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Abstract

An outstanding problem of additive manufacturing is the variability in part quality caused by process-induced defects such
as porosity. Image-based porosity detection represents a solution that can be easily implemented into existing systems at a
low cost. However, current industry porosity detection software utilizes threshold-based methods which require user calibra-
tion and ideal lighting conditions, and thus cannot be fully automated. This paper investigates the application of machine
learning methods and compares their ability to classify porosities from cross-section images of 3D printed metal parts. Fifty-
one features are manually defined and automatically extracted from the images and the most relevant features among them
are selected using feature reduction methods. Six machine learning algorithms that are commonly used for classification
problems are trained with those features and used for the porosity classification. The decision tree, one of the six machine
learning algorithms, yields 85% accuracy with a processing time of 0.5 s to classify porosities from 691 images. However,
manual features may not adequately characterize porosity because they are dependent on user’s experience and judgment.
Alternatively, deep convolutional neural network (DCNN) that does not require user-defined features is used for the clas-
sification problem. The comparison results showed that a DCNN yields the highest accuracy of 95% with a processing time

of 1.8 s to classify porosities from the same 691 images.
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1 Introduction

With the advance in the technologies, additive manufactur-
ing (AM) is hitting the market to manufacture complex or
customized parts in a short period of time. Compared to
conventional manufacturing processes, AM processes have
various perceived advantages. It has a potential to approach
zero waste manufacturing by maximizing material utiliza-
tion and to produce parts near final shape which eliminate
additional processing. AM has an ability to produce part
with greater complexity than traditional processes, without
need of additional tooling. Geometries which are difficult or
impossible to manufacturing using conventional techniques
can be manufactured at the same cost as uncomplicated
shapes such as simple cylinder or cube [1]. It increases pro-
duction flexibility because it requires smaller operational
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footprint toward manufacturing large variety of parts with
on-demand manufacturing, moving away from projection-
based manufacturing with excellent scalability [2]. AM
processes are generally categorized depending on the raw
material as shown in Table 1 [3]. For example, stereolithog-
raphy is used for liquid resins, selective laser sintering for
powder materials, and fused deposition modeling for solid
materials [4].

Powder-based AM (PBAM) is fast, highly precise, avail-
able for various materials, and suitable for printing complex
shapes [5]. Despite these advantages, the variability in part
quality primarily caused by process-induced defects prevents
the PBAM technology from scaling and broader acceptance
for high-value applications [6—8]. One of the most critical
defects is porosity, which can be defined as the presence of
small spaces or voids within the part as shown in Fig. 1. The
porosity can be induced by the spaces that powder did not
occupy while melting or sintering the rest of the material
together, which is detrimental to the mechanical properties
of the material. Therefore, porosity detection is a crucial
step in assessing the quality of the parts printed by PBAM.
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Table 1 Major AM processes based on Hopkinson and Dickens clas-
sification [3]

Material AM process

Liquid based Stereolithography
Jetting systems

Direct light processing
Powder based Selective laser sintering
Selective laser melting

Binder jetting
Three-dimensional printing
Fused metal deposition systems
Electron beam melting
Selective masking sintering
Selective inhibition sintering

Electro photographic layered

manufacturing
High speed sintering
Solid based Fused deposition modeling

Sheet stacking technologies

For example, in the sintering-assistive additive manu-
facturing (SAAM) [9] using the binder jetting [10], one of
the PBAM technologies, the primary challenge is to achieve
component densities comparable with those produced by
conventional processes. The green component printed by
the binder jetting is typically characterized by a low powder
packing density [11], which results considerable shrinkage
during the follow-up sintering process. Because the compo-
nent density is directly related to the bulk porosity, porosity
detection is critical to assess the quality of the additively
manufactured parts. In addition, it is important to analyze

Fig. 1 Typical porosity in SEM images
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the sintering behavior of SAAM compared to that of the
conventional process.

Porosity detection is generally categorized into in situ
and post-processing methods. The post-processing approach
involves measurement and analysis of pores and defects
using a finished part. Alternatively, the in situ methods pro-
vide the advantage of real-time monitoring of the sample
during the printing process. The post-processing methods
are relatively simpler to perform and are not limited by real-
time requirements. In situ generally requires more complex
equipment and analysis methods but assesses the reliability
of a printed part in real time. A comparison of these tech-
nologies is provided in Table 2.

Based on the Table 2 comparison, visual image-based
methods are advantageous in both post-processing and
in situ methods. Bulk density measurement and ultrasonic
wave speed measurement can only measure bulk porosity
and cannot provide size, morphology, or pore distribu-
tion. Micro X-ray computed tomography has the advantage
of 3D imaging, but requires an expensive equipment and
X-ray absorption variation in bulk material, and has part
size limitations [12]. Coaxial temperature imaging is lim-
ited to specific processes such as selective laser sintering
and requires extensive modifications of current systems for
implementation.

