
Compressing and Indexing Aligned Readsets

Travis Gagie #

Dalhousie University, Halifax, Canada

Garance Gourdel #

IRISA Ű Inria Rennes Ű Université Rennes 1 Ű ENS, France

Giovanni Manzini #

University of Pisa, Italy

Abstract

Compressed full-text indexes are one of the main success stories of bioinformatics data structures

but even they struggle to handle some DNA readsets. This may seem surprising since, at least when

dealing with short reads from the same individual, the readset will be highly repetitive and, thus,

highly compressible. If we are not careful, however, this advantage can be more than offset by two

disadvantages: Ąrst, since most base pairs are included in at least tens reads each, the uncompressed

readset is likely to be at least an order of magnitude larger than the individualŠs uncompressed

genome; second, these indexes usually pay some space overhead for each string they store, and the

total overhead can be substantial when dealing with millions of reads.

The most successful compressed full-text indexes for readsets so far are based on the Extended

Burrows-Wheeler Transform (EBWT) and use a sorting heuristic to try to reduce the space overhead

per read, but they still treat the reads as separate strings and thus may not take full advantage of

the readsetŠs structure. For example, if we have already assembled an individualŠs genome from the

readset, then we can usually use it to compress the readset well: e.g., we store the gap-coded list of

readsŠ starting positions; we store the list of their lengths, which is often highly compressible; and

we store information about the sequencing errors, which are rare with short reads. There is nowhere,

however, where we can plug an assembled genome into the EBWT.

In this paper we show how to use one or more assembled or partially assembled genome as

the basis for a compressed full-text index of its readset. SpeciĄcally, we build a labelled tree by

taking the assembled genome as a trunk and grafting onto it the reads that align to it, at the

starting positions of their alignments. Next, we compute the eXtended Burrows-Wheeler Transform

(XBWT) of the resulting labelled tree and build a compressed full-text index on that. Although this

index can occasionally return false positives, it is usually much more compact than the alternatives.

Following the established practice for datasets with many repetitions, we compare different full-text

indices by looking at the number of runs in the transformed strings. For a human Chr19 readset

our preliminary experiments show that eliminating separators characters from the EBWT reduces

the number of runs by 19%, from 220 million to 178 million, and using the XBWT reduces it by a

further 15%, to 150 million.

2012 ACM Subject ClassiĄcation Theory of computation → Data compression

Keywords and phrases data compression, compact data structures, FM-index, Burrows-Wheeler

Transform, EBWT, XBWT, DNA reads

Digital Object IdentiĄer 10.4230/LIPIcs.WABI.2021.13

Supplementary Material Software (Source Code): https://github.com/fnareoh/Big_XBWT

archived at swh:1:dir:ec67fec8b70e6b837a1b497c7fc07cb5d179c512

Funding Travis Gagie: Funded by NSERC Discovery Grant RGPIN-07185-2020, NIH R01HG011392

and NSF IIBR 2029552.

Garance Gourdel: Partially funded by the grant ANR-20-CE48-0001 from the French National

Research Agency (ANR).

Giovanni Manzini: Supported by the Italian MIUR PRIN project 2017WR7SHH.

Acknowledgements Many thanks to Jarno Alanko and Uwe Baier for their XBWT-construction

software, and to Diego Díaz, Richard Durbin, Filippo Geraci, Giuseppe Italiano, Ben Langmead,

Gonzalo Navarro, Pierre Peterlongo, Nicola Prezza, Giovanna Rosone, Jared Simpson, Jouni Sirén

and Jan Studený for helpful discussions.

© Travis Gagie, Garance Gourdel, and Giovanni Manzini;
licensed under Creative Commons License CC-BY 4.0

21st International Workshop on Algorithms in Bioinformatics (WABI 2021).
Editors: Alessandra Carbone and Mohammed El-Kebir; Article No. 13; pp. 13:1Ű13:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Ű Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:travis.gagie@gmail.com
https://orcid.org/0000-0003-3689-327X
mailto:garance.gourdel@irisa.fr
mailto:giovanni.manzini@unipi.it
https://orcid.org/0000-0002-5047-0196
https://doi.org/10.4230/LIPIcs.WABI.2021.13
https://github.com/fnareoh/Big_XBWT
https://archive.softwareheritage.org/swh:1:dir:ec67fec8b70e6b837a1b497c7fc07cb5d179c512;origin=https://github.com/fnareoh/Big_XBWT;visit=swh:1:snp:9f1e24d801baaaa758698ae26d2a7c6170c2569e;anchor=swh:1:rev:a837195b4f8189c1cb0d72487dd169a67dff6561
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Compressing and Indexing Aligned Readsets

1 Introduction

The FM-index [23] is an important data structure in both combinatorial pattern matching

and bioinformatics. Its most important application so far has been in standard short-read

aligners Ű Bowtie [39, 38] and BWA [41] have together over 70 thousand citations and are

used every day in clinics and research labs worldwide Ű but it has myriad other uses and

more are still being discovered. Just within computational genomics, FM-indexes have

been generalized from single strings to collections of strings for tools such as BEETL [15],

RopeBWT [40] and Spring [11], to de Bruijn graphs for tools such as BOSS [8], VARI [48]

and RainbowĄsh [2], and to graphs for tools such as vg [27]. Recent breakthroughs [25] mean

we can now scale FM-indexes to massive but highly repetitive pan-genomic datasets for a

new generation of tools [36].

As genomic datasets grow exponentially (from the Human Genome Project to the 1000

Genomes Project and the 100K Genomes Project) and standards for sequencing coverage

increase (from less than 10x a few years ago to 30x and 50x now and over 100x for some

applications), an obvious question is whether and how the recent breakthroughs in FM-

indexing of repetitive datasets can be turned into comparable advances in indexing readsets, so

more researchers can efficiently mine them for biomedical insights. For example, extrapolating

from previous experiments [36], it should be possible to index both haplotypes from 2705

individuals in less than 100 GB of RAM. In contrast, the readset from the Ąnal phase of the

1000 Genomes Project consisted of reads from 2705 individuals and was released as a 464

GB Burrows-Wheeler Transform (BWT) [17], which is beyond the resources of most labs to

process. This almost Ąve-fold increase (from 100 to 464 GB) seems reasonable, given the

range of lengths and the error rate of short-read sequencing technologies, but those reads

were trimmed and error-corrected before their BWT was computed, making that increase

harder to justify and thus a target for improvement. Although experimenting with that

particular readset is beyond the scope of this paper, since it occupies 87 TB uncompressed,

we expect the insights and techniques we develop here will eventually be useful in software

able to handle efficiently inputs of that scale.

Recent results on FM-indexing repetitive datasets [25] have shown that the index perform-

ance depends on the number of runs in the transformed sequence, where a run is a maximal

non-empty unary substring. For example, if the BWT of a dataset of (uncompressed) size n

has r runs, we can design an FM-index of size O(r log log n) supporting the count and locate

operations in optimal linear time. Hence, if a BWT variant produces a transformed string

with a smaller number of runs, the resulting index will be smaller and equally fast. The naïve

approach to FM-indexing readsets is to concatenate the reads with copies of a separator

character between them, and FM-index the resulting single string. However, computing

the BWT of such a long string is a challenge and each separator character causes several

runs in that BWT. The most competitive indexes for readsets are based on Mantaci et

al.Šs [46] Extended Burrows Wheeler Transform, which is also easier to build for readsets. The

Ąrst index for readsets based on the EBWT was BEETL [15], followed by RopeBWT [40];

recently the EBWT has been used also by the Spring compressor [11] specialized for FASTQ

reads. BEETL and RopeBWT use explicit separator characters but such characters could be

replaced by bitvectors marking positions at the ends of reads.

BEETL and RopeBWT use a heuristic to reduce the number of runs in the EBWT: they

conceptually put the separator characters at the ends of reads into the co-lexicographic order

(lexicographic order on the reverse string, also referred to as reverse lexicographic order) of

the reads, so that the Ąnal characters or reads with similar suffixes are grouped together in

T. Gagie, G. Gourdel, and G. Manzini 13:3

the EBWT. This often works surprisingly well but in the worst case it cannot make up for

the lack of context for sorting those characters into their places in the EBWT. Our proposal

in this paper is to graft the reads onto their assembled genome, or a reference genome to

which they align well, and index the resulting labelled tree with Ferragina et al.Šs [22] XBWT.

To this end we assume that we know how the reads align to the assembled/reference genome:

this is not an unreasonable assumption since alignment is the initial step of any readset

analysis.

