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Abstract
An outstanding problem of additive manufacturing is the variability in part quality caused by process-induced defects such 
as porosity. Image-based porosity detection represents a solution that can be easily implemented into existing systems at a 
low cost. However, current industry porosity detection software utilizes threshold-based methods which require user calibra-
tion and ideal lighting conditions, and thus cannot be fully automated. This paper investigates the application of machine 
learning methods and compares their ability to classify porosities from cross-section images of 3D printed metal parts. Fifty-
one features are manually defined and automatically extracted from the images and the most relevant features among them 
are selected using feature reduction methods. Six machine learning algorithms that are commonly used for classification 
problems are trained with those features and used for the porosity classification. The decision tree, one of the six machine 
learning algorithms, yields 85% accuracy with a processing time of 0.5 s to classify porosities from 691 images. However, 
manual features may not adequately characterize porosity because they are dependent on user’s experience and judgment. 
Alternatively, deep convolutional neural network (DCNN) that does not require user-defined features is used for the clas-
sification problem. The comparison results showed that a DCNN yields the highest accuracy of 95% with a processing time 
of 1.8 s to classify porosities from the same 691 images.
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1  Introduction

With the advance in the technologies, additive manufactur-
ing (AM) is hitting the market to manufacture complex or 
customized parts in a short period of time. Compared to 
conventional manufacturing processes, AM processes have 
various perceived advantages. It has a potential to approach 
zero waste manufacturing by maximizing material utiliza-
tion and to produce parts near final shape which eliminate 
additional processing. AM has an ability to produce part 
with greater complexity than traditional processes, without 
need of additional tooling. Geometries which are difficult or 
impossible to manufacturing using conventional techniques 
can be manufactured at the same cost as uncomplicated 
shapes such as simple cylinder or cube [1]. It increases pro-
duction flexibility because it requires smaller operational 

footprint toward manufacturing large variety of parts with 
on-demand manufacturing, moving away from projection-
based manufacturing with excellent scalability [2]. AM 
processes are generally categorized depending on the raw 
material as shown in Table 1 [3]. For example, stereolithog-
raphy is used for liquid resins, selective laser sintering for 
powder materials, and fused deposition modeling for solid 
materials [4].

Powder-based AM (PBAM) is fast, highly precise, avail-
able for various materials, and suitable for printing complex 
shapes [5]. Despite these advantages, the variability in part 
quality primarily caused by process-induced defects prevents 
the PBAM technology from scaling and broader acceptance 
for high-value applications [6–8]. One of the most critical 
defects is porosity, which can be defined as the presence of 
small spaces or voids within the part as shown in Fig. 1. The 
porosity can be induced by the spaces that powder did not 
occupy while melting or sintering the rest of the material 
together, which is detrimental to the mechanical properties 
of the material. Therefore, porosity detection is a crucial 
step in assessing the quality of the parts printed by PBAM.
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For example, in the sintering-assistive additive manu-
facturing (SAAM) [9] using the binder jetting [10], one of 
the PBAM technologies, the primary challenge is to achieve 
component densities comparable with those produced by 
conventional processes. The green component printed by 
the binder jetting is typically characterized by a low powder 
packing density [11], which results considerable shrinkage 
during the follow-up sintering process. Because the compo-
nent density is directly related to the bulk porosity, porosity 
detection is critical to assess the quality of the additively 
manufactured parts. In addition, it is important to analyze 

the sintering behavior of SAAM compared to that of the 
conventional process.

Porosity detection is generally categorized into in situ 
and post-processing methods. The post-processing approach 
involves measurement and analysis of pores and defects 
using a finished part. Alternatively, the in situ methods pro-
vide the advantage of real-time monitoring of the sample 
during the printing process. The post-processing methods 
are relatively simpler to perform and are not limited by real-
time requirements. In situ generally requires more complex 
equipment and analysis methods but assesses the reliability 
of a printed part in real time. A comparison of these tech-
nologies is provided in Table 2.

Based on the Table 2 comparison, visual image-based 
methods are advantageous in both post-processing and 
in situ methods. Bulk density measurement and ultrasonic 
wave speed measurement can only measure bulk porosity 
and cannot provide size, morphology, or pore distribu-
tion. Micro X-ray computed tomography has the advantage 
of 3D imaging, but requires an expensive equipment and 
X-ray absorption variation in bulk material, and has part 
size limitations [12]. Coaxial temperature imaging is lim-
ited to specific processes such as selective laser sintering 
and requires extensive modifications of current systems for 
implementation.

Alternatively, the primary disadvantage of traditional 
image-based methods is manual classification of the 
regions in the image. This ultimately makes image-based 
methods costly and time-consuming. Even industry soft-
ware for porosity detection was found in [15] to be highly 
user dependent and without adequate training, resulting in 
high classification error. The issue with this software is that 
porosity detection is software-assisted, meaning that the user 
detects porosity by changing parameters such as threshold 
limits. These disadvantages could be eliminated by applying 
machine learning (ML) techniques to automatically process 
the images reliably and in real time without user assistance.