Alternatively, the primary disadvantage of traditional
image-based methods is manual classification of the
regions in the image. This ultimately makes image-based
methods costly and time-consuming. Even industry soft-
ware for porosity detection was found in [15] to be highly
user dependent and without adequate training, resulting in
high classification error. The issue with this software is that
porosity detection is software-assisted, meaning that the user
detects porosity by changing parameters such as threshold
limits. These disadvantages could be eliminated by applying
machine learning (ML) techniques to automatically process
the images reliably and in real time without user assistance.

A literature review of real-time image-based porosity
classification was performed. Layer-wise optical imaging
to classify porosities in Ti-6AL-4 V during laser powder
bed fusion (LPBF) was performed with a support vector
machine (SVM), k-nearest neighbor (KNN), and artificial
neural network (ANN), achieving an accuracies of 89.36%,
78.60%, and 84.40%, respectively [16]. Another study
classified porosities in LPBF parts composed of Inconel
625 using a Bayesian classifier resulting in an accuracy of
89.5% [17]. Porosity classification in direct energy deposi-
tion (DED) with sponge titanium powder was investigated
with convolutional neural networks yielding an accuracy
of 91.2% [18]. Porosity classification of parts composed of
Al-5083 manufactured with direct metal deposition (LMD)
was performed with a random forest classifier yielding an
accuracy of 94.41% [15]. SVM was also utilized for porosity
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Table 2 Comparison of porosity detection methods

Category

Detection type

Pros

Cons

Post-processing Bulk density measurement (e.g.,

In situ

Archimedes’ measure) [12]

Cross-section microscopic image
analysis [12]

Micro X-ray computed tomography [13]

Ultrasonic wave speed measurement
[13]

e Simple process
e No specialty hardware

o Characterization of internal pores at
high resolution

o Non-destructive

o Characterization of internal pores at
high resolution

e 3D spatial distribution of pores

e Non-destructive
o Quick response
e One-sided access

e Only available for measuring bulk
density (no pore size, location, or
morphology data)

o Theoretical density highly dependent on
exact chemical composition

e Small pores that affect material
properties overlooked

e Preparation may alter sample

e Prone to human error

o Need consistent parameters (sample
location, magnification, focus, etc.)

e Time-consuming

e Requires an expensive equipment

e Requires X-ray absorption of the bulk
material and defect to be significantly
different

e Time required for sufficient X-ray
transmission may be significant for
larger parts

e Large parts may need a small sample
cut to limit X-ray absorption

e Requires two-sided access

e Only available for measuring bulk
density (No pore size, location, or
morphology data)

Coaxial temperature imaging [14]

Off-axial imaging [14]
data

e Initial powder layer can be captured
before processing

o High-resolution in situ measurement

e Simple hardware Easy interpretation

o High porosity increases uncertainty

e Uneven surfaces may blur signal and
reduce quality

e Limited to 16% porosity

e Data collection is limited to melt pool

e Defects and quality inferred by melt
pool data

e Limited applications

e Large amount of data collection

o Need suitable camera depending on
capture scenario

e Requires complicated processing

classification in stainless steel parts constructed with LPBF
yielding accuracy of 85% [19]. A study of porosity clas-
sification in Inconel 718 parts constructed with LPBF was
performed with deep convolutional neural networks (CNN),
yielding accuracies as high as 99.4% [20]. Another study
utilized images of Ti-6Al-4 V to detect lack of fusion porosi-
ties in LBPF parts and reported an accuracy of 91.5% [21].

While the results of previous studies are promising, these
methods rely on specific materials and are not capable of
classifying porosity in general. This is problematic since
an algorithm trained on a single material has no guaran-
tee of generalization. It may require significant retraining
and hyperparameter tuning to include additional materi-
als or may perform poorly even with retraining efforts. In
addition, nearly all previous studies have attempted to solve
porosity classification by employing a single ML algorithm.
However, there are many ML algorithms that are commonly

used for classification, and no studies have explored which
algorithms should be employed to best classify porosity for
a diverse material set. Therefore, a breath-first approach to
porosity classification will compare a variety of common
ML algorithms to determine the strengths and weaknesses
of each method when applied to a diverse material image.
The overall goal of this study is to use and compare super-
vised ML algorithms for a real-time image-based porosity
classification. A database of cross-sectional images of 3D
printed metal parts is developed to train the ML algorithms.
Fifty-one features are manually determined and extracted
from these images and used to train six ML algorithms that
are commonly used for classification problems. However, the
manually defined features may not be the optimal for clas-
sifying porosity because they are user dependent. Therefore,
deep convolutional neural network (DCNN), which does
not require user-defined features, is also used for porosity
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classification. The results were then compared to determine
the pros and cons of each method.

