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Abstract—Exploiting the ever-growing corpus of scientific con-
tent calls for new ways and means to effectively organize, search,
and retrieve scientific formulae. We propose a new data-driven
framework for retrieving similar scientific formulae via learned
formula representations based on tree embeddings. FORTE
(for FOrmula Representation learning via Tree Embeddings)
leverages operator tree representations of symbolic scientific
formulae (such as math equations) to explicitly capture their
inherent structural and semantic properties. FORTE employs i)
a tree encoder that encodes the formula’s operator tree into an
embedding vector and ii) a tree decoder that directly generates
a formula’s operator tree from the embedding vector. We also
develop a novel tree beam search algorithm that improves the
quality of the decoded operator trees. We demonstrate that
FORTE (sometimes significantly) outperforms various baseline
methods on formula reconstruction and retrieval using a real-
world dataset comprising 770k scientific formulae collected on-
line.

Index Terms—representation learning, scientific formulae un-
derstanding, information retrieval, generative models, tree-
structured data

I. INTRODUCTION

Recent years have seen increasing proliferation of scientific
formulae as a data format, c.f. Table I. With its unique set of
symbols and language structure, scientific formulae comple-
ment natural language in concisely and precisely communicat-
ing essential scientific knowledge. These formulae are also an
indispensable part of an ever-growing scientific corpus. How-
ever, the large quantity of these formulae also poses challenges
for effectively organizing and synthesizing scientific formulae
in order to derive new knowledge and insights. An important
and common real-world use case is formula retrieval, i.e.,
finding relevant formulae similar to a query formula (e.g., [1]).
This scenario arises when, for example, researchers search for
related work in a large collection of scientific papers or when
students look for relevant practice problems in a textbook
when doing algebra homework. Scientific formula retrieval is
labor-intensive and time-consuming for humans, making an
automatic method highly beneficial.

TABLE I: Examples of scientific formulae in various domains.

N =
⌊
0.5− log2

(
Frequency of this item

Frequency of most common item

)⌋
(physics)

238
92 U + 64

28Ni→ 302
120Ubn∗ → fission only (chemistry)

ax2 + bx+ c = 0 (algebra)

An emerging line of research for automatic scientific for-
mula retrieval leverages the symbolic tree representation of
scientific formula since they often have an inherent hierarchi-
cal structure that can be well-captured by trees [2]. Compared
to representing a formula simply as a sequence of symbols,
the symbolic tree representation has the advantage to encode
both the semantic and structural properties of a formula.
several recent works incorporate symbolic tree representations,
leading to improved performance on the formula retrieval
task [1, 3, 4] over other formula representations, e.g., [5].
However, most of the above approaches are data-independent,
i.e., they perform retrieval based on a set of user-defined
rules and are thus not capable of learning representations
from the large collection of scientific formulae to further
improve retrieval performance. [6] is one of the few data-
driven formula retrieval methods to date, which demonstrate
the benefit of learned formula representations for formula
retrieval compared to data-independent methods. However, [6]
does not fully leverage the tree structure since it linearizes
formula trees into sequences and then trains a sequential
language model on them.

An additional desirable property of a learned formula rep-
resentation is that it enables interesting applications beyond
formula retrieval such as automatically generating content that
involves formulae. For example, [7] uses a learned formula
representation to generate a textual description for this for-
mula. [8] automatically generates a headline that summarizes
the substance of a mathematical question. However, these ap-
proaches treat scientific formulae simply as sequences of sym-
bols and thus ignore their inherent hierarchical structure. [9]978-1-6654-3902-2/21/$31.00 ©2021 IEEE



validates their rule-based representations for discrete data us-
ing a math formula generation task. However, their experiment
involves only simple, synthetically-generated math equations
with up to one variable, two math functions (sinusoid and
exponential), and three numbers. This level of complexity is
dwarfed by that of real-world scientific formulae [9]; therefore,
it is unclear whether their approach is applicable in this setting.
Furthermore, the above methods are supervised and therefore
must depend on large, labeled datasets which are challenging
to construct. Therefore, a desirable scientific formula represen-
tation learning method should be unsupervised, take advantage
of the inherent formula structure, and enable both retrieval and
generation.

A. Contributions

We propose FORTE, a novel unsupervised framework
for scientific FOrmula Representation learning via Tree
Embeddings, capable of both similar formula retrieval and
formula generation. Our framework fully exploits the tree
structure of scientific formulae in an autoencoding model
design to learn an effective representation. FORTE consists of
two key components. First, a tree encoder encodes a formula
in operator tree format into an embedding vector that can be
used for various downstream tasks, including similar formula
retrieval. Second, a tree decoder reconstructs a formula tree
from its encoded embedding vector. The decoder can also
generate novel, unseen formula trees from any input vector. To
improve generation quality, we also propose a novel tree beam
search method that extends the classic beam search method
for sequential data to improve formula generation by keeping
multiple trees (possibly with different structures) at every
search step. To evaluate our framework, we combine and parse
several existing datasets collected from real-world sources
(such as Wikipedia and arXiv articles) into a dataset with
over 770k scientific formulae. To the best of our knowledge,
this dataset is the largest one to date. We conduct extensive
quantitative and qualitative experiments on this dataset for
both formula reconstruction and similar formula retrieval. Ex-
perimental results show that FORTE (sometimes significantly)
outperforms various existing methods.

II. THE FORTE FRAMEWORK

We now detail the FORTE framework. We first introduce
tree representations of formulae, especially operator trees,
which is a crucial pre-processing step in our framework. We
then set up the formula representation learning problem and
introduce the various FORTE components, including the tree
encoder, the tree decoder, and the tree beam search algorithm
for formula generation. Figures 2–4 together provide a high-
level overview of our framework.