A literature review of real-time image-based porosity 
classification was performed. Layer-wise optical imaging 
to classify porosities in Ti-6AL-4 V during laser powder 
bed fusion (LPBF) was performed with a support vector 
machine (SVM), k-nearest neighbor (KNN), and artificial 
neural network (ANN), achieving an accuracies of 89.36%, 
78.60%, and 84.40%, respectively [16]. Another study 
classified porosities in LPBF parts composed of Inconel 
625 using a Bayesian classifier resulting in an accuracy of 
89.5% [17]. Porosity classification in direct energy deposi-
tion (DED) with sponge titanium powder was investigated 
with convolutional neural networks yielding an accuracy 
of 91.2% [18]. Porosity classification of parts composed of 
Al-5083 manufactured with direct metal deposition (LMD) 
was performed with a random forest classifier yielding an 
accuracy of 94.41% [15]. SVM was also utilized for porosity 

Table 1   Major AM processes based on Hopkinson and Dickens clas-
sification [3]

Material AM process

Liquid based Stereolithography
Jetting systems
Direct light processing

Powder based Selective laser sintering
Selective laser melting
Binder jetting
Three-dimensional printing
Fused metal deposition systems
Electron beam melting
Selective masking sintering
Selective inhibition sintering
Electro photographic layered 

manufacturing
High speed sintering

Solid based Fused deposition modeling
Sheet stacking technologies

Fig. 1   Typical porosity in SEM images
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classification in stainless steel parts constructed with LPBF 
yielding accuracy of 85% [19]. A study of porosity clas-
sification in Inconel 718 parts constructed with LPBF was 
performed with deep convolutional neural networks (CNN), 
yielding accuracies as high as 99.4% [20]. Another study 
utilized images of Ti-6Al-4 V to detect lack of fusion porosi-
ties in LBPF parts and reported an accuracy of 91.5% [21].

While the results of previous studies are promising, these 
methods rely on specific materials and are not capable of 
classifying porosity in general. This is problematic since 
an algorithm trained on a single material has no guaran-
tee of generalization. It may require significant retraining 
and hyperparameter tuning to include additional materi-
als or may perform poorly even with retraining efforts. In 
addition, nearly all previous studies have attempted to solve 
porosity classification by employing a single ML algorithm. 
However, there are many ML algorithms that are commonly 

used for classification, and no studies have explored which 
algorithms should be employed to best classify porosity for 
a diverse material set. Therefore, a breath-first approach to 
porosity classification will compare a variety of common 
ML algorithms to determine the strengths and weaknesses 
of each method when applied to a diverse material image.

The overall goal of this study is to use and compare super-
vised ML algorithms for a real-time image-based porosity 
classification. A database of cross-sectional images of 3D 
printed metal parts is developed to train the ML algorithms. 
Fifty-one features are manually determined and extracted 
from these images and used to train six ML algorithms that 
are commonly used for classification problems. However, the 
manually defined features may not be the optimal for clas-
sifying porosity because they are user dependent. Therefore, 
deep convolutional neural network (DCNN), which does 
not require user-defined features, is also used for porosity 

Table 2   Comparison of porosity detection methods

Category Detection type Pros Cons

Post-processing Bulk density measurement (e.g., 
Archimedes’ measure) [12]

• Simple process
• No specialty hardware

• Only available for measuring bulk 
density (no pore size, location, or 
morphology data)

• Theoretical density highly dependent on 
exact chemical composition

• Small pores that affect material 
properties overlooked

Cross-section microscopic image 
analysis [12]

• Characterization of internal pores at 
high resolution

• Preparation may alter sample
• Prone to human error
• Need consistent parameters (sample 

location, magnification, focus, etc.)
• Time-consuming

Micro X-ray computed tomography [13] • Non-destructive
• Characterization of internal pores at 

high resolution
• 3D spatial distribution of pores

• Requires an expensive equipment
• Requires X-ray absorption of the bulk 

material and defect to be significantly 
different

• Time required for sufficient X-ray 
transmission may be significant for 
larger parts

• Large parts may need a small sample 
cut to limit X-ray absorption

• Requires two-sided access
In situ Ultrasonic wave speed measurement 

[13]
• Non-destructive
• Quick response
• One-sided access

• Only available for measuring bulk 
density (No pore size, location, or 
morphology data)

• High porosity increases uncertainty
• Uneven surfaces may blur signal and 

reduce quality
• Limited to 16% porosity

Coaxial temperature imaging [14] • High-resolution in situ measurement • Data collection is limited to melt pool
• Defects and quality inferred by melt 

pool data
• Limited applications

Off-axial imaging [14] • Simple hardware Easy interpretation 
data

• Initial powder layer can be captured 
before processing

• Large amount of data collection
• Need suitable camera depending on 

capture scenario
• Requires complicated processing
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classification. The results were then compared to determine 
the pros and cons of each method.

