is just emerging. As stated in [29], prior to
the results in [3}4,/18,29], there have been no constructive proofs of shock for-
mation for a quasilinear hyperbolic system in more than one spatial dimension,
featuring multiple wave speeds. We note that the irrotational (isentropic) Euler
equations can be written as a scalar quasilinear wave equation with only one wave
speed; formation of shocks for systems with a single wave speed have been studied
by [11,[2,/7,9,24,25},28]].

Finally, we mention that there are other possible blowup mechanisms for the Eu-
ler equations; for example, a precise characterization of implosion for spherically
symmetric isentropic flow has recently been given in [21}[22]].
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1.2 Main ideas in the proof

Because of the presence of multiple wave speeds, multiple wave families, and
their nonlinear interactions, the Euler dynamics offer a rich tapestry of dynamic
behavior, and yet when zooming in on the formation of the first shock, the Euler
solution shares fundamental features with the wave-steepening blowup of the 3D
Burgers solution. For this reason, our study of the mechanism of shock formation
for smooth solutions of as t — Ty makes use of a blowup profile W (y), one
example of a stable stationary solution to the 3D self-similar Burgers equation

(1.5)  —IW+ Gy + W) o, W + 3320, W + 2y30,,W =0,

which has an explicit representation. If we consider the 3D Burgers equation d;v +
v - Vv = 0 in physical spacetime variables (X, ), then a smooth solution v =
(v1, v2, v3) that forms a first shock at t = T is given byH

v1(X1,X2,X3,1)

(1.6) B B 1/2_( X1 X2 X3 )
= (T —t)""W (Te —0)3/2" (Ts —)V/2 (T —1)1/2

with v, = 0 and v3 = 0. Explicit properties of the blowup profile W (y) together
with the solution for v (x, t) give precise information of the blowup mechanism as
t — Tk, including the blowup time 7%, the blowup location x = 0, and the blowup
direction e;. We note that we have made a particular choice of direction for our
Burgers solution v; specifically, we have chosen to let the wave steepen along the
e1 blowup direction, whereas we could have used the profile W to form a blowup
in any direction.

Although the nonisentropic Euler system is significantly more complicated, we
are nevertheless able to use the Burgers stationary solution W to describe the
blowup mechanism for smooth solutions of as t — T%. This requires a num-
ber coordinate and variable transformations that are constructed upon two geomet-
ric principles: first, we build into our transformations a family of time-dependent
modulation functions whose purpose is to fight against the destabilizing action of
the finite-dimensional symmetry groups of the Euler equations, and second, we
design a coordinate system which both follows and deforms with the steepening
Euler solution.

Let us now elaborate on these ideas. The blowup profile W (y) has an ex-
plicit formula which shows that y = 0 is a global minimum for dy, W(y), and
with the following properties verified: W (0) = 0, 8y1W(O) = —1, ayZW(O) =
3y, W (0) = 0, V;W(0) = 0, and

(1.7) V23, W(0) > 0.

2In fact, as established in Appendix [A.1, there are many closely related stable self-similar solu-
tions to the Burgers equations which allow for a slight modification of vy.
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Positive-definiteness of the Hessian of d{ W at y = 0 is a genericity condition for
the blowup mechanism, and has been used in the study of blowup for quasilinear
wave equations [ 1] and discussed in [5}/7] as an important selection criterion for
stable shocks.

Returning now to the identity (1.6), if the initial time is fixed to be ty = —e for
¢ > 0, we can set Ty = 0; the initial condition for v; is then given by

1 — 3 1 1
vi(x,—¢) = e2W(e72X1,& 2Xp,& 2X3).

With (y1, y2. v3) = ((=1)73/2x1, (—=1)"/2x,, (—1)~1/2x3), we see that the prop-
erties of W (y) at y = 0 show that v1(0, —&) = 0, dx,v1(0, —&) = %Bylﬂ_/(O) =
—%, 0x,v1(0, —&) = 0, dx;v1(0, —e) = 0, szvl(O, —&) = 0, and the genericity
condition is also satisfied so that V2dx, v1 (0, —&) > 0. We see that for the 3D
Burgers equation, if we start with a maximally negative slope equal to —% at time
t = —e and x = 0, then the first shock occurs at time 7% = 0 and x = 0, and by
virtue of (1.6), the blowup mechanism is self-similar

(1.8) 0 v1(0,1) = 5 W(0) = — 1.

Of course, no such formula as exists for the Euler equations, but we can
nevertheless use the properties of W to develop a new type of stability theory for
the Euler equations in self-similar variables.

Thus, the first step in our proof of shock formation for the nonisentropic Euler
equations is the mapping of the physical space-time coordinates (X, t) to modulated
self-similar space-time coordinates (y, s), together with a succession of transfor-
mations that map the original variables (u, o, k) into geometric Riemann-like vari-
ables (W, Z, A, K), in which the dynamically dominant variable W(y, s) mimics
the properties of W (y) near the blowup location y = 0. The use of modula-
tion functions for the analysis of self-similar dispersive equations was pioneered
in [20,123]. The initial data is prescribed at self-similar time so = —loge, and
we require 3¥ W(y, —loge) to verify the same conditions as 3¥ W (y) at the point
y = 0 for all multi-indices |y| < 2. Just as we noted above, we are now making
a choice of blowup direction; the initial data is chosen so that its maximal neg-
ative slope is in the ej-direction, but unlike the Burgers solution, the rotational
symmetry of the Euler dynamics does not preserve this direction. In fact, the var-
ious symmetries of the Euler equations prevent these conditions on d¥ W (0, s) to
be maintained under the natural evolution, and for this reason, ten time-dependent
modulation functions are used to ensure that 3” W(0,s) = 37 W(0) for |y| < 2
and for all s > —loge. Of these ten modulation functions, seven of them are as-
sociated to symmetries of the Euler equations (see section 1.3 in [4]), and three
of the modulation functions are associated to a spatially quadratic time-dependent
parametrization f(f,X2,X3) = ¢22(t)x% + 2¢23(t)x2x3 + ¢33(Z)x§ of the steep-
ening front, where the matrix ¢, (£) modulates the curvature, and denotes the in-
duced second-fundamental form. Associated to this parametric surface f(x2,x3,1)
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is a time-dependent orthonormal basis (N, T2, T3) representing the normal and tan-
gential directions. The steepening front moves in the N-direction and the dominant
Riemann variable is defined as w = u - N + ¢. With respect to coordinates Xx,
which themselves depend on f, the variable w(x, ¢) is associated to the dominant
self-similar variable W (y, s) by a formula which is analogous to (1.6)):

w(xy, X2,Xx3,1)

. _ % X1 X2 X3
=E0-1) W((r(r)—m/f(r(t)—r)l/Z’(r(r)—r)l/fs)’

—s = log(z(z) — 1),

where 7(¢) modulates the blowup time and converges to Ty as f — T. Differenti-
ating w in the direction N of the steepening front, it can be shown that

1

1.9 INw(E(1), 1) = €9y, W(0,5) = (1) -t

— —00 ast — Tk,
where £(¢) modulates the blowup location. The blowup is the geometric
analogue of , and requires a well-defined limit as t — 7% which, in turn,
requires that W(y, s) remains well defined for all —loge < s.

It therefore becomes clear that in order to establish stable self-similar shock for-
mation, we must prove global existence of solutions to the Euler equations in self-
similar coordinates (y, s), and the majority of our work is devoted to this end. The
understanding of the damping/antidamping structure of the Euler equations in self-
similar coordinates (y, s) along Lagrangian trajectories is key to our analysis; the
undifferentiated Euler equations have antidamping terms, but upon spatial differ-
entiation, damping emerges, and the more derivatives that are applied, the stronger
the damping becomes. A consequence of this observation is that pointwise bounds
for lower-order derivatives cannot rely on either damping or traditional Eulerian-
type analysis, but rather on sharp (lower) bounds on the motion of the three families
of trajectories associated to the three wave speeds present. In self-similar coordi-
nates, almost all of the trajectories in these three wave families escape to infinity
and having sharp rates-of-escape for each family can be combined with spatial de-
cay properties of the Riemann-type function W(y, s) to close a system of highly
coupled bootstrap bounds for derivatives up to order 2.

On the other hand, it is not possible to close estimates for the Euler equations us-
ing only pointwise bounds due to inherent derivative loss, and higher-order energy
estimates must therefore be employed. Modified energy estimates are performed
for a system of variables comprised of U, S e K/ 2Y and K/ 2Y where U, S, and
K are the self-similar versions of u, o, and k, respectively. The use of these vari-
ables removes the hyperbolic degeneracy associated to vanishing density. Com-
bined with the weighted pointwise bounds for lower-order derivatives, we prove
global existence in a modified H ™M _norm, m > 18.
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While for the subclass of irrotational flows the above two types of estimates suf-
fice, for rotational flows it is essential to obtain uniform bounds for the vorticity
all the way to the blowup time. Even for isentropic dynamics, in which the spe-
cific vorticity is Lie-advected, analysis in self-similar coordinates appears to create
logarithmic losses in temporal decay (see [4]). Instead, the specific vorticity ¢ is
estimated in physical coordinates using geometric components (¢-N, -T2, -T3),
which yield a cancellation at highest order. For the nonisentropic dynamics, an
additional difficulty arises because the vorticity equation is forced by the
baroclinic torque %%on x Vik, which blows up as t — T. Indeed, from formula
(2.25) below, and the bounds established in Sections [6| and [/, we may show that
the tangential components of the baroclinic torque term satisfy

(2T - Yoo x V) E@). )| 2 7.

A main feature of our proof is to show that in spite of the fact that the Lie-
advection for the specific vorticity is forced by a diverging term, ¢ remains uni-
formly bounded up to Tx. This is achieved by noting that the divergence of the
velocity gains a space derivative when integrated along trajectories with speed u,
and by taking advantage of certain cancellations that arise due to our geometric
framework.

Finally, we examine baroclinic vorticity production. We prove that even if the
initial velocity is irrotational, vorticity is instantaneously produced due to the baro-
clinic torque, and our analysis shows that this created vorticity remains non-trivial
in an open neighborhood of the steepening front all the way up to the first shock.
We thus provide a constructive proof of shock formation for Euler in the regime in
which vorticity is created, and not simply Lie advected.

1.3 Outline

In Section [2, we introduce a succession of variable changes and Riemann-type
variables which allow then allow us to write the Euler equations in modulated self-
similar coordinates. A precise specification of the data and the statement of the
main results is then given in Section [3] In Section §| we introduce the bootstrap
assumptions for the modulation functions as well as the primary variables solving
the self-similar Euler equations; these bootstrap assumptions consist of carefully
chosen weighted (in both space and time) bounds. A fundamental aspect of our
proof requires a detailed estimates for the rates of escape of the trajectories cor-
responding to the different wave speeds, and Section [3]is devoted to this analysis.
In Section [6] we establish pointwise bounds for the vorticity, and in Section
we show that there exists irrotational initial velocity fields from which vorticity is
created and remains nontrivial at the first shock. Energy estimates in self-similar
variables are established in Section [8] using the modified variables (2.41). In Sec-
tion [9, we establish weighted (pointwise) estimates for functions appearing in the
forcing, damping, and transport of the differentiated Euler system. In turn, these
weighted bounds allow us to close the bootstrap assumptions for W, Z, A, K, and
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their partial derivatives, and this is achieved in Sections while in Section
we close the bootstrap bounds for the dynamic modulation functions. Finally,
in Section we explain how all of the obtained bounds are used to prove The-
orem in particular, we show that limg_ W(y,s) = W./(y) for any fixed
y € R3, where W,/ (y) is a stable stationary solution to the self-similar 3D Burg-
ers equations. A family of such stationary solutions is constructed in Appendix
which also contains an interpolation inequality that is used throughout the paper,
as well as some detailed computations leading to the evolution equations for the
modulation functions.

2 Transforming the Euler Equations
into Geometric Self-Similar Variables

We now make a succession of variable transformations for both dependent and
independent variables. We begin by rescaling time as

@.1) e E

We next introduce ten modulation variables which satisfy a coupled system of
ODE:s that will be given in (12.12)—(12.13). For each time 7, they are defined
as follows:
R(r) € S?: rotation matrix from e; to the direction of steepening front 7(r),
£(t) € R®: translation vector used to fix the location of the developing shock,
$(t) € R®: 2x2 symmetric matrix giving the curvature of the shock front,
7(¢) € R: scalar used to track exact the blowup time,
k(t) € R: scalar used to fix the speed of the developing shock.

The matrix R(¢) is defined in terms of two time-dependent rotation angles n,(¢)
and n3(¢) as follows. We define

n(0) = (Y1=n30) + ). m2(0). m3 (1))

and a skew-symmetric matrix R whose first row is the vector (0, —ny, —n3), first
column is (0,n,,n3), and has 0 entries otherwise. In terms of R, we define the
rotation matrix
~ 1—e1-0(@) ~
2.2) RGO = 1d + R(r) + =40 gy
le1 x n(1)]?

It is the two angles n,(¢) and n3(¢) whose evolution is given in (12.12)).

Using these modulation functions, we next proceed to make a succession of
transformations of both the independent and dependent variables, finally arriving
at a novel modulated self-similar form of the dynamics.
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2.1 Rotating the direction and translating the location
of the steepening wavefront

We introduce the new independent variable
2.3) F=RT(Ox—§0)
and corresponding dependent variables as
(2.4) 0%, 1) = RT(Du(x.t), &(X.1)=o0(x.1t), K(&.1)=Kk(x1).
It follows that is transformed to

(2.5a) %0, — Qi + ((T+ @) - Vk)il + a0 Vo = 257 Vkk,

2
(2.5b) 1425,5 + (T + 1) - V5)G + o divg T = o,y
(2.5¢) ey k + (@ + ) - Vr)k =0,
where
(2.6) O =RTR and ¥(%,1):= QX — RTE.

The density and pressure in this rotated and translated frame are given by

2.7 p(x.1) = p(x,1), p(¥.1) = p(x.1)
satisfy

(2.8a) 23,0+ (@ + ) - Vg)p + pdivg it = 0,
(2.8b) 29,5+ (T + 1) Vg)p +ypdivg il =0,

and we also have the alternative form of the momentum equation
29 5,7 — Of + (T + ) - V)T + (@5) V222V 5 = 0,
This follows from the form of the momentum equation given by

dat + (u - Vu + (ao) " V2e22y, p =0

where, from (1.2), we have used that p~! = (ao)~1/@ek/2
Similarly, defining the transformed specific vorticity vector ¢ by

(2.10) EE.1) = RT ()¢ (x.0),
we have that E solves
@1 420, - 0L+ (@ +1) - V)T — (T Va)Tl = 2ZVi5 x Vik.

Deriving (2.11) from (L.4) fundamentally uses that O is skew-symmetric, and the
fact that the cross product is invariant to rotation.
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2.2 Coordinates adapted to the shape of the steepening wavefront

We next define a quadratic surface over the X, X3-plane given by the graph
(2.12) (f(X2,X3,1), X2, X3) ,
which approximates the steepening shock, and where
(2.13) FE D =30 OFF,.

Associated to the parametrized surface (2.12), we define the unit-length normal
and tangent Vector

(2.14a) N=J""1~f2,~f3),
2 _ (L (f2)> —fof
(2.14b) ™= (TZ - J(Jerl)’ J(J-zi-l)g) ’
3_ (L3 —faof (f13)*
(2.14¢) = (T3 Jorn L J(J-T—l))’

where J = (1 + | f2  + [ £i3 )2
In order to ‘flatten’ the developing shock front, we make one further transfor-
mation of the independent space variable

(2.15) x1 =X1 — f(X2,X3,1), X2 =X, Xx3=X3,

and define the transformed dependent variables by

(2.16a) u(x,t) = (¥, 1) = u(x1 + f(x2.%3,1), X2, x3, 1),
(2.16b) (x.t) =6(X.t) = 5(x1 + f(x2,x3.1), X2, X3, 1),
(2.16¢) p(x.1) = p(X.1) = p(x1 + f(x2.x3,1), X2, %3.1),
(2.16d) K(x, 1) = K@E, 1) = Kot + f(x2,x3,0), %2, 53, 1),
(2.16e) p(x.1) = p(X.1) = p(x1 + f(x2,x3.1). X2, x3,1).

We shall also make use of the a-dependent parameters

(2.17a) Br =P = 4z B2 =Pale) = {32,
(2.17b) Bz = B3(@) = 135, Ba = Pala) = 'fi(ga’

where 0 < 8; = Bi(x) < 1.

3 As we noted in [4], (N, T2,T3) defines an orthonormal basis and T2 x T3 = N, N x T2 = T3,
and N x T3 = —T2,

4 Here and throughout the paper we are using the notation ¢ ;, = dx, ¢ and 3,0 = 0y, 0.

3 Note that only the X7- coordinate is modified.
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Using the time rescaling from (2.1)), the system (2.5)) can be written as (2.16) as
(2.18a)
atu—2,31Qu+2,61( Sh +dv N+ i N)81u+2ﬂl(vv 8,) 8

+2B836(IN31G + 8 81,0) = Ba82(IND 1K + 87V ,K),
(2.18b)

8t8+2,31( ;; +Jv N+ Ji - N)810—|—2,81(vv+u,,)8

+ 2836 (Blu -NJ + 8,,%,)) =0,
(2.18¢)

8k+2,31( Sh v N+ Ui N)81k+2,31(vv+uv)8 k=0,
where in analogy to (2.16), we have denoted
(2.19) v(x,t) =v(xX,1) = v(x1 + f(x2,x3.1),x2,X3,1).

Note in particular the identity v; (x, ) = Qi1 (x1+ f(¥,1)) + Qv Xy — Rjié_,'. The
density equation (2.8a) becomes

8,p+2,31( f +Jv-N+Ji - N)al,o
+ 2B1(vy + uv)av,o + 216 (911 - NJ + dyi1,) = 0,

(2.20)

the pressure equation (2.8b) is transformed to

a,p°+2ﬂ1(—zil31 +Jv-N+Jﬁ-N)81p°
+ 2,31(1)1, + ﬁv)avpo + 2,31YPO (alﬁ -NJ + 81;7?!1)) =0,

(2.21)

and the alternative form of the momentum equation (2.9) is written as

Btu—Z,BlQu—i—z,Bl( +Jv N+ Jif - N)81u+2,81(vv+uv)8
(2.22)

+ 2ﬂ1(a3)_5€ﬁ(JN3113 + 8V p) = 0.
Similarly, the transformed specific vorticity vector is

(2.23) E(x,1) = E(F.1) = E(x1 + f(¥2, %3 1), X2, X3,1),

so that the equation (2.11) becomes

9,8 — 2,31Q§+2,31(— -+ Ju N+ Ji- N)OLE + 281 (vy + 1) dut
— 281N - £ —2,314“1, Vil = %%V,;& x Vk.

(2.24)
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Note that the gradient appearing on the right side is with respect to X. We record
for later use that

ViG X Vglz = (8T288T3§ - 8T388T2§)N

(2.25) o . o o
+ (336 Ink — INGO7aK) T + (InG 2k — 012G InK) T,

where
BN =N-. Vg and aTv =T". Vg.

2.3 Riemann variables adapted to the shock geometry

Just as for the isentropic Euler equations that we analyzed in [4], the nonisen-
tropic Euler system (2.18) has a rad geometric structure arising from the use of
Riemann-type variables, defined by

(2.26) w=u-N+6, z=u-N—6, a,=u-T",
so that
(2.27) -N=1w+2), & =iw-2).

The Euler system (2.18) can be written in terms of (w, z, as, a3, k) asﬁ
(2.28a)

dw + (2ﬂ1(—ﬁ +Jv-N) +Jw + ﬂsz) drw
+ (2181UM + U)NM — ﬂ2ZNIJ« + 2,31611,TZL) auw
= —2B36T),duay + 214, TYN; + 281 0ija, TIN; — 2836 (ay T}, ,, + 1 - NNy 1)
(2.28b)
+ 2ﬂ1 (UM + ﬁ . NN/‘L + aszL) ayTg/Nl,u/ + ﬂ482(J8110( + Nﬂauﬁ),
3z + (2;31(—% +Ju-N) + Badw + Jz) 912
+ (2B1vu + BowNy + 2Ny + 2B1a,T),) 02
= 2B36T},0pay + 2B1ay TYN; + 281 0:jay TIN; + 2836 (av T}, ,, + 1 - NNy 1)
(2.28¢)
+ 2ﬂ1 (UI‘L + T/Ot M NNM + avTZL) ayTg/Nl,M + ,3482(\.]8110( + Nuaulo(),
dray + (2,81(—% + Jv - N) + Bidw + ﬂlJz) di1ay
= —2B36T},,0,6 + 2B1 (11 -NN; + a, TV) T} + 2810y ((ﬁ -NN; + ayTJY) T
(2.28d)
+ B1 (v + 1NNy + 20, T) (5 -NN; +ay T) T2, + Ba82T5,0,.k,

6The time rescaling (2.1) sets the coefficient of wdyw in (2.28b) to 1, which provides a conve-
nient framework to study the w-equation as a perturbation of Burgers-type evolution.
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(2.28¢e)

0k +2B1(— 55 + Ju N+ Jil - N)O1k + 281 (v, + 1)k = 0.

2.4 Euler equations in modulated self-similar Riemann-type variables

Finally, to facilitate the analysis of shock formation, we introduce the (modu-
lated) self-similar variables:

(2.29a) s =s(t) = —log(z(t) — 1),
229) oy =) = —— = ¥,
(t(r) —1)2
X;j :
(2.29¢) yi =yi(xj,t) = W = xjes/2 for j € {2,3}.

Using the self-similar variables y and s, we rewrite the functions w, z, a,, 1‘2
and v, defined in (2.26) and (2.19), as

(2.30a) w(x,t) = e 2W(y.s) + k(1)
(2.30b) z(x,t) = Z(y,s),

(2.30c) ay(x,t) = Av(y,s),

(2.30d) K(x, 1) = K(3,9),

(2.30e) v(x, 1) = V(y,s),

so that

@31 Vi(y.s) = Ou(e > 2y1 + 3 bupyoyp) + €2 Qivyy — Ry
Introducing the parameter
Be = Be(t) = =45

the Euler system (2.28) is written in self-similar coordinates as
(2.32a)

s = HIW + (gw + 331) W W + (g + 390) W = Fw — e 2 B,
(2.32b) OZ + (gz + 3y1) NhZ + (hy + Lyu)0.Z = Fz,
(2.32¢)  3sAy + (gu + 3y1) 14w + (BYy + Lyu) 904y = Fap.

(2.32d) OsK + (gu + 3y1)01 K + (b}, + $30)3,K = 0,
where the y; transport functions are defined by
(2.33a)

gw = BedW + Bee®*(—f +J (k + f2Z +2B1V -N)) = BIW + G,
(2.33b)
g2 = PafedW + Bre (—f +J(Bak + Z + 21V -N)) = B2fdW + Gz
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(2.33¢)
gu = P1BeIW + Brei (—f + I (Bik + B1Z + 281V -N)) = B1fW + Gy,

the y,, transport functions are given as

(2.34a)

hly = Bre Ny W + Bre™2 (2B1Vy + Nuk — BaNpZ + 2814, T7) |
(2.34b)

By = BeBre N W + Bre™2 (281 Vi + BaNuk + NuZ + 2814, 7).
(2.34¢)

hy = BeBre Ny W + Bre™2 (2B1Vy + BiNuk + BINLZ + 2814, T7).

and the forcing functions are

Fw = —2P3PST,0u Ay + 2B1Bre 2 AVTYN; + 2B1Bre™2 015 A, TIN;
+2B1Bre (Vi + NuU N+ AvTy) AyTYNi
(2.35a)
—2B3Bre 28 (AyTY, , + U NNy ) + BaBeS?(WUe’ 1 K + NyudK)
Fz =2B3B:e 3STV0, Ay + 281 Bre A TIN; + 281 Bre ™ 01 Ay TIN;
+2B1Bce™ (Vi + NuU -N+ A,T)) Ay TIN; 4,
(2.35b)
+2B3Bee ™S (ApTY, , + U NNy ) + BaBeS?(Je2d1K + Npe 20, K)
Fay = —2B3P-e 28T23,S + 2B1Bre™ (U -NN; + A, TV) T7
+2B1Bce ™ Qi (U -NN;j + A, TOTY + BaBre™2 S>T),0, K
(2.35¢)
+2B1Bce™ (Ve + U -NN + A, T1) (U -NN; + 4, T))T7 .

In (2.35) we have also used the self-similar variants of 1, &, and 1‘2 which, together
with the self-similar variant of p, are given by

(2.36a) u(x,t) =U(y,s),
(2.36b) p(x.1) = R(y.s),
(2.36¢) G(x,1) = S(y,s),
(2.36d) p(x.1) = P(y.s).
so that

237)  U-N=X(k+e2W+2Z) and S=3(k+e2W-2).
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The system (2.32) may be written as
IsW =W + (- VIW = Fy,
0sZ+ (Vz-VVZ = Fz,
dsAy + (AI/U : V)Av = Fyy.
0sK + (7y - V)K =0,

where the transport velocities are abbreviated as

(2.39) Yw = (sw + 3011y + 32, by + 33).
(2.39b) Vz = (gz + 3y1.h + 3v2.h3 + 3v3).
(2-39¢) Yo = (gu + 301,y + 32 by + 53).

2.5 Self-similar Euler equations in terms of velocity, pressure, and entropy

From (2.18), (2.21), (2.22), (2.29), (2.364), (2.36¢) we deduce that (U, P, K)
are solutions of

IsUi —2B1Bre* QijU; + My - VUi
(2.402)  +2B.B1(aS) " ae2d (IN;e3, P + §Ve 29, P) = 0,

(2.40b) ;P + (Y - V)P + 2B B1ye2 P31U -NJ + 2B B1ye 2 P, U, = 0,
(2.40¢) 35K + (Vy - V)K = 0.

For the purpose of performing high-order energy estimates, it is convenient to
introduce
K

(2.41) P = Se_% = é(yP)%, I = e?v,
and re-express the system of equations (2.40) as the following (U, &, 7¢)-system:

9sUi + (Vu - VIUi + 2B 3> P(INie231 P + §Ve™ 29, P)
(2.42a) =2B.81e7°0;;U;,
2420) 3P + (Vy - V)P + 283 2(e3IN- 31U + ¢~ 23,U,) = 0,
(2420) 3 + (Vy - V)H = 0.

Finally, we define the self-similar variant of the specific vorticity via

o

(2.43) C(x, 1) = Q(y, ).