A. Preliminary: Formulae As Operator Trees

A scientific formula is inherently tree structured [1, 10] and
can be represented as a symbolic operator tree (OT) that we
denote as X:

X = (U,<) ∈ S, u ∈ U, U ⊆ V (1)

(a) log(9×Hc) ≤ 2 (b) (µ× 2
√
n)→ 0.5 (c) e = r

202
×TeV

Fig. 1: Examples of simple formulae and their corresponding
OTs. These examples are randomly generated by our proposed
FORTE framework; see Section III-B5.

where u is a scientific (most often math) symbol that corre-
sponds to a node in the OT. Throughout the paper, we will refer
to “symbol”, “scientific symbol”, and “node” interchangeably
depending on context. U is the set of symbols in X , and
V is the “vocabulary”, i.e., all unique scientific symbols in
the data set. < represents partial binary parent-child relation
∀u ∈ U [11]. S is the set of all valid OTs. Intuitively,
the OT organizes the scientific symbols in a formula, such
as math operators, variables, and numerical values, as nodes
in an explicit tree structure. We remark that OT is not the
only tree representation of scientific formulae and there exist
other formula tree representations such as the symbol layout
tree [1]. In principle, our FORTE framework is agnostic to the
underlying tree representation; we choose OT because of its
intuitive interpretation and ability to preserve the semantic and
structural information in scientific formulae. Figure 1 gives a
few simple examples of formulae and their corresponding OTs.

B. Problem Formulation

We set up the formula representation learning problem
as an unsupervised “autoencoding” task, motivated by the
downstream tasks that we envision our framework will per-
form, including formula generation and retrieval. Specifically,
our framework aims to reconstruct the input formula in its
OT representation through an encoder-decoder design with a
bottleneck embedding vector. This problem setup enables us to
use the latent embedding obtained from the encoder for many
downstream tasks, i.e., formula retrieval, and the generated
formula from the decoder for generation-related tasks.

Given our autoencoding task formulation, we use a model
structure consisting of an encoder and a decoder, where the
encoder encodes a scientific formula into a vector representa-
tion and the decoder reconstructs a scientific formula from its
vector representation. Concretely, we have

encode : e = fenc(X; Θ) ,

decode : Xout ∼ pdec(e; Φ) ,

where e ∈ RM is the M -dimensional vector representation of
a formula. fenc and pdec are the encoder and decoder models
parametrized by a set of parameters Θ and Φ, respectively. We



Fig. 2: Illustration of FORTE’s encoding process of a formula.

will detail their specific forms in Sections II-C and II-D. Xout

denotes the formula tree for the decoder, which is slightly
modified from X . The reason that we need a different tree
format for the decoder will become clear when we detail our
decoder design in Section II-D.

1) Optimization: Given our formulation and a dataset of N
scientific formulae, we train fenc and pdec jointly to maximize
the scientific formula reconstruction accuracy by minimizing
the cross entropy loss

L(Θ,Φ) =
1

N

N∑
i=1

−log pdec(fenc(X
(i); Θ); Φ) . (2)

i is the index of formulae, which we will drop for notation
simplicity whenever we discuss a single formula.

2) Formula Retrieval and Generation: In formula retrieval,
we are given a query formula Xq and a collection D of
candidate formulae Xr ∈ D for retrieval. We will first compute
the embeddings of the query and the candidate formulae
and then select a subset G ⊂ D consisting of those that
are most similar (e.g., measured by cosine similarity scores).
Concretely, we have:

G=
{
X(i)
r ∈D

∣∣ |{X(i)′

r ∈D :sim(er, eq)<sim(e′r, eq)}| < R
}

where er and eq are the embeddings for candidate retrieval Xr

and query Xq , respectively. sim(er, eq) is the cosine similarity
function

sim(er, eq) =
e>r eq
‖er‖‖eq‖

.

In formula generation, given an input vector e (not neces-
sarily a formula embedding), the decoder generates a formula
X ′ with the highest log-likelihood:

X ′ = argmax
Xout

log pdec(Xout | e; Φ) .

C. Formula Tree Encoder

Recall that our tree encoder takes a formula tree X as
input and outputs an embedding of this formula e. The key
idea is to properly encode all information underlying the
formula tree. To this end, we use two methods including
tree traversal, which extracts content information (the symbol
each node corresponds to), and tree positional encoding,
which extracts structural information (the relative positions of
nodes). These methods are inspired by prior works in program
translation [12, 13] and natural language processing [14, 15]

that achieve state-of-the-art performance. These works involve
traversing structured data (e.g., the compiler stack of a pro-
gram, the parse tree of a sentence) and keeping the traversal
order, which resembles what we employ in our work. Figure 2
provides an overview of our formula tree encoder.

1) Formula Tree Traversal and Node Embedding.: We
traverse each formula tree in the depth first search (DFS) order
to extract the node symbols. This step returns a DFS-ordered
list of nodes {ut}Tt=1 where t indexes the nodes u’s in the DFS
order and T is the total number of nodes in the formula tree.
Each node ut is then represented as a trainable embedding
x̃t ∈ RM .

2) Tree Positional Encoding.: To extract the structure of a
formula tree, we propose a two-step method that first computes
and then embeds the relative positions of nodes in the tree.

Let v be the parent of node u. Let qv and qu be the positions
of v and u, respectively. Let nu denote that u is the n-th child
of v from left to right; n starts with 0. In the first step, we
compute the position qu of each node as follows:

qu = 10qv + nu . (3)

When u is the root node, we set qu = 0. The above construction
is intuitive and informative because i) the number of digits in
the biggest qu in a tree represents the depth of this tree and ii)
the largest number of all qu in a tree represents the maximum
degree of this tree. The formula OT in Figure 2 illustrates
the above computation. For example, the position 011 of the
numeric node “4” is composed of 01 which is its parent’s
position and 1 because it is the second child of its parent.