2 � Approach

2.1 � Dataset generation

To train and test the ML algorithms for porosity clas-
sification, we generated a dataset that contains pores and 
non-pores in the form of cropped images. The dataset was 
obtained from cross-section images of cubical metal (316L 
stainless steel, boron carbide, copper, and nickel) specimens 
that are additively manufactured by SAAM with binder jet-
ting. It is assumed that the approaches explored in this paper 
can be applied to other AM methods once a dataset is gener-
ated for those methods. Due to the time-consuming process 
of collecting images and creating an image database, the 
applicability of the presented detection algorithms on other 
AM methods will be reserved for a future study.

The specimens were first printed using a binder jetting 
printer (Jet Zprinter® 350, Z-Corp, USA) with 5 wt% of 
binder and 100–250 μm of layer thicknesses. The printed 
specimens were cured at 80 °C in a vacuum oven (25L 200C 
Vacuum Oven, MTI Corp., USA) for a half hour to better 
consolidation and dry. Then the debinding and sintering 
profile, shown in Fig. 2, was conducted in a tube furnace 
under vacuum (GSL-1700X-KS-UL-60, MTI Corp., USA). 
The debinding was performed in two steps: the first is at 
210 °C with 20-min hold and the second is at 480 °C for 
1-h dwell. These steps were selected to gradually remove 
the binder from the specimen and were optimized through 
a thermogravimetric analysis using a TGA/DSC equipment 
(Q600 SDT, TA instruments, USA). Subsequently, sintering 
was performed by heating at a rate of 5 °C/min until 1250 °C 
was reached and held for 10 h. The average relative density 

of the as-printed (40%) and sintered specimens (87%) was 
measured using the Archimedes’ method.

To obtain the cross-section images, the specimens 
were sectioned and the surface polished using sandpaper 
(180–4000 grit) followed by the finishing using 3 μm and 
1 μm diamond suspensions (Struers, Denmark). The micro-
structure images of the cross-sections were obtained using a 
SEM (FEI Quanta 450 FEG, Thermo Fisher Scientific, USA) 
with 197 × magnification.

Supervised ML requires a prelabeled dataset to train an 
algorithm. We used an intensity threshold plus gradient filter 
to select the porous and non-porous regions in cross-section 
images. However, the algorithm is insufficient to label all 
true porous and non-porous regions. For example, there are 
dark non-porous region, which may be inadvertently selected 
due to the low intensity. Therefore, the selected regions were 
manually reviewed and labeled as porous or non-porous as 
shown in Fig. 3. The total number of resulting classified 
dataset obtained is summarized in Table 3.

There are some limitations with the cross-section image 
dataset, however. Cross-section images do not fully express 
porosity size, shape, and distribution due to the loss of a 
dimension. In practice, many cross-section images per part 
would be required. Ideally, multiple images at each layer 

Fig. 2   Debinding and sintering profile

Fig. 3   Labeled image with examples of porous (green), light non-
porous (turquoise), and dark non-porous (red) regions

Table 3   Porosity image dataset

Classification type Pores Non-pores (dark) Non-pores (light)

Number of  
classifications

2897 1086 631
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of the additive manufacturing process would be utilized to 
represent the part quality.

2.2 � ML methods

ML algorithms are highly dependent on the feature space 
[22]. Generally, features are extracted from images using two 
distinct methods: (1) construct specific algorithms to extract 
features using engineering judgment; (2) generalize feature 
extraction using an automated method. Both methods have 
pros and cons for implementation. Generally, when manu-
ally constructing features, the model is produced via a white 
box method, that is, the feature space can be easily viewed 
and interpreted by an individual. This is accomplished by 
extracting predefined properties from the image, such as 
average intensity, bounding box size, and canny filters. How-
ever, the manual feature set has the disadvantage of specify-
ing features that are not relevant and feature reduction must 
be performed. It also has the potential to miss features that 
are critical for classification. Conversely, automated feature 
definitions are generally black box models, where an indi-
vidual is unable to easily interpret these features without an 
accompanying ML algorithm. Subsequent sections evaluate 
both methods.

2.2.1 � Supervised ML methods with user‑defined features

Six ML algorithms were selected to be trained with user-
defined features. Those ML algorithms are support vector 
machine (SVM), binary linear classifier (linear), boost trees 
(BT), decision trees (DT), single-layer neural network, and 
K-nearest neighbors (KNN). Unless otherwise noted, all 
ML methods were run with MATLAB R2021a and hyper-
parameter optimization was employed with built-in MAT-
LAB functions.

Each of these ML algorithms requires input data to per-
form classification. This data consists of user-generated fea-
tures extracted from a given porous or non-porous cropped 
image. Most features were selected based on the OpenCV 
feature detection documentation [23]. However, some fea-
tures were selected based on observations of porosities. The 
light intensity, for instance, was defined as a feature based 
on the observation that light scatters at the edge of the pore, 
creating a light intensity area around the porosity. To define 
this feature, a histogram of the intensity in the image was 
constructed, then the top 15% of the intensity was used to 
define the light area. The feature was then used to define 
other features such as the light area fraction. The total set of 
features is shown in Table 4.