2.6 Evolution of higher-order derivatives

Higher-order derivatives for the (W, Z, A, K)-system
We shall also need the differentiated form of the system (2.32), which we record
here for convenience. For a multi-index y € N2, we use the notation y =
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(y1.7) = (y1,¥2, v3). We have that
(2.442)
(8s +ntratysl 4 ogo (1 4 Vllylzz)Jf)lW) IW 4+ (P -V)IW =

(2.44b) (as TREVIE SRS 2 ,Bz,BthJBlW) NI (Vg V)L = FD,
Q440) (B + BEEES o BBy g W) 07 Ay + (- V) B Ay = FJY.
(2.44d) (as + 2ndetys ﬂlﬁtlealw) VK + (W -V)IK=FD,

where |y| > 1 and the forcing terms are

F =9 Fy— (;) (@ PGwa P w + " Fhyy,0,0°w)
0<B<y
—Belpy=s Y (g)ay—ﬁ GW)a 0w

1<|Bl<ly]—2
B<y

—Belp=2 . (NI Pumndfw

|B=]yl-1
B=<y.Bi=n1

(2.45)

for the ¥ W evolution, and

FY =d"Fz— Y (/];) (72G2010° 2 + 9P nty9,0P 2)

0<B<y

— B2B1)y>2 Z <;>ay_ﬂ(JW)313ﬂZ

0<|B|=<|y|-2
<y

(2.462) —Bafe Y <;)8”_’3(JW)818‘32

|B1=lyI—1
35%31:71

F/EJ]:) = 0" Fyy — Z (7’) (3V—ﬂGUalaﬂAv + 3V—ﬂhléaual3Av)
0=g<y
— BBl Y (5P UW)8i0P A,

0<|Bl<lyl-2
B=y

(2.46b) — BB D (g)ay—ﬁ(JW)ala/’A,,

|B1=lyI—1
35%31:71
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== 3 (V) (7 Gt K + 9P h0,0°K)
0=B<y
—BiBelp=2 Y (I FPUWNIFK
0=<IB|<lyl-2
<y
(2.46¢) —BiBe ) <;)8”_ﬂ(JW)818ﬂK
181=ly |1
/35%131=J/1

for the 0¥ Z, 3Y 4,,, and 0¥ K evolutions.

Higher-order derivatives for w
We let W (y) denote a particular self-similar, stable, stationary solution of the
3D Burgers equation, given by

(2.47) W) = (y)Wip ({;—13)
)
where (¥) = 1+ y% + y% is the Japanese bracket, and where Wp(y1) is the stable
globally self-similar solution of the 1D Burgers equation, i.e., Wip(y1) is a solution
to Wip + WSD = —y1. We refer the reader to [6], [[10], and section 2.7 of [4] for
the explicit form of Wp(y1) and for properties of W (y). We note that W is one
example from the 10-dimensional family W, of stable stationary solutions to the
self-similar 3D Burgers equation, which are given by Proposition[A.T in Appendix
@. The symmetric 3-tensor .27 represents 0¥ W, (0) for |y| = 3. The function W
is in fact equal to W, for the case that .@7; 1| = 6, 97122 = /133 = 2, and all other
components vanish.
Of paramount importance to our analysis is the evolution of the perturbation

(2.48) W(y.s) = W(y.s) = W(y).
which satisfies

W + (BN W — DW + (W - VIW

(2.49) R _ _ .
= Fw — e 2Bk + (Bed = DW — Gw) I W — hiy, 3, W =: Fy.

Applying 97 to (2.49), we obtain that 0¥ 1% obeys

50 (95 + 215N 4 By (00 W+ 100 W) )0 T
+ Pw - V)IW = FY
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for |y| = 1, where the forcing term ﬁé}/ ) is given by

FY = 9 Fy

-y (;) (aV—ﬁGWalaﬁﬁ'/ + 0" Py 0, 0P W+ B P W0 WP )
0<B<y
(2.51) —Belyza ) <g)ay—ﬁ (W) 9P W

1<|B|<ly|-2
B=<y

—B Y (”)aV—B(JW)alaﬂﬁ’/.
syt \P

B=<y.Bi=n1
2.7 Constraints and the evolution of dynamic modulation variables

The use of modulated self-similar variables allows us to ensure that the evolution
of W in (2.32al) maintains the constraints

(2.52) W(0,5) =0, 1 W(O,s)=—1, VW(O,s5) =0, V2W(0,s)=0,

for all s > —loge. This is achieved by choosing our 10 time-dependent dynamic
modulation parameters {nv}f’)zz, {Ei}f’zl,/c, T, {¢vu}3,u=2 to satisfy a 10-by-10
coupled system of ODEs, which we describe next.

At time r = —e¢ the modulation parameters are defined as

(253)  «(—e) =ko. T(—&) =§(—¢) =nu(—e) =0, ¢yu(—¢) = do,vu.
where g is defined in (3.29) and ¢y is defined by (3.8). In order to determine the
time derivatives of our 10 modulation parameters, we use the explicit form of the
evolution equations for W, VW, and V?W (cf. (2.32a) and (2.44a))), which are
evaluated at y = 0 and take into account the constraints in (2.52). Note that in this
subsection we only collect the equations which implicitly define the evolution of
the modulation parameters; only in Section [12{do we untangle the coupled nature
of these implicitly defined ODE:s to actually define the evolution of the constraints
(cf. (12.12) and (12.13)), and prove that the resulting ODEs are globally well-
posed.

Throughout the paper, for a function ¢(y, s), we shall denote ¢(0, s) by ¢°(s).
We make a preliminary observation regarding the value at y = 0 for the forcing

terms FV([J,/ ) that appear in the evolution (2.44a) for 3 W. Using (2.52) it is not hard
to check that for any y € Ng with |y| = 1 or |y| = 2 we have that

(2.54) FU0 = 97 FY + 87 GY,.

Therefore, it is sufficient to know the derivatives up to order 2 of Fy and Gy at
y = 0; these derivatives may be computed explicitly, and for convenience of the
reader we have listed them in Appendix (A.3); see equations (A.7), (A.8), (A.9),
(A.10), (A.10), (A.11), and (A.11). Next, we turn to the evolution equations for the
modulation parameters.
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First, we evaluate the equation for W in (2.32a)) at y = 0 to obtain a definition
for k. Using (2.32a)) and (2.52) we obtain that

(2.55) ~Gyy = Fyy —e 3Bk =k =4-¢>(Fy +Gy).

Second, we evaluate the equation for d; W at y = 0 and obtain a formula for 7.
Indeed, using that —1 + B; = & = 7B, we obtain from (2.44a) with y = e;
that

256)  —(1=Bo)=diFy +Gy = =4 (hiFy+dGy).

Third, we turn to the evolution equation for VI at y = 0, which allows us to
compute Q1;. Evaluating (2.44a) with y = e, at y = 0 and using (2.54) we obtain
for v € {2, 3} that

0,(0,1,0) _ 40,(0,0,1) __ 0 0 _
(2.57) FY = Fy =0 = 3F)+3,GY =0.

It is not immediately apparent that (2.57) determines 01 j. In order to see this one
has to inspect the explicit formula for BVGI(,’V in (A.7c), and to note that 3, G), =
281 Q1V+ terms which are all small (bounded by ¢ to a positive power). This
is explained in (12.3) below. Note that once Q1; is known, we can determine 7
thorough an algebraic computation; this will be achieved in (12.5) below.

Fourth, we analyze the evolution of 91 VW at y = 0. This constraint allows us

to compute GI?V and h’IfV’O, which will in turn allow us to express é,-; we initially

focus on computing GI())V and h’“vi,’o. Evaluating (2.44a) withy = ¢ +¢; aty =0
fori € {1,2, 3}, and using (2.54), we obtain

(2.58) G WO + hip291, WO = 81 FY + 91:GY,.

On the left side of the above identity we recognize the matrix

(2.59) HO(s) = (0, V2W)°(s)

acting on the vector with components G(V)V’ h%,f,o, and h%’,o. We will show (see (12.14))

below) that the matrix .7#°° remains very close to the matrix diag(6,2,2) for all
s > —log &, and thus it is invertible. Therefore, we can express

-1
(2.60a) Gy = () (01 Fyy + 91 Gyy)
,0 -1
(2.60b) hy = (°),; (91 Fyy + 91 Gyy).
Once (2.60) is obtained, we may derive the evolution for S, Indeed, from (2.344a)),

(2.13) evaluated at X = 0, the definition of V in (2.31), the constraints in (2.52),
and the identities Ng =0, lejo = §,,, we have that

(2.61) Fh = 281672 (47, — Riu)).
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Similarly, from the definition of Gy in (2.33a), (2.13), and the constraints in
(2.52), we deduce that

(2.62) ﬂ%GBV =e2 (K +B2Z° — 2ﬂ1leéj) :

Since the matrix R is orthogonal (hence invertible), it is clear that (2.60), (2.61),
and (A.7a) determine &;.

Lastly, we use the evolution of V2W at y = 0 in order to determine q’}vy. Eval-
uating (2.44a) with y = e, + e, at y = 0 and using (2.54), we obtain

for v, y € {2,3}. Using (2.604) and (2.60b) we rewrite the above identity as

avngV = ('%00)1_;1 (aliF[(/%/ + aliGOW)alvyWO
(2.64) + () B Fyy + 01iG ) 3,0y WO — 8y Fiy.

As with (2.57) earlier, it is not immediately clear that (2.64) determines the evolu-
tion of q'ﬁvy. In order to see this, we need to inspect the precise definition of BWGI?V
(cf. below), which yields that qﬁw = —¢%/ 2/3%81,,, GI(,’V—i— terms which are
smaller (by a positive power of ¢). Details are given in below.

The computations in this subsection derive implicit definitions for the time deriv-
atives of our ten modulation parameters. In Section [12| we will show that the re-
sulting system of ODEs for the modulation parameters is in fact solvable globally
in time.

3 Main Results
3.1 Data in physical variables (x, 7)

It is convenient to set 9 = —e&. This corresponds to tg = —H_Lae. We define
initial conditions for the modulation variables as follows:

ko :=k(—¢g), 1o:=1(—8)=0, & :=§&(—¢)=0,

3.1 v .

G.D ng:=n(—e) =10, ¢o:= ¢(—e),
where

(3.2) ko> 1, |¢o| <e.

Next, we define the initial value for the parametrization f of the front by

v 1
Jo(X) = §¢OVMXVX[L5
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and according to (2.14), we define the orthonormal basis (N, T%, Tg) by

_ 1
(33a)  No=Jy (1.—fo,.—fo,,) WwhereJo = (1 + |fo,I* + [ fo,1%)2.
7 (fJo_O2 o a2 —f0,2f0.3)’

T JoWo+1)’ Jo(Jo+1)
(3.3b)
13 = (fos —Soofos | (fo.3)*
0 — Jo ’ Jo(o+1) Jo(o+1) |°

From (3.2) and (3.3) we deduce

(3.4 INo —e1] <e. [Tg—ev] <e

Att = —eg, the variable x is given by
(3.5) X1 = X1 — fo(i), X2 = X2, X3 = X3,

which is a consequence of (3.1), (2.3), and (2.15).

The remaining initial conditions are for the velocity field, density, and entropy
which then provides us with the rescaled sound speed:

uo(x) := ux, —¢), po(x) := p(x,—¢), ko(x) :=k(x,—¢), oo(x):= %e%o.

Following (2.16) and (2.26), we introduce the Riemann-type variables at initial
time t = —¢ as

(3.6a) Wo(X) := uo(x) - No(X) + 0p(x),
(3.6b) Zo(x) 1= up(x) - No(X) — 00(x),
(3.6¢) doy(x) 1= up(x) - T (X).

Using (3.5) and the fact that Wo(x) = w(x, —¢) and that vfo (0) = 0, it follows
that

3.7 axU axu wO(O) = axU axqu(O) + 3x1w0(0)¢0vu-

As we will explain below, we will require that dy, Wo(0) = —%, Vs o (0) =0,
6)%11)0 (0) = 0, and that |\V/X21170 (0)| <1, and thus from (3.7), we find that

(3.8) ¢Ovp, = Eaxu axMwO(O)’

which shows that holds.

In order to establish the formation of a stable self-similar shock, we shall stipu-
late conditions on the initial data. It is convenient to first explain these conditions
in self-similar variables, and we now proceed to do so.
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3.2 Data in self-similar variables (y, s)

At s = —loge we have that tg = 0, and thus the self-similar variables y are
given by

N|—=

(3.9) V1 = 8_%X1 — 3 (x1 — fo(X)) and y = £T2% = £ 2%,

Second, we use (2.30), (3.1), and (3.6), to define
W(y.—loge) = &2 (Fo(x) —ko),  Z(y.—loge) = Zo(x),
Ay (y.—loge) = doy (). K(y,—loge) = Ko(x).
This initial data is supported in the set 2, given by
(3.10) Zo={nl=e |5l a3
At y = 0, we shall mimic the behavior of W (0) and assume that at initial time
s = —loge,
(3.11a) W(0,—loge) =0, W0, —loge) = —1,
(3.11b) vW(O, —loge) =0, V2W(0,—loge) = 0.

We define a sufficiently large parameter M = M(«, k) > 1 (which is in par-
ticular independent of ¢), a small length scale ¢, and a large length scale . by

(3.12a) ¢ = (logM)™>,
(3.12b) L =0,

For |y| < £ we shall prove that W' is well approximated by its series expansion
at y = 0, while for £ < |y| < Z we show that W and VW track W and VW,
respectively.
For the initial datum of W = W — W given by
W(y.~loge) = W(y.~loge) — W (),

we suppose that for |y| < .Z,

(3.13a) "6 ()| W (y.—loge)| < 10
(3.13b) 3 (1)]01 W (y, —loge)| < 1t
(3.13¢) VW (y.—loge)| < 72,

where 7(y) = 1 + y? + | (5. In the smaller region |y| < ¢, we assume that
(3.14) 0V W (y,—loge)| < &5 for|y| =4,
and at y = 0, we have that

(3.15) 107 W (0, —loge)| < e2~zm=7 for |y| = 3.
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For y in the region {|y| > Z} N Z9, we suppose that

(3.162) NS (y)|W(y, —loge)| < 1 + 6T,
(3.16b) 03 (y) |1 W(y.—loge)| < 1 +&17,
(3.16¢) IVW(y,~loge)| < 3,

while for the second derivatives of W, globally for all y € 2y, we shall assume
that

(3.17a) nF (M| W(y.—loge)| <1 fory; = land |y| = 1,
B.17b) 73 (W)Y 3 (y,—loge)|d” W(y, —loge)| <1 fory = (2,0,0),
(3.17¢) ns (NIVEW(y, —loge)| < 1,

where ¥ (y, —loge) = n~ ' (y) + £2n(y).
For the initial conditions of Z, A, and K, we require that
8%, ify; > land |y| = 1,2,

3.18 3 Z(y,—loge)| <
GI8) 2O logal =y e and |7 = 0. 1.2.

3
2 if =1 y| =
(319) |07 A(y.—loge)| < J¢7 1Tyi=T1and [y =0.
g, ifyp =0and |y| =0,1,2,
, ifyp; =1and|y| =0,1,
(3.20) |3 K(y,—loge)| < Jein~15(y) ify, =2and|y| =0,
€, ifyg =0and |y| =0,1,2.
Consequently, the initial specific vorticity in self-similar variables satisfies
(3.21) HQ(-,—loge) . NOHLOo < s% and HQ(~,—log8) -TSHLOo <1,
and the initial scaled sound speed satisfies
1
(3.22) |S(y.—loge) — 2, o <e7.

Lastly, for the Sobolev norm of the initial condition, we suppose that for all

m > 18,
aay WG 10e0) [ + [2C —toge)
+ HA(-,—loga)Hi'Im + HK(-,—loge)”zm <e.

LEMMA 3.1 (Initial datum suitable for vorticity creation). There exists initial da-
tum W(y, —loge) with support in the set Zy defined in (3.10), which satisfies the
bounds (3.13)—(3.17), and which additionally can be chosen to satisfy

_2 _2
(24) =l < W(y,—loge) < —f[y1|73

W=

1 1 v
fore 10 < |yi| <2kpe" 2, |¥| < €3.
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Moreover, associated to this choice of W(y, —loge), letting Z(y,—loge) = 0 and
¢o = 0, there exists an A(y, —loge¢), such that

ux, —e)
(3.25) = U(y.—loge)
= (3(e2W(y,—loge) + ko). A>(y, —loge), A3(y. —loge))
is irrotational with respect to the physical space variable X.

PROOF. The proof of (3.24) is based on the introduction of cutoff functions in
both the yq-direction and in the y-direction, and the multiplication of the globally
self-similar profile W by these cutoffs. The only nontrivial part of this argument is
to choose the dependence of the aforementioned cutoffs on 1.

We start by defining a cutoff function with two parameters. For b > 2a > 0 we
let n[a, b](r) be a smooth nonincreasing function which is identically equal to 1
for r € [0, a], and vanishes identically for r € [a + b, 00). For the purposes of
this lemma we may take the piecewise linear cutoff function and mollify it with a
compactly supported mollifier with characteristic length which is e-dependent. For
example, we may mollify with a mollifier of compact support at scale £/10 the
function which equals 1 for r < agl/10, equals O for > a + b — e1/10 andis given
by 1—(r —a— /1% — 2191 for g < r < a + b. In particular, we may
ensure that up to a constant factor of £!/10 the derivative of n[a, b](r) is given by
—b~! on the region r € (a,a + b), and vanishes outside of this region. Similarly,
the second derivative of this cutoff function is bounded by a constant multiple of
b~'e=1/10 on the region where it does not vanish.

Finally, we define the initial datum W(y, —loge) to be a cutoff version of W,
according to

(326)  W(y.—loge) = W(yn[s™2 716,74 ](yi)m[s™4. 10074 (| 5.

A lengthy but routine computation which uses properties of the explicit func-
tion W (see, e.g., [4, equation (2.48) and remark 3.3]) shows that the function
W(y,—log ¢) satisfies the conditions (3.13)—(3.17). We omit these details, but give
the proof of condition [3.24, which is essential for the vorticity creation argument.
We note that for |y1| < 2koe~'/2 we have that n[s~(1/2=1/16) =3/4(|y,|) = 1,
and for |7| < ¢1/3 we have n[e~1/4,100e=/4](|¥]) = 1. Thus, in the region
relevant for (3.24), by using (2.47) we have

G2 B —loge) = W () = Wi (qabses )-

The function Wyp is explicit, and the Taylor series of its derivative around infinity
is given by W/, (r) = —%r_2/3 — %r_4/3 + O(r—8/3). Using that we are interested
in a region where |7| < £!/3, and ¢71/10 < |y;| < 2koe™1/2, upon choosing ¢
sufficiently small (so that the Taylor series expansion around infinity is the relevant
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one), we immediately deduce that from (3.27) that
14£10 2 1 / y1 1—10 2
- ly1l73 < =5 Wip 5| < —— ly1|73
> L+ (1+152)3 >

in the region of relevance to (3.24). This establishes the existence of W satisfying

(3.24) as well as the bounds (3.13)—(3.17).
Next, for W(y, —loge) given by (3.26) and with Z(y, —loge) = 0, we shall

now prove the existence of an irrotational initial velocity field #(X, ¢) satisfying

(3.25).

We first set ¢pg = 0 so that Ng = ey, T = ey, and Jo = 1, and (X1, X,) =
(7321, 671/2y,). We have that @o(X, —) = ¢'/2W(y, —log &) + ko, and from
(3.25), we see that

~ 1~
u(x,e)1 = 5Wo.
In order to ensure that i1 = 9z, W, we define

X1 . 00 .
V(x) = %/ Wo (X1, X)d X} —%/ Wo(¥], X)d 5}
0 0
for X1 > 0 and then extend W(X) as an even function in X1. We now define
(3.28) G (X —) = 95, W(R),

so that (X, —&) = VzW(X), which implies that curlz #(x, —¢) = 0. We write
(3.28) in self-similar coordinates as

o0
3 v
Ay(y,—loge) =—%82/ dW(y1. ¥, —loge)dyy.
Y1

Using the definition of W(y, —log¢) given in (3.26), a lengthy computation shows
that A(y, —log ¢) satisfies the bounds (3.19) and (3.23). O

3.3 Statement of the main theorem in self-similar variables
and asymptotic stability

THEOREM 3.2 (Stability and shock formation via self-similar variables). For o =
VT_l and y > 1, let kg = ko(e) > 1 be chosen sufficiently large. Suppose that at
initial time s = —log ¢, the initial data (W, Zo, Ao, Ko) = (W, Z, A, K)|s=—10g¢
are supported in the set Zy from (3.10), and obey conditions (3.11)—(3.23). As-
sume that the modulation functions have initial conditions compatible with (3.1)—
(3.2).

There exist M = M(w, ko) > 1 sufficiently large, ¢ = &(a, k9, M) € (0,1)
sufficiently small, unique smooth modulation functions (k, t,&,n,¢) which solve
the system (12.12)) and (12.13), and unique global-in-time solutions (W, Z, A, K)
to (2.32) with the following properties. The functions (W, Z, A, K) are supported
in the time-dependent cylinder Z (s) defined in (4.4),

(W,Z,A,K) € C([-loge, +o0); HMYNC L ([—loge, +00); H™ YY) form > 18,
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and

W) G+ € ZCo) [ Fpm+ €| AC .9 3 + €| KC.) | Fm

< 16K§/\_me_s_l°g€ +(l—eSe Hpmsm

for a constant A = A(m) € (0,1). The modulation functions (k,t,&,n,$) lie in
C'([—e, T+)) and satisfy the bounds (4.1)). The Riemann function W(y, s) remains
close to the generic and stable self-similar blowup profile Wil; upon defining the
weight function n(y) = 1 + yf + |7|®, the perturbation W = W — W satisfies

1 1

W (y,9)| <etTns(y), |[hWW(.s)| <e=n3(), [VW(y.s)|<e,

forall |y| < £716 and s > —loge. Furthermore, BVW(O,S) = 0forall|y| <2,
and the bounds (.9) and {.10) hold. Additionally, W(y, s) satisfies the bounds
given in (4.7) and {#.19). B

As s — oo, W(y,s) converges to an asymptotic profile W, (y) which satisfies:

o W, is a C® smooth solution to the self-similar 3D Burgers equation (1.5).
o W (y) obeys the genericity condition (1.7).
o W, is uniquely determined by the 10 parameters </ = limg_so0 3 W(0, 5) for

|| = 3.

The amplitude of the functions Z, A, and K remains O(¢) for all s > —loge,
while for each |y| < m, 0V Z(-,s) — 0, 3V A(-,5) = 0, and 3V K(-,s) — O as
s — 400, and Z and A satisfy the bounds (4.12), (4.13), (4.14).

The scaled sound speed S(v, s) satisfies

ISC-.s)— ’%’HLOO < e¥ forall s > —loge.
The specific vorticity Q(y,s) = g(x, t) satisfies for all s > —loge,
|20 @°(-.5) —Q(-,—loge)|| ;o0 < £20

where <I>'lv]0 is defined in (5.11). Furthermore, there exists irrotational initial data

from which vorticity is instantaneously created and remains nonzero in a neigh-
borhood of the shock location (0, Ty): see Theorem [1.4|for details.

For concision, the initial data was assumed to have the support property (3.10)
and satisfy the conditions (3.11). By using the symmetries of the Euler equations,
we can generalize these conditions to allow for data in a non-trivial open set in the
H™ topology.

THEOREM 3.3 (Open set of initial conditions). Let F denote the set of initial data
satisfying the hypothesis of Theorem There exists an open neighborhood of
Z in the H™ topology, denoted by %, such that for any initial data to the Euler
equations taken from F, the conclusions of Theorem hold.
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3.4 Shock formation in physical variables (x, 7)

We shall now interpret the assumptions and results of Theorem[3.2]in the context
of physical variables (x, ). The function

Wo(x) = w(x, —¢e) = ez W(y,—loge) + ko

is chosen such that the minimum (negative) slope of g occurs in the e; direction,
and Jx, Wy attains its global minimum at x = 0, and from (3.11), satisfies
(3.29) wWo(0) = ko, 0x,Wo(0) = —%, Vo (0) =0, Vidx, Wo(0) = 0.
Of course, there are a number of additional conditions on wg(x) and its partial
derivatives which exactly correspond to conditions (3.13)—(3.17) by the change of
variables (2.29), but the conditions (3.29) are fundamental to the stable self-similar
point shock formation process.

We shall assume that the support of the initial data (09—, Zo, @), is contained
in the set 279 = {|x1| < %8%, [X| < 8%}, which in turn shows that ug - Ng — %0,
oo — "70, and ug - TV are compactly supported in 27¢. In view of the coordinate
transformation and the bound (3.2), the functions of x defined in (3.6), namely
(wo, Z0o, @0, ko), have spatial support contained in the set {|x1| < %81/2 +e|X| <
el/6y  {|x1| < €/2,|%| < €'/6}. This larger set corresponds to the support
condition (3.10) under the transformation (2.29).

For the initial conditions of Zo, @, and ko, from (3.18)~(3.20), we have tha(]

Zo)| <e  ZeI<l [NZe®)] < e,
@] <& [9qd(X)| <1, Vao(x)| < &2,
Ko <& |oako| <e2,  [MKo()| <e2,

together with conditions on higher-order derivativef' that follow (3.18)—(3.20) and

(3.23).
The initial specific vorticity
{(F.—e) = L(x.—¢) = Q(y, —loge)
satisfies condition (3.21), and the initial scale sound speed
(X, —¢) = 6(x,—¢) = S(y, —loge)

satisfies (3.22).

7 The bound for dx, ap can be replaced by a bound that depends on kg, thus permitting arbitrarily
large initial vorticity.
8 We deduce from (3.23) that at 1 = —¢, the Sobolev norm must satisfy

> kw7 + [0%zol 72 + |0kaol7s + |0k |7 < e27CNFID,
ly|=m

See (3.21)—(3.22) in [4] for details.
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We now summarize the statement of Theorem|3.2]in the physical variables. Sup-
pose that the initial data Wy, Z¢, do, and kg satisfy the conditions stated above and
that = VT_I > 0 is fixed. There exist a sufficiently large k9 = ko() > 1 and a
sufficiently small & = &(a, ko) € (0, 1) such that there exists a time Tx = ¢(g?),
unique modulation functions (k, 7, £,n,¢) € C'([—e, Tx)), which solve the sys-
tem (12.12) and (12.13)), and a unique solution

(. p,k) € C([-&, To); H") N C'([—e, Tu): H™ )
to (1.1) which blows up in an asymptotically self-similar fashion at time Tk, at a
single point £, € R3. In particular, the following results hold:
(i) The blowup time Tx = €(s?) and the blowup location £x = (¢) are ex-

plicitly computable, with 7 defined by the condition f_T;(l —1(t))dt = ¢
and with the blowup location given by & = lim;_.7, §(¢). The amplitude

modulation function satisfies |kx — ko| = O (8%) where ki = lim;— 7, k(¢).
(ii) Foreacht € [—¢, Ty), we have [N(¥. 1) —No(X) |+ [T" (X, ) T3 (X)| = O (o).
(iii) We have

N

sup  [|i7 - N — P lpoe + [[i - T"[lzoe + 15 — F oo + [llLee < 1.

te[—e,Tx)
(iv) There holds
lim N-Vzw(&(2),1) = —o0
t—Tx

and
< |IN-VZw (-, 1)||Lee <

1 2
2(Tx—1) Tt

ast — Tk.

