
MONI: A Pangenomic Index for Finding

Maximal Exact Matches

MASSIMILIANO ROSSI,1,i MARCO OLIVA,1,ii BEN LANGMEAD,2,iii

TRAVIS GAGIE,3,*,iv and CHRISTINA BOUCHER1,*,v

ABSTRACT

Recently, Gagie et al. proposed a version of the FM-index, called the r-index, that can store

thousands of human genomes on a commodity computer. ThenKuhnle et al. showed how to build

the r-index efficiently via a technique called prefix-free parsing (PFP) and demonstrated its

effectiveness for exact pattern matching. Exact pattern matching can be leveraged to support

approximate pattern matching, but the r-index itself cannot support efficiently popular and

important queries such as findingmaximal exactmatches (MEMs). To address this shortcoming,

Bannai et al. introduced the concept of thresholds, and showed that storing them togetherwith the

r-index enables efficient MEM finding—but they did not say how to find those thresholds. We

present a novel algorithm that applies PFP to build the r-index and find the thresholds simulta-

neously and in linear time and space with respect to the size of the prefix-free parse. Our im-

plementation calledMONI can rapidly findMEMs between reads and large-sequence collections

of highly repetitive sequences.Comparedwith other readaligners—PuffAligner, Bowtie2, BWA-

MEM, and CHIC— MONI used 2–11 times less memory and was 2–32 times faster for index

construction. Moreover, MONI was less than one thousandth the size of competing indexes for

large collections of human chromosomes. Thus,MONI represents amajor advance in our ability

to performMEM finding against very large collections of related references.

Keywords: r-index, run-length-encoded Burrows-Wheeler transform, thresholds, MEM-finding.

1. INTRODUCTION

In the past couple of decades, the cost of genome sequencing has decreased at an amazing rate,

resulting in more ambitious sequencing projects, including the 100K Genome Project (Turnbull et al.,

2018) and the Vertebrate Genome Project (Rhie et al., 2021). Sequence read aligners—such as BWA (Li and

Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP2 (Li et al., 2010)—have been fundamental

1Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA.
2Department of Computer Science, John Hopkins University, Baltimore, Maryland, USA.
3Faculty of Computer Science, Dalhousie University, Halifax, Canada.
iORCID ID (https://orcid.org/0000-0002-3012-1394).
iiORCID ID (https://orcid.org/0000-0003-0525-3114).
iiiORCID ID (https://orcid.org/0000-0003-2437-1976).
ivORCID ID (https://orcid.org/0000-0003-3689-327X).
vORCID ID (https://orcid.org/0000-0001-9509-9725).
*Both authors should be considered senior authors of the project.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 29, Number 2, 2022

Mary Ann Liebert, Inc.

Pp. 169–187

DOI: 10.1089/cmb.2021.0290

169

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

methods for compiling and analyzing these and other data sets. Traditional read aligners build an index from a

small number of reference genomes, find short exact matches between each read and the reference genome(s),

and then extend these to find approximate matches for each entire read.

Maximal exact matches (MEMs), which are exact matches between a read R and genome G that cannot

be extended to the left or right4, have been shown to be the most effective seeds for alignment of both short

reads (Li, 2013) and long reads (Vyverman et al., 2015; Miclotte et al., 2016). Hence, any index used for

unbiased alignment should efficiently support finding these MEMs and scale to indexing large numbers of

genomes.

In recent years, we have come close to realizing such an index, but some gaps still remain. The FM-index

consists of the Burrows-Wheeler transform (BWT) of the input text, a rank data structure over that BWT

and the suffix array (SA) sampled at regular intervals. Mäkinen and Navarro (2007) showed how to store

the BWT and rank data structure in space proportional to the number r of runs in the BWT, which tends to

grow very slowly as we add genomes to a genomic database, and still quickly count how many times

patterns occur in the text. Because the product of the size of the SA sample and the time to locate each of

those occurrences are at least linear in the size of the input text, Mäkinen and Navarro’s index is not a

practical solution for alignment.

A decade later, Gagie et al. (2020a) showed how to sample O(r) entries of the SA such that locating

queries is fast. The combination of their SA sample with Mäkinen and Navarro’s rank data structure is

called the r-index. However, Gagie et al. did not describe how to build the index—this was shown in a

series of articles (Boucher et al., 2019; Kuhnle et al., 2020; Mun et al., 2020), which uses prefix-free

parsing (PFP) to preprocess the data in such a way that allows for the BWT and SA samples to be computed

from the compressed representation.

Exact pattern matching can be leveraged to support approximate pattern matching, by dividing patterns

into pieces and searching for them separately, but the r-index itself cannot find MEMs. We cannot augment

the r-index with the same auxiliary data structures that allow standard FM-indexes to find MEMs because,

again, the product of their size and the query time grow linearly with the text.

