On-device loT Certificate Revocation Checking with Small
Memory and Low Latency

Xiaofeng Shi
xshi24@ucsc.edu
University of California
Santa Cruz, CA, USA

Jonne Kaunisto
jkaunist@ucsc.edu
University of California
Santa Cruz, CA, USA

ABSTRACT

Allowing a device to verify the digital certificate of another device
is an essential requirement and key building block of many secu-
rity protocols for emerging and future IoT systems that involve
device-to-device communication. However, on-device certificate
verification is challenging for current devices, mainly because the
certificate revocation (CR) checking step costs too much resource
on IoT devices and the synchronization of CR status to devices
yields a long latency. This paper presents an on-device CR checking
system called TinyCR, which achieves 100% accuracy, memory and
computation efficiency, low synchronization latency, and low net-
work bandwidth, while being compatible with the current certificate
standard. We design a new compact and dynamic data structure
called DASS to store and query global CR status on a device in
TinyCR. Our implementation shows that TinyCR only costs each
device 1.7 MB of memory to track 100 million IoT certificates with
1% revocation rate. Checking the CR status of one certificate spends
less than 1 microsecond on a Raspberry Pi 3. TinyCR can also be
updated instantly when there are new certificates added or revoked.

CCS CONCEPTS

« Security and privacy — Mobile and wireless security.

KEYWORDS

IoT security, authentication, certificate revocation checking

ACM Reference Format:

Xiaofeng Shi, Shouqian Shi, Minmei Wang, Jonne Kaunisto, and Chen Qian.
2021. On-device IoT Certificate Revocation Checking with Small Memory
and Low Latency. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21), November 15-19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3460120.3484580

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8454-4/21/11.

https://doi.org/10.1145/3460120.3484580

Shougian Shi
sshi27@ucsc.edu
University of California
Santa Cruz, CA, USA

Minmei Wang
mwang107@ucsc.edu
University of California
Santa Cruz, CA, USA

Chen Qian
cqianl2@ucsc.edu
University of California
Santa Cruz, CA, USA

1 INTRODUCTION

Recent years have witnessed the rapid growth of Internet of Things
(IoT) devices widely deployed in various applications [7]. With
the growing trend that IoT services scale from local area domains
to wider area domains, there is an increasing demand for secure
peer-to-peer communication protocols in a universe with millions
of IoT devices. Under this context, many security protocols for IoT
should be re-designed. For example, future IoT devices can use any
untrusted access point (such as a public 5G AP) to connect to the
Internet or use the short-range wireless media such as Bluetooth
and visible lights to communicate with another device directly.

Thus, peer-to-peer device authentication becomes a fundamen-
tal security problem of novel IoT and the building block of many
emerging critical IoT security protocols for communication privacy
(such as the TLS-style protocols) as well as IoT data authenticity and
integrity (such as the digital signature protocols) [1, 2, 20, 23]. The
state-of-the-art solution of device authentication is to use device
certificates based on the Public Key Infrastructure (PKI) [1, 2]: each
device is assigned a device certificate by a Certification Authority
(CA), which can be used as a digital signature of its public key. For
example, the [oT architecture of Symantec enterprise security (now
Broadcom) allows assigning certificates to millions of devices [1]
and verifying the device certificates by the device management
servers [2]. Note that the “CA” for IoT devices refers to not only the
general public SSL certificate authority, but the private certificate
issuer in a service managed by the service provider.

On-device certificate verification [32, 35], i.e., allowing one IoT
device to verify the certificate of another device, remains a challeng-
ing problem mainly due to the high latency and bandwidth cost of
the revocation-checking step. On-device certificate verification is a
vital step for IoT security: 1) Many emerging and future IoT applica-
tions require secure peer-to-peer communication directly or via the
Internet, such as autonomous robotic systems, vehicular communi-
cation, wearable healthcare systems, smart industrial control, and
IoT-based post-disaster management. A device should use its own
data and power to verify the certificate of another communicating
device, to further build a secure channel using protocols such as
DTLS [27]; 2) An IoT device may need to process the sensing data
collected from other devices, which carries the digital signatures
from the sensing sources [20]. Verifying the public-key certificates
is essential in validating digital signatures to ensure data authen-
ticity and integrity. For example, in a smart city, an IoT sensor has

https://doi.org/10.1145/3460120.3484580
https://doi.org/10.1145/3460120.3484580
https://doi.org/10.1145/3460120.3484580

to authenticate the mobile devices of the authorized users so that
it can only provide the sensing data to the users who subscribe to
the service. Meanwhile, user devices have to verify the signatures
of sensing data to ensure the data are not tempered by an attacker.

Why on-device certificate verification is challenging? Verifying
a digital certificate takes three main steps: 1) check its validity pe-
riod; 2) validate the CA’s digital signature using CA’s public key; 3)
verify the certificate revocation (CR) status. Step 1 is simple. Step
2, although involving expensive public key cryptography, takes
bounded time and memory. Step 3 is considered an expensive pro-
cess even for a desktop machine [19, 29, 38]. Some issued digital
certificates may have been revoked by the CAs [17, 38, 39] due to
a number of reasons: 1) the device is stolen; 2) the private key of
a device could be compromised by attackers; 3) the CA may find
that a certificate is a mis-issuance; 4) a device may unsubscribe
from an IoT service while its certificate is still within its valid time
period; 5) the database of an IoT service provider or device manu-
facturer might be hacked and the private key information could be
leaked. Upon being notified with these situations, the CA should
immediately labeling these certificates as “revoked”.

For SSL certificates, a certificate revocation list (CRL) [15] con-
taining all revoked certificates is prepared by the CA and sent to
web browsers for revocation checking [29, 38, 39]. The CRL intro-
duces substantial overhead even if it runs on a desktop machine,
because the CRL size is proportional to the number of revoked cer-
tificates, which can be in millions [29, 38, 39]. For IoT, the overhead
problem is more severe, because: 1) the number of IoT devices could
be more than that of web servers; 2) the memory, CPU, and network
resource of an IoT device is much weaker than those of a desktop.
An alternative solution is to use Online Certificate Status Protocol
(OCSP) [22], which increases CR verification latency and the risk of
leaking user privacy (such as accessing history of the device) [30].

In addition, unlike web servers, IoT devices are small in size, have
better mobility and are usually maintained by individual users,
which also means the devices are much easier to be hacked or
stolen. At service-level, it is also more common for an IoT device
to be unsubscribed from a service while the certificate is still in
valid period. Hence, revocations for IoT certificates happen more
frequently and have to be properly handled. When a revocation
happens, how soon other parties are aware of the revocation and
no longer trust the device becomes a rather critical metric of the
security property in the protocol.

The main requirements of practical on-device IoT CR checking
are summarized as follows:

(1) Accuracy: A device should determine a certificate revoca-
tion status without error.

(2) Efficiency: The protocol should cost small memory, compu-
tation, and network resource on IoT devices.

(3) Low latency: Two types of latencies are essential, namely
the synchronization latency and query latency (defined in
Sec. 3). Both latencies should be maintained low.

(4) User privacy: The protocol should not leak the identities
of the accessing devices, locations, and/or communication
pattern/frequency of users.

(5) Compatibility: The protocol is required to be compatible
with current certificate standards and existing certificates.

To our knowledge, there is no solution for on-device IoT CR check-
ing that satisfies all above requirements. Recent works on web
certificates [19, 29] may focus on a subset of them, but fail to ad-
dress all, as analyzed in Sec. 2.

This work presents TinyCR, the first IoT certificate system
for on-device CR checking, which achieves all the five listed
requirements. Our key innovation is a new compact and fast data
structure named Dynamic Asymmetric Set Separator (DASS) to
represent the revocation status of all certificates on IoT devices
with zero error. TinyCR also includes a management program
running on a server maintained by the IoT service provider to
synchronize the DASS on devices, which can be easily replicated
to avoid a single point of failure. We have implemented both the
management and on-device programs. TinyCR is very efficient: it
only needs 1.7 MB on-device memory to track the CR status of 100
million certificates with 1% revocation rate and verifies a certificate
revocation status within 1 microsecond on a Raspberry Pi 3. The
device can also be instantly synchronized when new revocations
happen. Hence, TinyCR uses very small resource to effectively
protect the whole IoT network from the attackers who intend to
abuse the revoked certificates. Our source code of TinyCR is open
to public for re-use and results reproduction (link) [3].

Based on our analysis and evaluations, TinyCR is the ideal so-
lution for CR in any scenario that satisfies: 1) Users need fast or
frequent authentication. TinyCR has a clear advantage in latency
compared to OCSP and equivalent performance compared to CR-
Lite [19] (the state of the art). 2) Each user device has a limited size
of memory that can be used to store the CR list, such as several
MBs. TinyCR costs slightly less memory than CRLite and much
less than other CRL solutions when the revocation ratio is low. 3)
Low CRL synchronization latency is crucial for better security. The
faster the devices can realize a revocation made by the CA, the
lower is the risk for certificate abuse. To our knowledge, TinyCR is
the first on-device CR checking protocol that supports real-time or
high-frequency updating in response to the certificate set changes.
4) User devices prefer low bandwidth cost and the dynamics of
certificates are moderate. Experiments show that the bandwidth
cost of TinyCR is orders of magnitude lower than that of CRLite, if
the number of new certificates added per day or number of revoked
certificated per day are fewer than 1% of the existing certificate sets.
If these changes per day are on the same order of magnitude of the
size of total certificates — although unlikely in practice — TinyCR
still wins if high updating frequency (i.e., one update per hour) is
required, while costs more bandwidth for infrequent update set-
tings (i.e., one update per day). We believe these situations well
characterize the scenarios of IoT P2P communication.

The rest of this paper is organized as follows. In Sec. 2, we review
the state-of-the-art approaches for CR verification. In Sec. 3, we
present an overview of the TinyCR system and the threat model.
The data structure and the optimization methods of DASS are il-
lustrated in Sec. 4, and the system design of TinyCR is shown in
Sec. 5. We present the experimental results of TinyCR in Sec. 6.
We discuss the real deployment concerns in Sec. 7. We present the
security analysis in Sec. 8 and conclude the paper in Sec. 9.

https://github.com/jonnekaunisto/TinyCR

Method Memory Query A-msg size | A-msg size Synec. Push CA
cost time per update per day latency model | compat.

CRL [15, 21] ~ 38 MB > 250 ms - - > 250 ms X v
OCSP [21,22] | ~ 1KB/req. | < 250 ms - - - X v
Othello [37] 29.1 MB <1ps 0~100 B 0~20 KB <1ms v v
CRLite [19] 1.7 MB <1ps - 0.53 MB 1 day+ v v
Let’s Rev. [29] 1.3 MB ~ 10 ms - 62.6 KB 1 day v X
TinyCR (ours) | 1.7 MB <1ps 0~108B | 2.8~21.6KB | <1ms v v

Table 1: Comparison of certificate revocation verification protocols with 100 million certificates, assuming 1% revocation rate
and 0.02% new revocations per day. * Can be shorter with higher daily delta message cost.

2 RELATED WORK

Existing approaches for checking CR status are mainly based on
either remote or local queries. A typical remote querying protocol
is the Online Certificate Status Protocol (OCSP) [11, 22]. In OCSP,
an authorized OCSP server returns the signed revocation status
for every single certificate validation request from the client. An
important weakness of this on-demand remote checking protocol
is that the OCSP clients suffer from privacy leakage of their visiting
history and trace pattern to the OCSP servers, as the server knows
the exact time when one device builds an SSL session with another.
In addition, it requires the devices to have access to the OCSP
servers when validating the certificate and introduces additional
network latency for each query.

On-device CR checking preserves user privacy by allowing them
to check CR status locally through a compact data structure model,
such as CRLSets[18], OneCRL[13], CRLite[19] and CRV[29], which
is periodically synchronized from the CAs or device management
servers. These methods are also known as the push-based models.
For these methods, the protocol designers need to consider the
on-device memory cost and query/updating efficiency of the data
oracle, as the CRLs are usually large. For example, CRLSets[18]
and OneCRL[13], which have been used in web browsers including
Chrome and Firefox, trade checking accuracy for efficiency by
maintaining a subset of the CRLs.