In order to implement our idea we have to overcome a signiĄcant hurdle: as the coverage

increases so does the amount of raw data produced by a single NGS experiment. Although

the high coverage implies that the data is highly compressible, the actual compression

process, ie the construction and the compression of the XBWT, must be done partially in

externally memory since the input will be usually much larger than the available RAM.

Another contribution of the paper is therefore the adaptation of the preĄx-free parsing (PFP)

technique [7] to the construction of the XBWT. PFP has been proposed for the construction

of BWTs of collections of similar genomes: the initial parsing phase is able to compress the

input maintaining enough information to compute the BWT working on the compressed

representation. In this paper we adapt PFP to readsets, taking care also of the ŞgraftingŤ

of the single reads to the reference/assembled genome. Given a pattern P , our index could

answer count(P) and locate(P) queries which report respectively the number of positions

where P occurs and the list of positions where P occurs. The main drawback to our index,

apart from taking one or more assembled or partially assembled genomes as a base, is that it

can return a false-positive in the count operation when an occurrence of a pattern starts in

the trunk of an alignment tree and ends in a branch. In other words, the index can report a

match that is not completely contained within a read but would be if we padded the read on

the left with enough characters copied from just before where it aligns. In a locate operation

false-positives could be identiĄed, but this operation is much slower. Even this is not entirely

bad, however, and it is conceivable this bug could sometimes be a feature. The analysis of

those false positive and the size of the bit vectors marking the end of reads is left as future

work.

The rest of the paper is organized as follows. In Section 2 we Ąrst describe the BWT and

FM-indexes, then the EBWT and XBWT and the concept of Wheeler graph that uniĄes

them. In Section 3 we introduce our idea for indexing aligned readsets with the XBWT and

we prove some theoretical results supporting it. In Section 4 we describe how we adapt PFP

to indexing readsets, which allows us to experiment with larger Ąles than would otherwise be

possible with reasonable resources. In Section 5 we present our experimental results showing

that applying the XBWT to index readsets works well in practice as well as in theory. Finally,

we outline in Section 6 how our study of storing reads with the XBWT may improve the

space usage of the hybrid index [20, 21, 26].

2 Concepts

For a better understanding of the problem context, we give a succinct description of the

second generation sequencing technique. Most publicly available readsets are from Illumina

sequencers [35] which rely on sequencing by synthesis. For this process, millions or billions

of single-stranded snippets of DNA called templates are deposited onto a slide and ampliĄed

into clusters of clones. In each sequencing cycle we learn one base of each template: we add

DNA polymerase and specially terminated bases; the polymerase attaches a terminated base

to each strand, complementary to the next base in the strand; we shine a light on the slide

WABI 2021

13:4 Compressing and Indexing Aligned Readsets

and the terminated bases glow various colours; we take a photo and note the colour of each

cluster; and Ąnally, we treat the slide to remove the terminators. Sometimes, however, one

of the added bases is not correctly terminated, so the polymerase attaches Ąrst it and then

another base to a strand in some cluster; that strand is then out of step with the rest of the

cluster, and the cluster will have a mix of colours in the photos for subsequent sequencing

cycles. As we go through more and more sequencing cycles, more strands tend to fall out

of step, resulting in less reliable results. (For futher discussion we refer the reader to, e.g.,

LangmeadŠs lecture on this topic [37].) This tendency means sequencing by synthesis has an

asymmetric error proĄle, with errors more likely towards the ends of the reads. It follows

that sequencing errors tend to be near the end of the reads: our index is designed to take

advantage of this feature (see Theorem 2).

2.1 BWT and FM-index

The Burrows-Wheeler Transform (BWT) [10] of a string S is a permutation of the characters

in S into the lexicographic order of the suffixes that immediately follow them, considering

S to be cyclic. For example, as shown on the left in Figure 1, the BWT of GATTAGATACAT$

is TTTCGGAA$AATA, assuming $ is a special end-of-string symbol lexicographically smaller

than all other characters. Because the BWT groups together characters that precede similar

suffixes, it tends to convert global repetitiveness into local homogeneity: e.g., for any string

α, the BWT of αt consists of ♣α♣ unary substrings of length t each; even the BWT in our

example has length 13 but consists of only 8 maximal unary substrings (called runs). This

property led Burrows and Wheeler to propose the BWT as a pre-processing step for data

compression and Seward [55] used it as the basis for the popular bzip2 compression program.

The BWT is also the basis for the FM-index [23], one of the Ąrst and most popular

compressed indexes, which is essentially a rank data structure over the BWT combined

with a suffix-array sample. The FM-index is an important data structure in combinatorial

pattern matching and bioinformatics, and is itself the basis for popular tools such as

Bowtie [39, 38] and BWA [41] that align DNA reads to reference genomes. We refer the

reader to NavarroŠs [49] and Mäkinen et al.Šs [45] textbooks for detailed discussions of how

FM-indexes are implemented and used for read alignment.

2.2 EBWT

Although alignment against one or more reference genomes remains a key task in bioinform-

atics, there is growing interest in compressed indexing of sets of reads [17, 34]. The FM-index

plays a central role here too: Mantaci et al. [47] generalized the BWT to the Extended

BWT (EBWT), which applies to collections of strings, and then Cox et al. [5, 13, 30] used

an FM-index built on the EBWT in their index BEETL for readsets. The same construction

was also used in subsequent indexes for readsets, such as RopeBWT [40] and Spring [11].

The EBWT of a collection of strings is a permutation of the characters in those strings

into the lexicographic order of the suffixes that immediately follow them, considering each

string to be cyclic. For example, as shown on the right in Figure 1, the EBWT of GATTA$,

TTAGA$, TAGATA$, GATAC$ and ATACAT$ is TCAAATTGTTTTCGG$GAAAA$$ATAAATA. When we

see the BWT and EBWT as permutations of characters, the BWT of a single string has a

single cycle, whereas the EBWT of a collection of strings has a cycle for each string. This

means it is easier to build the EBWT and update it when a string is added or deleted,

than to build and update the BWT of the concatenation of the collection with the strings

separated by copies of a special character. We refer the reader to Egidi et al.Šs [18, 19] and

Díaz-Domínguez and NavarroŠs [16] recent papers for descriptions of efficient construction

and updating algorithms.

T. Gagie, G. Gourdel, and G. Manzini 13:5

F L

0 $GATTAGATACAT

1 ACAT$GATTAGAT

2 AGATACAT$GATT

3 AT$GATTAGATAC

4 ATACAT$GATTAG

5 ATTAGATACAT$G

6 CAT$GATTAGATA

7 GATACAT$GATTA

8 GATTAGATACAT$

9 T$GATTAGATACA

10 TACAT$GATTAGA

11 TAGATACAT$GAT

12 TTAGATACAT$GA

F L F L

0 $ATACAT 16 ATTA$ G

1 $GATA C 17 C$GAT A

2 $GATT A 18 CAT$ATA

3 $TAGATA 19 GA$TT A

4 $TTAG A 20 GATA$TA

5 A$GAT T 21 GATAC $

6 A$TAGAT 22 GATTA $

7 A$TTA G 23 T$ATACA

8 AC$GA T 24 TA$GA T

9 ACAT$AT 25 TA$TAGA

10 AGA$T T 26 TAC$G A

11 AGATA$T 27 TACAT$A

12 AT$ATAC 28 TAGA$ T

13 ATA$TAG 29 TAGATA$

14 ATAC$ G 30 TTA$G A

15 ATACAT$ 31 TTAGA $

Figure 1 The matrices whose rows are the lexicographically sorted rotations of GATTAGATACAT$

(left) and of GATTA$, TTAGA$, TAGATA$, GATAC$ and ATACAT$ (right). The BWT and EBWT are

TTTCGGAA$AATA and TCAAATTGTTTTCGG$GAAAA$$ATAAATA with 8 and 19 runs, respectively.

Despite its beneĄts, the EBWT sometimes does not take full advantage of its inputŠs

compressibility. In our example, as Figure 1 shows, even though all the strings in the

collection are substrings of GATTAGATACAT$ with copies of $ appended to them, their EBWT

has more than twice as many runs as its BWT. As a heuristic for reducing the number of runs,

and thus reducing BEETLŠs space usage, Cox et al. suggested considering the lexicographic

order of the copies of $ to be the stringsŠ co-lexicographic order. This does not help in cases

such as our example, however, for which the EBWT still has 19 runs even with that ordering.

Bentley et al. [6] recently gave a linear-time algorithm to Ąnd the ordering of the copies of

$ that minimizes the number of runs, but it has not been implemented and it is unclear

whether it is practical for large readsets.

