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Abstract

We address the problem of controllability of the MHD system in a rectangular domain with a control 
prescribed on the side boundary. We identify a necessary and sufficient condition on the data to be null-
controllable, i.e., can be driven to the zero state. We also show that the validity of this condition allows the 
states to be stirred to each other. If the condition is not satisfied, one can move from one state to another 
with the help of a simple shear external magnetic force.
 2022 Elsevier Inc. All rights reserved.

1. Introduction

We consider the two- or three-dimensional ideal magneto-hydrodynamic (MHD) equations for 
the unknown velocity u : ! × [0, T ] → Rd , magnetic field B : ! × [0, T ] → Rd , and pressure 
p : ! × [0, T ] → R:

∂t u + u · ∇u − B · ∇B + ∇p = 0 (1.1a)

∂tB + u · ∇B − B · ∇u = 0 (1.1b)

divu = divB = 0 . (1.1c)
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In general, ! ⊂ Rd for d = 2 or 3 is an arbitrary set with Lipschitz boundary ∂! and outward 
pointing unit normal vector n = n(x) for x ∈ ∂!, in which case (1.1) is classically supplemented 
with the boundary conditions

u · n = B · n = 0 on ∂! .

For the existence theory of classical solutions to the ideal MHD system (1.1), see e.g. [2].

1.1. Main result and comments

To set the notation, let # be an open and non-empty subset of ∂! which has non-empty inter-
section with every connected component of ∂!. The question of exact boundary controllability 
of (1.1) may be stated as follows. Given T > 0, initial data (u0, B0), and terminal data (u1, B1)

such that

divu0 = divu1 = divB0 = divB1 = 0 in ! (1.2a)

u0 · n = u1 · n = B0 · n = B1 · n = 0 on ∂! \ # , (1.2b)

does there exist a solution (u, B) of the MHD equations (1.1) such that

(u,B)|t=0 = (u0,B0) (1.3a)

(u,B)|t=T = (u1,B1) (1.3b)

u · n = B · n = 0, t ∈ [0, T ], x ∈ ∂! \ # ? (1.3c)

In full generality, the answer to this question is no, as we demonstrate here. This contrasts sharply 
with the case of the incompressible Euler equations, in which the boundary control problem was 
first addressed in the two-dimensional case by Coron [3,4] and then by Glass in the fully general 
three-dimensional setting [6]. In this paper, we prove the exact boundary controllability for the 
MHD equations posed in a simple type of domain given that certain extra conditions are satisfied. 
After the statement of the main theorem, we provide some simple calculations indicating that in 
many scenarios, these conditions are necessary and in fact sharp.

Throughout the paper, we set d = 2 and ! = [0, 1]2. The controlled portion # of the boundary 
is the set {x = 0, 1} × (0, 1), and we impose impermeability boundary conditions for u = (u1, u2)

and B = (B1, B2) on (0, 1) × {y = 0, 1}. This is the setting of MHD in a planar duct, as consid-
ered in a recent preprint by Rissel and Wang [7]. We prove the following theorem.

Theorem 1.1. Suppose (u0, B0) and (u1, B1) are Hr regular divergence-free vector fields, where 
r ≥ 3 is an integer, with vanishing normal components on (0, 1) × {0, 1}, and assume that B0
and B1 satisfy

∫

[0,1]2

B1
0 dx dy =

∫

[0,1]2

B1
1 dx dy = 0 . (1.4)
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Then there exists a solution (u, B) ∈ C([0, T ]; Hr([0, 1]2)) to (1.1) such that (1.2) and (1.3)
hold. If (1.4) is not satisfied, then the same theorem holds but with a forcing term h(t)ex in the 
equation (1.1b) for the magnetic field B; that is, (1.1b) is modified as

∂tB + u · ∇B − B · ∇u = h(t)ex .

From here on, we fix r ∈ {3, 4, 5, . . .} and note that non-integer values r > 2 can be covered 
using the same method.

The implementation of the condition (1.4) is new and provides the first instance of a solution 
to the MHD control problem without a bulk forcing term in the equation for the magnetic field, 
and it characterizes some scenarios where a bulk forcing term is necessary. We note that Rissel 
and Wang [7] used a forcing term in the equation for B which is a harmonic function but which 
is not as simple or as explicit as the forcing term h(t)ex . Also, in [7] the forcing term is present 
regardless of the validity of the condition (1.4). Additive scalar controls such as h(t)ex have 
been introduced in several other control problems; see for example an application to the viscous 
Burgers equation in [5] and references therein.

The necessity of (1.4) may be seen from the following reasoning. Suppose that the pair (u, B)

solves (1.1) on the set ! = [0, 1]2, and u2|y=0,1 = B2|y=0,1 = 0. Then letting nk denote the k-th 
component of the outward pointing normal vector n on the boundary ∂([0, 1]2), we may write

d

dt

∫

[0,1]2

B1 =
∫

[0,1]2

∂k(B
ku1 − ukB1) =

∫

∂[0,1]2

(Bku1 − ukB1)nk . (1.5)

When k = 2, i.e., on the top and bottom portions of the boundary, the integrand vanishes due 
to the assumptions on u2 and B2 at y = 0, 1. However, the integrand also vanishes when k = 1
since B1u1 −u1B1 ≡ 0. Thus we deduce that the mean of B1 over the square is constant in time.