(v) At the time of blowup, @ (-, T%x) has a cusp-type singularity with C /> Holder
regularity.

(vi) Only the dy derivative of % - N and p blow up, while the other first-order
derivatives remain bounded:

(3.30a) lim N V@ -N)EW.0) = lim N-VEp(E@). 1) = —oo.

sup [TV - Vgo(-, )llLoe + [T - V5 (-, 1)| Lo
(3.30b) e ) L INL Ve (@ - T (-, 1) e < L.

(vii) Both k and V;E remain bounded:
1

(3.31) sup  [K(- )] oo + | VEKC-. )| ;o0 S €5

re[—e, T

(viii) Let d;X(x,t) = u(X(x,1),t) with X(x,—¢) = x so that X(x,¢) is the La-
grangian flow. Then there exists constants ¢y, ¢3 such that c; < |Vx X(x,1)| <
¢y forall t € [—e, Ty).
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(ix) The scaled sound & remains uniformly bounded from below and satisfies
~ 1
1. 0) =%, <€ Bforall ¢ € [—e, Ty].

(x) The vorticity satisfies Ha)(- 1) HLOO < Co Ha)( ,—€) HLOO for all t € [—&, Tk]
for a universal constant Cy, and if (-, —¢)| > ¢o > 0 on the set B(0, 2&™/4),
then at the blowup location &, there is nontrivial vorticity, and moreover

lw(-, Ty)| > é—‘(’) on the set B(0, £7).

4 Bootstrap Assumptions

As discussed above, the proof of Theorem [3.2]consists of a bootstrap argument,
which we make precise in this section. For M sufficiently large, depending on «o
and on «, and for ¢ sufficiently small, depending on M, k¢, and o, we postulate that
the modulation functions are bounded as in (4.1)), that (W, Z, A, K) are supported
in the set given by (@.4), that W satisfies (@.7), W obeys (@#.8)—(@.10), and that Z,
A, and K are bounded as in {.12)-(4.14). All these bounds have explicit constants
in them. In the subsequent sections of the paper, we prove that the these estimates
in fact hold with strictly better prefactors, which in view of a continuation argument
yields the proof of Theorem 3.2}

4.1 Dynamic variables
For the dynamic modulation variables, we assume that
Lko <w(t) <20, |t()] < M2, |E()| < M e,

(4.1a) \
(1) < M?e2,  [p(1)] < M?e,

@i k()] < e 10, |#()] < Me™S,  |E(t)] < M3,
()] < M2e2,

forall —¢ <t < Tk.
From (2.6) and (A.4)—(A.5) in [4], and the bootstrap assumptions (4.1), we ob-
tain that

4.2) 10(1)] < 2M2e3.
Also, from the 7 estimate in (4.1b), we obtain
_ Tl -
4.3) |1 —Be| = 155 <2Me™ < 2Me

upon taking ¢ sufficiently small.
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4.2 Spatial support bootstrap
We shall assume that (W, Z, A) have support in the set
4.4) Z(s) := {|y1| < 28%€%S, [¥] < 28%65} forall s > —loge.
We introduce the weights
n() =1+y7 +[5° and () =n() + FI%
as well as the s-dependent weight function
Y(r.s) = s + 00,
For y € 2 (s), we note that

5) 1) <40ee® & qi(y) <4ee’
forall y € R3. Since nyr = 1 + e=>*52, we have e =3%5? < 3, and thus
(4.6) e Syt i

holds for 1 < g < 2.
4.3 W bootstrap

The bootstrap assumptions on W and its derivatives are

(1 + e20)s, if [y = 0,
~_1 1 . v
773 (3) Lyjz + 20730 y52. ifyr =1and|p| =0,
1, if y; =0and || = 1.
@7 we.sl<{ s 1 =0and |7l
M3n7s, ifyr =1land|y| =1,
M%n*%wﬁ, ify1 =2and|y| =0,
Mn~s, if y; = Oand || = 2.
Next, for |y| < £, we assume thalﬂ
~ 1 1
(4.82) (W (y,5)| < e1Tns(y),
~ 1 1
(4.8b) W (,9)] <eT2n3(y),
(4.8¢) WVT/(y,s)‘ < £13 ,

where & is defined as in (3.12b). Furthermore, for |y| < £ (as defined in (3.124))
we assume that

187 W (v, 9)| < (log M)*eTo|y|* 1] 4 Met|y>17]
(4.92) < 2(log M)*e10 ¢4 I71, ly| <3,
@49b) |9V W (y,s)| < eTo(log M), ly| =4,

9 While the first three bounds stated in (@.7) follow directly from the properties of W stated in
(2.48) of [4], and those of W in (4.8), the estimate for d; W makes use of the fact that ﬁ_1/3(y) +
e/ B3 <7 (/2).
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while at y = 0, we assume that

(4.10) 07 W(0,5)| <& forall |y| =3,

for all s > —loge.

LEMMA 4.1 (Lower bound for Ja1 W).

@i JOW(y,s) > —1 a;zd JO W (y,s) > —1
forally e R°, s > —loge.

The proof of this lemma is given in the proof of Lemma 4.2 in [4].

4.4 Z and A bootstrap
The bootstrap assumptions on Z, A, K, and their derivatives are:

M 3 ifyp > land|y| =1,2
’ 1 = - s
(4.12) 10" Z(y.s)| = 29l Il . .
Me 2 e 2% ify;=0and|y| =0,1,2,
3
Me™2%, ifyr=1and|y| =0
(4.13) 07 A(y. )| < 227l iy . .
Me 2 e 2% |ify;=0and|y| =0,1,2,
sie_%s, ifyp=1and|y| =0
1 13
8 _§S’ if =1 d % =1
@iy Ko <150, = Tlandl
Se™ 15(y), ify;=2and|y|=0
gt % , ify; =0and |y| =1,2.

Remark 4.2. Since K satisfies a transport equation, the pointwise bound
(4.15) |K(y.s)| <e
follows directly from the initial datum assumption (3.20).

4.5 Further consequences of the bootstrap assumptions

The bootstrap bounds (@.1), (4.5), @.7)-@.10), (¢.12), and (4.13) have a number

of consequences, which we collect here for future reference. The first is a global-
in-time L2-based Sobolev estimate:

PROPOSITION 4.3 (Hm estimate for W, Z, and A). For integers m > 18 and for
a constant A = A(m),

1ZCo) Py + | AC )] 2 + [ K92

(4163) < 16K§A_m8_le_2s + (e_S _ e—2S8—1)M4m
2
H W( , S) H Hm
@) =16 e e (e

foralls > —loge.
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The proof of Proposition which will be given at the end of Section [8) relies
only upon the initial data assumption (3.23), on the support bound (.5), on L*°
estimates for 0¥ W, d¥ Z, and ¥ K when |y| < 2, on d¥ A pointwise bounds for
ly] <1, and on V2 A bounds. That is, Propositionlﬁfollows directly from (3.23)
and the bootstrap assumptions (4.1, (4.5), @.7), @.12), and (4.13).

The reason we state Proposition at this stage of the analysis is that the H™
estimates and linear interpolation yield useful information for higher-order deriva-
tives of (W, Z, A, K), which are needed in order to close the bootstrap assumptions
for high-order derivatives. These bounds are summarized as follows:

LEMMA 4.4. For integers m > 18, we have that

e_(%_zz‘;l;z‘_sl)s lf]/l > 1 and |)/| = 2, 35
(4.17) VAN ZY iy
e 2’” 7 l‘f‘|y| = 3’4’5’
e~ G—zm7)s ifyi1 = land|y| =3,
(418) |ayZ(yas)| 5 _( W| 1) .
=805 if|y| =3.4,5,

75 ifyi=land |y =2,
(4.19) 1Y W(y,s)| < ezm 7076 ify1 = 0and |y| = 3,
NTIYE ify > 2and |y| =3,

eZm -7

eZm -7

eI iy = 1and 7] =2,
(4.20) 1K (y.8)| S 3 e Cmzm)5y=15  ify1 > 2and |y| = 3,
—(1—§=2)s iyl =
e 2m lf|)/| —3,4,5.

PROOF. The bounds for (4.17) and (4.18), as well as the first two estimates in
(#.19), are proven in lemma 4.4 in [4].

We then consider the third estimate in (4.19) and hence estimate d¥ W(y, s) for
the case y; > 2 and |y| = 3. We write

NIYTAVOLW = V(310 W) —V(n3y 8 an W .
=:1I

Since |V (n'/3y=1/4)| < n'/3 it follows from (4.7) that
) < M3yi < M.

Now we apply Lemma@ to the function n'/3y =149, W, appeal to the esti-
mate (4.7), and to the Leibniz rule to obtain that

11 1 1
I < lIn3y 4811W||;}',',,72||’73 4311W||2'" TS Mn3y 4811W||;1;',',, 7.
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where we have used that m > 18 for the last inequality as is required by Proposi-
tion We next estimate the H™~2 norm of n'/3y~1/43;, W . To do so, we shall
use the fact that W( -, s) has support in the set 2 (s) defined in (4.4). We find that

11
3¢~ 20 W gi—o2

m—2
< YD R 3y ) D W o
m’'=0
m—2
Dm m'=2 m—1) Dm/ay”W (m—1)
mZO|| (Y, 2y, I 2o
1— m’+1 m'+1
4.21) Zqu "2y )|| RN A4 L
m’'=0

Using (4.7) and Proposition[4.3] the W terms are bounded as
m’+1

IIVWIIL;’” & Wi, < m2m

for all m € {0,...,m — 2}. Moreover, using that | D"~ =2(y1/3y,—1/4)| < /3
together with (4.5), we have that
(4.22) ID™ 2G| s S e,

Lm—m"=2(2(s))

. . 20n—1) ..
with the usual abuse of notation Lm—-m—2 = L for m’" = m — 2. Combining the

above estimates, we obtain the inequality

(4.23) 1] < M2 (e5eR9) T < eron
for ¢ sufficiently small. From the above estimate, we obtain the third inequality in
(#.19).

We next consider the bounds (4.20), and we begin with the case that y; > 1
and |y| = 2. Applying Lemma [A.2 to the function 9; VK, and using (4.14) and
Proposition 4.3] we have that
13 2m—9

2 _
||ayK||Loo < ||K||12Llnzn7”3 VK”Zm 7 (MZme—%)zmq (Sge < )2m 7

_109—26m s
< e 8@2m—7)
~

We next consider the second inequality in (4.20). In order to estimate the term
\n1/15va“1<\ we write

nTISVSUK = V(H%GUK) —Vﬂﬁalllf.
—_—— |

=:1 =:1I
Since ‘Vr]l/ls‘ < 1, it follows from (&.14) that

1| < 2.
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By Lemma[A.2 and (4.14),
2m—9

=< ||77‘5311K||2’" ’ ||7715311K||2’" 7 < MemCT TS 150y K| o

Hm—2 Hm —-27
Following the calculation (4.21), we have that
m—2
1— m +1 m +1
15011 Kl s < > 1D =215 | 20 IVK Lo 1K) 2T
0 i (2 (s))

Applying (4.5]), we obtain that

1
glde

Uil—

1
| D™= =25 |

A

N

Linn2 (2°(5))
From (4.14) and Proposition
VKT KT <o
Loo gm =
From the above estimates, together with (4.14), we determine that

N\h

4 1 3,2 4
|I| < Me_(2_2m77)s(gﬁe_ﬁ)z’"—7 < e_(2_2m77)s_

This estimate establishes the second bound in (4.20). For |y| € {3, 4,5} we apply
Lemma@ to V2K, and together with (4.14) and Proposition we find that

y|— 2m—3—2|y|

2 —
10" K|l S IIKIIIf,’f',, 7 VKl 2"

s\ 2vl=4 o 2m—=32ly| (1 1rl=2
5 (MZme 2)2m—7 (886 S) 2m—7 se @ 2m—7)s_

where we have assumed that ¢ is taken sufficiently small. 0

4.6 Boundsfor U -Nand S

Finally, we note that as a consequence of the definitions (2.37), we have the
following estimates on U - N and S.

LEMMA 4.5. For y € 2 (s) we have

M3 iflyl =0,

Mie 2y 3 ifyi1 = land|y| =0,

e 2 ify1 = 0and |y] = 1,

M%e_%r}_% ifyi=1land|y| =1,
(424) 19U -N| +[3"S| < {M3e 3 3ys ify1 =2and|y| =0,

Me 36 ify1 = 0and || = 2,

e( PR T 7)S - ifyi1 =1land |y| =2,
e( 3+ 3m=7 7)S ifyr =0and |y| = 3,
e( 2+2m—7)sn ’liw% lf)/l zZand|]7| :3

1
3
1
6
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Additionally, for |y| < £ and |y| = 4 we have the bound
10YU -N| + |97 S| S e 2.

PROOF. We shall only establish the bounds for 0¥ U - N as the estimates for 9¥ S
are obtained in the identical fashion. Since |k| < M /4, it follows from (2.37) that
107U -N| S ey =0 + e=5/2|3Y W| 4 |8 Z|. The desired bounds are obtained
by an application of (4.7), (4.9b), #.12), Lemma4.4] and (4.5). O

PROPOSITION 4.6 (L.°° bound for the sound speed). We have that
(4.25) ISC-.5) =50, 00 <& forall s> —loge.
PROOF. By (2.37), we have that
S(- ) =K% =Kok 4 L=y — 7)),
By (@.1), {.5)), @.7), and {#.12), and the triangle inequality,
ISC.9) =% <0,

which concludes the proof. O

4.7 The blowup time and location
The blowup time T is defined uniquely by the condition 7 (7%) = T, which by
(2.53) is equivalent to

T*
(4.26) (1—t(t))dt = e.

—&

The estimate for 7 in (4.1b) shows that for ¢ taken sufficiently small,
(4.27) |Tx| < 2M 22

We also note here that the bootstrap assumption (4.1b) and the definition of T
ensures that 7(¢) > ¢ for all t € [—¢, Tx). Indeed, when t = —g, we have that
7(—¢) = 0 > —¢, and the function ¢ > fis(l —1)dt’ — & = t — () is strictly
increasing.

The blowup location is determined by &, = £(7%), which by (2.53) is

T
Ex = E(r)dt.
—&
In view of (4.1b), for ¢ small enough, find that
(4.28) |Ex| < Me,

so that the blowup location is &'(¢) close to the origin.
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4.8 Holder bound for w

As we proved in [4], the self-similar scaling (2.29) and decay rate (4.7) for
W(y,s) show that

w e L®([—e, Tx); C'P),
and the C% Holder norms of w, with @ > 1/3, blowup as t — Ty with a rate
. o (l_3a)/2
proportional to (7% — f) .

5 Bounds on Lagrangian Trajectories

5.1 The Lagrangian flows in self-similar variables

In self-similar variables (y,s), we define Lagrangian flows associated to the
transport velocities in (2.39) by

(513) 8Sq)W(y’S) = /'I/W((DW(y,S),S), qDW(y’SO) =),
(5.1b) s DPL(y,s) = Vz(D2(y,5),5), Dz(y,s0) =,
(510) asq)U(y’S) = /'I/U((I)U(y,S),S), qDU(y’SO) =Y,

for so > —loge. With @ denoting either ®,,, ., or &, we shall denote trajec-
tories emanating from a point yg at time sg by

(5.2) D70(s) = ®(yo,5) with ®(yo,50) = Yo.
Estimates for the support and a lower bound for ®,;
Since the bounds for |G|, |hw|, and |W | are the same as in [4], the proofs of

the following two lemmas are the same as lemmas 8.1 and 8.2 in [4].
The bootstrap assumption (4.4)) on the size of the support is closed as follows:

LEMMA 5.1 (Estimates on the support). Let ® denote either ®5°, ®2°, or ®;°.
For any yg € Zy defined in (3.10), we have that

(53) [@1(s)] < 3e2e3, |B(s)| < Jesed,
foralls > —loge.
We shall also make use of the lower bound given by

LEMMA 5.2. Let yo € R3 be such that |yg| > L. Let so > —loge. Then, the
trajectory ®}° moves away from the origin at an exponential rate, and we have the
lower bound

s=sg
(5.4) |23 (5)] = |yoles
forall s > sp.

LEMMA 5.3. Given so > —loge and s > sq, let yo € R? be such that |yo| > £
and |<I>JI;8 (s)] < Mel/2, Then, we have that

3(s"—s0)

(55 @1 = 2 o)ile” 2 and | < Me'/?

forall sg < s’ <s.
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PROOF. Fix (o, 50) and denote (®3,2)1(s) = ®1(s) and o ws) = dD(s).
According to (5.1) and (2.39), we have that d;®, = 2d>v + hy, o @. Solving
this ODE on the interval [s’, 5], with arbitrary s” € [sg, s), we obtain that

4 /

—s’ s s —s
0,(5) = 01”3 — [T by 0 05 as”
s/

Using that by (9.3) we have |y (-,5)| < M'/2¢~2 and appealing to the assump-
tion |®, (s)] < Me'/2, we obtain that

—s’ S s/ —s! 5/
|Dy(s")] < |Pu(s)e” 2 + M1/2/ =T S 4
s/

< M 2e73 4 MV 2e5 (1 — e 6=) < MsV/2.

S8

where in the last inequality we have used that s > so > —loge, so that e=2 <

(s/ .s )
gl/2e= . This proves the second clarm in (5.5).

In order to prove the first claim in (5.5), we again recall (5.1) and (2.39), which
gives d; P = —@1 + B Wod+ GW o CD In view of the bound established for ®
and of the 1nformat10n we have from Lemma|5.2] we already know that |yo| > &
implies that |®(s")| > %e(sl_s")/s for all s’ € [sg, s], so that ®;(s’) is much
larger than 1. Thus, from (4.3) and the first bound in (4.7), we have

1

Be|W o @(s)| < (1 + 2Me)(1 +&20)(1 + |@1 ()| + (M&'/2)6)e
1
< 2|®q(sN]3.

Similarly, the first estimate in Lemma[9.2] in which we use an extra factor of M to
absorb the implicit constant in the < symbol, and the previously established bound
(5.3) imply that

|Gw o ®(s")| < M%7 + M%e_s/‘dh(s’)‘ M2 < Mze_sl‘cbl(s’)‘
1
< 2M263|®(s)]7.
Combining the above two estimates with the ODE satisfied by ®;, we derive that

FE1D1(5)? = 3|1 (NI — 3|0y ()3,

By explicitly integrating the above ODE, and using our earlier observation that
[((y1)o| = 1/28_%0 for all s’ € [sg, 5], we derive that

s/ —s0) 3(s’—sg)

® (s > %_2% 3 )
|D1(s) = (I(yo)1|3 —2)2e > 71(yo)1le ,

which completes the proof. U
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Lower bounds for ® , and &,
We now establish important lower bounds for ®°(s) or ®2°(s) = ®;°(s).

LEMMA 5.4. Let ®(s) denote either ®2°(s) or ®;°(s). If

3

5.6) Ko = )

I —max(B1, p2)
then for any yo € Zo defined in (3.10), there exists an s« > —log & such that
5.7 |®1(s)] Zmin(|e% —e%*|,e%).
In particular, we have the following inequalities:

o0
(5.8) f P15 (1 + |P1(s))7%2ds’ < C.
—loge

for 0 < g1 < l/2and 201 < 02, where the constant C depends only on the choice
of o1 and 0».

This is a slight generalization of lemma 8.3 in [4], where we now allow the value
o1 = /2. The only addition to the proof requires an estimate for the integral .# in
the proof of lemma 8.3 in [4]. In particular, for o1 = !/2, we see that

o0 Sk
f:z/ (1+]r—e2|) Pdr<t.
e—1/2

The implicit constant only depends on o1 and o5.

The time integral of |31 W | along ® ;"
An immediate consequence of (5.8)) is the following:

COROLLARY 5.5. Forall s > —loge,
M
(5.9 sup / |0, W] 0 ®°(s")ds’ < 1.
YoEZo J—loge
PROOF OF COROLLARY [5.3] The bound (5.9) follows using the second esti-
. . . _ 2

mate in (4.7) together with (5.8) with oy = 0 and 02 = 3. O
5.2 The Lagrangian flow ¢(x,t)

With respect to the independent variables (x, t), the transport velocity for 1 in
(2.22) is given by

(5.10) v = (vi,va,v3) = 281 (—2% L v N4+ J8-N,vg + 2,03 + ﬁ3).

We let ¢(x, t) denote the flow of v so that
(5.11a) drp(x,t) = vip(x,t),t), > —e,
(5.11b) o(x,—&) = X,

and we denote by ¢y, () the trajectory emanating from xo.
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Asymptotic nonpositivity for a1 W
LEMMA 5.6. Forall y € R3and s > —log e, we have

(5.12) max {01 W(y,s),0} < 4e”15.

PROOF OF LEMMA [5.6l We start with the region |y| < .2 = e~1/10 Here,
due to the bootstrap (4.8b) for d¢ W and the fact that "W < -3 —1/3 (see (2.48)
in [4]), we deduce that

NW(y,s) = NW(y)+dW(,s)
(5.13)

L

<—F3() +ely () <0, |y <e T,

upon taking ¢ sufficiently small, and using that 7(y) < 25(y). Thus, for |y| < &
the bound (5.12) holds.

Next, let us consider the region |y| > ¢*//19. Here we have that 7(y) > /2 e
Combining this bound with the second line of (4.7), we arrive at

s/S.

01 W(y.5)| <2773 (y) < 4e™ 5.

Thus, (5.12) also holds in the region |y| > e5/1°.

It remains to consider the region .Z < |y| < e%/19. Notice that by the defini-
tion of £ = e~1°2¢/10 in this case we have that s > —loge. For such a fixed
(¥, s) we trace the particle trajectory of the flow 3 backwards in time, and write
®70(s) = y, where the initial datum ®}°(sg) = o is given by the property that
|yo| = Zifsg > —loge, and |yg| > £ if so = —loge. We claim that the second
option is not possible, so that we must have sg > —loge and |yg| = -Z. To see
this, we appeal to Lemmal[5.2] which is applicable since |yo| > £ > ¢, and which
gives the bound |®}0(s)| > |yole™50)/5_ Thus, in the case that sg = —log e and
|vo| > Z, this implies

s=50 S+loge

et > |y] = [030(s)] = Iyole 3" > Lo
1 sHtloge s stloge S
=g 10¢ 5 =ellg 10 > ¢l0,

since s > —loge. This yields the desired contradiction, which guarantees that
| vo| = Z and 59 > —loge. At this stage we appeal to the evolution of 91 W given
in (2.44a) with y = (1,0, 0), and deduce that ¢2 9, W satisfies the equation

(€3N W) + (5 + Bodh W) (3 W) + (Hiw - V) (38, W) = 3 F 0.
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Composing with ®;, and appealing to Gronwall’s inequality on the interval [s, s],
we obtain that

291 W(y,s)
— 20, W(y0, 50) exp(—/
N

0

(5.14) s
+/ eTFIS[}’O’O)oCDf‘?(s’)
S

0

s

3+ B W) o DY (s’)ds’)

S
- exp (—/ 34 B W) o @J;Q(s”)ds”) ds'.
s/

We now use the information that |yg| = £, and thus d; W(yp.s9) < 0. Hence,
the first term on the right side of (5.14) is strictly negative (as the exponential is
positive), so that it does not contribute to the positive part of 31 W. We deduce, by

also appealing to the F‘%}’O’O) estimate in (9.19) and the d; W bootstrap in (4.7),
that

¢ max {01 W(y,s),0}

N ’ s
f/ 63|F$’°’°>od>¥v°(s’>|exp(‘/ %+ﬂtualw>oq>¥v°<s")ds”)ds/
S s/

0
s N
< M/ N3 0 dYO(s) exp (4/ 3o @J;‘ﬁ)(s”)ds”) ds’.

50 s’

The proof is completed by appealing to the bound established in (11.32), namely
fsso N3 0 ®0(s")ds’ < £'/16, which holds for |yo| > £, and which implies
e%max{GlW(y,s),O} < Mels exp(48ﬁ) < 1. O
From Lemma [5.6] we immediately deduce the following:

COROLLARY 5.7. Foranyt € [—e, Tx) we have

t
(5.15) max{dy, 1 - N, 0}dt’ < e

—&

uniformly pointwise in space.

PROOF. Recall that (cf. (2.27) and (2.30a)—(2.30b)) that

Oyt N = L@ w +05,2) = 20 W + Le38,Z.

From (#.12) we know that ¢3$/2|3; Z| < M /2, and since the function max{ -, 0}
is convex and in fact subadditive, we deduce from Lemma 5.6|that

=

max{dy, 1 - N, 0} < %es max{d; W,0} + %6375 max{d; Z,0} < 25 + 1m

1
2
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Writing dt’ = Bre*'ds’, the desired bound follows from

-
»

> S I 1
f (2¢15° + SM2)Bre ™  ds’ < 60eTs + M
—loge
concluding the proof. U
The time integral of |31 W | along <I>i,’°
We next establish the following:
LEMMA 5.8. Forall s > —loge,
A
(5.16) sup / 191 W | 0 @0(s")ds” < eT8.
YoE€EZp J/—loge
PROOF. From the definition of the transport velocity v in (5.10), observe that
(5.17) dive v = divg 1 = 281(dx, 2 - NJ + 0y, 11y)
where we have used the fact that
divy v = dx;v; = 0x;IN- v + dx, v, = divg v

and that from @2.19), divg v = Q;; = 0, and that divx(—f, 0,0) = 0. Hence, the
conservation of mass equation (2.20) can be written as

(5.18) 3P+ v-Vip+ pdivy v =10,

and composing (5.18) with the flow ¢ given by (5.11), we see that
(5.19) 0¢(po @) = (Bop)divev) 0 p.

Since

(5.20) d¢(det Vo) = det Vyp(divy v) o @,

and det Ve @(x, —¢) = 1, it follows that
pog = (det Vygp) ™' fo.

Note that using (1.2), (4.25), and (4.15) yields

1 k1 1

P (20)3] = [(@e50)7 — (%07
_k 1 S o L 5o L 1
(>-21) < (e 20)T — (07| + |(25H0) e — (F0)7]

S ev(%0)a ! e,

Therefore, by (5.21) and (5.21), we have that

(5.22)
@Ko\ & aKo\w
deVepte ) — 11 < | B —1] < B - BT BTy <

From (5.19) and (5.20), we have that

d o
o det Vi = det Viep(divy v) o ¢ = det Vip(divy i) o @
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leads to
(5.23) det Vep(x,1) = exp t (divg 11 0 ) (x,t")dt’.
—e
Hence,
(5.24) e < t (dive 5 0 ) (x,t)dt’ < &5 forall x € R3.
—e

From (2.30d), (2.364), (4.13), and (4.24)

(5.25) |9x, 0 (-, )] poo < 1.
It follows from (4.1a) and (5.25) that

t
(5.26) 182,00 (-, )| oot S T(6) + 6 S Ms® +5 <62
—&

Thus, with (9.1a), (5.17), (5.22), and (5.26), we have that
t
‘/ axlﬁ'No§0dt/
—&
t
< ‘/ (L0x,10v) 0 pdi’ f(div;gﬁ) opdt
—&
By Corollary the integral of the positive part of d, u-N is small. Therefore, the

above estimate gives a bound on the negative part of d., 2 - N as well. In summary,
by (5.27) and Corollary we then have that

(5.27)

1

< ev.