To address this shortcoming of the r-index, Bannai et al. (2020) describe a variant of the r-index that

supports MEM-finding. More specifically, it finds the matching statistics of a pattern with respect to the

indexed text, from which we can easily compute the MEMs, using a two-pass process: first, working right to

left, for each suffix of the query string, it finds a suffix of the text that matches for as long as possible; then,

working left to right, it uses random access to the text to determine the length of those matches. We note that

this computation of the matching statistics is enabled through the addition of a data structure that they refer to

as thresholds. However, Bannai et al. did not say how to find those thresholds efficiently, and until we have a

practical construction algorithm, we cannot say we really have a pangenomic index for MEM-finding.

In this article, we show how to use PFP to find the thresholds at the same time as we build the r-index.

We refer to the final data structure as MONI, from the Finnish for ‘‘multi,’’ since our ultimate intention is to

index and use multiple genomes as a reference, whereas other approaches are to pangenomic (Garrison

et al., 2018; Li et al., 2020; Maarala et al., 2020) index models of genomic databases, but not the databases

themselves. We compare MONI to PuffAligner (Almodaresi et al., 2021), Bowtie2 (Langmead and

Salzberg, 2012), BWA-MEM (Li, 2013), and CHIC (Valenzuela and Mäkinen, 2017) using GRCh37 and

haplotypes taken from The 1000 Genomes Project Consortium (2015), and the Salmonella genomes taken

from GenomeTrakr (Stevens et al., 2017).

We show PuffAligner is between 1.7 and 4 slower for construction and uses between 3 and 12 times

more memory for construction of the index for 32 or more haplotypes of chromosome 19. Bowtie2 is

between 7 and 20 times slower for construction and uses between 2 and 15 times more memory for

construction for these same data sets. BWA-MEM uses less memory but more time than Bowtie2 for

construction. Only MONI and PuffAligner were capable of constructing an index for 1000 haplotypes of

chromosome 19 in <24 hours; BWA-MEM and Bowtie2 surpassed this. Moreover, MONI used 21 GB of

memory and 1.3 hours for construction of this index, whereas PuffAligner used over 260 GB of memory

and 5.2 hours for construction. Finally, the size of the data structure of PuffAligner was 1114 times larger

than that of MONI.

4Formally, given a genome G[1::n] and read R[1 . . .m], R[i::i + ‘- 1] of length ‘ is a MEM of R in G if R[i::i+ ‘ - 1]
occurs in G and R[i - 1::i + ‘ - 1] and R[i::i + ‘] are not substrings of G.

170 ROSSI ET AL.

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

Similarly, we show that MONI required significantly less time for construction than Bowtie2 and BWA-

MEM, and also used significantly less memory than PuffAligner for construction of indexes of 100 or more

Salmonella genomes. Finally, we demonstrate the use of indexing a larger number of genomes by com-

paring MEM-finding with a single-reference genome, to that of 200 more genomes and show that we find

MEMs (of length at least 75) for 4.6% more sequence reads.

We compare MONI with PuffAligner (Almodaresi et al., 2021), Bowtie2 (Langmead and Salzberg,

2012), BWA-MEM (Li, 2013), and VG (Garrison et al., 2018) using GRCh37 and from 10 to 200 complete

genome haplotypes also taken from The 1000 Genomes Project Consortium (2015). We show that MONI

and VG were the only tools able to build the index for 200 human genomes, in <48 hours, and using up to

756 GB of memory. In terms of wall clock time, PuffAligner is the fastest to index 10 and 20 genomes,

MONI is the fastest to index 50 genomes, and VG is the fastest to index 100 and 200 genomes.

In terms of CPU time, MONI is always the fastest with a speedup that ranges from 5.92 to 1.16 with

respect to the second fastest method. The peak memory usage of MONI is from 2.93 to 4.41 times larger

than the best method. The final data structure size of MONI is at most 1.18 · times larger than the final data

structure of VG, and from 2.2 to 12.35 times smaller than the third smallest method. We aligned

611,400,000 100-bp reads from Mallick et al. (2016) against the successfully built indexes and evaluated

the query time. PuffAligner is always the fastest, followed by Bowtie2, BWA-MEM, MONI, and VG, while

VG and MONI were the methods using the smallest amount of memory.

The rest of this article is laid out as follows: in Section 2, we introduce some basic definitions, review of

PFP, the definition of thresholds, and the computation of the matching statistics; in Section 3, we show how

to compute the thresholds from the PFP; in Section 4, we present our experimental results; and in Section 5,

we discuss future work. For the sake of brevity, we assume that readers are familiar with SAs, BWTs,

wavelet trees, FM-indexes, and so on, and their use in bioinformatics. We refer the interested reader to

Mäkinen et al. (2015) and Navarro (2016) for an in-depth discussion on these topics.