A substantial difficulty arises in the construction of the solution to an MHD-type system 
in (2.1). Construction requires changing to Elsässer variables (u + B, u − B) and taking the 
curl of the new equations. In order to show that one can “undo” the curl and go back to the 
original (u, B) variables, one must show that the two Elsässer pressures agree, or equivalently 
that the solution to a certain elliptic equation vanishes; cf. Lemma 2.4 below. If the solution of 
the elliptic equation does not vanish, then the two Elsässer pressures do not agree, and returning 
to the original variables leads to an artificial forcing term in the equation for the magnetic field. 
Ensuring that the solution to the elliptic equation vanishes does not seem to mesh easily with 
the fact that u and B may penetrate the boundary. Rissel and Wang [7] comment further on this 
important issue in the introduction of their paper.

These aspects of the control problem are unique to the MHD equations; indeed, consider 
what happens to the mean of u1 in the control problem for the Euler equations. If u0 = (U , 0) is 
constant, then one may construct an exact solution to the Euler equations by

u(t, x) = g(t)ex, p(t, x) = xg′(t) ,

where g(t) is any function satisfying g(0) = U . So in order to drive a constant horizontal shear 
to zero, one may use the pressure as a forcing term to extinguish the shear. Of course such a 
construction is impossible in the equation for the magnetic field in MHD, leading to the condition 
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(1.4), as well as the modified statement of the theorem with a bulk forcing term h(t)ex in case 
(1.4) is not satisfied.

Since the mean of B must be constant in time, it seems plausible that (1.4) may be replaced 
with the slightly weaker condition

∫

[0,1]2

B1
0 dx dy =

∫

[0,1]2

B1
1 dx dy . (1.6)

Such a strengthening would be optimal, and we pose it as an open question whether Theorem 1.1
can be obtained in this way; cf. Section 2.2 for further comments.

Extensions of our results to other domains or to higher dimensions would also be interesting.

1.2. Simplifications and setup

We claim that we can reduce the problem to

T = 1 (1.7a)

‖u0‖Hr + ‖B0‖Hr , 1 (1.7b)

(u1,B1) = (0,0) (1.7c)

h(t) = H ′(t) , (1.7d)

where H(t) : [0, 1] → R is any smooth function satisfying

H(0) =
∫

[0,1]2

B1
0 , H(1) = 0 , H , 1 .

To see that these simplifications still imply Theorem 1.1 in full generality, first note that the MHD 
equations are invariant under the rescaling

u(t, x) → λu(λt, x), B(t, x) → λB(λt, x), p → λ2p(λt, x) . (1.8)

In the case that (1.4) is satisfied, we choose H ≡ 0. Note that without loss of generality, we 
may assume that T is sufficiently small as after reaching zero, the solution can be continued as 
zero until the end of the interval. The smallness of T is related to the implicit constant in (1.7b). 
Then for λ = T/2, we rescale (u0, B0) → λ(u0, B0) and (u1, B1) → λ(u1, B1), and send both to 
(0, 0) in time 1 using solutions (ũ0, B̃0) and (ũ1, B̃1) to MHD, respectively. Then we reverse the 
direction of time and change the signs of (ũ1, B̃1), due to the scaling (1.8), and glue it together 
with (ũ0, B̃0) to produce

(ũ, B̃) : [0,2] × [0,1]2 →R3 ×R3, (ũ, B̃)|t=0 = λ(u0,B0), (ũ, B̃)|t=2 = λ(u1,B1) .

Then defining

(u,B)(t, x) = λ−1(ũ, B̃)(λ−1t, x) ,

we obtain a solution (u, B) : ! × [0, T ] to (1.1) satisfying (1.2) and (1.3).
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In the case that (1.4) is not satisfied, we may set H to be a suitable non-constant function. 
Note that from (1.5) and assuming that (1.4) is not satisfied, it is not possible for H to be a 
constant function unless

∫

[0,1]2

B1
0 dx dy =

∫

[0,1]2

B1
1 dx dy .

In any case, proceeding as before, we obtain that (u, B) solves the control problem, but with a 
forcing term h(t)ex = H ′(t)ex in the equation for the magnetic field. Therefore, we work under 
the assumptions (1.7a)–(1.7d) from here on.

1.3. Outline

The argument is structured as follows.

1. Show that the domain and the initial data (u0, B0) may be extended to yield functions which 
are periodic in x on a larger domain and still satisfy the appropriate divergence-free and 
impermeability conditions. This is achieved in Lemma 2.1. Then we show that we can drive 
the system to a state in which the mean of B1(t) vanishes at some time t . This is achieved in 
Proposition 2.2.

2. Show that for divergence-free vector fields on the square [0, 1]2 for which the mean of the 
first component vanishes (such as B(t) after the application of the previous step), there is 
a divergence-free extension which vanishes on a large portion of [−1, 5] × [0, 1]. This is 
achieved in Lemma 2.9. Then we show that compactly supported magnetic fields B may be 
expelled from the domain [0, 1]2 using a strong, background, horizontal shear in u. We carry 
out this step on the periodic domain T × [0, 1], where T = [0, 6], extended periodically. 
This is achieved in Section 2.2.

3. Now that the magnetic field vanishes on [0, 1]2, the MHD on this domain reduces to the 
Euler equations, and we may appeal to known control results for the Euler equations. This is 
achieved in Section 2.3.

Acknowledgments: IK was supported in part by the NSF grant DMS-1907992. MN was 
supported in part by the NSF under grant DMS-1928930 while participating in a program hosted 
by the Mathematical Sciences Research Institute in Berkeley, California, during the spring 2021 
semester. VV was supported in part by the NSF CAREER Grant DMS-1911413.