1
T35

t
(5.28) |0, - No g|di < &Ts.
—&

Then, from (2.27) and the bootstrap assumptions (4.1a) and (4.12), we see that
fig |0x, w o @|dt’ < 8%, and in particular, for any xo € 279, we have that

t
(5.29) sup / 19, w 0 @y, |dt’ < eT9.
X0€EZ o/ —¢€

Since the flow ®(y, s) is related to the flow ¢(x, t) via

3 s
D1(y,s) = e’ p1(x, 1), Du(y,s) = e2gy(x,1),
and since 0, w = ¢*d; W, using (2.2943), the estimate (5.16) follows. O
The Lagrangian flow X(x, )

We next introduce the Lagrangian flow X associated to the transport velocity in
(2.11), namely, 281 (v + i), as the solution to

(5.30a) 3 X(F, 1) = 281 (F + D)(X(F.1).1), te[—e T,
(5.30b) X%, —¢) = ¥.
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Note that the flow X(X,¢) is related to the flow ¢(x,t) given in (5.11) via the
transformation

(531) 901(x’f) = Xl(fv t) - f()\(/(§’t)’t)’ %(xat) = Xv(f» t)v
and that X (X, ¢) is related to the flow ®(y,s) := Oy (y, s) by

(532)  ®1(y.s) = e (X1 (R 1) — fX(FE0).0), Dyly,s) = e3 X, (%, 1).

In this subsection we obtain three results, which play an important role in the
proof of vorticity creation: the first is an estimate on |V X (-, ) — Id|, cf. (5.39);
the second is a precise bound on the label X such that X(X¢,¢) — Oast — Ty
(recall that O is the location at which the first singularity occurs), cf. Lemma

the third result is a precise lower bound on — f_jj;* 0%, W o X, cf. Lemmal7.3
First, we estimate the deformation rate of the flow X on the time interval [—e¢, T].
The evolution of V¢ X is given by

d - ~
(5.33) Eangi =28 (agk Vi +1u;)o X) angk.

We note that using the bounds (9.2)), the argument given in (5.22)—(5.27), together
with the identical argument given in section 13 of [4], we may show that there
exists a universal constant C > 1 (in particular, e-independent) such that

(5.34) & =<I%Xx|=<C.

The bound (5.34) can, however, be made sharper, and we show (cf. (5.39) below)
that |V¢X — Id| < £1/20 uniformly on [—¢, T%). In order to prove this, we appeal
to (5.33), from which we subtract 1d; 7, and then we contract with 8;/. X; —1d;; to
obtain that

(535 2@ EX ~1P = 0 Xi —1dij) Fe (s, X — 1dy)
+ S5 0z, Xi — Idij).
We have introduced the notation
ik = 2P1 (9%, (¥ + ;) 0 X)),

and for a matrix A;; we denote the Euclidean norm as |A|? = A; jAij. Because
of (2.16), which implies that for a vector field b we have b - V¢ii; = b - @cﬁj +
Jb - Ndy, 15, using the relation (5.31) between the ¥ and x Lagrangian trajectories

X and respectively ¢, and appealing to (2.26)—(2.27), we note that the following
identities hold

(536a) N -NoX =Jdx1i-Nog—INydy (w+2)op+Nyii-N, og,
(5.36b) ONi-T" 0 X = Jdx,ay 09 —Nydy,ay 09 + Nyt - T, 0 g,

(5.36c) Bruii-NoX = 3THd, (w+2)op—TLi-Nyog,

(5.36d) druil-T" o X = Thiy,ayo@—Thi-T", 0.
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The first term on the right side of the first line of the above list has the worst
estimate when time integrated, cf. (5.28). Indeed, for all the other terms in the
above list, by appealing to the bootstrap assumptions (4.4)—(4.13) and the estimate
(9.1), we may deduce that their time integrals are &'(g). Combining these estimates
we deduce that

T
(5.37) f |(Vsil) o X|dt' < T8,
—&
Similarly, using the relations (2.19), (2.30¢)), (5.31), and the estimate (9.2), we
obtain that the time integral of |(V5V) o X | is '(¢). Summarizing, we have that the
matrix appearing on the right side of (5.35) satisfies

T« .
(5.38) / |.Z|dt’ < eT5.

—&
Using that VX |;=—¢ = Id, from (5.35), (5.38), and ODE type bounds, we deduce
that

, , 1
(5.39) sup [V X (1) —1d| < ef-e 1714 _ 1 < o8¢ ™ < g30.
te[—e,Tx]

The above bound is merely a quantitative version of (5.34); it will be used in the
proof of Theorem|(7.4

6 L Bounds for Specific Vorticity

We now establish bounds to solutions Z" of the specific vorticity equation (6.1
From (2.24) and (2.25), we deduce that the normal and tangential components
of the vorticity satisfy

61 8T +v- €T = Fau €N + T T 1+ .
(6.1b) 0,(Z-T? +v- Ve T = Fa1(-N) + Fau(E-TH) + %5,
where the transport velocity v is defined by (5.10), and

F21 =N-3, T+ 28104 TiN; + vy (N-T%) + 281N, 0x, a2
(6.2) — 21Nyl - T3,
(6.2b) Fa =2B1Thdx, a2 —2B1Totl - T2,

T3 =T 0, T2 + 2104 T TV (T2 - T2) + 281 Ty x4z

(6.2¢) — 2B Tou - T3,
F31 =N-8,T° + 26105 TIN; + vu(N-T3,) + 281Ny dx, a3
(6.2d) —2B1Nyii - T3,

Fap =T2-0,T> + 2810 T} T7 + v, (T2 - T,) + 21 T2 0y, a3
(6.2¢) —2B1 T2 - T,
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(6.2f) F33 =2B1Ty0x,a3 — 2B1Toti - T3,

and
(6.32) Gy = %%(3T383N1‘é— ING dr3K) + %%T%f,v (V& X Vik),
(6.3b) Gy = %%(aNé}aTzﬁ— 9126 ONK) + %%Ti Fv (V& x VK)o,

~

and from (2.14), Tﬁb = T’“L

PROPOSITION 6.1 (Bounds on specific vorticity). For —e <t < t(T%),

(6.4) [E0g(-.0) —C(-,—8)], 0 < 7.

PROOF OF PROPOSITION[6.1l By the transformations (2.26), (2.30¢)), and (2.364))
together with the bootstrap bounds (4.13), (4.24), Lemma[9.1] we have that

o 1 o 1 1
(6.5) |lillpee S M3%,  |Jox, @ -N)|zee S 1, [Ox,allLec < Me2, ||VlLoe S M3,

Hence, these bounds, together with (4.2) and Lemma yield the following
bounds on the forcing functions: defined in (6.2)

(6.6) |Fij || o S 1 fori.j e{1,2,3}.

where we have used powers of ¢ to absorb powers of M.
Now, from the definitions (2.16) and (2.23), we have that

B0, & (x, 1) 2 E(x, 1) = BF, DT, 1) = &(X, 1) = curlg 7(F, 1)

(6.7)
= curlz 1(x, 1),
and
curlgii -N = T;0g,u-T> —T}d5,0- T
(6.8) = T20,, 1 -T2 = T30y, 11 - T

= Todx,a3 — Tt -T2, —Todx,az + Toti - T3,
from which it follows that
©69) 2N = T20x,a3 — T30 - T3, = T30y,a0 + Tou - T3,

0
It follows from (3.4), Lemma[9.1} (5.21), (6.5), and (6.9), we have that

1

(6.10) -N| S Mie+ Me? <6,

assuming ¢ is taken sufficiently small.
We define

o

cg?ij ==%'j°§0x0, gu :gMO(Pxo,
2= Nogy. 2= T)ogsy 25=(C T opm.
Then, (6.1)) is written as the following system of ODEs:
0:22=F2j 2 +%. 023 =32 +%.
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Hence,
(6.11) 14 ( 23 + 23) = Fop 2020 + Fi1 2021 + 2,9,
Now, we set % = (22 + 22)!/2. Using and (6.10), we see from (6.11) that
Ly U + &5 + | D)+ D,
and hence by Gronwall’s inequality,

|2 (1) = & (—¢)|

t , t , [t _ _
< () Cd _ )y gy 4 ol e Clt / e} +1%) + | BDdr

—&

(6.12)
t — —
SeW(—e)+ | (5 + %]+ |Ds)dr,
—&

where we used the bound ¢ — & < 7(T%) < 2¢ from (4.1a).
We now prove that fie %, (r)dr is bounded for all t > —¢ such that 1 < 7(¢).
First note that by (2.30d) and (4.14), we see that

(6.13) | Vek (-, 1) 0 S &5,

so it remains for us to bound exp /”_ |dru& op|dt’ andexp [* [3nG og|dt’. Using
the identities

(N-V5)6 = 0x,0J + Npdy, 6 and (T"- V)6 = T),8,,6.
and (2.26), we see that
ING = Oy 11 - NJ — 0, 2d + Ny, (11 - N) — N3y, 2,
O =T, 3, (- N) =T}, 05, 2.
From (2.30b), (2.364)), (4.12), and (4.24), we find that
(6.14) [0r6 00 S 1.
and additionally with (5.28), we see that

t
(6.15) f 198G © |dt’ < &18.

—&

The estimates (6.13), (6.14), and (6.15) together with (4.25) and (5.21) show that

t —
(6.16) f 1,.(s)|ds < &5,
€

From (6.12) and (6.16), we have that
|122(t) — 2a(—8)| + 1:23(t) — 23(—¢)| S e(122(—)| + | 23(—e)]) + &5

uniformly for all labels xq. Since N, T2, T3 form an orthonormal basis, the above
estimate and (6.10) imply that (6.4) holds. O
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7 Vorticity Creation

We analyze vorticity creation (see Theorem [7.4)) through the evolution of the
specific vorticity vector ¢ in X-variables,

7.1 The blowup trajectory and a bound on the amplification factor

We obtain an estimate for the position of the particle Xg, which is carried by the
flow X (-, 1) to the blowup location X = O as t — Tx.

LEMMA 7.1 (Initial location of particle trajectory leading to blowup). With the flow
X defined by (5.30), let X5,(1) denote the trajectory that emanates from the point
Xo. Iflim; 7, X5,(t) = 0, then

7
6

(7.1) |(Fo)1 — Bakoe| < 5eb,  |To| < 5ed.

PROOF. We consider the trajectory X, (7) for which Xz, (T%) = 0 and for no-
tational simplicity, we drop the subscript Xo and use X(¢) to denote this trajectory.
The main idea is that the initial position of the particle X(¢), i.e., X, may be com-
puted by passing ¢ — T in the identity X(z) — Xo = fis d: X(t')dt’, leading
to

T
(7.2) Xo = —f A X (t"dt'.
—&
By revisiting the right side of (5.30), we obtain a sharp estimate for the right side
of the above identity.

For convenience, in analogy to (2.26) we define
(7.3) w=u-N+ao, Z=u-N-o7, a,=1u-T".

We note that d5, W(X, 1) = 0x, w(x,t). Furthermore, using (2.6) we have that
0 X =2B81(V+u-NN+#T-T'T")o X

(7.4) - TE L N 4 N sy TV
=2810X — 281 RTE + B1(WN + N + 23, T") o X.

First we note that using that 0 is skew-symmetric, that X(7x) = 0, appealing
to the bounds (4.1b), (4.13), and (4.24), together with (@.27), from the Gronwall
inequality on [z, T%], we obtain that

(1.5) 1X(£)| < M3e.

This estimate is however not sharp enough; to do better, we need to carefully
bound the term 28, RT£ on the right side of (7.4). Note (cf. (2.31)) that we have
(RT§); = —V;(0,s). Then, evaluating (2.33a) and (2.34a) at y = 0, and using the
definition of the function f and our constraints (2.52), we deduce

21(RTE) =k + B27° — ée_%GgV,

281(RTE), = 28147, — g-e2 iy,
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in analogy to (2.61) and (A.7a). Using the « estimate in (4.1b), the Z and A
estimates in (4.12) and (4.13), and the bound (12.17) for GI(/)V and h‘IfV’O, which is a
consequence of the bootstrap assumptions, we deduce that

(7.6) 2B1(RTE)1 — 0| S Me and  |281(RT),| S Me3

since 1 — 2”15_7 > % for m > 18. Returning to (7.4), from (4.2), @.12), (4¢.13), and
(7.5), we have that

(1.7) 2810X + B1GN + 23, T") o X| < Mie3 + Me < Me.

Lastly, by (5.31) we have @oX = wog, and by (2.30a) we have w = k+e 2 W.
Thus, by also appealing to (4.1b), (4.5)), (4.7), (9.1a)), and the fact that |¢,, (—¢)| <

¢ implies |[N(—¢) — e1| < ¢, we obtain

~ _s 1
(7.8) |[WNo X —koer| < [KN —koer| + e 2[[W o2 (s)) < 3e°.
By inserting the estimates (7.6)—(7.8) into the right side of (7.4), we obtain that
(1.9) 19, X1 + Bako| < 4e6  and |3, X,| < 4eb

upon taking ¢ to be sufficiently small in terms of M, and recalling that 8; — 1 =
—pB3. To conclude the proof of the lemma, we simply combine (7.2 with (7.9) and
the estimate | 7% | < £3/2, as given by (#.27). O

Remark 7.2. For the particle trajectory from Lemma[7.1] integrating (7.9) from on
[, T«], as opposed to [—¢, Tx] as was done in (7.2), we obtain that

(7.10) | X1(2) — Bskoe™ | < 5ebe™ and | Xy(1)| < 5e6e™".
Here we have again used |e®(Tx — t) — 1| < 2M ¢, which holds in view of (4.1b),

@.3), and (4.26).

The second preliminary estimate is a lower bound on — f_i" d%, W o X, as this
quantity plays a key role in our proof of vorticity creation (cf. the estimate for the
term Iy in Theorem [7.4).

LEMMA 7.3. With the flow X defined by (5.30), let X5, (t) denote the trajectory
that emanates from the point Xo. If X5,(Tx) = 0 and the initial condition satisfies

(3.24), then

T 2
(7.11) —/ 0%, (Xz, (1), 1)dt = Licg 363,
—&

PROOF. The proof of the lemma is based on two ideas: first, the time integral in
(7.11) is dominated by values of # which are very close to —e, where we can relate
0z, W to its initial datum; second, the flow X(¢) is related to the self-similar flow
&y via the relation (5.32), which allows us to appeal to sharp bounds for d; W in
estimating the contribution to (7.11) for ¢t > —e. We implement these ideas as
follows.
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We consider the trajectory X, () for which Xz, (Tx) = 0, and for notational
simplicity, we drop the subscript Xo and use X(¢) to denote this trajectory. The
associated self-similar initial datum variable yq is given via (2.15) and (2.29) as

(7.12) Yo = (8_%((550)1 — f(%0)). £73%0).

Due to Lemma |7_1| we know that X satisfies (7.1), and since |@;, (—¢)| < €, we
deduce that

(7.13) (yo)1 — Bakos 2| <6673 and |(yo)y| < 563,

Note that these bounds are set up precisely to account for the region specified
in (3.24). In view of the precise estimates on the trajectory Xz,(7), we directly

obtain sharp bounds on the self-similar Lagrangian flow ®;°(s) emanating from
vo. Indeed, by the ¢ bound in (4.1a), the relation between ®,, and X in (5.32), and
the bounds (7.10), we have that

(Bsko —£7)e? < (@2)1(5) < (Bsko + £7)e?
and  |(@})y(s)] < e7e 2.
Next, due to (5.32) and we have that
(7.15) Iz, W 0 Xz,(1) = e* W o D (s)

(7.14)

with the usual relation between ¢ and s from (2.29). Since dt = fre™* ds, we thus
have that the integral we need to estimate in (7.11) may be rewritten as
T o0

(7.16) — | 0y, (X5, (1) 0)dt = —/ Brd1 W o B0 (s)ds.

—& —loge

Recall (cf. (4.3)) that 1 —2Me™ < B; < 1 + 2Me ™%, so that we just need to
bound from below the integral of —3; W o ®;°. The remainder of the argument
mimics the proof of Lemma

Fix yo as in (7.13), s € [—loge, 00), and thus fix a value of ®}°(s). We trace
the particle trajectory of the flow ¥ (not Yfy!) backwards in time, and write
@fé’ (s) = ®°(s), where the initial datum <I>JV)‘§/’ (s0) = yg is given by the property
that |yg| = £ if so > —loge, and |y|| > £ if 5o = —loge. We then appeal to
Lemma with y( replacing yo. The lemma is applicable on the interval [sq, 5]
since |yy| = £ and by (7.14) we have ‘5;[9(5‘)‘ = ‘EDJI}O(S)‘ < gl/Te=s/2 < ¢1/2,
By (5.5)), we thus obtain that for any 5" € [—log &, 5] we have the estimates

3(s’—s0)

(7.17) (@291 = 2|0ole =0

Let us first consider the case that |y,| > . and so = —loge. Based on (7.17)
we now claim that [(yg)1]| < 2kpe~"/2. If not, then by appealing to the first

and ‘?{3;{‘,’)(5)‘ < Me2.
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estimate in ((7.14), we thus deduce that

3 s y/ 3 3(s—s0)
3B3koe> = [(D)1(9)] = [(@p)1(9)| = 31 (o) ile™ 2
1 1
> %K()&‘_ies_soé?%(?i > %Koe%,
which is a contradiction, since f3 = % < 1. Therefore, from the above

argument and the second bound in (7.14) evaluated at s* = sp, we have that
L = 7110 < [(yo)| < 2kpe~ /2 and [(yo)vl < Mel/2 < g3, Therefore,
the point y;, exactly lies in the region stipulated in (3.24), and so by Lemma|3.1|in
this case we have that

4 _2 _2
(7.18) 31 W (D32 (s0), 50) = 31 W(yp, —loge) € [-11(ve)1| ™3, =11 73]

Next, let us first consider the case that |yj| = .2 and s9 > —log¢. In this case,
instead of appealing to (3.24) we use the bootstrap (4.8b) and as shown earlier in
(5.13) we deduce

1~—1

(719) AW (®10(50).50) = HW (. 50) < =37 5() < —§1vph |75,

where we used (7.17) with s/ = s¢ in the last inequality.
Having established (7.18) and (7.19), we use the d1 W evolution given in (2.44al)
with y = (1,0, 0) and deduce that

Ds( W 0 ®)0) + (1+ Beddy W o BL) (W 0 )0) = FIO0 0 020,

Integrating this expression on [sg, s], recalling that by definition we have @Jviﬁ’ (s) =
®7°(s), using that by (7.18) and (7.19) we have that —d; W(y}, 50) > 0 by appeal-

ing to the FIS{}’O’O) estimate in (9.19) and to the d; W bootstrap in (4.7), we deduce
— 0 W(D (). 5)

= —31 W(yg. So) exp (—/
S

S , s )
(7.20) - / Fig®? 0 910(s)) exp (— / L+ B W) o &0 (s") ds//) ds’'
. ’ /

0 N

s ’
14 B (JW)o cpfy(s/)ds/)

0

§ ’
= Hopni e ep (<3 [ b oafsay)
N

0
s ’ ’ , s

_/ 6’_%77_% o cbf‘?(s/)e_(s_s ) exp (3/ n_% o CD),,)VO(S//)ds”) ds’'

S0 s’

Since |yg| = .2 , by (7.17) we have

s , s ,
3 / o @205 ds’ < (v |3 / S0 gyt < ot
K S0

0
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and

N v ’ ’ s s’ ’
/ 6’_%77_% o ®}0(s")ds' e~ < 2e_s|(J’(,))1|_§/ ¢S e (s gy
S

0 S0

< 10s5e 70| ()75
Inserting these estimates into (7.20), we deduce
(7.21) —H (R (s).8) = LI(p)r|Fem00),

The bound (7.21) holds both in the case that so > —loge and |y,| = £, and also
in the case that so = —loge and |yy| > £ and |(yg)1] < 2kge~ V2. The last
observation is that in either case, the bound (7.21) implies

_2
(122) = W(P(s),5) > %(2/(08_%)_%8_(5_“’) > 5K 33 (stloge)

Lastly, using (7.22) we bound from below the right side of (7.16) and obtain
o0 _2 4 [ _2
—/ Bz W o ®7°(s)ds > %MKO 3¢3 / e~ (sHloge) gg > %KO 33,
—loge —loge
which completes the proof. U

7.2 Vorticity creation from irrotational data

We now return to the specific vorticity equation (2.11), which we shall now write
as

(7.23) 8,8 —2B10C + 2B1(V + i) - Vyl = 2By Defz it - L + b fort € [—¢, T),
where we use b to denote the baroclinic term in (X, t)-variables:
(7.24) b=2p122V5 x VK,
and the (rate of) deformation tensor is defined by
Def; i = %(V}gﬁ + VgﬁT),

which is the symmetric part of the velocity gradient. In components, (Defz & -E)i =
%(33@. Ui + 85;,. ﬁj)é‘j.

By definition of the X5, () flow in (5.30), so that Xz (—&) = Xo upon compos-
ing (7.23) with X5, (7) and denoting
(725, ((Ro.1) = Lo Xz,(t), D(Ro.1) = 2B Defz il o Xz, (1),
' b(Ro.1) = b o Xz, (1),

we have

(7.26) 40 =2B10 +D)-(+b.
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At this stage two observations are in order. First, due to (5.31) we have that { =
¢ o X = C o g, so that the bound (6.4) translates into

~ = 1
(7.27) |C(X0, 1) — {(Xo, —¢)| < e2T.
Second, we note that by (5.36), (5.37), (9.1), and (3.2), for any (7, j) # (1.1) we

have

Tx
(7.28) / ID;; (1)|dt’ < Me,

—&

while for (7, j) = (1, 1) we have

T«
(7.29) f D11 (¢)|dt’ < eT5.

€

We omit the detailed proofs of (7.28) and (7.29) but note that as already discussed
in the paragraph below (5.36), only the time integral of |dnii-No X | is not €' (¢); and
since [N — e1| < &, this corresponds to only the (1, 1) component of the D matrix
as having a time integral which may be larger than &'(g). Taking into account also
the O estimate in (#.2), we rewrite

(730) 2,Bl Q +D = diag(Dlla 07 0) + Dsmall = Dmain + Dsmall
with

Tx
(731) / Dawar ()] de’ < Me.

&
With this information, since Dy, is a diagonal matrix, we may write the solu-
tion of ODE ([7.26) pointwise in Xq as

t (-1 e
C( , t) — ef_gDmam( oL )dt é‘( , —8)

t
(732) + ef[t/Dmain(' ,t”)dt/, (b(, , t/) + Dsmall(' s t/) . C(. s [/)) dl‘/’
—&
where in view of (7.29)

(733) ‘eftt/Dmuin(',t”)dt” _ Id‘ — ‘diag(eftt/Dl1(',l”)dt”’ 1, 1) _ Id‘ 5 gTIS.

The solution formula (7.32), along with the bounds (7.27), (7.31), and (7.33), show
that vorticity creation is essentially implied by (lower) bounds on fia b(-,t")dt'.
This is indeed the main idea in the proof of vorticity creation, which we establish
next.

In the following theorem, we show that when the initial vorticity is zero, the
Euler dynamics instantaneously creates vorticity, and that for appropriately chosen
initial data, the vorticity remains nontrivial at the formation of the shock.

THEOREM 7.4 (Vorticity creation). Consider Xo such that the flow Xz (t) con-
verges to the blowup point O as t — Tx. More generally, consider any X satisfying
(7.1). Suppose that the initial datum verifies (3.24), and that the initial baroclinic
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torque at this point, b (X0, —¢), is nontrivial. For example, this may be ensured by
choosing

(7.34) %, k(Xo, —€) =0 dz,k(Ro, —&) = 0, d5,k(Fo, —&) < 0.

If the initial datum is irrotational, i.e. 2(55, —g) = 0 for all X € R3, then vorticity
is instantaneously created and remains nonvanishing in the neighborhood of the
shock location (X,t) = (0, Tx). Quantitatively, with the choice (1.34) we have that

~ 1_1 ~
(735) EE.0)] > carg &3 [dz,k0 (Fo)|

for all (X,t) in a small neighborhood of the shock location (0, Ty), where ¢, > 0
is a constant that only depends on a.

PROOF. As alluded to in the discussion preceding the theorem, the proof is
based on following the Lagrangian flow Xz, (¢), which arrives at the shock location
as t — Ty, and study the vorticity production caused by the baroclinic torque term
b. We note that (7.35) is proven by establishing this bound at X = X, (¢) with
t — Ty for one component of the vorticity vector, and arguing by continuity, the
fact that the vorticity remains continuous all the way up to the blowup time ensures
that the lower bound holds for (X, ¢) in a neighborhood of (0, T).

For simplicity of the presentation we provide a lower bound on the third compo-
nent of the vorticity; this is why in assumption (7.34) we have chosen very specific
gradient components for k and &. Recall the notation (7.25). Using that the initial
datum is irrotational, from the solution formula (7.32), the bounds (7.27), (7.31),
(7.33), and the fact that the matrix Dpy,in only has a nontrivial (1, 1) entry, we obtain

1

t
736)  |Ga(o.1) f b3(Fo. 1)dt’| < (1 + eT5)e? Me < e,

—&
The remainder of the proof consists of analyzing the time integral of b3(Xp,?) =

b(X5,(1).1).
Let us denote the cofactor matrix associated to Vz X and its Jacobian determi-
nant, respectively, by

B(X,t) = Cof(VzX), J(x,t) = det(VzX),
so that
(VzX)y ' =J"12.
Two components of the cofactor matrix that we shall make use of are given by
B = 0%, X2(0%, X105, X3 — 9%, X305, X1),
BT = 0z, X2(0%, X105, X3 — 0%, X105, X3).
From (5.39), we see that

(1.37) J—1]<em, |Z2—1]<e®, and |F?| < eTo.
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Then, transport equation (2.5¢) shows that

(7.38) Ko Xz(t) = K(X, —¢) =: ko(%)
so that
(7.39) d%, ko Xz(t) = J V(¥ 1)dz,Ko(¥) BE(F. 1).

The point of the first two assumptions in (7.34) is to single out one of the three
elements in the sum over £ in (7.39), which now reduces to

(7.40) 3%,k o Xz(1) = J 1 (F. 1) 0%, ko () B2 (%.10).