2 Approach
2.1 Dataset generation

To train and test the ML algorithms for porosity clas-
sification, we generated a dataset that contains pores and
non-pores in the form of cropped images. The dataset was
obtained from cross-section images of cubical metal (3161
stainless steel, boron carbide, copper, and nickel) specimens
that are additively manufactured by SAAM with binder jet-
ting. It is assumed that the approaches explored in this paper
can be applied to other AM methods once a dataset is gener-
ated for those methods. Due to the time-consuming process
of collecting images and creating an image database, the
applicability of the presented detection algorithms on other
AM methods will be reserved for a future study.

The specimens were first printed using a binder jetting
printer (Jet Zprinter® 350, Z-Corp, USA) with 5 wt% of
binder and 100-250 pm of layer thicknesses. The printed
specimens were cured at 80 °C in a vacuum oven (25L 200C
Vacuum Oven, MTI Corp., USA) for a half hour to better
consolidation and dry. Then the debinding and sintering
profile, shown in Fig. 2, was conducted in a tube furnace
under vacuum (GSL-1700X-KS-UL-60, MTI Corp., USA).
The debinding was performed in two steps: the first is at
210 °C with 20-min hold and the second is at 480 °C for
1-h dwell. These steps were selected to gradually remove
the binder from the specimen and were optimized through
a thermogravimetric analysis using a TGA/DSC equipment
(Q600 SDT, TA instruments, USA). Subsequently, sintering
was performed by heating at a rate of 5 °C/min until 1250 °C
was reached and held for 10 h. The average relative density
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Fig.2 Debinding and sintering profile
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Fig.3 Labeled image with examples of porous (green), light non-
porous (turquoise), and dark non-porous (red) regions

of the as-printed (40%) and sintered specimens (87%) was
measured using the Archimedes’ method.

To obtain the cross-section images, the specimens
were sectioned and the surface polished using sandpaper
(180-4000 grit) followed by the finishing using 3 pm and
1 pm diamond suspensions (Struers, Denmark). The micro-
structure images of the cross-sections were obtained using a
SEM (FEI Quanta 450 FEG, Thermo Fisher Scientific, USA)
with 197 X magnification.

Supervised ML requires a prelabeled dataset to train an
algorithm. We used an intensity threshold plus gradient filter
to select the porous and non-porous regions in cross-section
images. However, the algorithm is insufficient to label all
true porous and non-porous regions. For example, there are
dark non-porous region, which may be inadvertently selected
due to the low intensity. Therefore, the selected regions were
manually reviewed and labeled as porous or non-porous as
shown in Fig. 3. The total number of resulting classified
dataset obtained is summarized in Table 3.

There are some limitations with the cross-section image
dataset, however. Cross-section images do not fully express
porosity size, shape, and distribution due to the loss of a
dimension. In practice, many cross-section images per part
would be required. Ideally, multiple images at each layer

Table 3 Porosity image dataset

Classification type Pores Non-pores (dark) Non-pores (light)

Number of 2897 1086 631

classifications
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of the additive manufacturing process would be utilized to
represent the part quality.

2.2 ML methods

ML algorithms are highly dependent on the feature space
[22]. Generally, features are extracted from images using two
distinct methods: (1) construct specific algorithms to extract
features using engineering judgment; (2) generalize feature
extraction using an automated method. Both methods have
pros and cons for implementation. Generally, when manu-
ally constructing features, the model is produced via a white
box method, that is, the feature space can be easily viewed
and interpreted by an individual. This is accomplished by
extracting predefined properties from the image, such as
average intensity, bounding box size, and canny filters. How-
ever, the manual feature set has the disadvantage of specify-
ing features that are not relevant and feature reduction must
be performed. It also has the potential to miss features that
are critical for classification. Conversely, automated feature
definitions are generally black box models, where an indi-
vidual is unable to easily interpret these features without an
accompanying ML algorithm. Subsequent sections evaluate
both methods.

2.2.1 Supervised ML methods with user-defined features

Six ML algorithms were selected to be trained with user-
defined features. Those ML algorithms are support vector
machine (SVM), binary linear classifier (linear), boost trees
(BT), decision trees (DT), single-layer neural network, and
K-nearest neighbors (KNN). Unless otherwise noted, all
ML methods were run with MATLAB R2021a and hyper-
parameter optimization was employed with built-in MAT-
LAB functions.

Each of these ML algorithms requires input data to per-
form classification. This data consists of user-generated fea-
tures extracted from a given porous or non-porous cropped
image. Most features were selected based on the OpenCV
feature detection documentation [23]. However, some fea-
tures were selected based on observations of porosities. The
light intensity, for instance, was defined as a feature based
on the observation that light scatters at the edge of the pore,
creating a light intensity area around the porosity. To define
this feature, a histogram of the intensity in the image was
constructed, then the top 15% of the intensity was used to
define the light area. The feature was then used to define
other features such as the light area fraction. The total set of
features is shown in Table 4.

