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Abstract

We address the problem of controllability of the MHD system in a rectangular domain with a control
prescribed on the side boundary. We identify a necessary and sufficient condition on the data to be null-
controllable, i.e., can be driven to the zero state. We also show that the validity of this condition allows the
states to be stirred to each other. If the condition is not satisfied, one can move from one state to another
with the help of a simple shear external magnetic force.
© 2022 Elsevier Inc. All rights reserved.

1. Introduction

We consider the two- or three-dimensional ideal magneto-hydrodynamic (MHD) equations for
the unknown velocity u: Q x [0, T] — RY, magnetic field B: Q x [0, T] — R, and pressure
p: 2x[0,T]— R:

ou+u-Vu—B-VB+Vp=0 (1.1a)
0B4+u-VB—B-Vu=0 (1.1b)
divu =divB =0. (1.1¢)
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In general, @ C R? for d =2 or 3 is an arbitrary set with Lipschitz boundary 9Q and outward
pointing unit normal vector n = n(x) for x € 9€2, in which case (1.1) is classically supplemented
with the boundary conditions

u-n=B-n=0 on 0Q.
For the existence theory of classical solutions to the ideal MHD system (1.1), see e.g. [2].
1.1. Main result and comments

To set the notation, let I" be an open and non-empty subset of 92 which has non-empty inter-
section with every connected component of d€2. The question of exact boundary controllability
of (1.1) may be stated as follows. Given T > 0, initial data (uq, Bo), and terminal data («1, By)
such that

divug=divuy =divByg=divB; =0 in (1.2a)
up-n=u;-n=By-n=B;-n=0 on JIQ\T, (1.2b)

does there exist a solution (u#, B) of the MHD equations (1.1) such that

(u, B)|r=0 = (10, Bo) (1.3a)
(u, B)|y=r = (u1, B1) (1.3b)
u-n=B-n=0, tel0, T], xedQ\I'? (1.3¢)

In full generality, the answer to this question is no, as we demonstrate here. This contrasts sharply
with the case of the incompressible Euler equations, in which the boundary control problem was
first addressed in the two-dimensional case by Coron [3,4] and then by Glass in the fully general
three-dimensional setting [6]. In this paper, we prove the exact boundary controllability for the
MHD equations posed in a simple type of domain given that certain extra conditions are satisfied.
After the statement of the main theorem, we provide some simple calculations indicating that in
many scenarios, these conditions are necessary and in fact sharp.

Throughout the paper, we set d = 2 and Q = [0, 1]?. The controlled portion I" of the boundary
is the set {x =0, 1} x (0, 1), and we impose impermeability boundary conditions for u = (u!, u?)
and B = (B!, B?) on (0, 1) x {y =0, 1}. This is the setting of MHD in a planar duct, as consid-
ered in a recent preprint by Rissel and Wang [7]. We prove the following theorem.

Theorem 1.1. Suppose (ug, Bo) and (u1, B1) are H" regular divergence-free vector fields, where
r > 3 is an integer, with vanishing normal components on (0, 1) x {0, 1}, and assume that By

and Bq satisfy

/ By dxdy = f Bldxdy=0. (1.4)
[0,1]? [0,1]?
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Then there exists a solution (u, B) € C([0, T1; H" ([0, 11%)) to (1.1) such that (1.2) and (1.3)
hold. If (1.4) is not satisfied, then the same theorem holds but with a forcing term h(t)ey in the
equation (1.1b) for the magnetic field B; that is, (1.1b) is modified as

#B+u-VB—B-Vu=nh(t)e,.

From here on, we fix r € {3,4,5, ...} and note that non-integer values » > 2 can be covered
using the same method.

The implementation of the condition (1.4) is new and provides the first instance of a solution
to the MHD control problem without a bulk forcing term in the equation for the magnetic field,
and it characterizes some scenarios where a bulk forcing term is necessary. We note that Rissel
and Wang [7] used a forcing term in the equation for B which is a harmonic function but which
is not as simple or as explicit as the forcing term %(¢)ey. Also, in [7] the forcing term is present
regardless of the validity of the condition (1.4). Additive scalar controls such as A(t)e, have
been introduced in several other control problems; see for example an application to the viscous
Burgers equation in [5] and references therein.

The necessity of (1.4) may be seen from the following reasoning. Suppose that the pair (u, B)
solves (1.1) on the set Q2 = [0, 112, and u2|y=o,1 = B2|y=0,1 = 0. Then letting n* denote the k-th
component of the outward pointing normal vector n on the boundary ([0, 1]*), we may write

d
- B' = f w(B*u' —u*Bh = / (B*u' — u*BYHyn* . (1.5)

[0,1]2 [0,1]2 a[0,1]2

When k = 2, i.e., on the top and bottom portions of the boundary, the integrand vanishes due
to the assumptions on u? and B? at y =0, 1. However, the integrand also vanishes when k = 1
since B'u! —u'B' = 0. Thus we deduce that the mean of B over the square is constant in time.