Recent methods of SSL/TLS CR checking, such as CRLite [19]
and Let’s Revoke [29], have been designed to achieve both query or
memory efficiency and accuracy on the client-side. The key idea of
the two methods is utilizing an efficient set-query data structure as
a compact summary of the large CRLs. Our proposed TinyCR also
adopts a similar design framework to enable efficient on-device
error-free CR checking. However, existing methods do not meet the
requirements of IoT CR checking as listed in Sec. 1. For example,
CRLite [19] uses a data structure called filter cascade to check CR
status with small memory costs. The cost of CRLite delta message
updated is high as any revocation will cause a reconstruction of the
filter cascade. Hence CRLite is designed for 1-4 updates per day and
could have more with significantly higher bandwidth cost. The low
updating frequency yields a longer unprotected time, during which
the attackers can abuse the revoked certificates in IoT applications.
Let’s Revoke [29] resolves the high bandwidth cost of CRLite, but
it requires a new Revocation Numbers (RN) extension filed in the
certificate. CAs are required to issue the RNs and maintain/update
the revocation checking structure. Thus, the protocol cannot be

supported by the existing X.509 certificates and the current CA’s
workflow to revoke a certificate. Since the RN filed is generated
based on how many certificates have been issued by this CA for a
given expiration date, it also leaks additional behavior information
of the CAs. For example, anyone who sees a few certificates may
infer how many certificates issued by this CA will expire on a
particular date. Let’s Revoke is also updated daily.

A comparison of CR checking methods is shown in Table 1,
where the results of Let’s Revoke [29], CRL [15] and OCSP [22]
are from the original papers or a measurement paper [21]. We
mainly concern with the on-device memory cost, query efficiency,
updating message size, extra synchronization latency (excluding
network latency), whether the model leaks user’s accessing history
and whether the model is back-compatible with the existing X.509
certificates. Note that all the methods are required to provide zero
error assuming the on-device data models are synchronized with the
latest CRLs provided by the CAs. However, for push-based methods,
when the local data models are not consistent with the newest CRLs,
revoked certificates may still be accepted by the checking model.
Of the compared methods in the table, only Othello [37] and our
proposed TinyCR can support real-time synchronization of the
on-device data model, whereas Othello requires significantly more
on-device memory than TinyCR in practice.

In addition, other methods such as OCSP Stapling [11, 14], Revo-
cation in the Middle (RITM) [31] and Certificate Revocation Guard
(CRG) [16]offload the CR checking process to the server (the re-
sponder of the connection) or a middle-box intercepting TLS traffic.
However, the responder-based checking is not a scalable solution
when the responder is another IoT device, due to its high cost on
the device and the CA side. In addition, if the accessed server fail to
provide a valid OCSP Staple in the handshake, the connect cannot
be established or can never be secure.

3 SYSTEM AND THREAT MODELS
3.1 System Model

Secure communication in an IoT network requires that the devices
can authenticate each other, which is nowadays achieved by dig-
ital certificates based on the Public Key Infrastructure (PKI). The
TinyCR system enables the IoT devices to maintain a compact rep-
resentation of the CRL with 100% query accuracy through a data
structure named Dynamic Asymmetric Set Separator (DASS). Fig. 1
illustrates the system model of TinyCR. The CR checking protocol
is designed on top of the current IoT/Mobile device management

-P

A/\ @ certificates & CRL I I

EEE@EE

@ Construct DASS

Install DASS on devlce%j/ﬁ ﬂ N\@ Synchronization via A-msg
Local updates B [~ \o c U

On-device checker: DASS

loT Device
Management Server
(and backup servers)

CA

CU

Figure 1: System model of TinyCR

system (MDM) [2], where an IoT device management (IDM) server
requests the certificates from CAs for users and delivers the cer-
tificates (usually through a patch file for installation) to the end
devices when the devices are registered to the service. Note that
the CA could be the world-wide issuers or the PKI service that is
managed by the service provider (such as Symantec Managed PKI
Service [2]). The CA issues new certificates at the request of IDM
and actively sends updated CRLs to the IDM server when a new
revoke happens (Operation 1). The IDM server constructs and up-
dates DASS based on the global certificate database and the newest
CRLs (Operation 2). For each device, the IDM server will install
DASS on it (Operation 3) when the device is enrolled to the service.
The DASS installation process could be conducted together with
the certificate installation on the device. Whenever the CRLs have
changed, the IDM server would send update messages if necessary
in a pushing way (Operation 4). In the system, each device can
check the CR status of any certificate completely based on DASS
and perform local updates to DASS (Operation 5). The model fits
or can be easily extended to most IoT management systems.

We define two types of latencies in the whole process: 1) syn-
chronization latency is defined as from the time of the CA revok-
ing a certificate to that of a device being able to find this revocation
event from its local state; 2) query latency is defined as the time
used to get the CR status on a device. TinyCR aims to minimize
these two latencies. There is another type: revoking latency, de-
fined as from the time a certificate being hacked to that of the CA
revoking the certificate, which is out of scope of this work.

3.2 Threat Model

Since the certificates issued by the CA might be revoked, an at-
tacker can effectively abuse the revoked certificates. The security
vulnerability in this process is apparent: the revoked certificate
are still valid if a device only verifies the expiration dates and CA
signatures (called time- and signature-valid). Hence the on-device
maintenance of all revoked certificates is necessary. We are mainly
concerned about the attacker who can obtain a set of time- and
signature- valid but revoked certificates and the corresponding pri-
vate keys, such that the attacker can masquerade as legitimate users
in the IoT to perform Man-in-the-Middle (MITM) attacks during
TLS setups or tamper with the sensing data. We summarize the
threat model and assumptions in this paper:

1. The IDM server and the CAs are trusted and they communicate
via a secure channel with integrity. Each device also maintains a
channel from/to the IDM server with integrity.

2. The attacker can acquire a set of time- and signature-valid
certificates. But this behavior could be detected by the CA and those
certificates are revoked.

3. The attacker can obtain all information of the shared DASS,
but is not able to tamper it.

4. The size of the certificate universe in IoT is large. Note that the
current number of web server certificates is on a scale of 100 million
[19, 29]. 1t is a reasonable estimate that the future IoT devices should
be much more than the number of web servers.

5. The number of revoked certificates is smaller than that of
legitimate ones in an IoT network by at least an order of magnitude.
Otherwise, the CA who issues many revoked certificates will not
be trusted. This assumption is validated by measurements [34].

6. IoT devices have limited memory and computing resources,
while the IDM server and attackers can be powerful. The IDM
server knows all time- and signature-valid certificates.

7. We do not consider deny-of-service attacks.

4 DASS DESIGN

CR checking can be modeled as a binary set query problem.

Definition 4.1 (Binary set query problem). Let U be a finite set
of keys that can be divided into two disjoint subsets P and N, and
U = P U N. The binary set query problem is that given k € U,
determine if k € P or k € N.

All certificates that are checked for CR status are both time-valid
and signature-valid, otherwise they will be rejected in expiration
and signature checks. The IDM server knows all time- and signature-
valid certificates (U) and they can be classified into to two finite
sets: one for the legitimate certificates (‘negatives’ N) and the other
for the revoked ones (‘positives’ P). Hence the CR checking result
can be either 0 (not revoked) or 1 (revoked).

TinyCR achieves binary set queries by a compact data structure
called DASS. We design DASS using an innovative combination of
existing algorithmic tools. We first briefly introduce these tools.

Filter tools. A filter data structure is used for approximate mem-
bership queries. The most well-known tools are the Bloom filters
[8] and Cuckoo filters [12]. For a given set S of keys, a filter F
answers each query of key k and returns F.Query(k) = 1ifk € S.
However, filters introduce a small number of false positives: for a
key k ¢ S, the filter returns 0 in most cases but may also return 1.
The space cost of a filter is proportional to |S|.

Using filters cannot meet the requirements of IoT CR. If
we set N as S, then a revoked certificate may be determined as le-
gitimate. If we set P as S, a legitimate certificate may be determined
as revoked, which also brings problems. CRLite [19] uses a filter
cascade to eliminate false positives. However, the cost to update a
filter cascade is high as shown in Sec. 6.

Existing set query tools are not ideal. A set query tool can
do exactly what we want for binary set queries of CR checking.
It returns 1 if k € Pand 0 if k € N for any k € P U N. Recent
compact set query tools include Bloomier filters [9, 10], Othello
hashing [37], SetSep[40], and Coloring Embedder [33]. The space
cost of a set query data structure is proportional to |U| = |P| + |N]|.

’ N ?@ Insert Not)0 | iter
™ “] 0 Filt revoked
1 <— Filter «——
y @search
o ll ‘
3 EEREEI
Set 0 Set1 y \1‘
® Insert
Not Revoked!
_ revoked Do not trust

Figure 3: DASS Query

Figure 2: DASS Construction

However these methods still introduce non-trivial memory cost for
CR checking because |N]| is usually extremely large.

The key reason that DASS can further optimize the memory cost
of existing set query tools is that we utilize the important obser-
vation: practical measurements show that the revoked certificates
only contribute to 1% of all certificates [19, 34], hence |[N| > |P|.
DASS is particularly designed based on this fact.

Recall P is the set of revoked certificates and N is the set of
legitimate certificates, and |N| > |P|. We construct DASS as shown
in Fig. 2. DASS has two levels. The first level is a filter implemented
by a Cuckoo filter [12] with S = P. Hence we create a Cuckoo filter
F based on set P and insert all keys in P to it (Step 1) — each key is
a certificate and is represented as a small number of bits in F. In
Step 2, we test set N against the filter F. Most certificates of N will
be tested ‘negative’ and they are true negatives (set TN). However
a few certificates of N are tested ‘positive’ due to the fundamental
limitation of a filter, and they are false positives (set FP). In Step 3,
we construct an Othello data structure O for binary set classification
and use FP as set 0 and P as set 1. Note both FP and P are very
small sets compared N, hence DASS saves the majority memory
cost compared to simply using Othello.

The query of DASS about a certificate k is executed as shown
in Fig. 3. In Step 1, k is tested by the filter F. If F.Query(k) = 0, we
must have k € N and k is legitimate. If F.Query(k) = 1 then k is
either revoked or false positive. Then it is tested by Othello O. If
O.Query(k) = 0, k is legitimate. If O.Query(k) = 1, k is revoked.

Compared to CRLite [19], DASS can be easily updated for a new
certificate insertion or certificate revocation. Both the update time
and message cost is very small. We will show this in later sections.

Tool Choices in DASS. As discussed in Sec.1, for CR checking,
we majorly concern with the memory/computing efficiency for
query and updating cost when the CRL changes. Although most of
the state-of-the-art filter tools and set query tools mentioned above
use similar resources for lookups when appropriately configured,
their updating cost varies significantly. For example, Cuckoo Filter
can support key deletion at a low cost, whereas standard Bloom
Filter has to be rebuilt to remove a key from the membership set. We
choose to use a (2, 4)-Cuckoo Filter for the first filter layer, namely,
each item has two candidate bucket positions and each bucket has 4
available slots. The setting of two candidate positions is optimal for
efficient query and updating, as the minimal numbers of hashing
and memory read operations are required. Four slots per bucket

v, =100 =1

Ry (k1) hy (k) v = taha (k)]s [hy (k)]
Figure 4: Othello for binary set query. The value of the key
is stored by the edge between the two hash positions.

can yields the minimal or close to minimal memory cost when the
expected false positive rate ¢ is between 0.001% to 1% [12].

Among the above set query tools, Othello[37] is a dynamic data
structure that supports new key-value pair insertion and value-
flipping of existing keys at O(1) cost, while the other methods are
built on a fixed and static key-value set. Thus, we use Othello in
our work for the optimal updating efficiency.