Table 4 Initial set of features extracted from images using OpenCV libraries [23]

# Feature Description

1 Contour area Pore mask contour area

2 Mean intensity Mean intensity of mask

3 Light intensity Mean intensity of light mask

4 Light intensity fraction Fraction of intensity in light mask

5 Light area fraction Fraction of area in light mask

6 Convex light area Determines if light area mask is convex

7 Extent Ratio of contour area to bounding box area

8 Solidity Ratio of contour area to convex hull area

9 Equivalent diameter Diameter of a circle containing the equivalent area of the mask

10 Angle The angle of the rotated bounding box computed from the aspect ratio

11 Border pixels Number of pixels around the border of the image

12 Perimeter Length of the perimeter in pixels

13 Compactness The ratio of the area of the mask to the area of a circle with the same perimeter
14 Aspect ratio of box The aspect ratio of the bounding box around the pore

15 Aspect ratio of minimum box The aspect ratio of the minimum rotated bounding box around the pore

16 Angle of minimum box The angle of the minimum rotated bounding box computed from the aspect ratio
17 Rectangularity The ratio of the minimum rotated bounding box area to the mask area

18 Convex Determines that the mask area is convex

19 Minimum radius Radius of the minimum enclosing circle

20 Triangle area Area of minimum enclosing triangle

21-30 Spatial moments Spatial moments computed with the pixel intensities on a segmentation grid
31-37 Central moments Spatial moments computer with respect to the center of the segmentation grid
38-44 Central normalized moments The central moments as described above, normalized and are invariant

45-51 HuMoments Invariant shape moments
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Feature reduction was performed to remove features that
do not contribute to porosity classification. Removal of non-
contributing features is important for improving prediction
accuracy, preventing overfitting, and reducing computa-
tion time. Features were reduced using a stochastic coordi-
nate descent algorithm combined with fast ML algorithms
such as KNN classification or linear classification, shown
in Fig. 4, respectively. For descriptions of ML algorithms
utilized, please refer to the following section. The stochas-
tic coordinate descent algorithm trains the ML algorithms
on 70% of the data, and the remaining 30% of the data is
used for testing. The average accuracy over 20 iterations
is selected for each datapoint in the Fig. 4 graph. In every
iteration, the training and testing sets were reshuffled. Each
result is hashed to reduce runtime if the set is visited again.
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Another method of feature reduction was compared using
the analysis of variance (ANOVA) general linear model.
The feature data extracted from the Table 3 dataset was
imported to MATLAB and compared using the ANOVA
function. The results indicate that 24 features meet the 5%
p value requirements for statistically significant [24]. The
results of each feature reduction method are displayed in
Table 5.

To compare the feature reduction methods, each of the six
ML algorithms was tested with the Table 5 columns along
with the entire feature set. The results are summarized in
Table 6. The highest accuracy sets were from KNN, DT,
and SVM with results within statistical variance. However,
notably, the DT set contained the least number of features,
but still performed as well as the other feature reduction
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Fig.4 Feature reduction for KNN (a), linear (b), decision trees (¢), and SVM (d)
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Table 5 Comparison of feature reduction methods and overlapping
features selected

Feature # KNN DT Linear SVM ANOVA
1 X
2 X X X
3 X X
4 X X X X X
5 X X X X
6

7 X X X X
8 X X
9 X
10

11 X X
12 X
13 X X X X
14 X
15

16 X
17 X X X
18 X

19 X
20 X X

21 X X
22 X
23 X X
24 X X

25 X
26

27 X
28 X
29 X

30

31

32

33 X
34 X X

35

36

37 X X X

38

39

40

41 X

42

43 X

44 X X X X
45 X X X

46 X X
47 X X X

48 X

49 X X

Table 5 (continued)

Feature # KNN DT Linear SVM ANOVA
50
51 X

methods. It appears that most features are neutral and added
or removing them has little impact on the trained model
accuracy.

2.2.2 Deep convolutional neural network

DCNNs have transformed image recognition ability of
computers over the past decade. These networks have been
employed in diverse detection and classification applica-
tions such as face detection, marine organism classification,
sewer pipe defect detection, solar cell defect classification,
wheel hub surface defect detection, and polymeric polarizer
defect detection [25-30]. In all cases, accuracies exceeded
90%. This makes DCNNs promising candidates for porosity
classification.

Unlike the previous section, where 51 user-defined fea-
tures were used, this section considers DCNNs that auto-
matically defines and extracts features from the images of
porosities and non-porosities. However, these features are
embedded in a hidden layer, which is a black box to the
users. Raw images are fed into the network with their cor-
responding labels, and the network relates patterns in the
images to the image label via successive layers of convolu-
tion. Various networks have been designed and pre-trained
for image classification. The major differences between
these networks are the number of layers in the network and
the design of each layer. A list of some popular pre-trained
networks available for image classification is displayed in
Table 7.