For the remainder of the proof, we fix X to denote the trajectory which collides
with the blowup at time ¢ = T so that X(7x) = 0. Using (7.40) and recalling
(7.3), we return to (7.24) and obtain that

by =bhoX
= 2}81%% 0 X (95,5 0 Xdz,k 0 X — 35,5 0 Xdz,ko X)
(741) = 2;31%% o XJ Y5,ko(H205,5 0 X — H#205%,5 0 X)
- 51g% o XJ 7195,k (B205,W 0 X — B307,Z 0 X —2%29%,5 0 X)
_.pD_ @ G3)
:by’ —b3y7 — b3,

We first note that by the relation of o and p, in view of (2.5¢) we have

N

(7.42) Bia g  x — %e

7 (FoXx)*!

so that by (5.21) and the initial 1.°° assumption on k( -, —&) we have
5 a—1 L
(743) P28 o x — (%) T | 5 e,

Combined with (7.37), our bootstrap assumptions derivatives of Z in (4.12) and on
U -Nand S in (4.24), similarly to (7.31) we obtain that the last two terms in (7.41)
have time integrals bounded as

T
(7.44) / P (%o, )| + |6 (Fo. 1)|dt S Me.
—&

In order to conclude the proof, we need to estimate the time integral of the first
term in (7.41), namely, bgl). This is precisely the reason that Lemma [7.3| was
created. First, we note that by (7.15) and (7.21), we have that 5, W o X(t) < 0 for
all t € [—g, Ty); that is, this term is signed. Taking into account (7.37), (7.43), and
the third assumption in (7.34). we obtain the pointwise-in-time bound

N
(7.45) by (Fo. 1) = £1(2%0) & 35 Ko (%o)dz, T 0 Xz, (1).
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To conclude the proof we combine the assumption d5, Ko(%o) < 0 with (7.45) and

(7.11) to deduce

/T* b$" (%o, 1) = ﬂ—l(w)ao_‘l | 9% 1:0(550)‘1"_%8%
) i X -
(7.46) LD 2\ 2 > 9ko

_1 ~
= 2cqky “ai‘agzko(xg)

’

where ¢, > 0 is a constant that depends only on «. The point here is that the
lower bound is @(¢!/3), while the error terms in both (7.36) and (7.44) are & (e).
Combining these estimates we deduce that

? 1_1 -
(7.47) 53(550,02/ b$" (o, 1')dt’ — M2e > 3cqy 3 |35, Ko(%o)]
—&

upon taking ¢ to be sufficiently small. O
8 H™ Bounds
DEFINITION 8.1 (Modified H ™ _norm). For m > 18 we introduce the seminorm
Ep(s)
)
(8.1 _Em[Ua gvz’%](s)
= Y AU )72 + 129 2 5) 72 + 5187 A (- 9)]72)
ly|=m

where A = A(m) € (0, 1) is to be made precise below (cf. Lemma 3.3).

Clearly, E2, is equivalent to the homogenous Sobolev norm H™ for U, 2, and
€, and since k¢ > 2, we have the quantitative inequalities

U, + 1213, + 1213%,,)

< Ep < k(U3 + 1213, + 12112,,).

8.2)

The bound (8.2)) follows from
(8.3) A (y.s) = 1] < %

and the triangle inequality, upon taking ¢ sufficiently small. In turn, (8.3) is a
consequence of the definition (2.41) and of the bootstrap (4.14).

Additionally, in order to apply the interpolation inequalities from Appendix[A.2,
we need to establish a quantitative equivalence between the £, seminorm defined
in and the classical homogenous H™ norm of the quantities U, S, and K
(recall that these are related to U, &2, and ¢ via the nonlinear transformation
given in (2.41)). In this direction we have:
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LEMMA 8.2 (Asymptotic equivalence of norms). For kg > 1 sufficiently large in
terms of v, and for ¢ sufficiently small in terms of kg, M, and m, we have the

estimate
8.4) AU, + IS, + 1K1, —e>*)
' < E2 <kgUUZ,, + IS, + K%

+e72%)

Hln HH? Hln

forall s > —loge. As a consequence, we also have the estimate

55 ko Eg — e < e IWI2,, + 1215, + 1415, + 1K1,
' <AVTMEZ - de” %S,
PROOF OF LEMMA [8.21 We directly have

(8.6) UG, < > AUz, < U3,

ly|=m

which gives a direct comparison between the H™ norm of U and the U -part of E,,,.

Next, we turn to the .7-part of Ey,. The chain rule yields 71 V.2 = %VK .
Applying m — 1 more derivatives, by the Faa di Bruno formula, we have that there
exists a constant Cp,, which only depends on m, such that pointwise we have the
bound

m—
8.7 | AT A — K| < C > 1107 k1
(i1,~~~ai7n—1)elln Jj=1

where the index set [, is given by

m—1
Im = (1. cvime1)id 20, ) jij=m
Jj=1
In particular, note that whenever (iy, ..., {nm—1) € Im, we must havez _1 ij >2.

This fact is crucial for the argument below and has to do with the fact that we have
already accounted on the left side for the term with the highest order of derivatives.
In as usual we have written D/ K to denote DP K for some multi-index 8
with |8] = j. Using the interpolation inequality (A.3), forall 1 < j <m — 1 we
next estimate

jl

i ii(1—
(8.8) D7 K| || e = ||D]K||Iern < K17 w ||K||1fm
Moreover, note that for (i1,...,im—1) € I, we have that Zm_ll % = %, SO

that these are Holder Conjugate exponents corresponding to an L? norm. Thus,
applying the L2 norm to (8.7), using the Holder inequality and the interpolation
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bound (8.8)), we obtain

— (1 In /n
|70 A~ LK e < Cn Y H||K||" DIk

HI??
(1seensim—1)€Ly J=1
—1+3"
(8.9) <Cnm 1Kl oo =7 1j||K|| m
L H
@1seens im—1)€lm

for some m-dependent constant Cy, (which may increase from line to line), when-
ever |y| = m. At this point we use that (i1,...,im—1) € In, we must have
Z;”_ 11 i; > 2, which is combined with the bootstrap (4.14) to conclude

(8.10) |27 — 207K 2 < Cmel Kl gm-

We next appeal to the pointwise estimate on # in (8.3), and since ko > 1, we
deduce that

2 ~
BI)  SAMIKIE, < Y AN < SIKI
lyl=m

HW!

where we have used that A € (0, 1), and that ¢ is sufficiently small to absorb the
C,, constant in (8.10).
Lastly, we turn to the &?-part of E,,. From (2.41) we obtain § = Z, and
thus, by the binomial formula and the Moser estimate (A.4), we have
|0YS — A P — P3| 2
< Cn (IVA L | 2 g + IV PN | ] g1 ) -

Furthermore, using the interpolation bound (A.5) applied to V&7 and V.7¢, and
the e-Young inequality, we obtain that for any § € (0, 1) we have

1YS — W P — PY A

_2
< Cm(IIVJ“i”IILoo IIV@HZ’" SIIL@HH,,?’" -

2
8.12) FIVP | VA T | )y )
<810 g + 811

2m—=5 2m—5
+ Cm (IIV%IILO% IVZ|Lee + IV IIV%IILM)

where the m-dependent constant C,,, may change from line to line. From the defini-
tions (2.41), the K estimates in (4.14), the W and Z bounds in (4.7) and (4.12), the
relations VY = VS — SH# IV, and 2VS = e3VW — VZ, we deduce

S

(8.13) VAL < e3¢5 and V2P| oo < (% + s%) e 3.
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Taking & to be sufficiently small to absorb the m and M dependent constants, we
obtain from (8.12) and (8.13) that

10YS — A P — PY A1

(8.14)
< 81PN jym + 8N | g + 65 ™S

for any constant § € (0, 1). Using that |S — ko/2| < 5¢'/¢ (which follows from
the bootstrap assumptions on k£, W, and Z), and appealing to (8.3), we obtain

(8.15) |P(y.5) — 0| < 6e0

upon taking ¢ to be sufficiently small in terms of M and x¢. At last, we combine
(8.14)—(8.15), use the & and .# part of the comparison (8.2), choose § sufficiently
small depending on k¢ and A, and then ¢ sufficiently small in terms of kg, A4, 8, and
m to deduce that

8.16)  A™|S|%

20 < O MWy 202, + G107 AN F) + e,

lyl=m

and taking «¢ > 2, we also have

@17 ISI, = § Y AT PIT +1G118" A7) — e

m —

ly|=m

Combining (8.6), (8.11), (8.16), and (8.17), we arrive at the proof of (8.4).

The proof of follows once we recall the identities W = e (U -N+ S —«),
Z = U -N— S, which follow from (2.37), and the definition 4, = U - T".
Therefore, by (9.1a), (A.3), using the Poincaré inequality in the y-direction, and
the fact that the diameter of 2 (s) in the é-directions is 4¢!/6¢5/2 for any y with
|y| = m, we obtain

le"29"W —N-9"U — 9" S| 2
+107Z =N-0"U + 9"S|l2 + 107 Ay — T° - 07U | 12

< 2|[9”.N] - Ullz> + 10" T*] - Ul 2

m
< 2 (ID/Nlizos + 1D/ Tl ) 1D U 2oy
j=1
m . L
Js Sz
Sey e 2 (4ese) Ul gm
j=1

Summing over |y| = m, and appealing to (8.4), the estimate (8.5]) follows. O
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8.1 Higher-order derivatives for the (U, &7, 7¢)-system
In order to estimate E,,(s) we need the differentiated form of the (U, &2, 3)-
system (2.42). For this purpose, fix y € NS’ with |y| = m and apply 9” to (2.42)
to obtain
353" Up) + (Vu - VIO Up) + Dy (8" Up) — 2B1 e Qi (37 Uj)
+ 2B B3 A2 P)IN;e2 1 P + 2p1 B B3 A 2e3 81 PIN; (Y )

(8.182)  +2B:f3 A2 P (INie201 (0 P) + 72870, (0 ) = 7.

353" P) + (Vy - V) (" P) + D, (¥ D)
+ 2883201 (U - N)(3” 2) + 2y1 B B3e2 31 PIN; (37 Uj)
(8.18b)  +28:B32(e2IN; 01 (37 U)) + ¢33, (07 Uy)) = D,

(8.18¢) 35(3" ) + (Vi - V)@Y H) + Dy (3 ) = FL),
where the damping function %), is defined as
(8.19) Py =yl +d1gv) + 317,
the transport velocity ¥ is given in (2.39¢)), and since |y| > 3 the forcing functions
in (8.18) are given by
FE = Dy@U) — [ Sy - VIU; — 2B pae” 287 [07 . A2 P,
(8.20a)
+ 2B B3e2 ((y1 + DAY PIN; (3 2) — [8, A2 PINi 9, P)

FY = D, @ 2) = [0, Yy - V]P — 2B B3¢~ 3 [8", 2], U,
(8.20b)
+2B:Bae? (37 P)IN;1Uj + y181 PIN; (97 Uy) — [07, 2INi[01 Us )

(8.20¢)
FY = D, @) [0, Yy - V]A.

In (8.20) we have used the notation [a, b] to denote the commutator ab — ba. Note
that two additional forcing terms are singled out on the left side of (8.18b); this is
because these terms provide a contribution that has to be absorbed in the damping
term.

The E;, energy estimate is obtained by testing with 97 U;, (8.18b) with
A2 P, and with k297 . Adding the resulting differential equations
produces the cancellation of all terms involving m + 1 derivatives, which upon
integrating by parts allows us to close the energy estimate. This computation is
detailed in Section[8.3]below. Prior to this, in the next subsection we give estimates
for the forcing terms defined in (8.20).
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8.2 Forcing estimates

In order to analyze (8.18) we first estimate the forcing terms defined in (8.20).
This is achieved next:

LEMMA 8 3. Consider the forcing functions defined in (8.20). Let m > 18 fix

0<é< 32, and define the parameter . = A(8,m) from (8.1) to equal A =
Then, we have that

16m2

(8.21a) 2 ) A'Vlf \ﬂ[(f,.’ PU;| < (5+98)EE + e M1,
lyl=m
821b) 2 > )L""f |70 20 2| < (24 88 EZ + e~ MM,
lyl=m
(8.21¢) 2 3 Al 2/ |\ FD 9| < 2+ 48)EZ + e M,
lyl=m

for ¢ taken sufficiently small in terms of m, 8, A, M, and k.

PROOF OF LEMMA [8.3] Throughout this proof, when there is no need to keep
track of the binomial coefficients from the product rule we denote a partial deriva-
tive 0¥ with |y| = m simply as D™,

Upon expanding the commutator terms in (8.20), the forcing functions defined
here may be written as

(8.22b) ﬁ'()’) ﬁ(m) ﬁ-(<m)
(8.22¢) y(y) gggy) ny f(<m)

where the upper index (m) indicates that terms with exactly m derivatives are
present, while the upper index (< m) indicates that all terms have at most m — 1
derivatives on them. These terms are defined by

TG = = (Yudugudr @ 1 Us + ;910,07 Uy + 0¥ gud Uy + 8V hd,Us)
— 2B B3(vpue2 0 (A2 PIN)IY T3, P 4 291 PIN; H 23 AV P
+eT281y;8; (PPN T4 3, P)
—2B:B3(e7 28708, 28 (A2 D) + €2 P23 PV (HIN))
(8.23a)

O ) (m)
=7y (1)“L FUn@ T FUi3)

7o = Z 2 (y)(ay‘ﬂguaﬂalv,-+ay—ﬂh‘f]8’38vUi>—
J=11Bl=j.B=<y
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m—2
2883y D (y)(eiay—ﬂ (A2 PIN)P Y 2
J=118|=j.8<y +e_%glvay—ﬂ(%2{@)aﬂav<@)

m—1
—2B:Bse>h Py Y. (g)ay—ﬂ(%%m)aﬂy
j=11Bl=jB=y

(8.23b)
_gem g p<m)
=y, 1t .0 T Fu.0)

for the ¥ U evolution, by
FID = (yudugud1d ™ P + y;0;hY3,0" 79 P + 8V gud1 P + 3 h 0, P)
— 2B B3(vpe2 8, (PIN)Y 13 Us + e~ 23,U,8" 2
e 2y, 2V 3, UL)

(8.24)
_. gm) (m)
JN«/T(l) +7 m(z)
Fo™ = Z > (;)(ay—ﬂ gudf 12 + 9 Phy, 0P 3, 2)
J=1|Bl=j.B<y
m—2 y
—2B:B3 Z Z <ﬁ) (e297 P (2IN;) 3P, U;
—2B:B301Uiyu(IN;) 07 1 2
(8.25)

= Z5m+ Zoum T o
for the 0¥ & equation, and by
FI = —(yudpugudrd w0 + y;8;hY 0,0V A + I gy A

(8.26a) + 3V hy; 9y )

(8.26b)
m—2

FEm =3 ¥ (;) (7 Peudb ot + 5P hyoPo,0r)

Jj=11Bl=j.B=y

for the d¥ .7# equation.

Proof of (8.21a). We shall first prove (8.21a)), and to do so, we estimate sep-
arately the terms in the sum (8.22a)). Let us treat the term which contains the
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highest-order derivatives, namely, .%, ((J'In) This term is decomposed in three pieces,
cf. (8.234), and we estimate each piece separately.
Recall that gy and /i, are defined in (2.33c) and (2.34c) and that

(8.27) Ui =U-NN; + A, T = 37 2W + 1+ Z)N; + A, TV,

Also, note that f and V are quadratic functions of y, whereas JN is an affine
function of y; therefore ¥ annihilates these terms and we havelﬂ

(8.28) BB ﬁ

(829) g 0"hy = 207297 U,,.

In view of these definitions, using that A < 1, ;81 < 1, and that d10Y ~~U;
produces a favorable imbalance of A!/2, for the first term in (8.23a) we have that

2 ) W'/ |F™, 07 Ui

ly|l=m
1)~ s I .-
<2E}(mA2||Vgu| e + mIVhyliLe 4+ 2e2[J[101U ||Loe + 272 [ VU L)

3 gy =2e207(IN-U) = 2¢2JN- 3"U + 2y, (IN,) 874U,

(8.30)

+ 4mEp||[(IN) Lo 01U [l U || grm—1-

Estimate (8.30) is the perfect example of the usage of the parameter A appearing
in the definition of the energy E,,: it yields a factor of A1/2 pext to the term
m||VgullLee & m in the first term of (8.30). Without this factor, the resulting

coefficient of E2 appearing on the right side of (8.21a) would be larger than 2m,
82

12m?2’>

we have that 2mAl/2 < §. Using the definitions of gy, hy;, and U, the bounds

@.3), @.5), @.7), @.11), @.12), (@.13), (9.1a), (5.12), the norm equivalence (8.2),

and the interpolation inequality (A.5) applied to VU, we estimate

which would not allow us to close the energy estimate. But by choosing A =

v S - 1
IVeullLe < [VUW)|Leo + |VGullLe < 1 + €%,
IVhyllze < 4,

101U [[Loe < Se™2 001 W [lLoo + |01 Zl|Loe + 20101 4]l Loe < L(1 +e5)e™3,

VUL < e,
1
IUN) oo < &4,

2m—=7

[1UllLoe IU Nl gim—1 =< Cm||31U||2’" 5||U||,2L}’fn

2m—3

< Ul gm + CplUlld <2472 Epy+ 7

10Note that (8.28) holds whenever |y| > 4. This is because g7 = Zﬂlﬂre%(U-NJ+ V-NJ— 1),
with V' - NJ being a cubic polynomial in y and f a quadratic polynomial in y.
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for an arbitrary § € (0, 1), upon choosing ¢ to be sufficiently small to absorb
the stray powers of M and all implicit, §-dependent, and m-dependent constants.
Combining the above estimates with (8.30), we obtain

(m)
2 ) )L""f |y 8 Ui
ly|=m
26 1 1 1 3
(8.31) <2E5(§(1+ &%)+ med + 1+ 4 + 26%)
A Emet QAT Ep + ™)
<Q+8EL + e,

Quite similarly, using that A < 1, that ;83 < 1, and that d19Y ¢+ & produces a
favorable imbalance of A!/2, for the second term in (8.23a)), we have

o) Z Ah’l F(m)

U2 Uil

ly|=m
<4E2 (mx%e% |7V (A2 PIN) | oo
+2me2 | PING A || oo + me™ 2| 7N (H2P)|| ).
Using the estimates (9.1a), (8.3)), (8.13), and (8.15) we obtain that
|27V (A2 PIN) L < (4 +eB)e3,

| PING A || Lo < 3673,
| AN P) L < (5 + e%>e—%.

(8.32)

|

Using the above estimates, and recalling our choice of A = T 6 ——, the bound (8.32)
becomes
2 3 Al /R Fim, 7 U]
lyl=m
(8.33)

<4E? (%(% + sé) + 2med 4 ms(% + 8%))
<$E,,.

upon taking & to be sufficiently small. Lastly, for the third term in (8.23a)), we
similarly have

i m) 8y
2 ) AV/ [Fy 1387 Ui

lyl=m
834) < 4Ene 2|VP| Lo | 2P gm

+4e2 || P||pol|01 Pl Y W'/ 197 (A2IN) - 97 U |.
R3
lyl=m
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For the second term in (8.34) we recall that JN is an affine function, and thus
D2(@IN) = 0. From the Leibniz rule, the Moser inequality (A.4), the estimates

@.1a), (9.1a), (8.3), (8.13), the interpolation bound (A.5), and the norm compari-

son (8.2), we moreover have that
8 (S2IN) — 272IND? ||

m—1
< e | UN) ullLoe vl 4 (A2 L2 + CllIN|Loe Y DT #2 D™ 2|2
j=1
(835) =Cnm £2¢ 3| A Lo | AN - 1+CmIIV%IILoollﬁf||Hm !

N\'—‘

_s
< Cpe ZII%IILOOIIV%’HZ’" ? II%IIZ’; g CmIIV%"\IZ’" : II%”IIZ,; 5
m(g%g 2)2m S(A_TEm)%;Z 3

/\

I/\
ah—-

e 2En +82€ -

by taking ¢ to be sufficiently small in terms of m and A. From (9.1a), (8.3), (8.35),
the definition of the E;, norm in (8.1), and the Cauchy—Bunyakovsky inequality,
we deduce that
836) > Al / 107 (A2IN) - 0V U | < 2eTe 2 E2 + g™ + 3ky ' E2.
R3
ly|=m

The above estimate is combined with the bound

1 K
12191 2o < (5 +e¥) €75
which follows from (8.13) and (8.15), and with the estimate
IV 2L |2 P g < Cme™2 (12| g + k0l ) gm)
=< CmKOe_%/\_%Ema

which follows from the fact that kg > 1, the Moser inequality, (8.2), (8.3), (8.13),
and (8.15) to imply that the right side of (8.34) is further estimated as

2 )" )LIVI/ ESm 7 Uil
lyl=m
-2 2 —s Ko 1 L 552 —s —1 52
< Cmkod” 2 Ege ™ +4 (2 + 68 )(2e3e 2E,, +ee° + 3k Ep,
(8.37)
< (B+§)E2 +e2e™,

after taking ¢ to be sufficiently small, in terms of 8, kg, and m.
The bounds (8.31), (8.33), and (8.37) provide the needed estimate for the contri-

bution of the .Z, [(]m) term in (8.22a)) to (8.21a)). It remains to bound the contribution

from the lwer order term .7 ; (< ) , which we recall is decomposed in three pieces,
according to (8.23b). Next, we estimate these three contributions.
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The difficulty in addressing the .% (<'(")) term defined in arises due to the
fact that the bootstrap assumption for A in (4.13) does not 1nclude bounds on the
full Hessian V2 A. Therefore, we need to split off the 4, (i.e., U - T”) contributions
from the W and Z contributions (i.e., U - N) to this term. Using (8.27) we write
the first term in (8.23b) as
(8.38) TG = A+ Iy + I,

where

m—2 V
-y > p 0P ey dfa (U -NNy),
J=1|Bl=j.B=<y

m—2 y
-y ) 8 0P gy 0P (0,4,T7),

J=11Bl=j.B<y

m—2
SR ; 0By 089, U;.
J=11Bl=j.B<y
We estimate the contributions of the three terms in (8.38) individually.

First, for the .#] term in (8.38), by Lemmalenh q= Mf), we have that
> W'/ .71 97 U |
839 y=m R

HDmgUHL’HDmUHLZHngUH |02 NN [ DU o

where a and b obey a + b = 1 — 5-—;. Note by m 2.33¢) that gy does not include
any A term. Thus, using the bootstrap bounds (@.1)-(4.12), or alternatively by
appealing directly to (4.7), (9.1a), and the last bound in (9.4), and the definition of
Z (s) in (4.4), we deduce that

840) |20 Luirrisy S M1 ey + M2 22 ()| S M

since g € [%, 6) for m > 18. Similarly, from the first four bounds in (4.24)
(bounds which do not rely on any A estimates) and from (9.1a) (which only uses

(4.1a) and (4.5))), we deduce that
2 sy -1 _ 1
|D ((U'N)N)Hm(,zr(s)) < Me 2|y GHL‘I(%'(S)) + Me™* | 2 (s)|
< Me™3.

Moreover, from (8.28), the bounds listed above (8.31), the Poincaré inequality
in the y-direction, and the fact that the diameter of .27(s) in the e, -directions

(8.41)

) 1 s
is 466¢3 we have that

s 1 s
(8.42) ID™gu |2 S e Ul gm + 51U gma S €2 MU || gyom-
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By combining (8.40)—(8.42) we obtain that the right side of (8.39) is bounded from
above as

[psu|3=1D7U 72| D%gu |17 | D> - NN |17 | DU | 2

S @ U] )| U M2 (M0 U
b (a+b Ds H Hl+a+b

2—a—
<M gm

Recalling from Lemma IE that 1 —a—b = 5 ml_ 7 € (0, 1), using the norm

equivalence (8.2)), by Young’s inequality with a small parameter § > 0, we have
that the left side of (8.39) is bounded as

(atb—1) —m(1+a+tb)
2. A'y'/ |1 U] = CuM 205 T2
ly|=m

<8E2 + e s M43,

In the last inequality we have used that by definition A = A(m,§), § € (0, 32]
a fixed universal constant, and Cy, is a constant that only depends on m1; thus, we
may use a power of M (which is taken to be sufficiently large) to absorb all the m
and § dependent constants.

Next, we estimate the ., term in (8.38). First, we note that by (A.3) we have

m—2
”‘ﬂZHL2 < ZHDm - JDgUH 2(m l) HDJ(BIA TV)H ’)(rn 1)
j—l

m—1—j m—1—j

S anUu e |Dgor 17T 181 Ay T”nHm oA, T 2T

Then, by appeahng to (2.33¢), @.7), @.13), (9.1a), (9.4), (8.2), (8.42), and (A.4),

we deduce
221l 2

m—2 . L
s S (U] Hm)%(nAuHm + Mee™ ") i1 (M%) T
;'=1

m—1—j m—1—j

< Z (A_fEm) R (k_fEm + Mse_ﬁs)m.1 (Me™*) m=1

< (Ms)m/\—fEm + Me™*

since || Dgy || < 1. By taking e sufficiently small, in terms of M, A = A(m, §),
8, and m, we obtain from the above estimate that

(8.43) 2 ) A'Vl/ | I 0V U;| < SE% +e*
ly|l=m
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for all s > —loge.
At last, we estimate the .#3 term in (8.38), which is estimated similarly to the
S5 term as

m—2 m—1—j m—1—j

(BEYVEIS ZIIhUIIH’?nl IIDhull’" 9y Uzll}’j,,,, Uil st

From (8.29), the bounds ), @.12), @.13), (9.1a), and the Moser inequality
(A.4), we have

1hllgm < €3 INU -NJ| g +ce™ 3 4, T7
< Me3||U | o + Mee™ "3
On the other hand, by (9.5) we have |Dhy ||~ < e™*, while from {.7), (¢.12),
(@.13), and (8.27) we obtain HVU HLOO < es/2, Combining the above three esti-
mates, we deduce that

||H7775

m—2 m—
1502 5 3 (Me 31U g+ 72) 7 T U e
SMe?|Ullgm +e™°
from which we deduce
(8.44) 2 ) A'Vlf |73 U;| < 2 EL + ¢

ly|=m

upon taking M to be sufficiently large in terms of m, and ¢ sufficiently large in
terms of M. Combining (8.43), (8.43), and (8.44), we have thus shown that

(8.45) 2 ) /\M/ F,(f’(”l) ;| < (28 +62)E2 + M2,
lyl=m

We next turn to the second term in (8.23b), which involves only derivatives of
2P, #, and IN. For the first term (the one with an e5/2 prefactor) we apply the
same bound as in (8.39), while for the second term we use (A.3) to obtain

(<m)
o) Z llylf J\U,,(z)ayU"

ly|=m
< (2| D" 2N 1) D™ 2
x (3] D? (%Z%MHM)I | p22| [ pmU| s

m—1—j

2“%29”5’17’71 ||D(%2,@)||m 1”:@”;}’”1 ”v@”Lm 1
Jj=1

o™ ]2
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(8.46)
=7+ 7,
with ¢ = W, anda+b =1- 1_4. Recalling that & = S 7! =

(U -N— Z)#~1, the definition of /7, our bootstrap assumptions on Z and K,
exactly as in (8.41) we have the estimate

ID* P L2 sy S I1D*(U -N)llLa(2(s))
1
+ (ID?Z (oo + [|D |1 ||DU N — Z)|| o) | Z (s)]4
1
+ |U -N=Z||pee (| D*>H || L + | DA 00) | 2 (5)]
< Me %,

Thus, the Hessian of &2 obeys the same estimate as the Hesssian of (U - N)N in

(8.41). Similarly, by using (9.14a), (8.3), (8.13), and (8.15), as in (8.40) and (8.41),

we have
e2 | D2(A2PIN) || Lo (5))

s 1
S 3| DA P Laa(s)) + I DA P)||Lo| Z ()4 < M.