Another way to potentially reduce the number of runs is to remove the copies of $

entirely, and store an auxiliary ternary vector marking which characters in the EBWT are

the Ąrst and last characters in the strings. If there are t strings in the collection with

total length n, then storing this vector takes O(t log(n/t) + t) bits (even if some of the

strings are empty or consist of only one character). As shown in Figure 2, the EBWT

becomes TTTTTTGTCGGGAACAAAAAATTAAAA, with only 10 runs. The idea of replacing $Šs with

an auxiliary vector is relatively new since it originates from seeing the EBWT as a special

case of Wheeler graphs [24] which are described in the next section.

2.3 Wheeler Graphs and XBWT

Wheeler graphs were introduced by Gagie, Manzini and Sirén [24] as a unifying framework for

several extensions of the BWT, including the EBWT, Ferragina et al.Šs [22] eXtended BWT

(XBWT) for labelled trees, Bowe, et alŠs. [9] index (BOSS) for de Bruijn graphs, and Sirén

et al.Šs [56] Generalized Compressed Suffix Array (GCSA) for variation graphs. A directed

edge-labelled graph is a Wheeler graph if there exists a total order on the vertices such that

vertices with in-degree 0 are earliest in the order;

if (u, v) is labelled a and (u′, v′) is labelled b with a ≺ b, then v < v′;

if (u, v) and (u′, v′) are both labelled a and u < u′ then v ≤ v′.

WABI 2021

13:6 Compressing and Indexing Aligned Readsets

F L F L

0 0 ACATAT 14 + GATA C

1 0 ACGA T 15 0 GATATA

2 0 AGATAT 16 0 GATT A

3 − AGAT T 17 + GATT A

4 0 AGAT T 18 0 TACATA

5 + ATACAT 19 0 TACG A

6 0 ATAC G 20 + TAGATA

7 − ATAGAT 21 0 TAGA T

8 0 ATATAC 22 0 TAGA T

9 0 ATATAG 23 − TATACA

10 0 ATTA G 24 0 TATAGA

11 − ATTA G 25 0 TTAG A

12 0 CATATA 26 + TTAG A

13 − CGAT A

Figure 2 The matrix whose rows are the lexicographically sorted rotations of GATTA, TTAGA,

TAGATA, GATAC and ATACAT. The EBWT is TTTTTTGTCGGGAACAAAAAATTAAAA with 10 runs.

Figure 3 shows an example of a Wheeler graph with a valid order on the vertices. The

ordering is obtained by lexicographically sorting the strings spelling the labels in the upward

path from each vertex to the root where the ties are broken deterministically (following an

arbitrary order on the branches). For example, vertex 0 has upward path ε, vertex 3 has

upward path AG, vertex 30 has upward path TAG and so on. Notice that for directed acyclic

graphs such as trees, such order on the vertices can be computed quickly with an adaptation

of the doubling algorithm [33].

Once we have a valid order, the standard representation of a Wheeler graph is deĄned

considering the vertices in that order and listing the labels on the outgoing edges of each

vertex. In addition, for each vertex we represent its out-degree and in-degree in unary thus

obtaining two additional binary arrays. For example, for the graph in Figure 3 the Ąrst Ąve

vertices have outgoing edges labelled GG T T T TT, so the label array starts with GGTTTTT· · ·

and the out-degree bit-array starts with 001010101001· · · . This simple representation,

combined with rank and select primitives, supports efficient search and navigation operations

on Wheeler graphs. We refer the reader to PrezzaŠs [53] recent survey for a discussion of

Wheeler graphs and related results.

Note that the graph in Figure 3 is a labelled tree: indeed its Wheeler Graph representation

is equivalent to the output of the XBWT [22] applied to the same tree (details in the full

paper). For clarity of presentation in the following we will still refer to the EBWT and

XBWT even if they are both special cases of Wheeler graphs.

3 Our contribution

Figure 3 can be seen as a representation of a ŞgenomeŤ GATTAGATACAT and of Ąve ŞreadsŤ

GATTA, TTAGA, TAGATA, GATAC and ATACAT extracted, without errors, from it. Starting with

the vertex with rank 28, corresponding to the last symbol of the ŞgenomeŤ, and navigating

the tree we are able to recover all the individual strings. Notice however, that the XBWT

has only 7 runs while the BWT of the ŞgenomeŤ and the EBWT of the ŞreadsŤ in Figure 1

have 8 and 19 runs, respectively. The EBWT without $ of the reads alone in Figure 2 has 10

13:8 Compressing and Indexing Aligned Readsets

general problem, indexing assembled reads is still of practical interest [17]. Many readsets

have coverage of 30x or even 50x, which makes them extremely large but should also make

run-length compression practical on the XBWTs. If we want to index readsets from several

individuals, we can simply graft the reads onto the appropriate assembled genomes and

compute the XBWT of the forest, which is also a Wheeler graph.

Theorem 1, provides an extremely good estimate of the number of runs of the XBWT,

but it holds under the unrealistic assumption that the reads have no errors. However, we

can take advantage of the fact that sequencing by synthesis has an asymmetric error proĄle:

errors are much more likely at the end of a read than at the beginning. The following result

shows that errors at the end of the reads have a limited impact to the overall number of runs

in the XBWT.

▶ Theorem 2. In the hypothesis of Theorem 1 suppose that the sampled substrings may

differ from the reference string and that the average distance from Ąrst difference (insertion,

deletion, or substitution) to the end of the substring is δ. Then, with respect to Theorem 1

the XBWT of the tree will have at most 2δ additional runs per substring.

Proof. Consider a single substring of length ℓ in which the distance between the Ąrst difference

and the end of the substring is d (we assume d = 0 if there are no differences). Reasoning as

in the proof of Theorem 1, we see that the Ąrst ℓ − d symbols of the substring will end up

in the same run as the corresponding symbol of the reference string (the one at the same

depth in the tree). Each of the other d symbols will, in the worst case, end in the middle of

a run of a different symbol thus creating two additional runs. Summing this additional runs

over all substrings we get a total number of additional runs upper bounded by 2δ runs per

substring. ◀

To guarantee that most of the errors are at the end of the reads, we propose to build two

trees: one for the assembled genome and one for its reverse complement. Having two trees

means we do not have to reverse and complement half the reads before grafting them onto a

single tree: the reversal of the string would be problematic in view of Theorem 2 since it

would move an error from the end of the read to its front. We can build two trees with a

small additional cost since the alignment algorithm will tell us whether each read aligns to

the reference or to its reverse complement.

Assuming our scheme guarantees an improvement in compression we want to be sure

the resulting index is also efficient. Prezza [52] recently showed how to generalize Gagie,

Navarro and PrezzaŠs [25] results about fast locating from run-length compressed BWTs to

run-length compressed XBWTs, at the cost of storing the treesŠ shapes, which takes a linear

number of bits. For trees with far more internal vertices than leaves, however, it is relatively

easy to support fast locating in small space, as a corollary of the following theorem.

▶ Theorem 3. Let G be a Wheeler graph and r be the number of runs in a Burrows-Wheeler

Transform of G, and suppose G can be decomposed into υ edge-disjoint directed paths whose

internal vertices each have in- and out-degree exactly 1. We can store G in O(r + υ) space

such that later, given a pattern P , in O(♣P ♣ log log ♣G♣) time we can count the vertices of G

reachable by directed paths labelled P , and then report those vertices in O(log log ♣G♣) time

per vertex.

▶ Corollary 4. Let T be a labelled tree on n vertices obtained by grafting reads onto their

assembled genome as described. Let r be the number of runs in the XBWT and let t be the

number of reads. We can store T in O(r + t) words of space such that later, given a pattern

P , in O((♣P ♣ + k) log log n) time we can report all the k vertices reachable by paths labelled P .

T. Gagie, G. Gourdel, and G. Manzini 13:9

We sketch a proof of Theorem 3 in A, although we omit the details because, at least

when dealing with short reads, it may be more practical just to descend until we reach a

branching node (in which case the pattern is in the assembled genome, not in a read) or a

leaf. We have not yet considered carefully whether Nishimoto and TabeiŠs [50] faster locating

can be applied to improve Theorem 3 or Corollary 4.

Before we concentrate on optimizations we should consider two basic questions: are our

XBWTs for readsets signiĄcantly smaller than their EBWTs in practice and, if so, how can we

build them efficiently? Theorem 2 offers some guarantees of compression, but to test how our

idea works in practice in Section 5 we build the XBWT and EBWT for a real, high-coverage

readset and see how the numbers of runs in them compare. In Section 4 instead we face the

problem of the efficient construction of XBWTs for large datasets.