Each network in Table 7 was pre-trained to detect 1000
different objects from the ImageNet dataset, which contains
approximately 1.2 million training images, 50 thousand
validation images, and 100 thousand test images [43]. The
dataset includes a wide variety of everyday objects as well as
similar objects such as various bird species and dog breeds
[43]. While these networks are designed to deal with diverse
classifications, the present problem only requires binary
classification of an image as porous or non-porous. There-
fore, the networks must be tested to determine which is best
at binary classification of amorphous structures.

However, prior to testing, hyperparameters for train-
ing the network must be considered. The relevant
parameters are shown in Table 8. The minibatch size
was selected to be the largest base two integers before
obtaining an out-of-memory error, and the initial learn-
ing rate was selected to be 0.001 and reduced by half
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Table 6 Accuracy of each training set and method with number of features

Feature Reduction Method

ML Algorithm KNN | DT Linear | SVM | ANOVA | None

Single Layer ANN | 85.8% | 84.4% | 78.1% | 85.6% 84.6% | 84.1%
KNN 84.5% | 83.6% | 77.2% | 84.3% 83.2% | 78.1%
BT 85.3% | 85.6% | 77.9% | 85.2% 85.2% | 85.8%
DT 79.9% | 79.8% | 70.5% | 79.9% 79.4% | 79.3%
Linear 68.5% | 64.8% | 74.2% | 68.4% 68.5% | 68.4%
SVM 85.0% | 85.1% | 77.5% | 85.2% 81.2% | 74.3%
# Features 18 10 6 15 24 51

Highest accuracy per column is shaded and highest accuracy per row is bold

until divergence was no longer observed. The maximum
number of epochs was selected by increasing the number
of epochs until training and testing accuracy converged.
An assessment was performed with the ResNet18 neural
network, and the results are shown in Fig. 5. To deter-
mine the threshold of convergence, the ResNet18 neural
network was trained 25 times on randomly shuffled data
and an average of 92.5% with a standard deviation of 1%
was observed. It was found that convergence occurred
after 9 epochs. Therefore, 10 epochs were used for the
MaxEpoch parameter. The validation frequency was
set to update every epoch. This ensured that once the
weights are updated, the model is saved and assessed.
The model with the highest accuracy is then returned.
This prevents returning overfit models.

Freezing initial layers without performance impact is a
potential benefit using transfer learning on a pre-trained

network. Since the ResNet18 neural network has already
been trained to classify 1000 objects, it has also already been
trained to detect low-level image features within those ini-
tial layers [45]. By skipping over these layers during initial
training, training time could be reduced significantly. This
would especially be advantageous if further defect classi-
fications were added to the network or additional training
images were included in the future.

The number of frozen layers was selected to be zero for
all initial assessments. However, since it is advantageous to
reduce training time, the ResNet18 neural network was trained
multiple times with successive layers frozen. The results, dis-
played in Fig. 6, indicate that up to 20% of the layers may be
frozen without any impact on accuracy and a training time
reduction of approximately 12.5%. Therefore, significant time
could be saved by freezing approximately 20% of the initial
layers.

Table 7 List of popular pre-

: Network Depth Size (MB) Parameters Image input size References
trained neural networks (millions)
SqueezeNet 18 52 1.24 227-by-227 [31]
GoogleNet 22 27 7 224-by-224 [32]
Inception v3 48 89 23.9 299-by-299 [33]
MobileNetV?2 53 13 35 224-by-224 [34]
ResNet18 18 44 11.7 224-by-224 [35]
ResNet50 50 96 25.6 224-by-224 [35]
ResNet101 101 167 44.6 224-by-224 [35]
Xception 71 85 229 299-by-299 [36]
Inception-ResNetv2 164 209 559 299-by-299 [37]
ShuffleNet 50 54 1.4 224-by-224 [38]
Darknet19 19 78 20.8 256-by-256 [39]
EfficientNetBO 82 20 53 224-by-224 [40]
VGG16 16 515 138 224-by-224 [41]
NASNetMobile * 20 53 224-by-224 [42]
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Table 8 Hyperparameter list for DCNNs [44]

Minibatch size

Initial learning rate

MaxEpochs

Frozen layers (optional for pre-trained networks)

Validation frequency

The population size of the training set used to evaluate the gradient
descent function. Increasing this generally decreases training time
but requires more computational memory

Initial learning rate for stochastic gradient descent model solver.
Selecting the correct learning rate will minimize the training time.
However, a significantly large learning rate may cause the training to
diverge

Maximum number of epochs before completing training. Selecting too
few epochs will result in an underfit model and too many epochs will
result in overfit model

The number of layers to freeze prior to training. The nodes in the
network are not updated while training resulting in a faster training
time. Freezing too many layers will result in decreased performance

Number of iterations before validation set benchmarks the trained
model. The validation is used to select the best-performing model at
the end of training. Increasing the validation frequency may result in
better model selection but will increase training time

3 Results
3.1 Computing system

All analysis was performed on Microsoft Windows 10.0.19043
running on an AMD Ryzen 9 3900X 12-Core Processor,
NVIDIA GeForce GTX 1080Ti, 32 GB DDR4-3200, and an
HP EX900 500 GB SSD.