2. Proof of Theorem 1.1

2.1. First step: extensions and local existence near background shears

The first step consists of a lemma on extension of divergence-free vector fields and a local 
existence-type theorem for an MHD-type equation in the presence of a background shear. In the 
remainder of this section, we denote

T = [0,6],

extended periodically.
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Lemma 2.1 (Extending to periodic data). Given an Hr divergence-free vector field u : [0, 1]2 →
R2 with u2|y=0,1 = 0, there exists uE = (u1

E, u2
E) : T × [0, 1] → R2 in Hr(T × [0, 1]) such that

uE |0≤x≤1 = u , u2
E |y=0,1 = 0 ,

∫

T×[0,1]

u2
E = 0 ;

in particular, uE is periodic in x with period 6, and uE satisfies the inequality

‖uE‖Hr(T×[0,1]) ! ‖u‖Hr([0,1]2) .

Next, we state the local existence theorem, which is the workhorse of the paper. This proposi-
tion is stated on the set T × [0, 1] and demonstrates the local existence of smooth solutions near 
background shears.

Proposition 2.2 (Local existence near background shears). Let u0, B0 : T × [0, 1] → R2 be 
divergence-free vector fields with sufficiently small Hr norm, where r ≥ 3 is an integer, and 
assume that the means of u2

0 and B2
0 vanish. Let H : [0, 1] → R be a smooth function depending 

on B0, and Hu : [0, 1] → R a smooth function depending on u0, as in (2.6)–(2.7). Then there 
exists a T -periodic solution (u, B, ∇p), defined for t ∈ [0, 1], to the following MHD-type system 
which is close to the background shear profiles ushear = Hu(t)ex and Bshear = H(t)ex and solves

∂t u + u · ∇u + ∇p = B · ∇B (2.1a)

∂tB + u · ∇B − B · ∇u = H ′(t)ex (2.1b)

divu = divB = 0 (2.1c)

u2|y=0,1 = B2|y=0,1 = 0 (2.1d)
∫

T×[0,1]

u2(t) ≡
∫

T×[0,1]

B2(t) ≡ 0 (2.1e)

u|t=0 = u0 (2.1f)

B|t=0 = B0 (2.1g)
∫

T×[0,1]

B1|t=1 = 0 . (2.1h)

Furthermore, if 
∫
[0,1]2 B1

0 = 0, then we may take H ≡ 0.

For the precise quantification of how close the solution needs to be to the background shear, 
cf. the statement of Lemma 2.6.

Proof of Lemma 2.1. Introduce the stream function

ψ(x, y) = −
∫

&

u⊥(x̃, ỹ) · (dx̃, dỹ) , (2.2)
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where & denotes a sufficiently regular path from (0, 0) to (x, y), which satisfies ∇⊥ψ = u, de-
noting u⊥ = (−u2, u1) and ∇⊥ = (−∂2, ∂1). Note that the integral is independent of a chosen 
path since divu = 0. Clearly, the condition u2|y=0,1 = 0 implies ψ |y=0 = 0 and ψ is constant on 
the upper boundary {y = 1}, whose value we denote by Cψ . Since it is needed below, note that, 
in particular,

1∫

0

u1(x, y) dy = −Cψ for x ∈T , (2.3)

i.e., the integral 
∫ 1

0 u1(x, y) dy is independent of x. Now consider the standard Hr extension 
operator (cf. Theorem 5.19 from [1]) which takes in a function φ defined for x ∈ [0, 1] and 
returns

φ̃(x, y) =
{

φ(x, y) x > 0
∑r+1

j=1 λjφ(−jx, y) − 1
r+1 < x ≤ 0 ,

(2.4)

where λj are unique solutions to a system of linear equations, one of which imposes that

r+1∑

j=1

λj = 1 . (2.5)

Let θ : [−1, 2] → [0, 1] be a function depending only on x ∈ [−1, 2] which satisfies

θ(x) = 0 for x ∈ [−1/(r + 2),1 + 1/(r + 2)]

and

θ(x) = 1 for x ∈ [−1,−3/4] ∪ [7/4,2] .

Now, extend ψ to ψT : [−1, 5] × [0, 1] → R as follows. For x ∈ [−1, 0], we define 
ψT (x, y) = Cψθ(x)y + (1 − θ(x))ψ̃(x, y), while for x ∈ [1, 2] we use ψT (x, y) = Cψθ(x)y +
(1 −θ(x))ψ̃(2 −x, y). Here we have used the notation that ψ̃ means “apply the Hr extension op-
erator defined above to ψ .” For 2 ≤ x ≤ 5, we set ψT (x, y) = Cψy (this extra room is convenient 
below to move around the support of the magnetic field). Then define ũE = ∇⊥ψ̃T . Finally,

∫

T×[0,1]

u2
E =

∫

[−1,5]×[0,1]

∂xψ̃T = 0 ,

by x-periodicity of ψ̃T . !

Now, we turn to the proof of Proposition 2.2. We look for a solution of this system which 
satisfies
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u = ũ + Hu(t)ex = ũ + ushear (2.6a)

Hu(0) =
∫

[0,1]2

u1
0, Hu(1) = 0 (2.6b)

∫

[0,1]2

ũ(t) = 0 ∀t ∈ [0,1] (2.6c)

and

B = B̃ + H(t)ex = B̃ + Bshear (2.7a)

H(0) =
∫

[0,1]2

B1
0 , H(1) = 0 (2.7b)

∫

[0,1]2

B̃(t) = 0 ∀t ∈ [0,1] . (2.7c)

With this ansatz in mind and noting that ∇ushear = ∇Bshear = 0, and that ∂tushear is equal to 
∂xpshear which is periodic (although pshear itself may not be periodic), (2.1) now reads

∂t ũ + (ũ + ushear) · ∇ũ + ∇q = (B̃ + Bshear) · ∇B̃ (2.8a)