4 XBWT via PreĄx Free Parsing

The problem of building the XBWT for a set of reads as described in Section 3 is non

trivial because the input typically consists in tens of gigabytes of data and we cannot make

use of the available algorithms [1, 3] which are designed to work in RAM. However, the

fact that reads are copies (possibly with errors), of portions of a relatively small reference

suggests that the overall amount of information content is relatively small. Therefore we

decided to compute the XBWT using the technique of PreĄx Free Parsing (PFP) that has

been successfully utilized for computing the BWT for large collections of genomes from

individuals of the same species. Our implementation was done in C++ and is available on

https://github.com/fnareoh/Big_XBWT. Note that our algorithm does not take as input

a labelled tree, but rather a reference genome and a set of reads aligned to that genome

(in the format of a .bam Ąle); the alignment implicitly deĄnes a labeled tree as described in

Section 3.

In the PFP construction of the BWT the input is parsed into overlapping phrases using

context-triggered piecewise hashing [7]. If the input contains many repetitions, the use of

context-triggered hashing ensures that the parsing will contain a relatively small number of

distinct phrases. The actual construction of the BWT is done using only the dictionary of

distinct phrase and the parse (which describes how the dictionary phrases can be used to

reconstruct the input). For repetitive datasets the dictionary and the parse Ąt in RAM even

when the original input does not. UnmodiĄed, however, PFP does not work well on readsets

since the phrases generated at the beginning and end of each read will likely be unique. As

a result, the dictionary will be quite large and the algorithm inefficient. To prevent this,

we extend the reads forward and backward so they begin and end with complete phrases.

The extension is done using the symbols in the reference immediately before and after the

position where the read aligns, so that the phrases are likely to be not unique (if the read

has no errors the phrases will be exactly the same generated when parsing the reference).

Although this technique maintains the dictionary small, the tricky part is to exclude these

extensions when computing the actual XBWT.

Summing up, our implementation is divided in three main phases. In the Ąrst phase we

partition the reference and the reads into phrases; the set of distinct phrases is called the

dictionary and the way phrases form the reference and the reads is called the parse. We use

the extension trick mentioned before, and ,if the reference and the reads are similar, the

dictionary will be relatively small. In the second phase we compute the XBWT of the parse.

Since phrases are relatively large, the number of symbols in the parse is much smaller than

in the original input, so the parse Ąts in RAM and the computation can be done using a

doubling algorithm [33]. Finally, in the third phase we recover the XBWT of the input from

the XBWT of the parse. The details of the three phases are given below.

WABI 2021

https://github.com/fnareoh/Big_XBWT

13:10 Compressing and Indexing Aligned Readsets

4.1 Construction of the Dictionary and the Parse

We start by scanning the reference as in the PFP BWT construction algorithm. The algorithm

takes as input parameters a window size w, and a modulo m. We slide a window of length

w over the text, at each step computing the Karp-Rabin Ąngerprint [32] of the window.

We deĄne a terminating windows as a window with Karp-Rabin Ąngerprint equal to zero

modulo m. Terminating windows decompose the text into overlapping phrases: each phrase

is a minimal substring that begins and ends with a terminating window. Note that each

terminating window is a suffix of the current phrase and the preĄx of the next phrase so

consecutive phrases have a size-w overlap. Note that deĄning phrases using terminating

windows ensures that no phrase is a preĄx (or a suffix) of another phrase, hence the name

ŞpreĄx free parsingŤ.

In addition to keeping track of window Ąngerprints, we also maintain a different hash

h(pi) of the current phrase pi. For simplicity in the following we assume distinct phrases

always have distinct hashes, if not we detect it and crash. At the end of this scanning

phase, the reference has been parsed into the (overlapping) phrases p1, p2, . . . , pz. We build

a vector S[1, z] storing for each phrase pi its starting position si in the reference and its

hash h(pi). We also build as we go the dictionary that associate to each hash value h(pi) the

corresponding phrase pi (stored as a simple string) and occ(pi) the number of occurrences of

that phrase. We will later also need the length of each phrase but we donŠt store it explicitly,

just deduce it from the string stored in the dictionary.

After parsing the reference, we process the reads one by one. From the Ąle of aligned

reads, we obtain both the read r as a string and the position l where the read aligns to the

reference. We binary search in S for the rightmost phrase ps that starts before position l

and for the leftmost phrase pe that ends after position l + ♣r♣ − 1. Let p′

s
(resp. p′

e
) denote

the preĄx (resp. suffix) of ps (resp. pe) ending (resp. starting) immediately before (resp.

after) position l (resp. l + ♣r♣ − 1). We deĄne the extended read rext = p′

s
· r · p′

e
where · here

denotes string concatenation. We slide a window onto rext, decomposing it into phrases, as

we did for the reference. Since rext starts and ends with a terminating window the phrases

we add while parsing rext still form a preĄx-free parsing. However, as we do not want to

index the whole rext in the Ąnal XBWT, for each read we keep track and store to disk the

starting and ending position of r in rext.

When processing the reads we continue adding the hashes of the phrases to the end parse,

using a special value as separator between reads. If we parse a new phrase, we add it to

the dictionary. However, as previously pointed out, the phrases coming from the extended

reads are likely to be equal to phrases in the reference so we expect the dictionary not to

grow signiĄcantly (the dictionary would not grow at all if all the reads were substrings of the

reference). From the starting and ending position of the original read in the extended read

we deduce for each phrase what characters are part of the original read (the reads without

extensions) and we store a starting and ending position for each phrase.

Once all the reads have been processed, we sort the phrases in the dictionary in reverse

lexicographic order and we output a new parse where each hash of phrase is replaced by its

reverse lexicographic rank, the separator symbol is replaced by the number of phrases plus

one. To summarize, at the end of this phase we have produced the following output Ąles:

1. file.dict: the dictionary in co-lexicographic order;

2. file.occ: the frequency of each phrases;

3. file.parse: the parse with each phrase represented by its co-lexicographic rank;

4. file.limits: the starting and ending position of the original input (reads without

extension) in each phrase.

T. Gagie, G. Gourdel, and G. Manzini 13:11

4.2 XBWT of the Parse

The main goal of this phase is to construct the XBWT of the parse, using the co-lexicographic

rank as meta-characters. To this end we load the parse on RAM, reconstruct its tree structure,

and compute the XBWT of this tree via a doubling algorithm [33]. Then, rather than storing

the XBWT as is, we construct an inverted list as this structure will be more appropriate for

the next phase. For each phrase pi we store the list of XBWT positions where pi appears.

The size of the inverted list for pi is equal to its frequency; since frequencies were computed

in the Ąrst phase, we can output the inverted list as a plain concatenation of positions.

In this phase we also permute the limits (the starting and ending position in the original

input) of each phrase according to their order in the XBWT. This way, in the next phase,

with the inverted list, we can easily access the limit of any given phrase in the parse. In

this phase, we also compute and write to disk for every phrase, the list of phrases (with

multiplicities) that immediately follow in the parse. This list will be used to index the

characters that precede a full word. However because we only want to index the characters

that are in the original input, we only add it after checking the limits. Finally, because we

are not storing special characters to mark the end of a read or of the reference (as they would

break runs), we construct a bit vector marking such positions and we permute it according

to the XBWT order. To summarize, at the end of this phase we have produced the following

output Ąles:

1. file.dict: the dictionary of the reversed phrases (from the Ąrst phase).

2. file.occ: the frequency of each phrases (from the Ąrst phase).

3. file.ilist: the inverted list of the parse.

4. file.xbwt_limits: the limits of the phrases in XBWT order.

5. file.xbwt_end: markers of the phrases where a read or reference ends in XBWT order.

6. file.full_children: for every word, the list of words that follows it.

4.3 Building the Ąnal XBWT

This is the Ąnal phase where we compute the XBWT of the reference and of the readset.

We start by sorting lexicographically the suffixes of the strings in the dictionary D. At this

stage the dictionary D contains the phrases reversed, so this is equivalent to sort in reverse

lexicographic order the preĄxes of all phrases. We ignore the suffixes of length ≤ w as they

correspond to the terminating window which also belongs to the previous phrase. The sorting

is done by the gSACAK algorithm [43] which computes the SA and LCP array for the set

of dictionary phrases. We scan the sorted elements of D, for s a proper suffix, there are

two cases, all the elements in D which have s as a proper suffix have the same preceding

character, in this case we add it the correct number of times using the frequency of each

phrase. In the other case, we use a heap to merge the inverted list writing the appropriate

characters accordingly. Here when writing a character we Ąrst check that the suffix length is

between the limits and only write it to Ąle if it does. We also check if the character to be

added is the last of its sequence (read or reference), if so output a 1 to signal the end of a

sequence, else 0. When Ąnding a suffix s′ that corresponds to an entire phrase, we use the

children Ąle to output the character at the start of the following phrase. At the end of this

phase we have written to disk a Ąle with the XBWT of the reference and readset as well

as a bit vector marking which positions are the last character of a read or a genome. To

summarize, in this phase we use file.dict, file.occ, file.ilist, file.full_children

and file.xbwt_limits; all other Ąles can be discarded. We output the XBWT in plain text

as file.bwt and file.is_end is the compressed bit vector marking the end of reads.