Table 4   Initial set of features extracted from images using OpenCV libraries [23]

# Feature Description

1 Contour area Pore mask contour area
2 Mean intensity Mean intensity of mask
3 Light intensity Mean intensity of light mask
4 Light intensity fraction Fraction of intensity in light mask
5 Light area fraction Fraction of area in light mask
6 Convex light area Determines if light area mask is convex
7 Extent Ratio of contour area to bounding box area
8 Solidity Ratio of contour area to convex hull area
9 Equivalent diameter Diameter of a circle containing the equivalent area of the mask
10 Angle The angle of the rotated bounding box computed from the aspect ratio
11 Border pixels Number of pixels around the border of the image
12 Perimeter Length of the perimeter in pixels
13 Compactness The ratio of the area of the mask to the area of a circle with the same perimeter
14 Aspect ratio of box The aspect ratio of the bounding box around the pore
15 Aspect ratio of minimum box The aspect ratio of the minimum rotated bounding box around the pore
16 Angle of minimum box The angle of the minimum rotated bounding box computed from the aspect ratio
17 Rectangularity The ratio of the minimum rotated bounding box area to the mask area
18 Convex Determines that the mask area is convex
19 Minimum radius Radius of the minimum enclosing circle
20 Triangle area Area of minimum enclosing triangle
21–30 Spatial moments Spatial moments computed with the pixel intensities on a segmentation grid
31–37 Central moments Spatial moments computer with respect to the center of the segmentation grid
38–44 Central normalized moments The central moments as described above, normalized and are invariant
45–51 HuMoments Invariant shape moments
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Feature reduction was performed to remove features that 
do not contribute to porosity classification. Removal of non-
contributing features is important for improving prediction 
accuracy, preventing overfitting, and reducing computa-
tion time. Features were reduced using a stochastic coordi-
nate descent algorithm combined with fast ML algorithms 
such as KNN classification or linear classification, shown 
in Fig. 4, respectively. For descriptions of ML algorithms 
utilized, please refer to the following section. The stochas-
tic coordinate descent algorithm trains the ML algorithms 
on 70% of the data, and the remaining 30% of the data is 
used for testing. The average accuracy over 20 iterations 
is selected for each datapoint in the Fig. 4 graph. In every 
iteration, the training and testing sets were reshuffled. Each 
result is hashed to reduce runtime if the set is visited again.

Another method of feature reduction was compared using 
the analysis of variance (ANOVA) general linear model. 
The feature data extracted from the Table 3 dataset was 
imported to MATLAB and compared using the ANOVA 
function. The results indicate that 24 features meet the 5% 
p value requirements for statistically significant [24]. The 
results of each feature reduction method are displayed in 
Table 5.

To compare the feature reduction methods, each of the six 
ML algorithms was tested with the Table 5 columns along 
with the entire feature set. The results are summarized in 
Table 6. The highest accuracy sets were from KNN, DT, 
and SVM with results within statistical variance. However, 
notably, the DT set contained the least number of features, 
but still performed as well as the other feature reduction 
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Fig. 4   Feature reduction for KNN (a), linear (b), decision trees (c), and SVM (d)
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methods. It appears that most features are neutral and added 
or removing them has little impact on the trained model 
accuracy.

2.2.2 � Deep convolutional neural network

DCNNs have transformed image recognition ability of 
computers over the past decade. These networks have been 
employed in diverse detection and classification applica-
tions such as face detection, marine organism classification, 
sewer pipe defect detection, solar cell defect classification, 
wheel hub surface defect detection, and polymeric polarizer 
defect detection [25–30]. In all cases, accuracies exceeded 
90%. This makes DCNNs promising candidates for porosity 
classification.

Unlike the previous section, where 51 user-defined fea-
tures were used, this section considers DCNNs that auto-
matically defines and extracts features from the images of 
porosities and non-porosities. However, these features are 
embedded in a hidden layer, which is a black box to the 
users. Raw images are fed into the network with their cor-
responding labels, and the network relates patterns in the 
images to the image label via successive layers of convolu-
tion. Various networks have been designed and pre-trained 
for image classification. The major differences between 
these networks are the number of layers in the network and 
the design of each layer. A list of some popular pre-trained 
networks available for image classification is displayed in 
Table 7.

Each network in Table 7 was pre-trained to detect 1000 
different objects from the ImageNet dataset, which contains 
approximately 1.2 million training images, 50 thousand 
validation images, and 100 thousand test images [43]. The 
dataset includes a wide variety of everyday objects as well as 
similar objects such as various bird species and dog breeds 
[43]. While these networks are designed to deal with diverse 
classifications, the present problem only requires binary 
classification of an image as porous or non-porous. There-
fore, the networks must be tested to determine which is best 
at binary classification of amorphous structures.