∂t B̃ + (ũ + ushear) · ∇B̃ − (B̃ + Bshear) · ∇ũ = 0 (2.8b)

div ũ = div B̃ = 0 (2.8c)

ũ2|y=0,1 = B̃2|y=0,1 = 0 (2.8d)
∫

T×[0,1]

ũ2(t) ≡
∫

T×[0,1]

B̃2(t) ≡ 0 (2.8e)

ũ|t=0 = u0 − ushear|t=0 (2.8f)
∫

[0,1]2

ũ1(t) ≡ 0 (2.8g)

B̃|t=0 = B0 − Bshear|t=0 (2.8h)
∫

[0,1]2

B̃1(t) ≡ 0 . (2.8i)

Observe that 
∫
[0,1]2 ũ1(t) = 0 is equivalent to 

∫
T×[0,1] ũ

1(t) = 0 by (2.3) resulting from the 
divergence-free condition. Similarly, 

∫
[0,1]2 B̃1(t) = 0 is equivalent to 

∫
T×[0,1] B̃

1(t) = 0. We 
shall prove that one can solve this system for ũ, B̃ , and q which are T -periodic in x and that 
q : T × [0, 1] → R solves an elliptic problem that enforces div ũ = 0 and ũ2|y=0,1 = 0:
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)q = div(−ũ · ∇ũ − ushear · ∇ũ + (B̃ + Bshear) · ∇B̃)

∂yq|y=0,1 = 0
∫

T×[0,1]

q = 0 .

Note that the MHD system exhibits a loss of derivatives; thus in order to solve this system, we 
need to switch to the Elsässer variables

z1 = ũ + B̃, z2 = ũ − B̃ .

In these variables, the equations in (2.8) become

∂t z1 + (z2 + ushear − Bshear) · ∇z1 + ∇q = 0 (2.10a)

∂t z2 + (z1 + ushear + Bshear) · ∇z2 + ∇q = 0 (2.10b)

div z1 = div z2 = 0 (2.10c)

z2
1|y=0,1 = z2

2|y=0,1 = 0 (2.10d)
∫

T×[0,1]

z1(t) ≡
∫

T×[0,1]

z2(t) ≡ 0 (2.10e)

z1|t=0 = u0 − ushear|t=0 + B0 − Bshear|t=0 (2.10f)

z2|t=0 = u0 − ushear|t=0 − B0 + Bshear|t=0 . (2.10g)

Note that the conditions on the means of ũ1, ũ2, B̃1, and B̃2 have been consolidated into (2.10e), 
asserting that the means of both components of z1 and z2 vanish. Taking the curl of the first two 
equations in (2.10), using ε&j to denote the classical Levi-Civita symbol, and denoting ω1 :=
∇⊥ · z1 and ω2 := ∇⊥ · z2 yields

∂tω1 + (z2 + ushear − Bshear) · ∇ω1 = −∂kz
&
1ε&j∂j z

k
2 (2.11a)

∂tω2 + (z1 + ushear + Bshear) · ∇ω2 = −∂kz
&
2ε&j∂j z

k
1 . (2.11b)

Lemma 2.4 below shows that if we have solved this “vorticity-Elsässer-MHD” system, where we 
have substituted (2.11) for the first two equations in (2.10), then in fact we have solved (2.8). We 
first need the following De Rham-type result.

Lemma 2.3 (Periodic De Rham’s theorem). Assume that v ∈ L2
loc(R × [0, 1]) is L-periodic in 

the x variable, where L > 0, and suppose that it satisfies ∇⊥ ·v = 0 and 
∫
[0,L]×[0,1] v

1 = 0. Then 
there exists a function q ∈ H 1

loc(R × [0, 1]), which is L-periodic in the x variable, and satisfies

v = ∇q (2.12)

on R × (0, 1).
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Proof of Lemma 2.3. By the classical De Rham’s theorem [8, Proposition I.1.1], there exists a 
distribution q ∈ D′(R × (0, 1)) such that (2.12) holds. Using [8, Proposition I.1.2(i)], we have 
q ∈ H 1

loc(R × [0, 1]), so we only need to establish periodicity. By the periodicity of v, we have 
∇(q(x +L, y) − q(x, y)) = 0, for (x, y) ∈ R × (0, 1), which implies q(x +L, y) − q(x, y) = a, 
for all (x, y) ∈ R ×(0, 1), where a ∈ R is a constant. Since 0 =

∫
[0,L]×[0,1] v

1 =
∫
[0,L]×[0,1] ∂1q =∫

[0,1](q(L, y) − q(0, y)) = a, we get a = 0, implying the L-periodicity of q . !

We note in passing that any smooth vector field v : T × [0, 1] → R2 which satisfies ∫
T×[0,1] v

1 = 0 allows a unique L2(T × [0, 1])-orthogonal decomposition reminiscent of the 
Helmholtz-Hodge decomposition of the form

v = ∇p + ∇⊥q , ∂yp|y=0,1 = v2|y=0,1 , q|y=0,1 = 0 ,

∫

T×[0,1]

p = 0 ,

where p, q : T × [0, 1] → R are smooth and periodic. We construct q as the periodic-in-x solu-
tion to the elliptic problem

)q = ∇⊥ · v
q|y=0,1 = 0 .

Now, considering v − ∇⊥q , we have ∇⊥ · (v − ∇⊥q) = 0 and 
∫
T×[0,1](v

1 + ∂2q) = 0. Apply-
ing Lemma 2.3 to v − ∇⊥q , we may write it as the gradient of a periodic function p, which 
without loss of generality may be taken to have zero mean. The L2-orthogonality is immediate 
from integration by parts, the fact q|y=0,1 = 0 by construction, and the periodicity in x of v, p, 
and q . Uniqueness follows from the construction, in particular the imposition of the mean-zero 
conditions.