The above estimate is exactly the same as the Hessian of gyy bound in (8.40).
Clearly we have that 12 gm < A~72 E, and additionally, from the Moser in-

equality (9.1a) @ and (8.15) we have that
e%H%ZL@JN”H’" 5 e% (KOH%”HM + “«@HHm) 5 e%k_%Em’

which is the same as the bound on the H™ norm of gy obtained in (8.42). In view
of these analogies, proceeding in exactly the same way as in (8.43), we obtain that
the first term in (8.46) is estimated as

(8.47) T <8E2 +eSMAm3,
For the second term in (8.43) we recall that by the Moser inequality, (8.3), and
(8.15) we have ”‘%02’@”1?1" SN2 gm + ol N gm < A~2 E,,, and by also
appealing to (8.13) we obtain
m—2 m—1—j
F < A3 EL Y IDOAR AT IV 2
j=1
<A MeSEL < SEX

(8.48)

after taking ¢ to be sufficiently small to absorb the m, A, and §-dependent constants.
By combining (8.46), (8.47), and (8.48), we obtain that

(8.49) 2 ) A'V'/ | Z 0 Ui] < 28E2 + e~ MM,
lyl=m

At last, we consider the third term in (8.23b). Recall that from (8.13) that
e |01 2|~ < 1, and that since JN is linear in y, by the Poincaré inequality
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in the y-direction and the fact that the diameter of .27(s) in the é-directions is
4ete3, we obtain that 1722INl m S 7€\l ym- Thus, by appealing to (9.1a),
(8.2), (8.13), (A.3), and the Poincaré inequality in the y-direction we arrive at

o) Z AIVI/ (I<7213))37U1|
— R3
ly|=m
m—1 m—j—1
< Em ZIID(%ZJN)HZ@O‘ II%”ZJNIIH’jL ! IIa@IILm’” lII9”||1’;,,11 .
(8.50) j=1

m—1 m—j—1 1 i I e
< Ey Z(é‘e )Wl 1 ||%”Iil7n 1 m—1 (8562”9”['{,”)’”*1
j=1
<$Eg

upon taking ¢ to be sufficiently small, in terms of A, m, and «y.
The bounds (8.45), (8.49), and (8.50) provide the needed estimate for the con-

tribution of the ﬂl(;m) term in (8.22a) to (8.214), thereby completing the proof of
(8.21al). O

Proof of (8.21b). The proof is extremely similar to that of (8.21a). Comparing
the forcing terms in (8.24) with those in (8.23a)), and those in (8.25) with those in

(8.23b), we see that they only differ by exchanging U with & in several places;

in fact, here we have fewer terms to bound. The contribution from 9’;"21) is

estimated in precisely the same way as the one from ‘6}((1;?1)(1) in (8.31). Similarly,

. : o (m)
the contribution from % 2.02)

from 9((] )(2) in (8.33). Note that there is no third term in the definition of ﬁ (m)

and thus we do not need to add a (3 + &) to our error estimate, as we had to do for
the U forcing in view of (8.37). Next, .# (<m) " z=m) and F5™) are bounded

is estimated in precisely the same way as the one

Fr0y P20y 7 2.0
in precisely the same way as ((J<Tl))’ 9}(;'?2)) and 35[(]«?3)) in (8.45), (8.49), and
(8.50), respectively. To avoid redundancy, we omit these details. g

Proof of (8.21c}) Again, the proof is similar to that of (8.21a)), except that in
(8.26a) and (8.26b) we have much fewer terms. We need to be slightly careful
here, as the d” 57 evolution is tested with K(%BV%” , rather than just d¥ 77, and we
need to ensure that our damping bounds are independent of xo! The reason this is
achieved is as follows. For the terms that contain a D™ .7, such as the first two
terms in (8.26a)), there is no issue as each of the two powers of k¢ are paired with
an || || gm. An issue may arise in terms which contain D™U, such as the last
two terms in (8.26a). The important thing to notice here is that each such term is
paired with ||V3#|| L. As opposed to V&2, which satisfies |V 2| & %e_s/z,

by (8.13) we have that | V.27 ||L < &'/3¢=5/2. This additional factor of &'/3 is
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able to absorb all the stray powers of xg. A similar argument applies to the terms in
(8.26b)), showing that the resulting bounds are independent of x¢. The contribution

from .7 (y;") is estimated in precisely the same way as the one from ﬁg@(l) in

(8.31), while the contribution of .7 (y;m) is bounded in precisely the same way as
(<m)

yU,- ) in (8.45). To avoid redundancy, we omit further details.
8.3 The E,, energy estimate
We now turn to the main energy estimate for the differentiated system (8.18).

PROPOSITION 8.4 (Hm estimate for U, &2, and 7). For any integer m > 18,
with 8 and A = A(m, §) as specified in Lemma|8.3| we have the estimate

(8.51) E; (s) < e_z(s_SO)E,%, (so) + 3e—sM4m—1(1 _ e—(s_so))
forall s > so > —loge.

PROOF OF PROPOSITION[8.4. We fix y € NS with |y| = m, and consider the
sum of the L2 inner product of with 247137 U? | the L? inner product of
(8.18b) with 2217157237 P and the L2 inner product of with 2/(3)&“;'87%”.
With the damping function %), from (8.19) and the transport velocity #7; defined
in (2.39¢), using the fact that Q is skew-symmetric and that (35 + ¥y - V). = 0,
we find that

dim/ (187U + 218" 22 + k318" H )
N R3
i W'/ (22y —div¥y) (107U 2 + 22 2 + 30" )
R3
+8V1,31,33/\m/ A PN U)e2d) P
R3
+4ﬂz,33?t“7|/ (@Y PYA2IN- 0" U)e29, P
R3
+ (Y 2)2#2Je3 9, (U -N)
(8.52) V
+4pepad? [ AP (SIN- T U@ 2)
R3
+e2J31(N-3YU) (3 2))
+4,3r,33l|’;|/ AP (e 2(9 Uy)dy (3" P)
R3
+e72(9 2)0,(3Uy))

= 2317 / (F U+ 2 FD 0 2+ GFD ).
R3 '
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Integrating by parts in the last two integrals on the left-hand side of (8.52), we get
4ﬂtﬁ3k|’7|/ AP (e3I(N- YUY (I D) + e2Jd1 (N -3V U) (Y 2))
R3

+4BepaA7 [ PP Q U@ P) + @ P )
R3

= —4131,33)“];'/RB(€§31(<%”232)J(N-8”U)
+e720,(H2P) (3 UL)) (3 P)

where we have used that d;J = 0. Therefore, upon rearranging, the energy equality
(8.52) becomes

d .
%AM[M (107U > + 2|9 2| + k219" %)

+ A7l / (22, —div¥y) (107U |2 + 2|9 212 + 13|97 )?)
R3

+ 8718 BaAl7! / A2 PN U )30, P
R3

(8.53) 5 .
+4ﬂrﬁsk'y'/ (0 2)2#%Je29, (U -N)
R3

— 208" P)AIIN - U)e2 P H
—apepail?! [ @U@ 2, (22)
R3

= 2)17! / (ZR U + AT 0 2+ GTY o).
R3 ’

We shall next obtain a lower bound for the second, third, and fourth integrals on
the right side of (8.53).
For the second integral, we recall (8.19), use (2.39¢), and the bounds (4.11),
(9.4), (9.5), and (5.12) to obtain the lower bound
29, — div ¥y

(8.54) = lyI=3 + 2y + @n — D(BP1IOW + 0:1Gu) — dvhyy
1
> |yl =3 +2y1 — Bef1(2y1 — 1)y —eTe.
For the third integral, we note that by the definitions (2.37) and (2.41)
(8.55) 2NV P = e IVW —VZ - LSVK

and thus, from @.11), @.7), @.12), @.24), (5.12), the third integral on the left-hand
side of (8.53) has an integrand which is bounded as

8¥1B B3 2| (3 PYI(N- 37 U)e2d; 2|
YU |2 + 2|8y 2|2
< 4y, B B3l e |91 P| <

(8.56)
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< 2y1B:Bad| i W — 20,7 —v_lSe%alK‘
< 2y1Bes(1 +2M 2e™)
< 2y1B:Bs + 2.

Lastly, we compute d1 (U - N) from (2.37), 9, &2 from (8.55), and by using 4.11),

@.7), @.12), @.14), @.24), (5.12), (8.3), and (8.15), the integrand in the fourth
integral on the left-hand side of (8.53) may be estimated as

4B.B3|(8" )2 A3, (U -N) —2(3" P) A IN - 3 U)e 29, 7|
U 1 229 P2
4B B3| (07 U,) (0¥ P)e20, (#72 P)]
PUR + A2 P2

< 4BcBs (Je3[01(U -N)| + de2 | 20,] + Jor1e™3 |0, (#22))
<4B:B3 (3 + Me™)
<2B:B3 + ez,

(8.57)

Combining the bounds (8.54), (8.56), and (8.57), with the energy equality (8.53),
we arrive at

d .
—/ AU 2 + %18 22 + k318" #17)
ds R3
(8.58) + T [ AP0 UP N0 P 4 G )
<2217l f \FD U + 2T 8 2+ TN 8,
R3 /

where we have denoted

L

1
Dhotar = ¥ — 3 + 271 — BeB1(2y1 — 1)y — €16 —2y1 B B3 — 2B B3 — 2¢2.

The crucial observation here is that because 81 + 3 = 1 (cf. (2.17)), and appealing
to (4.3), the damping term P, has the lower bound

1

1 1
(8.59) Drotal = V] — % +2y1(1 —By) —2B:P3—eT6 —2e2 >m —%

for & taken sufficiently small in terms of o and m. Upon summing over |y| = m,
the energy inequality and (8.58) and the damping lower bound (8.59) thus yield

d
%Ei +(m—3) £,

=y Mm/

3
ly|=m R

(8.60)
(D U + 2 FD 2+ T 9 ).



74 T. BUCKMASTER, S. SHKOLLER, AND V. VICOL

We are left with estimating the right-hand side of (8.60), which is the content of
Lemmaabove. By Lemma , for0 <§ < &

32>
L E2Z(s) + (m — 6)EZ(s) < (9 + 218)EZ + 3e S M*™ !,
and hence, by since m > 18, we have that
4By +2EL <3S MYL
and so we obtain that
EZ(s) < e 260 E2 (s0) + 3¢ MAmT (1 — e 60,
forall s > 59 > —loge. This concludes the proof of Proposition 8.4} O

In conclusion of this section, we mention that Proposition 8.4/ applied with 5o =
—log &, in conjunction with Lemma|[8.2] yields the proof of Proposition

PROOF OF PROPOSITION 4.3l The initial datum assumption (3.23) together with
the first bound in (8.5) implies that

E,i (—loge) < 2/(38.
Thus, from @) the second bound in (8.5)), we obtain
e W3, +1Z13,., + 1407, + 1K17,.,
<AVTME2(s) 4+ 4%
<8igA M le™ L 124 e MM (1 — g7 e ) - 4e7 S
<16k ™™ e ™ e MM (1 — e e ™)
by taking M sufficiently slow. The inequalities (4.16a)—(4.16b) then follow. O
9 Auxiliary Lemmas and Bounds on Forcing Functions
We record some useful bounds that will be used throughout the section.
LEMMA 9.1. For y € Z (s) and for m > 0 we have
V7 1+ [V (N = No)| + [V™(T = Tp)|

n

9.1a) F VU= 1)+ VU = )] < eM2e™ "5 |52 < se™ 35,

O.16) [V f| + [97N| £ M2e™"275 37 < e 3,

Moreover, we have the following estimates on V

M ifly| =0,
M2e2e=3¢ iflyl=1landy; =1,

92) 7V S {M2e3e™5  iflyl = land y1 =0,
M4e3e~s ifly| =2and y1 =0,
0 else.
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forall y € Z (s).

PROOF OF LEMMA[9.1l The estimates follow directly from the defini-
tions of f, N, T, and J, together with the bounds on ¢ given in (4.1a) and the
inequality (4.5). Similarly, (9.1b) follows by using the ¢ estimate in (@.1b). To
obtain the bound (9.2)), we recall that V is defined in (2.31), employ the bounds on
£ and O given by (@.1b) and (4.2), and the fact that |R — Id| < 1, which follows
from and the definition of R in (2.2) of [4]. O

9.1 Transport estimates

LEMMA 9.2 (Estimates for Gy, Gz, Gy, hw, hz,and hy). For ¢ > 0 sufficiently
small and y € Z'(s), the function Gy satisfies

Me™3 + MZ|y e + 35| if|y| =0,

MZ 1 . _ 2=
9.3) 07Gw| < e i'n Oand|y| = 1,
Me™> ify = (1,0,0) or |y| =2,
1
Mze™ if y = (2,0.0).

the functions Gz and Gy satisfy
|87 (Gz + (1 = B2)e2ko)| + 8 (Gu + (1 — Br)e2wo))|

1

(NI

g2e iflyl =0,
©.4) M2 i =0and |y =1,
: ~Memz o ify =(1,0,0) or |y| = 2,

Mze™S ify =(2,0,0).
and finally, the functions hy, hz, and hy satisfy the estimates
10 hw| + 10" hz| + [0 hy |

S

e 2 if lyl =0,
e ify1r=0and|y| =1,
©.5) <le i 7! .
e n o if y = (1,0,0) or (Jy| = 2and |y| = 1,2),

e~ mm=s) ify = (2,0,0).

Furthermore, for |y| € {3,4} we have the lossy global estimates

lyl—1

(96) |87’GW| 5 e_(%_27n77)s’
9.7) 0"hw| < e,
forall y € Z (s).

PROOF OF LEMMA 0.2 The bounds for the first three cases in (9.3) and (9.4)
are the same as in lemma 7.2 in [4]]. It remains to consider the case y = (2,0, 0).
By (2.33), we have that

2Gw| + |13Gz| + |83Gy| < e2]832

s
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so that an application of (4.12) provides the bounds for both (9.3)) and (9.4).

For the estimates (9.5)), the proof of the first three cases is given in lemma 7.2
in [4]. For the case y = (2,0, 0), by (2.34), we have that
B0y + [2hz] + 02hy | 5 =3(572] + |Ra]) < MEe 4 ez,
where we have applied (4.12) and (4.17) to attain the desired estimate. 0

9.2 Forcing estimates

LEMMA 9.3 (Estimates on d¥ Fyy, 0¥ Fz, and 0¥ F4). For y € Z (s) we have the
force bounds

e 2 if ly| = 0.

ey ify1 = land |j| =0,
(9.8) [0" Fw| + €2]3" Fz| < {e%° ify1 = 0and |7| = 1,

e (=215 ify; > Land |y| = 2.

-RB—7m2=5)s ] = V| =
e 87 a@m—n ify1 =0and |y| = 2,
M%e_s iflyl =0,

9.9) 07 Fao S { (M2 + MPy70)e™ ify1 = 0and 7] = 1.
e~ (=z=7)s s ify1 =0and|y| =2.

Moreover, we have the following higher-order estimate at y = 0,
9.10) @ Fw)°| s e @m0 for|y| =3,

and the bound on Fy given by

_1 .
n~o if|y| =0,
_2 .
©.11) 0" Fr| < Metr 17 f ify = (1,0,0),v
n~3 ify1=0and|y| =1,
1

iflyl =4and|y| < ¢,
holds for all |y| < Z.
PROOF OF LEMMA By the definition we have
107 F| < 107 (STh0uA0)] + 72|07 (A, TYN)| + €7 2]07 (A4, TYNy))|
+e72[97 (Vi + NuU N+ A,T5) 4, TN ) |
+e72|0% (S (AvTY, , + U NNy ) |
+ €507 (JS201 K)| + 97 (N, S8, K)] .

Iw.y
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The bounds for the first five terms on the right side follow as in the proof of Lemma
7.3 in [4], and we have that

e_% lf|)/| =0’
P o 2|y|+1 .
07 Fop| < |y | + 467 CTII0) if vz Land y] = 1.2,
~ sV Mze—s lf)/l = 0 and |)\;| = 1’
o~ (—zm=7)s ifyp =0and |y| =2

Invoking (3.4), @.14), (4.20), (9.1a) and Lemma[4.5] we obtain that

©.12) | Ayl S Y e 55107 (SP0K) |+ eld? P (S%K) ).

B<y, B1=0
ez if |y =0,
e~ (715 + ¥ ify = (1,0,0),
e 8s ify; = Oand |y| = 1,
613 S e Umisy s 4 ooz ; = 1 and :i: =1,
e~ (=215 ify = (2,0,0),
e~ Gtans)s ify; = 0and || = 2.

Using the same set of estimates we also obtain the lossy bound
(9.14) | Iwy| Se 2

for |y| = 3, which we shall need later in order to prove (9.10), and

(9.15) | I, S eb

for |y| = 4 and |y| < £, which we shall need later in order to prove the last case

of (9.11).

Then, additionally using (4.5), we obtain the stated bounds claimed in

for 0¥ Fyy. Comparing (2.35b) and (2.354), we note that the estimates on 07 Fz
claimed in are completely analogous to the estimates one 9% Fy up to a factor

of e”3.
Now we consider the estimates on F4. By definition (2.35¢), we have that
0¥ Fa, | S e 2[07(ST20,8)| + 75|37 (U -NN; + 4, T))TY)|
+ 7|3 ((Vie + U -NNy + A, T7)(U -NN; + A, T))T7 )|
+ €707 (U -NNj + Ay T TY) | + [ 207 (S2T},0,.K))| .

IAy
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Applying the bounds for the first four terms on the right side from lemma 7.3 of [4],
we see that

M32e~s if [y| =0,
(9.16)  [3Y Fav| S |Fay| + (M2 + M2y~ 6)e™ ify; = Oand || = I,
e_(1_2m377)s77_% ify1 = 0and |y| = 2.
Thus, combining the above estimates, we obtain (9.9).
Again, using the same argument as in lemma 7.3 in [4] for |y| = 3, and using
(9.14) yields
©.17) |0 Fw)°| S 15w, )] + e~ G g e Gmmins,

and also for all |y| < .2,

_1
ns(y) if |yl =0,
1 3
~ 1 _i+2n;—5 f =1 d Y :0’
(9.18) ‘8VFW‘§|fW,y|+Mgé e if y1=1lan Igl
n3 if yp=0and|y|=1,
1 if |yl=4 and |[y|<U{.

The estimate (9.17) verifies (9.10), while combining (9.18) with (.5)), (9.13) and
(9.15) verifies (9.11). O

COROLLARY 9.4 (Estimates on the forcing terms). Assume that m > 18. Then, we
have

e”s iflyl =0,
e_l%n_% ifyp =land|y| =0,
5 5
g2ay 24 i =0and|y| =1,
©19) R <A T 7!
n_\eo 3(2m—7))w4 ifyr =2 and |y| =0,
M3p~3 if y1 = land|y| =1,
M3y~Giza=)  ify; = 0and |j| = 2,
e iflyl =0,
M?e=3571s ify1 = Land |7| =0,
©920)  |FY|<{e ify1 = 0and |y = 1,
3s 1 4s 1
e 2 (M> + e Tn715)  ififyr = Land |y| = 2,
e—(%—4(2,2_7))s ify1 =0and |y| =2
M3e~s iflyl =0,
©21)  |[FEP| <M+ M2 6)e™ ifyy = 0and 7| = 1,
e_(l_ﬁ)sr]_% ifyr =0and |y| = 2,
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M3 ifyi =0and|y| = 1.2,
922)  |F| < {ese 358 ify, = Land |y] = 0,1, .
eS¢ TIYT ify; =2and |y| = 0

Moreover, we have the following higher-order estimate:

(9.23) [P0 < e G forfy| = 3.

and the following estimates on FV([Z ).

(9.24) ‘ﬁé}’)‘ 5gﬁn_% fory = (1,0,0) and |y| < &Z,
925 |FY| <etzy s foryr =0.7| = land |y| < 2,

9.26) |FD| 565 +e10(og M) for |y| = 4and |y| < L.

PROOF OF COROLLARY [9.4] First we establish (9.19). Note that in this esti-
mate |y| < 2, and thus by definition (2.45), we have

FP <107 Fwl+ Y. (|07 GwordPw |+ |97~ il 0,08 W)

0=<p<y

=:9

tly= > [ Puwofw.
|BI=ly|-1
IBS)”B1=V1

=19

We will first consider the case y # (2,0, 0), since the estimates are analogous
to the estimates in the previous paper. We have from corollary 7.4 of [4] that
71

_1, _s 1 vl 1
| 21| S Mn 3(6 2 +83(1|y|:2 + 1|y|=|37|=1)) and |.%]| < 1|y|:2M 3Ip 3.

Thus combining these estimates with (9.8), we obtain that

W L)
e 2 if [y| = 0,
eSS ify = (1,0,0),
927) 4+ {e 85 + Mein3 ify1 =0and |p| = 1,
(3_(1_%”7}_%5 + (Mg% + M%)r}_% ify; = land |y| = 1,
Pt =0 + (Mg% + M%)r}_% if y1 = 0and |y| = 2.

Then applying (4.5]) we obtain (9.19) for all cases except y = (2,0, 0).
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For the special case y = (2,0, 0), we have from (4.3), 4.6) (with ¢ = 2), 4.7),
(9.3), and (9.5),

A1 S M2e™ 73 4 M3e i 3yt e @ ms)s 4 M3eTnT3(y)
5 M%e_%n_%w%
From and (4.6)) (with g = % 171__22";1 ), we have that

4 1 1 29 8
|ayFw| s e_(1_2mf7)sn_175 S wZn_(@_3(2mf7)).

Thus since .%> = 0 for y = (2,0, 0), we obtain for this case.
Similarly, for |y| < 2, from (2.46) we have that

[FD| <187 Fzl+ > (|077PGz19P Z| + |0V Prty3,9P Z))

0<p<y
(9.28) =2 Z07 W)+ D [P uw)0P Z]
|BI=|y|~1
ﬂ§y9ﬂl:yl

=:|0"Fz| + A1 + 1)|=2| 1 Z9" (IW)| + S.

Utilizing the bounds obtained in corollary 7.4 of [4], we have that Utilizing the
bounds obtained in Corollary 7.4 of [4], we have that

18,287 (JW)| S M2e 35 (My 6 1y,— + M37 3 1y,51 + s¢73) for|y| = 2,
BAES e_%s(MZe_% + M38%1|J;|21 + Ms%n_%) for |y| <2,
I S (Lg=1 M2 + L=y M)e ™% forly| =2, [y > 1.

Thus combining the above estimates with and (9.8), we obtain that

o

o3 if [y| = 0,
e_SnTIS ify = (1,0,0),
|FD| s M2 3576 4¢3 { e85 4 Mo ifyy =0and || = 1,

e (1=5m=)s =15 4 M32e™5 ify; > land |y| = 2,
e GH3Z)s 4 Mese—s if y; =0and |y| = 2.

The bounds for ‘Féy)‘ are obtained in the identical fashion as the bounds for
(7.20) in [4].
To prove the ‘F I({y) ‘ estimate for |y| < 2, from (2.46), we have that

‘FIE'V)‘ < Z (‘BV_ﬁGUEhBBK‘ + ‘ay_ﬂhll“}auaﬂ]{‘) + 1|y|:2‘81K8y(JW)‘
0<p<y
+ Y | PUw)o K|

1Bl=lyl-1
ﬂSyvﬂl:yl



SHOCK FORMATION AND VORTICITY CREATION FOR 3D EULER 81
(9.29)

=9+ 1|y|:2\81K8”(JW) ‘ + S.
Let us further split .#; as

Si= Y |07 FGuhdPk|+ |07 Phijo P K.
0<B<y 0=<B<y

BN S1.2
Estimating .#] 1, using (4.14) and (9.4), we have that

2|91 K| ify1 =0and|y| = 1,
e"2[01K| + £2|VO1 K] if y1 = 0and |j| = 2,
| 711] S M?{e™310,1K| ify = (1,0,0),
e 2101 K| + Va1 K|) + £2|02K| ify; = Land |y| = 1,
e_s|31K|+e_%|8%K| ify; =2and |y| =0,
e™35 ify, =0and|y| = 1,2,
<ie™? ify;=1land|y| =01,
¢35 ify; =2and |y| = 0.

Similarly, estimating .#1 », using (4.14) and (9.5), we have that

e SIVK| ify1 =0and|y| = 1,
¢S (76| VK| + |V2K)) if y; = 0and || = 2,
| 71| < Jes s VK] ify = (1,0,0),

e~ (78 (VK| + V2K)) + [V1K])) ify1 = Tand|y| = 1,
e (e~ U=m=s)5|VK| + n76|V3;1K|) ify; =2and [y| =0,

¢3S ify1 =0and |y| = 1,2,
<ef e 356 ify; = land || = 0,1,
_(5_ 3 )s .
e \272m=5 ify; =2and |y| =0.

For 1},|=2|31 K87 (JW)

, using (4.7) and (.14) yields

¢3S if y1 = 0and |j] = 2,
91K @W)| < { M3ede> 73 iy = land 7] = 1,
M3ete 35" 3y3 ify; = 2and |j| = 0.
Next, for .#,, we have that
=35 ify; =0and|y| = 1,

e
|7 S 3e72 ify; =1land |p| =1,
0 otherwise.
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Thus combining the above estimates, we attain
M2e=35 ify; =0and |y| = 1,2,
|FO| < dese35p=6  ify, = land |p| = 0.1,
1 3 1 1
e8e 2%n 3y 4+ ify; =2and|y| =0,

where we used (withg = %g:%ﬁ).

The proof of the bounds (9.23)—(9.26) is exactly the same as the proof of (7.21)—
(7.24) in [4], with the caveat that we have changed the exponent of 7 in (9.24),
which reflects the change in exponent of 7 in the estimate (9.11) for y = (1,0, 0)
relative to the corresponding estimate in our previous paper. O

10 Closure of L°°-Based Bootstrap for Z, A, and K

Having established bounds on trajectories as well as on the vorticity, we now
improve the bootstrap assumptions for 3 Z and d” 4 stated in (4.12) and (4.13).
We shall obtain estimates for 3” Z o ®2° and 0¥ 4 o ®;° which are weighted by an
appropriate exponential factor e#S.

