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—— Abstract

Compressed full-text indexes are one of the main success stories of bioinformatics data structures
but even they struggle to handle some DNA readsets. This may seem surprising since, at least when
dealing with short reads from the same individual, the readset will be highly repetitive and, thus,
highly compressible. If we are not careful, however, this advantage can be more than offset by two
disadvantages: first, since most base pairs are included in at least tens reads each, the uncompressed
readset is likely to be at least an order of magnitude larger than the individual’s uncompressed
genome; second, these indexes usually pay some space overhead for each string they store, and the
total overhead can be substantial when dealing with millions of reads.

The most successful compressed full-text indexes for readsets so far are based on the Extended
Burrows-Wheeler Transform (EBWT) and use a sorting heuristic to try to reduce the space overhead
per read, but they still treat the reads as separate strings and thus may not take full advantage of
the readset’s structure. For example, if we have already assembled an individual’s genome from the
readset, then we can usually use it to compress the readset well: e.g., we store the gap-coded list of
reads’ starting positions; we store the list of their lengths, which is often highly compressible; and
we store information about the sequencing errors, which are rare with short reads. There is nowhere,
however, where we can plug an assembled genome into the EBWT.

In this paper we show how to use one or more assembled or partially assembled genome as
the basis for a compressed full-text index of its readset. Specifically, we build a labelled tree by
taking the assembled genome as a trunk and grafting onto it the reads that align to it, at the
starting positions of their alignments. Next, we compute the eXtended Burrows-Wheeler Transform
(XBWT) of the resulting labelled tree and build a compressed full-text index on that. Although this
index can occasionally return false positives, it is usually much more compact than the alternatives.
Following the established practice for datasets with many repetitions, we compare different full-text
indices by looking at the number of runs in the transformed strings. For a human Chr19 readset
our preliminary experiments show that eliminating separators characters from the EBWT reduces
the number of runs by 19%, from 220 million to 178 million, and using the XBWT reduces it by a
further 15%, to 150 million.
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1 Introduction

The FM-index [23] is an important data structure in both combinatorial pattern matching
and bioinformatics. Its most important application so far has been in standard short-read
aligners — Bowtie [39, 38] and BWA [41] have together over 70 thousand citations and are
used every day in clinics and research labs worldwide — but it has myriad other uses and
more are still being discovered. Just within computational genomics, FM-indexes have
been generalized from single strings to collections of strings for tools such as BEETL [15],
RopeBWT [40] and Spring [11], to de Bruijn graphs for tools such as BOSS [8], VARI [48]
and Rainbowfish [2], and to graphs for tools such as vg [27]. Recent breakthroughs [25] mean
we can now scale FM-indexes to massive but highly repetitive pan-genomic datasets for a
new generation of tools [36].

As genomic datasets grow exponentially (from the Human Genome Project to the 1000
Genomes Project and the 100K Genomes Project) and standards for sequencing coverage
increase (from less than 10x a few years ago to 30x and 50x now and over 100x for some
applications), an obvious question is whether and how the recent breakthroughs in FM-
indexing of repetitive datasets can be turned into comparable advances in indexing readsets, so
more researchers can efficiently mine them for biomedical insights. For example, extrapolating
from previous experiments [36], it should be possible to index both haplotypes from 2705
individuals in less than 100 GB of RAM. In contrast, the readset from the final phase of the
1000 Genomes Project consisted of reads from 2705 individuals and was released as a 464
GB Burrows-Wheeler Transform (BWT) [17], which is beyond the resources of most labs to
process. This almost five-fold increase (from 100 to 464 GB) seems reasonable, given the
range of lengths and the error rate of short-read sequencing technologies, but those reads
were trimmed and error-corrected before their BWT was computed, making that increase
harder to justify and thus a target for improvement. Although experimenting with that
particular readset is beyond the scope of this paper, since it occupies 87 TB uncompressed,
we expect the insights and techniques we develop here will eventually be useful in software
able to handle efficiently inputs of that scale.

Recent results on FM-indexing repetitive datasets [25] have shown that the index perform-
ance depends on the number of runs in the transformed sequence, where a run is a maximal
non-empty unary substring. For example, if the BWT of a dataset of (uncompressed) size n
has r runs, we can design an FM-index of size O(r loglogn) supporting the count and locate
operations in optimal linear time. Hence, if a BWT variant produces a transformed string
with a smaller number of runs, the resulting index will be smaller and equally fast. The naive
approach to FM-indexing readsets is to concatenate the reads with copies of a separator
character between them, and FM-index the resulting single string. However, computing
the BWT of such a long string is a challenge and each separator character causes several
runs in that BWT. The most competitive indexes for readsets are based on Mantaci et
al’s [46] Extended Burrows Wheeler Transform, which is also easier to build for readsets. The
first index for readsets based on the EBWT was BEETL [15], followed by RopeBWT [40];
recently the EBWT has been used also by the Spring compressor [11] specialized for FASTQ
reads. BEETL and RopeBWT use explicit separator characters but such characters could be
replaced by bitvectors marking positions at the ends of reads.

BEETL and RopeBWT use a heuristic to reduce the number of runs in the EBWT: they
conceptually put the separator characters at the ends of reads into the co-lexicographic order
(lexicographic order on the reverse string, also referred to as reverse lexicographic order) of
the reads, so that the final characters or reads with similar suffixes are grouped together in
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the EBWT. This often works surprisingly well but in the worst case it cannot make up for
the lack of context for sorting those characters into their places in the EBWT. Our proposal
in this paper is to graft the reads onto their assembled genome, or a reference genome to
which they align well, and index the resulting labelled tree with Ferragina et al’s [22] XBWT.
To this end we assume that we know how the reads align to the assembled/reference genome:
this is not an unreasonable assumption since alignment is the initial step of any readset
analysis.

In order to implement our idea we have to overcome a significant hurdle: as the coverage
increases so does the amount of raw data produced by a single NGS experiment. Although
the high coverage implies that the data is highly compressible, the actual compression
process, ie the construction and the compression of the XBWT, must be done partially in
externally memory since the input will be usually much larger than the available RAM.
Another contribution of the paper is therefore the adaptation of the prefix-free parsing (PFP)
technique [7] to the construction of the XBWT. PFP has been proposed for the construction
of BWTs of collections of similar genomes: the initial parsing phase is able to compress the
input maintaining enough information to compute the BWT working on the compressed
representation. In this paper we adapt PFP to readsets, taking care also of the “grafting’
of the single reads to the reference/assembled genome. Given a pattern P, our index could
answer count(P) and locate(P) queries which report respectively the number of positions
where P occurs and the list of positions where P occurs. The main drawback to our index,
apart from taking one or more assembled or partially assembled genomes as a base, is that it
can return a false-positive in the count operation when an occurrence of a pattern starts in
the trunk of an alignment tree and ends in a branch. In other words, the index can report a
match that is not completely contained within a read but would be if we padded the read on
the left with enough characters copied from just before where it aligns. In a locate operation
false-positives could be identified, but this operation is much slower. Even this is not entirely
bad, however, and it is conceivable this bug could sometimes be a feature. The analysis of

)

those false positive and the size of the bit vectors marking the end of reads is left as future
work.