The structure of a one-bit Othello for the binary classification
case is illustrated as Fig 4, in which each bucket of the hashing ta-
bles contains a one-bit slot. Suppose the lengths of the two hashing
tables T, and Ty, are mg, and my, and the corresponding uniform
hash functions are hq (x) and hy, (x). Othello is constructed by find-
ing an acyclic undirected graph G = (Vg, V3, E), where E is the edge
set, Vy, V}, are the vertex sets with each node vfl eVa(0<i<mg)
and Ui € Vp (0 < j < my) representing the ith and jth bucket of
T, and T},. For any key-value pair (k,v) with k € U and v € {0, 1},
v can be stored in graph G by inserting a new edge (vfl, vi) in E,
where i = h, (k) and j = hy, (k) (as shown by the red or the green
edges in Fig 4). The query function f : U — V for the key-value
mapping is defined as: Query(k) = t4[i] ® t;[j], where t4[i] and
tp[j] represent the entry in the ith and jth bucket of T, and Tj,
respectively.

According to Yu et al. [37], it takes O(1) time to find a proper pair
of hash functions hg4, hj, that can successfully allocate the whole
key set if the size of Othello (m, + my,) is larger than 2.33|U|, where
|U]| is the size of the key set. In addition, using this setting, it takes
O(1) cost to query the data structure, and amortized O(1) time to
insert and update the data structure incrementally.

Therefore, in the DASS, we particularly use a variant of Cuckoo
filter and Othello, which have been demonstrated as one of the
most efficient filter/set-query tools for lookup and updating [28]
to our best knowledge. We include the detailed preliminaries of
Cuckoo filters and Othello implementation in Appendices A.1.1 and
A.1.2. Note that the filter and set query components in DASS can
be replaced with other alternative tools that satisfy the efficiency
requirements of CR checking.

Tradeoff analysis of DASS. Despite its simplicity, DASS is
rather memory-efficient to memorize the binary values of keys,
especially when the sizes of the negative key set and positive key
set are highly imbalanced (namely, set ratio r = [N|/|P| is large).
Here we show how to optimize DASS so that the total memory cost
is minimized for the given two key sets P and N.

In DASS, there exists a trade-off between the sizes of the filter
F and that of the Othello O. The false positives will be fewer if F
uses more space, and hence O needs less space.

Let ¢ be the false positive rate of the F in the first layer, then
the expectation of the number of false positives of F is ¢ |N|. Since
Othello costs 2.33 bits per key, O needs 2.33 (¢ [N| + |P|).

Meanwhile, let the memory cost of the first layer Filter F be
Mg, such that the expected false positive rate of F is no greater
than ¢. According to the recent implementation of Cuckoo filters
[36],F produces a false positive result when the fingerprint of a
negative key collides with at least one stored fingerprint in the two
candidate buckets, with each bucket containing b entries. Therefore,
the upper bound of the probability of a false positive fingerprint
collisionis 1 —(1— 1/2f)2h ~ 2b/2f, where f is the number of bits
of the fingerprint. Hence, ¢ > 2b/ 2/, and we get

f=z {logz(zb/g)] = {logz(l/s) + log,(b) + l]. (1)

Then, the amortized space for each positive key stored in the filter
is f/a, where « is the load factor of the Cuckoo hashing table. Thus,
if we use the (2,4)-Cuckoo hashing table in F, and the expected load
factor rate of 0.95 to initialize the Cuckoo Filter (which is a common
setting for the filters to guarantee the success rate of insertion and
efficiency of query), the amortized space for each positive key in
F is (log,(1/¢) + 3)/0.95 [12, 36]. In addition, the Cuckoo Filter
implemented with the semi-sorting trick [12] can further save one
bit per fingerprint. Hence, the total cost of F with semi-sorting
implementation is |P| (log,(1/¢) + 2)/0.95.
Let r = |[N]|/|P]. In total, DASS uses M bits where

M = ((log, (1/€) +2) /0.95 + 2.33¢r + 2.33) |P|)

Since |P| and r are constant for the given certificate sets, we can

minimize the total memory cost by letting %if = 0. Hence, M is

minimized when ¢ ~ 22 and M, = (1.05log, r + 6.604) |P|.
r 82

The result further instructs us to set the fingerprints of the Cuckoo
filter to be [3.6 + log, r-| bits according to Eq. 1.
Compared to the memory cost of Othello, 2.33(|N| + |P|) =

O(r|P|), DASS significantly reduces the memory cost to ©(|P|logr).

The optimal filter cascade used in CRLite [19] costs |P|(1.44 log, r +
4.2) bits, which is similar to DASS. But CRLite does not support
in-place incremental updates.

5 PRACTICAL DESIGNS OF TINYCR

We present the detailed design considerations of TinyCR. The
TinyCR system contains two programs: the tracker running on the
IDM server and the verifier running on the devices. The tracker is
responsible for receiving new certificates and revocations from the
CAs, constructing DASS, and sending the DASS update messages
to devices. The verifier is the compact DASS data structure running
on the IoT devices to support CR checking. This section discusses
how the tracker and verifier should execute and communicate.

5.1 Updates of Cuckoo Filter and Othello

Cuckoo filter supports key addition to and deletion from S by
calling F.Insert(k) and F.Delete(k) respectively. Both functions
cost constant time on average [12]. Othello supports key addition,
deletion, and value flipping. Adding a key k to set 1 is by calling
O.Insert(k, 1), indicating the value of k is 1. Adding a key k to

set 0 is by calling O.Insert(k,0), indicating the value of k is 0.

Deletion and value flipping is by O.Delete(k) and O.Flip(k). All

these functions cost constant time on average [37]. Due to space
limit, we include details of these functions in Appendix A.2.

However, it is important to note that insertion and deletion of
keys in Cuckoo Filters would impact the distribution of the potential
false positive keys in the whole key space. More precisely, inserting
a new fingerprint into the Cuckoo hash table would create a set of
new potential false positive keys that match the fingerprint stored
in the corresponding bucket. Similarly, deleting a fingerprint from
the table would eliminate a fraction of potential false positive keys.
For simplicity of the design description, we temporarily ignore this
issue in Sec. 5.2. We then look back and discuss the solution to
address this issue in Sec. 5.3.

5.2 Updating DASS on the Tracker

On-device DASS needs to be updated when 1) a new certificate is
issued by CAs, 2) a certificate is revoked by CAs, 3) a certificate
is expired, or 4) in rare cases CA un-revokes a revoked certificate.
All these situations can be addressed by the following three update
functions on the tracker.

e Insertion: adding a certificate to N or P (very rare cases).

o Value Flipping: moving a certificate from P to N (very rare
cases) or from N to P.

e Deletion: removing a certificate from P or N.

For each update, the tracker will compute the delta message, in-
cluding only the bit positions that need to change for on-device
DASS. Using the delta message instead of the complete DASS sig-
nificantly saves bandwidth cost.

5.2.1 Insertion. When a device joins the network with a new cer-
tificate, this information should be immediately reflected in DASS.
Otherwise other devices may reject this certificate if DASS returns
1. In rare cases, the CA may also revoke a certificate before it is
actually installed on any device.

Let k be the new certificate. If k is added to the positive set P,
according to the design, k should first be inserted to the filter F and
then inserted to the Othello O in the second layer with its corre-
sponding value O.Query(k”) == 1. On the contrary, if k is inserted
to the negative set N, we can check whether F tests it as positive.
If F.Query(k) == 0, then the original DASS classifies k correctly
and no updating is required. Otherwise, k’ is a false positive and
should be inserted to O with O.query(k) == 0. Both F.Insert(k)
and O.Insert(k, v) take O(1) time to complete in average.

5.2.2 Value Flipping. When a valid certificate is revoked by the
CA if, for example, the device is compromised by an attacker, the
revocation status of this key should be updated from 0 to 1 in DASS.
In another case, the CA may also want to un-revoke a revoked
certificate, implying the revocation status should be updated from 1
to 0. In both cases, all devices in the network should be noticed with
the updating information to avoid abuse of the revoked certificates
or mistakenly rejecting a legitimate one.

Suppose a key k is moved from N to P. The tracker first checks
whether k is considered as a (false) positive key by the filter, then
inserts k to the filter F. If k is a false positive, k has already been
stored in the second layer O. In this case, the tracker needs to
execute O.F1ip(k) to change the stored value of k. Otherwise, the
tracker inserts k to O with corresponding value 1 by O.Insert(k, 1).

cuckoo filter ~ FP-Indexing TN-Indexing

y: a FP key hy(2)
foy Yo Z
y .
z
z:a TN key z-

Figure 5: TN-indexing table and FP-indexing table

In another value flipping case, k is moved from P to N. In such
case, k should have been already inserted in both F and O. There-
fore, to update the DASS, the first layer filter F first removes k’s
fingerprint from its cuckoo hashing table and then check whether
k would be recognized as a false positive key after removal. If k is
not a false positive, it should be deleted from O. Otherwise, O flips
the value of k using O.Flip(k).

5.2.3 Deletion. Certificates may expire. Although the removal of
these certificates from DASS is not necessary — the expired certifi-
cates are rejected in early steps — it helps to maintain the DASS
compact. DASS has to be rebuilt when it is too full to insert new
certificates, which would cost considerable computation resources
and network bandwidth. Hence, removing expired certificates can
avoid unnecessary rebuilds.

Let k be the key that should be removed from either P or N. If
k € P, both of the two layers need to remove k by calling their
delete functions. Otherwise if k € N, we need check whether k is a
false positive for the first layer F. If it is, then the second layer O
needs to delete it. Otherwise, neither F nor O store the information
k, thus no operation is required.

5.3 Handling Inconsistency of Updating

All above updating algorithms assume the false positive set of the
first layer filter for the given certificate set remains stable. However,
after inserting or deleting a key from the filter, the assumption may
no longer hold, because the fingerprint added or removed from
the cuckoo filter would increase or decrease the distribution of
potential false positive keys.

If a former TN (true negative) key becomes a FP (false positive)
key after an insertion, the key should be recorded in the second layer
O, such that the key can be correctly queried. Similarly, if a former
FP key becomes a TN key after a deletion, then the key needs to
be removed from O. Although the correction process is simple, the
detection of these influenced keys from the entire negative key set
is challenging. A naive solution is thoroughly checking the negative
key set with the updated cuckoo filter to find the influenced keys.
However, this solution is extremely time-consuming as the negative
key set is usually big, causing O(|N|) rather than O(1) updating
cost in the worst case.

In TinyCR tracker, we propose to solve the problem by using two
additional indexing hash tables that have similar number of buckets
as the cuckoo filter to index the sets of the potentially influenced
keys for every fingerprint in the cuckoo filter.

Specifically, at the construction time of DASS, when we iterate
through the entire negative set N to find the FP sets by querying

F, we insert the TN keys into the “IN-indexing" hash table and
FP keys into the “FP-indexing" hash table at the exact two bucket
positions that are queried in F to lookup the fingerprint (as shown
in Fig 5). Therefore, when a fingerprint is inserted into a particular
bucket in F at the updating time, only the TN keys stored at the
same bucket positions of the TN-indexing table would be potentially
influenced by the insertion. Hence, only these TN keys need to be
queried with F again to check whether they become FP keys after
the insertion. Then those new FP keys are inserted to the O in the
second Othello layer. Similarly, when a fingerprint is deleted, only
the FP keys at the corresponding buckets in the FP-indexing table
need to be checked again. Then the keys that become TN keys after
the deletion are removed from O.

Since |N| = r|P| and the number of buckets in F is O(|P|), the
amortized length of each bucket in FP-indexing and NP-indexing is
O(r). Thus, the updating cost decrease from O(|N|) to O(r) in worst
case with this indexing strategy. Meanwhile, the total size of the
indexing tables is O(|N|). Since these tables are maintained by
the server and not related to the devices, the cost is afford-
able. By properly handling the inconsistency issues, the tracker is
able to create a perfect DASS that yields zero query error.

5.4 Updates on Devices

Though the TinyCR tracker requires O(|N| + |P|) extra space to
maintain the certificates, each on-device verifier requires much less
memory and computational resources to support updating. In the
verifier, only the cuckoo filter and Othello are stored in memory,
costing approximately (1.05log, r + 6.604) | P| bits. The inference
of DASS in verifier can be simply accomplished by at most four
hashing and memory read operations.

