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Abstract

Computational pangenomics is an emerging research field that is changing the way computer scientists are facing chal-
lenges in biological sequence analysis. In past decades, contributions from combinatorics, stringology, graph theory and
data structures were essential in the development of a plethora of software tools for the analysis of the human genome.
These tools allowed computational biologists to approach ambitious projects at population scale, such as the 1000
Genomes Project. A major contribution of the 1000 Genomes Project is the characterization of a broad spectrum of genetic
variations in the human genome, including the discovery of novel variations in the South Asian, African and European
populations—thus enhancing the catalogue of variability within the reference genome. Currently, the need to take into
account the high variability in population genomes as well as the specificity of an individual genome in a personalized
approach to medicine is rapidly pushing the abandonment of the traditional paradigm of using a single reference genome. A
graph-based representation of multiple genomes, or a graph pangenome, is replacing the linear reference genome. This
means completely rethinking well-established procedures to analyze, store, and access information from genome repre-
sentations. Properly addressing these challenges is crucial to face the computational tasks of ambitious healthcare projects
aiming to characterize human diversity by sequencing 1M individuals (Stark et al. 2019). This tutorial aims to introduce
readers to the most recent advances in the theory of data structures for the representation of graph pangenomes. We discuss
efficient representations of haplotypes and the variability of genotypes in graph pangenomes, and highlight applications in
solving computational problems in human and microbial (viral) pangenomes.
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1 Introduction

The 1000 Genomes Project (The 1000 Genomes Project
Consortium 2015) marks the beginning of new computa-
tional approaches to genomic studies. The high variation
rate among individuals, and the availability of thousands of
human genomes have accelerated computational efforts
towards graph models as a new paradigm for representing a
reference genome. The question “what is an ideal reference
genome?” is becoming the focus of investigations that also
involve theoreticians in the computer science community.
In this direction, algorithmic approaches have been pro-
posed to implement pangenome graphs. Moreover, the
literature presents experimental evidence of the advantages
of those approaches (Rakocevic et al. 2019; Sibbesen et al.
2018; Dilthey et al. 2015; Garrison et al. 2018). Various
reviews have presented this new research field (Paten et al.
2017; Eizenga et al. 2020b), while challenges from dif-
ferent domains are outlined by Computational Pan-Geno-
mics Consortium (2018).

The aim of this tutorial is to discuss the main algorith-
mic approaches and issues that will represent the focus of
computer science research in the next years. After illus-
trating the motivation for computational pangenomics, the
tutorial discusses recent succinct data structures that are
highly promising in main applications of pangenomics. The
tutorial is organized as follows. First, the basics of com-
putational pangenomics are presented, including construc-
tion of a pangenome graph, possible graph representations,
operations over a pangenome, and data structures that
index a pangenome. Second, related to this last concept, we
present recent data structures in pangenomics, the posi-
tional Burrows—Wheeler Transform and its generalization
to manage graphs, called graph BWT. Third, issues related
to time and space complexity are addressed by illustrating
the essentials of the r-index based data structure that allows
efficient implementation of well known queries, such as
finding maximum exact matches (MEMs). Lastly, we
conclude with exemplifications of the uses of the above
mentioned methods to application scenarios aimed at
detecting and representing pangenome variation such as in
haplotyping and genotyping computational problems. A
final section is devoted to the discussion of open problems.

2 From a linear sequence to a graph
reference of a genome

The term pangenome goes back more than fifteen years ago
to the framework of microbial analysis of the entire
genomic repertoire of a given phylogenetic clade (Tettelin
et al. 2005). A pangenome describes the union of sequence
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entities, such as genes or open reading frames, shared by
genomes of a clade. Its main purpose is to represent
commonly present and frequently absent sequences (e.g.,
genes) of interest. While the word “pangenome” in the
microbiology literature is often used to describe core genes
and strain specific genes, pangenomics is becoming the
conceptual framework to deal with the trends in genomics
of the last decade: the extraordinary growth of information
on human genomes, and the discovery of significant levels
of large-scale genomic variation in many eukaryotic
species.

In contrast to a linear-genome reference, a pangenome is
a reference system for representing sequence variations of
the genomic sequence of a species. In particular, a pan-
genome graph is conceived to be the ideal representation
for a variety of bioinformatics tasks, which were originally
performed on a linear reference genome. This graph
encodes the commonalities and differences among a col-
lection of genomes of the same species at the sequence
level. The interest in replacing linear reference genomes
with pangenome graph models has largely increased with
the discovery of limitations in performing various tasks,
such as read mapping and variant calling.

2.1 Limitations of a linear reference genome

Conventionally, a structural variant (SV) is a genomic
mutation involving 50 or more base pairs. SVs can take
several forms such as deletions, insertions, inversions,
translocations, or more complex events. The study of the
1000 Genomes Project with short reads technologies has
enabled the discovery of more than 88 million variants of
variable length—84.7 million single nucleotide polymor-
phisms (SNPs) and 3.6 million short insertions/deletions
(indels)—and 60,000 structural variants. On the other hand,
it is estimated that the typical genome contains about 2500
large SVs in total, and one SNP every 1200 to 1450
bases (The 1000 Genomes Project Consortium 2015). The
introduction of accurate long read sequencing technology
to the detection of SVs revealed an even larger number of
candidate variations in an individual genome w.r.t. the
reference genome (Khorsand et al. 2021). The discovery of
so many variants has shed light on major limitation of
linear references: reads sampled from an individual carry-
ing certain SVs may not align to the reference—in which
case, the read is frequently considered an artifact and dis-
carded. Moreover, the presence of rare alleles in the ref-
erence introduces a bias when mapping reads (see Fig. 1).
Since mapping reads is still a crucial step in most analyses
for the identification of genetic variants that are linked to
disease, clinical applications need to go beyond the linear
reference genome.
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(a) (b)

Ref.  ACGGTTAAGGGCGATCG--CTCGTTTT
ACGGTTAAG--CGATCG--CTCGTTTT
ACCGTTAA--—-GATCGAACTCG----
ACCGTTAAGGGCGATCGAA----TTTT

Reads:
ACCGTTAAGCGA
TCGAATTTT

(c)
ACCGTTAAGCGA
ACGGTTAAGGGCGATCGCTCGTTTT
TCGAA--TTTT

Fig. 1 A toy example of how a pangenome graph improves the
quality of mapping reads to a reference genome. a A multiple
sequence alignment of a linear reference genome and other three
genomes that contain variations w.r.t. the reference. b A variation
graph built from the matrix of the multiple alignment of the genomes;
in red the edges that represent variations in the graph and form the
typical “bubbles” in the graph. Observe that the graph may contain a

Ballouz et al. (2019) identified other limitations of a
linear reference, such as the difficulties in introducing
changes in the current reference, and the fact that it does
not sufficiently capture population diversity. A reference
genome is often thought of as a healthy baseline, while it is
not a healthy genome, nor the most common, nor the
longest, nor an ancestral haplotype. Moreover, there are
some clear advantages in using a pangenome refer-
ence (Ballouz et al. 2019): reducing reference bias,
increasing mapping accuracy when sequencing a new
individual (Rakocevic et al. 2019), increasing rare variant
identification accuracy, and improving de novo assembly
of a new individual. At the same time, representing pop-
ulation diversity is essential in genome-wide association
studies for precision medicine (Popejoy and Fullerton
2016). Approaches based on linear reference genomes
underlie a particular consensus model of the genome which
is convenient but not fully realistic. When using such a
model, reconstructed genomes are often more similar to the
reference than they actually are (Rakocevic et al. 2019).

A reference genome stored as a linear sequence would
fail in representing the diversity in the human population—
ignoring the need to represent the diversity, for example, in
the African population, which has been traditionally under-
represented in biomedical research. In 2016, Popejoy and
Fullerton (2016) state that 81% of the genome-wide asso-
ciation study data were from European ancestry, with the
other percentage mainly given by Asian populations.
Moreover, African populations, which show high vari-
ability, are not captured in association studies (Choudhury
et al. 2020a). The fact that a single donor of admixed
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path that does not represent any input genome (for example,
ACCGTTAAGGGCGATCGAACTCGTTTT). ¢ Mapping of two reads
(ACCGTTAAGCGA and ACCGTTAAGCGA) to the linear reference
genome. Observe that the alignments induces mismatches and indels.
d Mapping of the same reads to the variation graph. Observe that, in
this case, the mapping is possible without any mismatch

African and European ancestry has contributed the major-
ity (more than 70%) of the current human reference
genome (Schneider et al. 2017; Green et al. 2010), the
known GRCh38, is a clear limitation since a single indi-
vidual cannot be representative of the variability in a large
population. The above observation that the majority of
DNA in the reference from the human genome project is
likely to come from African-American ancestry is also
confirmed by the evaluation study of rare reference alleles
(RRA) by Magi et al. (2015), where it is shown that more
than 25% of GRCh38 RRAs are only found in African
populations of the 1000 Genomes Project, while 4% are
European, 2.1% are Asian, and 1.1% are American. Con-
sequently, more variation will be missing from the refer-
ence genome in cohorts with higher diversity (African
populations) and drift from donors (East Asian) who pro-
vided material for it and with lower diversity. It is expected
that even a larger number of variations will be incorporated
into the reference genome with the expansion of several
ongoing sequencing projects.

At the same time, the development of approaches rely-
ing on linear genomes is well consolidated. For instance,
the Variant Call Format (VCF) (Danecek et al. 2011) has
been widely adopted by the scientific community as the
core file format to represent the information of a collection
of multiple genomes. This format allows for the repre-
sentation of relatively simple variations that can be easily
reconciled with a linear reference: insertions, deletions, and
nucleotide mutations called single nucleotide polymor-
phisms (SNPs).

@ Springer
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2.2 Graph representations for multiple genomes

Graphs have been extensively used in the literature to
model genome sequences. Assembly graphs (i.e., de Bruijn
graphs (Compeau et al. 2011) and string graphs (Myers
2005)) are the most well-known type of graph used to store
and represent biological data. These graphs are built from
fragments of a genome which are commonly referred to as
sequence reads, and represent the common regions
between reads (fixed or of variable length) as edges in the
graph. These graphs will be discussed in detail in Sect. 6.2.
Sequence reads are produced by sequencing technologies
and have different characteristics in terms of length, errors
and throughput, meaning the amount of data that can be
produced in a single run of the machine.

Overlap graphs form a specific type of string graphs,
where vertices represent sequence reads and arcs indicate
non-empty overlap (either exact or inexact) between the
reads reads (Rizzi etal. 2019). In particular, string
graphs (Myers 2005), introduced to assemble genomes
from sequence reads, provide a graph representation of
genome sequences with some features that are especially
useful: (1) each vertex is labeled by a sequence and its
reverse-complement, (2) arcs connect two sequences that
appear consecutively in the genome (possibly with an
overlap), and (3) walks correspond to portions of the
genome.

Assembly graphs introduce another complication, since
we cannot know the strand from which the read has been
extracted. In this case, each vertex has two labels, where
one is the reverse complement of the other. As customary
for assembly graphs, we represent only the canonical
label—the label that is lexicographically smaller — but each
walk must distinguish between the two labels. Partially
ordered graphs (Lee et al. 2002) have also been used to
represent the sequence alignment of multiple genomes.
This is one of the first approaches used for representing
shared sequences among multiple genomes. Partially
ordered graphs have been investigated in the literature and
at the same time some graph representations have been
proposed to store multiple sequences or assembly graph-
s (Li et al. 2017).

2.3 Pangenome graphs and their main
applications

Pangenome graphs have been proposed as a new paradigm
for representing reference genomes. This is a natural rep-
resentation since graphs provide a compact and concise
data structure for performing several tasks, including
classical search operations. Graph-based representations of
the human genome may encode a large number of variants,
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such as those reported by The 1000 Genomes Project
Consortium (2015). However, the size and number of such
graphs is likely to further increase with the completion of
ongoing sequencing projects. The adoption of pangenome
graphs in performing tasks for the analysis and comparison
of genomes in presence of variations is only at the begin-
ning, but such pangenomics approaches have shown to
outperform single reference genome approaches.

e Structural variant graph representation is a computa-
tional problem that is relevant for many tasks. It is not
possible to represent complex structural variants with
use of a single reference genome. Structural variants
may change a genome into a similar but functionally
different genome, and are the result of rearrangements
of sequence segments in the genome, such as for
example the duplication, inversions and translocation of
segments of the genome. A graph is a more appropriate
structure to represent rearrangements among multiple
genomes, since orientation of edges, cycles and com-
plex structures in a graph, such as bubbles, represent
structural variants in a way that they can be managed by
algorithms and suitable data structures to index and
query graphs. A bubble is a directed acyclic subgraph
determined by a pair of vertices, a source vertex s and a
terminal vertex ¢ such that all paths from s to ¢ are
vertex disjoint.

e Highly accurate read alignment to regions of high
variability. Read alignment to a sequence is the
operation of establishing the location in the sequence
where the read originated as a fragment. There are
regions in the human genome that are important for
immunology studies but very challenging for read
alignment due to the large number of variations. An
example is given by the ~ 5 million base region in the
human genome called the Major Histocompatibility
Complex (MHC). Providing a suitable pangenomic
representation for read alignment—especially within
these regions of the human genome—is an important
computational challenge.

e Genotyping variants is the problem of reconstructing
the allele variants that characterize an individual. Due
to the diploid nature of the human genome, chromo-
somes come in pairs that are highly similar but present
differences at the nucleotide level. For example,
nucleotide differences can occur, and determine the
homozygous or heterozygous state of positions or loci
of the chromosomes: homozygous loci bear the same
value on both chromosome copies, while heterozygous
loci bear different values on the two copies. Genotyping
an individual is a computational task that is performed
by having as input a sample of reads from the
individual (Denti et al. 2019). Typical genotyping
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approaches make use of read alignment to a linear
reference, in which case SVs or any main difference at
the sequence level between the reference and the
individual sample may potentially lead to bias and
erroneous and incomplete genotyping.

e Haplotype resolved pangenome analysis is a computa-
tional task aiming to specify haplotype information in a
graph representation. While genotyping an individual
means to specify the fact that a site is homozygous or
heterozygous, haplotyping (or phasing) of the genome
consists in determining on which chromosomal copy,
i.e., paternal or maternal, the different alleles are
located (Bonizzoni et al. 2016).

It is interesting to note that solving the problem of geno-
typing variants means combining some of the above listed
tasks, starting from a suitable representation of highly
polymorphic regions and finally considering the alignment
of reads to that representation. Giraffe (Sirén et al. 2021) is
a recent approach based on short read alignment for
genotyping of SNPs, indels, and SVs genome-wide. Highly
polymorphic or repetitive regions represent a challenge for
SV prediction tools due to the fact that a linear reference
model is unable to capture the complexity of such infor-
mation. Genotyping tasks are usually performed by map-
ping of reads: this is a task which is very fast in BWA-
MEM (Li 2013) on a single linear reference, but it may be
slower on a graph. Giraffe is a fast mapper of short reads to
a pangenome graph consisting of aligned haplotypes
indexed by the graph BWT described in one of the next
sections. An important ingredient for read alignment to a
pangenome in Giraffe is the ability to efficiently match
queries over the graph by the graph BWT.

In Sect. 6 we will detail two main application scenarios
of the concepts presented in the following sections.

2.4 On the structure of the paper

First, we will focus on formally introducing the definition
of sequence graphs and variation graphs. Indeed, to the best
of our knowledge, the literature does not present a widely
accepted formal definition of variation (or sequence)
graphs: most of the papers either have a focus on graphs,
where the labels of the vertices are almost neglected (for
example, Paten et al. 2017), or the focus is on strings and
the graph is implicit (see Ukkonen 2002; Huang et al.
2013). One of the few papers that considers a notion of
variation graph similar to the one we propose in the tutorial
is presented by Sirén (2017), but the focus of that paper is
on indexing graphs. For this reason, we focus on defining
variation graphs. Secondly, we discuss relevant computa-
tional problems, such as:

e How to define a pangenome graph and inspect its
properties,

e How to build a pangenome graph from a collection of
genomes,

e How to store a pangenome graph and index the
information contained therein, so that reads can be
efficiently mapped to the pangenome.

Despite the fact that computational pangenomics is in its
early stages, several competing and/or complementary
approaches have been proposed, such as VG (Garrison
et al. 2018), SevenBridges (Rakocevic et al. 2019), PaS-
GAL (Jain et al. 2019), GraphAligner (Rautiainen et al.
2019), and odgi (Guarracino et al. 2021). Next, we
describe some data structures and algorithms that can index
pangenomes techniques. In particular, we present the
positional BWT, the graph positional BWT, and the r-in-
dex. We show how the positional BWT allows to store and
query in compact space a collection of haplotype sequen-
ces. The graph BWT is a generalization of the positional
BWT that allows to store the structure of a pangenome
graph, the r-index leverages the high similarity of multiple
genomes to generate in a scalable way to index collections
of genomes. These aspects require us to also give a brief
introduction of the BWT and the FM-index.