WABI 2021

13:12 Compressing and Indexing Aligned Readsets

5 Experiments

In this section we present a Ąrst experimental evaluation of our XBWT-based approach for

compressing a set of aligned reads and we compare it with the known methods based on the

EBWT. We compare ourselves to the EBWT and not other compression tools for aligned

readset as our long-term goal is to create an index and not just compression. Recall that our

implementation and experimental pipeline is available on github.com/fnareoh/Big_XBWT.

For simplicity we compare the numbers of runs produced by the different algorithms. The

actual compression depends on the algorithm used for encoding the run lengths: preliminary

experiments with the γ encoder show that the number of runs is a good proxy for measuring

the actual compression. An accurate comparison of the time efficiency is left as a future

work: we only compared the number of runs produced by our XBWT with the number

of runs produced by the EBWT and some of its variants. Note that our implementation

computes the XBWT of the reference genome and the readset (as described in the previous

section), while the EBWT and its variants were applied only to the readset. We computed all

EBWT variants using ropeBWT2 [40]; in addition to plain EBWT we also tested 2 heuristics

that reorder the reads to reduce the number of runs in the EBWT: Spring [11] and reverse

lexicographic order (RLO) [14], the latter obtained using the option -s in ropeBWT2. Since

our XBWT implementation does not use the $ symbol, for a fair comparison we measured

the number of runs with and without the $ for EBWT, Spring+EBWT and RLO+EBWT

(therefore ignoring for all algorithms the extra cost of implicitly encoding the ending position

of each string). In our tests, we used the following readsets:

E.coli and S.aureus from the single-cell dataset [12], the references used are those linked

on the single-cell website1,2.

R.sphaeroides We have HiSeq and MiSeq sequencing, raw and trimmed versions of the

reads from the GAGE-B dataset [44]. The reference used is the longest contig assembled

by MSRCA v1.8.3 [59] as it was the most accurate assembler according to the Gage-b

companion paper [44]. We only considered the longest contig because our implementation

doesnŠt handle forests of trees yet.

Human Chromosome 19 We used as a reference Chromosome 19 from the CHM1

human assembly [57] and one of the HiSeq 2000 readsets3 used to compute that assembly,

considering only the reads that aligned with the reference.

None of those readsets are aligned, so we used bwa mem [42] to align them to the

chosen reference. In this preliminary experiments we discarded the reads that bwa aligned

with the reverse-complement of the reference genome. As mentioned in Section 3 our Ąnal

prototype will build an XBWT of the tree with the reference and of the tree of the reversed-

complemented reference. In Table 1, we present statistics on the readsets we used: those

statistics where computed only on the reads that aligned forward to the reference.

Preliminary experiments, not reported here, show that removing the $ in the EBWT

(all variants) reduces the number of runs between 2.7% and 29.2%. Consequently, we focus

our analysis on the comparison of Plain (no read reordering) EBWT (without dollars),

SPRING+EBWT (without dollars), RLO+EBWT, with and without $ and XBWT.

The results of this comparison are reported in Figures 4a and 4b. They show that in

general the plain EBWT performs worse followed by the SPRING reordering, RLO ordering

with dollars then RLO ordering without dollars and Ąnally XBWT performs best. XBWT

yields a smaller number of runs than RLO+EBWT (with or without $) on all datasets,

1 https://www.ncbi.nlm.nih.gov/nuccore/NC_000913
2 https://www.ncbi.nlm.nih.gov/nuccore/87125858
3 https://www.ncbi.nlm.nih.gov/sra/SRX966833[accn]

https://github.com/fnareoh/Big_XBWT
https://github.com/lh3/ropebwt2
https://github.com/shubhamchandak94/Spring/tree/reorder-only
http://bix.ucsd.edu/projects/singlecell/nbt_data.html
https://ccb.jhu.edu/gage_b/
https://github.com/lh3/bwa
https://www.ncbi.nlm.nih.gov/nuccore/NC_000913
https://www.ncbi.nlm.nih.gov/nuccore/87125858
https://www.ncbi.nlm.nih.gov/sra/SRX966833[accn]

T. Gagie, G. Gourdel, and G. Manzini 13:13

Table 1 Statistics on each dataset used in the experiments. Those statistics where computed only

on the reads that aligned forward to the reference. We call sequencing error (or simply error) any

difference between the genome and the reads. The coverage is simply deĄned as the total number of

base-pairs in the reads compared to the number of base-pairs in the reference. The average distance

between the Ąrst sequencing error and the end of the read and the end is computed considering that

for error less read this distance is 0. Note that this parameter is exactly δ in Theorem 2.

Dataset Number of reads Read length Coverage

Avg. dist. from the

Ąrst sequencing err.

to the end

Prop. of reads

without seq. error
Error rate

E.coli [12] 14139182 100 304× 13 57.30% 0.01%

S.aureus [12] 26654420 100 927× 7 88.79% 0.01%

Human Chr19 [57] 34167479 100 57× 15 71.62% 0.01%

R.sphaeroides [44]

HiSeq raw 166820 101 46× 27 31.34% 0.04%

HiSeq trimmed 134207 up to 101 37× 6 83.26% 0.01%

MiSeq raw 23102 251 24× 122 0.25% 0.15%

Miseq trimmed 20046 up to 251 20× 29 63.55% 0.03%

although the number is comparable on some datasets this is still a signiĄcant improvement

considering that RLO+EBWT already has far less run than the EBWT baseline. On the

Chr19 dataset, using RLO+EBWT-no-$ over plain BWT-no-$ (not reported in Figure 4a)

reduced the number of runs by 49%; using the XBWT reduced the number of runs by

an additional 16%. On S.aureus and E.coli the reduction between RLO+EBWT-no-$ and

XBWT is of only 3% and 8% respectively.

The R.sphaeroides datasets are especially interesting as they involve two NGS technologies

that generate reads of different lengths, different coverages, and with different error proĄles.

We can Ąrst notice that our method brings greater beneĄts on the HiSeq sequencing which

has smaller reads with less errors that are located towards the end of the string. This is an

experimental validation of the statement of Theorem 2. We can also observe the effect of

trimming the reads on the number of runs. On the HiSeq sequencing, trimming reduces the

coverage only from 46x to 37x but yields a reduction in the number of XBWT runs by 86%.

Note that, as a result, on HiSeq trimmed, the number of XBWT runs is less than half the

number of runs in plain RLO+EBWT.

6 Application to the JST

From a certain angle, Figure 3 is reminiscent of Figure 5, from Rahn, Weese and ReinertŠs [54]

paper on their Journaled String Tree (JST). This raises the question of whether the XBWT

and JST can be used to improve the space usage of the hybrid index [20, 26, 21] and eventually

the PanVC [58] pan-genomic read aligner, which is based on the hybrid index.

Figure 5 shows a JST supporting search for patterns of length up to 4 in four aligned

sequences: the reference

r = TAGCGTAGCAGCTATGAGGAGGACCGAGTT

and three others,

s1 = TAGCGTAGCAGCGAGGAGCGACCGAGTT ,

s2 = TAGCGTGGCAGCGAGGAGCACCGAGTT ,

s3 = TAGCGTGGCAGCTATGAGGAGCACCGAGTT .

WABI 2021

T. Gagie, G. Gourdel, and G. Manzini 13:15

were looking for GTAG then the occurrence at position 4 in r would have a corresponding

occurrence in s1 but not in s2 or s3; this is shown by the dashed line between 3 and 7, with

¶1♢ at the left end indicating that s1 matches r between 3 and 7 and ¶1, 2, 3♢ indicating that

s1, s2 and s3 all match r from 7 onward (until the next such interval starts at 9).

The hybrid index is conceptually similar to the JST, but the former is an index and the

latter performs pattern matching by scanning the tree sequentially. To build the hybrid

index supporting search for patterns of length up to 4 in r, s1, s2, s3, we Ąrst build a string

kernel consisting of r and substrings from s1, s2, s3 that contain all the characters within

distance 3 of variations from r, all separated by copies of a special symbol $:

TAGCGTAGCAGCTATGAGGAGGACCGAGTT$CGTGGCA$AGCGAG$GAGCGACC$GAGCACC .