3.2 Experimental datasets and system

The image dataset containing 4614 cropped images was ran-
domly split into training and testing sets. Seventy percent of
the images were selected for the training set, and the remain-
ing 30% images were reserved for the testing set. In the case
of DCNNE, the testing set was split into a validation set and a
testing set. The validation set is used to select the best model
during training and prevent overfitting. The training set is then
used to demonstrate consistent results (i.e., the model does not
just perform well on the validation set).

Fig.5 Maximum number of
epoch selection with ResNet18

Supervised ML methods with user-defined features were
run 20 times on reshuffled data to generate the standard devia-
tion statistics. Due to the long training times required, DCNNs
were only run 5 times to generate statistics.

3.3 Metrics

Before comparing ML algorithms, it is important to define
some common performance metrics that are used during anal-
ysis. The confusion matrix displayed in Fig. 7 defines the true
positive (TP), false positive (FP), false negative (FN), and true
negative (TN), where TP and TN represent the correct number
of positive and negative guesses the classifier made.

The results of the confusion matrix were then used to com-
pute the performance metrics shown below.
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Fig.6 Frozen layer impact on —— Accuracy Time Reduction
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FPR — FP  FP 1 — TNR the actual positive and negative classifications need
"N TN+FP only reviewed from the dataset in Table 3. It was shown
that nearly twice the number of pore classifications were
TP + TN TP + TN included compared to the non-pore classifications. There-
ACC = = fore. it :
P+N TP + TN + FP + FN ore, it is possible that some ML methods appear more accu-

where TPR is the true positive rate, TNR is the true negative
rate, FNR is the false negative rate, FPR is the false positive
rate, and ACC is the accuracy. TPR computes the fraction
of positive predictions correctly classified. TNR computes
the fraction of negative predictions correctly classified.
FNR and FPR similarly measure the incorrect classifica-
tions. The ACC metric calculates the fraction of correction
classifications.

3.4 Accuracy comparison
A common and straightforward method for comparing

ML methods is by graphing the accuracy of each method
as shown in Fig. 8. The results presented in Fig. 8 appear

Table 9 Comparison of ML methods with standard deviations

Algorithm ACC FNR TPR GENR GrpR

Single-layer ANN 85.8% 0.24 0.91 0.02 0.01

KNN 84.5% 0.29 0.91 0.03 0.01
BT 85.8% 0.33 0.95 0.03 0.01
DT 79.9% 0.32 0.85 0.02 0.01
Linear 74.2% 0.75 0.97 0.03 0.01
SVM 85.2% 0.32 0.94 0.03 0.01
DCNN 95.0% 0.07 0.97 0.02 0.02

@ Springer

rate due to the skewed dataset. For instance, an algorithm
that classifies everything as a pore would report an accuracy
of 68%. To determine how well algorithms are actually per-
forming, the TPR and FNR need to be compared.

The TPR and FNR can be graphed for each algorithm
to generate a receiver operating characteristic (ROC) graph
[46]. The ROC graph is used as another ML comparison
method. The line plotted through the middle of the graph
represents the performance of a random classifier. The fur-
ther to the top left the graph, the better the performance of
the algorithm. The ROC graph corresponding to the results
from Fig. 8 is presented in Fig. 9 and Table 9 for the six
ML algorithms and the best DCNN (ResNet50). Due to the
relative similarity of the DCNN results, they were compared
separately in Table 10 and Fig. 10.

The results from Fig. 9 make some subtle clarifications
to the Fig. 8 accuracy results. What is found is that the six
ML algorithms with user-defined features perform similarly

Actual Class

P N
Predicted | P TP FP
Class N FN TN

Fig.7 Confusion matrix
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Fig.8 Chart comparing the best accuracy of each ML method over
testing sets

to the DCNN in detecting true porosity (TPR) but perform
substantially worse detecting non-pores (FNR). In this way,
the DCNN with the automated feature extraction has suc-
ceeded in communicating a deficiency in the feature space,
namely, that manual feature definition was more concerned
with what constitutes a porosity rather than what does not.
By explicitly defining features of non-porosities and consid-
ering edge cases, it is likely the accuracy of the six ML algo-
rithms with user-defined features can be increased. However,
further consideration is required to determine what those
features might be.