The rest of the paper is organized as follows. In Section 2 we first describe the BWT and
FM-indexes, then the EBWT and XBWT and the concept of Wheeler graph that unifies
them. In Section 3 we introduce our idea for indexing aligned readsets with the XBWT and
we prove some theoretical results supporting it. In Section 4 we describe how we adapt PFP
to indexing readsets, which allows us to experiment with larger files than would otherwise be
possible with reasonable resources. In Section 5 we present our experimental results showing
that applying the XBW'T to index readsets works well in practice as well as in theory. Finally,
we outline in Section 6 how our study of storing reads with the XBW'T may improve the
space usage of the hybrid index [20, 21, 26].

2 Concepts

For a better understanding of the problem context, we give a succinct description of the
second generation sequencing technique. Most publicly available readsets are from Illumina
sequencers [35] which rely on sequencing by synthesis. For this process, millions or billions
of single-stranded snippets of DNA called templates are deposited onto a slide and amplified
into clusters of clones. In each sequencing cycle we learn one base of each template: we add
DNA polymerase and specially terminated bases; the polymerase attaches a terminated base
to each strand, complementary to the next base in the strand; we shine a light on the slide
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and the terminated bases glow various colours; we take a photo and note the colour of each
cluster; and finally, we treat the slide to remove the terminators. Sometimes, however, one
of the added bases is not correctly terminated, so the polymerase attaches first it and then
another base to a strand in some cluster; that strand is then out of step with the rest of the
cluster, and the cluster will have a mix of colours in the photos for subsequent sequencing
cycles. As we go through more and more sequencing cycles, more strands tend to fall out
of step, resulting in less reliable results. (For futher discussion we refer the reader to, e.g.,
Langmead’s lecture on this topic [37].) This tendency means sequencing by synthesis has an
asymmetric error profile, with errors more likely towards the ends of the reads. It follows
that sequencing errors tend to be near the end of the reads: our index is designed to take
advantage of this feature (see Theorem 2).

2.1 BWT and FM-index

The Burrows-Wheeler Transform (BWT) [10] of a string S is a permutation of the characters
in S into the lexicographic order of the suffixes that immediately follow them, considering
S to be cyclic. For example, as shown on the left in Figure 1, the BWT of GATTAGATACAT$
is TTTCGGAASAATA, assuming $ is a special end-of-string symbol lexicographically smaller
than all other characters. Because the BWT groups together characters that precede similar
suffixes, it tends to convert global repetitiveness into local homogeneity: e.g., for any string
a, the BWT of af consists of |a] unary substrings of length ¢ each; even the BWT in our
example has length 13 but consists of only 8 maximal unary substrings (called runs). This
property led Burrows and Wheeler to propose the BWT as a pre-processing step for data
compression and Seward [55] used it as the basis for the popular bzip2 compression program.

The BWT is also the basis for the FM-index [23], one of the first and most popular
compressed indexes, which is essentially a rank data structure over the BWT combined
with a suffix-array sample. The FM-index is an important data structure in combinatorial
pattern matching and bioinformatics, and is itself the basis for popular tools such as
Bowtie [39, 38] and BWA [41] that align DNA reads to reference genomes. We refer the
reader to Navarro’s [49] and Mékinen et al’s [45] textbooks for detailed discussions of how
FM-indexes are implemented and used for read alignment.

2.2 EBWT

Although alignment against one or more reference genomes remains a key task in bioinform-
atics, there is growing interest in compressed indexing of sets of reads [17, 34]. The FM-index
plays a central role here too: Mantaci et al. [47] generalized the BWT to the Extended
BWT (EBWT), which applies to collections of strings, and then Cox et al. [5, 13, 30] used
an FM-index built on the EBWT in their index BEETL for readsets. The same construction
was also used in subsequent indexes for readsets, such as RopeBWT [40] and Spring [11].

The EBWT of a collection of strings is a permutation of the characters in those strings
into the lexicographic order of the suffixes that immediately follow them, considering each
string to be cyclic. For example, as shown on the right in Figure 1, the EBWT of GATTAS,
TTAGAS$, TAGATA$, GATACS and ATACATS$ is TCAAATTGTTTTCGGSGAAAASSATAAATSAS. When we
see the BWT and EBWT as permutations of characters, the BWT of a single string has a
single cycle, whereas the EBWT of a collection of strings has a cycle for each string. This
means it is easier to build the EBWT and update it when a string is added or deleted,
than to build and update the BWT of the concatenation of the collection with the strings
separated by copies of a special character. We refer the reader to Egidi et al’s [18, 19] and
Diaz-Dominguez and Navarro’s [16] recent papers for descriptions of efficient construction
and updating algorithms.
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F L F L
r I 0  $ATACAT 16  ATTA$ G
1 $GATA C 17  C$GAT A

0 GATTAGATACAT
$ 2 $GATT A 18  CAT$ATA

1  ACAT$GATTAGAT
3 $TAGATA 19 GA$TT A

2 AGATACAT$GATT
4  $TTAG A 20 GATA$TA

3 AT$GATTAGATAC
5 A$GAT T 21 GATAC $

4  ATACAT$GATTAG
6  A$TAGAT 22  GATTA $

5  ATTAGATACAT$G
7 A$TTA G 23  T$ATACA

6  CAT$GATTAGATA
7  GATACAT$GATTA 8 AC$GA T 24 TA$GA T
9 ACATS$AT 25  TA$TAGA

8  GATTAGATACAT$
10 AGA$T T 26 TAC$G A

9  T$GATTAGATACA
11  AGATAST 27  TACAT$A

10 TACAT$GATTAGA
12 AT$ATAC 28 TAGA$ T

11  TAGATACATS$GAT
12 TTAGATACATSGA 13 ATA$TAG 29 TAGATA$
14 ATAC$ G 30 TTA$G A
15  ATACAT$ 31 TTAGA $

Figure 1 The matrices whose rows are the lexicographically sorted rotations of GATTAGATACAT$
(left) and of GATTAS$, TTAGAS, TAGATA$, GATAC$ and ATACAT$ (right). The BWT and EBWT are
TTTCGGAA$AATA and TCAAATTGTTTTCGGSGAAAASSATAAATSAS with 8 and 19 runs, respectively.