We proceed with an important application of the notions
discussed in this tutorial: viral haplotype reconstruction,
where we want to build the pangenome of different viral
strains.

Finally, we conclude the paper with a discussion of the
limitations of the current state of research in computational
pangenomics and we provide some open problems.

To simplify the presentation, we assume that the reader
is familiar with the basic terminology on graphs (Diestel
2005).

3 Pangenome graphs: basic definitions

Given a collection of genome sequences, a fundamental
computational problem in pangenomics is how to construct
a graph that summarizes the genomes. In this tutorial, a
variation graph is vertex-labeled, and some of its paths
correspond to the sequences that we want to
encode (Garrison et al. 2018). The next two definitions
synthesize those that have appeared in literature.

Definition 1 (variation graph) A variation graph G =
(V,A, W) is a directed graph whose vertices are labeled by
nonempty strings, with A: VX' being the labeling
function, and where A denotes the set of arcs and W de-
notes a nonempty set of distinguished walks.

@ Springer
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In Definition 1 walks correspond to variants (i.e.,
sequences) that we want to retain in our representation. We
note that the set of variants is not explicitly known in some
applications, and we want to represent the variants that are
compatible with a set of sequence variations. This leads to
the definition of sequence graphs (Rakocevic et al. 2019).
Sequence graphs represent the set of walks of a variation
graph but since these walks are not explicitly labeled, i.e.,
distinguished, also variants not in the input set which are
induced by the arcs of the variation graph are represented
(see Fig. 1 for an example of a variant represented in the
graph but not in the input genomes).

Definition 2 (sequence graph) A sequence graph G =
(V,A) is a directed graph whose vertices are labeled by
nonempty strings, with A: V=Xt being the labeling
function, and where A denotes the set of arcs.

We note that a sequence graph G = (V, A) is a variation
graph G = (V,A, W) with the same set of vertices with
W consisting of all possible walks in the graph. For this
reason, the properties of variation graphs also hold for
sequence graphs. To follow the usual nomenclature that is
based on the notion of a path, we will mostly use the term
“path” even when we refer to a walk. To simplify the
exposition, we assume that have a source and a sink of the
graph, which are unlabeled (see Fig. 2). Moreover, we
make the assumption that a variation graph models a single
chromosome. A distinct variation graph for each chromo-
some for modeling genomes with multiple chromosomes.
Next, we note that we can extend the definition of label of a
vertex to define also the label of a path. This essentially
requires that an arc connects two non-overlapping strings;
in this case the graph is blunt (Eizenga et al. 2021).

Definition 3 (path label) Let G be a variation graph, and
letw = <vy,ey,...,v; > be awalk of G. Then the label of
the walk w is the concatenation A(w) = A(vy)---A(v;) of
the labels of the vertices of the walk.

Definition 4 (expresses) Let g be a string, and let G be a
variation graph. Then G expresses g if there is a source-
sink walk w of G such that the label of the walk w is
exactly g, that is A(w) = g.

Fig. 2 Example of a variation graph with two dummy vertices: a
source and a sink
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The definition of a variation graph that we have pro-
vided is simple and can be adapted to different contexts. In
the case where we want to represent a set of genomes, the
variation graph is called a genome graph (Eizenga et al.
2020b). A variation graph can be used also to represent an
assembly graph — albeit for assembly graphs built from
sequencing reads, more specialized and efficient repre-
sentations are used.

We can consider a variation graph as an abstract data
structure for which some concrete implementations have
been proposed (Eizenga et al. 2020a). Those implementa-
tions present different trade-offs. For example, not all of
them easily allow updates in the variation graph, i,e., use
dynamic data structures. Moreover, they use different
compression strategies and also store strands, to allow a
vertex to represent two reverse-complemented strings. We
describe a slightly simplified model, where two reverse-
complemented strings are represented with two vertices
that are linked together, e.g., by sharing an identifier for the
pair. The first implementation, VG (Garrison et al.
2018), uses a hash table to represent arcs, but this requires
too much memory. A second implementation, XG (Gar-
rison 2019), instead is static, meaning the vertices and arcs
cannot be updated. It uses bitvectors to encode the vertices
and the adjacency lists, resulting in a fast and memory
efficient structure. The third implementation, odgi (Guar-
racino et al. 2021), represents arcs and walks via delta
encoding, where only the difference between the identifiers
of two consecutive vertices are stored. Observe that when
the graph is similar to a single walk (which is true in almost
all practical cases), this encoding couples a great runtime
performance with a small memory usage.

A more practical problem is how to store a pangenome
graph in a file. The most widely used format for this pur-
pose is GFA, which was initially proposed for representing
assembly graphs (Li et al. 2017). It is a textual format to
represent labeled graphs. The main limitation of GFA
stems from its original purpose. Since an assembly graph
has no direct connection with the linear reference genome,
a GFA file is not guaranteed to provide a coordinate system
that is valid for the entire graph. To overcome this problem,
an extension, called rGFA (Li et al. 2020), has been pro-
posed, where a reference walk is selected and determines a
coordinate system for the walk. Then each vertex of the
graph is associated with a vertex of the reference walk to
obtain a coordinate system for the entire graph. In other
words, rGFA only considers walks corresponding to simple
variants of the reference walk, i.e., cycles in the graph are
not allowed. We note that other approaches that provide a
coordinate system based on the set of paths exist, for
example odgi (Guarracino et al. 2021). While being a clear
improvement on the previous methods, odgi has two lim-
itations: the coordinate of a vertex belonging to two
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different walks is not intuitive, and a vertex that does not
belong to any of the walks in W has no coordinate. Over-
coming these two limitations is a theoretical challenge and
the overall notion of coordinate system is still worthy
of further investigation.

3.1 The construction of a pangenome graph
from multiple genomes

A basic problem in computational pangenomics is to build
a variation graph. This problem comes in two flavours,
depending on whether the input is a set of sequences
(corresponding to walks of the graph), or a multiple
alignment of the sequences. The latter problem is easier
but the quality of the graph is highly dependent on the
method used to build the alignment. Since we want to find
a variation graph that is able to represent one or more
genomes, we need to formally define this notion of repre-
sentation. Notice that, constructing such a variation graph
can be seen as a two-step process: first, we compute a
sequence graph representing the genomes, and then we
extract the set of walks expressing the genomes.

It is immediate to note that there can exist more than one
variation graph expressing a given set of genomes, and
some of these graphs do not resemble an alignment, e.g.,
they might contain a cycle. While we refer the reader
to Gusfield (1997) for a more detailed exposition of mul-
tiple sequence alignments, in our context, given a sequence
s =s182---8 an aligned sequence ¢ is obtained from
s by inserting gaps, where a gap is a string made of the
character -. An alignment of a set of sequences consists of
a set of equal-length aligned sequences, one for each input
sequence. Moreover, given two strings s; and s, we write
s1=s, if removing all gaps from s; and s, results in the
same string.

Definition 5 (compatible with an alignment) Let G =
{g1,--.,8n} be aset of m aligned genomes, all of length n.
Let G = (V,A, W) be a variation graph that expresses all
genomes in G. Then G is compatible with the alignment G
if there exists:

1. a set I of disjoint intervals covering [1, n], that is (a)
given two intervals [by,e;] and [b,,e;] of I, either
by > ey or by > ey, and (b) for each integer i between 1
and n there exists an interval [b,e] € I such that
b<i<e.

2. a surjective function ¢ : B—V where B is the set of
blocks, that is the set of pairs (g, [b, e]) with g € G,
[b,e] € I and the string g[b : e] does not consists of
only a gap, such that:

@  A(¢(g [bre]))=glb: e,

(b) given the sequence (cy,...,ck) of blocks corre-
sponding to the aligned genome g, the sequence
(d(cr), ..., d(ck)) of the vertices associated to
such blocks is a walk of G;

(c) for each arc (v,w) € A, there exist two blocks
(g, [bl,el}), (g, [bz,ez]) €B with e} <by,
o((8, [b1;e1])) = v, (g, [b2, €2])) = w and such
that there does not exist another block
(g, [b3, 63]) € B with e <bz <e; <b,.

The intuitive idea behind Definition 5 is that we can
split the alignment into aligned blocks, where each block
that does not consist only of a gap is mapped to a vertex of
the variation graph whose label is identical to the block,
once all gaps are removed (condition 2a). Moreover, each
genome in the alignment corresponds to a walk in the graph
(condition 2b), and each arc of the graph corresponds to
two consecutive aligned blocks once we discard all aligned
blocks consisting only of a gap (condition 2c) in some
input aligned sequence. The natural computational problem
is then to compute a variation graph compatible with a
given alignment (Fig. 3).

Problem 1 (graph construction from alignment) Let G =
{g1,---,&n} be a set of m aligned genomes, all of length n.
Then the graph construction from alignment problem asks
to find a variation graph G that is compatible with G.

The formulation of compatibility in Definition 5 is
similar to the formulation of block graphs (Ukkonen 2002;
Mikinen et al. 2020), albeit the latter is quite restrictive,
e.g., it does not allow cycles.

We note that Problem 1 does not have an objective
function that allows to discriminate among all possible
graphs that express the genomes in G. Consequently the
problem is ill-posed. Moreover, some simple objective
functions do not lead to desirable graphs. Given a variation
graph G = (V,A, W), we let W(G) be the set of maximal
walks of G (i.e., walks starting at a source and ending at a
sink of G), and note that a walk in W(G) is not necessarily
in W. Then a desirable property of a variation graph
expressing all genomes in G is that the set of labels of all
walks in W(G) is equal to G. Hence, the objective function
that we want to minimize is equal to | {A(p) : p € W(G)} |,
however, this is trivially minimized by a graph with ver-
tices (and labels) g; and no arcs. Unfortunately, such a
solution means that shared portions among input genomes
label different vertices of the graph, while a fundamental
motivation of introducing variation graphs is that shared
portions should belong to the same vertex. Two possible
objective functions that address this shortcoming are to
minimize (1) the number of vertices of the graph G, or (2)
the sum of the length of the labels of G. The same trivial
graph with vertices (and labels) g; and no arcs is also the
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AT | -C | TAC | C
AC | GC | TAC | C
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== e >
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Fig. 3 Example of an alignment (left) of four genomes and a
corresponding variation graph (right). The set I of disjoint intervals is
in the lower left part of the figures, and each interval is connected
with the corresponding set of columns of the alignment. The variation
graph has two dummy vertices: a source and a sink, so that each

optimum for almost all instances of the first formulation.
The second objective function does not discriminate
between compacted graphs (whose vertices are labeled by
strings) and non-compacted graphs (where all vertices are
labeled by a single character), provided that the total length
of the labels is the same—instead we would favor a com-
pacted graph, since it is more informative.

The fact that it is hard to find a simple objective function
means that, if we desire to find a formal definition of the
underlying computational problem, we should explore
different directions, such as minimum description
length (Grunwald 2004) or multicriteria optimiza-
tion (Ehrgott 2005) to incorporate different aspects of the
desired graph. On the other hand, the literature largely
avoids providing a complete formulation of the problem
and focuses on the method. For example, consider
seqwish (Garrison et al. 2019), which is one of the most
widely tools for building a variation graph from an align-
ment. While the paper contains a very detailed description
of the data structures used to represent the resulting graph,
almost no mention of the combinatorial properties is pre-
sent. Clearly, the lack of a formulation of the objective
function does not decrease the usefulness of the tool, but it
makes harder to benchmark and compare different
approach.

Moreover, a multiple alignment is not able to explicitly
represent certain structural variations, such as inversions or
transpositions. For this reason, sometimes we do not have a
reliable alignment that can be the building block for con-
structing a variation graph. In this case, we only start from

Fig. 4 Example of a variation
graph constructed from four
sequences, each represented by
a different colored symbol. We
color only vertices to simplify

* ATCTACCA
m ACGCTACCA

genome corresponds to source-sink walk in the graph. The alignment
of the third genome has a block consisting of only a gap; hence, it
does not correspond to any vertex of the graph. The red and the green
paths identify a variant, also called bubble, in the graph, since they
have the same source and sink, while all other vertices are disjoint

a set of strings, each representing a genome, and the cor-
responding computational problem becomes the following
to reconstruct the variation graph from the strings.

Problem 2 (graph construction from genomes) Let G =
{g1,--.,8n} be a set of m genomes. Then the graph con-
struction from genomes problem asks to find a variation
graph G that expresses all genomes in G.

This new problem is more general than Problem 1, since
there is no division into blocks to be respected for all
genomes (see Fig. 4 for an example). Moreover, the same
argument on the lack of a widely accepted objective
function that we have made for constructing the variation
graph from an alignment holds also in this case.

For this problem, a simple incremental approach, like
the one employed by Minigraph (Li et al. 2020) can be
surprisingly effective. In this case, each sequence is aligned
against the variation graph (the first sequence is also the
initial graph); each portion of the sequence that corre-
sponds to a low quality alignment is a variant that needs to
be added to the variation graph. We note that this approach
relies heavily on a string-to-graph mapper. The mini-
graph method incorporates a tailored alignment procedure,
inspired by minimap2 (Li 2018), and based on the idea of
building (sub)graph chains.

Observe that in minigraph the mapping between gen-
omes and the graph is lost during the construction process.
A base-level alignment of the genomes relative to the
resulting graph can be obtained by an extension of the

the figure ® ATGCATCGA

ACGCATGAA
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Cactus whole genome alignment toolkit (Paten et al.
2011).

4 Indexing pangenome graphs

Graphs as large as genome graphs need to be indexed to
achieve adequate efficiency for basic operations such as
pattern matching or read mapping. Since variation graphs
represent walk labels, a simple strategy is to index all
relevant walk labels, therefore, mostly reusing the tools
that have been developed in text indexing. Most notably, an
index can be built to store either k-mers, signatures or
suffixes of the walk labels. A k-mer or g-gram of a
sequence 7T is a substring of length k (g, respectively) of a
sequence T and is the building block of de Brujin graphs
and of some methods for mapping reads to a genome. In
particular, k-mer indexing is becoming a popular way of
storing huge collections of genomic data (Karasikov et al.
2020). Alternatively, a signature or sketch of a sequence
T is a short summary of the sequence given by a vector of
numbers that, with high probability, summarizes some k-
mers of the sequence — see for example MinHash (Berlin
et al. 2015). Finally, a suffix sort-based representation of a
sequence T is given by the self-index structures built upon
the notion of Burrows—Wheeler Transform and the FM-
index. Generalizing these notions to graphs is a first pos-
sible approach to designing pangenome graph representa-
tions. The most common approach has been to extend the
notion of XBWT (Ferragina et al. 2009) to graphs, first
with the GCSA (Sirén et al. 2014; Sirén 2017), which is an
index of the prefixes of the strings that can be traversed
from each vertex of a directed graph. It has a vertex for
each symbol of the sequence, and edges connect symbols
that are consecutive in at least one genome sequence (or
walk) of the pangenome graph. An alternative approach to
indexing is given in (Rakocevic et al. 2019), where pan-
genome graphs are indexed by using a hash table for k-
mers extracted from the sequence paths of the graph.

4.1 Preliminaries on the BWT

To make this tutorial self-contained, we briefly introduce
here the main notions related to the Burrows—Wheeler
Transform (BWT). Let S be a string that is terminated by a
special symbol $ (called sentinel). A sentinel appears only
at the end of a string and it is smaller than any other symbol
of the alphabet 2. Given a string S, its i-th character is
denoted by S[i], its substring S[i]S[i + 1] - - - S[t] is denoted
by S[i : 7], and its suffix starting at position i is denoted by
S[i : ]. Sometimes, instead of the [i : ¢] notation, we might
use the right-open notation S[i : 7) for a substring: in this

case the t-th character of § is not included in the substring,
that is S[i : t) = S[i]--- S[t — 1].

The Suffix Array of S (Manber and Myers 1993; Shi
1996) is the array SA s.t. SA[] is equal to p if p is the
starting position in S of the suffix of S that is the i-th suffix
of S in the lexicographic order of the set of suffixes. The
Longest Common Prefix ( LCP ) array of S is the array LCP
s.t. LCPJi] is the length of the longest prefix between the
(i — 1)-th suffix and the i-th suffix of S in their lexico-
graphic order. Conventionally, LCP[1] = —1.