The numeric values of different positions pu may differ
significantly, i.e., between 0 of the root node and tens of
thousands of a leaf node in trees that are deep. Therefore,
in the second step, we embed these positions pu into fixed-
dimensional tree positional embeddings. We propose a binary
tree positional embedding method where each digit in pu is
converted to its corresponding binary number in the base-2
numeric system and then concatenated together. Concretely,
let pu = [pu,1, . . . , pu,l]10 be the base-10 representation of
pu where l = blog10(pu)c is the number of digits in pu and
pu,j is the j-th digit in pu from left to right. Let qu be the
embedding of qu. Then:

q̃u =
[
bin(pu,1)>, . . . , bin(pu,l)

>]> ∈ RDu , (4)

qu =
[
q̃>u ,0

>
D−Du

]> ∈ RD , (5)



(a) Input and output formula trees. (b) FORTE’s decoding process.

Fig. 3: (3a) Illustration of FORTE’s input and output operator trees of the same formula. The “S” node represents the special
“<start>” node at the root of the tree. The “E” nodes represent the special “<end>” node attached as the last child to
every node. (3b) Illustration of FORTE’s decoding process at a particular time step. First, the position of the next node to be
generated is computed (dark blue). Next, the next node (light blue) is generated by the decoder using already generated nodes
and positions and the newly computed position. Finally, the partial tree and the stack are updated.

where bin(·) is the binarization operator (e.g., bin(5) = 101).
D = L log2(C) where L and C are the maximum depth
and maximum degree of all formula trees under consideration.
0D−Du ∈ RD−Du is an all-zero vector to make the dimension
of every qu the same.

3) Formula Tree Embedding.: To transform the formula
tree into its embedding, we utilize an embedding function
fenc : R(M+D)×T → RK where K is the dimension of
the formula tree embedding and T is the total number of
nodes in a formula tree. We concatenate the node and tree
positional embeddings such that the encoder is aware of both
the nodes and their positions. The concatenation setup enables
more modeling flexibility because we do not need to enforce
M = D. Concretely, the formula tree embedding is:

e = fenc({xt}Tt=1; Θ), where xt =
[
x̃>t ,p

>
t

]>
. (6)

In this work, we use a bidirectional gated recurrent unit
network (bi-GRU) [16] that recurrently computes a hidden
state ht for each xt. The forward direction is computed as
follows:

−→zt = σ(Wz

[
x̃>t ,p

>
t

]>
+ Uz

−→
h t−1 + bz) , (7)

−→rt = σ(Wr

[
x̃>t ,p

>
t

]>
+ Ur

−→
h t−1 + br) , (8)

−→ct = σ(Wc

[
x̃>t ,p

>
t

]>
+−→rt ·Uc

−→
h t−1 + bc) , (9)

−→
ht = −→zt ·

−→
h t−1 + (1−−→zt) · −→ct , (10)

where W, U, and b are part of the set of parameters Θ.
The backward direction

←−
ht is computed similarly, with the

same Θ. The final formula embedding e is a simple weighted
combination of the latent states

−→
ht and

←−
ht:

e =
T∑
t=1

atht , a = softmax(W>
a [h1, . . . ,hT ]) ,

where ht = [
−→
ht
>,
←−
ht
>]> and Wa is also part of Θ.

D. Formula Tree Decoder

The decoder takes a formula embedding vector, i.e., the
output from our tree encoder, as input and generates a formula

in OT format. In contrast to decoders often used in NLP
that generate a sequence of symbols as output, we develop
a decoder that generates symbols laid out in a tree. Our tree
generation strategy leverages the fact that one only needs to
know all symbols in the tree and all symbols’ positions in the
tree to perform reconstruction. Using this insight, our decoder
first computes the next node’s position and then generates
the next node symbol at a given time step. We first describe
node symbol generation and node position computation in the
context of greedy tree generation. We then propose a tree
beam search algorithm that extends and improves greedy tree
generation.

1) Computing the Node Positions: The key difference be-
tween the decoder and the encoder regarding the tree positional
embedding: in the decoder, the tree position embedding at time
step t is not for the node at time step t (recall Eqs. 7–10) but
rather for the node at time step t+1. The reason for this design
is that, unlike the encoder that has access to all positions for all
nodes in the input formula tree, the decoder has no positional
information and needs to compute the positions for all nodes
during the generation process in addition to generating the
node symbols themselves. The t + 1-th node’s position is
computed as Eq. 3, using its parent’s position, and its parent’s
current number of children. Knowing a node’s parent during
generation requires maintaining the structure of the current,
partially generated tree, which we detail in Sections II-D3
and II-D4.

2) Generating the Node Symbols: For node symbol gener-
ation, we use a causal, uni-directional GRU network, in which
the hidden state at each recurrent step is computed as:

z = σ(Wz

[
x̃>t ,p

>
t+1,x

>]> + Uzst + bz) ,

r = σ(Wr

[
x̃>t ,p

>
t+1,x

>]> + Urst + br) ,

c = σ(Wc

[
x̃>t ,p

>
t+1,x

>]> + r ·Ucst + bc) ,

st+1 = z · st + (1− z) · c .
yt+1 = softmax (Wyst + by) .

Here, t denotes the time step in DFS order, which is consistent
with the encoder’s node traversal order. x̃t and st are the



embedding of the generated node and the decoder hidden
state at the t-th time step, respectively. We concatenate the
embedding of the input formula tree e at each step of the
generation to inform the decoder and guide the generation
towards the formula tree corresponding to e, similar to [12].
pt+1 is the tree positional embedding of the next node, which
is decided given the DFS order and the symbol generated
for the last node (see Section II-D1 for details). yt+1 is the
probability distribution over all symbols to be generated at
time step t+ 1. To generated the next node symbol, a simple
strategy is greedy search, i.e., the decoder selects the next
symbol by choosing the one with the highest probability:

ut+1 = argmax
i

yt+1 .