Despite its benefits, the EBWT sometimes does not take full advantage of its input’s
compressibility. In our example, as Figure 1 shows, even though all the strings in the
collection are substrings of GATTAGATACAT$ with copies of $ appended to them, their EBWT
has more than twice as many runs as its BWT. As a heuristic for reducing the number of runs,
and thus reducing BEETL’s space usage, Cox et al. suggested considering the lexicographic
order of the copies of $ to be the strings’ co-lexicographic order. This does not help in cases

such as our example, however, for which the EBWT still has 19 runs even with that ordering.

Bentley et al. [6] recently gave a linear-time algorithm to find the ordering of the copies of
$ that minimizes the number of runs, but it has not been implemented and it is unclear
whether it is practical for large readsets.

Another way to potentially reduce the number of runs is to remove the copies of $
entirely, and store an auxiliary ternary vector marking which characters in the EBWT are
the first and last characters in the strings. If there are t strings in the collection with
total length n, then storing this vector takes O(tlog(n/t) + t) bits (even if some of the
strings are empty or consist of only one character). As shown in Figure 2, the EBWT
becomes TTTTTTGTCGGGAACAAAAAATTAAAA, with only 10 runs. The idea of replacing $’s with
an auxiliary vector is relatively new since it originates from seeing the EBWT as a special
case of Wheeler graphs [24] which are described in the next section.

2.3 Wheeler Graphs and XBWT

Wheeler graphs were introduced by Gagie, Manzini and Sirén [24] as a unifying framework for
several extensions of the BWT, including the EBWT, Ferragina et al’s [22] eXtended BWT
(XBWT) for labelled trees, Bowe, et al’s. [9] index (BOSS) for de Bruijn graphs, and Sirén
et al’s [56] Generalized Compressed Suffix Array (GCSA) for variation graphs. A directed
edge-labelled graph is a Wheeler graph if there exists a total order on the vertices such that

vertices with in-degree 0 are earliest in the order;

if (u,v) is labelled a and (u’,v") is labelled b with a < b, then v < v';

if (u,v) and (v',v’) are both labelled a and « < ' then v < v’.

13:5
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F L F L
0 0 ACATAT 14 4+ GATA C
1 0 ACGA T 15 0 GATATA
2 0 AGATAT 16 0 GATT A
3 — AGAT T 17 4+ GATT A
4 0 AGAT T 18 0 TACATA
5 4 ATACAT 19 0 TACG A
6 0 ATACG 20 4+ TAGATA
7 — ATAGAT 21 0 TAGA T
8 0 ATATAC 22 0 TAGA T
9 0 ATATAG 23 — TATACA
10 0 ATTA G 24 0 TATAGA
11 — ATTA G 25 0 TTAG A
12 0 CATATA 26 + TTAG A
13 — CGAT A

Figure 2 The matrix whose rows are the lexicographically sorted rotations of GATTA, TTAGA,
TAGATA, GATAC and ATACAT. The EBWT is TTTTTTGTCGGGAACAAAAAATTAAAA with 10 runs.

Figure 3 shows an example of a Wheeler graph with a valid order on the vertices. The
ordering is obtained by lexicographically sorting the strings spelling the labels in the upward
path from each vertex to the root where the ties are broken deterministically (following an
arbitrary order on the branches). For example, vertex 0 has upward path e, vertex 3 has
upward path AG, vertex 30 has upward path TAG and so on. Notice that for directed acyclic
graphs such as trees, such order on the vertices can be computed quickly with an adaptation
of the doubling algorithm [33].

Once we have a valid order, the standard representation of a Wheeler graph is defined
considering the vertices in that order and listing the labels on the outgoing edges of each
vertex. In addition, for each vertex we represent its out-degree and in-degree in unary thus
obtaining two additional binary arrays. For example, for the graph in Figure 3 the first five
vertices have outgoing edges labelled GG T T T TT, so the label array starts with GGTTTTT- - -
and the out-degree bit-array starts with 001010101001---. This simple representation,
combined with rank and select primitives, supports efficient search and navigation operations
on Wheeler graphs. We refer the reader to Prezza’s [53] recent survey for a discussion of
Wheeler graphs and related results.

Note that the graph in Figure 3 is a labelled tree: indeed its Wheeler Graph representation
is equivalent to the output of the XBWT [22] applied to the same tree (details in the full
paper). For clarity of presentation in the following we will still refer to the EBWT and
XBWT even if they are both special cases of Wheeler graphs.

3  Our contribution

Figure 3 can be seen as a representation of a “genome” GATTAGATACAT and of five “reads”
GATTA, TTAGA, TAGATA, GATAC and ATACAT extracted, without errors, from it. Starting with
the vertex with rank 28, corresponding to the last symbol of the “genome”, and navigating
the tree we are able to recover all the individual strings. Notice however, that the XBWT
has only 7 runs while the BWT of the “genome” and the EBWT of the “reads” in Figure 1
have 8 and 19 runs, respectively. The EBWT without $ of the reads alone in Figure 2 has 10
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Figure 3 A directed, edge-labelled tree whose vertices are labelled to show it is a Wheeler graph.
The XBWT is GGTTTTTTTTTCCCGGGGAAAAAAAAATTTTAAAAAAAA with 7 runs.

runs. We refer the reader to Giuliani et al’s [28, 29] recent papers for a discussion of the
impact of the $ and of the direction of the string on the number of runs in the BWT. The
following theorem shows that the example in Figure 3 is not a coincidence: if the “reads”
have no errors and they are appended to the reference in the proper positions, then the
XBWT has the same number of runs as the BWT of the reverse of the “genome”.

» Theorem 1. Suppose we sample substrings from a string and we form a labelled tree by
grafting (appending) the substrings in the same position they were sampled so that all edge
labels at the same depth are equal. Then the XBWT of the tree has the same number of runs
as the BWT of the reverse of the string.

Proof. Consider the tree shown in Figure 3. The tree satisfies the hypothesis of Theorem 1
since it was obtained by sampling some substrings from GATTAGATACAT and then grafting
them onto it such that all the edge labels at the same depth are equal (so a horizontal line
always hits edges with only the same label). Clearly, all the labels at the same depth not
only are equal, but they have the same upward-path label, which is the prefix preceding the
corresponding character in the string. Since the XBWT is built by sorting labels according
to the string spelled by their upward path, we see that each symbol of the original string
will be adjacent to all reads symbols at the same horizontal level, and that all such symbols
are identical. Finally, observe that also in the BWT of the reverse of the string symbols
are sorted according to the prefix preceding them; hence the XBWT can be obtained by
replacing each symbol in the BWT, except the $, by a run of the same symbol and the thesis
follows. <

Figure 3 and Theorem 1 suggest a new way to compress and index readsets: graft the
reads onto a fully or partially assembled genome, or a reference genome if need be, and store
the XBWT of the resulting tree. We note that, although assembly-free indexing is a more
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general problem, indexing assembled reads is still of practical interest [17]. Many readsets
have coverage of 30x or even 50x, which makes them extremely large but should also make
run-length compression practical on the XBWTs. If we want to index readsets from several
individuals, we can simply graft the reads onto the appropriate assembled genomes and
compute the XBWT of the forest, which is also a Wheeler graph.