Given a n-long string S and the SA of S, we denote the
inverse suffix array as ISA, and define it as ISA[SA[i]] = i
for all i =1,...,n. The permutation ¢ (Kirkkiinen et al.
2009) is defined as follows: ¢(i) = SA[ISA[{] — 1] if
ISA[i] > 1; and ¢(i) = SA[n] otherwise. In other words,
¢(SA[j]) = SA[j — 1], for all j > 1.

The Burrows—Wheeler Transform (Burrows and
Wheeler 1994) of the string S, denoted by BWT, is a
reversible permutation of the characters of S. It is the last
column of the matrix of the sorted rotations of the text S,
and can be computed from the suffix array of S as
BWT](i] = S[SA[i] — 1], where S is considered to be cyclic,
i.e., S[0] = S[n]. Informally, BWT({] is just the symbol of §
in position p — 1 preceding the i”*-suffix of S. The lexico-
graphic ordering of the suffix starting in position p — 1 of §
is then given by the LF-mapping: it is a permutation on
[1, n] such that SA[LF(i)] = (SA[]] — 1) modn. More
precisely, the LF-mapping LF(i) allows to compute the
lexicographic ordering of the suffix of position SA[i] — 1 in
S. Then the LF-mapping allows to virtually traverse the
string S backwards as explained below using only BWT(S).

The backward search is an operation introduced
by Ferragina and Manzini (2005) in order to compute left
extension of a given string as follows: given a string S, if
we know the range BWT]Ji: ] occupied by characters
immediately preceding occurrences of a pattern P in S, then
we can compute the range BWT][i : j/| occupied by char-
acters immediately preceding occurrences of c¢P in S, for
any character c. This operation is implemented using: (1)
an array C[o] that stores the number of symbols in S that
are smaller than ¢ for each character ¢ and, (2) a (rank)
data structure for BWT(S) that returns how many times a
given character occurs up to a specific position of BWT(S).

Based on the above data structures, a LF-mapping is a
last-to-first mapping that associates to a position in the
BWT a position in the suffix-array and is used by iterations
to reconstruct the text from right to left since we are able to
compute the preceding symbol of each symbol BWTTi].

In particular, we can relate function LF(i) also to
character ¢ that occurs in BWT(i] and thus, LF(i, ¢) is given
as the sum C[c] + BWT.rank(i, c), being BWT.rank(i, c)
the number of ¢ symbols occurring in the range BWTL, {].
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Fig. 5 A toy example of how a pattern matches on a variation graph.
The pattern is the string TGCAT and the variation graph is the one of
Fig. 4. The walk with red vertices and arcs contains the match, but the

In other words, LF(i,c) gives the position of the specific
occurrence of the ¢ symbol in the text S. Indeed BWT(S)
has the property of preserving the ranking of symbols in
S. Observe that BWT[LF(i, ¢)] is just the symbol ¢’ pre-
ceding ¢ in the text S, where ¢ is in position SA[i]. Those
functions allow us to quickly solve the pattern matching
problem, using only a small space, since the BWT itself
can be easily compressed via a run-length encoding and the
BWT.rank() shows increasing values, so we can encode
only the difference with the previous value (i.e., a delta
encoding). In fact, the backward search strategy leads to an
O(|P|) time complexity for counting the number of
occurrences of a pattern P in a text S, given its FM-index.
Computing the location of those occurrences is slightly
more complex, since it requires a sample of the suffix array
of the text, with a time complexity that is very close to that
of using a suffix array, that is O(|P| + klog' ™ |S|) where
k is the number of occurrences of the pattern P.

The definition of suffix array has been extended to a set
X ={Si,...,S,} of strings by considering the set of the
lexicographically sorted suffixes of X and by replacing
each entry of SA with a pair (p, j) indicating the length of
the suffix (p) and the index of the string (j) which the suffix
belongs to. The multi-string Burrows Wheeler Trans-
form (Mantaci et al. 2007) of X is the array BWT s.t. if
SAli] = (p,j), then BWT]{] is the first symbol of the suffix
of §; starting in position p. In other words BWT is the
concatenation of the symbols preceding the ordered suf-
fixes of S.

4.2 The positional BWT

The positional BWT (PBWT) is a data structure (Durbin
2014) aiming at representing efficiently a set X, or panel, of
m haplotypes with n bi-allelic sites. The notion of PBWT
has been generalized to the multi-allelic case (Naseri et al.
2019). From a string-theoretic point of view, the panel X is
a set of m n-long strings over alphabet {0, 1} (for the bi-
allelic case) or a generic finite alphabet X (for the multi-
allelic case). In the following, we introduce the data
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actual match consists of the underlined portions of the vertex labels.
More precisely, the match takes a suffix of the first vertex and a prefix
of the last vertex

structure for the multi-allelic case, since it is a straight-
forward extension of the bi-allelic case. All the results that
we discuss have been presented by Durbin (2014) and
Naseri et al. (2019). We note that the PBWT has many
resemblances with the wavelet matrix proposed by Claude
et al. (2015).

The goal of the PBWT is basically to find matches
among the haplotypes of X, or with respect to an external
haplotype and the panel X, where a match must involve
substrings in the same positions, i.e., two substrings s|i :
i+ 1) and #[j : j + [] with i # j are not considered a match
even in the case they are equal. To underline this differ-
ence, we use the term haplotype for an n-long string over
the (ordered) alphabet X with ¢ symbols. Let X be a set of
m haplotypes x1, x2, . . ., X;;; the positions on each haplotype
are indexed from 1 to n. Given the haplotype x, its prefix at
position k is its k-long prefix x[1 : k] = x[1 : k + 1), deno-
ted pref(x,k). The reversed prefix at position k is the
reverse of pref(x, k), that is the string x[k] - - -x[1], and is
denoted by revpref(x, k). With a slight abuse of notation,
we assume that x[i : j] with i >j is the empty string.
Hence, pref(x,0) = revpref(x,0) is the empty string.
Given two haplotypes, we can define an order for each
position.

Definition 6 (Position order) Let x;, x; be two haplotypes
of X, and let k be an integer not greater than n. Then x; is
smaller than x; at position k if and only if:

1. revpref(x;, k) is smaller than
revpref(x;, k), or

2. revpref(x;, k) = revpref(x;, k) and i <j.

lexicographically

Observe that the ordering at position O produces the
same ordering as the set X, that is xi,...,x,. A match
between two haplotypes x; and x; are two identical sub-
strings x;[k; : k] and x;[k; : k> spanning the same position
interval [kl Zkg}. The match xi[kl : kz} = Xj[kl : kz] is left-
maximal (right-maximal, resp.) if it cannot be extended on
the left (right, resp.), that is either k; = 1 or x;[k; — 1] #
xjlky — 1] (either ky = n or x;[k, + 1] # x;[k, + 1], resp.).
We can now define formally the positional BWT.
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ao X

1 9=11010011111001001001
2 )9=01000011111001110010
3 9= 00010000011110001010
4 3= 10011010100011100010
5 ?=01101111100100111100
6 )=11001010101010001111
7 = 00010111111100100011

Fig. 6 Example of a panel X of haplotypes with the original order
(left) and with the order induced by a4 (right). The arrow highlights
that x is the 6th haplotype in the order induced by the lexicographic
order of the 14-long reverse prefixes (hence, it is denoted with yi*

On the right, we reported also the divergence array di4 and we

Definition 7 (Positional BWT (Durbin 2014)) Let X =
{x1," -+, xn} be a set of m haplotypes. The positional BWT
of X is a collection of n + 1 pairs of arrays, (ay,dy) for
0 <k <n, where each a; is called a prefix array and each d;
is called a divergence array, defined as follows:

e the prefix array g; is a permutation of the indexes
1,2,---,m such that a[i] = j iff x; is the i-th haplotype
of X in the ordering at position k, i.e., considering the k-
long reverse prefixes,

e the divergence array d is such that di[i] is the starting
position of the left-maximal match ending at position
k between the i-th and (i — 1)-th haplotypes in the
ordering at position k.

Definition 7 is a departure from the original definition
of Durbin (2014) in that the original definition describes
the positional BWT as the concatenation of the columns of
X reordered according to revprefs. We argue that the latter
is essentially a compact representation of the former, just
as the FM-index (Ferragina and Manzini 2005) compactly
represents the enhanced suffix array of the text (Abouel-
hoda et al. 2004). We will conclude this section with an
explanation of this fact.

For ease of notation, let yf.‘ be x,, - Figure 6 presents an

kli
example of the prefix array a4 and of the divergence array
dy4 of a panel X of seven haplotypes.

Notice that the Definition 7 means that, for each posi-
tion k and each i > 1, there is a left-maximal match

between x,, ;) [dk[i] : k| and x,,(;[dk[i] : k]. Also notice that

X dis

=01101111100100/1 11100 15

Vz = 00010111111100/1/00011 12

147 11001010101010/0(01111 14

= 00010000011110{0(01010 13

}5 = 01000011111001/1|10010 15

]47 11010011111001/0(01001 5

)}4 = 10011010100011]1/00010 14
yl

#HNMO\\]UI:'—S

©

underlined the left-maximal matches ending at position 14 between
each x,,,;—1j and x,, ;. Position 15 is highlighted and the permutation
of the symbols (alleles) at that position induced by a4 is denoted by
y'. That permutation of symbols will be used to compute a;s

the prefix array qq is the sequence 1,...,m since all such
prefixes are empty, and dy contains only zeroes for the
same reason.

If we consider the set of reversed haplotypes, the prefix
array ay is the usual generalized suffix array, restricted to k-
long suffixes, while the divergence array dj can be trivially
obtained from the LCP array between two consecutive k-
long suffixes.

Observe that dy[i] = k + 1 means that no match ending
at position k exists between haplotypes y¥ and y* |. The
following proposition, which is a direct consequence of its
definition, is used to compute the divergence array.

Proposition 1 Let X be a set of haplotypes and let ay, di be
the associated prefix and divergence arrays at position k.
Let i and j be two integers with 1 <i<j<m. Then the
starting position of the left-maximal match ending at
position k of yf? = Xq) and yJ’f = Xq[) IS equal to

max; << j{d[h]}.
4.2.1 Computing the prefix and the divergence arrays

The array a; can be computed from a;_; with a single scan
of all characters at position k, with a procedure that is
essentially a pass of radix sort.
Let y* be the m haplotype characters at position k in the
order specified by ai_1, that is
= (VK] Y5k, -+, 5 LKD) Array ap is computed
by sweeping y* for reordering appropriately the indexes in

Fig. 7 Computing array a;s X (sorted by aj4) aiy ais X (sorted by ays)
from aj4. All the elements of a4 yl = 01101111100100[1[11100 5 6 y15=11001010101010/001111
:’Ivlh;’l‘:(f"e“elpon[‘hﬁglscgai‘zter yi=00010111111100/1 00011 7 3 %= 00010000011110/0(01010
placed in ;saﬁefore the y}4=11001010101010,001111 6 1 y5=110100111110010(01001
clements of a4 whose yl4 = 00010000011110[0/01010 3 5 y15=01101111100100/1(11100
corresponding character in y,s is = 01000011111001/1[10010 2 7 y15=00010111111100/1 (00011
1 yi4=11010011111001/0/01001 1 2 y15-01000011111001/1(10010
14-10011010100011/1 /00010 4————————4 15— 10011010100011/1 (00010

yIS

@ Springer



92

J. A. Baaijens et al.

ay—1. Two observations allow to compute a; from a;_;: (1)
haplotype y¥ comes before y]’? in the ordering at k if
NALd <yj’.C [k] and (2) y* comes before yJ’.< in the ordering at
kif y¥ k] = yJ’-‘ [k] and i <j. As a consequence, intuitively, in
the bi-allelic case we can compute gy by first placing all the
elements of a;_i[i] such that y¥[k] =0 and then all the
elements of a_;[i] such that y¥[k] = 1 while keeping the
relative order of the elements in each part. Figure 7 rep-
resents this intuition. Clearly, such an idea can be easily
extended to the multi-allelic case by considering all the
possible symbols.

Also the divergence array d; can be computed from dy_;
with a single scan of the characters at position k.

Let x, be a haplotype of X and let i be the index such
that a;[i] = p (hence, x, = y¥). Two cases may arise: either
(1) y¥[k] # ¥, [K] or (2) y¥[k] = y*_,[K]. In the first case, as
the two characters differ, we do not have a non-empty left-
maximal match ending at position k between y*[k] and
y*_,[k], thus, di[i] can be conventionally set to k + 1. In the
second case, there exists a non-empty match ending at
position k between y[k] and y* |[k]. Let j and j' be the
indexes such that a;_[j] = ax[i] and ax_[j'] = ar[i — 1].
Since y![k] =y* ,[k] = ¢, we have that j'<j. Then, the
starting position of the left-maximal match between yf.il
and y* ending at position k (i.e., di[i]) is equal to the
starting position of the left-maximal match between yj’-‘,‘l
and y}~" ending at position k — 1 which, by Proposition 1,
is equal to maxj <, <;{di—1[h]}.

The key observation for obtaining an efficient algorithm
is that yj’-‘,‘l is the most recently seen haplotype with
character ¢ at position k. Hence, while sweeping the
characters at position k, it suffices to keep, for each allele
g € X, the running maximum of d;_; between the current
haplotype and the most recently seen haplotype (according
to the order induced by a;_;) having ¢ at position k. If, at
some haplotype yf.‘ we have that yf.‘ [k] is an allele not seen
yet, then we must be in case (1) and we set di[i] to k + 1.
Otherwise we will be in case (2) and we can set d[i] to the
running maximum kept for the allele y*[k].

ay  dig X (sorted by ag)

5 15 x5 =01101111100100/111100
7 12 x7 =00010111111100/100011
6 14 X6 = 11001010101010/001111
3 13 x3 = 00010000011110/001010
2 15 xp = 01000011111001/110010
1 5 x1 =11010011111001/001001
4 14 x4 =10011010100011/100010

Fig. 8 Computing the arrays a;s and d;s. On the left there are the
arrays a4 and dy4 and the set X sorted by the revpref at position 14.
On the right there are the set X sorted by the revpref at position 15
and the arrays a;s and ds. Notice that the set X is not sorted explicitly
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Algorithm 1 The algorithm to compute the PBWT.
Require: A set X = {x1,...,2,} of n-long sequences on the ordered
alphabet ¥ = (01,...,0y).
Ensure: The arrays a; and d; representing the PBWT of X.
1: ap « the array [1,..., m|
2: dp < the array with m elements, all equal to 1
3. for k — 1 ton do

4 for 0 € ¥ do

5 alo] <« an empty list

6: d[o] < an empty list

7 seen[o] « false

8 end for

9: for i — 1 tom do

10: ¢ Ta,_,(i)[k]

11 Append aj—1[i] to the list alc|

12: for o € ¥ do

13: if seen[o] and di_1[i] > maz[o] then
14: maz(o] — dig_1]i]

15: end if

16: end for

17: if seen|c] then

18: Append maz|c] to the list d[c]

19: else

20: Append k + 1 to the list d[c]

21: seen[c] — true

22: end if

23: mazx[c] — 0

24: end for

25: ay, < the concatenation of the lists a[oq]- - - a[oy]
26: dj, < the concatenation of the lists d[o] - - d[oy]

27: end for

Algorithm 1 formalizes the procedure for computing the
entire series of prefix and divergence arrays in a single pass
over the panel X of r-allelic haplotypes. Each iteration k of
the outer for-loop computes a; and d; from a;_; and dj_
in O(mt) time. Hence the total running time is O(nmit).

As an example, we will describe how to compute the
arrays a;s and d,s, given the arrays a4 and dj4 for the set
of haplotypes of Fig. 6. We will use Fig. 8 for illustrative
purposes. At the beginning of the scan (lines 9-23), all
characters are unseen and the lists a[] and d[-] are both
empty. The first time we see character O (at iteration i = 3,
corresponding to haplotype x¢) and 1 (at iteration i = 1,
corresponding to haplotype xs), the corresponding value of
d[-] is 15, since the reverse prefix at position 15 and the one
that is immediately smaller do not share the character at
position 15. For any other haplotype, we check the interval
between the most recently seen haplotype that has at
position 15 the same character as the current haplotype,
and we compute the left-maximal match between those two

X (sorted by ais) ajs dis
X6 = 110010101010100/01111 6 16
x3 =000100000111100/01010 3 13
x; = 110100111110010/01001 1
x5 =011011111001001|11100 5 16
x7=000101111111001/00011 7
X2 = 010000111110011{10010 2
x4 = 100110101000111/00010 4

by the algorithm, and is reported here to make easier to understand the
algorithm. The interval that is analyzed to compute the value of the
divergence array at position 15 associated with x; is represented with
a square bracket
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haplotypes. Consider for example when the current hap-
lotype is x, that has the character 1 at position 15. The most
recently seen haplotype with the character 1 at position 15
is x7, and their left-maximal match at position 15 starts at
position 15, which is stored in the corresponding entry of
dys. Such position is stored in max[1]; the effect of the if at
lines 17-23 is that max[1] contains the maximum value
among all entries of dj4 corresponding to the interval of
haplotypes from x; (excluded) to x, (included) which, by
construction of dy4, is exactly the desired starting point.