A substantial difficulty arises in the construction of the solution to an MHD-type system
in (2.1). Construction requires changing to Elsdsser variables (¢« 4+ B,u — B) and taking the
curl of the new equations. In order to show that one can “undo” the curl and go back to the
original (u, B) variables, one must show that the two Elsédsser pressures agree, or equivalently
that the solution to a certain elliptic equation vanishes; cf. Lemma 2.4 below. If the solution of
the elliptic equation does not vanish, then the two Elsésser pressures do not agree, and returning
to the original variables leads to an artificial forcing term in the equation for the magnetic field.
Ensuring that the solution to the elliptic equation vanishes does not seem to mesh easily with
the fact that u and B may penetrate the boundary. Rissel and Wang [7] comment further on this
important issue in the introduction of their paper.

These aspects of the control problem are unique to the MHD equations; indeed, consider
what happens to the mean of u! in the control problem for the Euler equations. If uog = (4, 0) is
constant, then one may construct an exact solution to the Euler equations by

ut,x)=gMex,  plt,x)=xg'(1),
where g(¢) is any function satisfying g(0) = Y. So in order to drive a constant horizontal shear
to zero, one may use the pressure as a forcing term to extinguish the shear. Of course such a

construction is impossible in the equation for the magnetic field in MHD, leading to the condition
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(1.4), as well as the modified statement of the theorem with a bulk forcing term /4 (¢)e, in case
(1.4) is not satisfied.

Since the mean of B must be constant in time, it seems plausible that (1.4) may be replaced
with the slightly weaker condition

/ Bldxdy = / Bldxdy. (1.6)
[0,11? [0,11?
Such a strengthening would be optimal, and we pose it as an open question whether Theorem 1.1

can be obtained in this way; cf. Section 2.2 for further comments.
Extensions of our results to other domains or to higher dimensions would also be interesting.

1.2. Simplifications and setup

We claim that we can reduce the problem to

T=1 (1.7a)
luollgr + I Bollur < 1 (1.7b)
(u1, B1) =(0,0) (1.7¢)
h(t)=H'(1), (1.7d)

where H(t): [0, 1] — R is any smooth function satisfying
H(0) = / By, H()=0, H<KI,
[0,12

To see that these simplifications still imply Theorem 1.1 in full generality, first note that the MHD
equations are invariant under the rescaling

u(t,x) = Au(rt, x), B(t,x) —> AB(\t, x), p—>k2p(kt,x). (1.8)

In the case that (1.4) is satisfied, we choose H = 0. Note that without loss of generality, we
may assume that 7 is sufficiently small as after reaching zero, the solution can be continued as
zero until the end of the interval. The smallness of T is related to the implicit constant in (1.7b).
Then for A =T/, we rescale (uo, Bo) — Muyg, Bo) and (11, B1) = A(uy, By), and send both to
(0, 0) in time 1 using solutions (i, Bo) and (u1, Bl) to MHD, respectively. Then we reverse the
direction of time and change the signs of (i, B1), due to the scaling (1.8), and glue it together
with (iig, By) to produce

@@, B): [0,2] x [0, 11> - R* x R®, (@, B)li=0 = Auo, Bo), (@i, B)li=a = A(u1, B1).
Then defining

(u, B)(t,x) =271 @@, BY( "1, x),
we obtain a solution (u, B): @ x [0, T'] to (1.1) satisfying (1.2) and (1.3).

97



1. Kukavica, M. Novack and V. Vicol Journal of Differential Equations 318 (2022) 94-112

In the case that (1.4) is not satisfied, we may set H to be a suitable non-constant function.
Note that from (1.5) and assuming that (1.4) is not satisfied, it is not possible for H to be a
constant function unless

/Bédxdy: / Blldxdy.
[0,112 [0,112

In any case, proceeding as before, we obtain that (u, B) solves the control problem, but with a
forcing term h(t)e, = H'(t)e, in the equation for the magnetic field. Therefore, we work under
the assumptions (1.7a)—(1.7d) from here on.

1.3. Outline
The argument is structured as follows.

1. Show that the domain and the initial data (u(, Bp) may be extended to yield functions which
are periodic in x on a larger domain and still satisfy the appropriate divergence-free and
impermeability conditions. This is achieved in Lemma 2.1. Then we show that we can drive
the system to a state in which the mean of B!(r) vanishes at some time 7. This is achieved in
Proposition 2.2.

2. Show that for divergence-free vector fields on the square [0, 11> for which the mean of the
first component vanishes (such as B(z) after the application of the previous step), there is
a divergence-free extension which vanishes on a large portion of [—1, 5] x [0, 1]. This is
achieved in Lemma 2.9. Then we show that compactly supported magnetic fields B may be
expelled from the domain [0, 1]? using a strong, background, horizontal shear in u. We carry
out this step on the periodic domain T x [0, 1], where T = [0, 6], extended periodically.
This is achieved in Section 2.2.

3. Now that the magnetic field vanishes on [0, 1]2, the MHD on this domain reduces to the
Euler equations, and we may appeal to known control results for the Euler equations. This is
achieved in Section 2.3.