Theorem 1, provides an extremely good estimate of the number of runs of the XBWT,
but it holds under the unrealistic assumption that the reads have no errors. However, we
can take advantage of the fact that sequencing by synthesis has an asymmetric error profile:
errors are much more likely at the end of a read than at the beginning. The following result
shows that errors at the end of the reads have a limited impact to the overall number of runs
in the XBWT.

» Theorem 2. In the hypothesis of Theorem 1 suppose that the sampled substrings may
differ from the reference string and that the average distance from first difference (insertion,
deletion, or substitution) to the end of the substring is §. Then, with respect to Theorem 1
the XBWT of the tree will have at most 26 additional runs per substring.

Proof. Consider a single substring of length ¢ in which the distance between the first difference
and the end of the substring is d (we assume d = 0 if there are no differences). Reasoning as
in the proof of Theorem 1, we see that the first £ — d symbols of the substring will end up
in the same run as the corresponding symbol of the reference string (the one at the same
depth in the tree). Each of the other d symbols will, in the worst case, end in the middle of
a run of a different symbol thus creating two additional runs. Summing this additional runs
over all substrings we get a total number of additional runs upper bounded by 26 runs per
substring. |

To guarantee that most of the errors are at the end of the reads, we propose to build two
trees: one for the assembled genome and one for its reverse complement. Having two trees
means we do not have to reverse and complement half the reads before grafting them onto a
single tree: the reversal of the string would be problematic in view of Theorem 2 since it
would move an error from the end of the read to its front. We can build two trees with a
small additional cost since the alignment algorithm will tell us whether each read aligns to
the reference or to its reverse complement.

Assuming our scheme guarantees an improvement in compression we want to be sure
the resulting index is also efficient. Prezza [52] recently showed how to generalize Gagie,
Navarro and Prezza’s [25] results about fast locating from run-length compressed BWTs to
run-length compressed XBWTSs, at the cost of storing the trees’ shapes, which takes a linear
number of bits. For trees with far more internal vertices than leaves, however, it is relatively
easy to support fast locating in small space, as a corollary of the following theorem.

» Theorem 3. Let G be a Wheeler graph and r be the number of runs in a Burrows- Wheeler
Transform of G, and suppose G can be decomposed into v edge-disjoint directed paths whose
internal vertices each have in- and out-degree exactly 1. We can store G in O(r + v) space
such that later, given a pattern P, in O(|P|loglog|G|) time we can count the vertices of G
reachable by directed paths labelled P, and then report those vertices in O(loglog|G|) time
per vertez.

» Corollary 4. Let T be a labelled tree on n vertices obtained by grafting reads onto their
assembled genome as described. Let v be the number of runs in the XBWT and let t be the
number of reads. We can store T in O(r + t) words of space such that later, given a pattern
P, in O((|P|+ k) loglogn) time we can report all the k vertices reachable by paths labelled P.
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We sketch a proof of Theorem 3 in A, although we omit the details because, at least
when dealing with short reads, it may be more practical just to descend until we reach a
branching node (in which case the pattern is in the assembled genome, not in a read) or a
leaf. We have not yet considered carefully whether Nishimoto and Tabei’s [50] faster locating
can be applied to improve Theorem 3 or Corollary 4.

Before we concentrate on optimizations we should consider two basic questions: are our
XBWTs for readsets significantly smaller than their EBWTs in practice and, if so, how can we
build them efficiently? Theorem 2 offers some guarantees of compression, but to test how our
idea works in practice in Section 5 we build the XBWT and EBWT for a real, high-coverage
readset and see how the numbers of runs in them compare. In Section 4 instead we face the
problem of the efficient construction of XBWTs for large datasets.

4 XBWT via Prefix Free Parsing

The problem of building the XBWT for a set of reads as described in Section 3 is non
trivial because the input typically consists in tens of gigabytes of data and we cannot make
use of the available algorithms [1, 3] which are designed to work in RAM. However, the
fact that reads are copies (possibly with errors), of portions of a relatively small reference
suggests that the overall amount of information content is relatively small. Therefore we
decided to compute the XBWT using the technique of Prefix Free Parsing (PFP) that has
been successfully utilized for computing the BWT for large collections of genomes from
individuals of the same species. Our implementation was done in C++ and is available on
https://github.com/fnareoh/Big_XBWT. Note that our algorithm does not take as input
a labelled tree, but rather a reference genome and a set of reads aligned to that genome
(in the format of a .bam file); the alignment implicitly defines a labeled tree as described in
Section 3.

In the PFP construction of the BWT the input is parsed into overlapping phrases using
context-triggered piecewise hashing [7]. If the input contains many repetitions, the use of
context-triggered hashing ensures that the parsing will contain a relatively small number of
distinct phrases. The actual construction of the BWT is done using only the dictionary of
distinct phrase and the parse (which describes how the dictionary phrases can be used to
reconstruct the input). For repetitive datasets the dictionary and the parse fit in RAM even
when the original input does not. Unmodified, however, PFP does not work well on readsets
since the phrases generated at the beginning and end of each read will likely be unique. As
a result, the dictionary will be quite large and the algorithm inefficient. To prevent this,

we extend the reads forward and backward so they begin and end with complete phrases.

The extension is done using the symbols in the reference immediately before and after the
position where the read aligns, so that the phrases are likely to be not unique (if the read

has no errors the phrases will be exactly the same generated when parsing the reference).

Although this technique maintains the dictionary small, the tricky part is to exclude these
extensions when computing the actual XBWT.

Summing up, our implementation is divided in three main phases. In the first phase we
partition the reference and the reads into phrases; the set of distinct phrases is called the
dictionary and the way phrases form the reference and the reads is called the parse. We use
the extension trick mentioned before, and ,if the reference and the reads are similar, the

dictionary will be relatively small. In the second phase we compute the XBWT of the parse.

Since phrases are relatively large, the number of symbols in the parse is much smaller than
in the original input, so the parse fits in RAM and the computation can be done using a
doubling algorithm [33]. Finally, in the third phase we recover the XBWT of the input from
the XBWT of the parse. The details of the three phases are given below.
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4.1 Construction of the Dictionary and the Parse

We start by scanning the reference as in the PFP BWT construction algorithm. The algorithm
takes as input parameters a window size w, and a modulo m. We slide a window of length
w over the text, at each step computing the Karp-Rabin fingerprint [32] of the window.
We define a terminating windows as a window with Karp-Rabin fingerprint equal to zero
modulo m. Terminating windows decompose the text into overlapping phrases: each phrase
is a minimal substring that begins and ends with a terminating window. Note that each
terminating window is a suffix of the current phrase and the prefix of the next phrase so
consecutive phrases have a size-w overlap. Note that defining phrases using terminating
windows ensures that no phrase is a prefix (or a suffix) of another phrase, hence the name
“prefix free parsing”.