For the current results, however, the automated feature
extraction with DCNNs outperforms the other methods. It
was found that the best-performing DCNN algorithms were
ResNet50, ResNet18, InceptionResNetv2, and InceptionV3
as shown in Table 10 and Fig. 10. Interestingly, these net-
work designs all share residual layers. Residual layers imple-
ment a “shortcut” around multiple convolutional layers [35].
These shortcuts help mitigate the vanishing gradient prob-
lem, where nodal weights tend to vanish or blow up during
back propagation [35]. Further review of these networks is

BT
100 |, SVMM:* AN
DCNN HH Linear
0.80 i —
Single Layer pt1 7
ANN
0.60
o
B /
= P
0.40 f
0.20 L
000 ~
0.00 020 040 060 0.80 1.00

FNR

Fig.9 Comparison of ML methods with TP and FP rates

Table 10 Results of retraining selected neural networks for porosity
classification

Network FNR TPR \Validation Test accuracy
accuracy
SqueezeNet 0.08 092 091 0.92
ResNet18 0.07 095 093 0.95
ShuffleNet 0.11 098 0.90 0.95
GoogleNet 005 091 092 0.92
MobileNetv2 0.12 096 0.89 0.94
ResNet50 0.07 097 093 0.95
Darknet19 0.03 091 091 0.92
VGG16 0.10 096 093 0.94
Inceptionv3 0.08 097 091 0.95
NasNetMobile 0.11 095 091 0.93
EfficientNetBO 0.11 094 091 0.93
ResNet101 0.13 097 093 0.94
Xception 0.08 093 092 0.93
Darknet53 0.11 098 093 0.95
InceptionResNetv2 ~ 0.08 096 0.92 0.95

required to determine if they are better suited for transfer
learning or small classification sets.

3.5 Accuracy distribution

The distribution of accuracies for each algorithm was
evaluated with respect to some potential features of inter-
est such as porosity perimeter, area, aspect ratio, and
minimum bounding box angle. All features were used
during training and the ResNet18 DCNN was used for
the CNN results. The distribution, displayed in Table 11,
includes the bin widths and the percent of data contained
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S S inceptionv3 shuf‘flenet/
LT - darknet53
0.98. . . |, resnet101
inceptionresnet el
V2 ) _“— mobilenetv2
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Fig. 10 TPR and FNR comparison of DCNNs
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in each bin. Ideally, the distribution would be flat, indicat-
ing algorithm invariance and generalizable performance.
However, there are some areas where performance notably
decreases. Specifically, very small and very large aspect
ratios tend to underperform. This is most likely due to
the lack of training examples. Small pore areas were also
found to underperform in the assessment. This is mostly
likely due to the image size being too small to correctly
classify the porosity. Bounding boxes with small angles
were also found to underperform. Standard deviation of
the accuracies for each algorithm was within one another
by 1-2%, suggesting that the deficiencies might lie in the
dataset. Dataset augmentation could be applied to increase

the number of images in the sparse categories and poten-
tially increase overall accuracy.

3.6 Classification time comparison

Fast classification time is critical for real-time image classi-
fication. The time required to extract the 51 features from the
691 cropped images in the testing set and classify them using
the six ML methods is displayed in Fig. 11. Each method
requires 0.4 s to perform feature extraction from the images
which comprises most of the time. Of the fasted perform-
ing ML methods, the single-layer ANN had the highest
accuracy.

Table 11 Distribution of

. . Bin % Data ANN KNN BT DT Linear SVM CNN
features of interest with respect
to each ML method accuracy. Perimeter (um) 25 9% 87%  84% 8%  T1%  T4% 85%  82%
Included are bins with the 45 4% 85%  86%  87% 2%  T2%  86%  95%
percent of the dataset they
contain 70 15% 87% 81% 85% 82% 70% 87% 94%
90 10% 84% 85% 86% 81% 70% 84% 91%
110 7% 85% 84% 87% 80% 69% 87% 92%
130 5% 82% 81% 85% 74% 70% 85% 100%
150 4% 80% 87% 86% 78% 68% 82% 95%
170 4% 84% 88% 87% 80% 71% 86% 92%
200 12% 86% 87% 87% 80% 74% 88% 91%
Area (um?) 45 19% 83% 84% 83% 78% 74% 84% 84%
90 18% 85% 86% 87% 79% 70% 86% 95%
130 14% 87% 84% 85% 81% 71% 85% 95%
180 7% 86% 85% 90% 84% 77% 89% 95%
220 6% 85% 83% 85% 83% 70% 89% 100%
265 5% 86% 85% 85% 82% 67% 89% 91%
310 3% 85% 83% 88% 77% 67% 86% 100%
350 3% 81% 85% 84% 77% 79% 87% 100%
400 25% 85% 87% 87% 80% 74% 87% 94%
Aspect ratio 0.5 2% 68% 70% 75% 64% 72% 82% 50%
0.7 16% 87% 87% 86% 78% 70% 87% 97%
0.85 19% 87% 86% 88% 83% 72% 88% 90%
1 22% 87% 88% 88% 82% 73% 88% 91%
1.2 17% 82% 83% 84% 81% 73% 85% 91%
14 9% 85% 87% 89% 82% 74% 88% 90%
1.6 6% 81% 82% 84% 79% 1% 85% 89%
1.8 3% 89% 88% 84% 83% 1% 88% 79%
2 6% 75% 76% 78% 72% 56% 78% 85%
Min box angle 5 30% 82% 84% 84% 78% 77% 85% 92%
15 9% 90% 88% 91% 82% 85% 90% 84%
25 8% 94% 93% 92% 90% 86% 92% 86%
35 8% 92% 91% 92% 88% 80% 90% 92%
45 7% 92% 92% 90% 87% 77% 93% 86%
55 9% 92% 89% 93% 90% 83% 90% 100%
65 8% 86% 88% 90% 82% 82% 89% 82%
75 11% 92% 91% 91% 88% 88% 94% 96%
85 8% 86% 85% 85% 81% 81% 89% 91%
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Fig. 11 Classification time comparison