Acknowledgments: IK was supported in part by the NSF grant DMS-1907992. MN was
supported in part by the NSF under grant DMS-1928930 while participating in a program hosted
by the Mathematical Sciences Research Institute in Berkeley, California, during the spring 2021
semester. VV was supported in part by the NSF CAREER Grant DMS-1911413.

2. Proof of Theorem 1.1
2.1. First step: extensions and local existence near background shears
The first step consists of a lemma on extension of divergence-free vector fields and a local

existence-type theorem for an MHD-type equation in the presence of a background shear. In the
remainder of this section, we denote

T =10, 6],
extended periodically.
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Lemma 2.1 (Extending to periodic data). Given an H" divergence-free vector field u: [0, 11> —
R2 with u*|y—o,1 =0, there exists ug = (ul,,u%): T x [0, 11— R2 in H"(T x [0, 11) such that

2 .
UElo<x<1 =1u, ugly=0,1=0, / ug =0;
T x[0,1]

in particular, ug is periodic in x with period 6, and ufg, satisfies the inequality

luellarr o1 S el grqoap -

Next, we state the local existence theorem, which is the workhorse of the paper. This proposi-
tion is stated on the set T x [0, 1] and demonstrates the local existence of smooth solutions near
background shears.

Proposition 2.2 (Local existence near background shears). Let ug, By: T x [0, 1] — R2 be
divergence-free vector fields with sufficiently small H" norm, where r > 3 is an integer, and
assume that the means of u% and Bg vanish. Let H: [0, 1] — R be a smooth function depending
on By, and Hy,: [0, 1] — R a smooth function depending on ug, as in (2.6)—(2.7). Then there
exists a T -periodic solution (u, B, V p), defined for t € [0, 1], to the following MHD-type system
which is close to the background shear profiles ushear = Hy (t)ex and Bgshear = H (t)e, and solves

oou+u-Vu+Vp=B-VB (2.1a)
B+u-VB—B -Vu=H ()e, (2.1b)
divu =divB=0 (2.1¢)
?)y=0.1 = By=01 =0 (2.1d)
/ u* (1) = / BXt)=0 (2.1e)

T x[0.1] T x[0.1]
ulr=0 = uo (2.11)
Bli=0 = Bo (2.1g)
/ Bl =0. (2.1h)

T x[0,1]

Furthermore, sz[o 12 Bé =0, then we may take H = Q.

For the precise quantification of how close the solution needs to be to the background shear,
cf. the statement of Lemma 2.6.

Proof of Lemma 2.1. Introduce the stream function

ixy) =—ful<x,i> (5. d5), 22)

14
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where ¢ denotes a sufficiently regular path from (0, 0) to (x, y), which satisfies V-1 = u, de-
noting ut = (—u?, u') and V- = (—9,, 8;). Note that the integral is independent of a chosen
path since divu = 0. Clearly, the condition u?| y=0,1 = 0 implies ¥r|y—0 = 0 and ¥ is constant on
the upper boundary {y = 1}, whose value we denote by Cy,. Since it is needed below, note that,
in particular,

1

/ul(x,y)dyz—C,/, for xeT, 2.3)
0

i.e., the integral fol u'(x, y)dy is independent of x. Now consider the standard H’ extension
operator (cf. Theorem 5.19 from [1]) which takes in a function ¢ defined for x € [0, 1] and
returns

~ P(x,y) x>0
o(x,y) = . (2.4)
Y Ae(—jx.y) —rg <x <0,
where A ; are unique solutions to a system of linear equations, one of which imposes that
r+1
D a=1. (2.5)
j=1

Let6: [—1,2] — [0, 1] be a function depending only on x € [—1, 2] which satisfies

0(x)=0 for xe€[—r+2, 1+ /r+2]

and
O(x)=1 for xe[—1,-34]U[/42].
Now, extend ¥ to ¥: [—I,SJ x [0,1] — R as follows. For x € [—1,0], we define
YT (x, y) =Cy0(x)y + (1 = 0(x)) ¥ (x, y), while for x € [1,2] we use Y (x, y) =CyO(x)y +
(1—06(x))¥(2—x, y). Here we have used the notation that ¢ means “apply the H” extension op-

erator defined above to ¥ For 2 < x < 5, we set Y (x, y) = Cy y (this extra room is convenient
below to move around the support of the magnetic field). Then define ii z = V. Finally,

[ a= [ ai=o
T x[0,1] [—1,5]x[0,1]
by x-periodicity of Yrp. O

Now, we turn to the proof of Proposition 2.2. We look for a solution of this system which
satisfies
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u=1i+ Hy(t)ex =i + Ushear (2.62)
H,(0) = f up, Hy(1)=0 (2.6b)

[0,112
/ it)=0  Vtel0,1] (2.6¢)

0,112
and

B =B+ H(t)ex = B + Bghear (2.72)
H(0) = / B}, H()=0 (2.7b)

[0.112
B(t)=0  Vre[0,1]. (2.7¢)