3) Maintaining the Tree Structure Using a Stack: As men-
tioned in Section II-D1, computing the positions of node ut
requires knowing the node’s parent vt, which then requires
the decoder to keep track of the structure of the partial
tree generated so far. To do so, we employ a stack S to
keep track of node positions in the DFS order. Each element
(implemented as a struct) in the stack records three items:
the node symbol ut, its position qt, and its current number
of children at (recall Section II-C2 for definitions of these
variables). This way, the decoder knows that the next node
ut+1 will be attached to the node vt+1 at the top of the stack as
its next child. The next node’s position can then be computed
from qt and at (See Eq. 3).

4) Updating the Stack: Generally speaking, when a new
node is generated, we i) increment the number of children
of this node’s parent and ii) push the element containing this
node, its position, and its number of children (which is 0 when
the node is just generated) to the stack. When the generation of
all children of a node finishes, we pop the element containing
this node from the stack. Because the decoder generates nodes
on the fly and does not have access to the entire tree structure,
we need to know when to finish generating children for a
parent node. To do so, we introduce an additional special
node “<end>”, which is attached as the last child of every
node. Therefore, whenever the <end> node is generated, we
finish generating the children of a parent node v and pop the
top element of the stack that contains v. The next generation
step will use whichever element at the top of the stack now
to determine the position of the next node. In addition, to
initialize the generation process, we introduce another special
node “<start>” as the parent of the root of every formula
tree. <start> and <end> nodes modify the encoder input
tree X , resulting in Xout, which is the target for the decoder.
Figure 3a illustrates the modified decoder target formula tree
with these additional special nodes and compares it to the
encoder input formula tree. The termination condition of tree
generation is when the stack is empty, i.e., when there are no
more node symbols for which we need to generate children.
The stack update process is illustrated in Figure 3b.

Fig. 4: Illustration of the tree beam search algorithm (TBS)
at a particular time step with a beam size of 2. TBS enables
search over different formula tree structures.

E. Tree Beam Search for Tree Generation

The generation process detailed above is a greedy process
that generates each node optimally but not necessarily the
optimal tree. To generate higher-quality formula trees, we
develop a tree beam search (TBS) algorithm that extends the
classic beam search algorithm commonly used for sequence
data [17]. The intuition is to maintain a set of B candidate trees
during the generation process where B is the beam size that
controls the size of the search space. Because of the expanded
search space, TBS can keep trees with potentially different
structures at each time step in the beam. Therefore, TBS
improves over greedy search which only keeps one tree that
may become suboptimal after more nodes are generated. When
we implement TBS in practice, we need to keep B different
stacks for each tree in the beam. During the generation process,
for each beam, the decoder first decides the position of the next
node and then generates the top B most probable symbols for
the node, using the current generated tree (symbols, positions)
as input. This process results in a total of B2 candidate trees
to select from (B beams and B possible next nodes for each
beam), from which we select B most probable candidate trees
to keep in the beam. This process continues until B trees finish
their generation process (e.g., when their stacks are empty) or
until a preset maximum number of steps is reached. The entire
TBS algorithm is illustrated in Figure 4 and Algorithm 1.

F. Relation to Prior Work

We now conduct a review of prior works on learning
representations for tree/graph-structured data and provide a
detailed comparison of the technical components in FORTE
with prior works.

1) Tree-Structured Data Analysis: Many data types, in-
cluding computer programs [12, 13], scientific formulae [2],
molecule structures [9], neural network architectures [18], and



the syntax of natural language sentences [15], have inherent
structure such as trees and directed acyclic graphs (DAGs).
To better leverage these structures in downstream tasks, an
important line of work focuses on learning representations for
these structured data types.

Our work differs from prior works that deal with tree/graph-
structured data in three ways. First, some prior works only con-
sider tree encoding[15, 19, 20, 21, 22], whereas we consider
both tree encoding and generation. Second, our encoder design
enables more efficient input processing. Compared to [12, 19],
which perform tree traversal during training and thus can only
process a single data point per iteration, our encoder performs
traversal before training, which enables mini-batch processing
during training. As a result, our approach removes this compu-
tationally intensive traversal step from the training process and
significantly speeds up training. Compared to [13], which uses
a onehot-style tree positional embedding, our encoder employs
a different binary tree positional embedding which reduces the
space complexity from O(LC) to O(L log2(C)), resulting in
faster computation and less memory usage. This reduction
is especially significant for trees with a large degree C.
Third, our decoder design, i.e., the use of the special <end>
node to signal generation termination, enables flexible formula
tree generation, which is suitable for real-world scientific
formulae. In contrast, many prior works resort to constrained
generation processes by enforcing the generated data to have
a rigid structure. For example, [9] and [18] propose methods
that extensively leverage the limited data diversity in their
applications by pre-specifying possible nodes and edges. Some
works also restrict the number of children each node must
have [12, 13]. The scientific formulae that we work with are
much more complex: they contain numerous distinct nodes
and edges and many nodes can also have varying numbers of
children. It is thus unclear whether these methods generalize to
our problem. Section III-B performs a quantitative comparison
between FORTE and some of these applicable baselines and
demonstrates FORTE’s superior generation performance.