The time required to classify porosities from the 691
images for each DCNN is displayed in Fig. 12. It is found
that the best-performing classifiers, ResNet18 and ResNet50,
classify images substantially faster at 1.8 s and 3.8 s versus
4.9 s and 9.4 s of the InceptionResNetv2 and InceptionV3,
respectively. However, the overall time required for image
classification is substantially faster with the manual features
coupled with the six ML algorithms.

3.7 Network expansion comparison

Another desirable attribute is the future expansion of the
network into classifying other defect types. To perform this
assessment, the non-porosity classification is split into two
new classifications: light non-porous (LNP) and dark non-
porous (DNP). The two top-performing networks, ResNet18
and ResNet50, were then retrained to determine if accuracies
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Fig. 13 Confusion matrix for ResNet18 network and three classes

remain consistent. The three-classification confusion matrix
for the ResNet18 network is displayed in Fig. 13. These
results correspond to an accuracy of 93.5%, which is con-
sistent with the previous two class results. The training and
classification time also remained constant. The complexity
of the porosity database is also noted from this image. Size,
shape, depth, and image intensity are all very greatly, yet the
DCNN is able to classify correctly in almost all instances.
The three-classification confusion matrix for the
ResNet50 network is displayed in Fig. 14. These results
correspond to an accuracy of 94.1%, which is consistent
with the previous two class results. The training and clas-
sification time also remained constant. Some randomly
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DNP

152 1

selected classified images from the testing set are displayed
in Fig. 15.
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Fig. 14 Confusion matrix for ResNet50 network and three classes
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4 Conclusion

In this study, ML algorithms were compared for image-
based porosity classification from a diverse and complex
porosity image set. The ML methods that require manual
feature definition are desirable because they represent a
“white box” method where the efficacy of features can be
easily analyzed by an observer, and the features can be read-
ily recycled for further material characterization. DCNN5s
that do not require user-defined features represent a “black
box” method where the features are automatically extracted,
but unknown to the user.
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For the six ML methods that are single-layer neural
networks, K-nearest neighbors, boost trees, decision trees,
binary linear classifier, and support vector machine, 51
features were defined and extracted from the images.
From these 51 features, 10 were found to best contribute
to porosity classification. Of these algorithms, it was found
that K-nearest neighbors, boost trees, single-layer neural
networks, and support vector machine performed similarly
with accuracies around 85%, and the TPR for each was
above 90% and the FNR was below 35%.

For the DCNNs, 15 common networks for image clas-
sification were tested. Nearly all the networks performed
similarly at around 92-95% accuracy, with TPR around
91-95%, and FNR around 5-11%. However, it was found
that the fastest classification and highest accuracy net-
works were ResNet50 and ResNet18. It was also found
that freezing the initial 20% of the layers reduces the train-
ing time by 12.5% and does not impact the classification
accuracy. Overall, it can be concluded that the smaller
ResNet18 network is appropriate for classifying two to
three classes; however, as further defects are added, it may
be beneficial for the ResNet50 network to be utilized or for
other networks to be revisited.

Overall, this study found that there exists merit in the
application of ML for porosity detection. The six ML
methods with manual feature definition performed at least
four times faster; however, the DCNNs performed with
the highest accuracy. Another advantage of DCNNs was
found in the simplicity of the model. In DCNNs, adding
new classes requires only retraining the DCNN with new
classified images and the user is not required to define new
features. Therefore, a variety of materials and defects can
be easily included in the model by simply adding a new
training dataset.

Future study includes the application of the DCNN for
the porosity detection to analyze and improve AM pro-
cesses. For example, the analysis of the placement of indi-
vidual porosities can be used to analyze the quality of the
part printed by SAAM with binder jetting compared to that
of conventionally processed parts.
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