4.2.2 Maximal matches with at least L characters

Using the PBWT we can compute the pairs of haplotypes
having a maximal match ending at position k with at least
L characters. Haplotypes between positions i and j of a;_1,
such that all values dy_[i + 1],dg_1[i + 2], - -, dx_1]j] are
at most k — L, share a common (left-maximal) match
ending at position k — 1 whose length is at least L. Such an
interval is called an L-block at position k. Observe that only
for y§ and y5 (p, g € [i,)]), such that y;[k] # y} [k], the match
ending at k — 1 is right-maximal and its starting position
can be obtained by performing a range maximum query
over the divergence array d;. The algorithm basically
separates dj_; in L-blocks and, for each L-block the related
haplotypes are divided in ¢ lists c[o] accordingly to their
character ¢ at position k (i.e., similar to the algorithm for
computing the prefix and the divergence arrays). While
scanning di_, each time a position i delimiting the end of a
L-block is encountered, all the elements of the Cartesian
products between all the pairs of lists c[o1] and c[o,] (with
a1 # o,) are produced in output. This computation could
be performed even in conjunction with the construction of
the prefix array a; and the divergence array d; — thus
avoiding keeping in memory the previously computed
arrays ay_; and dy_; — using O(m) in space instead of
O(nm). The running time is bounded by
O(max(nmt, no. of matches)).

4.2.3 Set-maximal matches

A left and right-maximal match x;[h : k] = x;[h : k] between
haplotypes x; and x; such that there is no other haplotype
with a match with x; that properly includes the interval
[, k], is called a set-maximal match of x; with x;. We note
that x; may have a set-maximal match from A to k with
more than a haplotype in X. Observe that haplotype yf? may
have a set-maximal match ending at k only with the pre-
ceding or the following haplotypes in the ordering at k. We
discuss three cases. The first one is when di[i] <di[i + 1],
that is, the left-maximal match between y* and y* | is
longer than the left-maximal match between yf and yf Yl
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X axy dy
y%():20211022100001011210 2 [222210010 5 21
)7%0:11221020121200111210 2 100212200 7 16
y%“:12200021212201211210 2 221201002 1 16
}*ﬁ°:0122102110202112@ 1012210111 10 17
ygoz21000201010112000021 1 221110011 6 21
,V%O:02211002022122002@ 1100111221 2 18
)7%0: 12120112021202112021| 2 {120220210 4 17
y%“:OQOOlQlOOQOlQlOQM 2 221001121 8 17
yéoz02102210102122102022 2 201212201 9 21
y%g: 12012120200121100122 2 [122022210 3 19

yPR1)

Fig. 9 A panel of ten tri-allelic haplotypes in their ordering at 20.

Haplotype y3° (which is haplotype x7 in the original panel X) has a

candidate set-maximal match from position 16 to position 20 with
haplotypes y2° (xs) and y3° (x;) since d[2] = dao[3] while dao[1] and
dno 4] are both greater that da[2]. However, since y2°[21] and y3°[21]
are both equal to y3°[21], then the match is not right-maximal and,
hence, is not set-maximal. It will be found while scanning column 21
or later. Similarly, y%o has a candidate set-maximal match from 17 to
20 with y2° and y2°. It is an actual set-maximal match because y2°[21]
is different from both y2°[21] and y3°[21]. Observe that y3° has not a
set-maximal match ending at position 20 because the candidate match
from 17 to 20 is with y2° and y2° but y2°[21] = y3°[21] (hence, it will
be found while scanning column 21 or later)

Observe that y¥ has a left-maximal match starting at dy|i]
with all the haplotypes between positions p and i — 1,
where p is the smallest position before i, such that
di[j] < dyli] for p<j<i. In conclusion, y* may have a set-
maximal match ending at k with each haplotype between
positions p and i — 1. Haplotype y* has actually a set-
maximal match with all of these haplotypes if each one of
their characters at position k + 1 is different from the
character at position k + 1 of haplotype yf.‘. On the contrary,
if even one of those characters is equal to y¥[k + 1], then it
will be possible to extend the match to the right. Hence, y*
does not have a set-maximal match ending at k with such
haplotypes. The second case is when di[i + 1] <d[i], that
is, the left-maximal match between y{-‘ and yf-ﬁrl is longer
than the left-maximal match between yf and yf-‘_l. Again,
observe that yff has a left-maximal match starting at d[i +
1] with all the haplotypes between positions i + 1 and g,
where ¢ is the largest position after i, such that
di[j] < dyli + 1] for each i<j<gq. In conclusion, y¥ may
have a set-maximal match ending at k with all the haplo-
types from position i + 1 to position g. Haplotype yf-‘ has an
actual set-maximal match with all of these haplotypes if
each one of their characters at position k + 1 is different
from the character at position k + 1 of haplotype y*. On the
contrary, if even one of those characters is equal to
y¥[k + 1], then it will be possible to extend the match to the
right, hence, yf.‘ does not have a set-maximal match ending
at k with the considered haplotypes. The third case is when
dili] = di[i + 1]. Tt is easy to see that this case is the
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combination of the other two cases, and hence, the set-
maximal matches of haplotype y* ending at position k can
be found by scanning upwards and downwards in order to
find the two position p and g as described above. Figure 9
represents a panel of haplotypes on which two candidates
set-matches have been depicted.

Computing the set-maximal matches is performed while
scanning (or computing) the arrays a; and d; and checking
the characters at position k + 1 in the interval [p,i — 1] or
in the interval [i + 1, ¢], depending on the values d[i] and
di[i + 1]. Since we can stop the upward or downward scan
as soon as the check of the following characters fails, the
procedure requires O(nmt) time.

4.2.4 Set-maximal matches between an external haplotype
and X

The PBWT allows to compute the set-maximal matches of
an external haplotype z with respect to the panel X. Let ¢
be the starting position of the longest (left-maximal) match
ending at k between z and some haplotypes of X and let
ar[fx : gx) be the portion of ay related to such haplotypes.
While sweeping z from left to right, the algorithm com-
putes the values e, fi and g; from the values obtained for
k—1. More precisely, it scans the column yf=
(A 1Kk], - - -, y5-1[k]) of the k-th symbols in the ordering at
k—1 and at the same time maintains ci[o], the total
number of ¢ € X in y*, and wy (i, ¢), the number of char-
acters in the prefix y¥[1 : i] not greater than ¢ € X. Those
values allow to compute the interval [fi,gr) of ax (f it
exists) related to the subset of haplotypes in ax_[fi—1 :
gk—1) whose match with z starting at e; can be extended by
one position to the right (with character z[k]). For those
familiar with the FM-index, the procedure is similar to the
backward search operation. If f; <g, then there exists
some haplotypes (namely, those indicated by ax[fi : g«))
such that the match can be extended to position k while
keeping the starting position at e;_;, hence, we can set
ex = er—1. Otherwise, if f; = g, then no match with hap-
lotypes in ax_1 [fi—1 : gxk—1) can be further extended. Hence,
the haplotypes ax—i[fr—1 : gk—1) have a set-maximal match
with z from e;_; to k — 1 and such matches are reported. In
this case, the algorithm must find the new values ey, fi, and
g and go on through sweeping z. Let g be the current value
of fi. Since it is possible to prove that z is between hap-
lotypes y5_; and y% in the ordering at k, the algorithm scans
the divergence array dj between those two haplotypes in
order to find the left-maximal match with z and, in that
way, computing the new values ey, f, and g;.

The running time is O(n) if we assume that ¢[-] and
wy (-, -) have been pre-computed (since they can be used to
find the set-maximal matches with different haplotypes
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external to the panel X), while it is O(nmt) if those values
must be computed.

4.2.5 Compact representation of the positional BWT

The first observation that allows to store the panel of
haplotypes in a compressed form is that the query algo-
rithms do not directly use the ai[i] indexes (that are
expensive to store since they are permutations of the range
1...m). Indeed, they use the permutation of the symbols in
column k based on the order of the revpref at that position.
Similar to the case of BWT (Burrows and Wheeler 1994),
such a permutation tends to form long runs of symbols (as
those symbols are preceded by similar revprefs) that are
highly compressible. The information needed to compute
the extension of matches (i.e., the rank of the symbols) is
similar to those used by the FM-index (Ferragina and
Manzini 2005) and thus, can be stored using similar tech-
niques. Using the rank information is also possible to
recover the a; arrays (for reporting purposes) from their
sampled representation with negligible impact on perfor-
mances. Finally, the divergence arrays can be represented
as differences between adjacent values. Indeed, adjacent
values are similar with high probability, hence, most of the
differences should be close to zero and can be represented
with fewer bits. In his experiments, Durbin (2014) reports
that the GZip-ed storage of the panel requires from ~ 6 to
~ 133 times the space required by the PBWT, with the
ratio be more favorable as the number of haplotypes
increases.

4.3 The graph BWT

Observe that the PBWT stores haplotype sequences by
encoding which allele each haplotype contains at each
position. We can interpret it as a pangenome graph repre-
sentation restricted to graph topologies where each vertex
at position 7 is connected (only) to each vertex at position
i+ 1. The approach was later generalized to arbitrary
topologies in the graph extension of the PBWT (Novak
et al. 2017). The Graph BWT (GBWT) (Sirén et al. 2020)
discussed in this section simplifies the graph extension and
makes it more efficient by reducing the problem to
indexing strings.

One of the main goals of the GBWT is storing and
indexing a variation graph compactly, so that a good
locality of reference of the data is maintained. Global
information regarding the graph is kept to a minimum, and
is usually inferred from local, i.e., vertex-based, informa-
tion. To achieve this goal, the GBWT stores set of paths,
while the variation graph is only inferred from those paths.
While the vertices of a genome graph are labeled with a
string, the GBWT does not store the labels but only the
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topology of the graph, where each path is encoded as a
sequence of vertex identifiers (Fig. 12).

In other words, each path is a string over the alphabet of
vertices, and the graph is a collection of such strings. The
GBWT is essentially a multi-string BWT of the collection
of strings encoding the paths of the graph. To improve
locality of reference, we do not store the BWT as a single
string, but as a set of strings BWT,, each corresponding to
vertex v. The concatenation of all strings BWT, is the
entire BWT. The GBWT inherits the properties of the
multi-string BWT. Most notably, given a pattern (i.e., a
sequence of vertices) Q and the GBWT of a variation graph
G = (V,E, W), we can answer the following queries:

1. Determine if Q is a subpath of at least one path in W.

2. Count how many paths in W contain Q and determine
the identifiers of the matching paths.

3. Find the extensions of Q that are subpaths of a path in
W. We may be interested in all maximal extensions in a
subgraph, or we may want extend the most promising
matches iteratively as long as certain conditions hold.

For each vertex v, the GBWT stores the string BWT, and
some additional information to enable fast queries (see
Fig. 11).

While the BWT is usually based on sorting the suffixes
of the strings and listing the character preceding each suffix
in the sorted order, the GBWT works on the reverse strings.
It sorts the reverse prefixes of the strings and lists the
character following each prefix. Since the strings are the
paths of the graph, this allows us to extend a path in the
forward direction (that is, according to the path). Conse-
quently, for each vertex v, the substring BWT, corresponds
to the prefixes ending with v, that is the initial portions
terminating in v of all paths. Notice the analogy with the
fact that each symbol in a regular BWT corresponds to a
suffix of the string.

Definition 8 (Graph BWT) Let G = (V,E, W) be a vari-
ation graph where each walk (path) W; € W is a sequence
of vertices (v;1,vi2,...). Then, the graph BWT of G is the
multi-string BWT of the collection of strings

(wi = vivia - vigw : Wi = (vin, Vi, .- Vigw) € W)

(under the reverse prefix lexicographic ordering).

Clv] i’ =1i—Clv]

BWT,,

BWT,, |----- BWT,_;

BWT, |----- BWT,,,

Fig. 10 Partitioning the BWT into substrings BWT, corresponding to
vertices v € V and the representation of BWT offsets i as pairs (v, ')

(%) | vy

U3

v4, 2
vs5,0

6,0
i
3 Vg

Fig. 11 The record for vertex v3 with outgoing paths to v4, vs, and ve.
The top part of the record is the vertex identifier. The middle part
stores a pair (w, BWT.rank(C[v], w)) for each outgoing edge (v, w).
The bottom part is BWT, encoded using edge ranks. Observe that
there are two paths visiting vertex v4 from vertices smaller than vs.
Hence, record for vertex v3 stores the pair (v4,2)

Moreover, each string BWT, is the interval of BWT cor-
responding to prefixes of some w; that end with the vertex
V.

In the following, we describe the GBWT data structure.
Recall that we need to have a compact data structure with a
strong locality of reference, which is able to represent a
graph version of the LF-mapping of the usual string-based
BWT, since the LF-mapping is the main ingredient that is
used to answer the queries.

Given a graph G = (V,E, W), we store the ordered
sequence vy,...,v, of vertices. We write v<w if vertex
v € V is before vertex w € V in the ordering, and use v — 1
and v + 1 to refer to the predecessor and the successor of v
in that order. As pangenome graphs typically have an
almost linear structure, with |E| = O(|V|), we can use the
adjacency list representation for the graph and still obtain,
on average, O(1)-time access to each outgoing arc. For
each vertex veV, we store the string BWT, =
BWT|C[v] + 1 : C[v + 1]] that consists of the vertices fol-
lowing v in a path of W (see Fig. 10). This is based on the
same array C as used with the string BWT. For a vertex
v € V, the array stores the overall number of occurrences
of all vertices w such that w<v on all paths in W as C[v].

The actual data stored for each vertex v € V is the
following:

e The list N of vertices w such that (v, w) is an arc of G.
Notice that this list can be shorter than BWT, if there
are several paths traversing the same arc. For each
destination vertex w, we also store the number
BWT.rank(C[v], w) that is equal to the number of times
a path traverses an arc (v/,w) from a vertex Vv <v
(Fig. 11). In the BWT parliance, BWT .rank(i, ¢) for an
integer 1 <i<|BWT| and a character ¢ denotes the
number of occurrences of ¢ in the prefix BWTII : i].
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e String BWT, encoding all visits to vertex v. For each
visit, the string stores the next vertex w on the path.
The destination vertex is encoded as an arc rank i
such that N[i] =w. This reduces the space for
representing the visits from |BWT,|log |V| bits to
|IBWT,|logd bits, where d is the outdegree of v.
Since d is constant on the average, a constant number
of bits per visit suffices. Additionally, we run-length
encode the string BWT,, which can further reduce the
space usage if the paths are similar enough (see
Sect. 5.2 for a discussion and the definition of run-
length encoded BWT).

To avoid storing the array C explicitly, we use (v, ) to refer
to the BWT offset BWT]i]. Here v is a vertex such that
Clv]<i<C[v+ 1] and i’ = i — C[v] is the relative offset in
BWT, (see Fig. 10). This simplifies the computation of the
values BWT .rank(i, w) that are needed for answering quer-
ies. Since i = C[v] + 7, we compute BWT.rank(i,w) as
BWT .rank(C[v],w) + BWT,.rank(i',w), where the first
term is stored in the record for vertex v. The second term,
BWT, .rank(/, w), is the number of occurrences of w in the
substring BWT, until relative offset . If the assumptions
about the structure of the graph hold, we can compute it
efficiently with a linear scan of the compressed BWT,.

The key function for answering queries in a BWT is the
LF-mapping LF(i,w) = C[w] + BWT.rank(i, w)—see
Sect. 4.1. Following our discussion on the substrings
BWT,, BWT offsets, and rank queries in the GBWT, we
can replace the first term C[w] with a reference to vertex
w. The second term BWT .rank(i, w) is the relative offset in
BWT,. It can be computed as BWT.rank(C[v], w)+
BWT, .rank (i, w), where 7' is the relative offset in BWT,.
Because all information needed for computing LF-mapping
is stored locally in vertex v, the memory locality of GBWT
queries is better than in ordinary FM-indexes. This is

(%) Vs
(U41 0) (’077 0)
(U51 0)
1 1
U1 9 1 U7
(U21 0) ($7 O)
(U3> O)
1 1
1 V3 Vg 1
2 (on 1) (0r.2) / !
1 1

Fig. 12 The GBWT in Example 2. As in Fig. 11, the top part of each
record is the vertex identifier v. The middle part stores a pair
(w, BWT.rank(C[v], w)) for each outgoing edge (v, w). The bottom
part is BWT, encoded using edge ranks
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especially true if we store adjacent vertices near each other
in memory.