(0,112

With this ansatz in mind and noting that Viugpear = V Bshear = 0, and that 0;ugheqr is equal to
Oy Pshear Which is periodic (although pgpeqr itself may not be periodic), (2.1) now reads

i + (i + Ushear) - Vil + Vg = (B + Bhear) - VB (2.82)
& B + (il + tshear) - VB — (B + Bspear) - Vit =0 (2.8b)
divi=divB=0 (2.8¢)
it y=0,1 = B*|y=0,1 =0 (2.8d)
/ i) = / B%(1)=0 (2.8e)

T x[0,1] T x[0,1]
ﬂ't:() =U(Q — Ushear|r=0 (2-8f)
/ ') =0 (2.82)

[0,1]2
Bli=0 = Bo — Bihearli=0 (2.8h)
/ Bl(t)=0. (2.81)

[0,112

Observe that flo,“z i'(t) = 0 is equivalent ~to f’]I‘x[O,l] i'(t) =0 by (2.3) resul~ting from the
divergence-free condition. Similarly, f[o 2B (1) = 0 is equivalent to fo[o 1 Bl(t) = 0. We

shall prove that one can solve this system for i, B, and g which are T -periodic in x and that
q: T x [0, 1] — R solves an elliptic problem that enforces divu = 0 and 112|y=0,1 =0:
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Aqg =div(—u - Vit — ughear - Vit + (B + Bghear) - VB)
8yq | y=0,1 = 0

q=0.
T x[0,1]

Note that the MHD system exhibits a loss of derivatives; thus in order to solve this system, we
need to switch to the Elsésser variables

Z1=IZ+I§, Zzzﬁ—é.

In these variables, the equations in (2.8) become

0r21 + (22 + Ushear — Bshear) - V21 + Vg =0 (2.10a)
9:z2 + (21 + Ushear + Bshear) - V22 + Vg =0 (2.10b)
divz; =divzp =0 (2.10c)
23 ly=0.1 = Z3ly=01 =0 (2.10d)
/ 21() = f 2() =0 (2.10e)

T x[0.1] T x[0.1]

Z1lr=0 = U0 — Ushear|r=0 + Bo — Bspearlr=0  (2.10f)

22|t=0 = U0 — Ushear|r=0 — Bo + Bshearlr=0. (2.10g)
Note that the conditions on the means of iZ!, &2, El, and B2 have been consolidated into (2.10e),
asserting that the means of both components of z; and z; vanish. Taking the curl of the first two

equations in (2.10), using €y; to denote the classical Levi-Civita symbol, and denoting w; :=
Vi.ziand wy :=V+ .z yields

01 + (22 + Ushear — Bshear) - Vo = _aka'ij ajZé (2.11a)
0rw2 + (21 + Ushear + Bshear) - Vo = —8kZ§€£j 3jZ]1( . (2.11b)
Lemma 2.4 below shows that if we have solved this “vorticity-Elsdsser-MHD” system, where we
have substituted (2.11) for the first two equations in (2.10), then in fact we have solved (2.8). We

first need the following De Rham-type result.

Lemma 2.3 (Periodic De Rham’s theorem). Assume that v € L2 (R x[0,1]) is L-periodic in

loc

the x variable, where L > 0, and suppose that it satisfies V- -v = 0 and f[O,L]x[O,l] v! =0. Then

there exists a function q € Hl}} R x [0, 1]), which is L-periodic in the x variable, and satisfies
v=Vyq (2.12)
on R x (0, 1).
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Proof of Lemma 2.3. By the classical De Rham’s theorem [8, Proposition 1.1.1], there exists a
distribution ¢ € D'(R x (0, 1)) such that (2.12) holds. Using [8, Proposition I.1.2(i)], we have
q € HILC (R x [0, 1]), so we only need to establish periodicity. By the periodicity of v, we have
Vig(x+L,y)—q(x,y)) =0, for (x,y) € R x (0, 1), which implies g(x + L, y) — q(x, y) = a,
forall (x, y) € R x (0, 1), where a € R is a constant. Since 0 = f[o,L]x[o,l] vl = f[o,L]x[o,l] 01g =
f[o’”(q(L, y) —q(0, y)) =a, we get a = 0, implying the L-periodicity of ¢g. O

We note in passing that any smooth vector field v: T x [0,1] — R? which satisfies
fo[o 1 v! =0 allows a unique L>(T x [0, 1])-orthogonal decomposition reminiscent of the
Helmbholtz-Hodge decomposition of the form

v=Vp+Vig, 3yp|y:o,1=v2|y=o,1, qly=0,1=0, / p=0,
T x[0,1]

where p,g: T x [0, 1] — R are smooth and periodic. We construct ¢ as the periodic-in-x solu-
tion to the elliptic problem

Aq:VJ*v

qly=0,1=0.

Now, considering v — VJ-q, we have V+ - (v — qu) =0 and fo[o,l](”l + d2g) = 0. Apply-
ing Lemma 2.3 to v — V¢, we may write it as the gradient of a periodic function p, which
without loss of generality may be taken to have zero mean. The L2-orthogonality is immediate
from integration by parts, the fact g|y,—o,1 = 0 by construction, and the periodicity in x of v, p,
and ¢g. Uniqueness follows from the construction, in particular the imposition of the mean-zero
conditions.