Lemma 2.4 (Solving vorticity-Elsässer MHD). Solving (2.10) but with (2.11) taking the place 
of the first two equations in (2.10) is equivalent to solving (2.8). Consequently, solving either 
provides a solution to (2.1).

In the above lemma it is understood that z1 and z2 are related to ω1 and ω2 as in Lemma 2.8, 
which shows how to reconstruct the appropriate divergence-free velocity field from a given vor-
ticity in our context.

Proof of Lemma 2.4. Assume that we have a solution of (2.11). It is easy to check that

∇⊥ · (∂t z1 + (z2 + ushear − Bshear) · ∇z1)

= ∂tω1 + (z2 + ushear − Bshear) · ∇ω1 + ∂kz
&
1ε&j∂j z

k
2 = 0 .

In order to apply Lemma 2.3, we need to verify that the integral over T × [0, 1] of the first 
component of ∂t z1 + (z2 + ushear − Bshear) · ∇z1 vanishes. For the first term, ∂t z1, this is clear, 
while for the second we have
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∫

T×[0,1]

(z2 + ushear − Bshear) · ∇z1
1 =

∫

T×[0,1]

∂i ((z
i
2 + ui

shear − Bi
shear)z

1
1) = 0 ,

where in last equality we separately integrate for i = 1 and i = 2. When i = 1, we use periodicity, 
while when i = 2 it is important that the expression inside the parentheses vanishes for y = 0
and y = 1. By Lemma 2.3, there exists a T -periodic function q1 such that

∂t z1 + (z2 + ushear − Bshear) · ∇z1 = −∇q1 ,

where q1 : T × [0, 1] → R solves

−)q1 = ∂k

(
(z2 + ushear − Bshear)

&∂&z
k
1
)

∂2q1|y=0,1 = 0
∫

T×[0,1]

q1 = 0 .

We similarly have

∂t z2 + (z1 + ushear − Bshear) · ∇z2 = −∇q2 ,

where

−)q2 = ∂k

(
(z1 + ushear + Bshear)

&∂&z
k
2
)

∂2q2|y=0,1 = 0
∫

T×[0,1]

q2 = 0 .

We find that q1 − q2 is T -periodic in x and solves

−)(q1 − q2) = 0

∂2(q1 − q2)|y=0,1 = 0
∫

T×[0,1]

(q1 − q2) = 0 ,

from where q1 = q2 and we have a solution to (2.10); to obtain that q1 −q2 is harmonic, we write

−)(q1 − q2) = ∂k∂&

(
(z2 + ushear − Bshear)

&zk
1
)
− ∂k∂&

(
(z1 + ushear + Bshear)

&zk
2
)

= ∂k∂&

(
(ushear − Bshear)

&zk
1
)
− ∂k∂&

(
(ushear + Bshear)

&zk
2
)

= ∂&

(
(ushear − Bshear)

&∂kz
k
1
)
− ∂&

(
(ushear + Bshear)

&∂kz
k
2
)
= 0 ,

where we used ∇ushear = ∇Bshear = 0 in the third equality and the divergence-free condition in 
the last. Reconstructing the equations for ũ and B̃ from z1 and z2 as usual and using that q1 = q2

104



I. Kukavica, M. Novack and V. Vicol Journal of Differential Equations 318 (2022) 94–112

then shows that we have a solution to (2.8). To conclude the proof, we must demonstrate the other 
direction of the equivalence, but this only amounts to taking the curl of the first two equations 
in (2.10). !

Returning to the proof of Proposition 2.2, we will be done if we can set up and solve the fixed 
point iteration:

ω1,n = ∇⊥ · z1,n (2.17a)

ω2,n = ∇⊥ · z2,n (2.17b)

∂tω1,n + (z2,n−1 + ushear − Bshear) · ∇ω1,n = −∂kz
&
1,n−1ε&j∂j z

k
2,n−1 (2.17c)

∂tω2,n + (z1,n−1 + ushear + Bshear) · ∇ω2,n = −∂kz
&
2,n−1ε&j∂j z

k
1,n−1 (2.17d)

div z1,n = div z2,n = 0 (2.17e)

z2
1,n|y=0,1 = z2

2,n|y=0,1 = 0 (2.17f)

z1,n|t=0 = u0 − ushear|t=0 + B0 − Bshear|t=0 (2.17g)

z2,n|t=0 = u0 − ushear|t=0 − B0 + Bshear|t=0 (2.17h)
∫

T×[0,1]

z1,n(t) ≡
∫

T×[0,1]

z2,n(t) ≡ 0 . (2.17i)

We split the proof into the following three lemmas.

Lemma 2.5 (Constructing the iterates). If u0 and B0 belong to Hr , then there exists a se-
quence {(z1,n, z2,n)}∞n=0 which is well-defined, satisfies the equations in (2.17), and z1,n, z2,n ∈
C ([0,1];Hr(T × [0,1])).

Lemma 2.6 (Uniform bound in high regularity). The sequence {(z1,n, z2,n)}∞n=0 belongs to the 
ball BCε(0) ⊂ C([0, 1]; Hr(T × [0, 1])) provided the initial data for z1,n and z2,n from (2.17)
are smaller than ε in Hr(T × [0, 1]), where ε > 0 is sufficiently small and C is a constant.

The smallness of data can always be ensured by a sufficiently powerful ε-dependent rescaling 
of the original problem; cf. (1.7). Note that rescaling the initial data by ε shrinks the values of 
Hu(0) and H(0) from (2.6) and (2.7), although the values at later times t are still unconstrained. 
Thus we may first choose ε sufficiently small as determined by Lemma 2.6 and Lemma 2.7, and 
then choose Hu and H appropriately.