Any substring of length at most 4 of the the four sequences r, s1, s2, s3 is a substring of the

string kernel, and any substring of length at most 4 of the string kernel that does not include

a copy of $ is a substring of at least one of those sequences. We then build an FM-index for

the string kernel, with auxiliary data structure that allow us to quickly map occurrences of a

pattern in the string kernel to occurrences in the sequences.

It seems interesting that the string kernel for the four sequences in Figure 5 has more

characters than the JST: on top of r, the string kernel has a substring $CGTGGCA and the

JST has a branch labelled GGCA; the string kernel has $AGCGAG and the JST has GAG; the

string kernel has $GAGCGACC and the JST has CGAC and GACCG (a tie in this one case); the

string kernel has $GAGCACC and the JST has CACC (with the Ąrst C shared with the branch

ending CGAC). This difference is because the string kernel stores copies of the characters both

before and after variation sites, whereas the JST stores copies only of the characters after

them. If we build an index using the XBWT of the JST, therefore, it may be smaller than

the hybrid index while having the same basic functionality. We leave exploring this possiblity

as future work.

References

1 Jarno Alanko, Giovanna DŠAgostino, Alberto Policriti, and Nicola Prezza. Regular languages

meet preĄx sorting. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA Š20, page 911Ű930. Society for Industrial and Applied Mathematics,

2020.

2 Fatemeh Almodaresi, Prashant Pandey, and Rob Patro. RainbowĄsh: a succinct colored de

Bruijn graph representation. In 17th International Workshop on Algorithms in Bioinformatics

(WABI 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

3 Uwe Baier, Thomas Büchler, Enno Ohlebusch, and Pascal Weber. Edge minimization in de

Bruijn graphs. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer,

editors, Data Compression Conference, DCC 2020, Snowbird, UT, USA, March 24-27, 2020,

pages 223Ű232. IEEE, 2020. doi:10.1109/DCC47342.2020.00030.

4 Hideo Bannai, Travis Gagie, and I Tomohiro. ReĄning the r-index. etical Computer Science,

812:96Ű108, 2020.

5 Markus J Bauer, Anthony J Cox, and Giovanna Rosone. Lightweight algorithms for constructing

and inverting the BWT of string collections. Theoretical Computer Science, 483:134Ű148, 2013.

6 Jason W Bentley, Daniel Gibney, and Sharma V Thankachan. On the complexity of BWT-runs

minimization via alphabet reordering. In 28th Annual European Symposium on Algorithms

(ESA 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

7 Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini, and Taher

Mun. PreĄx-free parsing for building big BWTs. Algorithms for Molecular Biology, 14(1):1Ű15,

2019.

WABI 2021

https://doi.org/10.1109/DCC47342.2020.00030

13:16 Compressing and Indexing Aligned Readsets

8 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de Bruijn

graphs. In Ben Raphael and Jijun Tang, editors, Algorithms in Bioinformatics, pages 225Ű235.

Springer Berlin Heidelberg, 2012.

9 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de Bruijn

graphs. In International workshop on algorithms in bioinformatics (WABI), pages 225Ű235.

Springer, 2012.

10 Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm. In

Digital SRC Research Report. Citeseer, 1994.

11 Shubham Chandak, Kedar Tatwawadi, Idoia Ochoa, Mikel Hernaez, and Tsachy Weissman.

SPRING: a next-generation compressor for FASTQ data. Bioinformatics, 35(15):2674Ű2676,

2018. doi:10.1093/bioinformatics/bty1015.

12 Hamidreza Chitsaz, Joyclyn Yee-Greenbaum, Glenn Tesler, Mary-Jane Lombardo, Christopher

Dupont, Jonathan Badger, Mark Novotny, Douglas Rusch, Louise Fraser, Niall Gormley, Ole

Schulz-Trieglaff, Geoffrey Smith, Dirk Evers, Pavel Pevzner, and Roger Lasken. Efficient de

novo assembly of single-cell bacterial genomes from short-read data sets. Nature biotechnology,

29:915Ű21, September 2011. doi:10.1038/nbt.1966.

13 Anthony J Cox, Markus J Bauer, Tobias Jakobi, and Giovanna Rosone. Large-scale compres-

sion of genomic sequence databases with the Burrows-Wheeler transform. Bioinformatics,

28(11):1415Ű1419, 2012.

14 Anthony J. Cox, Markus J. Bauer, Tobias Jakobi, and Giovanna Rosone. Large-scale com-

pression of genomic sequence databases with the Burrows-Wheeler transform. Bioinform.,

28(11):1415Ű1419, 2012. doi:10.1093/bioinformatics/bts173.

15 Anthony J. Cox, Tobias Jakobi, Giovanna Rosone, and Ole B. Schulz-Trieglaff. Comparing

DNA sequence collections by direct comparison of compressed text indexes. In Ben Raphael

and Jijun Tang, editors, Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2012.

16 D. Díaz-Domínguez and G. Navarro. A grammar compressor for collections of reads with

applications to the construction of the BWT. In Proc. 31th Data Compression Conference

(DCC), 2021. To appear.

17 Dirk D Dolle, Zhicheng Liu, Matthew Cotten, Jared T Simpson, Zamin Iqbal, Richard Durbin,

Shane A McCarthy, and Thomas M Keane. Using reference-free compressed data structures to

analyze sequencing reads from thousands of human genomes. Genome research, 27(2):300Ű309,

2017.

18 Lavinia Egidi, Felipe A Louza, Giovanni Manzini, and Guilherme P Telles. External memory

BWT and LCP computation for sequence collections with applications. Algorithms for

Molecular Biology, 14(1):1Ű15, 2019.

19 Lavinia Egidi and Giovanni Manzini. Lightweight merging of compressed indices based on

BWT variants. Theoretical Computer Science, 812:214Ű229, 2020.

20 Héctor Ferrada, Travis Gagie, Tommi Hirvola, and Simon J Puglisi. Hybrid indexes for

repetitive datasets. Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 372(2016):20130137, 2014.

21 Héctor Ferrada, Dominik Kempa, and Simon J Puglisi. Hybrid indexing revisited. In 2018

Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments (ALENEX),

pages 1Ű8. SIAM, 2018.

22 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and Senthilmurugan Muthukrishnan.

Compressing and indexing labeled trees, with applications. Journal of the ACM (JACM),

57(1):1Ű33, 2009.

23 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM

(JACM), 52(4):552Ű581, 2005.

24 Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for BWT-

based data structures. Theoretical computer science, 698:67Ű78, 2017.

25 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal

text searching in BWT-runs bounded space. Journal of the ACM (JACM), 67(1):1Ű54, 2020.

https://doi.org/10.1093/bioinformatics/bty1015
https://doi.org/10.1038/nbt.1966
https://doi.org/10.1093/bioinformatics/bts173

T. Gagie, G. Gourdel, and G. Manzini 13:17

26 Travis Gagie and Simon J Puglisi. Searching and indexing genomic databases via kernelization.

Frontiers in Bioengineering and Biotechnology, 3:12, 2015.

27 Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T Dawson,

William Jones, Shilpa Garg, Charles Markello, Michael F Lin, et al. Variation graph toolkit

improves read mapping by representing genetic variation in the reference. Nature biotechnology,

36(9):875Ű879, 2018.

28 Sara Giuliani, Shunsuke Inenaga, Zsuzsanna Lipták, Nicola Prezza, Marinella Sciortino, and

Anna Toffanello. Novel results on the number of runs of the Burrows-Wheeler transform. In

Tomáš Bureš, Riccardo Dondi, Johann Gamper, Giovanna Guerrini, Tomasz Jurdziński, Claus

Pahl, Florian Sikora, and Prudence W.H. Wong, editors, SOFSEM 2021: Theory and Practice

of Computer Science, pages 249Ű262, Cham, 2021. Springer International Publishing.

29 Sara Giuliani, Zsuzsanna Lipták, Francesco Masillo, and Romeo Rizzi. When a dollar makes a

BWT. Theoretical Computer Science, 2019.

30 Lilian Janin, Ole Schulz-Trieglaff, and Anthony J Cox. BEETL-fastq: a searchable compressed

archive for DNA reads. Bioinformatics, 30(19):2796Ű2801, 2014.

31 Juha Kärkkäinen, Giovanni Manzini, and Simon J Puglisi. Permuted longest-common-preĄx

array. In Annual Symposium on Combinatorial Pattern Matching, pages 181Ű192. Springer,

2009.