In addition, the DASS verifier can also be synchronized with
delta messages. When an update is necessary, the tracker sends a
delta message patch to all devices. The delta message includes the
certificate digest and the indexes of the bits that need to be changed
in O’s hash tables, and is small in size (9 to 150 bytes on average for
100 million certificates). Note that the indexes of the flipped bits in
O are tracked as an intermediate result while updating the Othello
(see Appendix A.2.2). Thus, there is no extra cost to compute the
indexes after the update is done. Our experiment also shows the
raw delta message does not scale with the size of the certificate sets.
Then the tracker signs the delta message and attach the signature
to the updating patch data to guarantee the integrity. This updating
strategy differs from other CR checking synchronization methods
that use static data structures, such as CRLite [19], which needs to
rebuild the entire data structure for every update (if correctness
of verifier is obligatory at any time) and sends it to all clients. The
raw delta message of CRLite is much larger than that of DASS.

In our design, the raw delta-msg is encoded as Fig 6. Specifically,
the updating instruction for F uses only 9 bytes, including 1 byte
for the operation type (insert, delete or do nothing) and 8 bytes
for the 64-bits digest of the certificate. Then the F in the verifier
DASS can insert or delete the certificate through the corresponding
operations of the local Cuckoo filter.

Meanwhile, the updating instruction for the O is a list of 32-bit
integers representing the bucket positions at which the stored value
should be flipped. For every position index pos, if pos < |T,|, we flip

0101 0110 --0111 |--1000| 1001 --1010 [-1011f[--1100| 1101 --1120 |ndex

odothelio [1[1JoJafJo]a]afof1]1]

NewOthello [1 [1o o[o1 1[1]
0 8 72\, 10&%\ 168
DeltaMsg |op [CertDigest | 1000 1011 --1100 \
— " Y
Othello Msg

Figure 6: Structure of a delta message
L pusHoN

—
\\ a= Dl!]est(DASS,,) vd_> v, DASS, Amsg,
v, DASS, Amsg

Y Amsg; 4- v, DASS, Amsg,

DASS,

Othello Msg

Figure 7: Multi-way version control protocol.

the entry at bucket pos of T,; otherwise, we flip the entry at bucket
pos—|Tp| of Ty, where T, and T, are the two maintained hash tables
in Othello [37]. In our evaluation, we will show on average only a
small number of buckets in O (if any) need to be flipped.

5.5 DASS Version Control

Since TinyCR uses delta messages to update the on-device checker,
the new state of DASS relies on the previous state. Thus, the system
may suffer from potential system/network failures that cause the
packet loss of the delta messages. To solve this problem, we intro-
duce a multi-way DASS version control protocol as an optional
design choice(as illustrated in Fig. 7).

In Fig. 7, the IDM server initiate a PUSH-SYN packet when a new
tracker DASS; is generated. Then the device sends back the digest
vy of its local verifier DASS,;. Meanwhile, the IDM server maintains
a mapping table to keep track of a history of ¢ recent verifier DASS
version IDs and the corresponding delta-msg increments. According
to our evaluation in Sec. 6.4.2, the average delta-msg increment
size is fewer than 100 bytes. Then the IDM server simply retrieves
all the missed delta-message increments and concatenates them to
generate the cross-version delta message AMSG,_, that denotes
the differences between DASS,; and DASS;. In the AMSG,;_,4 that
skips over multiple versions, we could include multiple Cuckoo
Filter Msg fields and one single Othello Msg field using the similar
encoding format as shown by Fig. 6. If v, is not maintained by the
version table, that means the device has missed a large amount of
updates. Then the server directly send the DASS; instead of the
delta message to the device. Optionally, the device returns an ACK
when the local DASS updating is accomplished.

If the updating frequency of certificate sets is too high in some
scenarios, it is not practical for the IDM server to send a signed delta
message after each update and track every DASS version. In such
case, we can use the version control design to batch the updates
with a bounded time granularity. For example, the IDM server can

only send one single aggregated delta message in per-hour, and
maintain only 24 delta message increment versions in each day.

6 IMPLEMENTATION AND EVALUATION

6.1 System Implementation

We implement the TinyCR tracker on a Google Cloud VM instance
with 64 vCPUs and 624 GB memory using C++. The on-device DASS
verifier is implemented on a Raspberry Pi 3 with one single 1.4 GHz
processor and 1 GB RAM. Note the device used in the experiments
is just an example of a wide spectrum of devices that can use
TinyCR. TinyCR can be easily deployed on more powerful devices
like mobile phones and less powerful devices as long as they have
available memory (see Table 2. For real Censys data that contains
28.6M certificates, it requires 448KB).

In addition to TinyCR, we also implemented the CRLite filter
cascades [19] and Othello hashing [37] data structures with similar
synchronization settings as the TinyCR protocol for performance
comparison. The parameters for CRLite and Othello are set accord-
ing to the authors’ suggestions [19, 37]. Both TinyCR and Othello
can support dynamic updating of the revocation checking list, while
CRLite has to be rebuilt for most updates.

6.2 Metrics and Dataset
We evaluate the CR methods by the following metrics:

e On-device memory cost: the overall memory cost of the data
structures on a device.

e Update time and synchronization latency: the time for each
update on the IDM server.

e Bandwidth: the message cost caused by updates.

® Query cost: the delay to get a CR checking result.

We use both real-world and synthetic certificate datasets for
the evaluation. Since there is no IoT certificate dataset available,
we use the Censys web certificate dataset[4, 19] to evaluate how
those protocols perform in real-world CR verification scenarios.
We downloaded 30 millions items of historical NSS trusted certifi-
cates over 3 months from Censys using Google BigQuery [5]. After
removing the duplicated certificates, there are totally 28,593,752
items in the dataset. Then we use the CRLs or OCSP to obtain the
revocation status of all downloaded certificates. Among the 28.6
million certificates, 274,926 were revoked, i.e., the ratio between
the legitimate and revoked certificates is 103 : 1. To evaluate the
scalability, we create synthetic datasets containing up to 1 billion
certificates with different revocation ratios from 20% to 0.01%.

6.3 Memory cost

We construct the on-device data structures of TinyCR (DASS), CR-
Lite (filter cascade), and Othello respectively using the entire Censys
certificate data. We find TinyCR, CRLite, and Othello requires 430
KB, 439 KB, and 8,328 KB memory respectively to maintaining the
CR status of the 28.6 million certificates.

Then we conduct experiments on the synthetic dataset to investi-
gate how the memory sizes scale with the sizes and distributions of
the keys. In Fig. 8, we show the amortized memory cost (i.e. bits per
certificate) with respect to the total size |N| + |P| of the certificates
by setting r = |N|/|P| as 4 (Fig 8 a), 16 (Fig 8 b) and 128 (Fig. 8(c))

2.5 2.5 2.5 225
2.0 2.0 2.0 22
AN $
£ - t N _ t N _ £ o2
o 15 T 1.5 —a— TinyCR, r = 16 8 1.5 —a— TinyCR, r = 128 u>:‘
N ¢ N —e— CRLite, r = 16 < —e— CRLite, r = 128 R
210 210 —w— Othello, r = 16 210 —e— Othello, r = 128 s
@ —a— TinyCR, r=4 @ @ E 217 —a— TinyCR
0.5{ —e— CRLite, r = 4 05{ o 0.5 = —e— CRLite
—u— Othello, r = 4 L 215{ —e— Othello
0.0 212 214 216 218 220 222 224 226 225 230 0.0 212 zld 216 218 220 222 224 225 228 230 0.0 212 214 216 215 220 222 22A 226 225 230 21 23 25 27 29 211 213
of Certificates # of Certificates # of Certificates r
@r=14 (b)r =16 (c)r =128 (d) |P| + |N| = 226

Figure 8: Plot (a) to (c): Amortized memory for different key sizes when r = |[N|/|P| is 4, 16, 128 respectively. Plot (d): Memory

cost for 2% keys with respect to r.

respectively. Meanwhile, in Fig. 8(d), we present the total memory
cost (in bytes) for storing the revocation status of 2% certificates,
by varying the ratio r. The vertical dash line in Fig. 8(d) represents
the ratio r of the Censys dataset in real-world scenario.

Fig. 8 shows the memory cost per certificate of all three data
structures keeps stable when r is fixed. For example, the amortized
memory sizes for TinyCR, CRLite, and Othello are around 0.108 bits,
0.111 bits, and 2.333 bits per certificate respectively for arbitrarily
large key sets when r = 128. The amortized memory for Othello
is independent with r (it is controlled by a hyper-parameter and
is set as 2.33 bits), whereas both TinyCR and CRLite use much
less memory as r grows. It can also be seen from the graph that
both TinyCR and CRLite use less than 1 MB to store the around
64 million certificates when r = 100 (which is close to the ratio for
real-world CR lists) and use less than 8 MB when r = 10, while
Othello always requires around 20 MB.

6.4 Updating efficiency

In this section, we evaluate the update and synchronization over-
head of the data structures regarding any change of the global CRL.
Specifically, we utilize the Censys certificates and synthetic data
sets to simulate the following updating scenarios.

Short-term insertion/value flipping: We use a certificate dataset

to initialize the CR verification data structures through a static ap-
proach, then evaluate the latency of the inserting/value flipping
operation on the initial data structures without reconstructing the
data structures (except for filter cascades).

Long-term insertion: We use 100 million certificates to initial-
ize TinyCR, then insert another 100 million certificates item by item
to them. In the simulation, we assume the revocation ratio of the
initial and the inserted certificate sets are consistent.

Long-term value flipping: We use 100 million certificates to
initialize TinyCR. Then we randomly sample | P| validate certificates
and revoke those certificates, where |P| is the number of revoked
certificates in the initial set. We simulate the scenario where the
number of revoked certificates is doubled during the usage period
before expiration. Note that the revocation of the sampled set is a
gradual process, i.e., one certificate is revoked at each timestamp
when the CA decides to revoke it. In TinyCR, the reference value
of a newly revoked certificate should be changed from 0 to 1.

6.4.1 Overhead on the IDM server (tracker). The tracker on the IDM
server is required to react quickly for every update (insertion and

of Certs Method Mem AddP AddN P—-N NP

CRLite 458 KB 3.2s 3.2s 32s 3.2s

Censys

28.6M Othello 83MB 114ps 99pus 101pus 9.2 pus
TinyCR 448 KB 3499 us 1.6 us 27.0 us 3453 us

CRLite 172 KB 1.0s 10s 1.0s 1.0s

10M Othello 29MB 46pus 50pus 46pus 44pus
TinyCR 169KB 280.9 us 1.2 us 16.6 us 289.9 us

CRLite 1.7 MB 10.1 s 10.1s 10.1s 10.1 s

100M Othello 292MB 85pus 75ps 7.1ps 7.0pus
TinyCR 1.7MB 3049 us 1.6 pus 21.6 us 3115 us

CRLite 17.2MB 1539s 1539s 1539s 1539s

1B Othello 291.7 MB 10.0 ps 10.2 us 82pus 7.0 us
TinyCR 169 MB 296.0 us 2.7 us 27.3 us 319.5 us

Table 2: On-device memory cost and average updating la-
tency on the tracker for different set sizes. The revocation
ratio for synthetic data is 1%.

value flipping) of the CRLs. In Table 2, we show the on-device mem-
ory cost and the average computational latency of the tracker to
update the data summaries and generate the delta message in short-
term updating scenarios. Specifically, we simulate the scenarios
with the Censys dataset and the synthetic data sets of different sizes
to evaluate the scalability of the methods in an IoT with billions
of devices. In our synthetic data, we set the certificate revocation
ratio to be 1%, which is close to the ratio of the Censys dataset. We
discuss the insertion of revoked certificates and legitimate certifi-
cates (the more common case) separately in the fourth and fifth
columns, as they will cause different updating overhead based on
the algorithms. Similarly, we also evaluate the value flipping case
where a revoked certificate is moved to the legitimate list, and the
case where an legitimate one is moved to the revoked list (the more
common case) in sixth and seventh columns respectively.