Example 1 Consider the record for vertex v; in Fig. 11.
Let us compute the LF-mapping value LF((v3,4),v4).
Recall that LF(i,c) is the the number of suffixes smaller
than or equal to a hypothetical suffix that starts with ¢ and
continues with the suffix corresponding to offset i. In the
GBWT, LF((v,),w) = (w,j), where j is the number path
prefixes ending with w that are (in reverse lexicographic
order) smaller than or equal to a hypothetical prefix that
starts with the prefix corresponding to (v, i) and ends with
w. We compute j as the sum of visits to vertex w from
vertices smaller than v and the number of times a path
visiting v at offset k <i' continues to w. The former is
stored in the record for vertex v and the latter can be
computed from BWT,. Since v4 has 2 visits from vertices
with indexes less than v3 and there are 3 occurrences of vy
(edge rank 1) in  BWT,[1:4], we get
|_|:((V3,4->7 V4) = (\/’47 5)

Example 2 Figure 12 illustrates the GBWT of the graph
induced by three paths S;,S»,S53, one colored purple and
consisting of vertices vy, v, v4, Vg, V7, One green and con-
sisting of vertices v, v, vs,v; and finally the orange one
consisting of vertices vy, vs,v4,vs,v7. The encoded BWT
substrings BWT, for each vertex v are:

e v : 112 corresponding to order (S, S,,S3) of the paths,
with the edge of rank 1 to v, and edge 2 to vs;

e v, : 12 corresponding to paths (S, S;), with edge 1 to vy
and 2 to vs;

e v;: 1 corresponding to paths (S3), with edge 1 to vg;

e v, : 21 corresponding to paths (S}, S3), with edge 1 to vs
and 2 to vg;

e s : 11 corresponding to paths (S,,S3), with edge 1 to
V73

e s : 1 corresponding to paths (S;), with edge 1 to vy;
and

e v;: 111 corresponding to paths (Sz,S3, S1), with edge 1
to nowhere.

Example 3 Let us examine another example consisting of
paths S1,82,83,84 where S| =vi,vo,v4, So =vy,Vvo, V4,
S3 = vi1,v2,v3, and Sy = vy, v3,v4. The substrings BWT,
for each vertex are:

e v : 1112 corresponding to paths (Si,S,,S3,5;), with
edge 1 to v, and 2 to v3;

e v, : 221 corresponding to paths (S, S,, S3), with edge 1
to vz and 2 to vy,
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Fig. 13 The GBWT from

Example 4 /02

v U o) U4
! 2.0 (1.9) (5,0
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;LC) y EQ,t 1$
1, 1,c

s PN g Y3

e v;3: 21 corresponding to paths (Ss,S3), with edge 1 to
nowhere and 2 to v4; and

e v, : 111 corresponding to paths (S, S,, S4), with edge 1
to nowhere.

Another version of the GBWT (Gagie et al. 2017) is a
more direct generalization of the positional BWT (Durbin
2014) to graphs. Conceptually, we have a pangenome
graph representing some variation using graph topology,
with an option to represent rare or less important variants
as alternate alleles using another alphabet 2. The strings
are now over alphabet V x X. Each character (v, c¢) rep-
resents a visit to vertex v € V with allele ¢ € 2. Again, we
can encode successor vertices with ranks. If N[i| =w,
character (w, c¢) becomes (i, ¢) in the BWT.

Example 4 Let us consider now the version that includes
the alphabet symbols along the path. We have four paths:
Sy = (vi,1)(va2,¢)(va, &), Sy = (vi,¢)(va,1)(v4, €),
S3 = (v1,8)(va,¢)(v3,8), and Sy = (vi,¢)(v3,1)(va,c). In
order to use allele symbols in the first real vertex v;, we
start all paths from a special vertex vo. The BWT is:

e vo:(L,6)(1,¢)(1,8)(1,¢) corresponding to paths
(51752753,&1), with edge 1 to vy;
e v :(L,6)(2,1)(1,¢)(1,¢) corresponding to paths

(82,84, 83,51), with edge 1 to v, and edge 2 to vs;

e v;:(1,8)(2,8)(2,c) corresponding to paths (S3, 1, S2),
with edge 1 to v3 and edge 2 to v4;

* v3:(2,¢)(1,8) corresponding to paths (S4,S3), with
edge 1 to nowhere and edge 2 to v4; and

o v, :(1,8)(1,9)(1,$) corresponding to paths (2,51, S4),
with edge 1 to nowhere.

See Fig. 13. Note that in this version of the GBWT, the

order of path visits in each BWT,, is affected by both the
predecessor vertex v and the allele symbol c.
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Table 1 Sequence length and n/r statistic with respect to number of
whole genomes for six collections in the 1,000 Genomes Project
(1KG) and long-read assembly (LRA) datasets. The table originates
from Kuhnle et al. (2020) and is recreated here with permission from
the authors

No. of Genomes Sequence Length (MB) nlr

1IKG LRA 1IKG LRA
1 6072 6072 1.86 1.86
2 12,144 12,484 3.70 3.58
3 18,217 17,006 5.38 4.83
4 24,408 22,739 7.13 6.25
5 30,480 28,732 8.87 7.80
6 36,671 34,420 10.63 9.28

5 Indexing in sub-linear space

Differently from the previous section, we will now discuss
a pangenome representation that is not based on graphs, but
it relies on the fact that the concatenation G - - - G, of a set
of g genomes can be viewed as a highly-repetitive string
S[1 : n]—each G; is a substring of S and terminates with a
deliminator. The data structure we present, the r-index,
allows to answer two fundamental queries: counting the
number of occurrences in a pattern in S (count), and
locating those occurrences in S (locate). More complicated
queries, such as aligning a sequence read to collection of
genomes, can be broken down into count and locate
queries. While linear-space indexes—such as the FM-index
(see Sect. 4.1)—are well known, they do not fully exploit
the repetitive nature of large pangenomes. For example,
two terabytes of data would roughly require two terabytes
of memory to construct the FM-index. Hence, there has
been significant effort in reducing the space requirement of
the FM-index while still maintaining the efficiency of
performing count and locate queries. In this section, we
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denote with P the query string or pattern to be P, and the
number of occurrences of P in S as occ.

The main observation is that on large and repetitive data
the BWT frequently has long equal-character runs that
could be exploited in order to reduce the size of the con-
struction. We denote r as the number of equal-character
runs in the BWT. Typically, the measure of n/r describes
the extent of repetition in the data and thus, the amount of
compression any representation that is dependent only on
r will obtain—the larger the value, the more compression
will likely be obtained. Table 1 illustrates how n/r varies as
the size and number of genomes varies. In a step toward
achieving a more efficient construction of the BWT,
Mikinen and Navarro (2005) defined the Run-Length
Burrows—Wheeler Transform (RLBWT).

Definition 9 Given an input string S[1 : n], the run-length
encoded BWT of S is the representation RLBWT(L : r] of
the BWT where each run is represented as the character of
the run and its length and where r is the number of max-
imal equal-character runs in the BWT, e.g., runs of A’s, C’s
and so forth.

The RLBWT can be constructed in a manner that it does
not become much slower or larger even for thousands of
genomes, which is demonstrated in the following result.

Theorem 1 (Mdkinen and Navarro 2005) Given an input
string S[1 : n], we can construct its RLBWT in O(r)-space
such that we can count the number of occurrences of any
pattern P[1 : m] in O(mlogn)-time.

A compact representation of the RLBWT of the BWT of
a string S consists of a string containing a single character
for each run in the RLBWT and a bit vector that marks the
beginning of the runs with a 1 (Mékinen et al. 2010). For
example, given the BWT = TGCATTAA of the string
GATTACAT the RLBWT can be represented with the
character string TGCATA and bit vector 11111010. To
complete the construction of an FM-index we need also the
construction of the suffix array samples in O(r) space while
allowing for efficient queries; this step has remained more
elusive. The index of Mikinen and Navarro can support
count queries in O(r)-space, in order to support locate
queries in time proportional to s, where s is the distance
between two samples, they require O(n/s)-space for the
SA samples. In practice, these SA samples are orders of
magnitude larger in size than the RLBWT. Hence, it was
unclear how to sample the SA in a manner that the locate
queries were efficient but the sampling of the SA was
efficient in practice. More than a decade later, Policriti and
Prezza (2017) showed that for a given string S[1 : n] and a
query string P[1 : m], how to find the interval in the BWT
containing the occ characters preceding occurrences of P in
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S in O(mloglogn)-time and O(r)-space. This result,
referred to as the Toehold Lemma, demonstrates how to
find one SA sample in the interval containing a query string
P. However, it does not fully support locate queries, i.e.,
locate all occ SA samples within that interval. This was
solved two years later by Gagie et al. (2020) when they
combined the Toehold Lemma, RLBWT of Mikinen and
Navarro (2005), and the definition of ¢ to show how to
support locate queries in O(r)-space. In summary, they
give the following result.

Theorem 2 (Gagie et al. 2020) Given an input string
S[1 : nl, it is possible to store S in O(r) space so that we
can find all the occ occurrences of any pattern P[1 : m] in
S in O((m + occ) loglog n)-time.

The authors refer to the data structure behind this result
as the r-index. More precisely, the r-index is an evolution
of the FM-index and it consists of the RLBWT and a SA
sampling that stores the SA values in the positions corre-
sponding to the beginning and the end of every equal-
character run in the RLBWT (Gagie et al. 2020). The
elucidation of the r-index was deemed to be a significant
breakthrough as it indicates how the SA can be sampled in
space proportional to r while allowing for efficient locate
queries. However, in some sense it lacked practicality
because it was unclear how to efficiently construct it for
large genomic databases. Lastly, it it worth nothing that
since the introduction of the r-index, other sub sampling
approaches have been described and shown to gain
improvements in practice (Cobas et al. 2021).

5.1 How to construct the r-index

As previously mentioned, Gagie et al. (2020) did not
describe how to build the r-index — this was shown in a
series of papers (Kuhnle et al. 2020; Mun et al. 2020;
Boucher et al. 2019). In particular, Boucher et al. (2019)
introduced Prefix Free Parsing (PFP), which takes as input
a string S, window size w, and a prime p and produces a
dictionary of substrings of S and a parse of S, that is a
sequence of substrings in the alphabet (Kreft and Navarro
2013) — and showed how to build RLBWT from the dic-
tionary and parse. Throughout this section, we denote the
dictionary as D and the parse as P. It was later shown how
to build the SA samples in addition to the RLBWT by
Kuhnle et al. (2020).

We first describe how to construct the dictionary and
parse using PFP. The first step of PFP, is to append and
prepend w copies of # to S, where # is a special symbol
that is lexicographically smaller than any element in the
alphabet. Hence, given a string S, we augment it to contain
#"S#". We note that this definition is equivalent to the
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Fig. 14 Dictionary and parse of
the set GATTACAT,
GATACAT, and
GATTAGATA of genomes for
w=2

Input genomes
Trigger strings

Concatenation

Covering substrings

rDictionary Rark |
##GATTAC 1
ACAT# 2
AGATA# 3
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T#GATTA )
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original that considers the circular string S#". Next, we
define the set of trigger strings T to consist of the string #"
and all w-length substrings of S whose hash is congruent to
0(mod p) — any hash function can be used. The dictionary
D ={d,,...,dp} is the largest set of all substrings of
#"S#" such that the following holds for each d; in D:
exactly one proper prefix and exactly one proper suffix of
d; are trigger strings, and no other substring of d; is a
trigger string, where a proper prefix or suffix is one that is
non-empty. Notice that D can be obtained by traversing
S from right to left, and extracting the list of substrings
(called covering substrings) that begin and end with a
trigger string and contain no other trigger string. Then, the
dictionary D is computed by removing duplicated covering
substrings and sorting them lexicograpically. Finally, given
our dictionary, we determine the parse P by replacing each
covering string with its rank in the dictionary D.

From the dictionary and parse, we can construct some
auxiliary data structures in time and space that are linear in
the size of D and P, including the BWT of P and the SA of
D. Next, we lexicographically sort the proper suffixes of
the substrings in D that have length at least w, and store
their frequency in S. For each such suffix «, all the char-
acters preceding occurrences of o in S occur together in
BWT, and the starting position of the interval containing
them is the total frequency in S of all such suffixes lexi-
cographically smaller than «. It may be that o is preceded
by different characters in S, because o is a suffix of more
than one substring in D but then those characters’ order in
BWT is the same as the order of the phrases containing
them in the BWT of P. These observations lead to the
following result.

Theorem 3 (Kuhnle et al. 2020) Given an input string S,
we can compute RLBWT and SA samples in space and

GATTACAT, GATACAT, GATTAGATA
w=2, T = ##, AC, T#, AG
##SH## —#H#GATTACAT#GATACATHGATTAGATA##

277 TN\

##GATTAC ACAT# T#GATAC ACAT# T#GATTAG AGATA##

time linear in the size of the dictionary and parse con-
structed from PFP.

Next, we use the example in Fig. 14 to give some
intuition as to how to build the suffix array and BWT from
the dictionary and parse. We remind the reader that suffix
array considers all possible rotations of S in lexicographical
order. These rotations can be obtained using D and P. To
see this, let us consider an expanded form of D where we
consider all suffixes of D that have length greater than w,
D' = {##GATTAC, #GATTAC, ..., TAG}. We can now restate
the goal as to how put all sequences of D’ in lexico-
graphical order. To see how to accomplish this, we con-
sider all sequences in D' from the first sequences in D,
##GATTAC, #GATTAC, GATTAC, ATTAC, TTAC, and TAC, and
how to place the second sequence #GATTAC in lexico-
graphical order. To accomplish this we need to consider
three cases: (1) if #GATTAC is a prefix of another sequence
in D', (2) #GATTAC is a suffix of another sequence in D', or
(3) neither is true. Because #GATTAC ends with a trigger
strings, it follows that the first case cannot occur. Hence,
we only need to consider (2) and (3). If #GATTAC is unique
to the first sequence in D then it follows that we can place it
in lexicographical order without considering P. However,
if #GATTAC is a suffix of another sequence then P can be
used to identify the correct lexicographical order. Hence, as
the name suggests, that the parse produced by PFP has the
property that no suffix of length greater than w of any string
in D is a proper prefix of any other suffix in D, which is
useful for avoiding the difficult cases in producing the
suffix array and BWT.

Lastly, we mention that PFP only requires one sequen-
tial pass through S and thus, can be easily parallelized and
performed in external memory. Moreover, it has been
recently shown by Boucher et al. (2021) that the products
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of PFP can be viewed as data structures and be extended to
support the following still in O(|P| + |D|)-space: longest
common extension (LCE), SA, longest common prefix
(LCP) and BWT.

5.2 How to query the r-index

As previously mentioned, the basic r-index can support
both count and locate queries but it does not immediately
enable finding alignments between query sequences (e.g.,
new sequence reads) and reference genomes efficiently. To
support these queries, we need to revisit how traditional
read aligners use the FM-index (or another index that can
perform efficient count and locate queries); after building
an index from a small number of reference genomes,
majority of them find short exact matches between each
read and the reference genome(s), and then extend these to
find approximate matches for each entire read. Maximal
exact matches (MEMs), which are exact matches between a
read R and genome G that cannot be extended to the left or
right, have been shown to be effective seeds for finding full
alignments (Li 2013; Miclotte et al. 2016; Vyverman et al.
2015).

Definition 10 Given a genome G[1 : n] and a sequence
read R[1 : m], a substring R[i : i + ¢ — 1] of length £ is a
Maximal Exact Match (MEM) of Rin Gif R[i : i + ¢ — 1]
is also a substring of G, but R[i —1:i+ ¢ — 1] and R[i :
i + ¢] are not substrings of G.

Fig. 15 An illustration of the
thresholds and matching
statistics for identifying pattern
R (left) in the string S (right).
We give the longest prefix of the
suffix of R that occurs in S, its
length (1en), and its position

S (pos). We give the SA, LCP, R = TATACAT

;he thresholds (THR) and BWT R Prefix M POS

or S. The longest common

prefix between each consecutive T TA 2 4

rotations of S is highlighted in

red A AT 2 7
T TACAT 5 13
A ACAT 4 14
C CAT 3 15
A AT 2 16
T T 1 17
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Computing MEMs is equivalent to computing matching
statistics for R (Bannai et al. 2020) which gives, for each
position i of R, the length of the longest substring of
R starting at position i that is also a substring of G, and the
initial position in G of such a substring. We now define
formally this notion as follows:

Definition 11 The matching statistics of R with respect to
S is an array M([1 : |R|] of (pos,len) pairs such that: (1)

S[M{i].pos : M[i].pos + M[i].len — 1] = RJ[i : i + M]i].len — 1]
; and (2) RJ[i : i + M[i].len] does not occur in S.