Lemma 2.4 (Solving vorticity-Elsdsser MHD). Solving (2.10) but with (2.11) taking the place
of the first two equations in (2.10) is equivalent to solving (2.8). Consequently, solving either
provides a solution to (2.1).

In the above lemma it is understood that z; and zp are related to w; and w> as in Lemma 2.8,
which shows how to reconstruct the appropriate divergence-free velocity field from a given vor-
ticity in our context.

Proof of Lemma 2.4. Assume that we have a solution of (2.11). It is easy to check that
V- (021 4 (22 + ttshear — Behear) - V21)
= 0;w1 + (22 + Ushear — Bshear) - Vo1 + 8kz(lzef,/ a,/zé =0.
In order to apply Lemma 2.3, we need to verify that the integral over T x [0, 1] of the first
component of ;21 4 (22 + Ughear — Bshear) - V21 vanishes. For the first term, 0z, this is clear,

while for the second we have
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| . . . |
/ (z2 + Ushear — Bshear) - VZ] = / 0; ((le + M;hear - Béhear)z]) =0,
T x[0,1] T x[0,1]
where in last equality we separately integrate fori = 1 and i = 2. When i = 1, we use periodicity,

while when i = 2 it is important that the expression inside the parentheses vanishes for y =0
and y = 1. By Lemma 2.3, there exists a T -periodic function ¢ such that

021 + (22 + Ushear — Bshear) - V21 = —Vq1,

where g1 : T x [0, 1] — R solves

—Agq; = ak((ZZ ~+ Ushear — Bshear)gaﬁzllc)

02g1ly=0,1=0
/ q1=0.
T x[0,1]

We similarly have
0:22 + (21 + Ushear — Bshear) - V22 =—V¢q2,
where

—Agy = 3k((Zl + Ushear + Bshear)la(izg)

02q2ly=0,1=0
/ q2=0.
T x[0,1]

We find that g1 — g3 is T -periodic in x and solves

—A(g1 —q2)=0
02(q1 —g2)ly=0,1 =0

/ (g1 —q2) =0,

T x[0,1]
from where ¢q; = g, and we have a solution to (2.10); to obtain that g; — ¢» is harmonic, we write
—Alg1 —q2) = akaé((ZZ + Ushear — Bshear)zzllc) - akaé((zl + Ushear + Bshear)ezg)

= O 0¢ ((ushear - Bshear)ézllc) — Ok 0y ((ushear + Bshear)lzg)

=0y ((ushear - Bsheax)eakzlf) - 8@((ushear + Bshear)eakzlé) =0,

where we used Vugpear = V Bshear = O in the third equality and the divergence-free condition in
the last. Reconstructing the equations for # and B from z; and z; as usual and using that g; = ¢»
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then shows that we have a solution to (2.8). To conclude the proof, we must demonstrate the other
direction of the equivalence, but this only amounts to taking the curl of the first two equations
in (2.10). O

Returning to the proof of Proposition 2.2, we will be done if we can set up and solve the fixed
point iteration:

win=Vtozi, (2.17a)

wn=V4t-zo, (2.17b)

@10 + (22,01 + Ushear — Bshear) - Vo1 = —2| ,_1€6j0,25 ,_ (2.17¢)
@20 + (21,01 + Ushear + Behear) - Voo = =25 ,_1€6j0,2} (2.17d)
divzy, =divzy, =0 (2.17¢)

Z%,n|y=0,l = z%,, ly=0.1=0 (2.176)

Zl,n't:O = U — Ushear|r=0 + Bo — Bshearlr=0 (2-17g)
22,nlt=0 = U0 — Ushearlr=0 — Bo + Bshearlr=0 (2.17h)

/ 1) = / Z2,n(t)50- (2.171)
T x[0,1] T x[0,1]

We split the proof into the following three lemmas.

Lemma 2.5 (Constructing the iterates). If ug and Bgy belong to H', then there exists a se-
quence {(21,n, Z2,n)}30:0 which is well-defined, satisfies the equations in (2.17), and 21 n, 22,0 €
C ([0, 1]; H" (T x [0, 1])).

Lemma 2.6 (Uniform bound in high regularity). The sequence {(z1,n, z2,n)}e belongs to the
ball Bce(0) C C([0, 1]; H" (T x [0, 1])) provided the initial data for z1 , and 22, from (2.17)
are smaller than ¢ in H" (T x [0, 1]), where ¢ > 0 is sufficiently small and C is a constant.

The smallness of data can always be ensured by a sufficiently powerful e-dependent rescaling
of the original problem; cf. (1.7). Note that rescaling the initial data by ¢ shrinks the values of
H, (0) and H (0) from (2.6) and (2.7), although the values at later times ¢ are still unconstrained.
Thus we may first choose ¢ sufficiently small as determined by Lemma 2.6 and Lemma 2.7, and
then choose H,, and H appropriately.