In addition to keeping track of window fingerprints, we also maintain a different hash
h(p;) of the current phrase p;. For simplicity in the following we assume distinct phrases
always have distinct hashes, if not we detect it and crash. At the end of this scanning
phase, the reference has been parsed into the (overlapping) phrases p1,pa,...,p.. We build
a vector S[1,z] storing for each phrase p; its starting position s; in the reference and its
hash h(p;). We also build as we go the dictionary that associate to each hash value h(p;) the
corresponding phrase p; (stored as a simple string) and occ(p;) the number of occurrences of
that phrase. We will later also need the length of each phrase but we don’t store it explicitly,
just deduce it from the string stored in the dictionary.

After parsing the reference, we process the reads one by one. From the file of aligned
reads, we obtain both the read r as a string and the position [ where the read aligns to the
reference. We binary search in S for the rightmost phrase ps that starts before position [
and for the leftmost phrase p. that ends after position [ + |r| — 1. Let p/ (resp. p.) denote
the prefix (resp. suffix) of ps (resp. p.) ending (resp. starting) immediately before (resp.
after) position I (resp. [+ |r| —1). We define the extended read 1.+ = p’, - - p,, where - here
denotes string concatenation. We slide a window onto r.;:, decomposing it into phrases, as
we did for the reference. Since re;; starts and ends with a terminating window the phrases
we add while parsing re,; still form a prefix-free parsing. However, as we do not want to
index the whole r.;; in the final XBWT, for each read we keep track and store to disk the
starting and ending position of r in rey;.

When processing the reads we continue adding the hashes of the phrases to the end parse,
using a special value as separator between reads. If we parse a new phrase, we add it to
the dictionary. However, as previously pointed out, the phrases coming from the extended
reads are likely to be equal to phrases in the reference so we expect the dictionary not to
grow significantly (the dictionary would not grow at all if all the reads were substrings of the
reference). From the starting and ending position of the original read in the extended read
we deduce for each phrase what characters are part of the original read (the reads without
extensions) and we store a starting and ending position for each phrase.

Once all the reads have been processed, we sort the phrases in the dictionary in reverse
lexicographic order and we output a new parse where each hash of phrase is replaced by its
reverse lexicographic rank, the separator symbol is replaced by the number of phrases plus
one. To summarize, at the end of this phase we have produced the following output files:
1. file.dict: the dictionary in co-lexicographic order;

2. file.occ: the frequency of each phrases;

3. file.parse: the parse with each phrase represented by its co-lexicographic rank;

4. file.limits: the starting and ending position of the original input (reads without
extension) in each phrase.
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4.2 XBWT of the Parse

The main goal of this phase is to construct the XBWT of the parse, using the co-lexicographic
rank as meta-characters. To this end we load the parse on RAM, reconstruct its tree structure,
and compute the XBWT of this tree via a doubling algorithm [33]. Then, rather than storing
the XBWT as is, we construct an inverted list as this structure will be more appropriate for

the next phase. For each phrase p; we store the list of XBWT positions where p; appears.

The size of the inverted list for p; is equal to its frequency; since frequencies were computed
in the first phase, we can output the inverted list as a plain concatenation of positions.

In this phase we also permute the limits (the starting and ending position in the original
input) of each phrase according to their order in the XBWT. This way, in the next phase,
with the inverted list, we can easily access the limit of any given phrase in the parse. In
this phase, we also compute and write to disk for every phrase, the list of phrases (with
multiplicities) that immediately follow in the parse. This list will be used to index the
characters that precede a full word. However because we only want to index the characters
that are in the original input, we only add it after checking the limits. Finally, because we
are not storing special characters to mark the end of a read or of the reference (as they would
break runs), we construct a bit vector marking such positions and we permute it according
to the XBWT order. To summarize, at the end of this phase we have produced the following
output files:
file.dict: the dictionary of the reversed phrases (from the first phase).
file.occ: the frequency of each phrases (from the first phase).
file.ilist: the inverted list of the parse.
file.xbwt_limits: the limits of the phrases in XBWT order.

ol o

file.full_children: for every word, the list of words that follows it.

4.3 Building the final XBWT

This is the final phase where we compute the XBW'T of the reference and of the readset.

We start by sorting lexicographically the suffixes of the strings in the dictionary D. At this
stage the dictionary D contains the phrases reversed, so this is equivalent to sort in reverse
lexicographic order the prefixes of all phrases. We ignore the suffixes of length < w as they
correspond to the terminating window which also belongs to the previous phrase. The sorting
is done by the gSACAK algorithm [43] which computes the SA and LCP array for the set
of dictionary phrases. We scan the sorted elements of D, for s a proper suffix, there are
two cases, all the elements in D which have s as a proper suffix have the same preceding
character, in this case we add it the correct number of times using the frequency of each
phrase. In the other case, we use a heap to merge the inverted list writing the appropriate
characters accordingly. Here when writing a character we first check that the suffix length is
between the limits and only write it to file if it does. We also check if the character to be
added is the last of its sequence (read or reference), if so output a 1 to signal the end of a
sequence, else 0. When finding a suffix s’ that corresponds to an entire phrase, we use the
children file to output the character at the start of the following phrase. At the end of this
phase we have written to disk a file with the XBW'T of the reference and readset as well
as a bit vector marking which positions are the last character of a read or a genome. To
summarize, in this phase we use file.dict, file.occ, file.ilist, file.full_children
and file.xbwt_limits; all other files can be discarded. We output the XBWT in plain text
as file.bwt and file.is_end is the compressed bit vector marking the end of reads.

file.xbwt_end: markers of the phrases where a read or reference ends in XBWT order.
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5 Experiments