32 R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM Journal

of Research and Development, 31(2):249Ű260, 1987. doi:10.1147/rd.312.0249.

33 Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg. Rapid identiĄcation of

repeated patterns in strings, trees and arrays. In Proceedings of the Fourth Annual ACM

Symposium on Theory of Computing, page 125Ű136, 1972. doi:10.1145/800152.804905.

34 Alice M Kaye and Wyeth W Wasserman. The genome atlas: Navigating a new era of reference

genomes. Trends in Genetics, 2021.

35 Yuichi Kodama, Martin Shumway, and Rasko Leinonen. The sequence read archive: explosive

growth of sequencing data. Nucleic acids research, 40(D1):D54ŰD56, 2012.

36 Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni

Manzini. Efficient construction of a complete index for pan-genomics read alignment. Journal

of Computational Biology, 27(4):500Ű513, 2020.

37 Ben Langmead. Algorithms for DNA sequencing: Base calling and sequen-

cing errors, May 2015. URL: https://www.youtube.com/watch?v=U4QnpciIJhM&list=

PL2mpR0RYFQsBiCWVJSvVAO3OJ2t7DzoHA&index=10.

38 Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. Nature

methods, 9(4):357, 2012.

39 Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome biology, 10(3):1Ű10,

2009.

40 Heng Li. Fast construction of FM-index for long sequence reads. Bioinform., 30(22):3274Ű3275,

2014. doi:10.1093/bioinformatics/btu541.

41 Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics, 25(14):1754Ű1760, 2009.

42 Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics, 25(14):1754Ű1760, 2009. doi:10.1093/bioinformatics/btp324.

43 Felipe A. Louza, Simon Gog, and Guilherme P. Telles. Inducing enhanced suffix arrays for string

collections. Theoretical Computer Science, 678:22Ű39, 2017. doi:10.1016/j.tcs.2017.03.039.

44 Tanja Magoc, Stephan Pabinger, Stefan Canzar, Xinyue Liu, Qi Su, Daniela Puiu, Luke J.

Tallon, and Steven L. Salzberg. GAGE-B: an evaluation of genome assemblers for bacterial

organisms. Bioinform., 29(14):1718Ű1725, 2013. doi:10.1093/bioinformatics/btt273.

45 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I Tomescu. Genome-scale

algorithm design. Cambridge University Press, 2015.

WABI 2021

https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1145/800152.804905
https://www.youtube.com/watch?v=U4QnpciIJhM&list=PL2mpR0RYFQsBiCWVJSvVAO3OJ2t7DzoHA&index=10
https://www.youtube.com/watch?v=U4QnpciIJhM&list=PL2mpR0RYFQsBiCWVJSvVAO3OJ2t7DzoHA&index=10
https://doi.org/10.1093/bioinformatics/btu541
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1016/j.tcs.2017.03.039
https://doi.org/10.1093/bioinformatics/btt273

13:18 Compressing and Indexing Aligned Readsets

46 S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of the BurrowsŰWheeler

transform. Theoretical Computer Science, 387(3):298Ű312, 2007. doi:10.1016/j.tcs.2007.

07.014.

47 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension

of the Burrows-Wheeler transform. Theoretical Computer Science, 387(3):298Ű312, 2007.

48 Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul S Morley, Keith E Belk, Robert

Raymond, Travis Gagie, Simon J Puglisi, and Christina Boucher. Succinct colored de Bruijn

graphs. Bioinformatics, 33(20):3181Ű3187, 2017.

49 Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press,

2016.

50 Takaaki Nishimoto and Yasuo Tabei. Faster queries on BWT-runs compressed indexes. arXiv

preprint, 2020. arXiv:2006.05104.

51 Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded BWT.

Algorithmica, 80(7):1986Ű2011, 2018.

52 Nicola Prezza. On locating paths in compressed tries. In Proceedings of the 2021 ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 744Ű760. SIAM, 2021.

53 Nicola Prezza. Subpath queries on compressed graphs: A survey. Algorithms, 14(1):14, 2021.

54 René Rahn, David Weese, and Knut Reinert. Journaled string tree - a scalable data structure

for analyzing thousands of similar genomes on your laptop. Bioinformatics, 30(24):3499Ű3505,

2014. doi:10.1093/bioinformatics/btu438.

55 Julian Seward. bzip2 and libbzip2, 1996. avaliable at http://www.bzip.org.

56 Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with

applications in genome research. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 11(2):375Ű388, 2014.

57 Karyn Meltz Steinberg, Valerie A. Schneider, Tina A. Graves-Lindsay, Robert S. Fulton,

Richa Agarwala, John Huddleston, Sergey A. Shiryev, Aleksandr Morgulis, Urvashi Surti,

Wesley C. Warren, Deanna M. Church, Evan E. Eichler, and Richard K. Wilson. Single

haplotype assembly of the human genome from a hydatidiform mole. Genome Research,

24(12):2066Ű2076, 2014. doi:10.1101/gr.180893.114.

58 Daniel Valenzuela, Tuukka Norri, Niko Välimäki, Esa Pitkänen, and Veli Mäkinen. Towards

pan-genome read alignment to improve variation calling. BMC genomics, 19(2):123Ű130, 2018.

59 Aleksey V. Zimin, Guillaume Marçais, Daniela Puiu, Michael Roberts, Steven L. Salzberg,

and James A. Yorke. The MaSuRCA genome assembler. Bioinformatics, 29(21):2669Ű2677,

August 2013. URL: https://academic.oup.com/bioinformatics/article-pdf/29/21/2669/

18533361/btt476.pdf.

A Proof Sketch for Theorem 3

Let G be a Wheeler graph with the vertices sorted according to the permutation π. A

Burrows-Wheeler Transform (BWT) of G according to π is a permutation of GŠs edge labels

such that, for any pair of edges e = (u, v) and e′ = (u′, v′) labelled a and a′ respectively, if

u < u′ then a precedes a′ in that permutation. For convenience, we assume that the labels of

each vertexŠs out-edges appear in the order in π of their destinations. Notice there may be

many BWTs for G because it may have many permutations π satisfying the Wheeler graph

conditions.

Let B be a BWT of G according to π. By the deĄnition of a Wheeler graph, for any

pattern P over the alphabet of edge labels, the vertices reachable by directed paths labelled P

form an interval in π. Moreover, if we store a rank data structure for B and partial sum data

structures for the frequencies of the distinct edge labels and the verticesŠ in- and out-degrees,

then given P we can Ąnd its interval in O(♣P ♣ log log ♣G♣) time. Let r is the number of runs

https://doi.org/10.1016/j.tcs.2007.07.014
https://doi.org/10.1016/j.tcs.2007.07.014
http://arxiv.org/abs/2006.05104
https://doi.org/10.1093/bioinformatics/btu438
http://www.bzip.org
https://doi.org/10.1101/gr.180893.114
https://academic.oup.com/bioinformatics/article-pdf/29/21/2669/18533361/btt476.pdf
https://academic.oup.com/bioinformatics/article-pdf/29/21/2669/18533361/btt476.pdf

T. Gagie, G. Gourdel, and G. Manzini 13:19

(i.e., maximal non-empty unary substrings) in B and suppose G can be decomposed into υ

edge-disjoint directed paths whose internal vertices each have in- and out-degree exactly 1.

Then these data structures take a total of O(r + υ) space, measured in words.

Let D be a such decomposition of G and n be the number of vertices in G, and assume

the vertices are assigned numeric identiĄers from 0 to n − 1 such that if (u, v) is an edge and

neither u nor v is an endpoint of a path in D, and u has identiĄer i, then v has identiĄer

i + 1. Notice these identiĄers are not necessarily the verticesŠ ranks in π. For convenience,

we assume that even though G is a multigraph, the number of edges is polynomial in n, so

log log ♣G♣ = O(log log n). We show how, still using O(r + υ) space, after we have found the

interval for P we can then report the vertices in it using O(log log n) time for each one.

We Ąrst prove a generalization of Bannai, Gagie and IŠs version [4] of Policriti and PrezzaŠs

Toehold Lemma [51], that lets us report the last vertex in the interval for P . We then

deĄne a generalization of Kärkkäinen, Manzini and PuglisiŠs ϕ function [31], that maps each

vertexŠs identiĄer to the identiĄer of its predecessor in π. Finally, we give a generalization

of a key lemma behind Gagie, Navarro and PrezzaŠs r-index [25], that lets us compute our

generalized ϕ function with O(r + υ)-space data structures. Combined, these three results

yield a generalized r-index for Wheeler graphs.