Lemma 2.7 (Contraction in H 1 ). The sequence {(z1 n, Zln)}?;il satisfies the contraction in-

equality
210 = 2ttt Lo go,13; B (T x[0.11)) T 1220 = 22041 oo g0, 13; 51 (T x [0, 1)
= %(”Zl,n — Z1,n—1 ||L°°([(),1];H1(T><[(),1])) + 22,0 — 22,01 ||L°°([0,1];H1(T><[0,1]))) (2.18)
provided that €, z1,0, and z2,0 are sufficiently small.
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Proof of Proposition 2.2. Assuming the conclusions of the preceding three lemmas, the con-
traction mapping principle provides a unique limit point of the sequence (21 », 22,1), that is, we
have a unique solution to the system of equations (2.10), and thus (2.1), concluding the proof of
Proposition 2.2. O

Thus it remains to prove Lemmas 2.5-2.7. To prove Lemma 2.5, we first need to state an
existence and uniqueness theorem for a periodic div-curl problem.

Lemma 2.8 (Periodic div-curl problem). Consider the system

divz=0, curlz = w, 2?ly=01=0, / 7' =0. (2.19)
T x[0,1]

For every w € H*(T x [0, 1]), where s > 1, there exists a unique solution 7 € HsHl (T x [0, 1]).
Also, the mapping w > z is continuous from H*(T x [0, 1]) to HsTHT x [0, 1]).

Proof of Lemma 2.8. To obtain the existence, first solve Ay = w for ¥ : T x [0, 1] - R with
the boundary conditions ¥|,—o,1 = 0 on top and bottom and periodic boundary conditions in x.
Then set z = V4. It is easy to check that z satisfies the first three conditions in (2.19). For the
fourth condition in (2.19), we have fo[o,l] 2= _fo[O,l] Oy = [p (W (x,0)—¢(x, 1) =0,
since V¥ |y=0,1 = 0.

For uniqueness, assume that z is periodic and satisfies (2.19) with w = 0. By curlz = 0 and
fo[o,l] z! =0, due to Lemma 2.3, there exists a periodic function ¢ such that z = V¢. The

divergence condition and z?| y=0,1 = O then imply that ¢ solves the homogeneous Neumann
problem A¢ =0 and 02¢|y—0,1 = 0. Thus ¢ is constant, from where z=0. O

Note that, by the proof of Lemma 2.8, a consequence of divz =0, fT <[0.1] z! =0, and peri-
odicity is that [1 (o 1 2=0.

Proof of Lemma 2.5. We begin by defining the time-independent first iterates

21,0 =Ug — Ushear|r=0 + Bo — Bshearlr=0, 22,0 =Up— Ushear|r=0 — Bo + Bshearlt=0 . (2.20)

From (2.6)—(2.7) we have that z} 0 and Z;,O have vanishing averages over T x [0, 1] for all times,
as desired in (2.17i). From the assumptions of Proposition 2.2, we have that the averages of
Z%,o and Z%,o also vanish for all times. Both first iterates are also clearly divergence free, satisfy
(2.17f), and belong to C ([0, 1]; H" (T x [0, 1])).

Now assume that the pair (z1,,—1,22,,—1) 18 given for n > 1 and satisfies (2.17a)—(2.171). To
construct (21, 22,n), we first solve (2.17c) and (2.17d) for w1 , and w2 ,, respectively, using the
method of characteristics on the set T x [0, 1]. This is possible because the velocity fields and
forcing terms for both equations are periodic in x, and the velocity fields do not penetrate the
boundaries at y =0 and y = 1. We then solve the div-curl problem

divz; ,(t) =0
curlz; , (1) = w; , (1)
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2
Zi,n (t) |y=0,1 =0

/ Zi,n(t)ZO,

T x[0,1]

using Lemma 2.8 for z; ,(t): T x [0, 1] — R2 withi =1,2and 7 € [0, 1], obtaining the estimate

zinll e (T x10.1) < Cll@inll gr-1(T x10.17) -

From the inductive assumption that z; ,—; belongs to C ([0, 1]; H"(T x [0, 1])) and standard
estimates for transport equations,l we deduce that z; , € C ([0, 1]; H" (T x [0, 1])). Finally, in
order to obtain z; ,(0) = zo, we simply use curl z; , (0) = curl zg, the continuity of curlz; , in ¢,
and the continuity of the map w+> z in Lemma 2.8. O

Proof of Lemma 2.6. The proof proceeds by induction on n and a standard energy argument for
small data. The estimates for n = 0 follow from the fact that we have defined the first iterates to
be time-independent; cf. (2.20). Next, assume that we have

lzin—1llar lz2n—1llH7 < 26, (2.22)
for ¢ € [0, 1]. Applying the standard H"~! estimates on (2.17¢) and (2.17d), while observing that
Vitshear = V Bshear = 0, we get

d
E lwi n ||Hf—l(Tx[o,1])

<C|Vzi—in-1 Q@ ®in-1 ||Hr71(’]1"x[o,1]) 4+ ClIVzin—1 ® Vz2,0-1 ||Hr*1(T><[0,1]) < CGZ,
(2.23)

fori = 1,2, where we used that H” ! is an algebra in the first inequality and (2.22) in the second.