2) Beam Search for Tree Generation: Beam search has
been extensively applied for natural language generation
tasks [23, 24, 25] but it is only applicable for sequential rather
than tree-structured data. Our TBS method thus builds on
and significantly extends sequential beam search. [26] is the
only prior work that involves beam search over trees to our
knowledge, which appears to resemble our proposed TBS at
first glance. However, our TBS is fundamentally different from
the “tree beam search” in [26]. The tree beam search in [26] is
used for retrieval, i.e., for searching nodes deemed as relevant
to a query by some scoring function. In contrast, our TBS is
used for tree generation and thus needs to address issues such
as generation termination conditions and partial tree structure
maintenance, none of which is an issue in [26]. Moreover,
the tree construction in [26] differs from ours: they treat the
entire dataset as a tree in which each node corresponds to a
data point, whereas we treat each data point (formula) as a
tree in which each node corresponds to a scientific symbol.
Thus, even though [26] may resemble a single TBS step, our

Algorithm 1: Tree Beam Search
Require: Decoder pdec, maximum generation step T , beam size B
Input : tree embedding e
Output : (node, position) tuples F = {(Ub, Qb)}Bb=1 where

Ub = {ut,b}T
′

t=1 and Qb = {qt,b}T
′

t=1

Initialize stacks S1, . . . , SB ;
Initialize U1, . . . , UB , Q1, . . . , QB ;
u0 = <start>, q1 = 0;

Generate next B nodes u1,1, . . . , u1,B ;
Add u1,b to Ub and q1,b to Qb for b ∈ [1, B];
for b = 1, . . . , B do

if u1,b is not <end> then
Initialize struct A1,b;
A1,b.u = u1,b, A1,b.a = 0, A1,b.q = q1,b;
Push A1b onto Sb;
Compute q2,b via Eq. 3;

else
Add (Ub, Qb) to F ;

for t = 1, . . . , T do
Generate next nodes ut+1,b and update stacks Sb;
for b = 1, . . . , B do

Add ut+1,b to Ub and qt+1,b to Qb;
if Qb not empty then

Update stack Sb;
Compute qt+2,b via Eq. 3;

else
Add (Ub, Qb) to F ;

if card(F ) ≥ B or Sb = ∅ ∀b then
Break;

Return F ;

full TBS method (Algorithm 1) is still first-of-its-kind to the
best of our knowledge.

3) Other applications Involving Formulae: There are other
applications that involve scientific/mathematical content. For
example, some works focus on automatically solving math
problems, i.e., generating a solution to a given math problem
that consists of numbers or math expressions [27, 28]. Other
works focus on the interplay between formulae and natural
language. Some examples include learning topic words for a
formula [7] and automatic summary generation for a math
question post [29]. Our work does not consider these applica-
tions but rather focuses on the fundamental research question
of how to represent scientific formula. Nevertheless, our work
can potentially be integrated into some of these applications;
we leave these extensions for future work.

III. EXPERIMENTS

We conduct two experiments to validate FORTE’s effective-
ness. In the first experiment, we demonstrate the advantage of
FORTE over other tree and sequence generation methods in
a formula reconstruction task. In the second experiment, we
demonstrate the advantage of FORTE over existing methods
in a similar formula retrieval task. In all experiments, we
implement FORTE using a 2-layer bidirectional GRU as the
encoder and a 2-layer unidirectional GRU for the decoder.



TABLE II: Formula reconstruction results. FORTE outper-
forms all other methods.

Methods ACC-1 ↑ ACC-5 ↑ TED-struct ↓ TED-full ↓

GVAE [9] 30.10% - - -
DVAE [18] 50.29% - 1.178 1.791
tree2treeRNN [12] 71.73% - 0.507 0.709
tree2treeTF [13] 77.20% - 0.476 0.507
seq2seqRNN 92.60% 95.56% 0.084 0.176

FORTE (binary, greedy) 94.51% - 0.053 0.125
FORTE (binary, beam) 94.67% 97.38% 0.048 0.116
FORTE (onehot, greedy) 94.28% - 0.058 0.130
FORTE (onehot, beam) 94.42% 97.22% 0.054 0.124

A. Dataset

We collected a large real-world dataset of more than 770k
scientific formulae from existing sources including scientific
articles on Wikipedia 1 and papers on arXiv.2,3

a) Dataset Preprocessing: The formulae in the raw
source are in either MathML or LATEX format. We employ
a parser [1] to convert them to the same OT format. We
retain formulae that do not incur any errors during the parsing
process and whose depth is below 20, degree is below 10, and
the number of nodes is below 250. We set these thresholds to
remove rare formulae with extremely complicated structures
that significantly slow down the training and evaluation pro-
cess. For some baselines that operate on LATEX format of the
formulae (see Section III-B1), we use the tokenizer in [30] to
process each LATEX formula into a sequence of symbols.

b) Scientific Symbol Vocabulary.: Recall from Sec-
tion II-A that the scientific symbol vocabulary V contains
all unique scientific symbols in all the formula OTs in our
dataset. The size of this vocabulary V may be unbounded (e.g.,
every element in the real number set R, which is uncountably
infinite, could appear in V as a separate symbol); however,
most symbols rarely appear. We thus propose the following
truncation method to work with a finite vocabulary in practice.
First, we partition the vocabulary V into five disjoint sub-
vocabularies according to five symbol types, including numeric
Vnum (numbers, decimals), functional Vfun (multiplication,
subtraction etc.), variable Vvar, textual Vtxt and others Vo. We
do so because different types of math symbols carry different
semantic meanings. Then, we retain only the most frequent
K symbols in each sub-vocabulary and convert others to an
“unknown” symbol specific to each type. This setup guarantees
that the semantics of symbols that do not occur frequently are
preserved.

B. Formula Reconstruction

In this experiment, we test FORTE’s ability to reconstruct
a formula. Because some baselines only work on binary
trees [12, 13], for this experiment we select a subset of 170k
formulae from our dataset whose operator trees are binary.

1https://www.cs.rit.edu/∼rlaz/NTCIR-12 MathIR Wikipedia Corpus.zip
2https://sigmathling.kwarc.info/resources/arxmliv-dataset-082019/
3https://nlp.stanford.edu/projects/myasu/topiceq/context eq data

20190220.zip

1) Baselines.: We consider the following baselines:
seq2seqRNN which implements the same encoder and de-
coder as our framework but processes formulae as sequences
of math symbols; tree2treeRNN [12] which is an RNN-
based method capable of encoding and decoding only binary
trees; treeTransformer [13] which is a Transformer-based
method that shows success only on binary trees; GVAE [9]
and DVAE [18], both of which are variational auto-encoders
(VAEs) suitable for tree-structured data. More discussion on
these baselines are in Section II-F. We also include four
variants of our framework to evaluate the utility of i) binary
against onehot tree positional encoding and ii) TBS against
greedy search for tree generation.