From Table 2, we find the updating time of CRLite significantly
increases with the size of the sets. As a static data structure, filter
cascades have to be reconstructed using the entire certificate sets for
any updates, which would cause tremendous overhead to the server
and large bandwidth overhead. Meanwhile, the long latency of
updating can also cause memory concurrency issues for the tracker
when the updating pace is high. Therefore, in practice, CRLite is
only updated in a batching way, for example, the tracker and verifier

are recommended to update once every day [19]. Consequently, this
strategy would introduce a synchronization latency of one day — a
big security vulnerability. The synchronization latency of TinyCR
is the update time plus network latency.

On the other hand, the update latency of TinyCR and Othello
is significantly lower than CRLite and scales much better with the
size of certificate sets. Overall, Othello achieves the highest up-
dating throughput for most cases, at the cost of around 16x more
memory than TinyCR and CRLite. We also notice TinyCR is most
computational-efficient for inserting legitimate certificates to the
CR status list, which is the most common type of updating. Even
in its worst case, the corresponding updating latency is smaller
than 1 millisecond for up to 1 billion keys, which is usually over-
whelmed by the network latency in practice, showing TinyCR can
sufficiently support the real-time synchronization with neglectable
extra processing overhead. Thus, TinyCR is a more efficient and
secure choice for the IoT CR verification task where the certifi-
cate universe is large. The theoretical synchronization latency of
TinyCR could be just the update time plus network latency in a
real-time updating manner.

However, due to the connection maintenance and signing cost in
practice, real-time updating is not always practical when the updat-
ing frequency is too high. The recommended practical deployment
settings and analysis are presented in Sec. 6.6.

6.4.2 Delta Message Size. The IDM server of TinyCR requires to
send updating messages to all devices, so that the devices can update
their own CR status classifier locally. Therefore, the delta message
size is a critical metric, as a large message size would significantly
increase the network traffic overhead and transmission latency.

In Fig. 9, we show the average raw delta message size for each
type of updating operations of TinyCR, Othello and CRLite in the
short-term updating scenarios using the Censys certificate data.
Note that in short-term updating scenarios, we conduct limited
numbers of updates such that the data structures (except CRLite)
are not reconstructed. For inserting legitimate certificates, TinyCR
and CRLite usually do not need to be updated as the certificate key
is highly likely to be rejected by the first filter layer. For other cases,
we notice the delta message sizes of TinyCR and Othello do not
scale with the growth of key sizes for all types of the insertion and
value flipping operations. Specifically, both TinyCR and Othello
requires around 0 to 100 bytes of the delta message for all different
types of updates (though Othello requires 16x more total memory),
whereas CRLite requires to push a significantly larger message to all
IoT devices. In addition, for the most common certificate insertion
operation shown in Fig. 9 (b), TinyCR do not need to send any
delta message to devices for most of the insertions (the average
delta message size is around 0.1 bytes), whereas Othello has to
synchronize a delta message for most of the cases.

In Fig. 10, we show the distribution of the raw delta message
size (without the signature) in the long-term insertion and value
flipping scenarios. In these scenarios, when DASS is too full to
support the desired update, it has to be reconstructed In the figure,
the top of each bar in the figure represents the 90th, 99th, 99.9th
percentile of the delta messages sizes.

For the long-term insertion scenario in Fig. 10 (a), the result
shows more than 90% and 99% of the delta messages are equal to

0 bytes when the ratios of the legitimate and revoked certificate
sizes (|N|/|P]) are 100 and 1000 respectively. Namely, for most of
the insertions, the verifier DASS do not need to be updated.

In some rare cases, TinyCR can no longer accommodate a space
for the new key. Then the DASS need to be reconstructed on the
server and then be pushed and reinstalled on the IoT devices. There-
fore, a reconstruction of the data structure would cost much higher
overhead on both devices’ computing resources and network band-
width. In the experiments, we notice the total times of DASS recon-
struction are 44, 31, 28 respectively to insert the 100 million new
certificates, when |N|/|P| equals 10, 100 and 1000. On average®, the
bandwidth costs of raw delta messages (not including the signa-
tures) for each insertion are only 12.2, 1.25 and 0.13 bytes when
|N1/|P| equals 10, 100 and 1000.

The long-term value flipping result in Fig. 10 (b) shows that
revoking an existing certificate costs more bandwidth in TinyCR
compared with the insertions. Specifically, most revocation events
will trigger an updating of the verifier DASS and more than 90% of
the updates need a delta message smaller than 65 bytes for all the
three scenarios with different revocation ratios. In addition, less
than 1% revocations will cost more than 385 bytes and less than
0.1% revocations (including the cases that require a reconstruction)
will cost more than 1 KB for the delta messages. In total, DASS is
reconstructed for 64, 31, and 29 times in order to randomly revoke
another around 10M, 1M and 0.1M legitimate certificates in the
three 100M sets with different initial revocation ratios. The average
delta message size® for the tree scenarios are 150.58, 108.08 and
119.87 bytes in the three value flipping scenarios.

In summary, TinyCR only needs 0 to 150 bytes on average for
any CRL update. Since nearly all types of wireless IoT data links
(including Licensed/Unlicensed LPWANSs and 3G/4G/5G Cellular,
etc.) can provide larger than 1KBps bandwidth in practice, the
TinyCR synchronization process introduces a neglectable extra
data transmission cost to the overall network latency.

6.5 Query

The IoT devices that have installed the DASS verifier would be able
to check the CR status of a particular certificate after validating the
integrity and expiration date of the certificate. Standard certificate
integrity validation requires cryptography computation. Recent
works introduce delegated or distributed reference protocols based
on the chain of trust [6, 26], which still requires at least millisecond-
level latency. Compared with the validation process, the latency for
the revocation status checking process using the TinyCR verifiers
is neglectable (usually in sub-microseconds).

In Fig. 11, we test the average query latency to get a revocation
status using the CenSys dataset on the Raspberry Pi 3 testbed and
compare the result with CRLite and OCSP. For OCSP, we use a
local 8-core CPU server deployed in the local town as the OCSP
server. In addition, on the server side, we use DASS instead of the
whole CRL to maintain the CR status. As the on-device CR verifiers,
TinyCR and CRLite can verify a CR status in sub-microsecond level,
which is a few magnitudes faster than OCSP, as both of them only
require O(1) hash operations and memory loads for checking. In

“the cost of the reconstruction cases is amortized to every insertion
Tthe cost of the reconstruction cases is amortized to every revocation event

—e— CRLite
o 107 — —— TinyCR 10° 10
m 7 15 @ m
9 9 —e— Othello o i)
& 10t —— TinyCR & 2 10° —— TinyCR 2 10° —— TinyCR
g —e— CRLite g0 I —e— CRLite 9 —e— CRLite
g

@ 10° —— Othello] & 10 —— Othello & 10° —— Othello
g gs g g
= 102 = = 107 N U = 10? :

‘ ":’c :)‘:‘:""‘ b 0 10t 10!

0 5M 10M 15M 20M 25M 0 5M 10M 15M 20M 25M 0 5M 10M 15M 20M 25M 0 5M 10M 15M 20M 25M

of Certificates # of Certificates # of Certificates # of Certificates

(a) Insert (P) (b) Insert (N)

(c) Flip (P — N) (d) Flip (N — P)

Figure 9: Short term insert and value flip delta message size. (a) Insert a revoked certificate. (b) Insert a legitimate certificate,
a common operation. (c) Unrevoke a revoked certificate. (d) Revoked a certificate, a common operation.

4008 “* mean +++ mean
0~ 90% 18008/ EE 0~ 90%
° D 90% ~ 99% N EID 90% ~ 99%
N 3008 ES1 99% ~ 99.9% N 1400 B 1 99% ~ 99.9%
w w
2 2008 2 10008
= =
] <
600 B {
100 B

20081 |

101 100:1 1000:1
INJ:[P]

(a) Insert

Figure 10: The average, and the 90th percentile, 99th per-
centile and 99.9th percentile of the generated Delta Msg
sizes for long-term insertion (a) and value flipping (b).

EEN TinyCR EEE CRLite BEE OCSP

BN TinyCR EEE CRLite EEE OCSP

@ o
£ £
> >
[9
< c
2 L
K o
o o
£ £
i~ =
vl]
I}]
< <
] S
o x 10
o o

-4
0.1M 0.3M 1M
of Certificates

01M 03M 1M 3M 10M 30M
of Certificates

3M 10M 30M

(a) Revoked certificates (b) Legitimate certificates

Figure 11: Query latency on Raspberry Pi 3.

particular, the query delay of TinyCR is slightly shorter for the
revoked certificates, while the delay of CRLite is slightly shorter
for the legitimate certificates.

The major query cost for OCSP is the network delays when
inquiring the CR status through a remote server. Thus, OCSP is
not an ideal method for the scenarios where the device available
bandwidth is limited and the latency is sensitive.

More results of the query performance of DASS are shown in
Appendix. A.3.

6.6 Bandwidth vs. Dynamics

In Figs. 12 and 13, we show the delta message cost (each patch in-
cludes a 256-byte RSA signature) for keeping the verifier DASS syn-
chronized under different updating scenarios and settings. Specifi-
cally in our experiments, we initialize DASS with 100 million certifi-
cates, with 1% revoked keys. Then we test two updating scenarios
with different daily workloads: (1) 1 to 108 new certificates are

added to the certificate universe; (2) 1 to 107 existing certificates are
revoked. In the experiments, we assume the updates happen uni-
formly over the day. We deploy four different settings for TinyCR:
TinyCR-(RT) sends the delta message immediately after each up-
date happens; TinyCR-(1, 4, 24) means we only maintain 1, 4, 24
versions of TinyCR per day and use batching as in Sec. 5.5. Hence,
the synchronization latency for TinyCR-(1) is up to one day and
for TinyCR-(24) is up to one hour. Similarly, we implement the
corresponding versions of CRLite as comparisons. The CRLite is
updated for 1, 4, 24 times per day using a bsdiff [25] delta update
message. The initial on-device memory costs of TinyCR and CRLite
under this setting are both 1.7 MB. We also compare the protocols
with OCSP, which has zero update cost on bandwidth and the de-
vice side but generates relatively constant traffic load (around 1KB
according to prior measurement studies [19, 21]) for each query.
Thus, on the y-axis in the right, we show the estimated number of
OCSP queries that can be made using around the same amount of
traffic load needed by the daily updating of TinyCR and CRLite.

From Figs. 12 and 13, we can clearly observe that TinyCR costs
less bandwidth by a few orders of magnitudes compared to CRLite,
when the daily updating amount is moderate (for example, less than
1 million inserts or less than 1 thousand revocations per day). On
the other hand, when the amount of daily updates is huge, TinyCR
has similar total bandwidth cost as CRLite. More specifically, all
versions of TinyCR have a similar raw delta message cost if DASS
is not reconstructed, while the real-time TinyCR always causes
more real-world traffic load due to the high cost of signing the
delta messages. When the number of updates is large and DASS
has to be reconstructed multiple times, the batching protocol with
fewer batches has less bandwidth cost, since at most only one
reconstructed and signed data structure needs to be sent in one
batch. On the other hand, CRLite always needs a large delta message
for synchronization whenever a false positive is found in its first
layer of the filter cascades. The total message size of CRLite is in
proportional to the updating frequency. When the daily update
amount is huge, for example, the certificate universe is doubled
or more than 10,000 certificates are revoked per day, CRLite has a
similar performance as batching TinyCR. In particular, with higher
batching frequency, TinyCR is more efficient; while with lower
frequency, CRLite is a better choice.