In this section we present a first experimental evaluation of our XBWT-based approach for
compressing a set of aligned reads and we compare it with the known methods based on the
EBWT. We compare ourselves to the EBWT and not other compression tools for aligned
readset as our long-term goal is to create an index and not just compression. Recall that our
implementation and experimental pipeline is available on github.com/fnareoh/Big  XBWT.
For simplicity we compare the numbers of runs produced by the different algorithms. The
actual compression depends on the algorithm used for encoding the run lengths: preliminary
experiments with the v encoder show that the number of runs is a good proxy for measuring
the actual compression. An accurate comparison of the time efficiency is left as a future
work: we only compared the number of runs produced by our XBWT with the number
of runs produced by the EBWT and some of its variants. Note that our implementation
computes the XBWT of the reference genome and the readset (as described in the previous
section), while the EBWT and its variants were applied only to the readset. We computed all
EBWT variants using ropeBWT2 [40]; in addition to plain EBWT we also tested 2 heuristics
that reorder the reads to reduce the number of runs in the EBWT: Spring [11] and reverse
lexicographic order (RLO) [14], the latter obtained using the option -s in ropeBWT2. Since
our XBWT implementation does not use the $ symbol, for a fair comparison we measured
the number of runs with and without the $ for EBWT, Spring+ EBWT and RLO+EBWT
(therefore ignoring for all algorithms the extra cost of implicitly encoding the ending position
of each string). In our tests, we used the following readsets:
E.coli and S.aureus from the single-cell dataset [12], the references used are those linked
on the single-cell website!,2.
R.sphaeroides We have HiSeq and MiSeq sequencing, raw and trimmed versions of the
reads from the GAGE-B dataset [44]. The reference used is the longest contig assembled
by MSRCA v1.8.3 [59] as it was the most accurate assembler according to the Gage-b
companion paper [44]. We only considered the longest contig because our implementation
doesn’t handle forests of trees yet.
Human Chromosome 19 We used as a reference Chromosome 19 from the CHM1
human assembly [57] and one of the HiSeq 2000 readsets® used to compute that assembly,
considering only the reads that aligned with the reference.

None of those readsets are aligned, so we used bwa mem [42] to align them to the
chosen reference. In this preliminary experiments we discarded the reads that bwa aligned
with the reverse-complement of the reference genome. As mentioned in Section 3 our final
prototype will build an XBWT of the tree with the reference and of the tree of the reversed-
complemented reference. In Table 1, we present statistics on the readsets we used: those
statistics where computed only on the reads that aligned forward to the reference.

Preliminary experiments, not reported here, show that removing the $ in the EBWT
(all variants) reduces the number of runs between 2.7% and 29.2%. Consequently, we focus
our analysis on the comparison of Plain (no read reordering) EBWT (without dollars),
SPRINGH+EBWT (without dollars), RLO+EBWT, with and without $ and XBWT.

The results of this comparison are reported in Figures 4a and 4b. They show that in
general the plain EBWT performs worse followed by the SPRING reordering, RLO ordering
with dollars then RLO ordering without dollars and finally XBWT performs best. XBWT
yields a smaller number of runs than RLO+EBWT (with or without $) on all datasets,

! https://www.ncbi.nlm.nih.gov/nuccore/NC_000913

2 https://www.ncbi.nlm.nih.gov/nuccore/87125858
3 https://www.ncbi.nlm.nih.gov/sra/SRX966833 [accn]
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https://www.ncbi.nlm.nih.gov/nuccore/87125858
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Table 1 Statistics on each dataset used in the experiments. Those statistics where computed only
on the reads that aligned forward to the reference. We call sequencing error (or simply error) any
difference between the genome and the reads. The coverage is simply defined as the total number of
base-pairs in the reads compared to the number of base-pairs in the reference. The average distance
between the first sequencing error and the end of the read and the end is computed considering that
for error less read this distance is 0. Note that this parameter is exactly ¢ in Theorem 2.

Avg. dist. from the Prop. of reads

Dataset Number of reads Read length  Coverage  first sequencing err. . Error rate
without seq. error
to the end

E.coli [12] 14139182 100 304 x 13 57.30% 0.01%

S.aureus [12] 26654420 100 927 x 7 88.79% 0.01%

Human Chr19 [57] 34167479 100 57x 15 71.62% 0.01%
R.sphaeroides [44]

HiSeq raw 166820 101 46 27 31.34% 0.04%

HiSeq trimmed 134207 up to 101 37x 6 83.26% 0.01%

MiSeq raw 23102 251 24x 122 0.25% 0.15%

Miseq trimmed 20046 up to 251 20% 29 63.55% 0.03%

although the number is comparable on some datasets this is still a significant improvement
considering that RLO+EBWT already has far less run than the EBWT baseline. On the
Chrl9 dataset, using RLO+EBWT-no-$ over plain BWT-no-$ (not reported in Figure 4a)
reduced the number of runs by 49%; using the XBWT reduced the number of runs by
an additional 16%. On S.aureus and E.coli the reduction between RLO+EBWT-no-$ and
XBWT is of only 3% and 8% respectively.

The R.sphaeroides datasets are especially interesting as they involve two NGS technologies

that generate reads of different lengths, different coverages, and with different error profiles.

We can first notice that our method brings greater benefits on the HiSeq sequencing which
has smaller reads with less errors that are located towards the end of the string. This is an
experimental validation of the statement of Theorem 2. We can also observe the effect of
trimming the reads on the number of runs. On the HiSeq sequencing, trimming reduces the

coverage only from 46x to 37x but yields a reduction in the number of XBWT runs by 86%.

Note that, as a result, on HiSeq trimmed, the number of XBWT runs is less than half the
number of runs in plain RLO+EBWT.

6 Application to the JST

From a certain angle, Figure 3 is reminiscent of Figure 5, from Rahn, Weese and Reinert’s [54]
paper on their Journaled String Tree (JST). This raises the question of whether the XBWT
and JST can be used to improve the space usage of the hybrid index [20, 26, 21] and eventually
the PanVC [58] pan-genomic read aligner, which is based on the hybrid index.

Figure 5 shows a JST supporting search for patterns of length up to 4 in four aligned
sequences: the reference

r = TAGCGTAGCAGCTATGAGGAGGACCGAGTT

and three others,

s' = TAGCGTAGCAGCGAGGAGCGACCGAGTT,
s? = TAGCGTGGCAGCGAGGAGCACCGAGTT ,
53 = TAGCGTGGCAGCTATGAGGAGCACCGAGTT.
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Figure 4 Comparison of run-lengths compression by RLO+EBWT with and without $ and
XBWT on various species (4a) and on two sequencing of R.sphaeroides (HiSeq and MiSeq) and for
reads both raw and trimmed (4b).

a) r: TAGCGTAGCAGCTATGAGGAGG-ACCGAGTT

s': TAGCGTAGCAGC- - -GAGGAGCGACCGAGTT
s?: TAGCGTGGCAGC- - -GAGGAGC-ACCGAGTT G A C
s*: TAGCGTGGCAGCTATGAGGAGC-ACCGAGTT

b)

7 (1%}

AGCGTAG C G AG T TY
© 1 2 3 4 5 6 7 24 25 26 27 28 29
* -0
{1,2,3} {1} {1,2,3} ,31{1,2,3}

Online search of the pattern p = AGCG over a JST depicted in (b) representing the four aligned sequences in (a). where r is chosen as the
reference. The window length is 4. The bullets on the black line represent the branch-nodes: L=(6, G, (2,3}, R); M=(12,TAT. (1,2}, D);
N=(21,C.{1.2,3}, R); O=(22,G. {1}, ). Below is plotted the reference with the reference coordinates. Branches are indicated by gray lines labeled
with the respective sequence context depending on the window length and with the virtual positions of the chosen proxy (marked sequence number). The
sets at the end denote the coverage. O’ is a split-node induced by O in the branch of N. The dotted lines capped with diamonds below the reference
positions represent the ranges in which invalid paths are suppressed. The orange (dashed) lines represent matches of the pattern p

Figure 5 An illustration of a JST [54].