We can compute the matching statistics using a simple
two-pass algorithm: first, working right to left, for each
suffix of R we find the position in S of an occurrence of the
longest prefix of that suffix that occurs in S; then, working
left to right, we use random access to S to determine the
length of those matches. After computing the positions and
lengths, you can find the MEMs in a left to right pass of the
matching statistics. We note that it is not difficult to see
that left to right pass to calculate the lengths and the left to
right pass to calculate the MEMs can be done simultane-
ously. In Fig. 15 we have a query string R = TATACAT and
S = GATTACATS$GATTTACAT#. The position (POS) in the
suffix array are determined from a right to left pass (which
we describe later). For example, we consider the longest
common prefix of the suffixes in the following order: T,
AT, CAT, ..., TATACAT. Considering, ATACAT, which is
the second to last suffix considered, we see the longest
common prefix of ATACAT that occurs in S is AT and one

S = GATTACAT$GATTTACAT#

SA LCP THR BWT

A T
19 0 = x T #GATTACAT$GATTTACAT
9 0 T $GATTTACAT#GATTACAT
15 0 T ACAT#GATTACAT$GATTT
5 4 T ACAT$GATTTACATH#GATT
17 1 C AT#GATTACATSGATTTAC
7 2 C AT$GATTTACAT#GATTAC
2 2 G ATTACATSGATTTACATH#G
11 2 G ATTTACAT#GATTACATS$G
16 0 * A CAT#GATTACATSGATTTA
6 3 A CAT$GATTTACAT#GATTA
1 0 =x # GATTACAT$GATTTACAT#
10 4 $ GATTTACAT#GATTACATS
18 0 A T#GATTACAT$GATTTACA
8 1 A TSGATTTACAT#GATTACA
14 1 x T TACAT#GATTACATSGATT
4 5 T TACATSGATTTACAT#GAT
13 1 T TTACAT#GATTACATSGAT
3 6 A TTACATSGATTTACAT#GA
12 2 A TTTACAT#GATTACAT$GA



Computational graph pangenomics: a tutorial on...

101

of the occurrences is at position 7 in the suffix array. Next,
we can go from left to right to find the lengths and thus, the
length of longest match. For example, if we consider
ATACAT, we go to S[7] and extract all characters until we
have a mismatch. On first consideration this may appear to
be slow in practice but as Bannai et al. (2020) pointed out,
using a compact data structure that supports random access
to S in O(loglogn)-time, this can be accomplished in
O(mloglogn)-time and small space. We should note that
after finding the position, say p, of a single MEM ¢ can be
used to access the SA from p and find all MEMs.

Given the definition of matching statistics, the next
question arises as to how to compute them efficiently. A
small auxiliary data structure that gives random access to
S is needed for computing the lengths of the matches. Thus,
we need an auxiliary data structure to compute positions—
we will clarify why this is needed using our previous
example. Given our string R = TATACAT, we assume that
we have found the position in S of the longest prefix of the
suffix of ACAT, which is the string itself and occurs in S at
position 14. We next move to right by one position and
attempt at finding the longest match for TACAT, this can be
accomplished using the backward search algorithm. This
allows us to obtain the position 13 for TACAT. Next, we
attempt to extend this match by the rightmost character (&)
using backward search and we see that we have a mismatch
as ATACAT does not occur in S so we are stuck and it is not
obvious how to continue computing the matching statistics
at the position. Bannai et al. (2020) devised the ingenious
concept of thresholds that guides the computation of the
matching statistics at such points. Collectively, the
thresholds is a small data structure that stores a position for
each pair of consecutive runs of the same character in the
BWT, where the position corresponds to the minimum LCP
value in the interval between them. For example, in
Fig. 15, we see that there exists a threshold at position 16
because it has the smallest LCP value between the run of
T’s ending at 17 and the run of T’s starting at 14. If R[i —
1 : j] matches to some position within the range of 17 to 14
but there does not exist a match to TR[i — 1 :j], then we
know the longest common prefix with TR[i — 1 : j] is either
at the position of the last T of the preceding run of T’s or
the first position of the succeeding run of T’s. The
thresholds act as a guide to which of these positions it is. If
the previous match is a position prior to the threshold then
you jump up to the previous run and if it is below the
threshold then you jump down to the previous run (Bannai
et al. 2020). How to construct efficiently the thresholds
with the r-index has been later accomplished (Rossi et al.
2021), thanks to an equivalent definition of thresholds
(Definition 12), as an addition to PFP.

Definition 12 Given a text S, let BWTJ/’ : j] and BWT[k :
k'] be two consecutive runs of the same character in BWT.
We define a position j<i <k to be a threshold if it corre-
sponds to the minimum value in LCP[j + 1 : k].

In Fig. 15, we illustrate the thresholds and matching
statistics. Revisiting our previous example, we see that the
current match of TACAT will occur at position 13 and
ATACAT does not occur within S. 13 is below the threshold
for A (14) so jump down to position 3 and then continue
with backward search. Together these concepts summarize
how MEM queries can be supported using the r-index:

e Construct the r-index with thresholds using the version
of PFP of Rossi et al. (2021)

e Given a sequence read R calculate the matching
statistics of R using the thresholds.

e Find the MEMs for R using the two-pass algorithm
defined above.

Lastly, we note that other exact matches—such as match-
ing k-mers—can be used as seeds for alignment and be
found nearly identically to that of MEMs in the r-index.

6 Application scenarios in pangenome
graphs

In the following we discuss

frameworks.

specific application

6.1 Haplotype and genotyping in pangenomics
and pantrascriptomics

The data structures presented in the tutorial have various
application in the analysis of haplotypes and in genotyping
variants at population scale level. The Graph Burrows—
Wheeler Transform has been recently used by Sirén et al.
(2020) to efficiently build a whole-genome index of 5,008
haplotypes of 1IKGP (The 1000 Genomes Project Consor-
tium 2015). It is important to note that the GBWT pre-
sented by Sirén et al. (2020) is different from the original
graph positional BWT proposed by Novak et al. (2017)
and leads to a more practical and efficient representation of
haplotype-aware indexes, i.e., indexes of pangenome
graphs where paths represent the distinct haplotypes in the
individuals. These indexes are becoming extremely useful
in many applications, since haplotypes are able to distin-
guish specific SNPs that are relevant in personalized
medicine. Sibbesen et al. (2021) used the GBWT to rep-
resent a pangenome graph for haplotypes that is annotated
with the additional information of a splicing graph. Then
quantification of transcripts from RNA-seq data is obtained
by taking into account the haplotype information and then
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Toy example: 2 viral haplotypes
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Fig. 16 A toy example to illustrate the process of viral haplotype
assembly. In this example, the task is to obtain the genome variation
graph (a viral pangenome) by reconstructing the viral haplotypes from
sequencing data, with haplotypes present at different abundances
(here 30 vs. 70%). Stars below the original sequences indicate the
three positions where the two haplotypes differ. The three data
structures involved in the assembly process are (1) an overlap graph,
where vertices represent sequencing reads and arcs indicate suffix-

by implementing an RNA-seq aligner to the pangenome
graph. The alignment of RNA-seq data to splicing graphs is
a problem originally considered by Denti et al. (2018). A
splicing graph is a graph representing a collection of
transcripts and their relation in terms of shared exons.
Vertices in the splicing graph are usually exons and edges
connect exons that are consecutive in some tran-
script (Beretta et al. 2014).

The main idea of Sibbesen et al. (2021) is to represent
the exons of a splicing graph directly in a pangenome graph
by mapping exons to haplotype sequences of the pangen-
ome graph. In this way, they propose a tool for mapping
RNA-seq data that is able to take into account haplotype
variations in the analysis of transcripts.

6.2 Viral haplotype reconstruction

Another application of computational pangenomics arises
in viral genome assembly. During infection, viruses repli-
cate their genome billions of times using error-prone
replication machinery, hence many of the resulting gen-
omes are inexact copies. These are also referred to as viral
haplotypes, which together form a viral pangenome. In
order to study characteristics such as virulence or drug
resistance and to design effective treatments, it is important
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prefix overlaps; (2) a de Bruijn graph, where vertexs represent k-mers
and arcs indicate overlaps of length k — 1; (3) a variation graph, first
constructed from the extended sequences (contigs) obtained through
genome assembly, which can be transformed into a genome variation
graph that represents the full-length haplotypes. Note that this
example is a simplistic representation of reality: sequencing errors
are not shown, hence all overlaps between reads are exact

to identify the different haplotypes present during infec-
tion. This can be done through genome sequencing, which
produces a collection of short genomic fragments (reads)
from all haplotypes, combined in a single data set; the goal
of viral haplotype reconstruction is to identify all haplo-
types present and to estimate the corresponding relative
abundances.

One of the main challenges in viral haplotype recon-
struction is the large amount of reads and the high degree
of similarity between those reads. This requires highly
efficient graph construction algorithms. Another challenge
is to capture the variation within a sample while carefully
filtering out any sequencing errors. These challenges are
addressed using different types of graphs and benefit
greatly from advances in pangenome representations.
Below, we describe how different data structures have been
used for viral haplotype reconstruction and the advantages
and disadvantages of each approach. Figure 16 then pre-
sents an instance of a viral sequence data set to illustrate
the data structures presented.

6.2.1 Overlap graphs in viral haplotyping

Viral haplotype reconstruction makes use of overlap
graphs. Observe that the precise definition of the arcs in an
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overlap graph can be adjusted to the application: for
example, a minimal overlap length threshold ¢ and maxi-
mal mismatch rate ¢ can be imposed, meaning that only
overlaps of length L > § with less than ¢L mismatches give
an arc in the overlap graph. In general, complex assembly
tasks such as viral haplotype reconstruction require strict
arc criteria.

The main idea of approaches that make use of overlap
graphs (e.g., Baaijens et al. 2017; Chen et al. 2018; Topfer
et al. 2014) is that arcs in the graph connect reads origi-
nating from the same haplotype. Overlaps between reads
are often inexact (i.e., Hamming distance > 0) due to
sequencing errors. To accommodate such overlaps in the
overlap graph, the maximal mismatch rate ¢ should reflect
expected sequencing error rates. Furthermore, by choosing
a relatively large 0 one can avoid short overlaps that occur
by chance. Finally, base calling quality scores can be used
to compute the probability that a pair of overlapping reads
originate from the same haplotype; after removing any
edges where this probability is below a certain threshold,
viral haplotypes can be identified through clique enumer-
ation on the overlap graph (Baaijens et al. 2017; Chen
et al. 2018; Topfer et al. 2014).

The biggest challenge in working with overlap graphs is
the graph construction step since the number of potential
overlaps is quadratic in the number of input sequences.
Naively checking whether a given pair of sequences have
any overlap takes O(I?) time, where [ is the sequence
length. Therefore, checking all possible overlaps this way
would take O(/’n?) time, with n the number of input
sequences. Luckily, there are more efficient algorithms to
do this computation. Exact overlaps can be computed
efficiently using an FM-index, but this does not work for
inexact overlaps. Instead, one can use suffix filters in
combination with an FM-index to find approximate over-
laps; theoretical runtime remains O(/’n?) but is much faster
in practice (Kucherov and Tsur 2014; Vilimilki et al.
2010). This is an exact solution to the approximate suffix
prefix overlap problem: it guarantees finding all overlaps
within specified Hamming distance. Alternatively, heuristic
approaches like minimap2 (Li 2018) enable a more effi-
cient, yet approximate, solution to overlap graph
construction.

6.2.2 De Bruijn graphs in viral haplotyping

A de Bruijn graph stores the information from the
sequencing reads in the form of k-mers: each vertex rep-
resents a k-mer occurring in the reads, and arcs indicate
exact suffix-prefix overlaps of length k — 1. Such a graph
captures shared sequence between haplotypes by collapsing
identical k-mers and genome assembly is performed by

merging simple paths into so-called unitigs. De Bruijn
graphs are constructed by enumerating and counting all k-
mers present in the sequencing reads; most algorithms
make use of either sorting (e.g., Kaplinski et al. 2015;
Kokot et al. 2017) or hashing (e.g., Chikhi et al. 2016;
Mohamadi et al. 2016) to solve this task efficiently.

In the application of viral haplotype reconstruction,
building a de Bruijn graph is very fast because the number
of input reads is small compared to mammalian genomes.
The main challenge in working with de Bruijn graphs in
this setting, is distinguishing sequencing errors from
genomic mutations. Standard de Bruijn graph-based
assembly algorithms eliminate sequencing errors from the
graph by removing low-frequency k-mers. This approach is
not suitable for viral haplotype reconstruction, because
low-frequency k-mers can also correspond to low-fre-
quency haplotypes. To avoid this issue, some methods
attempt to remove sequencing errors before de Bruijn
graph construction by applying error correction software
tailored to viral sequencing data (Freire et al. 2020; Mal-
hotra et al. 2016). Alternatively, information on differential
coverage (i.e., differences in relative abundance between
haplotypes) has been used to deconvolute the de Bruijn
graph into haplotype assemblies (Fritz et al. 2021).

6.2.3 Variation graphs

Finally, variation graphs are very suitable representations
of the genomic diversity found in a viral infection. Given a
collection of viral haplotypes, a variation graph can be
obtained using the construction techniques discussed ear-
lier. Each viral haplotype can be stored as a path through
the graph and relative abundances per haplotype can be
added as an additional feature.

In addition to being a suitable representation, variation
graphs can also be used as a data structure for haplotype
reconstruction. Although algorithms making use of overlap
graphs and de Bruijn graphs can assemble haplotype-
specific sequences (contigs), these are often unable to build
complete (i.e., full-length) haplotypes: contigs remain
shorter than the viral genome. In other words, the assembly
techniques described above provide only a partial solution,
which can be extended into a full solution using variation
graphs (Baaijens et al. 2019, 2020). These algorithms
construct a contig variation graph from a collection of
haplotype-specific contigs, such that the graph organizes
the genetic variation that is present in the input contigs.
The challenge of constructing this graph is that contigs can
have little or no overlap, as they may represent different
parts of the genome. Methods that have proven to be useful
in this context are VG-msga (Garrison et al. 2018) and
poa (Lee et al. 2002), both of which are based on multiple
sequence alignment. An alternative approach is to use an
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all-versus-all aligner like minimap2 (Li 2018) to find all
contig overlaps, followed by seqwish (Garrison et al. 2019)
for graph construction, but this requires careful filtering of
overlaps to obtain a clean graph.

The goal of viral haplotype reconstruction is to find the
genome variation graph which stores the haplotypes within
a viral population, along with an abundance function that
gives haplotype abundances. Existing approaches use
sequence-to-graph alignment to obtain vertex abundances,
from which the haplotypes and their relative abundances
are estimated by solving a combinatorial optimization
problem on the contig variation graph (Baaijens et al.
2019, 2020). Efficient and reliable variation graph con-
struction is key to algorithms like this.

7 Conclusions and open problems

This tutorial on computational pangenomics mainly focu-
ses on presenting the most relevant data structures that are
currently used to represent and index pangenomes to
facilitate several operations, such as the basic pattern
matching and computing matching statistics. After pre-
senting the computational problem of constructing a pan-
genome graph, we discussed how to face genotyping and
haplotyping inference and analysis within a pangenomics
framework. The most advanced techniques, namely the
positional BWT, the graph BWT, and the r-index have
been introduced in the literature recently, and therefore,
lead to some important research challenges, while their
application to computational pangenomics has been only
partially explored. We conclude this tutorial with a dis-
cussion on some open problems.

7.1 Computing a pangenome graph
from overlapping variation graphs

We described the problem of constructing a variation graph
in Sect. 3, and most notably as Problem 2, where the
instance is a multiple sequence alignment, and we have
noticed that the objective function is not always explicit.
Devising useful objective functions, adapting the formu-
lation to other instances or desired outcomes are all rele-
vant aspects whose study has already started, for example
by considering how to obtain a variation graph from an
overlap graph (Eizenga et al. 2021), which is usually
considered when assembling a linear genome. This prob-
lem is worthy of a deeper investigation, given its relation
with the genome assembly problem, as discussed in
Sect. 6.2.

An important limitation of current approaches is to
avoid complex graph configurations in the output, since
those are usually artifacts of the construction procedure,
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which are removed by manually tweaking some of the
parameters of the tool used for building the graph.

A limitation of the formulation that starts from a mul-
tiple sequence alignment is that all those sequences have a
symmetric role. Instead, it is interesting to exploit the
evolutionary history, usually represented by a phylogenetic
tree. In this case, we need to refine the objective function to
also consider the evolutionary aspects. A possible
metaproblem becomes the following.