However, prior to testing, hyperparameters for train-
ing the network must be considered. The relevant 
parameters are shown in Table 8. The minibatch size 
was selected to be the largest base two integers before 
obtaining an out-of-memory error, and the initial learn-
ing rate was selected to be 0.001 and reduced by half 

Table 5   Comparison of feature reduction methods and overlapping 
features selected

Feature # KNN DT Linear SVM ANOVA

1 X
2 X X X
3 X X
4 X X X X X
5 X X X X
6
7 X X X X
8 X X
9 X
10
11 X X
12 X
13 X X X X
14 X
15
16 X
17 X X X
18 X
19 X
20 X X
21 X X
22 X
23 X X
24 X X
25 X
26
27 X
28 X
29 X
30
31
32
33 X
34 X X
35
36
37 X X X
38
39
40
41 X
42
43 X
44 X X X X
45 X X X
46 X X
47 X X X
48 X
49 X X

Table 5   (continued)

Feature # KNN DT Linear SVM ANOVA

50
51 X
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until divergence was no longer observed. The maximum 
number of epochs was selected by increasing the number 
of epochs until training and testing accuracy converged. 
An assessment was performed with the ResNet18 neural 
network, and the results are shown in Fig. 5. To deter-
mine the threshold of convergence, the ResNet18 neural 
network was trained 25 times on randomly shuffled data 
and an average of 92.5% with a standard deviation of 1% 
was observed. It was found that convergence occurred 
after 9 epochs. Therefore, 10 epochs were used for the 
MaxEpoch parameter. The validation frequency was 
set to update every epoch. This ensured that once the 
weights are updated, the model is saved and assessed. 
The model with the highest accuracy is then returned. 
This prevents returning overfit models.

Freezing initial layers without performance impact is a 
potential benefit using transfer learning on a pre-trained 

network. Since the ResNet18 neural network has already 
been trained to classify 1000 objects, it has also already been 
trained to detect low-level image features within those ini-
tial layers [45]. By skipping over these layers during initial 
training, training time could be reduced significantly. This 
would especially be advantageous if further defect classi-
fications were added to the network or additional training 
images were included in the future.

The number of frozen layers was selected to be zero for 
all initial assessments. However, since it is advantageous to 
reduce training time, the ResNet18 neural network was trained 
multiple times with successive layers frozen. The results, dis-
played in Fig. 6, indicate that up to 20% of the layers may be 
frozen without any impact on accuracy and a training time 
reduction of approximately 12.5%. Therefore, significant time 
could be saved by freezing approximately 20% of the initial 
layers.

Table 6   Accuracy of each training set and method with number of features

ML Algorithm 

Feature Reduction Method 

KNN DT Linear SVM ANOVA None 

Single Layer ANN 85.8% 84.4% 78.1% 85.6% 84.6% 84.1% 

KNN 84.5% 83.6% 77.2% 84.3% 83.2% 78.1% 

BT 85.3% 85.6% 77.9% 85.2% 85.2% 85.8% 
DT 79.9% 79.8% 70.5% 79.9% 79.4% 79.3% 

Linear 68.5% 64.8% 74.2% 68.4% 68.5% 68.4% 

SVM 85.0% 85.1% 77.5% 85.2% 81.2% 74.3% 

# Features 18 10 6 15 24 51 

Highest accuracy per column is shaded and highest accuracy per row is bold

Table 7   List of popular pre-
trained neural networks

Network Depth Size (MB) Parameters 
(millions)

Image input size References

SqueezeNet 18 5.2 1.24 227-by-227 [31]
GoogleNet 22 27 7 224-by-224 [32]
Inception v3 48 89 23.9 299-by-299 [33]
MobileNetV2 53 13 3.5 224-by-224 [34]
ResNet18 18 44 11.7 224-by-224 [35]
ResNet50 50 96 25.6 224-by-224 [35]
ResNet101 101 167 44.6 224-by-224 [35]
Xception 71 85 22.9 299-by-299 [36]
Inception-ResNetv2 164 209 55.9 299-by-299 [37]
ShuffleNet 50 5.4 1.4 224-by-224 [38]
Darknet19 19 78 20.8 256-by-256 [39]
EfficientNetB0 82 20 5.3 224-by-224 [40]
VGG16 16 515 138 224-by-224 [41]
NASNetMobile * 20 5.3 224-by-224 [42]
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3 � Results

3.1 � Computing system

All analysis was performed on Microsoft Windows 10.0.19043 
running on an AMD Ryzen 9 3900X 12-Core Processor, 
NVIDIA GeForce GTX 1080Ti, 32 GB DDR4-3200, and an 
HP EX900 500 GB SSD.

3.2 � Experimental datasets and system

The image dataset containing 4614 cropped images was ran-
domly split into training and testing sets. Seventy percent of 
the images were selected for the training set, and the remain-
ing 30% images were reserved for the testing set. In the case 
of DCNNs, the testing set was split into a validation set and a 
testing set. The validation set is used to select the best model 
during training and prevent overfitting. The training set is then 
used to demonstrate consistent results (i.e., the model does not 
just perform well on the validation set).