2) Evaluation Metrics.: We use two groups of metrics. The
first group of metrics measure formula reconstruction accuracy
(ACC), i.e., the percentage of the decoder outputs that are
exactly the same as the ground-truth decoder target formulae.
We compute both ACC-1, using only the output formula with
the highest likelihood, and ACC-5, using the five formulae
with highest likelihood. Specifically, let X(i)

out be the i-th
ground-truth output tree in the test set and A = {X̂(ij)

out }Jj=1

be the set of J generated trees for X(i)
out. Then

ACC =
1

Ntest

Ntest∑
i=1

1A(Xout) ,

where

1A(Xout) =

{
1 if Xout ∈ A
0 if Xout /∈ A

and Ntest is the total number of formula trees in the test set.
ACC-1 uses J = 1 and greedy search for generation whereas
ACC-5 uses J = 5 and beam search for generation. For the
seq2seqRNN baseline, Xout and X̂out are both in the format
of a sequence of math symbols instead of a tree.

The second group of metrics measures how much the
generated formula differs from the ground-truth decoder target
formula under the tree format. We use tree edit distance
(TED) which measures the distance between two trees by
computing the minimum number of operations needed, in-
cluding changing nodes and node connections, to convert one
tree to the other. We implement the TED metric using the
apted package [31] and refer to [32, 33] for an overview
of TED. We compute both TED-full which considers both
node and structural differences and TED-Struct which only
considers structural differences. For the seq2seqRNN baseline
that does not output formula in the OT format, we first use
the formula tree parser [1] to convert generated formulae to
the corresponding OT and then compute TED. Note that some
generated formulae from the seq2seqRNN baseline may incur
errors when we convert them to OTs. We do not count these
cases in our TED computation, which gives an advantage
to the seq2seqRNN baseline; nevertheless, seq2seqRNN still
underperforms our method.



TABLE III: Formula reconstruction visualizations comparing
FORTE with baselines using two input formulae (top row).
Only FORTE succeeds in exactly reconstructing the input.

Methods ΘAdiff = Θstate K ∧ {¬f | f ∈ F}

seq2seqRNN Θdiff = Atharte
V K ∧ {¬ f f ∈ F}

tree2treeRNN invalid formula ∧ → ×× ∈
tree2treeTF ΘAdiff = Θ (K ∈ λ) ∧ fF ∪ (f ∈ R)

FORTE ΘAdiff = Θstate K ∧ {¬f | f ∈ F}

3) Experiment Setup.: We construct training, validation,
and test sets by randomly splitting the 170k dataset (recall be-
ginning of Section III-B) 80%-10%-10% for five times. During
training, we save the best performing model and parameters
using the validation set and then perform formula reconstruc-
tion on the test. Whenever beam search is applicable, We use
beam size B = 10. For the seq2seqRNN baseline and all
FORTE variants, we use 500-dimensional hidden states and
node embeddings, 2-layer GRUs, 96 batch size, and 50 training
epochs. For the two tree2tree baselines [12, 13], GVAE [9],
and DVAE [18], we follow the original configurations. All
methods are trained on a single NVIDIA RTX 8000 GPU.

4) Quantitative Results.: Table II shows the formula re-
construction results, averaged over all five random data splits,
comparing FORTE against various baselines. We observe
that both GVAE and DVAE do not work well for this task
likely because of a mismatch between their model designs
and the data type for our task. For example, both GVAE
and DVAE leverage rigid rules during generation, i.e., by
specifying which node must connect to which node. Because
the scientific formulae that we work with have very diverse
structures, it is likely that these rules significantly constrain
the generation, leading to unsatisfactory reconstruction. This
mismatch between baseline designs and our data can also
explain the unsatisfactory performance of the two tree2tree
baselines. Specifically, these baselines are designed for com-
puter program translation, where the tree structure is also much
less varied than those for scientific formulae. The decoder
design in these baselines also incorporates multiple constraints,
e.g., by specifying the number of children each node must
have. Such constraints likely limit the tree2tree baselines’
ability to generate high-quality formula trees. In contrast,
FORTE almost perfectly reconstructs complex formulae in our
dataset, showing excellent robustness and flexibility.

We also see that FORTE outperforms the seq2seqRNN
baseline. This observation is not surprising since FORTE
exploits the inherent tree structure of scientific formulae
whereas seq2seqRNN does not. Moreover, the results for
the four FORTE variants clearly demonstrate the benefits of
both binary tree positional embedding and TBS, leading to
improvements in all four metrics compared to onehot tree
positional embedding and greedy search, respectively. We
repeat this experiment on the entire 770k formula dataset
comparing only FORTE and seq2seqRNN since the tree-based
baselines cannot process non-binary trees. FORTE achieves

Fig. 5: T-SNE visualizations of FORTE formula embeddings
for formulae of different tree structures (left) and different
content (right). We see clear separation and clustering of
different formulae.

85.87% compared to seq2seqRNN’s 84.30% on TOP-1 ACC
and 90.30% compared to seq2seqRNN’s 88.52% on TOP-5
ACC, respectively. These results further validate the advantage
of representing scientific formulae as OTs over as sequences.

5) Qualitative Results.: We first visualize in Figure 1 some
simple formulae generated by passing randomly sampled em-
bedding vectors, i.e., e ∼ N (0, I), through FORTE’s decoder.
Despite their simplicity, these examples show that our tree
decoder can generate valid and diverse formulae.