Lemma 2.7 (Contraction in H 1). The sequence {(z1,n, z2,n)}∞n=1 satisfies the contraction in-
equality

‖z1,n − z1,n+1‖L∞([0,1];H 1(T×[0,1])) + ‖z2,n − z2,n+1‖L∞([0,1];H 1(T×[0,1]))

≤ 1
2
(‖z1,n − z1,n−1‖L∞([0,1];H 1(T×[0,1])) + ‖z2,n − z2,n−1‖L∞([0,1];H 1(T×[0,1]))) (2.18)

provided that ε, z1,0, and z2,0 are sufficiently small.
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Proof of Proposition 2.2. Assuming the conclusions of the preceding three lemmas, the con-
traction mapping principle provides a unique limit point of the sequence (z1,n, z2,n), that is, we 
have a unique solution to the system of equations (2.10), and thus (2.1), concluding the proof of 
Proposition 2.2. !

Thus it remains to prove Lemmas 2.5–2.7. To prove Lemma 2.5, we first need to state an 
existence and uniqueness theorem for a periodic div-curl problem.

Lemma 2.8 (Periodic div-curl problem). Consider the system

div z = 0 , curl z = ω , z2|y=0,1 = 0 ,

∫

T×[0,1]

z1 = 0 . (2.19)

For every ω ∈ Hs(T × [0, 1]), where s ≥ 1, there exists a unique solution z ∈ Hs+1(T × [0, 1]). 
Also, the mapping ω 2→ z is continuous from Hs(T × [0, 1]) to Hs+1(T × [0, 1]).

Proof of Lemma 2.8. To obtain the existence, first solve )ψ = ω for ψ : T × [0, 1] → R with 
the boundary conditions ψ |y=0,1 = 0 on top and bottom and periodic boundary conditions in x. 
Then set z = ∇⊥ψ . It is easy to check that z satisfies the first three conditions in (2.19). For the 
fourth condition in (2.19), we have 

∫
T×[0,1] z

1 = − 
∫
T×[0,1] ∂2ψ =

∫
T (ψ(x, 0) − ψ(x, 1)) = 0, 

since ψ |y=0,1 = 0.
For uniqueness, assume that z is periodic and satisfies (2.19) with ω = 0. By curl z = 0 and ∫

T×[0,1] z
1 = 0, due to Lemma 2.3, there exists a periodic function φ such that z = ∇φ. The 

divergence condition and z2|y=0,1 = 0 then imply that φ solves the homogeneous Neumann 
problem )φ = 0 and ∂2φ|y=0,1 = 0. Thus φ is constant, from where z = 0. !

Note that, by the proof of Lemma 2.8, a consequence of div z = 0, 
∫
T×[0,1] z

1 = 0, and peri-
odicity is that 

∫
T×[0,1] z

2 = 0.

Proof of Lemma 2.5. We begin by defining the time-independent first iterates

z1,0 = u0 − ushear|t=0 + B0 − Bshear|t=0 , z2,0 = u0 − ushear|t=0 − B0 + Bshear|t=0 . (2.20)

From (2.6)–(2.7) we have that z1
1,0 and z1

2,0 have vanishing averages over T × [0, 1] for all times, 
as desired in (2.17i). From the assumptions of Proposition 2.2, we have that the averages of 
z2

1,0 and z2
2,0 also vanish for all times. Both first iterates are also clearly divergence free, satisfy 

(2.17f), and belong to C ([0,1];Hr(T × [0,1])).
Now assume that the pair (z1,n−1, z2,n−1) is given for n ≥ 1 and satisfies (2.17a)–(2.17i). To 

construct (z1,n, z2,n), we first solve (2.17c) and (2.17d) for ω1,n and ω2,n, respectively, using the 
method of characteristics on the set T × [0, 1]. This is possible because the velocity fields and 
forcing terms for both equations are periodic in x, and the velocity fields do not penetrate the 
boundaries at y = 0 and y = 1. We then solve the div-curl problem

div zi,n(t) = 0

curl zi,n(t) = ωi,n(t)
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z2
i,n(t)|y=0,1 = 0
∫

T×[0,1]

zi,n(t) = 0 ,

using Lemma 2.8 for zi,n(t) : T × [0, 1] → R2 with i = 1, 2 and t ∈ [0, 1], obtaining the estimate

‖zi,n‖Hr(T×[0,1]) ≤ C‖ωi,n‖Hr−1(T×[0,1]) .

From the inductive assumption that zi,n−1 belongs to C ([0,1];Hr(T × [0,1])) and standard 
estimates for transport equations,1 we deduce that zi,n ∈ C ([0,1];Hr(T × [0,1])). Finally, in 
order to obtain zi,n(0) = z0, we simply use curlzi,n(0) = curl z0, the continuity of curlzi,n in t , 
and the continuity of the map ω 2→ z in Lemma 2.8. !