A.1 Generalized Toehold Lemma

For any pattern P [0..m − 1], the interval for the empty suffix P [m..m − 1] of P is all of π,

because every vertex is reachable by an empty path. Assume we have found the interval

π[si+1, ei+1] for P [i + 1..m − 1] and now we want to Ąnd the interval π[si, ei] for P [i..m − 1].

With the partial sum data structure for the verticesŠ out-degrees, in O(log log n) time we can

Ąnd the interval in B containing the labels of the edges leaving the vertices in π[si+1, ei+1].

By the deĄnition of a Wheeler graph, the edges labelled with the Ąrst and last occurrences

of P [i] in that interval in B, lead to the Ąrst and last vertices in the interval π[si, ei] for

P [i..m − 1]. Using the partial sum data structures for the frequencies of the distinct edge

labels and the vertices in-degrees, in O(log log n) time we can Ąnd the ranks si and ei in π of

those Ąrst and last vertices in π[si, ei]. It follows that in O(log log n) time we can Ąnd π[si, ei]

from π[si+1, ei+1]; therefore, by induction, we can Ąnd the interval for P in O(♣P ♣ log log n)

time. We can count the vertices in that interval in the same asymptotic time by simply

returning the size of the interval.

To be able to Ąnd the identiĄer of the last vertex in the interval for P , for each edge

(u, v) we store uŠs and vŠs identiĄers if any of the following conditions hold:

(u, v)Šs label a is the last label in a run in B;

either u or v is an endpoint of a path in D;

the vertex that follows u in π has out-degree 0.

We store a select data structure for B, a bitvector marking the labels a in B for whose edges

(u, v) we have uŠs and vŠs identiĄers stored, and a hash table mapping the position in B of

each marked label a to the identiĄers of its edgeŠs endpoints. This again takes a total of

O(r + υ) space.

By querying the rank data structure, the select data structure, the bitvector and the hash

table in that order, we can Ąnd the identiĄer of the vertex reached by the edge labelled by

the last copy of P [m − 1] in B. By the deĄnition of a Wheeler graph, this is the last vertex

in the interval π[sm−1, em−1] for P [m − 1]. Assume we have found the interval π[si+1, ei+1]

for P [i + 1..m − 1] and the identiĄer of the last vertex u in that interval, and now we want to

Ąnd the interval π[si, ei] for P [i..m − 1] and the identiĄer of the last vertex v in that interval.

We can Ąnd π[si, ei] as described above, so we need only say how to Ąnd vŠs identiĄer.

WABI 2021

13:20 Compressing and Indexing Aligned Readsets

With the partial sum data structure on the verticesŠ out-degree and the rank data

structure, in O(log log n) time we can check whether u has an outgoing edge labelled P [i]. If

it does then, of all its out-edges labelled P [i], the one whose label appears last in B goes

to v. By our assumption of how the vertices are assigned their identiĄers, if neither u nor

v are endpoints of a path in D, then vŠs identiĄer is uŠs identiĄer plus 1. If either u or v

is an endpoint of a path in D, then we have vŠs identiĄer stored and we can use the hash

table to Ąnd it from the position in B of the last label P [i] on one of uŠs out-edges, again in

O(log log n) time.

If u does not have an outgoing edge labelled P [i] then we can use the rank data structure

to Ąnd the last copy of P [i] in B that labels an edge leaving a vertex in π[si+1, ei+1]. By

the deĄnition of a Wheeler graph, this edge (u′, v) goes to v. Unlike in a BWT of a string,

however, its label may not be the end of a run in B: u could have out-degree 0, u′ could

immediately precede u in π and the last of its outgoing edgesŠ labels in B could be a copy

of P [i], and the Ąrst label in B of an outgoing edge of the successor of u in π could also

be a copy of P [i]. This is why we store vŠs identiĄer if the vertex that follows u′ in π has

out-degree 0. If (u′, v)Šs label is the end of a run in B, of course, then we also have vŠs

identiĄer stored. In both cases we use O(log log n) time, so from the interval π[si+1, ei+1] for

P [i + 1..m − 1] and the identiĄer of the last vertex u in that interval, in O(log log n) time

we can compute the interval π[si, ei] for P [i..m − 1] and the identiĄer of the last vertex v in

that interval. Therefore, by induction, in O(♣P ♣ log log n) time we can Ąnd the interval for P

and the identiĄer of the last vertex in that interval.

▶ Lemma 5. We can store G in O(r + υ) space such that in O(♣P ♣ log log n) time we can

Ąnd the interval for P and identiĄer of the last vertex in that interval.

A.2 Generalized φ

For a string S, the function ϕ takes a position i in S and returns the starting position of the

suffix of S that immediately precedes S[i..♣S♣ − 1] in the lexicographic order of the suffixes.

In other words, ϕ takes the value in some cell of suffix array of S and returns the value in the

preceding cell. Given a pattern P , if we can Ąnd the interval of the suffix array containing

the starting positions of occurrences of P in S, and the entry in the last cell in that interval,

then by iteratively applying ϕ we can report the starting positions of all the occurrences of

P . This is the idea behind the r-index for strings, which uses a lemma saying it takes only

space proportional to the number of runs in the BWT of S to store data structures that let

us evaluate ϕ in O(log log ♣S♣) time.

We generalize ϕ to Wheeler graphs by redeĄning it such that it takes the identiĄer of

some vertex u in G and returns the identiĄer of the vertex that immediately precedes u in

π. (For our purposes here, it is not important how ϕ behaves when given the identiĄer of

the Ąrst vertex in π.) Given a pattern P , if we can Ąnd the interval in π containing the

vertices in G reachable by directed paths labelled P , and the identiĄer of the last vertex in

that interval, then by iteratively applying ϕ we can report the identiĄers of all those vertices.

Let J be the set that contains uŠs identiĄer if and only if any of the following conditions

hold:

u has out-degree not exactly 1;

u has a single outgoing edge (u, v) but v has in-degree not exactly 1;

the predecessor u′ of u in π has out-degree not exactly 1;

u′ has a single outgoing edge (u′, v′) but v′ has in-degree not exactly 1;

the edges (u, v) and (u′, v′) have different labels.

T. Gagie, G. Gourdel, and G. Manzini 13:21

We store a successor data structure for J and, if uŠs identiĄer is in J , then we store with it

as satellite data the identiĄer of uŠs predecessor u′ in π. Notice uŠs identiĄer is in J only

if at least one of u or u′ or v or v′ is the endpoint of a path in D, or the label of (u′, v′) is

the the last in a run in B and the label of (u, v) is the Ąrst in the next run. It follows that

we can use O(r + υ) space for the successor data structure and have it support queries in

O(log log n) time.

Suppose we know the identiĄer of some vertex u with identiĄer i that is immediately

preceded by u′ in π with identiĄer i′. If u ∈ J then we have i′ stored as satellite data with

≻ (i) = i. If u ̸∈ J , then u has a single outgoing edge (u, v) and u′ has a single outgoing

edge (u′, v′) with the same label, say a, and v and v′ each have in-degree exactly 1. By our

assumption on how the identiĄers are assigned, the identiĄers of v and v′ are i + 1 and i′ + 1

and, by the deĄnition of a Wheeler graph, v is immediately preceded by v′ in π. It follows

that if i + ℓ is the successor of i then it has stored with it as satellite data i′ + ℓ, and so we

can compute ℓ and then i′ in O(log log n) time.

▶ Lemma 6. We can store G in O(r + υ) space such that we can evaluate ϕ in O(log log n)

time.

A.3 Discussion

Combining Lemmas 5 and 6, we generalize, we obtain Theorem 3. Since υ = 1 for a single

string labelling a simple path or cycle, Theorem 3 gives the same O(r) space bound and

O(♣P ♣+k log log n) time bound we achieve with the r-index for strings, where k is the number

of occurrences. Nishimoto and Tabei [50] recently improved the query time of the r-index for

strings to O(P + k log log n) Ű or optimal O(P + k) for polylogarithmic alphabets Ű without

changing the space bound, and we conjecture this is achievable also for r-indexes for Wheeler

graphs.

WABI 2021

	1 Introduction
	2 Concepts
	2.1 BWT and FM-index
	2.2 EBWT
	2.3 Wheeler Graphs and XBWT

	3 Our contribution
	4 XBWT via Prefix Free Parsing
	4.1 Construction of the Dictionary and the Parse
	4.2 XBWT of the Parse
	4.3 Building the final XBWT

	5 Experiments
	6 Application to the JST
	A Proof Sketch for Theorem 3
	A.1 Generalized Toehold Lemma
	A.2 Generalized TEXT
	A.3 Discussion