Supervised ML methods with user-defined features were 
run 20 times on reshuffled data to generate the standard devia-
tion statistics. Due to the long training times required, DCNNs 
were only run 5 times to generate statistics.

3.3 � Metrics

Before comparing ML algorithms, it is important to define 
some common performance metrics that are used during anal-
ysis. The confusion matrix displayed in Fig. 7 defines the true 
positive (TP), false positive (FP), false negative (FN), and true 
negative (TN), where TP and TN represent the correct number 
of positive and negative guesses the classifier made.

The results of the confusion matrix were then used to com-
pute the performance metrics shown below.

TPR =
TP

P
=

TP

TP + FN
= 1 − FNR

TNR =
TN

N
=

TN

TN + FP
= 1 − FPR

Table 8   Hyperparameter list for DCNNs [44]

Minibatch size The population size of the training set used to evaluate the gradient 
descent function. Increasing this generally decreases training time 
but requires more computational memory

Initial learning rate Initial learning rate for stochastic gradient descent model solver. 
Selecting the correct learning rate will minimize the training time. 
However, a significantly large learning rate may cause the training to 
diverge

MaxEpochs Maximum number of epochs before completing training. Selecting too 
few epochs will result in an underfit model and too many epochs will 
result in overfit model

Frozen layers (optional for pre-trained networks) The number of layers to freeze prior to training. The nodes in the 
network are not updated while training resulting in a faster training 
time. Freezing too many layers will result in decreased performance

Validation frequency Number of iterations before validation set benchmarks the trained 
model. The validation is used to select the best-performing model at 
the end of training. Increasing the validation frequency may result in 
better model selection but will increase training time

Fig. 5   Maximum number of 
epoch selection with ResNet18
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where TPR is the true positive rate, TNR is the true negative 
rate, FNR is the false negative rate, FPR is the false positive 
rate, and ACC is the accuracy. TPR computes the fraction 
of positive predictions correctly classified. TNR computes 
the fraction of negative predictions correctly classified. 
FNR and FPR similarly measure the incorrect classifica-
tions. The ACC metric calculates the fraction of correction 
classifications.

3.4 � Accuracy comparison

A common and straightforward method for comparing 
ML methods is by graphing the accuracy of each method 
as shown in Fig. 8. The results presented in Fig. 8 appear 

FNR =
FN

P
=

FN

TP + FN
= 1 − TPR

FPR =
FP

N
=

FP

TN + FP
= 1 − TNR

ACC =
TP + TN

P + N
=

TP + TN

TP + TN + FP + FN

concise and conclusive. However, if the testing datasets are 
unbalanced, the results can be misleading.

To determine if the testing datasets are unbalanced, 
the actual positive and negative classifications need 
only reviewed from the dataset in Table 3. It was shown 
that nearly twice the number of pore classifications were 
included compared to the non-pore classifications. There-
fore, it is possible that some ML methods appear more accu-
rate due to the skewed dataset. For instance, an algorithm 
that classifies everything as a pore would report an accuracy 
of 68%. To determine how well algorithms are actually per-
forming, the TPR and FNR need to be compared.

The TPR and FNR can be graphed for each algorithm 
to generate a receiver operating characteristic (ROC) graph 
[46]. The ROC graph is used as another ML comparison 
method. The line plotted through the middle of the graph 
represents the performance of a random classifier. The fur-
ther to the top left the graph, the better the performance of 
the algorithm. The ROC graph corresponding to the results 
from Fig. 8 is presented in Fig. 9 and Table 9 for the six 
ML algorithms and the best DCNN (ResNet50). Due to the 
relative similarity of the DCNN results, they were compared 
separately in Table 10 and Fig. 10.

The results from Fig. 9 make some subtle clarifications 
to the Fig. 8 accuracy results. What is found is that the six 
ML algorithms with user-defined features perform similarly 

Fig. 6   Frozen layer impact on 
accuracy and training time

Actual Class

P N

Predicted 

Class

P TP FP

N FN TN

Fig. 7   Confusion matrix

Table 9   Comparison of ML methods with standard deviations

Algorithm ACC​ FNR TPR σFNR σTPR

Single-layer ANN 85.8% 0.24 0.91 0.02 0.01
KNN 84.5% 0.29 0.91 0.03 0.01
BT 85.8% 0.33 0.95 0.03 0.01
DT 79.9% 0.32 0.85 0.02 0.01
Linear 74.2% 0.75 0.97 0.03 0.01
SVM 85.2% 0.32 0.94 0.03 0.01
DCNN 95.0% 0.07 0.97 0.02 0.02
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to the DCNN in detecting true porosity (TPR) but perform 
substantially worse detecting non-pores (FNR). In this way, 
the DCNN with the automated feature extraction has suc-
ceeded in communicating a deficiency in the feature space, 
namely, that manual feature definition was more concerned 
with what constitutes a porosity rather than what does not. 
By explicitly defining features of non-porosities and consid-
ering edge cases, it is likely the accuracy of the six ML algo-
rithms with user-defined features can be increased. However, 
further consideration is required to determine what those 
features might be.