Problem 3 (graph construction from evolutionary related
genomes) Let C a be collection of genome sequences and a
scenario of evolutionary events for the genomes. Then the
graph construction from evolutionary related genomes asks
to find a variation graph G that better explains the scenario.

A slightly different approach is based on considering
recombination events, which is especially relevant when
dealing with a pangenome of haplotypes. In this case,
instead of a phylogenetic tree we need to consider a sce-
nario of recombination events, as described by ancestral
recombination graphs (Shchur et al. 2019) or by founder
graphs (Ukkonen 2002; Mékinen et al. 2020).

In the following, we give three additional generic open
problems, where the specific objective function is not
specified, since it depends on the property of the data
involved.

Problem 4 (graph construction from contigs) Let C a be
collection of partially overlapping sequences (contigs).
Then the graph construction from contigs problem asks to
find a variation graph G that expresses all contigs in C.

We note that this problem is more general than Prob-
lem 2 since that problem requires the input sequences
appear as source-sink paths in the graph, while they appear
as any path in Problem 2. The reason is that we expect the
genomes to be highly similar, while contigs can have a
small overlap or no overlap at all since they can corre-
spond to different regions in the genome. This means that
methods that are based on computing a multiple sequence
alignment of contigs are not ideal, since the problem is too
hard. In fact, most of the available tools apply a progressive
alignment approach. Therefore, the results depend heavily
on the order in which the contigs are provided. If the initial
alignments regards non-overlapping sequences, then the
alignment is not very informative. Moreover, the number
of contigs is likely much larger than the number of gen-
omes, making the problem even harder to solve.

Problem 5 (graph construction from long reads) Let R a
be collection of long reads. Then, the graph construction
from long reads problem asks to find a variation graph
G that expresses all long reads in R.
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This problem is a variant of the problems on contigs or
on genomes. Recent sequencing technologies produce
reads of 10 to 50 thousand base pairs (Logsdon et al. 2020)
but are more error prone compared to short reads or to
assembled genomes (or contigs).

Related to these practical problems is the more theo-
retical problem of building a pangenome graph in sub-
linear space. For example, if we consider building and
storing a graph using the BWT, the question can be
sharpened: can we build and store a pangenome graph in
O(r) space and time, where r is the number of runs in the
BWT.

Problem 6 (graph construction in sub-linear space) Let S
a be collection of partially overlapping sequences (contigs,
genomes or read). Then the sub-linear graph construction
problem asks whether you can build a graph G that
expresses all sequences in S in sub-linear space and time.

7.2 Extending the PBWT and the GBWT
to missing and erroneous data

The genomes and haplotypes that are indexed by a PBWT
or a GBWT are assumed to be complete and error-free, but
this is not the case in practice, for multiple reasons
including that the raw data contain errors, the tools that
manage them are mostly heuristics, and some regions
might be absent in the reads. All these prospective issues
result in errors or missing data.

In the best case, errors in a genome or in a haplotype are
discovered and corrected; this means that we have to
update the PBWT or the GBWT, ideally without comput-
ing it from scratch and with a reduced the running time.
While there have been some efforts in that direction for the
GBWT (Sirén et al. 2020; Eizenga et al. 2020a) that make
feasible to update individual genomes in the GBWT, the
current state of the art on the PBWT is still lacking.
Moreover, it is still unclear what the effect is of a large
sequences of operations on the GBWT and on the repre-
sentations it uses. For example, some problems are (1) to
determine if we can build a sequence of operations such
that the numbers in the delta encoding explode, (2) if such
a sequence can appear in real cases, and (3) to develop a
self-balancing procedure that gives some guaranteed sub-
linear time complexity for each operation.

Since missing data are fairly common in haplotype
panels, it is not surprising that they have already been
studied in the context of the positional BWT, where they
are represented by a wildcard (Williams and Mumey
2020). A useful notion is that of a haplotype block, that is a
maximal interval of columns such that (1) a subset of rows
of the panel are identical, and (2) it is not possible to extend
the interval in any direction. When there are no missing

data, blocks can be easily computed using the PBWT.
Therefore, an interesting open problem is extending the
notion of PBWT to compute matches with missing data.
Currently, the complexity of computing blocks with wild-
cards has asymptotic runtime of O(nm) for each computed
block (Williams and Mumey 2020), with m the number of
rows and n the number of SNP columns of the haplotype
panel. An open problem is to compute blocks in a more
efficient way, i.e improving the O(nmT) time complexity,
where T is the total number of found blocks (Williams and
Mumey 2020). Another problem is how to compute
approximate blocks (i.e., with a small number of mis-
matches) using the PBWT.

A related problem is to extend the notion of haplotype
block to pangenome graphs. In this case, one of the main
difficulties is due to the fact that a block consists of por-
tions with the same coordinates, but the notion of coordi-
nates on graphs is not completely established. Moreover, it
is interesting to generalize some of the notions discussed in
Sect. 5.2 to problems taking as input a graph and a text. For
example, defining a proper notion of maximal exact match
(MEM) between a sequence read and a graph encoded in
the GBWT.

Finally, another problem is the design of a hierarchical
GBWT that takes the presence of nested structural variants
in the pangenome graph into account. Indeed, different
genomes may arise from the accumulation of variations. A
data structure that allows querying the graph structure at
different levels of detail could be useful to represent
complex structural variants.

7.3 Limitations of pangenome graphs

To provide a balanced point of view on pangenome graphs,
we point out some of its current limitations. One type of
limitations stems from the fact that stringology has been a
wildly successful research field — in particular providing
some text indexing techniques (e.g., suffix arrays and the
FM-index) that are efficient both in theory and in practice.
On the other hand, graph genomes are a recent idea,
spurning a research field that is still young. This means that
analysis on pangenome graphs becomes orders of magni-
tude slower than on linear references, and the impact of
such analysis needs to be assessed (Chen et al. 2021).
Recent research tries to ameliorate this shortcoming by
focusing on variant selection approaches that aim to reduce
the size of the pangenome graph and speed up map-
ping (Jain et al. 2021). With the maturation of the field of
computational pangenomics, it is expected that tools with
better performance will be developed.

Another issue, that is also present in genomics and
transcriptomics but is exacerbated in pangenomics, is that a
compact representation of several variants can easily result
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in including spurious variants. In the case of graph gen-
omes, this happens if we naively consider all possible paths
in a graph. For this reason, variation graphs also store the
set of paths corresponding to true variants. Still, the con-
struction of such true paths is not trivial, since it requires
the use of long reads (Logsdon et al. 2020)—in fact, short
reads usually are 100 to 300 base pairs long and only rarely
span more than one variant site, while long reads can be 10
to 50 thousand base pairs long. On the other hand, long
reads may have a higher rate of sequencing errors than
short reads; this may negatively affect the accuracy of read
mapping.

A final problem that we want to point out is the exten-
sion of pangenomic approaches to more diverse organisms
than humans, e.g., a pangenomic approach is also amenable
for plants. However, plant genomes present a variability
that is much higher than in humans. A recent study on
maize sequences showed that 40-50% of genomes is
unalignable between pairs of inbred lines (Sun et al. 2018),
while a much smaller percentage of human genome cannot
be aligned between individuals of different des-
cent (Choudhury et al. 2020b; Sherman et al. 2019). For
example, a recent study of African population revealed
about 3 million previously undescribed variants (Choud-
hury et al. 2020b) and Sherman et al. (2019) demonstrated
that approximately 10% DNA of an African pangenome
built on 910 individuals is not in the current human ref-
erence genome.

Acknowledgements We thank the anonymous referees for specific
comments that helped to improve the presentation of the tutorial. This
project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Sktodowska-Curie grant agreement No 872539 and No 956229.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Abouelhoda M, Kurtz S, Ohlebusch E (2004) Replacing suffix trees
with enhanced suffix arrays. J Discret Algorithms 2(1):53-86.
https://doi.org/10.1016/S1570-8667(03)00065-0

@ Springer

Baaijens JA, Zine El Aabidine A, Rivals E et al (2017) De novo
assembly of viral quasispecies using overlap graphs. Genome
Res 27(5):835-848. https://doi.org/10.1101/gr.215038.116

Baaijens JA, Van der Roest B, Koster J et al (2019) Full-length de
novo viral quasispecies assembly through variation graph
construction. Bioinformatics 35(24):5086-5094. https://doi.org/
10.1093/bioinformatics/btz443

Baaijens JA, Stougie L, Schonhuth A (2020) Strain-aware assembly
of genomes from mixed samples using flow variation graphs.
bioRxiv:645721. https://doi.org/10.1101/645721

Ballouz S, Dobin A, Gillis JA (2019) Is it time to change the reference
genome? Genome Biol. https://doi.org/10.1186/s13059-019-
1774-4

Bannai H, Gagie T et al (2020) Refining the r-index. Theor Comput
Sci 812:96-108. https://doi.org/10.1016/j.tcs.2019.08.005

Beretta S, Bonizzoni P, Della Vedova G et al (2014) Modeling
alternative splicing variants from RNA-seq data with isoform
graphs. J Comput Biol 21(1):16—40. https://doi.org/10.1089/cmb.
2013.0112

Berlin K, Koren S, Chin CS et al (2015) Assembling large genomes
with single-molecule sequencing and locality-sensitive hashing.
Nat Biotechnol 33(6):623. https://doi.org/10.1038/nbt.3238

Bonizzoni P, Dondi R, Klau GW et al (2016) On the minimum error
correction problem for haplotype assembly in diploid and
polyploid genomes. J Comput Biol 23(9):718-736. https://doi.
org/10.1089/cmb.2015.0220

Boucher C, Gagie T, Kuhnle A et al (2019) Prefix-free parsing for
building big BWTs. Algorithms Mol Biol 14(1):13:1-13:15

Boucher C, Cvacho O, Gagie T, et al (2021) PFP compressed suffix
trees. In: 2021 Proceedings of the Workshop on Algorithm
Engineering and Experiments (ALENEX). Society for Industrial
and Applied Mathematics, pp 60-72. https://doi.org/10.1137/1.
9781611976472.5

Burrows M, Wheeler DJ (1994) A block-sorting lossless data
compression algorithm. Tech. rep., Digital Systems Research
Center

Chen J, Zhao Y, Sun Y (2018) De novo haplotype reconstruction in
viral quasispecies using paired-end read guided path finding.
Bioinformatics 34(17):2927-2935. https://doi.org/10.1093/bioin
formatics/bty202

Chen NC, Solomon B, Mun T et al (2021) Reference flow: reducing
reference bias using multiple population genomes. Genome Biol
22(1):1-17

Chikhi R, Limasset A, Medvedev P (2016) Compacting de Bruijn
graphs from sequencing data quickly and in low memory.
Bioinformatics 32(12):i201-i208. https://doi.org/10.1093/bioin
formatics/btw279

Choudhury A, Aron S, Botigué LR et al (2020) High-depth African
genomes inform human migration and health. Nature
586(7831):741-748. https://doi.org/10.1038/s41586-020-2859-7

Choudhury A, Aron S, Botigué LR et al (2020) High-depth African
genomes inform human migration and health. Nature
586(7831):741-748

Claude F, Navarro G, Ordonez A (2015) The wavelet matrix: an
efficient wavelet tree for large alphabets. Inf Syst 47:15-32.
https://doi.org/10.1016/j.is.2014.06.002

Cobas D, Gagie T, Navarro G (2021) A Fast and Small Subsampled
R-Index. In: Proc. of the 32nd Annual Symposium on Combi-
natorial Pattern Matching, CPM 2021, pp 13:1-13:16

Compeau PE, Pevzner PA, Tesler G (2011) How to apply de bruijn
graphs to genome assembly. Nat Biotechnol 29(11):987-991

Computational Pan-Genomics Consortium (2018) Computational
pan-genomics: status, promises and challenges. Brief Bioinform
19(1):118-135. https://doi.org/10.1093/bib/bbw089


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1101/gr.215038.116
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1101/645721
https://doi.org/10.1186/s13059-019-1774-4
https://doi.org/10.1186/s13059-019-1774-4
https://doi.org/10.1016/j.tcs.2019.08.005
https://doi.org/10.1089/cmb.2013.0112
https://doi.org/10.1089/cmb.2013.0112
https://doi.org/10.1038/nbt.3238
https://doi.org/10.1089/cmb.2015.0220
https://doi.org/10.1089/cmb.2015.0220
https://doi.org/10.1137/1.9781611976472.5
https://doi.org/10.1137/1.9781611976472.5
https://doi.org/10.1093/bioinformatics/bty202
https://doi.org/10.1093/bioinformatics/bty202
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1038/s41586-020-2859-7
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1093/bib/bbw089

Computational graph pangenomics: a tutorial on...

107

Danecek P, Auton A, Abecasis G et al (2011) The variant call format
and VCFtools. Bioinformatics 27(15):2156-2158. https://doi.
org/10.1093/bioinformatics/btr330

Denti L, Rizzi R, Beretta S et al (2018) ASGAL: aligning RNA-Seq
data to a splicing graph to detect novel alternative splicing
events. BMC Bioinform. https://doi.org/10.1186/s12859-018-
2436-3

Denti L, Previtali M, Bernardini G et al (2019) MALVA: genotyping
by mapping-free ALlele detection of known VAriants. iScience
18:20-27. https://doi.org/10.1016/j.is¢i.2019.07.011

Diestel R (2005) Graph theory. Graduate texts in mathematics, 3rd
edn. Springer-Verlag, Heidelberg

Dilthey A, Cox C, Igbal Z et al (2015) Improved genome inference in
the MHC using a population reference graph. Nat Genet
47:682-688. https://doi.org/10.1038/ng.3257

Durbin R (2014) Efficient haplotype matching and storage using the
Positional Burrows-Wheeler transform (PBWT). Bioinformatics
30(9):1266-1272. https://doi.org/10.1093/bioinformatics/btu014

Ehrgott M (2005) Multicriteria optimization, vol 491. Springer,
Berlin. https://doi.org/10.1007/3-540-27659-9

Eizenga JM, Novak AM, Kobayashi E et al (2020) Efficient dynamic
variation graphs. Bioinformatics 36(21):5139-5144. https://doi.
org/10.1093/bioinformatics/btaa640

Eizenga JM, Novak AM, Sibbesen JA et al (2020) Pangenome graphs.
Annu Rev Genomics Hum Genet 21(1):139-162. https://doi.org/
10.1146/annurev-genom-120219-080406

Eizenga JM, Lorig-Roach R, Meredith MM, et al (2021) Walk-
preserving transformation of overlapped sequence graphs into
blunt sequence graphs with GetBlunted. In: Connecting with
Computability - 17th Conference on Computability in Europe,
CiE 2021, Proceedings. Springer, LNCS, pp 169-177. https://
doi.org/10.1007/978-3-030-80049-9_15

Ferragina P, Manzini G (2005) Indexing compressed text. ] ACM
52(4):552-581. https://doi.org/10.1145/1082036.1082039

Ferragina P, Luccio F, Manzini G et al (2009) Compressing and
indexing labeled trees, with applications. ] ACM 57(1):4:1-4:33.
https://doi.org/10.1145/1613676.1613680

Freire B, Ladra S, Parama JR et al (2020) Inference of viral
quasispecies with a paired de Bruijn graph. Bioinformatics
37(4):473—481. https://doi.org/10.1093/bioinformatics/btaa782

Fritz A, Bremges A, Deng ZL et al (2021) Haploflow: strain-resolved
de novo assembly of viral genomes. Genome Biol. https://doi.
org/10.1186/s13059-021-02426-8

Gagie T, Manzini G, Sirén J (2017) Wheeler graphs: a framework for
BWT-based data structures. Theoret Comput Sci 698:67-78.
https://doi.org/10.1016/j.tcs.2017.06.016

Gagie T, Navarro G, Prezza N (2020) Fully functional suffix trees and
optimal text searching in BWT-runs bounded space. ] ACM
JACM. https://doi.org/10.1145/3375890

Garrison E (2019) Graphical pangenomics. Thesis, University of
Cambridge. https://doi.org/10.17863/CAM.41621, https://www.
repository.cam.ac.uk/handle/1810/294516

Garrison E, Sirén J, Novak A et al (2018) Variation graph toolkit
improves read mapping by representing genetic variation in the
reference. Nat Biotechnol 36:875-879. https://doi.org/10.1038/
nbt.4227

Garrison E, et al (2019) seqwish: A variation graph inducer. https://
github.com/ekg/seqwish

Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the
Neandertal Genome. Science 328(5979):710-722. https://doi.
org/10.1126/science.1188021

Grunwald P (2004) A tutorial introduction to the minimum descrip-
tion length principle. arXiv:math/0406077http://arxiv.org/abs/
math/0406077