In addition, from Figs. 12 and 13, we find that the TinyCR cost
is proportional to the number of updates while the cost of OCSP
is proportional to the number of queries. Note that the TinyCR

—— TinyCR (24)

—e— Revoke
25x{ —*— Insert

™ 1010
—— TinyCR (RT) —— TinyCR (4) o o] 77 TVCR(RT) = TinyCR (4)

G107 —— TiyCR() —— TinyCR (24) t00k £ 3° TmeRm

= 5 E

S ameee 10K o il

=3 4] "

by Q

N 108 w2 £

w S o

o

P10 100 # g

: - ;

. - CRLite (1) g g

10 Vo5 5

3 5 —~- CRLite (4) g 5

S 103§, =+ CRLI g = 10

8101/ - CRLte (24) 1B = 10
I/ --++ DASS/CRLite size w 2

o 10

—+- CRLite (1)
=#- CRLite (4) 10
= CRLite (24)

-+ DASS/CRLite size

of fast revocation (n x)
of fast inserts (n x)

102 102 104 10° 10° 107 108 10° 10! 102 10%
of new certificates

Figure 12: Total bandwidth cost for in-

sertion. vocation.

mainly consumes the downlink bandwidth while the OCSP mainly
consumes the uplink bandwidth. Thus, it is easy to conclude that
TinyCR is more bandwidth cost-efficient when the certificate uni-
verse and daily updating amount is small and querying is frequent,
while OCSP is more cost-efficient in the opposite scenarios.

6.7 Mitigate rebuilds

When TinyCR has to rebuild, the delta message and server resource
cost is significantly higher. Therefore, if the CRL is rather dynamic,
we could further optimize DASS to make it less likely to be re-
built. If the certificate universe is smaller than what the devices
can maintain with their memory capability, we could choose to
slightly increase the DASS size to reserve spaces for future new
certificates and revoked certificates. In particular, the two most
important parameters that impact the probability of rebuild is the
load factor « of the Cuckoo Filter and the table size coefficient
of Othello. The two parameters are set as & = 0.95 and f§ = 2.33
recommended by the original studies [12, 37] to optimize memory.
Thus, if memory allows, a smaller & and a larger can be used to
reduce the probability of rebuild.

In Fig. 14, we show how many updates can be handled by DASS
without rebuilding under different memory cost settings. The ini-
tialization setting is similar to the setting in Sec. 6.4.2. In the x-axis,
nX means the memory cost of DASS under different settings com-
pared with that of the memory-optimal setting, while in the y-axis,
the nx means how many updates (insertion or revocation) can be
processed without rebuilding, compared with that of the memory-
optimal setting. For the memory-optimal setting, a rebuild will be
triggered after 22 million insertions or 23 thousand revocations in
average. From Fig. 14, we can find the capability of accommodat-
ing the updates can be significantly improved by increasing the
memory cost slightly. For example, by using 1.5 memory, DASS
can process more than 13X new revocations or 30X new insertions
without reconstructions. This memory allocating strategy is rather
effective for keeping the O(1) updating cost in real deployment.

7 APPLICATION SCENARIOS FOR TINYCR

Based on evaluation results, TinyCR is ideal and optimal for the
application scenarios where 1) users need fast or frequent on-device
authentication, and low synchronization latency for security; 2)
each user device has a limited size of memory, such as several
MBs; 3) the dynamics of certificates are moderate. In addition, for
other scenarios, TinyCR can be used as an alternative with proper
configurations or as a complementary of other protocols.

of revoked certificates

Figure 13: Total bandwidth cost for re-

10° 10° 107 1.0x 1.2x 1.4x 1.6 8x 2.0x 2.2x

x L
DASS Size (nx)

Figure 14: How many updates can be
applied before the first rebuild.

Batching v.s. Real-time Updating.

Based on our analysis in Fig. 12 and 13, the real-time TinyCR up-
dating policy is the optimal choice when CR updates are infrequent.
This policy can minimize the synchronization delay and protect de-
vices at any time with limited bandwidth cost. However, due to the
high overhead of signing for the delta message, real-time TinyCR
yields a high cost when the updating frequency is too high. Thus,
we could choose the batching policy for TinyCR and keeping the
updating frequency high enough (such as per hour or per 5 minutes)
to trade between bandwidth cost and the worst synchronization la-
tency. According to our results using batching, higher but bounded
updating frequency does not introduce more bandwidth overhead
other than the extra O(1) signing cost. The batching policies are
also friendly to the IDM servers if most IoT devices are sporadically
connected, as it only needs to maintain a bounded number of DASS
versions. In addition, DASS can use a slightly higher memory cost
to reduce the reconstruction probability in practice.

When the certificate universe changes significantly every after
a short period, TinyCR as well as all other push-based methods
will have unacceptable bandwidth cost to keep the synchronization
latency low. In such a scenario, we have to sacrifice security for
efficiency by reducing the updating frequency, and CRLite is more
efficient for one update per day. The on-demand-based methods
(such as OCSP) are the other optional choice under this scenario
despite its higher verification cost.

Moreover, if the CRL updates are non-uniformly distributed over
the data and are predictable by the service providers, we can use a
hybrid policy with the batching protocols and real-time protocol.
For example, we can batch the updates in the peak hours when
updating is frequent, and use the real-time protocol for the rest of
the hours when the updating is sporadic.

TinyCR v.s. OCSP/OCSP-stapling.

TinyCR outperforms OCSP in that it is much faster for CR ver-
ification. In some IoT scenarios, the verification delay is critical
since IoT devices usually have limited data (such as sensing data) to
transmitted and the requirement for end-to-end data transmission
delay is tight. For example, a smart vehicle is required to read the
IoT sensors on streets for decision-making in a short delay while
driving fast. In addition, OCSP is not suitable for many IoT applica-
tions as it leaks user privacy. This drawback becomes more severe
as the IoT data access pattern may include not only the temporal
context but also the location information of the user, such as when
and where a user reads a static street sensor. Besides, many peer-
to-peer communication patterns for IoT usually do not need access
to the Internet, for example, IoT devices can be accessed using

short-distance communication media, such as WLAN, Bluetooth,
and visible light. Hence, on-device CR checking protocols are more
suitable for those scenarios. Still, for the rare cases when a new
certificate cannot be verified by an outdated DASS, we can choose
to fall back to OSCP.

OCSP-stapling is another practical design for CR checking in IoT
scenarios as it does not rely on server access upon verification and
can protect user’s privacy. The major difference between TinyCR
and OCSP-stapling is that TinyCR requires the device who verifies
the other device to maintain DASS, while OCSP-stapling requires
the device who is under verification to provide the time-stamped
OCSP response extension. These OCSP-stapling devices have high
bandwidth overhead. Thus, in IoT scenarios, if the device who
needs to authenticate the other device has more memory/network
resource (for example, a smartphone is required to authenticate
a sensor), TinyCR is a better choice as it only requires the inquir-
ing device to maintain an up-to-date DASS. On the contrary, if
devices to be authenticated are more powerful (for example, a sen-
sor needs to authenticate a smartphone), then OCSP-stapling can
be used. If bi-directional authentications are necessary, we can
use a hybrid method of DASS and OCSP-stapling to optimize the
resource-security trade-off.

8 SECURITY ANALYSIS

We discuss the following attacking behaviors for TinyCR.

(1) The attacker attempts to masquerade as a legitimate IoT client
by using a revoked certificate. Since the synchronization latency of
TinyCR is only on the millisecond level plus the network latency, the
attacker has very limited time to conduct such attacks. Compared
to prior work that synchronize the devices on daily basis [19, 29],
TinyCR significantly reduces the chance of this attack. Note that it
is also important for a CA to detect a comprised certificate as early
as possible, although this topic is not the focus of this paper.

(2) The attacker performs the MitM attacks between the IDM server
and the IoT devices. The current methods are sufficient to defend
against MitM attacks between the IDM servers and the IoT devices.
Each device can get the public keys of the IDM servers and CAs
using offline methods during manufacturing or installation. With
the public keys, the device can build trusted TLS sessions to IDM
servers. Hacking an IDM server or a CA requires much more attack-
ing power than hacking a device. In this paper, we do not consider
the scenario where the IDM server is hacked.

(3) The attacker attempts to manipulate the CRL, DASS or a delta
message. Since the CA-IDM channel can use trust TLS sessions,
the integrity of the CRL can be protected. In addition, since the
DASS messages are signed by the IDM servers, the attacker cannot
manipulate the DASS installation or updating patches.

(4) The attacker wants to infer private information of other devices,
servers, or CAs from the TinyCR install and update messages. An
attacker can easily obtain the TinyCR install and update messages
by compromising just one device. However, knowing these mes-
sages give the attacker no advantage because the CR information
is public. DASS is not constructed for each particular device hence
there is no device private information in the DASS messages.

(5) The attacker can block the update messages between an IoT
device and the IDM server, then use a revoked certificate to attack

that device. TinyCR has no specific design to prevent the attacks of
blocking the communication to a device — and no other CR method
does. However, it is possible to detect such attacks. For example, the
IDM server can send heartbeat packets to the devices periodically
with the digest of the up-to-date DASS verifier and the current time.
If the device does not hear the heartbeat after a period of time, it
may detect such communication-blocking attack.

(6) A compromised IDM server sends wrong DASS information and
update messages. All DASS install and update messages can be easily
audited by another IDM server that knows all certificates and the
revoked ones. “Auditable” means any party who knows the entire
CRL can verify if another DASS version is maliciously modified.
The device can forward the DASS messages with signatures to other
IDM servers for auditing. The IDM servers can use their maintained
certificate universe and the CRL to test the integrity of the DASS.
If the DASS information is tempered, the other IDM servers can
easily find the malicious IDM server by the signature.

(7) The adversary acquires and causes a revocation with a strategy
to trigger frequent rebuilds of DASS. An attacker could learn which
certificate revocation will trigger a rebuild of DASS (by running a
simulation experiment) and then attacks that particular certificate
and causes it to be revoked by the CA. To defend against such an
attack, we can preallocate extra space in DASS to make it capa-
ble of learning more updates without rebuilding and reduce the
probability to find a certificate that triggers a rebuild. From our
analysis in Fig.14, we find this strategy is effective to defend the
attacker with limited power. For example, by doubling the size of
DASS upon initialization, it becomes more than 20 times harder to
find a certificate that will trigger a rebuild.

9 CONCLUSION

TinyCR is a new system and protocol to allow on-device CR check-
ing for IoT. We develop DASS, a compact and dynamic data struc-
ture, to maintain the CR status of the entire IoT network, which
costs each device very small memory. We also implement the two
communication components of TinyCR: the tracker that run on an
IDM server to construct and update DASS and sends the update
messages to devices, and the verifier that can synchronize with the
tracker and be queried for the CR status on IoT devices. The experi-
ments show that TinyCR costs small memory, short CR checking
time, low network bandwidth, and low synchronization latency.

10 ACKNOWLEDGMENTS

The authors were partially supported by NSF Grants 1717948, 1750704,
1932447, and 2114113. C. Qian was partially supported by the
Army Research Office and was accomplished under Grant Number
WO911NF-20-1-0253. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
Army Research Office or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein. We thank
all CCS reviewers for providing the valuable comments that help
us improve the paper.

REFERENCES

(1]
(2]

=
2

—_
—

[12]

[13]
[14]

[15

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

™
=t

[25]

[26]

[27]

[28

[29

2016. An Internet of Things Reference Architecture. White Paper, Symantec.
2019. Why Digital Certificates Are Essential for Managing Mobile Devices. White
Paper, DigiCert, Symantec’s Website Security business.

2020. TinyCR source code. https://github.com/jonnekaunisto/TinyCR.

2021. Censys. https://censys.io/certificates. Accessed: 2019.

2021. Google BigQuery. https://cloud.google.com/bigquery. Accessed: 2019.
Arwa Alrawais, Abdulrahman Alhothaily, Xiuzhen Cheng, Chungiang Hu, and
Jiguo Yu. 2018. Secureguard: A Certificate Validation System in Public Key
Infrastructure. IEEE Transactions on Vehicular Technology 67, 6 (2018), 5399—
5408.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things:
A Survey. Computer Networks 54, 15 (2010), 2787-2805.

Burton H Bloom. 1970. Space/Time Trade-offs in Hash Coding With Allowable
Errors. Commun. ACM 13, 7 (1970), 422-426.

Denis Charles and Kumar Chellapilla. 2008. Bloomier Filters: A Second Look. In
In Proceedings of the European Symposium on Algorithms (ESA).

Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. 2004. The Bloomier
Filter: An Efficient Data Structure for Static Support Lookup Tables. In In Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA). 30-39.
Donald Eastlake et al. 2011. Transport Layer Security (TLS) Extensions: Extension
Definitions. Technical Report. RFC 6066, January.

Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
2014. Cuckoo Filter: Practically Better Than Bloom. In In Proceedings of the
10th ACM International on Conference on Emerging Networking Experiments and
Technologies (CONEXT).

Mark Goodwin. 2015. Revoking Intermediate Certificates: Introducing Onecrl.
Mozilla Security Blog (2015).

Phillip Hallam-Baker. 2015. X. 509v3 Transport Layer Security (TLS) Feature
Extension. RFC 7633 (2015).

Russell Housley, Warwick Ford, William Polk, and David Solo. 1999. Internet X.
509 Public Key Infrastructure Certificate and CRL Profile. Technical Report. RFC
2459, January.

Qinwen Hu, Muhammad Rizwan Asghar, and Nevil Brownlee. [n.d.]. Certifi-
cate Revocation Guard (CRG): An Efficient Mechanism for Checking Certificate
Revocation. In 2016 IEEE 41st Conference on Local Computer Networks (LCN).

D. Kumar, M. Bailey, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian, J. Mason,
Z. Durumeric, and J. A. Halderman. 2018. Tracking certificate misissuance in the
wild. In In Proceedings of the IEEE Symposium on Security and Privacy (SP).
Adam Langley. 2012. Revocation Checking and Chrome’s CRL. ImperialViolet
(blog) (2012).

James Larisch, David Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, and
Christo Wilson. 2017. CRLite: A Scalable System for Pushing All TLS Revocations
to All Browsers. In In Proceedings of the IEEE Symposium on Security and Privacy
(SP). IEEE, 539-556.

Xin Li, Minmei Wang, Huazhe Wang, Ye Yu, and Chen Qian. 2019. Toward Secure
and Efficient Communication for the Internet of Things. IEEE/ACM Transactions
on Networking (2019).

Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,
Alan Mislove, Aaron Schulman, and Christo Wilson. 2015. An End-to-end Mea-
surement of Certificate Revocation in the Web’s PKL In In Proceedings of the
Internet Measurement Conference (IMC). ACM, 183-196.

Michael Myers, Rich Ankney, Ambarish Malpani, Slava Galperin, and Carlisle
Adams. 1999. X. 509 Internet Public Key Infrastructure Online Certificate Status
Protocol-OCSP. Technical Report. RFC 2560.

Alma Oracevic, Selma Dilek, and Suat Ozdemir. 2017. Security in Internet of
Things: A Survey. In In Proceedings of the International Symposium on Networks,
Computers and Communications (ISNCC). IEEE, 1-6.

Rasmus Pagh and Flemming Friche Rodler. 2001. Cuckoo Hashing. In In Proceed-
ings of the European Symposium on Algorithms (ESA). Springer, 121-133.

Colin Percival. 2003. Binary Diff/Patch Utility. URL: http://www. daemonology.
net/bsdiff (2003).

Sanaz Rahimi Moosavi, Tuan Nguyen Gia, Amir-Mohammad Rahmani, Ethiopia
Nigussie, Seppo Virtanen, Jouni Isoaho, and Hannu Tenhunen. 2015. SEA: A
Secure And Efficient Authentication And Authorization Architecture for IoT-
based Healthcare Using Smart Gateways. In Procedia Computer Science, Vol. 52.
Elsevier, 452-459.

Eric Rescorla and Nagendra Modadugu. 2012. Datagram Transport Layer Security
Version 1.2. (2012).

Shougqian Shi and Chen Qian. 2020. Ludo Hashing: Compact, Fast, and Dy-
namic Key-value Lookups for Practical Network Systems. In Abstracts of the
2020 SIGMETRICS/Performance Joint International Conference on Measurement
and Modeling of Computer Systems.

Trevor Smith, Luke Dickinson, and Kent Seamons. 2020. Let’s Revoke: Scalable
Global Certificate Revocation. In In Proceedings of the Network and Distributed
System Security Symposium (NDSS).

[30] John Solis and Gene Tsudik. 2006. Simple and Flexible Revocation Checking with

[31]

(32]

(33]

&
=

(35]

(36]

(37]

[39

[40]

Privacy. In International Workshop on Privacy Enhancing Technologies. Springer,
351-367.

Pawel Szalachowski, Laurent Chuat, Taeho Lee, and Adrian Perrig. 2016. RITM:
Revocation in the Middle. In 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS).

Samuel Tanner Lindemer. 2019. Digital Certificate Revocation for the Internet of
Things. Master’s thesis. KTH Royal Institute of Technology.

Yang Tong, Dongsheng Yang, Jie Jiang, Siang Gao, Bin Cui, Lei Shi, and Xiaoming
Li. 2019. Coloring Embedder: a Memory Efficient Data Structure for Answering
Multi-set Query. In In Proceedings of the IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 1142-1153.

Daryl Walleck, Yingjiu Li, and Shouhuai Xu. 2008. Empirical Analysis of Certifi-
cate Revocation Lists. In In Proceedings of the IFIP Annual Conference on Data and
Applications Security and Privacy. Springer, 159-174.

Minmei Wang, Chen Qian, Xin Li, and Shougian Shi. 2019. Collaborative Valida-
tion of Public-key Certificates for IoT by Distributed Caching. In In Proceedings
of the IEEE International Conference on Computer Communications (INFOCOM).
IEEE, 847-855.

Minmei Wang, Mingxun Zhou, Shouqian Shi, and Qian Chen. 2020. Vacuum
Filters: More Space-Efficient and Faster Replacement for Bloom and Cuckoo
Filters. In In Proceedings of International Conference on Very Large Databases
(PVLDB).

Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. 2018. Memory-
Efficient and Ultra-fast Network Lookup and Forwarding using Othello Hashing.
IEEE/ACM Transactions on Networking 26, 3 (2018), 1151-1164.

Liang Zhang, David Choffnes, Dave Levin, Tudor Dumitras, Alan Mislove, Aaron
Schulman, and Christo Wilson. 2014. Analysis of SSL Certificate Reissues and
Revocations in The Wake of Heartbleed. In In Proceedings of the Conference on
Internet Measurement Conference (IMC). 489-502.

Peifang Zheng. 2003. Tradeoffs in Certificate Revocation Schemes. ACM SIG-
COMM Computer Communication Review (2003).

Dong Zhou, Bin Fan, Hyeontaek Lim, David G Andersen, Michael Kaminsky,
Michael Mitzenmacher, Ren Wang, and Ajaypal Singh. 2015. Scaling Up Clustered
Network Appliances with ScaleBricks. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication.

https://github.com/jonnekaunisto/TinyCR
https://censys.io/certificates
https://cloud.google.com/bigquery

A APPENDICES

A.1 Preliminaries

A.1.1 Cuckoo Filters. Cuckoo Filter is inspired by Cuckoo Hashing
Table [24], in which a key can be stored in two candidate buck-
ets of a hash table, whose positions are calculated with two hash
functions. We take a (2, 4)-Cuckoo Filter as an example to illustrate
the algorithm. As shown in Fig 15, the Cuckoo Filter maintains
a cuckoo hashing table with two hash functions h; (x) and h; (x).
Each bucket of the table has four slots.

Insert(k): To insert a key k into the Cuckoo Filter, the operation
can be accomplished by inserting the fingerprint of k, i.e., fp (k),
into either one of the two candidate buckets of cuckoo hashing
table. Specifically, the two candidate positions, i.e., hy (k) and hy (k),
can be calculated using a single uniform hash function A (x) by:

h1 (k) = h(k) mod m,

hz (k) = hy (k) @ (h (fp (k) mod m),
where @ is the bit-wise xor operation, m is the size of buckets.
Since it is easy to show hj (k) = hy (k) ® (h(fp (k)) mod m), the
cuckoo filter can find the alternate bucket position of k by simply

calculating the xor of one bucket position and the hash of the
fingerprint, i.e.,

hj (k) = hi (k) ® (R (fp(k)) mod m), {i.j} = {1.2}. (4)

If either of the two candidate buckets contains an empty entry,
then the fingerprint fp (k) is safely inserted to the empty entry.
Otherwise, the insertion algorithm chooses a random entry of the
two buckets and reallocate the stored fingerprint FP’ into its alter-
nate buckets in the hashing table, then insert fp (k) to that entry.
When reallocating FP’, if the alternate bucket of FP’ is also full,
the algorithm will repeat randomly kick off another fingerprint
from the table and reallocate the other fingerprint until an empty
entry is found, or until the maximal number kicking-off operations
is reached, which implies the filter is too full to insert the new key
k and the filter should be rebuilt with extra buckets.

Query(k): To lookup whether a key k is a member, we only need
to visit the two candidate buckets of the cuckoo filter using Eq. 3. If
either of the buckets contains fp (k), then we conclude k is in the
set; otherwise it is not.

Delete(k): Similarly, the deletion of a key k from the membership
set can be accomplished by simply removing one copy of fp (k)
from the found bucket entry.

One limitation of Cuckoo Filter is that the number of buckets m
in the Cuckoo Hashing table has to be an exact power of two [36] to
support the xor operation. Hence, cuckoo filter can hardly achieve
its theoretical optimal memory consumption in real applications
where the size of keys is arbitrary, as many of the buckets might be
wasted. To solve this limitation, a variant of Cuckoo Filter, named
Vacuum Filter [36], is proposed. In Vacuum Filter, the alternate
bucket position h;(k) is calculated by:

hj (k) = hi (k)& (h(fp(k)) mod L), {i,j} = {1,2}, (5
where L is the size of a mini-chunk (a group of consecutive buckets)
within the whole hashing table and L equals to a power of two. The
value L is selected from four optional values based on the last two
bits of fp (k), where each optional value represents the minimal
size of the mini-chunk that can successfully allocate 1/4, 1/2, 3/4

®)

Slots

i fp2 fps
fPa fps fpe Vi
fps fpo fP1o
fp1a
fp®) | fp12
fpiz | fpPia | fpis

Lookup if fp(k) is in bucket hy (k) or h, (k)
Figure 15: Cuckoo Filter

and 1 fraction of the whole inserted keys with the expected load
factor, e.g., 0.95. In this way, the alternate position searching can
be performed within the local mini-chunk of size L instead of the
entire table of size m. Hence, m can be any positive integer and the
Vacuum Filter can always achieve the optimal memory for any key
size given the expected false positive rate «.

A.1.2 Othello. Othello [37] is an efficient zero-error data structure
to solve the Multiset Query Problem based on minimal perfect
hashing. Othello maintains two hashing tables, with each bucket
of the hashing tables containing L bits, where L = |-log2 n-| and n is
the number of distinct sets.

Suppose the lengths of the two hashing tables T, and Tj, are m,
and my, and the corresponding uniform hash functions are A, (x)
and hy, (x).

Othello is constructed by finding an acyclic undirected graph
G = (V4, Vy,, E), where E is the edge set, Vg, V}, are the vertex sets
with each node v}, € V; (0 < i < my) andvg eV, (0<j<my)
representing the ith and jth bucket of T, and Tj,.

Initially, E = @. For any key-value pair (k,v) with k € U and
v € {0,1}, v can be stored in graph G by inserting a new edge

(vfl, v{)) in E, where i = h, (k) and j = hy, (k) (as shown by the red
or the green edges in Fig 4). The query function f : U — V for the
key-value mapping is defined as: Query(k) = t4[i] @ tp[j], where
tq[i] and tp[j] represent the entry in the ith and jth bucket of T,
and T}, respectively.

If the graph G remains acyclic after inserting all keys in U, then
it can be proved that there exists a solution to fill the buckets in
T, and T}, with either “1” or “0”, such that for any k € U and its
corresponding value v € {0, 1}, f(k) = v. However, when a circle
is found while building the graph G, the graph should be rebuilt by
using different hash functions h, (x) and Ay, (x). In practice, if the all
key-value pairs are known in advance, Othello finds the two valid
hash functions h, (x) and hy, (x) that do not create any circle in the
graph first by random searching, and then uses depth-first-search
(DFS) order of the resulting acyclic to insert all keys.