From we obtain that e#*9? Z is a solution of

05(e"53" Z) + DY (M9 Z) + (V7 - V) (€597 Z) = e FY),
where the damping function is given by
Dg’”) =+ —3y‘+;’2+y3 + BaBryrdo W.

Upon composing with the flow of ¥z, from Gronwall’s inequality it follows that
e™S13Y Z o dL0(s)]

S
Y, _ —
(10.1) <& *0d" Z(yo, log8)|exp( /

—loge

D(Zl’al/«) o q)ﬁo (S,) ds/)

A 5
+ / e‘”/|F§’) o ®°(s")| exp (—/ D(Zy’“) o ®°(s") ds”) ds’.
—loge s’
Similarly, from (2.44c) we have that e/*9” A and e*S9" K are solutions of

35(e™ 3 K) + DI (587 K) + (Vy - V) (€50 K) = " FY,
where
DM = 4 B 4 BBy 00 W,
and hence, again by Gronwall’s inequality, we have that

e™S137 K o @7°(s)|

S
< e~1[3" K(yo, — log &) exp (— /

Dg,ﬂ) o (Dg’/() (S/) dsl)
—loge

(10.2)

N N
+ /1 elbs’|FI({y) o ®Y0(s")| exp (—/ Dg’“) o ®Y0(s") ds”) ds’.
—loge s’
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For each choice of y € Ng present in (4.12) and (4.13), we shall require that the
exponential factor p satisfies

(10.3) po< NEpREn
which, in turn, shows that
(10.4) DY < 2Bay1|81 W),

For the last inequality, we have used the bound |5;J| < 2, which follows from

(4.3) and (9.1a). Combining (10.3), (10.4), and (5.9), for s > s’ > —log &, we find

that
S
exp (—/ D(Zy’”“) o ®0(s") ds’)
s/
<exp ((u — —3y1+§2+y3) (s — s’)) <1.

Replacing B, with 81 in (10.4), we similarly obtain that for s > s’ > —loge,

S
(10.6) exp (— / DI o (s ds’) <1

N

(10.5)

Then as a consequence of (10.1), (10.3), (10.5), and (10.6),
e"S13Y Z o L (s)|

107y S & 19" Z(yo. —loge)|

S
+ / e‘”/|F§’) o ®°(s")| exp ((u — —3V1+;’2+y3) (s — s/)) ds’
—loge

e™S137 K o @20 (s)|
(10.8) < e "0Y K(yo, —loge)|

S
+ / e‘“/|F§V) o ®%°(s")| exp (([L — —3”1+;’2+”3) (s — s’)) ds’
—loge

and
e 19" Z o @) (s)
10.9 o /
(10.9) < e 3 Z(yg, —loge)| —i—f et |F§’) o ®Y(s")| ds’.
—loge
197 K o @70 (s)]
(10.10) s

S KO0 —toge)l + [ e EP 0 @2 ds'

—loge
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10.1 Estimates on Z

For convenience of notation, in this section we set ® = ®°. We start with the
case y = 0, for which we set &t = 0. Then, the first line of (9.20) combined with
(10.9) and our initial datum assumption (3.18) show that

N
200 5 1200~ loge)l + [ e a5
—loge
This improves the bootstrap assumption (4.12) for y = 0, upon taking M to be
sufficiently large to absorb the implicit universal constant in the above inequality.
For the case y = (1,0,0), we set u = % so that (10.3) is verified, and hence
from (3.18), the second case in (9.20), and (10.9), we find that

S
3591 Z 0 0(s)| < & 3191 Z (v, — log ) +/ ¢35 [FY) 0 020 (s")) ds’
—loge
S

_ 1
§1+M2/ (14 |@1(s"*) ™ ds’

—loge
s s 1
< 1+8310M2/ e3 (1 +|®1(s)]?) 5 ds.
—loge
Now, applying (5.8) with o7 = % and 0, = 12—5 we deduce that by taking &
sufficiently small,

(10.11) Me313,Z 0 B(s)| S 1,

which improves the bootstrap assumption (4.12) for M taken sufficiently large.
For the case that y; = 1 and |p| = 1, we set u = % so that

_ 3y1tyetys
2

=

n =3-Nn=-

We deduce from (10.7), the fourth case in (9.20), the initial datum assumption

(3.18), and Lemmawith o1 = 2,751—S_7,m > 18, and 0, = 1—25,that

35197 Z o d(s)|
< e72(3" Z(vo. —loge)|
(1012) s s —L s—s’
+/ (M% +Mgﬁezzgf7(1 +D1(s)?) B)e” 2 ds’
—loge
S1+ M2+ Mezn7 < M2,

This improves the bootstrap stated in (4.12) by using the factor M /2 to absorb the
implicit constant in the above inequality.

We are left to consider y for whichy; = 0and 1 < |y| <2.For|y| = |y| =1,
setting 4 = 5 (which satisfies (10.3)), we obtain from (10.9), the forcing bound
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(9.20), and the initial datum assumption (3.18) that

M
(10.13) €2|VZ o ®(s)| < 8_%|VZ()’0, —loge)| + ME/ e ds' <e'l?
—loge
Finally, for |y| = |y| = 2 we set u = 1. As a consequence of (9.20), (3.18), and
(10.9), we obtain

e*|V2Z o (s)|
N
< e 1 V2Z(yo, —loge)| + / e~ &= zm=1)5 g/ <1,

—loge

(10.14)

Together, the estimates (10.11)—(10.14) improve the bootstrap bound (4.12) by tak-
ing M sufficiently large.

10.2 Estimates on K

We shall now set @ = ®;°. For the case y = (1,0,0), we set & = % so that

(10.3) is verified, and hence from (3.20), the second case in (9.22), and (10.10), we
find that

A
3513, K 0 0(s)| < &3 (31 K (o, —log &)| +f 37 [FD (")) ds’

—loge

=
o0l—

s _1
<e4e / (1 +|@1(sH?) © ds,

—loge

so that applying (5.8)) with 67 = 0 and 0, = % and taking ¢ sufficiently small, we
deduce that

(10.15) 2513, K o ®(s)| < 7,

which improves the second bootstrap assumption in (4.14).
Next, we study the case that y; = Oand 1 < |y| < 2. For |y| = |y| = 1, setting

u= % (which satisfies (10.3)), we obtain from (10.10), the forcing bound (9.22),
and the initial datum assumption (3.20) that

e%WK o QD(S)‘ < 8_%‘61{()70, —logg)‘

10.16 s
( ) + M2/ e ds' < e'/?,
—loge

For |y| = |y| = 2 we set & = 1. As a consequence of (9.22), (3.20), and (10.10),
we obtain

e*|V2K 0 ()| < &7 V7K (yo, — loge)|
10.17 s
( ) +M2/ e_fds/ﬁsi,

—loge
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For |y1] = |7 = 1 weset u = % so that (10.3) is verified. From (9.22), (3.20),
and (10.8), we apply (5.8) with o7 = % and 0, = % to obtain that

%50,V K o 0(s)]
S , _1
<78 |91 VK (yo, —loge)] +eé/ ¥ (1 + \cpl(s’)\z) ’ s’
—loge

N
N s‘%aﬁK(yo,—loga)\ +8i/ et (1+|01(s)]) 7 as’

—loge

~
wIN

3 1 1
< e8 4 g4 < g8,

We next consider the case that y = (2,0, 0). From (2.44d), we have that
35011 K + 3+ B1BJdi W) K + (Vi - V)an K = F&O0,
and hence
2s (2,0,0) /25 25
(10.18) ds(e“*n15011K) + Dg (e=*n15011K) + Yy - V(e*’n15911K)
) — ezsn%FS(‘z,O’O)
where
DGOV =& 4 BB W
+ 1_1577_1 - %77_1 (yl(ﬂlﬂrJW + Gy) + 3hVva|)7|4) .

Composing with @, we find that
‘632&77%3111((5)‘

S
< ‘8_277T15811K(— log &) | exp (—/ D}?’O’O) o ®(s") ds’)
S

0

S S
+ / 12515 FEO0 6 o (s') | exp (— / D0 6 d(s") ds”) ds'.
S0 4

s

Thanks to (5.16) and (11.8), we have that

N
exp (—/ D}{z,o,o) o ®(s') ds’) <1,
S

0

and thus using the third case in (9.22), and the initial datum assumption (3.20), it
follows that

n15¢25(311 K o O(s)]

(10.19) 1 L [f s 4 1
sehiel [ @ iy as,

—loge
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Now by definition of the weight i, we have that
s _4 1 s 3L —_s _ L
e2n Bydod < (32;7 60 + ¢ 47 60)oCD
s _31 1
<e2n 60 o d + go0e 0’
31 1 3
<e2(1+4 |®])"30 + gooe 107
where we used (4.5) for the second inequality. It follows that
§ s Na—4 1 not ’
e2n(P(s7) Y (P(s), s")ds
—loge

y s 3 3o,
< (ez (1 + |P|)730 4 g60e™10° ) ds' S 1,

—loge

1 3 19 .
where we have used the fact that fflogs ge0e" 105 ds’ < goo as well as (5.8) with

o1 =12and op = %. Hence,

n%e?51911 K o ®(s)| < 8%,

which improves the fourth bootstrap assumption stated in (4.14).

10.3 Estimates on A

We can now close the bootstrap bounds (4.13) for 3¥ A. The bounds for the case
that y; = 0 and |y| = 0, 1, 2 follow the same argument as given in (10.14) in [4],
whereas the estimate for d; A makes use of estimates for the vorticity.

LEMMA 10.1 (Relating A and 2). With the self-similar specific vorticity 2 given
by (2.43),
e3J01dr = (@™ T8)aQ -T2 + 172 (0, W + ¢30,Z) — 3N,.0, 4,
(10.20a) — L+ e72W + Z)(curlg N) - T3 — A (curlz T2) - T3
¢TI Ay = —(@e 2 )@ Q-T2+ LT3 (9, W + €39, 7) — 3N, 43
(10.20b) + L+ e 2W + Z)(curlg N) - T2 — As(curlz T3) - T2,

Propositions {.6]and [6.1] together with the estimates (4.7), (.12), (4.13), (@.5),
and (9.1a), and Lemma([10.1 show that

1
(10.21) 35131 Av| S kZ e + (14 eY2M3) + (ko + &6 + Me) + Ms

1
=M=,

for M taken sufficiently large with respect to Ké /e Cro.a-
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PROOF OF LEMMA [10.1. We note that for the velocity 1 and with respect to the
orthonormal basis (N, T2, T?) we have that
curly it = (O3t - N — Ontt - T?) T — (dp21i - N — dpii - T?) T2
+ (0201 - T = 9211 - TN

Now, from the definitions (2.4), (2.10), (2.16), (2.23), (2.30d), (2.36¢)), and (2.43),
we have that

_K _E o ao —~— o~
(ae™28) " (3. 9)Qy.5) = (e 26 (x,1)) ¢(x.1) = BE.DLE. 1)
= &(%, 1) = curlz (X, t) = curlgi(x, 1),
In particular,
(@e™ 2 8) " (y,)Q(y, s) = curlg #(x. 1)

= curlg (§(¥1 — f(¥,1), %2.53,1))
We only establish the formula for 91 A3, as the one for 91 A5 is obtained identically.
To this end, we write

curlg 1t - T = T8z 1 (x. 1) - N — N; dx; 10 (x. 1) - T°.

(10.22)

By the chain rule and the fact that N is orthogonal to T3, we have that
O3, 1 (x. )T; = 95 1T] — fo Oy 0Ty + O, UT, = By 1u(x. )T,
The important fact to notice here is that no x;-derivatives of 1 remain. Similarly,
3%, 1(x, 1)Nj = 95, uNy — fi B 1Ny + 0, UNy = JOx, 1 + B, 21(x, N,

Hence, it follows that
curlg it - T2 = T38y, (11(x, 1) - N) — JOx, a3 — Nyydy, (i(x, 1) - T?)

+ 1(x, 1)+ (0x, T’Ny — 0, N T3)

= AT30x, (W + 2) —Jdx, a3 — Nydy, a3
+ (3w + 2N+ a,T) - (NT> — 073N)

where we have used (2.27), (2.26), and (7.3). The identities (10.22)) and (10.23)
and the definition of the self-similar transformation in (2.29) and (2.30) yield the

desired formula for d; A5. O

(10.23)

11 Closure of L*°-Based Bootstrap for W

The goal of this section is to close the bootstrap assumptions which involve W,
W, and their derivatives, stated in (4.7) and (4.8a)—.10).
11.1 Estimates for ¥ W (y, s) for |y| < £

The estimates in this section closely mirror those given in Section 11.1 of [4],
as such will we simply summarize the argument.
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The fourth derivative
Composing with the flow @7 (s), we have that for |y| = 4 that

% (ayW ° CDyWO) + (D%) o CDJV);)) (BVW o QDJV)‘?) = FV(&/) o ®7°,
where
(11.1) DY) = INBVINTL 4 gy (0, W + 31 W) = 4,

which is a consequence of (4.3) and (4.11). Then as a consequence of (9.26),
(11.1), and (3.14) and the Gronwall inequality we have that for all | yg| < £ and all
s > —log e such that |®}?(s)| < £ the following estimate

Hence the bootstrap assumption (.9b) closes assuming the ¢ is chosen sufficiently
small relative to M.

Estimates for ¥ W with |y| <3 and |y| < ¢

We first consider the estimate on (3% W)O for |y| = 3. Evaluating (2.50) at
y = 0 and applying (4.9b), @.10), (12.17), (9.23), and (@.3) yields the estimate

‘83(8” W)O‘ < e~ Gmmm=)s 4 M (log M)481170€_S+2’275*7 + Mste™s
(11.3)

s e_(%_ 2m4—7)s .
Using the initial datum assumption (3.15) and integrating in time, we may show
(11.4) T 0.5)] < Lot

forall |y| < 3, and all s > —log ¢, closing the bootstrap bound (4.10).
The bootstraps corresponding to 0 < |y| < £, then follow as a conse-
quence of constraints (2.52) which imply

W(0,s) = VIW(0,5) = V2W(0,s) = 0,

together with the estimates (4.9b), (11.4), and the fundamental theorem of calculus,
integrating from y = 0.

Note that the bootstraps (4.8a)), (4.8b) and (@.8c)), for the case |y| < ¢, follows
as a consequence of (4.9a)), assuming ¢ is sufficiently small.

11.2 A framework for weighted estimates

Let us briefly recall the framework for weighted estimates introduced in Section
11.2 of [4]. For brevity will drop some intermediary calculations. Suppose some
quantity %, satisfies an evolution equation of the form

(11.5) 3R+ Dy B+ Vw -V = Fy.

Weighting Z by n*,
q:=n"%Z,
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then g satisfies the evolution equation

(11.6) 3sq + (D —n""w - Vo) g+ Yw - Vg =n"Fgp.
N’
=:Dy =Fy

where 9, may be expanded as
(11.7)
Dg =Dz —=3p+3un~ =2un (yi(BoIW + Gw) + 3hjpyul¥1%) ..
=Dy
As a consequence of (.7), (4.5), (9.1b), (4.3), (9.3), and we have for all
s > —loge
(11.8) 1y < 5773 + 73,

assuming ¢ to be sufficiently small in order to absorb powers of M.

Using the evolution equation (I1.6), composing with the trajectories ®3°(s)
such that ®°(sg) = yo for some s¢9 > —log e with |yo| > £ and applying Gron-
wall’s inequality yields

g0 L) < lg(vo)|exp (— /

N
Dy o (s ds’)
0

S S
(11.9) + / |Fy o @30(s")| exp (— / Dy o @) (s") ds”) ds’.
K s/

0

For the special case £ < |yo| < £, we may may apply (11.8), (5.4), and the
inequality 2n(y) > 1 + |y|? to conclude

S
(11.10) 2u/ | Dy 0 @ (s")| ds’ < T01og ¢,
S0

forall |u| < % Consequently, the estimates (11.9) and (11.10) yield
g © D3 (s)]
N
< £77%q(yo)| exp (/ (Bu—Dgz—3un")o <I>5V°(S’)d8’)
50
(11.11)
N N
+ 5—70/ |Fg o ®@30(s")| exp (/ (B — Dz —3un")o CDﬁ?(s”)ds”) ds’'.
S0 s/

We will need to consider two scenarios for the initial trajectory: either sg > —loge
and |yo| = O or 5o = —loge and |yg| > £. We note that as long as |yg| > £, then
|70 (s)| > £ for all s > s as a consequence of Lemma.

Now consider the case |yg| > .Z. In place of for the case £ < |yo| < .&Z,
we have the stronger estimate

S
(11.12) 2u/ Dy 0 ®L0(s)| ds' < g6,
S0
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for s > —loge, and || < % Hence (11.9) and (11.12) yield
g © @30 (s)]

1 s
e® " |q(vo)| exp (/ (3u— Dy —3un~")o @{Vo(s’)ds’)
S0
(11.13)
1 § S
+e° / | Fy 0 ®30(s")] exp (/ (Bu— Dz —3un ") o cpfy(s”)ds”) ds'
S0 s’

11.3 Estimates of W (y,s), 31W (y,s) and VW (y,s) for £ < |y| < &

The estimates of W(y,s), o1 W(y,s) and §W(y,s) for £ < |y| < £ mimic
those given in Section 11.3 - 11.4 in [4]. As such, we prove only an abridged
summary of the arguments.

In order to close the bootstrap bound (4.8a) on W(y s) for |y| > £, we will use
the framework in Section [11.2 with Z = W u = —¢. With these choices, the
weighted quantity g = 77_1/6 W, the quantity 3 — D —3un~ ! present in (11.11)
is =B J1 W + 5 Ly=1and Fq = r}_%ﬁw.

Applying - , and (@.7), we have
(11.14) / Bl W] o @30(s") + 30" 0 @30(s") ds’ < 401og §
forall s > 59 > —loge. The estimate (5.4) and (9.11) yield the forcing estimate
(11.15) /S‘n_éFW‘OQDﬁ?(s/)ds’Seé log%
)

forall s > 5o > —loge, and £ € (0, 1/10].

Combining the bounds (11.14) and (11.15) into (I1.11), and using the initial
data assumption (3.13a)) if so = —log ¢, or alternatively if s > —logs, we
obtain

_1 ~ 1
(11.16) eIV (y.5)| < 1567
forall £ < |y| <% andall s > —loge. Where we have employed small powers of
¢ to absorb all the £ and M factors. The above estimate (11.16) closes the bootstrap
(4.8a).

We now aim to close the bootstrap bound @.8b)ond  W(y,s)forl < |y| < Z.
For this case, we set Z = W, u = 3 L and hence ¢ = 77%81W By (2.50) with
y = (1,0,0), we have 3u — Da; = —BJ(OW + 31 W), and Fy = n%F(l 0.0),

Similar to the estimate (11.14)), we may bound the the contributions to (I 1.1 1)
due to the damping term 3y — Dg by

|

N
(11.17) / BelJ(@1W + 31 W)] o @30(s") ds” < 801og .
50
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The contribution due to the forcing F, = n'/3 F, V(I}’O’O) is bounded using (5.4) and
(9.24) in order to attain

S
(11.18) / |Fyl o ®30(s") ds’ < 677 log 3.
S0

Inserting (11.17) and (11.18)) into (11.11), and using our initial datum assumption
(3.13b) when so = — log ¢, respectively (4.9b) for so > — log ¢, yields

(11.19) 16| W (v,9)] < £ge>
forall £ < |y| < % and all s > —log &, where we again have used small powers of
& to absorb all the £ and M factors. The above estimate closes the bootstrap (4.8b).
Finally, we aim to close the bootstrap on 61/7()1, s) for |y| = £. We set
% = VW and ju = 0, so thatg = VIW. From (2.50) with y € {(0,1,0), (0,0, 1)},
we have 3y — Dy = —B¢J01 W and F, = I?V(I}')
The integral of the damping term arising in (I1.11) is bounded using

by 40log £~!. The contribution due to the forcing Fy is bounded using (5.4) and
(9.25) in order to attain

M
(11.20) / |Fg| o @) (s ds’ < £12 log 5.
S

0

Inserting (11.14) and (11.20) into (I1.11), and using our initial datum assumption
(3.13c)) and (@.9b), we arrive at

=5 1
(11.21) VW (y.5)| < {5613

forall £ < |y|] < Z and all s > —loge, thereby closing the bootstrap bound
(4.8¢). We also note that the bootstrap bound (4.7) for the cases that |y| = 0. 1 and
£ < |y| < & follow as a consequence of (4.8) together with the W bound (2.48)
in [4].

11.4 Estimate for 3 W(y, s) with |y| = 2 for |y| > £

We now consider the case |y| = 2, and establish the third and fifth bounds of
(4.7). Unlike the bounds given in Section 11.6 of [4], the bound for d1; W makes
use of two weight functions, and requires a new type of analysis. As such, we now
consider the case that y; = 2 and |y| = 0. We have that

ds(n3d11W) + D5 "V 391 W) + Fi - Vo w) = 3 Fg ™,
=(2,0,0 - - y
GO0 _ 3 4=t 2071 (3 (BIW + G + 3 [F1%).

=9y

from which it follows that
11 11
s (3P H W) + 2500 3y T W)
+ Vi VST W) = piy i R,
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where
@(2,0,0)_§Jr - —QD _ 3 ,-3s,—1 1,,-1 =35 _ =2yl
w =571 n 4‘3 4 77"‘2‘# yi(e n )W
+ 39 P e =Yy,
_ _ _ _ +y]©
=%+n1—§Dﬂ—Ze 3541 41# 177 +151° Iyl
+ 2y (e —n72) ((BIW + Gw) + 315 vl ).
=Dy

and therefore

39501, W 0 ®}0(s)]
< ‘H%W_%allw(yo)‘ exp (— /s @&%,0,0) o ®Y0(s) ds’)
(11.22) v
+ / s\n%t/f‘iFV(Vz"”O) o ®I(s")| exp (— / ’ P00 6 90 (s") ds”) ds'.
s y

Since ¥~ < 5, we then have that Yy ~'n~2(yZ + |¥|®) < 1. Moreover, using

{.3), we see that
e—3Sw—1 < e—3sn < 408,

and thus, we have that
(11.23) 3oy I syttag
Again, since w_l < 1, then {.5) yields
[ e A I U
Therefore, we see from the definition (L1.7) of | 2y | that |2y | < %|@n |. It follows

from (11.10) that
(11.24)

s N
/s ‘(%@n + %91#) o @ﬁ?(s’)‘ ds' < %/s | Dy 0 &0 (s")|ds” < 14010g%,
0 0
for all |yg| > £. By (11.23) and (11.24), we see that (11.22) is bounded as
(11.25)

1 1 _ 1 _1
I3y ~391 W 0 @P2(s)| < €710 3y~ 4011 W(yo)|

N
+ 6_140/ ‘T]%w—%FV(I?;O,O) o (D%E)(S/)‘ds/.
S0

With the estimate (9.19) for F 15[3 ’0’0), we obtain that

1 1 3 8 1
3y 3 B0 s 73 sem g o,
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Hence, following (11.12)), we see that for | yo| > £,

Sl

s oo , _1
/ 3y F FY 0 0)0(s")|ds' 5[ (1 + 2365071045 < 075,
S0 S0

By appealing to our initial datum assumption (3.17b)) if 59 = —log ¢, and to (4.9a)
when s > —log ¢, the bound (11.25)) shows that

(11.26) I3y ™70 W o ®I(s)| S €14 < M A
By choosing first M sufficiently large, the bootstrap assumption is then im-
proved by (11.26).

It remains to consider the case |y| = 2 and |p| = 1,2. The arguments will
mimic those given in section 11.6 of [4], and as such, we provide an abridged
version of those arguments. For the case |p| = 1l and 1 = 1, we set u = %
whereas, for the case |y| = 2 and y; = 0, we set 4 = %. Consequently, the

damping term 3 — Dg present in (11.11) is given by
—%—ﬁrJalW for|y| =1landy; =1,

11.27 3u— Dy =
( ) ; 7 —BJ W for |y| = 2and y; = 0.

Let us first restrict to the case y; = 0 and |y| = 2. Analogous to (11.14), we
have

N
(11.28) / BelJaL1 W] o @32(s") ds’ < 401og ¢,
50
and analogously to (11.15)), applying (9.19), we have
§
(11.29) / s FP| o @)0(s") ds' < Ms log 1.
50

Substituting the bounds (11.28) and (11.29) into (I1.11), and utilizing our initial
datum assumption (3.17¢) when s = —loge, and to (4.9a) when s > —loge, we
deduce

1 o _ 1 = S 1
n7(N|VEW(y.5)| < L7105 (30) | V2 W(yo.50)| + ML~ 0log § < {5M®

where we have assumed that M is sufficiently large, used our choice £ = (log M)~>,
and assumed ¢ is sufficiently small relative to M. Thus we close the bootstrap
for the case y1 = O and |y| = 2.

We now turn our attention to the case |y| = 1, with y; = 1. Applying

and (11.28)) yields the damping bound
S "
(11.30) exp (/ (3/fL —Dgo q)?j‘?(s//)) ds//) < 6_12065 5
S/

for any s > s > s9 > —loge. Substituting (11.30), together with the forcing

estimate (9.19) into (11.11)), and appealing to our initial datum assumption (3.17a)
if 5o = —loge, and to (4.9a) when s > —log &, we deduce

1 1
(11.31) N3 (NI W(y,s)| < 1Mo
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where we have assumed that M is sufficiently large, used our choice £ = (log M)~>,
and assumed ¢ is sufficiently small relative to M. Thus we close the bootstrap (4.7)
for the case |y| = 1, with y; = 1.

11.5 Estimate of W(y,s), 31 W(y,s),and VW(y,s) for |y| > ¥

The estimates of W(y,s), d1W(y,s), and ﬁW(y,s) for |y| = £ are nearly
identical to those given in sections 11.7, 11.8, and 11.9 of [4]. As such, we prove
only an abridged summary of the arguments.

Consider first the estimate on W(y,s). We set u = —% and Z = W, so that
qg= n_% W . We have 3u—Dyp—3un~t = %n_l and F; = n_%(FW —e_%ﬁrk).
The contribution of the damping in gives us

N
_ _2 1
f I o dN(sds' < LT3 =eTe,
50

and we have from and (4.1b) the forcing bound
N
/ |Fy 0 ®20|(s)ds’ < e2.
50
Substituting the above two estimates into (11.13), we obtain
‘r}_éW o (I))V;?(s)‘ <1+ 8T19,

where for the case sg > —log e we used and W bound (2.48) in [4], and for
the case so = —log e, we used the initial data assumption (3.16a). Thus we close
the bootstrap bound in the first line of (4.7).