Next, we integrate (2.23), use the assumption on the size of the initial data, and apply Lemma 2.8,
obtaining

Iztallars |z2nllnr < €+ Cé>. (2.24)

Choosing € sufficiently small, we conclude that (2.22) remains valid for ||z1 || g- and ||z2,x || H7,
completing the induction step. O

Proof of Lemma 2.7. We set w1 := @1 4,41 — @1,,. From (2.17¢), we find that w satisfies the
equation

0rw1 + (ZZ,n ~+ Ushear — Bshear) - Vo1

¢ ¢ k ¢ k k
= (22,01 —22,n) - Vor,n — (0kZy ,, — OkZy y_1)€¢j0j25 , — k2] _1€¢j (025, — 0j25 1),

N slightly more sophisticated version of such estimates is used in the proof of Lemma 2.6 to demonstrate the uniform
bound in higher regularity.
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with w1 |;=¢ = 0. Multiplying by w;, we obtain

EEHQ)] ”i%Tx[o,l]) Sllz2n—1 = 2l 2(r <0, 1p 01 Vo nll 2¢T (0,17
+IVE@La—1 = 21l 2T xj0,1) 1 V22,0011 L2¢T x[0,17)
+IV(z2n—1 — 220l L2¢T xj0,1) IV 21 n—101 I L2(T %10, 17)
S el ||L2(T ><[0,1])(||Zl,n—1 —Zln ||H1(’]I‘x[0,1])

+ l1z2.0-1 = 22l 11 (T x[0,17)) -
Using a Gronwall argument and choosing ¢ > 0 sufficiently small, we deduce that

||601,n — W1 ,n+1 ||L0<>([0,1];L2(Tx[o,1]))

1
=< 4—(||Zl,n —21,n—-1 ||L°°([O,1];H‘(T><[O,l])) + ||Z2,n —22,n—1 ||L°0([0,1];H1(Tx[0,1]))) ’

(2.25)

where K is sufficiently large. Utilizing Lemma 2.8, with s = 1 while assuming the constant K
in (2.25) is sufficiently large, we get
||601,n — W1,n+1 ||L°°([0,1];L2(’Jl“ x[0,11))

< 2(lo1n = @141l oo, 11:L2(T xj0.17y) F 1020 = @201 | Lo o, 13:L2¢T x10.17))) -

B

Establishing the analogous estimate for w;, — w2 ,4+1 and summing concludes the proof
of (2.18). O

The first step is now as follows. The initial data uy and By are extended using Lemma 2.1
to data which are divergence-free and T -periodic with the means of u? and B? vanishing over
T x [0, 1]. Choosing suitable ughear = H, (t)ex and Bghear = H(t)e,, we can drive the system to
the state such that the means of u and B over [0, 6] x [0, 1] vanish at time ¢ = 1.

2.2. Second step: expelling the magnetic field

Recall that in the first step, we solved (2.8) using the ansatz (2.6)—(2.7), which set ughear =
H, (t)e,. However, at no point did we impose any restrictions on H,,. The purpose of the second
step is to show that with an application of Lemma 2.9, stated next, on the set T x [0, 1] and a
smart choice of H, in another, we may apply the methodology from Proposition 2.2 to control
the support of B at later times.

Lemma 2.9 (Truncating to a compactly supported data). Given an H" divergence-free and T -
periodic vector field B: T x [0, 1] — R? with

/ B'=0,  B’y=01=0.
T x[0,1]
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there exists an H"-regular divergence-free Br: T x [0, 1] — R? which satisfies B%lyzo,l =0,
with By =0 for x € [7/s,5] or x € [—1, —3/4], and Br = B for x € [0, 1]. Moreover, the mapping
B +— Br is linear and we have the inequality

I Brll a7 (T x10,17) S I Bl Er (T x[0,17) -

Proof of Lemma 2.9. From (2.3) and the assumption fT [0.1] Bl =0, we have that the stream
function i for B, as defined in (2.2) with u replaced by B, satisfies ¥ (x,0) = ¥ (x,1) =0
for all x € [0, 1]. Define Br(x, 1) = V- (¥ (x, y)8(x)) for a T -periodic cutoff function # which
satisfies 6 = 1 for —1s<x <5lsand 0 =0 for —1 <x < —3/sor /s <x < 5. Since ¥ (x,0) =
Y (x, 1) =0, we have that /6 is constant on y = 0, 1. The rest of the assertions of Lemma 2.9
follow immediately. O

Lemma 2.10 (Background shears and the support of B). Let (uo, Bp): T x [0, 1] — R2 x R? be
vector fields satisfying the same assumptions as in Proposition 2.2, with the additional assump-
tions

Bli—1,50\[=34,7: =0, / By = / up=20. (2.26)
T x[0,1] T x[0,1]