Proof of Lemma 2.6. The proof proceeds by induction on n and a standard energy argument for 
small data. The estimates for n = 0 follow from the fact that we have defined the first iterates to 
be time-independent; cf. (2.20). Next, assume that we have

‖z1,n−1‖Hr ,‖z2,n−1‖Hr ≤ 2ε, (2.22)

for t ∈ [0, 1]. Applying the standard Hr−1 estimates on (2.17c) and (2.17d), while observing that 
∇ushear = ∇Bshear = 0, we get

d

dt
‖ωi,n‖Hr−1(T×[0,1])

≤ C‖∇z1−i,n−1 ⊗ ωi,n−1‖Hr−1(T×[0,1]) + C‖∇z1,n−1 ⊗ ∇z2,n−1‖Hr−1(T×[0,1]) ≤ Cε2,

(2.23)

for i = 1, 2, where we used that Hr−1 is an algebra in the first inequality and (2.22) in the second. 
Next, we integrate (2.23), use the assumption on the size of the initial data, and apply Lemma 2.8, 
obtaining

‖z1,n‖Hr ,‖z2,n‖Hr ≤ ε + Cε2. (2.24)

Choosing ε sufficiently small, we conclude that (2.22) remains valid for ‖z1,n‖Hr and ‖z2,n‖Hr , 
completing the induction step. !

Proof of Lemma 2.7. We set ω1 := ω1,n+1 − ω1,n. From (2.17c), we find that ω1 satisfies the 
equation

∂tω1 + (z2,n + ushear − Bshear) · ∇ω1

= (z2,n−1 − z2,n) · ∇ω1,n − (∂kz
&
1,n − ∂kz

&
1,n−1)ε&j∂j z

k
2,n − ∂kz

&
1,n−1ε&j (∂j z

k
2,n − ∂j z

k
2,n−1) ,

1 A slightly more sophisticated version of such estimates is used in the proof of Lemma 2.6 to demonstrate the uniform 
bound in higher regularity.
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with ω1|t=0 = 0. Multiplying by ω1, we obtain

1
2

d

dt
‖ω1‖2

L2(T×[0,1]) ! ‖z2,n−1 − z2,n‖L2(T×[0,1])‖ω1∇ω1,n‖L2(T×[0,1])

+ ‖∇(z1,n−1 − z1,n)‖L2(T×[0,1])‖∇z2,nω1‖L2(T×[0,1])

+ ‖∇(z2,n−1 − z2,n)‖L2(T×[0,1])‖∇z1,n−1ω1‖L2(T×[0,1])

! ε‖ω1‖L2(T×[0,1])
(
‖z1,n−1 − z1,n‖H 1(T×[0,1])

+ ‖z2,n−1 − z2,n‖H 1(T×[0,1])
)
.

Using a Grönwall argument and choosing ε > 0 sufficiently small, we deduce that

‖ω1,n − ω1,n+1‖L∞([0,1];L2(T×[0,1]))

≤ 1
4K

(
‖z1,n − z1,n−1‖L∞([0,1];H 1(T×[0,1])) + ‖z2,n − z2,n−1‖L∞([0,1];H 1(T×[0,1]))

)
,

(2.25)

where K is sufficiently large. Utilizing Lemma 2.8, with s = 1 while assuming the constant K
in (2.25) is sufficiently large, we get

‖ω1,n − ω1,n+1‖L∞([0,1];L2(T×[0,1]))

≤ 1
4

(
‖ω1,n − ω1,n+1‖L∞([0,1];L2(T×[0,1])) + ‖ω2,n − ω2,n+1‖L∞([0,1];L2(T×[0,1]))

)
.

Establishing the analogous estimate for ω2,n − ω2,n+1 and summing concludes the proof 
of (2.18). !

The first step is now as follows. The initial data u0 and B0 are extended using Lemma 2.1
to data which are divergence-free and T -periodic with the means of u2 and B2 vanishing over 
T × [0, 1]. Choosing suitable ushear = Hu(t)ex and Bshear = H(t)ex , we can drive the system to 
the state such that the means of u and B over [0, 6] × [0, 1] vanish at time t = 1.

2.2. Second step: expelling the magnetic field

Recall that in the first step, we solved (2.8) using the ansatz (2.6)–(2.7), which set ushear =
Hu(t)ex . However, at no point did we impose any restrictions on Hu. The purpose of the second 
step is to show that with an application of Lemma 2.9, stated next, on the set T × [0, 1] and a 
smart choice of Hu in another, we may apply the methodology from Proposition 2.2 to control 
the support of B at later times.

Lemma 2.9 (Truncating to a compactly supported data). Given an Hr divergence-free and T -
periodic vector field B : T × [0, 1] → R2 with

∫

T×[0,1]

B1 = 0 , B2|y=0,1 = 0 ,
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there exists an Hr -regular divergence-free BT : T × [0, 1] → R2 which satisfies B2
T|y=0,1 = 0, 

with BT ≡ 0 for x ∈ [7/4, 5] or x ∈ [−1, −3/4], and BT = B for x ∈ [0, 1]. Moreover, the mapping 
B 2→ BT is linear and we have the inequality

‖BT‖Hr(T×[0,1]) ! ‖B‖Hr(T×[0,1]) .

Proof of Lemma 2.9. From (2.3) and the assumption 
∫
T×[0,1] B

1 = 0, we have that the stream 
function ψ for B , as defined in (2.2) with u replaced by B , satisfies ψ(x, 0) = ψ(x, 1) = 0
for all x ∈ [0, 1]. Define BT(x, t) = ∇⊥ (ψ(x, y)θ(x)) for a T -periodic cutoff function θ which 
satisfies θ ≡ 1 for −1/4 ≤ x ≤ 5/4 and θ ≡ 0 for −1 ≤ x ≤ −3/4 or 7/4 ≤ x ≤ 5. Since ψ(x, 0) =
ψ(x, 1) = 0, we have that ψθ is constant on y = 0, 1. The rest of the assertions of Lemma 2.9
follow immediately. !