We also visualize some reconstruction results in Table III on
two input formulae, comparing FORTE against seq2seqRNN
and the two tree2tree baselines. The ground-truth formulae
are at the top of the table and each subsequent row contains
the corresponding formulae reconstructed by each method.
The two tree-based baselines can correctly generate part of
or all symbols in the ground-truth formulae but sometimes
in an incorrect order, resulting in formulae that are visually
different and even invalid. This observation is likely caused
by the absence of a clear termination signal for the generation
of children of each parent node during training; since these
baselines pre-specified the number of children for each node,
they may not be able to properly learn the structural aspects of
scientific formulae, which results in generating only partially
valid or partially correct formula trees. The seq2seqRNN
baseline generates most of the symbols correctly and in the
right order but misses or misplaces certain symbols. This
observation is likely caused by the loss of tree structural
information when we treat a formula as a sequence of symbols,
which may lead to incorrect reconstruction. In contrast, thanks
to the clear termination signal at each level of the tree and the
tree structures being preserved, FORTE perfectly reconstructs
both input formulae.

Finally, we visualize FORTE’s learned embedding space for
formulae in Figure 5. We perform two sets of visualizations
to examine whether FORTE has learned both the structure
and content of formulae. For the first set, we sample formula
trees of varying depth and for the second set, we sample
formula trees that belong to 6 distinct subjects. We compute
their embeddings and plot their 2-dimensional t-SNE embed-
dings [34]. From Figure 5, we can see clear separation and



TABLE IV: Examples of top 5 retrieval results comparing FORTE to TangentCFT. Less ideal retrieved formulae are in red.

O(mn logm) cosα = −cosβcosγ + sinβsinγcosh a
k

Rank FORTE TangentCFT FORTE TangentCFT
1 O(mn logm) O(mn logm) cosα = −cosβcosγ + sinβsinγcosh a

k
cosα = −cosβcosγ + sinβsinγcosh a

k

2 O(n logm) O(n logm) cosA = −cosBcosC + sinBsinCcosha cos(α− β) = cosαcosβ + sinαsinβ

3 O(nk logk) O(nm) cos(A) = −cos(B)cos(C) + sin(B)sin(C)cos(a) a = arccos
(

cosα+cosβcosγ
sinβsinγ

)
4 O(nk log((n)) O(n ∗m) cosA = −cosB cosC + sinB sinC cosa cosA = −cosBcosC + sinBsinCcosha

5 O(n logh) O(mn) cosa = cosbcosc+ sinbsinccosα cosC = −cosAcosB + sinAsinBcoshc

clustering both for formulae with varying tree depths and for
formulae with distinct content. Formulae with deeper trees are
less clustered (left plot in Figure 5) likely because they are also
more diverse. Overall, these two sets of visualizations further
demonstrate that FORTE learns a meaningful embedding space
for scientific formulae.

C. Formula Retrieval

In this experiment, we evaluate FORTE’s capability in a
formula retrieval task. Given a query formula (the query),
a retrieval method returns the most related formulae (the
retrievals) from a collection of candidate formulae.

1) Query and Retrieval Formulae Processing: We use the
first 20 concrete queries (e.g., formula without unknown parts)
in the NTCIR-12 Wikipedia math formula retrieval task. We
remove one that is too simple (it contains only a single variable
and nothing else) and one that incurs an error when being
converted to OT. The resulting query set contains 18 queries.
Table I shows a few example queries that we consider. The
collection of candidate formulae for retrieval is the NTCIR-
12 Wikipedia math formula dataset [2] which is a subset of
our 770k formula dataset. Because some formulae in this
subset are identical, i.e., formulae that appear in multiple
Wikipedia articles, we remove duplicates before performing
the retrieval experiment. We also remove formulae that incur
errors when being converted to OTs. The resulting candidate
formulae collection contains roughly 300k formulae. All of
the 18 queries are present in this collection. The processing
steps for both queries and candidate retrievals are consistent
with that in Section III-A.

2) Baselines.: We consider three state-of-the-art baselines
designed specifically for the formula retrieval task including
Tangent-CFT [6], Tangent-S [1], and Approach0 [3]. The
first baseline is one of the few data-driven formula retrieval
methods to date, while the latter two are based on symbolic
sub-tree matching and are data-independent.

a) Evaluation Metrics.: We perform a “pooled” human
evaluation for the formula retrieval experiment consistent with
prior work [2]. First, for each method and each query, we
choose the top 25 retrievals and mix them into a single pool
for evaluation. Then, for each query and each retrieval, we ask
human evaluators how relevant is the retrieval to the query.
Possible judgment ratings are relevant, partially relevant, or
irrelevant. To encourage fair and consistent evaluation, we first
ask the evaluators to browse through all retrieval formulae for

TABLE V: Formula retrieval results.

Metrics (partial) Metrics (full)

Methods map bpref map bpref

Approach0 0.404 0.537 0.486 0.507
Tangent-S 0.403 0.449 0.461 0.472
TangentCFT 0.418 0.471 0.462 0.464

FORTE 0.395 0.455 0.475 0.485
FORTE-App 0.423 0.484 0.509 0.513

a given query before performing the evaluation. This step cal-
ibrates the evaluators’ judgments. We also provide evaluators
with the following evaluation guideline, quoted from [2]: “A
retrieval is considered relevant if both its appearance and the
content of the formula match that of the query. If either the
retrieval’s appearance or content matches that of the query
but not both, the retrieval is considered partially relevant.
Otherwise, the retrieval is irrelevant to the query”. In total,
three human evaluators are involved, each of whom provides
us with his/her independent evaluations for each retrieval in
the pool for each query.

We use mean average precision (MAP) [35] and bpref [36]
as the evaluation metrics. They are computed by comparing
the human evaluation of the pooled retrievals for each query
with each method’s top 1000 retrievals. Compared to other
retrieval evaluation metrics, Both MAP and bpref are easy
to interpret and appropriate for evaluating multiple queries
and for comparing multiple retrieval methods. We implement
these metrics using a common information retrieval evaluation
package [37] for both partially relevant and fully relevant
retrievals.