Then there exists a T -periodic solution (u, B, V p) defined for t € [0, 1] to the MHD-type system

oou+u-Vu+Vp=B-VB (2.27a)
B+u-VB—B-Vu=0 (2.27b)
divu =divB =0 (2.27¢)
u?ly=0.1 = B?|ly=01 =0 (2.27d)
/ u*(t) = / B%(1)=0 (2.27¢)

T x[0,1] T x[0,1]
] y—o = uo (2.27f)
Bli—o= By, (2.27g)

which in addition is such that u is close to the background shear profile ushear = H, (t)ey, and

supp Bli—t C Uyyez [1.5 + 6m. 4.5+ 6m] . (2.28)

As above, the closeness to the background shear profile is quantified as in the statement of
Lemma 2.6.

Proof of Lemma 2.10. We begin as in the proof of Proposition 2.2 with an ansatz u = i +
H, (t)ex = il + Ughear, only with no background shear in B this time. Note that this is possible by
(2.26) and the final sentence of the statement of Proposition 2.2. We choose H,(¢): [0, 1] - R
to be any smooth function such that
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1
HO=HMH=0. [ H,wd=25.
0

A consequence of this choice is that if X (¢, x): [0,1] x T — T is the solution to the ordinary
differential equation

9 X(t,x) = H, (1), Xli=0=x,

then
1
X(l,x):x—i—/Hu(t)dx:x—i—Z.S.
0

Now applying the same methodology as in the proof of Proposition 2.2, we may construct solu-
tions to the MHD-type system such that

lu — ”Sheﬂr”C([O,1];Hf(’]I‘x|0,1])) <Ces, (2.29)

as in Lemma 2.6. Then define X : [0,1] x T — T as the solution to the ordinary differential
equation

X (t,x)=u (t, f((z,x)) . Xl—o=x.
Then since Bgpear = 0, the vector transport equation for B=8B implies
supp B|;=1 = X, supp By) := {x eT: X 'x, e suppBo] .
Assuming that ¢ is chosen sufficiently small, (2.29) implies

1X(t,x) — X (t,x)] <0.25.

Then we have that

Supp Bli—1 C Upez, [=.75 +2.25 + 6m, 1.75 + 2.75 + 6m]
=Upez [1.5+6m,4.5+6m]

concluding the proof of (2.28). O

Now, we carry out the following.
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1. Compactly supported extensions of u and B: Consider (u|;—1, Bl;=1) as given by the
conclusions of Proposition 2.2. From (2.1h) and (2.6)—(2.7), we have that the means of ul
and B! at time ¢ = 1 vanish, which is, by (2.3), equivalent to the averages of u' and B! over
T x [0, 1] vanishing. Applying Lemma 2.9, we can modify B|;—=; to produce Br, which
stays the same in a neighborhood of [0, 1] x [0, 1] but satisfies B = 0 for x € [7/4, 5] or
x e[—1,=3/4].

2. Application of Lemma 2.10: We apply Lemma 2.10 to («g, Bo) = (u|;=1, Br). This ensures
that supp B C U,,c7 (1.5 + 6m,4.5 4+ 6m) at t = 1. Thus the magnetic field B now vanishes
inside the set [0, 1]* at time 7 = 1.

We now provide some commentary explaining why (1.6) is not sufficient for our method of
proof. Note that from the assumption that B! has vanishing average in Lemma 2.10, we have that
B = B in the language of the proof of Proposition 2.2. But B! would nor have vanishing average
if either the initial or ending data for the control problem does not have vanishing average, and we
set Bghear = 0 in Proposition 2.2. In these cases, a compactly supported divergence free extension
which does not penetrate the upper and lower boundaries is in general not possible. Therefore,
the vector transport equation for B = B would now read

%B+u-VB— (Bgey +B)-Vu=0,

where Bp is the average of B!, which is non-zero and preserved in time. This new equation does
not transport the support of B, and so it is not clear how to ensure that B leaves the domain
[0, 1]2. Even if one could ensure that B leaves this domain so that B = Bpe, at some later time,
this property would not be preserved upon application of a control method to the remaining part
of the velocity. Control methods for Euler connect the desired initial and terminal data through
some common state halfway through the time interval, usually the O state; a reasonable guess
for the MHD analogue would be to connect both states through (u, B) = (0, Bgey). Since we
cannot send the initial or terminal data to this state, and there is no obvious alternative, we
instead connect the initial and terminal data through (0, 0), thus necessitating a forcing term in
the equation for B.

2.3. Third step: control for Euler

Now that the magnetic field vanishes inside of the domain [0, 1]2, we truncate the extended
domain [—1, 5] x [0, 1] back to [0, 1]2. On [0, 1]%, we now have a vector field 4 which does not
necessarily vanish, but a magnetic field B which vanishes. Solving the MHD equations on [0, 1]
with vanishing data for the magnetic field is clearly equivalent to solving the Euler equations on
[0, 1]%. So applying any control method for Euler ([3,4,6]) finishes the proof.
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