Guarracino A, Heumos S, Nahnsen S, et al (2021) ODGI: under-
standing pangenome graphs. bioRxiv:2021.11.10.467921.
https://doi.org/10.1101/2021.11.10.467921

Gusfield D (1997) Algorithms on strings, trees and sequences:
computer science and computational biology. Cambridge
University Press, Cambridge

Huang L, Popic V, Batzoglou S (2013) Short read alignment with
populations of genomes. Bioinformatics 29(13):i361-i370.
https://doi.org/10.1093/bioinformatics/btt215

Jain C, Dilthey A, Misra S, et al (2019) Accelerating sequence
alignment to graphs. bioRxiv:2019.05.27.651638. https://doi.org/
10.1101/651638

Jain C, Tavakoli N, Aluru S (2021) A variant selection framework for
genome graphs. Bioinformatics 37(Supplement-1):i460-i467.
https://doi.org/10.1093/bioinformatics/btab302

Kaplinski L, Lepamets M, Remm M (2015) GenomeTester4: a toolkit
for performing basic set operations - union, intersection and
complement on k-mer lists. GigaScience. https://doi.org/10.
1186/s13742-015-0097-y

Karasikov M, Mustafa H, Danciu D, et al (2020) Metagraph: Indexing
and analysing nucleotide archives at petabase-scale. bioR-
xiv:2020.10.01.322164. https://doi.org/10.1101/2020.10.01.
322164

Kirkkdinen J, Manzini G, Puglisi S (2009) Permuted longest-
common-prefix array. In: Proc. of the 20th Annual Symposium
on Combinatorial Pattern Matching CPM 2009, pp 181-192

Khorsand P, Denti L et al (2021) Comparative genome analysis using
sample-specific string detection in accurate long reads. Bioinf
Adyv. https://doi.org/10.1093/bioadv/vbab005

Kokot M, Dtugosz M, Deorowicz S (2017) KMC 3: counting and
manipulating k-mer statistics. Bioinformatics 33(17):2759-2761.
https://doi.org/10.1093/bioinformatics/btx304

Kreft S, Navarro G (2013) On compressing and indexing repetitive
sequences. Theoret Comput Sci 483:115-133. https://doi.org/10.
1016/j.tcs.2012.02.006

Kucherov G, Tsur D (2014) Improved filters for the approximate
suffix-prefix overlap problem. In: Moura E, Crochemore M (eds)
String processing and information retrieval. Springer Interna-
tional Publishing, Cham, pp 139-148

Kuhnle A, Mun T, Boucher C et al (2020) Efficient construction of a
complete index for pan-genomics read alignment. J Comput Biol
27(4):500-513. https://doi.org/10.1089/cmb.2019.0309

Lee C, Grasso C, Sharlow MF (2002) Multiple sequence alignment
using partial order graphs. Bioinformatics 18(3):452-464.
https://doi.org/10.1093/bioinformatics/18.3.452

Li H (2013) Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. arXiv:1303.3997

Li H (2018) Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34(18):3094-3100. https://doi.org/10.1093/bioin
formatics/bty191

Li H, Chin J, Durbin R, etal (2017) GFA: Graphical Fragment
Assembly (GFA) Format Specification. http://gfa-spec.github.io/
GFA-spec/

Li H, Feng X, Chu C (2020) The design and construction of reference
pangenome graphs with minigraph. Genome Biol. https://doi.
org/10.1186/313059-020-02168-z

Logsdon GA, Vollger MR, Eichler EE (2020) Long-read human
genome sequencing and its applications. Nature Reviews
Genetics 1-18

Magi A, D’Aurizio R, Palombo F et al (2015) Characterization and
identification of hidden rare variants in the human genome. BMC
Genomics. https://doi.org/10.1186/s12864-015-1481-9

Maikinen V, Navarro G (2005) Succinct suffix arrays based on run-
length encoding. Nordic J Comput 12(1):40-66

Maikinen V, Cazaux B, Equi M, et al (2020) Linear time construction
of indexable founder block graphs. arXiv:2005.09342

@ Springer


https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1186/s12859-018-2436-3
https://doi.org/10.1186/s12859-018-2436-3
https://doi.org/10.1016/j.isci.2019.07.011
https://doi.org/10.1038/ng.3257
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1093/bioinformatics/btaa640
https://doi.org/10.1093/bioinformatics/btaa640
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1007/978-3-030-80049-9_15
https://doi.org/10.1007/978-3-030-80049-9_15
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1093/bioinformatics/btaa782
https://doi.org/10.1186/s13059-021-02426-8
https://doi.org/10.1186/s13059-021-02426-8
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1145/3375890
https://doi.org/10.17863/CAM.41621
https://www.repository.cam.ac.uk/handle/1810/294516
https://www.repository.cam.ac.uk/handle/1810/294516
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1038/nbt.4227
https://github.com/ekg/seqwish
https://github.com/ekg/seqwish
https://doi.org/10.1126/science.1188021
https://doi.org/10.1126/science.1188021
http://arxiv.org/abs/math/0406077
http://arxiv.org/abs/math/0406077
https://doi.org/10.1101/2021.11.10.467921
https://doi.org/10.1093/bioinformatics/btt215
https://doi.org/10.1101/651638
https://doi.org/10.1101/651638
https://doi.org/10.1093/bioinformatics/btab302
https://doi.org/10.1186/s13742-015-0097-y
https://doi.org/10.1186/s13742-015-0097-y
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1093/bioadv/vbab005
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1089/cmb.2019.0309
https://doi.org/10.1093/bioinformatics/18.3.452
http://arxiv.org/abs/1303.3997
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
http://gfa-spec.github.io/GFA-spec/
http://gfa-spec.github.io/GFA-spec/
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s12864-015-1481-9
http://arxiv.org/abs/2005.09342

108

J. A. Baaijens et al.

Malhotra R, Wu MMS, Rodrigo A, et al (2016) Maximum likelihood
de novo reconstruction of viral populations using paired end
sequencing data. arXiv:1502.04239

Manber U, Myers G (1993) Suffix arrays: a new method for on-line
string searches. SIAM J Comput 22(5):935-948

Mantaci S, Restivo A, Rosone G et al (2007) An extension of the
Burrows-Wheeler ~ Transform.  Theoret =~ Comput  Sci
387(3):298-312. https://doi.org/10.1016/j.tcs.2007.07.014

Miclotte G, Heydari M, Demeester P et al (2016) Jabba: hybrid error
correction for long sequencing reads. Algorithms Mol Biol
11:10. https://doi.org/10.1186/s13015-016-0075-7

Mohamadi H, Chu J, Vandervalk BP et al (2016) ntHash: recursive
nucleotide hashing. Bioinformatics 32(22):3492-3494. https://
doi.org/10.1093/bioinformatics/btw397

Mun T, Kuhnle A, Boucher C et al (2020) Matching reads to many
genomes with the r-index. J Comput Biol 27(4):514-518. https://
doi.org/10.1089/cmb.2019.0316

Myers E (2005) The fragment assembly string graph. Bioinformatics
21(Suppl. 2):1i79-ii85.  https://doi.org/10.1093/bioinformatics/
btil114

Mikinen V, Navarro G, Sirén J et al (2010) Storage and retrieval of
highly repetitive sequence collections. J Comput Biol
17(3):281-308. https://doi.org/10.1089/cmb.2009.0169

Naseri A, Zhi D, Zhang S (2019) Multi-allelic positional Burrows-
Wheeler transform. BMC Bioinform. https://doi.org/10.1186/
$12859-019-2821-6

Novak A, Garrison E, Paten B (2017) A graph extension of the
positional Burrows-Wheeler transform and its applications.
Algorithms Mol Biol 12:18. https://doi.org/10.1186/s13015-
017-0109-9

Paten B, Earl D, Nguyen N et al (2011) Cactus: algorithms for
genome multiple sequence alignment. Genome Res
21(9):1512-1528. https://doi.org/10.1101/gr.123356.111

Paten B, Novak A, Eizenga J et al (2017) Genome graphs and the
evolution of genome inference. Genome Res 27(5):665-676.
https://doi.org/10.1101/gr.214155.116

Policriti A, Prezza N (2017) LZ77 computation based on the run-
length encoded BWT. Algorithmica 80(7):1986-2011. https://
doi.org/10.1007/s00453-017-0327-z

Popejoy AB, Fullerton SM (2016) Genomics is failing on diversity.
Nature 538(7624):161-164. https://doi.org/10.1038/538161a

Rakocevic G, Semenyuk V, Lee WP et al (2019) Fast and accurate
genomic analyses using genome graphs. Nat Genet
51(2):354-362. https://doi.org/10.1038/s41588-018-0316-4

Rautiainen M, Mikinen V, Marschall T (2019) Bit-parallel sequence-
to-graph alignment. Bioinformatics 35(19):3599-3607. https://
doi.org/10.1093/bioinformatics/btz162

Rizzi R, Beretta S, Patterson M et al (2019) Overlap graphs and de
Bruijn graphs: data structures for de novo genome assembly in
the big data era. Quantit Biol 7:278-292. https://doi.org/10.1007/
540484-019-0181-x

Rossi M, Oliva M, Langmead B, et al (2021) MONI: A pangenomics
index for finding MEMs. In: Proc. of the 25th Annual
International Conference on Research in Computational Molec-
ular Biology, RECOMB 2021

Schneider VA, Graves-Lindsay T, Howe K et al (2017) Evaluation of
grch38 and de novo haploid genome assemblies demonstrates the
enduring quality of the reference assembly. Genome Res
27(5):849-864

Shchur V, Ziganurova L, Durbin R (2019) Fast and scalable genome-
wide inference of local tree topologies from large number of
haplotypes based on tree consistent PBWT data structure.
bioRxiv:2019.02.06.542035. https://doi.org/10.1101/542035

@ Springer

Sherman RM, Forman J, Antonescu V et al (2019) Assembly of a pan-
genome from deep sequencing of 910 humans of african descent.
Nat Genet 51(1):30-35

Shi F (1996) Suffix arrays for multiple strings: a method for on-line
multiple string searches. In: Concurrency and Parallelism,
Programming, Networking, and Security, LNCS, vol 1179.
Springer, pp 11-22. https://doi.org/10.1007/BFb0027775

Sibbesen JA, Maretty L et al (2018) Accurate genotyping across
variant classes and lengths using variant graphs. Nat Genetic
50(7):1054-1059. https://doi.org/10.1038/s41588-018-0145-5

Sibbesen JA, Eizenga JM, Novak AM, et al (2021) Haplotype-aware
pantranscriptome analyses using spliced pangenome graphs.
bioRxiv:2021.03.26.437240. https://doi.org/10.1101/2021.03.26.
437240

Sirén J (2017) Indexing variation graphs. In: 2017 Proceedings of the
Meeting on Algorithm Engineering and Experiments (ALE-
NEX). Proceedings, SIAM, pp 13-27. https://doi.org/10.1137/1.
9781611974768.2

Sirén J, Monlong J, Chang X, et al (2021) Genotyping common, large
structural variations in 5,202 genomes using pangenomes, the
Giraffe mapper, and the vg toolkit. bioRxiv:2020.12.04.412486.
https://doi.org/10.1101/2020.12.04.412486

Sirén J, Vilimaki N, Mékinen V (2014) Indexing graphs for path
queries with applications in genome research. IEEE/ACM Trans
Comput Biol Bioinf 11(2):375-388. https://doi.org/10.1109/
TCBB.2013.2297101

Sirén J, Garrison E, Novak AM et al (2020) Haplotype-aware graph
indexes. Bioinformatics 36(2):400—407. https://doi.org/10.1093/
bioinformatics/btz575

Stark Z, Dolman L, Manolio TA et al (2019) Integrating genomics
into healthcare: a global responsibility. Am J Human Genetics
104(1):13-20

Sun S, Zhou Y, Chen J et al (2018) Extensive intraspecific gene order
and gene structural variations between Mol7 and other maize
genomes. Nat Genet 50(9):1289-1295. https://doi.org/10.1038/
s41588-018-0182-0

Tettelin H et al (2005) Genome analysis of multiple pathogenic
isolates of streptococcus agalactiae: implications for the micro-
bial “pan-genome’’. Proc Natl Acad Sci 102(39):13950-13955.
https://doi.org/10.1073/pnas.0506758102

The 1000 Genomes Project Consortium (2015) A global reference for
human genetic variation. Nature 526(7571):68-74. https://doi.
org/10.1038/nature 15393

Topfer A, Marschall T, Bull R et al (2014) Viral quasispecies
assembly via maximal clique enumeration. PLoS Comput Biol
10(3):e1003,515. https://doi.org/10.1371/journal.pcbi. 1003515

Ukkonen E (2002) Finding founder sequences from a set of
recombinants. In: Algorithms in Bioinformatics, WABI 2002.
Springer, pp 277-286. https://doi.org/10.1007/3-540-45784-4_
21

Vilimdlki N, Ladra S, Milkinen V (2010) Approximate all-pairs
suffix/prefix overlaps. In: Combinatorial Pattern Matching, CPM
2010, LNCS, vol 6129. Springer, pp 76-87. https://doi.org/10.
1007/978-3-642-13509-5_8

Vyverman M, De Baets B, Fack V et al (2015) A long fragment
aligner called ALFALFA. BMC Bioinform 16(1):159. https://
doi.org/10.1186/s12859-015-0533-0

Williams L, Mumey B (2020) Maximal perfect haplotype blocks with
wildcards. iScience 23(6):101149. https://doi.org/10.1016/j.isci.
2020.101149

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.


http://arxiv.org/abs/1502.04239
https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1186/s13015-016-0075-7
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1089/cmb.2019.0316
https://doi.org/10.1089/cmb.2019.0316
https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1089/cmb.2009.0169
https://doi.org/10.1186/s12859-019-2821-6
https://doi.org/10.1186/s12859-019-2821-6
https://doi.org/10.1186/s13015-017-0109-9
https://doi.org/10.1186/s13015-017-0109-9
https://doi.org/10.1101/gr.123356.111
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.1007/s00453-017-0327-z
https://doi.org/10.1007/s00453-017-0327-z
https://doi.org/10.1038/538161a
https://doi.org/10.1038/s41588-018-0316-4
https://doi.org/10.1093/bioinformatics/btz162
https://doi.org/10.1093/bioinformatics/btz162
https://doi.org/10.1007/s40484-019-0181-x
https://doi.org/10.1007/s40484-019-0181-x
https://doi.org/10.1101/542035
https://doi.org/10.1007/BFb0027775
https://doi.org/10.1038/s41588-018-0145-5
https://doi.org/10.1101/2021.03.26.437240
https://doi.org/10.1101/2021.03.26.437240
https://doi.org/10.1137/1.9781611974768.2
https://doi.org/10.1137/1.9781611974768.2
https://doi.org/10.1101/2020.12.04.412486
https://doi.org/10.1109/TCBB.2013.2297101
https://doi.org/10.1109/TCBB.2013.2297101
https://doi.org/10.1093/bioinformatics/btz575
https://doi.org/10.1093/bioinformatics/btz575
https://doi.org/10.1038/s41588-018-0182-0
https://doi.org/10.1038/s41588-018-0182-0
https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1371/journal.pcbi.1003515
https://doi.org/10.1007/3-540-45784-4_21
https://doi.org/10.1007/3-540-45784-4_21
https://doi.org/10.1007/978-3-642-13509-5_8
https://doi.org/10.1007/978-3-642-13509-5_8
https://doi.org/10.1186/s12859-015-0533-0
https://doi.org/10.1186/s12859-015-0533-0
https://doi.org/10.1016/j.isci.2020.101149
https://doi.org/10.1016/j.isci.2020.101149

	Computational graph pangenomics: a tutorial on data structures and their applications
	Abstract
	Introduction
	From a linear sequence to a graph reference of a genome
	Limitations of a linear reference genome
	Graph representations for multiple genomes
	Pangenome graphs and their main applications
	On the structure of the paper

	Pangenome graphs: basic definitions
	The construction of a pangenome graph from multiple genomes

	Indexing pangenome graphs
	Preliminaries on the BWT
	The positional BWT
	Computing the prefix and the divergence arrays
	Maximal matches with at least L characters
	Set-maximal matches
	Set-maximal matches between an external haplotype and X
	Compact representation of the positional BWT

	The graph BWT

	Indexing in sub-linear space
	How to construct the r-index
	How to query the r-index

	Application scenarios in pangenome graphs
	Haplotype and genotyping in pangenomics and pantrascriptomics
	Viral haplotype reconstruction
	Overlap graphs in viral haplotyping
	De Bruijn graphs in viral haplotyping
	Variation graphs


	Conclusions and open problems
	Computing a pangenome graph from overlapping variation graphs
	Extending the PBWT and the GBWT to missing and erroneous data
	Limitations of pangenome graphs

	Acknowledgements
	References