Construct(P, N): Let P and N are the two sets used to construct
an Othello. Suppose list (e1, €2, ..., e;;) be the edge set E sorted in
its DFS order. Then for any edge e in the sorted list, we find the
corresponding key k which is represented by e, i.e., the indexes i, j
of the two vertices are h, (k) and hy, (k) respectively. Let v be the
mapping value of k, namely, v = 1 if k € P (as shown by the green
edge in Fig 4), and v = 0 if k € N (as shown by the red edge in Fig
4). Then v can be inserted to the table by the following steps. If both
tq[i] and tp,[j] are empty, we set t4[i] = 0 and t[j] = v. Otherwise,
one bucket of t,[i] and #[j] must be empty since G is acylic and e
is visited according to the DFS order of E. In this case, we set the

empty bucket to be the “xor” result of the value in the other bucket
and v.

It can be proved that if m, > 1.33n and my, > n, where n is the
number of all keys, then memory is sufficient enough to find the
appropriate hash functions, which avoid cycles for the entire key
set, with a small researching probability in Othello’s construction
function Construct() [37]. In addition, with this memory settings,
Othello can also support value flipping (change the value of a key
k from “0” to “1” or from “1” to “0”) Flip(k), deletion Delete(k) and
insertion Insert(k, v) functions using O(1) time.

Although Othello is memory and query efficient to store arbi-
trary key-value mapping: it costs 2.33 bits per key for binary value
mapping and only two hashing operations for each query; it is
far more from being optimal to solve the CR verification problem,
where the sizes of the revoked certificate set and the unrevoked
certificate set are highly imbalanced. For example, in Table 1, we
show Othello requires moderately smaller memory than the naive
CRL approach when only 1% certificate are revoked. In the follow-
ing sections, we will show a more concise data structure for the
CR verification problem by optimizing Othello with a probabilistic
filter.

A.2 Updating Functions of Cuckoo Filter and
Othello

Every updating in tracker-plane DASS is a combination of updating
operations in its maintained Vacuum (Cuckoo) Filter and Othello
hashing table. We illustrate and discuss how Vacuum Filter and
Othello could be updated in this section.

A.2.1 Updating of vacuum (cuckoo) filter. Cuckoo Filters are known
to outperforms Bloom Filters mainly in that they can efficiently
support the deletion of keys from the filter. The updating functions
(Delete(k) and Insert(k)) of Cuckoo Filters are summarized in Sec-
tion A.1.1. Algorithm and implementation details can be found from
Fan, et al’s [12] and Wang, et al’s [36] work.

A.2.2 Updating of othello hash table. In this section, we present the
inserting, value flipping and deleting methods of othello hashing.

Insert(k,v): Let G = (Vg, Vp, E) be the maintained graph in
Othello and t,, t; are the hash table arrays. Inserting a key-value
pair (k, v) into Othello is equivalent to adding an edge e in G, where
e = (Va(hq(k)), Vi (hy(k))), and h, and hy, are the selected hash
functions that map the key k to the graph vertices. If the resulting
graph G = (Vg, Vp,, E + {e}) creates a cycle, showing the table is too
full to insert the key, then the Othello hash table should be rebuilt
by selecting a new pair of hash functions h, and hy,. Otherwise, the
insertion is successful and we need to assign a color (as shown in
Fig. 4) for this edge. If the color flag (“0” or “1”) of edge e exactly
equals tg[hg(k)] @ tp[hy(k)], then nothing needs to be changed.
Otherwise, we need the modify the color flag of edge e by tweaking
the values of vertices stored in ¢, and ¢3, namely conduct the value
flipping (flip the stored value of a key k) operation.

Flip(k): Let T be the tree that contains the edge e whose color
should be modified. Assume T is separated into two sub-trees Ty
and Ty by e. One method to change the value flag of e is to flip all
values stored in the vertices of Ty or T» (whichever is smaller). Yu,
et at’s study [37] shows by setting the total size of Othello hash

Method Hash (P) Hash (N) LD (P) LD (N)

TinyCR 4 2-4 4 2-4
Othello 2 2 2 2
CRLite >2 >1 >2 >1

Table 3: Number of hash or memory read operations for
querying the classifier.

table as 2.33m, where m is the number of keys, the value flipping
operation costs O(1) complexity, i.e., O(1) number of table entries
should be flipped for each insertion and value flipping operation.

Delete(k): Deletion of a stored key k from the othello table
can be accomplished by removing the corresponding edge e =
(Va(ha(k)), Vi (hp(k))) from G. After deletion, the actual hashing
tables T, and T}, are not changed. Thus, the Delete(k) function is
only a logical deletion process: it will not change the inference
behavior of othello; it only remove redundant edges to provide
space for new keys in the future.

A.3 Query Performance of DASS

In this section, we analyze the query performance of DASS as a
conventional set query data structure. Table 3 shows the number of
hashes and memory lookup operations required by DASS, Othello
and CRLite for a query. In the table, we notice Othello always re-
quires only two hash and memory lookup operations. Thus, Othello
is most efficient for query at the cost of higher memory consump-
tion. Compared with Othello, DASS requires totally 3-4 times of
hash and memory lookup for querying a revoked certificate and
1-4 times of hash and memory lookup for querying an legitimate
certificate. However, for CRLite, the upper bounds of hash and
memory operations depends on the depth of the filter cascades.
In addition, we test the query throughput (measured by millions
of operations per second, MOPS) using the CenSys dataset on the
Raspberry Pi 3 testbed and present the result in Fig. 16. From Fig. 16,
the query throughput for TinyCR can be as high as a few millions
per second for both revoked and legitimate certificate lookups. In
addition, TinyCR is more efficient to detect a revoked certificate
than CRLite when using similar memory cost, while CRLite is more
efficient for checking a legitimate certificate, as most legitimate
certificates can be verified using only the first filter layer.

A.4 DASS for Multi-Set Query Problem

A.4.1 Design. In a global IoT or mobile network, devices could be
separated into disjoint sub-groups based on their identities or cer-
tificates, and devices among different groups could have different
trust levels or privileges. For example, in a smart-city IoT network,
devices deployed and maintained by the government usually have
the highest level of trust by other device clients. For another ex-
ample, devices with a higher VIP level usually can access more
resources or privileges than other clients. In such scenarios, devices
are classified by their identities and other devices or third-party
should be able to query the group that the device belongs to. Similar
as the CR verification problem, those problems can also be solved by
just querying the group of the device’s certificate while validating
the certificate; whereas when the number of groups is larger than
2, the problem becomes a multi-set query problem.

EEE TinyCR
BN CRLite

mm TinyCR
N CRLite

0
0.1M 0.3M 1M 3M
of Certificates

0.1M 0.3M 1M 3M 10M 30M
of Certificates

10M 30M

(a)r =100,P (b) r = 100, N

Figure 16: Query throughput on Raspberry Pi 3. (a) Query revoked certificates with constant r =

= TinyCR mm TinyCR
NN CRLite 4 =N CRLite
2
w3
-9
o
=2
1
1
0 0
1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256
INI/IP| INI/IP|
(c)n=2%p (d)n=2% N

100. (b) Query legitimate

certificates with constant = 100. (c) Query revoked certificates from a key set of size n = 22°. (d) Query legitimate certificates

from a key set of size n = 2%.

[S1] = |S2] 2 IS2] = - - Z |8yl

(©®E 6]

1, = 2Mlogni-1

= 2llognl-2

B @6) [6)

Figure 17: Decision tree of DASS for multi-set query.

I = 2llogm-t1)|-1

DASS could also be extended to the multi-set query problem.
Specifically, we can construct a binary decision tree, called DT-
DASS (as shown in Fig 17), and use a DASS at each tree node to
split the keys into two sub-groups. The decision tree stops growing
when the leaf node is a pure node, namely, all keys represented by
the leaf node are from one specific set Sg. For n groups, DT-DASS
can separated the groups with a decision tree of height [log2 n]

This decision tree based data structure can be optimized by
utilizing the good property of DASS when handling imbalanced
classes. A straightforward method is the greedy strategy (as shown
in Fig 17): we first sort the groups by their sizes, then greedily
choose the split point at each node such that the ratio of the left
and right child node sizes is maximized, while guaranteeing we do
not introduce an additional tree layer to fully separate all groups.

To show how this algorithm benefits from the imbalanced set
distribution, we can compare DT-DASS with Othello, which classify
the keys by encoding the group IDs as the stored values for the
keys. In Othello, we can consider the encoded value representing
the group ID for each key requires at least [Iog2 n] bits. Thus, the
[log2 n-| long bits can also forms a binary decision tree of height
[logz n], where nodes in each layer together can be considered as an
one-bit Othello. However, in such Othello search tree, the memory
cost of the nodes in every layer (i.e., the one-bit Othello size) is
constant and independent with the distribution of the keys. There-
fore, the total memory cost of Othello is [2.33|S| log, n-|, where |S]
is the total key size. In contrast, the total number of groups in each
layer of DT-DASS is equal or smaller than n, because some nodes
could become pure leaf nodes in the intermediate layers and would
not be considered again in layers below, when n is not an exact
power of 2. Meanwhile, at each split node, the DASS memory size is

N TinyCR
8| mmm Othello
>
U}
X
a6
£
(]
54
[
2
2

3 4 5 6 7 8 9
Number of Sets

Figure 18: Mean & standard deviation of amortized memory
cost for multi-set query.

only determined by the minor sub-group and the ratio between the
two sub-groups. Therefore, based on the prior analysis, the total
memory cost at each layer is smaller than Othello’s layer cost if the
sub-groups at the nodes are imbalanced.

In many real applications, the sizes of groups (such as different
VIP levels of devices) are significantly different. For example, a
common distribution of the group sizes is the "pyramidal shape”,
i.e., the group sizes scale inversely with the levels of the hierarchy.
Meanwhile, n could be any arbitrary integer instead of a pow of
2. Therefore, DT-DASS costs much less memory than Othello for
multi-set query when handling imbalanced groups. As a trade-off,
the query cost of DT-DASS grows logarithmically with the number
of sets n (i.e., O(log n)) in worst case.

A.4.2 Evaluation. We compare the memory performance of DASS
with Othello, which can also be used to solve Multiset Query prob-
lem.

For Othello, we still use the recommended memory setting (2.33
bits per slot) by the original paper [37]. Meanwhile, for L classes,
each key requires [logz L] slots to store the value (class label). Hence,
in total, Othello requires constantly 2.33 [log2 L] bits for each key.

In the experiments, we determine the size of each set by uni-
formly selecting a random number between 1 to 10,000,000. We
conducted 7 groups of experiments using 3 to 9 sets respectively. In
each group the experiments are repeated 1000 times. In Fig. 18, we
show the average amortized memory cost of each key when using
TinyCR or Othello for 3 to 9 sets respectively. We find TinyCR costs
46% to 61% less memory than Othello for multi-set queries.

	Abstract
	1 Introduction
	2 Related Work
	3 System and Threat Models
	3.1 System Model
	3.2 Threat Model

	4 DASS Design
	5 Practical Designs of TinyCR
	5.1 Updates of Cuckoo Filter and Othello
	5.2 Updating DASS on the Tracker
	5.3 Handling Inconsistency of Updating
	5.4 Updates on Devices
	5.5 DASS Version Control

	6 Implementation and Evaluation
	6.1 System Implementation
	6.2 Metrics and Dataset
	6.3 Memory cost
	6.4 Updating efficiency
	6.5 Query
	6.6 Bandwidth vs. Dynamics
	6.7 Mitigate rebuilds

	7 Application Scenarios for TinyCR
	8 Security Analysis
	9 Conclusion
	10 Acknowledgments
	References
	A Appendices
	A.1 Preliminaries
	A.2 Updating Functions of Cuckoo Filter and Othello
	A.3 Query Performance of DASS
	A.4 DASS for Multi-Set Query Problem