The straight branch of the tree running along the bottom of the figure is labelled with r,
and the other branches indicate places where the other sequences differ from r. The other
branches end just before a window of size 4 sliding over their sequences matches an aligned
window of size 4 sliding over r. For example, the first branch ends at position 9 because a
sliding window of length 4 over positions 7 to 10 of sequences s? and s3 (that is, containing
the characters in columns 7 to 10 and the rows for s? and s3 in the alignment shown at the
top right in the figure), matches a sliding window of length 4 over positions 7 to 10 in r (that
is, containing the characters in columns 7 to 10 and the row for r in the alignment).
Suppose we are looking for the pattern p = AGCG: considering the circle at the left as the
root, p occurs 3 times as a substring (marked in orange) of root-to-leaf paths, and we can find
those occurrences using a depth-first traversal of the tree. Since the sequences are similar,
such a traversal is faster than running a sliding window over each sequence separately. If
we find an occurrence of p in the tree that ends at a node not in the branch for r, then we
have found occurrences in each of the sequences labelling the leaves in that node’s subtree.
If we find an occurrence of p in the branch for r, then we have found occurrences in r and
possibly other sequences. Unfortunately this case is not illustrated in the figure, but if we
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were looking for GTAG then the occurrence at position 4 in r would have a corresponding
occurrence in s' but not in s2 or s3; this is shown by the dashed line between 3 and 7, with
{1} at the left end indicating that s* matches r between 3 and 7 and {1,2, 3} indicating that
s, s? and s® all match r from 7 onward (until the next such interval starts at 9).

The hybrid index is conceptually similar to the JST, but the former is an index and the
latter performs pattern matching by scanning the tree sequentially. To build the hybrid

index supporting search for patterns of length up to 4 in r, s', s2, s3, we first build a string

1

kernel consisting of r and substrings from s', s, s® that contain all the characters within

distance 3 of variations from r, all separated by copies of a special symbol $:

TAGCGTAGCAGCTATGAGGAGGACCGAGTTSCGTGGCASAGCGAGSGAGCGACCSGAGCACC.

Any substring of length at most 4 of the the four sequences r, s, s2, s3 is a substring of the

string kernel, and any substring of length at most 4 of the string kernel that does not include
a copy of $ is a substring of at least one of those sequences. We then build an FM-index for
the string kernel, with auxiliary data structure that allow us to quickly map occurrences of a
pattern in the string kernel to occurrences in the sequences.

It seems interesting that the string kernel for the four sequences in Figure 5 has more
characters than the JST: on top of r, the string kernel has a substring $CGTGGCA and the
JST has a branch labelled GGCA; the string kernel has $AGCGAG and the JST has GAG; the
string kernel has $GAGCGACC and the JST has CGAC and GACCG (a tie in this one case); the
string kernel has $GAGCACC and the JST has CACC (with the first C shared with the branch
ending CGAC). This difference is because the string kernel stores copies of the characters both
before and after variation sites, whereas the JST stores copies only of the characters after
them. If we build an index using the XBWT of the JST, therefore, it may be smaller than
the hybrid index while having the same basic functionality. We leave exploring this possiblity
as future work.
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u < u' then a precedes ¢’ in that permutation. For convenience, we assume that the labels of
each vertex’s out-edges appear in the order in 7 of their destinations. Notice there may be
many BWTs for G because it may have many permutations 7 satisfying the Wheeler graph
conditions.

Let B be a BWT of G according to m. By the definition of a Wheeler graph, for any
pattern P over the alphabet of edge labels, the vertices reachable by directed paths labelled P
form an interval in 7. Moreover, if we store a rank data structure for B and partial sum data
structures for the frequencies of the distinct edge labels and the vertices’” in- and out-degrees,
then given P we can find its interval in O(|P|loglog|G|) time. Let r is the number of runs
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(i.e., maximal non-empty unary substrings) in B and suppose G can be decomposed into v

edge-disjoint directed paths whose internal vertices each have in- and out-degree exactly 1.

Then these data structures take a total of O(r + v) space, measured in words.

Let D be a such decomposition of G and n be the number of vertices in G, and assume
the vertices are assigned numeric identifiers from 0 to n — 1 such that if (u, v) is an edge and
neither u nor v is an endpoint of a path in D, and u has identifier 7, then v has identifier
i+ 1. Notice these identifiers are not necessarily the vertices’ ranks in 7. For convenience,
we assume that even though G is a multigraph, the number of edges is polynomial in n, so
loglog |G| = O(loglogn). We show how, still using O(r 4+ v) space, after we have found the
interval for P we can then report the vertices in it using O(loglogn) time for each one.

We first prove a generalization of Bannai, Gagie and I's version [4] of Policriti and Prezza’s
Toehold Lemma [51], that lets us report the last vertex in the interval for P. We then
define a generalization of Karkkéinen, Manzini and Puglisi’s ¢ function [31], that maps each
vertex’s identifier to the identifier of its predecessor in 7. Finally, we give a generalization
of a key lemma behind Gagie, Navarro and Prezza’s r-index [25], that lets us compute our
generalized ¢ function with O(r + v)-space data structures. Combined, these three results
yield a generalized r-index for Wheeler graphs.

A.1 Generalized Toehold Lemma

For any pattern P[0..m — 1], the interval for the empty suffix P[m..m — 1] of P is all of ,
because every vertex is reachable by an empty path. Assume we have found the interval

7[Sit1, €i+1] for Pli+ 1..m — 1] and now we want to find the interval 7[s;, e;] for P[i..m — 1].

With the partial sum data structure for the vertices’ out-degrees, in O(loglogn) time we can
find the interval in B containing the labels of the edges leaving the vertices in 7[s;1, €;+1].

By the definition of a Wheeler graph, the edges labelled with the first and last occurrences
of P[i] in that interval in B, lead to the first and last vertices in the interval n[s;,e;] for
Pli.m — 1]. Using the partial sum data structures for the frequencies of the distinct edge
labels and the vertices in-degrees, in O(loglogn) time we can find the ranks s; and e; in 7 of
those first and last vertices in 7[s;, e;]. It follows that in O(loglogn) time we can find 7[s;, ;]
from m[s;11, €;41]; therefore, by induction, we can find the interval for P in O(|P|loglogn)
time. We can count the vertices in that interval in the same asymptotic time by simply
returning the size of the interval.