3) Experiment Setup: We use the entire 770k formula
dataset to train our FORTE framework and then use the trained
encoder to obtain an embedding vector for each formula. For
each query, we compute the cosine similarity between its
embedding vector and the embedding vector of each formula
in the dataset. Finally, we return the formulae with the highest
similarity scores as the retrieved ones; See Section II-B2 for
detailed computation. Because the retrieval results for each
baselines is publicly available,4,5,6 we do not rerun each
baseline and simply use the provided retrieval results for our
evaluation.

4https://github.com/BehroozMansouri/TangentCFT
5https://github.com/approach0/search-engine/tree/ecir2020
6https://www.cs.rit.edu/∼dprl/files/release tangent S.zip



TABLE VI: Zero-shot formula reconstruction results (ACC)
on the ARQMath dataset for methods trained on our dataset.
FORTE generalizes well to the new dataset.

Methods ACC-1 ↑ ACC-5 ↑

tree2treeRNN [12] 46.31% -
tree2treeTF [13] 72.37% -
seq2seqRNN 43.46% 52.66%

FORTE (binary, greedy) 89.16% -
FORTE (binary, beam) 89.51%
FORTE (onehot, greedy) 89.00% -
FORTE (onehot, beam) 89.43% 94.44%

TABLE VII: Zero-shot formula retrieval results (bpref) on the
ARQMath dataset. When combining FORTE with Approach0,
we achieve the state-of-the-art retrieval performance.

Methods Partial Full Harmonic mean

Approach0 0.477 0.325 0.386
Tangent-S 0.441 0.251 0.320
TangentCFT 0.437 0.305 0.359

FORTE 0.409 0.308 0.351
FORTE-App 0.502 0.328 0.398

4) Quantitative Results.: Table V shows the quantitative
evaluation results, averaged over the three evaluators’ scores.
We observe that FORTE performs well for the fully rele-
vant retrieval evaluation, outperforming both Tangent-S and
the data-driven method, TangentCFT. On partially relevant
retrieval evaluation, FORTE sometimes falls behind the other
baselines. The reason is that, unlike TangentCFT that embeds
linearized, sub-components of a formula tree, FORTE focuses
on the full tree structure. Therefore, a tree with similar sub-
tree components to another tree may differ significantly in
their overall structures and get a retrieval score higher from
TangentCFT than from FORTE. In addition, unlike Approach0
(and Tangent-S) that directly computes similarity using the
symbolic sub-tree components, FORTE (and TangentCFT)
computes cosine similarity on the much more abstract formula
embeddings, which may cause loss of information compared to
explicit symbolic computations used in Approach0. Therefore,
following [6], we use a linear combination of the retrieval
scores by FORTE and Approach0 as a new retrieval method,
which we dub FORTE-App, that combine the advantage of
both methods. This method achieves state-of-the-art retrieval
performance on three of the four metrics.

5) Qualitative Results.: Table IV shows a few qualitative
examples comparing formulae retrieved by FORTE to those
retrieved by the TangentCFT for the same query. For the first
query, all formulae retrieved by FORTE either contain log or
are in the form of O(variable×variable log variable), which
is the same as that for the query. Similarly, for the second
query, all formulae retrieved by FORTE are mostly the same
as the query except for a few variables, signs, and functions
(e.g., the last cos function in the 3rd–5th ranked formulae)
differences. These examples illustrate FORTE’s advantage
over baselines in preserving the structure of the query formula
and the semantic meaning of symbols in the formula.

D. Zero-Shot Generalization

We also validate FORTE using a recently released formula
dataset, ARQMath,7 where formulae are collected from Math
Stack Exchange,8 a domain where most formulae are math
equations that are very different from those in scientific
documents. Specifically, we test the zero-shot generalizability
of FORTE (after training on our dataset) to the ARQMath
dataset without further fine-tuning.

Table VI reports the formula reconstruction performance
with respect to the ACC-1 and ACC-5 metrics and compares
FORTE with the baselines. We see that that performances for
all methods drop compared to Table II. Nevertheless, FORTE
still performs well and significantly better than the baselines.
In addition, using binary positional encoding with tree beam
search still achieves the best performance among different
settings, which is consistent with previous results. Table VII
reports the formula retrieval performance with respect to
the bpref metric comparing FORTE with the baselines. We
see that the performance of data-driven methods, including
TangentCFT and FORTE, slightly drops without training or
fine-tuning on the new dataset. In contrast, the performance
of the best data-agnostic method, Approach0, does not drop.
These comparisons suggest that improving FORTE’s gener-
alizability is an important future research direction. When
combining FORTE and Approach0, we achieve the state-of-
the-art retrieval performance on the ARQMath dataset, which
is consistent with the observation in Table V. This result
suggests that combining both data-driven and non-data-driven
methods is a promising approach for formula retrieval.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we propose FORTE, a novel, unsupervised
scientific formula processing framework by leveraging tree
embeddings. By encoding formulae as operator trees, we can
explicitly capture the inherent structure and semantics of a
formula. We propose an encoder and a decoder capable of
embedding and generating formula trees, respectively, and
a novel tree beam search algorithm to improve generation
quality at test time. We evaluate our framework on the formula
reconstruction and the formula retrieval tasks and demonstrate
our framework’s superior performance in both experiments
compared to baselines.

Our work opens doors to many future avenues of research.
One direction is to combine our framework’s dedicated ca-
pability to encode and generate formulae with state-of-the-
art NLP methods to enable cross-modality applications that
involve both mathematical and natural language. For example,
our framework can serve as a drop-in replacement for the
formulae processing part in several existing works to poten-
tially improve performance, i.e., in [7] for joint text and math
retrieval, in [8] for math headline generation, in [38, 39]
for grading students’ math homework solutions and providing
feedback, and in [27, 28] for neural math reasoning.

7https://www.cs.rit.edu/∼dprl/ARQMath/
8https://math.stackexchange.com/
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