Lemma 2.10 (Background shears and the support of B). Let (u0, B0) : T × [0, 1] → R2 ×R2 be 
vector fields satisfying the same assumptions as in Proposition 2.2, with the additional assump-
tions

B|[−1,5]\[−3/4,7/4] ≡ 0 ,

∫

T×[0,1]

B0 =
∫

T×[0,1]

u0 = 0 . (2.26)

Then there exists a T -periodic solution (u, B, ∇p) defined for t ∈ [0, 1] to the MHD-type system

∂t u + u · ∇u + ∇p = B · ∇B (2.27a)

∂tB + u · ∇B − B · ∇u = 0 (2.27b)

divu = divB = 0 (2.27c)

u2|y=0,1 = B2|y=0,1 = 0 (2.27d)
∫

T×[0,1]

u2(t) ≡
∫

T×[0,1]

B2(t) ≡ 0 (2.27e)

u|t=0 = u0 (2.27f)

B|t=0 = B0 , (2.27g)

which in addition is such that u is close to the background shear profile ushear = Hu(t)ex , and

suppB|t=1 ⊂ ∪m∈Z [1.5 + 6m,4.5 + 6m] . (2.28)

As above, the closeness to the background shear profile is quantified as in the statement of 
Lemma 2.6.

Proof of Lemma 2.10. We begin as in the proof of Proposition 2.2 with an ansatz u = ũ +
Hu(t)ex = ũ + ushear, only with no background shear in B this time. Note that this is possible by 
(2.26) and the final sentence of the statement of Proposition 2.2. We choose Hu(t) : [0, 1] → R
to be any smooth function such that
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H(0) = H(1) = 0 ,

1∫

0

Hu(t) dt = 2.5 .

A consequence of this choice is that if X(t, x) : [0, 1] × T → T is the solution to the ordinary 
differential equation

∂tX(t, x) = Hu(t) , X|t=0 = x ,

then

X(1, x) = x +
1∫

0

Hu(t) dx = x + 2.5 .

Now applying the same methodology as in the proof of Proposition 2.2, we may construct solu-
tions to the MHD-type system such that

‖u − ushear‖C
(
[0,1];Hr(T×[0,1])

) ≤ Cε , (2.29)

as in Lemma 2.6. Then define X̃ : [0, 1] × T → T as the solution to the ordinary differential 
equation

∂t X̃(t, x) = u
(
t, X̃(t, x)

)
, X̃|t=0 = x .

Then since Bshear = 0, the vector transport equation for B̃ = B implies

suppB|t=1 = X̃ (1, suppB0) :=
{
x ∈ T : X̃−1(x,1) ∈ suppB0

}
.

Assuming that ε is chosen sufficiently small, (2.29) implies

|X̃(t, x) − X(t, x)| ≤ 0.25 .

Then we have that

suppB|t=1 ⊂ ∪m∈Z [−.75 + 2.25 + 6m,1.75 + 2.75 + 6m]

= ∪m∈Z [1.5 + 6m,4.5 + 6m] ,

concluding the proof of (2.28). !

Now, we carry out the following.
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1. Compactly supported extensions of u and B: Consider (u|t=1,B|t=1) as given by the 
conclusions of Proposition 2.2. From (2.1h) and (2.6)–(2.7), we have that the means of u1

and B1 at time t = 1 vanish, which is, by (2.3), equivalent to the averages of u1 and B1 over 
T × [0, 1] vanishing. Applying Lemma 2.9, we can modify B|t=1 to produce BT , which 
stays the same in a neighborhood of [0, 1] × [0, 1] but satisfies B = 0 for x ∈ [7/4, 5] or 
x ∈ [−1, −3/4].

2. Application of Lemma 2.10: We apply Lemma 2.10 to (u0, B0) = (u|t=1,BT ). This ensures 
that suppB ⊂ ∪m∈Z(1.5 + 6m, 4.5 + 6m) at t = 1. Thus the magnetic field B now vanishes 
inside the set [0, 1]2 at time t = 1.

We now provide some commentary explaining why (1.6) is not sufficient for our method of 
proof. Note that from the assumption that B1 has vanishing average in Lemma 2.10, we have that 
B = B̃ in the language of the proof of Proposition 2.2. But B1 would not have vanishing average 
if either the initial or ending data for the control problem does not have vanishing average, and we 
set Bshear = 0 in Proposition 2.2. In these cases, a compactly supported divergence free extension 
which does not penetrate the upper and lower boundaries is in general not possible. Therefore, 
the vector transport equation for B = B̃ would now read

∂t B̃ + u · ∇B̃ − (BEex + B̃) · ∇u = 0 ,

where BE is the average of B1, which is non-zero and preserved in time. This new equation does 
not transport the support of B̃, and so it is not clear how to ensure that B̃ leaves the domain 
[0, 1]2. Even if one could ensure that B̃ leaves this domain so that B = BEex at some later time, 
this property would not be preserved upon application of a control method to the remaining part 
of the velocity. Control methods for Euler connect the desired initial and terminal data through 
some common state halfway through the time interval, usually the 0 state; a reasonable guess 
for the MHD analogue would be to connect both states through (u, B) = (0, BEex). Since we 
cannot send the initial or terminal data to this state, and there is no obvious alternative, we 
instead connect the initial and terminal data through (0, 0), thus necessitating a forcing term in 
the equation for B .

2.3. Third step: control for Euler

Now that the magnetic field vanishes inside of the domain [0, 1]2, we truncate the extended 
domain [−1, 5] × [0, 1] back to [0, 1]2. On [0, 1]2, we now have a vector field u which does not 
necessarily vanish, but a magnetic field B which vanishes. Solving the MHD equations on [0, 1]2

with vanishing data for the magnetic field is clearly equivalent to solving the Euler equations on 
[0, 1]2. So applying any control method for Euler ([3,4,6]) finishes the proof.
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