To be able to find the identifier of the last vertex in the interval for P, for each edge
(u,v) we store u’s and v’s identifiers if any of the following conditions hold:

(u,v)’s label a is the last label in a run in B;

either u or v is an endpoint of a path in D;

the vertex that follows w in 7 has out-degree 0.

We store a select data structure for B, a bitvector marking the labels a in B for whose edges
(u,v) we have u’s and v’s identifiers stored, and a hash table mapping the position in B of
each marked label a to the identifiers of its edge’s endpoints. This again takes a total of
O(r + v) space.

By querying the rank data structure, the select data structure, the bitvector and the hash
table in that order, we can find the identifier of the vertex reached by the edge labelled by
the last copy of P[m — 1] in B. By the definition of a Wheeler graph, this is the last vertex
in the interval 7[s;,—1,€m—1] for P[m — 1]. Assume we have found the interval 7[s;;1,€;41]
for P[i+1..m — 1] and the identifier of the last vertex w in that interval, and now we want to
find the interval 7[s;, ;] for P[i..m — 1] and the identifier of the last vertex v in that interval.
We can find 7[s;, e;] as described above, so we need only say how to find v’s identifier.
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With the partial sum data structure on the vertices’ out-degree and the rank data
structure, in O(loglogn) time we can check whether u has an outgoing edge labelled P[i]. If
it does then, of all its out-edges labelled P[i], the one whose label appears last in B goes
to v. By our assumption of how the vertices are assigned their identifiers, if neither v nor
v are endpoints of a path in D, then v’s identifier is w’s identifier plus 1. If either uw or v
is an endpoint of a path in D, then we have v’s identifier stored and we can use the hash
table to find it from the position in B of the last label P[i] on one of u’s out-edges, again in
O(loglogn) time.

If w does not have an outgoing edge labelled P[i] then we can use the rank data structure
to find the last copy of P[i] in B that labels an edge leaving a vertex in 7[s;11,€;11]. By
the definition of a Wheeler graph, this edge (u’,v) goes to v. Unlike in a BWT of a string,
however, its label may not be the end of a run in B: u could have out-degree 0, u’ could
immediately precede u in 7 and the last of its outgoing edges’ labels in B could be a copy
of P[i], and the first label in B of an outgoing edge of the successor of u in 7 could also
be a copy of P[i]. This is why we store v’s identifier if the vertex that follows «’ in 7 has
out-degree 0. If (u/,v)’s label is the end of a run in B, of course, then we also have v’s
identifier stored. In both cases we use O(loglogn) time, so from the interval 7(s; 41, e;11] for
P[i 4+ 1..m — 1] and the identifier of the last vertex u in that interval, in O(loglogn) time
we can compute the interval 7[s;, e;] for P[i..m — 1] and the identifier of the last vertex v in
that interval. Therefore, by induction, in O(|P|loglogn) time we can find the interval for P
and the identifier of the last vertex in that interval.

» Lemma 5. We can store G in O(r + v) space such that in O(|P|loglogn) time we can
find the interval for P and identifier of the last vertex in that interval.

A.2 Generalized ¢

For a string S, the function ¢ takes a position ¢ in S and returns the starting position of the
suffix of S that immediately precedes S[i..|S| — 1] in the lexicographic order of the suffixes.
In other words, ¢ takes the value in some cell of suffix array of S and returns the value in the
preceding cell. Given a pattern P, if we can find the interval of the suffix array containing
the starting positions of occurrences of P in S, and the entry in the last cell in that interval,
then by iteratively applying ¢ we can report the starting positions of all the occurrences of
P. This is the idea behind the r-index for strings, which uses a lemma saying it takes only
space proportional to the number of runs in the BWT of S to store data structures that let
us evaluate ¢ in O(loglog|S|) time.

We generalize ¢ to Wheeler graphs by redefining it such that it takes the identifier of
some vertex u in G and returns the identifier of the vertex that immediately precedes w in
7. (For our purposes here, it is not important how ¢ behaves when given the identifier of
the first vertex in 7.) Given a pattern P, if we can find the interval in 7 containing the
vertices in G reachable by directed paths labelled P, and the identifier of the last vertex in
that interval, then by iteratively applying ¢ we can report the identifiers of all those vertices.

Let J be the set that contains u’s identifier if and only if any of the following conditions
hold:

u has out-degree not exactly 1;

u has a single outgoing edge (u,v) but v has in-degree not exactly 1;

the predecessor ¢’ of u in 7 has out-degree not exactly 1;

u’ has a single outgoing edge (u’,v’) but v’ has in-degree not exactly 1;

the edges (u,v) and (u',v") have different labels.
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We store a successor data structure for J and, if «’s identifier is in .J, then we store with it
as satellite data the identifier of u’s predecessor v’ in w. Notice u’s identifier is in .J only
if at least one of u or w’ or v or v’ is the endpoint of a path in D, or the label of (v/,v') is
the the last in a run in B and the label of (u,v) is the first in the next run. It follows that
we can use O(r 4+ v) space for the successor data structure and have it support queries in
O(loglogn) time.

Suppose we know the identifier of some vertex u with identifier 7 that is immediately
preceded by v/ in 7 with identifier /. If w € J then we have i’ stored as satellite data with
= (i) = 4. If u € J, then u has a single outgoing edge (u,v) and u’ has a single outgoing
edge (v/,v") with the same label, say a, and v and v’ each have in-degree exactly 1. By our
assumption on how the identifiers are assigned, the identifiers of v and v’ are i + 1 and i’ + 1
and, by the definition of a Wheeler graph, v is immediately preceded by v’ in 7. It follows
that if 4 + £ is the successor of 7 then it has stored with it as satellite data i’ + ¢, and so we
can compute ¢ and then ¢ in O(loglogn) time.

» Lemma 6. We can store G in O(r + v) space such that we can evaluate ¢ in O(loglogn)
time.

A.3 Discussion

Combining Lemmas 5 and 6, we generalize, we obtain Theorem 3. Since v = 1 for a single
string labelling a simple path or cycle, Theorem 3 gives the same O(r) space bound and
O(|P|+ kloglogn) time bound we achieve with the r-index for strings, where k is the number
of occurrences. Nishimoto and Tabei [50] recently improved the query time of the r-index for
strings to O(P + kloglogn) — or optimal O(P + k) for polylogarithmic alphabets — without
changing the space bound, and we conjecture this is achievable also for r-indexes for Wheeler
graphs.
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