For the case d1W(y,s) we set ¢ = n%alw so that 3u — Dy — 3un™t <
—BJd W and Fqn% FV([}’O’O). Applying and Lemmaéyields

S
(11.32) / (B — Dy —3un') o @} (s)ds’ < £16 .
S

0

As a consequence of (9.19) and the fact that |yg| > %, we obtain
S
/ |Fy o d0(s")|ds” < &%,
50
Substituting the above two estimates into (11.13)), we obtain

where for the case 5o > —log ¢ we used (4.8b) and the W bound (2.48) in [4], and
for the case so = —loge, we used the initial data assumption (3.16b). Thus we
close the bootstrap bound in the second line of (4.7).

Finally, we consider the estimate of vW(y, s) for |[y| = Z. We set 4 = 0 and

qg= VW. The damping term is 34 — Dy — 3un~! = —BJ0; W, and so we may
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reuse the estimate (11.32). The forcing term f; may be bounded directly using the
third case in (9.19), which yields

N
/ |Fy o ®p0(s")|ds’ < £s.
50

We deduce from (11.13)) that
W o @0(s)] < 3.

where for the case so > — log &, we used (4.8c) and the W bound (2.48) in [4], and
for the case so = —loge, we used the initial data assumption (3.16¢). Thus we
close the bootstrap bound in the second line of (4.7).

12 Constraints and Evolution of Modulation Variables

12.1 Solving for the dynamic modulation parameters

In Section (2.7) we have used the evolution equations for W, VW, and V2w
at y = 0 to derive implicit equations for the time derivatives our modulation pa-
rameters. The goal of this subsection is to show that these implicit equations are
indeed solvable with the initial conditions (2.53). For this purpose it convenient to
introduce the notation

Po(bi,....balc1,....Cn) and Zo(by,....bpc1.....Ch)

to denote a linear function in the parameters c, ..., c, with coefficients that de-
pend on by, ..., b, through smooth polynomials (for #¢) and rational functions
(for Z¢), and on the derivatives of Z, A, and K evaluated at y = 0. The sub-
script < denotes a label, used to distinguish the various functions & and Z.
We note that all of the denominators in % are bounded from below by a universal
constant. It is important to note that the notation #¢ and % is never used when
explicit bounds are required. Throughout this section, we will use the bootstrap
assumptions in Section (4|to establish uniform bounds on the coefficients, which in
turn, yields local well-posedness of the coupled system of ODE for the modulation
variables.

The definition of £ in (2.55) may be written schematically using the notation
introduced above as

(12.1) K= ,@K(K,gb | Q,ie%hﬁ,,ie%G%),
where we have used the explicit formula (A.8) to determine the dependence of Z.

Once we compute h’V?, and GY, (cf. (2.60a)—(2.60b) below) we will return to the
formula (12.1). We point out at this stage that in below we will show that
both h’v?, and G%, decay at a rate which is strictly faster than ¢~ 2, which shows
that their contribution to £ will be under control.

Similarly, the definition of 7 in (2.56) may be written schematically as

(12.2) t=P(c.¢ | 0. 5-hyy),
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where we have used the explicit formulae (A.7b) and (A.9) to determine the de-
pendence of &7;.
The schematic dependence of Q1 is determined from (2.57). Using (A.7c) and
(A.10) and placing the leading-order term in Q on one side, we obtain
O = _e_%QluavAo + e_sQuéAg¢Mv +e QA g¢§u 2/3 039,27
+ e A b + L5 (G — 2000, A9, — 9,2°0,.43)
+ 827520, 2%¢os + ¢33)
+ 2%1 e~ )AOTZ(iw +e 2((avA0 3€ T2k + ZO)¢/W)A )byu
0
+ g hly W AYby + (sp15 e2h}y) — A%)dyy
= 3Balc = Z%)((k = Z°)(e 01, K® — e 30, K ) — 20,201 K),

(12.3)

which may be written schematically as
(12.4) O1v = P (k.9 | ge3hiy. e h.e™*0).

Note that once le is known, we can determine 715 and 73 by recalling from [4,
egs. (A.4)—(A.5)] that

2
ns npn3

1+ - i ion i _ [O
1(+n1) n1(1+n1) 2] _ _n®n__\j5 _ | ¥12
ni(1+ny) n (1+n )

wheren; = /1 — n% — n% Since the vector 71 is small (see (4.1a) below), and the
matrix on the left side is an ¢'(|11|?) perturbation of the identity matrix, we obtain
from (12.5) a definition of 7, as desired.

Next, we determine the dependence of h‘VLV’O and GYy,. Inspecting (A.7d)-(A.71)
and (A.10)—(A.11) and inserting them into (2.60b)), we obtain the dependence

Bl = T3 R (k,d | €750, €7 h) — R (A0) by 01 A7

Note that although h’V([), appears on both sides of the above, in view of (4.17) the
dependence on the right side is paired with a factor less than ¢™ < ¢, and the
functions ¢¢, are themselves expected to be < ¢ for all s > —loge (cf. (4.1a)

below). This allows us to solve for h’;,’o and schematically write
(12.6) Gy’ =2 Ry (kb | e 0,072 P) .

Returning to (2.60al), inspecting (A.7d)—(A.7f) and (A.10)—(A.11), and using (12.6),
we also obtain the dependence

(12.7) 3Gl = e 3 By (c.p | €50, e7%¢).
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Next, we determine the dependence of & . From (2.60a)—(2.60b), (2.61), (A.74),
and the fact that RRT = 1d we deduce that

& = Ri(RTE) = Ryt (5 (c + B2Z°) — yptg-e 3Gy )
. 0 ©,0
+ R (45, — spig-e3hi)
for j € {1, 2, 3}. Using (12.6) and (12.7), we may then schematically write
(12.9) § =X j (k.9 0,e7¢).

Lastly, note that <]5Vy is determined in terms of e2 Oy G(V)V (which we rewrite in
terms of Gl(f)V’ h’IfV’O and 0y I 12, via (2.63)) through the first term on the right-side

of (A.7¢)
By = =43 (Gydruy WO + 1 00y WO — B0y Fiy) + B2e® 00 2°
(12.10) - 2ﬂ1(Q;y¢;v + Otvdey) + (g 3Gy —k — B2 ZOND
+J0 Le3GY,,

(12.8)

J/U,B

and (2.60a)) is used to determine G%,. In light of (A.11), (12.7), and (12.10), we
may schematically write

(i.syv = %qﬁ,yv (KJP | e_st e—s(ﬁ) - Q§y¢§v - Q§v¢§ya
which may be then combined with (12.4) and (12.6) to yield

(12.11) byv = Bpyv (k. ¢ | €50, e75P)

thus spelling out the dependences of ¢ on the other dynamic variables.

The equations ([12 1), (12.2), (12.4), (12.9), and (12.11) only implicitly define
k.7, O1y. S 7, and ¢yv We may, however, spell out this implicit dependence and
arrive at an autonomous system of ODEs for all 10 of our modulation parameters,

cf. (12.12)—(12.13) below.

By combining (12.4) and (12.6) with (12.5) and recalling (12.11), we obtain that
q.by,, = %¢,yv(x,¢,ﬁ | e_sﬁ,e_sq'ﬁ) and 71, = %n,v(lc,qﬁ,ﬁ | e_si%,e_sq.ﬁ).

Therefore, since e™* < ¢ and the functions Z ,, and &, ,, are linear in e ™* 7 and
eS¢, then as long as k, ¢, and 77 remain bounded, and ¢ is taken to be sufficiently
small (in particular, for a short time after f = — log €), we may analytically solve
for ¢ and 7 as rational functions (with bounded denominators) of «, ¢, and 71, with
coefficients which only depend on the derivatives of Z, 4, K at y = 0. We write
this schematically as

(12.12) byv = Epyu(ic, P,1) and  fiy, = &y (K, ¢, 11).
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Here the &,y (k. ¢, 1) and &, v(k, ¢, 1) are suitable smooth functions of their
arguments, as described above. With (12.12) in hand, we return to (12.1) and
(12.2), which are to be combined with (12.6) and (12.9) to obtain that

(12.13) k=8l git), T=08E k. ¢.), & =6, (k).

for suitable smooth functions &, &, and & ; of (k, ¢, n), with coefficients which
depend on the derivatives of Z, A, and K at y = 0.

Remark 12.1 (Local solvability). The system of ten nonlinear ODEs described in
(12.12) and (12.13) are used to determine the time evolutions of our 10 dynamic
modulation variables. The local-in-time solvability of this system is ensured by
the fact that &g, yv, &n,v, &, &7, and & ; are rational functions of k. ¢, 72 and n3,
with coefficients that only depend on 9% Z°, 37 A°, and 9¥ K° with |y| < 3, and
moreover that these functions are smooth in the neighborhood of the initial values
given by (2.53); hence, unique C! solutions exist for a sufficiently small time. We
emphasize that these functions are explicit.

12.2 Closure of Bootstrap Estimates for the Dynamic Variables

Once one traces back the identities in Section[12.1 and Appendix [A.3 we may
close the bootstrap assumptions for the modulation parameters, (4.1).

The starting point is to obtain bounds for GI(,’V and h‘IfV’O by appealing to (2.60al)—
(2.60Db). The matrix .7#° defined in (2.59) can be rewritten as

AO(s) = (01V2W)°(s) = 1V W)° + 31 V) (s)
= diag(6,2,2) + (8, V2W)°(s).
From the bootstrap assumption (4.10) we have that |(31V2W)0(s)| < ¢1/4 for all

s > —log e, and thus

(12.14) (Do) <1

forall s > —log &. Next, we estimate 9, V Fyy,. Using (A.10), (A.11), the bootstrap
assumptions (@.1a)—.3), the bounds {.12)-(4.20), and the fact that ‘T,i’gw‘ <

||, after a computation we arrive at
VEY| S MeZe™ + M2e 307 mm=s)s 1 |0
(12.15) + Me—U=57)s

3 4
M3ge_§(1_2m—5)s

< sz‘hﬁ? + Me™(=zm=1)s,
Moreover, from (A.7d), (A.71), (4.1a), and (4.1b), the first line in (4.12), and the
previously established bound (12.15) we establish that

101VGy| + 01V Fyy |
(12.16) <e3HVZY + M3 T + &2 |h0

—+ Me_(1_2m577)s

: (15
582‘hl;[(,) + Me~Umzm=7)s,
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The bounds (12.14) and (12.16), are then inserted into (2.60a)—(2.60b). After ab-
sorbing the &2 ‘h'ﬁ(,) term into the left side, we obtain to estimate

(1217 G )]+ 15 (5)| 5 Mz,

The bound (12.17) plays a crucial role in the following subsections. We note that
form > 18 we have 1 — 5 ”;5_7 > %, and hence so the bound (12.17) implies that

‘G%,(s)‘ + ‘h‘é,’o(s)‘ < Me™4s/5.

The 7 estimate
From (2.56), the definition of d; GOW in (A.7b)), the definition of 91 FI9V in (A.9),
the bootstrap estimates (4.1a)—(4.3), (4.12)—(.14), and the previously established
bound (12.17), we obtain that
7] S 101Gy | + 101 Fyy |
S e2(01 2% + e72|V A + M|Vdy M2ee™5|4°14°)
(12.18) F M2e2¢73(9, A% + M3se™S + MeS|311K®| + Me3]9, S0
<MZe™ + Meze™ + Me 30~ m=5)5 1 M3ge® + Mese™

M —s
=7e

’

where we have used a power of M to absorb the implicit constant in the first in-
equality above. This improves the bootstrap bound for 7 in (4.1b) by a factor of 4.
Integrating in time from —e¢ to T where |Tx| < &, we also improve the 7 bound in
by a factor of 2, thereby closing the © bootstrap.

The « estimate

From (2.55)—(4.3), the bound (12.17), the definition of FIE)V in (A.8), the esti-

mates (4.12)—(4.14), and the fact that 2”;5_7 < %, we deduce that

k] < e3|GYy| + 2| Fy|
< Me 2Tz + (ko + Ms)Msée_% + M3e2e2 + M*2e™2
+ e_%(/cg + M?2)M?e + (ko + Ma)s%e_%

=l
&

e 10,

=

=
o

Here we have used a small (m-dependent) power of ¢ to absorb the implicit constant
in the second estimate above, thereby improving the & bootstrap bound in (4.1b)
by a factor of 2. Integrating in time, we furthermore deduce that

(12.19) k(1) — o] < &0

since |Tx| < e. Upon taking ¢ to be sufficiently small in terms of ¢, we improve

the x bound in (4.1a)).
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The E estimate

In order to bound the E vector, we appeal to (12.8), to (12.17), to the |y| = 0
cases in (4.12) and (@.13), to the bound |R — Id| < &, and to the |r2| estimate in

(4.1a) to deduce that

&/ S ko + 12+ e72|GY | + 145 + e2 |hly°

(12.20) s s
<ko+ Me+ Me 2Tmm—7 < ko,

upon taking ¢ sufficiently small in terms of M and ko. The bootstrap estimate for
¢ in (4.1b) is then improved by taking M sufficiently large, in terms of k, while the
bound on £ in (4.1a) follows by integration in time.

The ¢ estimate
Using (12.10), the fact that |N(1),uv| + |J?lw| < |¢|?, the bootstrap assumptions
(.1a), @.1b), (.10), the bounds .2), and the previously established estimate

(12.17), we obtain

- P 3
[fyo] < €2 (M=) 1 |3y, Fiy |) + €710, 20 + M4e2

5s

(12.21) + (Me™ 34 o7 4o + |Z0) M4 + M5e2e™ 3 o,

Using the definition of V2 FI9V in (A.11), appealing to the bootstrap assumptions

(and their consequences) from Section4] the previously established estimate (12.17),
and the fact that ‘T,i’,oyv ‘ + ‘N(l),/w ‘ + ‘J?uv ‘ + ‘Ng vy ‘ < |¢|?, after a lengthy com-
putation one may show that

‘avVFIS)V‘ Se3,

which shows that the term /2| Ovy F Ifl),| in (12.21) is subdominant when compared
to €*|dy, Z°% < M present in (12.21). In establishing the above estimate it was

crucial that e* |81va°| < e_%, which from (4.20) since m > 18. Combining the
above two estimates with the Z bounds in (4.12), we derive

‘(I.Syv‘ < e%(Me_% —l—e_%) M +M48%
(12.22) + (Me™ + ko + eM) M*e> + Me%e™
<M.

Taking M sufficiently large to absorb the implicit constant, we deduce |¢| < %M 2,
which improves the ¢ bootstrap in (4.1b) by a factor of 4. Integrating in time on
[—¢, Tx), an interval of length < 2¢, and using that |¢(—loge)| < &, we improve
the ¢ bootstrap in by a factor of 2.
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The 1 estimate

First we obtain estimates on | Q 1, |, by appealing to the identity (12.3). Using the
bootstrap assumptions (4.1a)), (4.1b), @.12)—(4.14), the estimates (4.2 and (12.17),
and the fact that ‘Tlgj&v ‘ < |¢|?, we obtain

O]
< M2e2e73(0, 40| + M*e2e |4 + 3[VZ0) + M2 =514
(M|V2A°| + |VZOYIVA%)) + M2ee™2|Z°||VZ0| + M3e2e™*| A0
+ 37%((|§A0| + M3887%)‘A0|)M28 + M38L7SWA0| =+ Mzs(Mef% + |A0\)
(ko + Me)((ko + Me)(e*|3 VK| + M2ee 2|VK®|) —2/VZ%e*|3, K°))

(12.23)

< Me2,
upon taking ¢ sufficiently small in terms of M. Moreover, using the bootstrap

. . 3 . . .
assumption |77| < Me2, we deduce that the matrix on the left side of (12.5) is
within ¢ of the identity matrix, and thus so is its inverse. We deduce from (12.5)

and (12.23) that

(12.24) | < Moe

upon taking M to be sufficiently large to absorb the implicit constant. The closure
of the 77 bootstrap is then achieved by integrating in time on [—e¢, T%).

D=

13 Conclusion of the Proof: Theorems 3.2 and 3.3

We first note that the system (2.32) for the unknowns (W, Z, 4, K), with ini-
tial data (Wy, Zg, Zo, Ko) chosen to satisfy the conditions of the theorem, is lo-
cally well-posed. To see this, we note that the transformations from to (2.32)
are smooth for sufficiently short time, and that is locally well-posed in the
Sobolev space H k for k > 3. Here we have implicitly used that the system of
10 nonlinear ODEs (12.12) and (12.13)), which specify the modulation functions
have local-in-time existence and uniqueness as discussed in Remark [I2.T, More-
over, solutions to satisfy the following continuation principle (see, for exam-
ple, [19]): Suppose (u,0,k) € C([—e, T'), H¥) is a solution to satisfying the
uniform bound |u(-,#)|c1 + lo(-.8)|ct + |k(-,8)|lc1 < K < oo, then if in
addition o is uniformly bounded from below on the interval [—e, T'), there exists
Ty > T such that (u, 0,k) extends to a unique solution of on [0, T7). Con-
sequently, the solution (W, Z, A, K) in self-similar variables may be continued so
long as (W, Z, A, K) remain uniformly bounded in H*, the modulation functions
remain bounded, and the density remains bounded from below.

In Sections [SH12] we close the bootstrap assumptions on W, Z, A, K and
on the modulation functions. By Proposition the density remains uniformly
strictly positive and bounded. Thus, as a consequence of the continuation princi-
ple stated above, we obtain a global-in-self-similar-time solution (W, Z, 4, K) €
C([—loge, +00); H™) N C'([—loge, +00); H™ 1) to (2.32) for m > 18. This
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solution satisfies the bounds stated in Sections 4.6 The asymptotic stability of
W(y,s) follows from:

THEOREM 13.1 (Convergence to stationary solution). There exists a 10-dimensional
symmetric 3-tensor o/ such that, with W, defined in Appendix IE we have that

the solution W( -, s) of (2.32a)) satisfies
lim W(y.s) = Wy (y)
S—>00

for any fixed y € R3.

We note that the proof of Theorem [I3.T is the same as the proof of Theorem 13.4
in [4] once we include the contributions of the entropy function K, which can be
estimated using (4.14). The limiting profile W, satisfies the conditions stated in
Theorem [3.2]due to Proposition[A.T.

The remaining conclusions of Theorem [3.2]follow from the statements given in
Sections [4.7]and [4.8] (for the time and location of the singularity, and the regularity
of the solution at this time), Proposition (for the vanishing of derivatives of
A, Z, and K as s — o0), Proposition (for the vorticity upper bounds), and
Theorem [7.4|(for the vorticity creation estimates).

The proof of Theorem is the same as the proof of Theorem 3.2 in [4]. The
addition of entropy does not necessitate modifications to that proof as the assump-
tions on the initial entropy in Theorem [3.2] (see (3.20) and (3.23)) are stable with
respect to small perturbations.

Appendix A

A.1 A family of self-similar solutions to the 3D Burgers equation

PROPOSITION A.1 (Stationary solutions for self-similar 3D Burgers). Let <7 be a
symmetric 3-tensor such that o\, = M ;i with # a positive definite symmetric

matrix. Then, there exists a C > solution W to

N[«

(A.T) —%Wﬂ‘f‘(%‘f‘VT/yi) I Wy +3-VWy =0,

which has the following properties:
o Wy(0) =0,0;Wy(0) = —1, 3, W, (0) =0,
o 0“Wy(0) = 0 for |af even,
e 0“W,(0) = o, for |a| = 3.

See appendix A.1 in [4] for the proof of Proposition|[A.T.

A.2 Interpolation

The following is taken from [4, appendix A.3]. We include the inequalities here
for convenience to the reader.
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LEMMA A.2 (Gaglia'rdo—Nirenberg—Sobolev). Letu : RY > R. Fix 1 <gqg,r <0
and j,m € N, andhiz <a < 1. Then, if

1 1—
p=ate(G-9)+1

then

(A2) 1D/ ullLr < CID™ul|%, u i3

We shall make use of (A.2) for the case that p = 27’.", r = 2,q = oo, which
yields

(A3) IID’<0|| am S ||<ﬂ||}§m ||<P||Loo ;

whenever ¢ € H™(R?) has compact support. The above estimate and the Leibniz
rule classically imply the Moser inequality

(A4 16 @l gm < @lzellel gm + 1Sl gmlellze

for all ¢, ¢ € H™(IR3) with compact support. At various stages in the proof we
also appeal to the following special case of (A.2)

(A.5) el gm—2 < ||<p||;}’,'n 1||</>||2”' %

for ¢ € H™~1(R3) with compact support. Lastly, in Section We make use of the
following:

LEMMA A3. Letm > 4and0 <[ <m—3. Thenfora+b=1— 2m 7 € 0,1
_ 6(2m—3)
and q = =5

(A6 [D¥Hy D g2 < D™, 1D 0|2, I D% 121 D20l 2.
See [4] for the proof.

A.3 The functions Gw, Fy, and their derivatives at y = 0

Using (2.13), the definition of Gy in (2.33a)), and the constraints in (2.52), we
deduce that the first and second derivatives of Gy, evaluate at y = 0 are given by|_|

(A72)  F£91Gfy = pre>91 2°,
(ATb)  F0,Gly = P2e20,Z° + 281 (Q1v + A%y0) — €2 -1} by

(A.7c) 3%311G€V = Bre231,2°,

s _3s -
(ATd) 531Gy = B2e2d1Z° —2B1e72 Oy1dyu,

"I Here we have used the identities: leL v = 0, NM vy = 0, and Tg gy
ND.v = —bpuv. N =0.

v

=0,NY, =0, and
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(A7) FdyGly = ¢ 3 (~dy + 2e"0, 2°
- 2,31(Q§y¢§v + Q§v¢§y + leé:jN(l),yv)

_s GY
(A7f) +eT G,

Appealing to (2.13) and (2.35a)), which is equivalent to

ﬁ%FW = —2,33ST;}LE)MAV + 2ﬂ1€_%AvT})Ni + 2ﬂ1€_%ijAvT;Ni

(gl — Bae TN (1 + e 2w — BEBR Z)) 4, TYNG
—2B3¢7 28 (AyTY, , + U NNy ) + BaS2 (e’ 91 K + Npdy K),

we may derive the following explicit expressions for Fy, and its derivatives up to
order 2, evaluated at y = 072 for the case of no derivatives we have

3 Fw
(A8) = —Ps(ic— 2°)0, A5 + 28172 01,40, — 5-hiy° A,

+ 3Bae2(k — Z°)(k + Z°)(¢22 + $33) + §Palkc — 2°)2e" 0, K°;
the first d; derivative of Fyy is given by

301 Fyy
= Ba(e™2 + 312°)3, A, — Ba(k — 231, A%, + 2B1e72 01,01 4%,

(A.9) — (Ah 0149 + 281750145 + ¢ 0,0)49) by,

= 3B3¢7 (1 + €31 2% (k + Z°) + (k= Z°)(1 = €201 2%)) (h22 + ¢33)

+ 1Balc = Z%((k = Z%)e* 311 K® — 2(e % + 3, 2%)¢° 8, K°);

the first V is given by
1 0
EBVFW
= —B3((k — Z°)dyu A% — 9,2°9,40) — 2B1e " AL yuv

+ 2,319_% QluavA?L —2p1e”? Qué‘Agfpuv
— B3¢722°9,Z%(paz + $33)
_ ,0
—2B1e73((e"2 Qpw + I AD, — Te73(k + Z)bun) AY)dyu
+ 1840 — Z%((k — Z°)(* 310 K® — e720,, K ) — 20, Z°€° 91 K);

12 : e NO O — v,0 N Jo  —
Here we have used the identities: N/L,/t = —¢o2 — ¢33, Ty = 0, Ni = 0, lev =0,
N[ .0 _ .00 _ .00 0 _ N _ 0 _
Niiw = —Puvs lev = Pyv, Ti’v Ni,u =0,T; Ni’w} =0, Ny v =0, Ngyp =0, and oy =

¢2v ¢2y + ¢3v ¢3y~
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the second d; derivative of Fy at y = 0 is given by

o Fy
= ﬂ3(€_% + 31Z°)3M A° 7,33(/( — Z°)81MA?L + Zﬁle_%QmanA?L
s I _3s .
(A.10) — (2B1€72 + g hip) 11 AL, — 4BreT3 (DAY, + 77 0,) i AQe

— B3e72(2°0112° — e (1 — e*(312°9)%)) (922 + $33) + B (1 + €28, 2°)%9, K°
+ Balc — Z0 (3 = Z2%e* 9111 K — (e72 + 8, 2%)e%011 K — 181, 2%50, K);
a d; derivative combined with a V derivative is given by
70 Fyy
= B3 ((c = 2001040, — 01, 2°9,4%, — 8, 2°01,4%, — (€73 + 01 2°)0,, 453
—2B1e™ 01 Ay + 21672 Q1,010 A — 28177 Qe 1 Ay
— B3e72(912°0,2° + Z°31, Z°) (22 + h33)
—Bae™ (e — 2%, 49— (75 + alz°)A°) L
~2Bre3 ((e—%QW + 0y A0)1 A3 + (€7 O + 0140)8, 4D + AQ1, 43 ) by
- ihﬁ}oalw‘lgfﬁw + pre? ((K + 290149 — (e 2-0,Z )Ay) b dyu
— %ﬂ4(l€ — ZO) (81vZ°e581K0 + 8vZ°eS811K°)
—1Batc — Z%(e™2 + 91 Z°)(e* 910 K — uve 23, KO)
+ %ﬂ4(€_% +012%0,2°1K " + 1B3Balk — Z°)% (€11, K" — buve 201, K°)
and lastly, the second V derivative is given by
1 0
3-0yu Fyy
= —2B3(0vy (K3, Ap))° — Bse ™Sk — 2%)0,, AOTM .
— 216750y Al fuy — 2B1670 0y AN Gy — Bae 20, 2°0, Z% (22 + ¢33)
+2B1e”2 Q1udyvA) —2B167° Q0 AN ey — 21675 00y AD bty
_3s .
+ 2,31‘3 2 Ag(Q1§(¢vu¢§y + ¢uy¢§v + ¢vy¢;L§ + T?’W) + QIMN1 vy)
— Bze ™ ((k — 2%)8, A7 — BUZOAO)TM )y — 3B3e” e — 2% + ZOND,
— 281673 (e73 0y A + €72 0,1y 0, AN, — 26107 F A°ALTES, B
— 28172 (yu AL AD + 0,400, AD + 0,450, AN,
+ 2817 (3,((U - NYAe) Py e + 0y (U - N)Ag) rundbe 1)
,0 — ,0
a %hlvll/ aVJ/A(E)‘p@/L sﬂl hM AO (‘»bw Luy T "b‘VN(l),/w + Ng MVV)
+ 1Balc = Z°)? (9150 K + (¢2vbay + B303,)81K°)
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— 3Bl = 2% e > (Brv0uy K® + ¢y 8,0 K°)
— 1Balc — Z°)(3, Z°(e* 31 K — Ppve™ 28, K°)
+3,Z%5 1, K® — dpye 20, K°)

(A.11)
+ 3B4(0,2°0,Z2° — (k — 2°)3,, Z°) €, S°
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