For the current results, however, the automated feature 
extraction with DCNNs outperforms the other methods. It 
was found that the best-performing DCNN algorithms were 
ResNet50, ResNet18, InceptionResNetv2, and InceptionV3 
as shown in Table 10 and Fig. 10. Interestingly, these net-
work designs all share residual layers. Residual layers imple-
ment a “shortcut” around multiple convolutional layers [35]. 
These shortcuts help mitigate the vanishing gradient prob-
lem, where nodal weights tend to vanish or blow up during 
back propagation [35]. Further review of these networks is 

required to determine if they are better suited for transfer 
learning or small classification sets.

3.5 � Accuracy distribution

The distribution of accuracies for each algorithm was 
evaluated with respect to some potential features of inter-
est such as porosity perimeter, area, aspect ratio, and 
minimum bounding box angle. All features were used 
during training and the ResNet18 DCNN was used for 
the CNN results. The distribution, displayed in Table 11, 
includes the bin widths and the percent of data contained 

Fig. 8   Chart comparing the best accuracy of each ML method over 
testing sets

Fig. 9   Comparison of ML methods with TP and FP rates

Table 10   Results of retraining selected neural networks for porosity 
classification

Network FNR TPR Validation 
accuracy

Test accuracy

SqueezeNet 0.08 0.92 0.91 0.92
ResNet18 0.07 0.95 0.93 0.95
ShuffleNet 0.11 0.98 0.90 0.95
GoogleNet 0.05 0.91 0.92 0.92
MobileNetv2 0.12 0.96 0.89 0.94
ResNet50 0.07 0.97 0.93 0.95
Darknet19 0.03 0.91 0.91 0.92
VGG16 0.10 0.96 0.93 0.94
Inceptionv3 0.08 0.97 0.91 0.95
NasNetMobile 0.11 0.95 0.91 0.93
EfficientNetB0 0.11 0.94 0.91 0.93
ResNet101 0.13 0.97 0.93 0.94
Xception 0.08 0.93 0.92 0.93
Darknet53 0.11 0.98 0.93 0.95
InceptionResNetv2 0.08 0.96 0.92 0.95

Fig. 10   TPR and FNR comparison of DCNNs
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in each bin. Ideally, the distribution would be flat, indicat-
ing algorithm invariance and generalizable performance. 
However, there are some areas where performance notably 
decreases. Specifically, very small and very large aspect 
ratios tend to underperform. This is most likely due to 
the lack of training examples. Small pore areas were also 
found to underperform in the assessment. This is mostly 
likely due to the image size being too small to correctly 
classify the porosity. Bounding boxes with small angles 
were also found to underperform. Standard deviation of 
the accuracies for each algorithm was within one another 
by 1–2%, suggesting that the deficiencies might lie in the 
dataset. Dataset augmentation could be applied to increase 

the number of images in the sparse categories and poten-
tially increase overall accuracy.

3.6 � Classification time comparison

Fast classification time is critical for real-time image classi-
fication. The time required to extract the 51 features from the 
691 cropped images in the testing set and classify them using 
the six ML methods is displayed in Fig. 11. Each method 
requires 0.4 s to perform feature extraction from the images 
which comprises most of the time. Of the fasted perform-
ing ML methods, the single-layer ANN had the highest 
accuracy.

Table 11   Distribution of 
features of interest with respect 
to each ML method accuracy. 
Included are bins with the 
percent of the dataset they 
contain

Bin % Data ANN KNN BT DT Linear SVM CNN

Perimeter (um) 25 9% 87% 84% 83% 77% 74% 85% 82%
45 34% 85% 86% 87% 82% 72% 86% 95%
70 15% 87% 81% 85% 82% 70% 87% 94%
90 10% 84% 85% 86% 81% 70% 84% 91%
110 7% 85% 84% 87% 80% 69% 87% 92%
130 5% 82% 81% 85% 74% 70% 85% 100%
150 4% 80% 87% 86% 78% 68% 82% 95%
170 4% 84% 88% 87% 80% 71% 86% 92%
200 12% 86% 87% 87% 80% 74% 88% 91%

Area (um2) 45 19% 83% 84% 83% 78% 74% 84% 84%
90 18% 85% 86% 87% 79% 70% 86% 95% 
130 14% 87% 84% 85% 81% 71% 85% 95%
180 7% 86% 85% 90% 84% 77% 89% 95%
220 6% 85% 83% 85% 83% 70% 89% 100%
265 5% 86% 85% 85% 82% 67% 89% 91%
310 3% 85% 83% 88% 77% 67% 86% 100%
350 3% 81% 85% 84% 77% 79% 87% 100%
400 25% 85% 87% 87% 80% 74% 87% 94%

Aspect ratio 0.5 2% 68% 70% 75% 64% 72% 82% 50%
0.7 16% 87% 87% 86% 78% 70% 87% 97%
0.85 19% 87% 86% 88% 83% 72% 88% 90%
1 22% 87% 88% 88% 82% 73% 88% 91%
1.2 17% 82% 83% 84% 81% 73% 85% 91%
1.4 9% 85% 87% 89% 82% 74% 88% 90%
1.6 6% 81% 82% 84% 79% 71% 85% 89%
1.8 3% 89% 88% 84% 83% 71% 88% 79%
2 6% 75% 76% 78% 72% 56% 78% 85%

Min box angle 5 30% 82% 84% 84% 78% 77% 85% 92%
15 9% 90% 88% 91% 82% 85% 90% 84%
25 8% 94% 93% 92% 90% 86% 92% 86%
35 8% 92% 91% 92% 88% 80% 90% 92%
45 7% 92% 92% 90% 87% 77% 93% 86%
55 9% 92% 89% 93% 90% 83% 90% 100%
65 8% 86% 88% 90% 82% 82% 89% 82%
75 11% 92% 91% 91% 88% 88% 94% 96%
85 8% 86% 85% 85% 81% 81% 89% 91%
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The time required to classify porosities from the 691 
images for each DCNN is displayed in Fig. 12. It is found 
that the best-performing classifiers, ResNet18 and ResNet50, 
classify images substantially faster at 1.8 s and 3.8 s versus 
4.9 s and 9.4 s of the InceptionResNetv2 and InceptionV3, 
respectively. However, the overall time required for image 
classification is substantially faster with the manual features 
coupled with the six ML algorithms.

3.7 � Network expansion comparison

Another desirable attribute is the future expansion of the 
network into classifying other defect types. To perform this 
assessment, the non-porosity classification is split into two 
new classifications: light non-porous (LNP) and dark non-
porous (DNP). The two top-performing networks, ResNet18 
and ResNet50, were then retrained to determine if accuracies 

remain consistent. The three-classification confusion matrix 
for the ResNet18 network is displayed in Fig. 13. These 
results correspond to an accuracy of 93.5%, which is con-
sistent with the previous two class results. The training and 
classification time also remained constant. The complexity 
of the porosity database is also noted from this image. Size, 
shape, depth, and image intensity are all very greatly, yet the 
DCNN is able to classify correctly in almost all instances.

The three-classification confusion matrix for the 
ResNet50 network is displayed in Fig. 14. These results 
correspond to an accuracy of 94.1%, which is consistent 
with the previous two class results. The training and clas-
sification time also remained constant. Some randomly 

Fig. 11   Classification time comparison

Fig. 12   CNN training and test-
ing time comparison

Fig. 13   Confusion matrix for ResNet18 network and three classes
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selected classified images from the testing set are displayed 
in Fig. 15.

4 � Conclusion

In this study, ML algorithms were compared for image-
based porosity classification from a diverse and complex 
porosity image set. The ML methods that require manual 
feature definition are desirable because they represent a 
“white box” method where the efficacy of features can be 
easily analyzed by an observer, and the features can be read-
ily recycled for further material characterization. DCNNs 
that do not require user-defined features represent a “black 
box” method where the features are automatically extracted, 
but unknown to the user.Fig. 14   Confusion matrix for ResNet50 network and three classes

Fig. 15   Three classifier results on 64 randomly selected images
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For the six ML methods that are single-layer neural 
networks, K-nearest neighbors, boost trees, decision trees, 
binary linear classifier, and support vector machine, 51 
features were defined and extracted from the images. 
From these 51 features, 10 were found to best contribute 
to porosity classification. Of these algorithms, it was found 
that K-nearest neighbors, boost trees, single-layer neural 
networks, and support vector machine performed similarly 
with accuracies around 85%, and the TPR for each was 
above 90% and the FNR was below 35%.

For the DCNNs, 15 common networks for image clas-
sification were tested. Nearly all the networks performed 
similarly at around 92–95% accuracy, with TPR around 
91–95%, and FNR around 5–11%. However, it was found 
that the fastest classification and highest accuracy net-
works were ResNet50 and ResNet18. It was also found 
that freezing the initial 20% of the layers reduces the train-
ing time by 12.5% and does not impact the classification 
accuracy. Overall, it can be concluded that the smaller 
ResNet18 network is appropriate for classifying two to 
three classes; however, as further defects are added, it may 
be beneficial for the ResNet50 network to be utilized or for 
other networks to be revisited.

Overall, this study found that there exists merit in the 
application of ML for porosity detection. The six ML 
methods with manual feature definition performed at least 
four times faster; however, the DCNNs performed with 
the highest accuracy. Another advantage of DCNNs was 
found in the simplicity of the model. In DCNNs, adding 
new classes requires only retraining the DCNN with new 
classified images and the user is not required to define new 
features. Therefore, a variety of materials and defects can 
be easily included in the model by simply adding a new 
training dataset.

Future study includes the application of the DCNN for 
the porosity detection to analyze and improve AM pro-
cesses. For example, the analysis of the placement of indi-
vidual porosities can be used to analyze the quality of the 
part printed by SAAM with binder jetting compared to that 
of conventionally processed parts.
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