2. PRELIMINARIES

2.1. Basic definitions

A string S = S[1::n] = S[1]S[2] � � � S[n] of length jSj = n is a sequence of n characters drawn from an

alphabet S of size r. We denote the empty string as e. Given two indices 1 � i‚ j � n, we use S[i::j] to refer

to the string S[i] � � � S[j] if i � j, while S[i::j] = e if i > j. We refer to T = S[i::j] as a substring of S, S[1::j] as

the j-th prefix of S, and S[i::n] = S[i::] as the i-th suffix of S. A substring T of S is called proper if T 6¼ S.

Hence, a proper suffix is a suffix that is not equal to the whole string, and a proper prefix is a prefix that is

not equal to the whole string.

2.2. SA, ISA, and the longest common prefix

Given a text S, the suffix array (Manber and Myers, 1993) of S, denoted by SAS[1::n], is the permutation

of f1‚ . . . ‚ ng such that S[SAS[i]::n] is the i-th lexicographically smaller suffix of S. The inverse SA

ISAS[1::n] is the inverse permutation of the SA, that is, SAS[ISAS[i]] = i.

We denote the length of the longest common prefix (LCP) of S and T as lcp(S‚ T). And we define the

LCP array of S as LCPS[1::n], the array storing the values of the LCP between two lexicographically

consecutive suffixes of S, that is, LCPS[1] = 0 and LCPS[i] =lcp(S[SAS[i - 1]::n]‚ S[SAS[i]::n]) for all

i = 2‚ . . . ‚ n.

2.3. BWT, RLBWT, and LF-mapping

The BWT (Burrows and Wheeler, 1994) of the text S, denoted by BWTS[1::n], is a reversible permu-

tation of the characters of S. It is the last column of the matrix of the sorted rotations of the text S, and can

be computed from the SA of S as BWTS[i] = S[SAS[i] - 1], where S is considered to be cyclic, that is,

S[0] = S[n]. The LF-mapping is a permutation on [1‚ n] such that SAS[LF(i)] = (SAS[i]- 1) mod n.

We represent the BWTS[1::n] with its run-length-encoded representation RLBWTS[1::r], where r is

the number of equal character runs of maximal size in the BWTS, for example, runs of A’s and C’s.

We write RLBWTS[i]:head for the character of the i-th run of the BWTS, and RLBWTS[i]:‘ for its

length.

MONI: A PANGENOMIC INDEX FOR FINDING MEMS 171

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

When clear from the context, we remove the reference to the text S from the data structures, for example,

we write BWT instead of BWTS and SA instead of SAS.

2.4. Matching statistics and thresholds

The matching statistics of a string R with respect to S are an array of pairs saying, for each position in R,

the length of the longest substring starting at that position that occurs in S, and the starting position in S of

one of its occurrences. They are useful in a variety of bioinformatic tasks (Mäkinen et al., 2015), including

computing the MEMs of R with respect to S.

Definition 1. The matching statistics of R with respect to S are an array M[1::jRj] of (pos‚ len) pairs
such that: (1) S[M[i]:pos::M[i]:pos +M[i]:len - 1] =R[i::i +M[i]:len - 1]; and (2) R[i::i +M[i]:len] does not

occur in S.

Suppose we have already computed M[i + 1]:pos and now want to compute M[i]:pos. Furthermore,

suppose we know the position q in the BWT of S[M[i + 1]:pos - 1] (or, equivalently, the position of

M[i + 1]:pos in SA). If BWT[q] =R[i], then we can set M[i]:pos =M[i + 1]:pos - 1, and the position in the

BWT of S[M[i]:pos - 1] is LF(q).

Bannai et al. (2020) observed that, if BWT[q] 6¼ R[i], then we can choose asM[i]:pos the position in S of

either the last copy BWT[q0] of R[i] that precedes BWT[q], or the first copy BWT[q00] of R[i] that follows

BWT[q], depending on which one of the suffixes of S following those copies of R[i] has a longer common

prefix with S[M[i + 1]:pos::n]. For simplicity, we ignore here cases in which q0 or q00 is undefined.

They also pointed out that, if we consider BWT[q] moving from immediately after BWT[q0] to im-

mediately before BWT[q00], then the length of the LCP of the suffix of S following BWT[q] and the suffix

of S following BWT[q0] is nonincreasing; the length of the LCP of the suffix of S following BWT[q] and

the suffix of S following BWT[q00] is nondecreasing. Therefore, we can choose a threshold in that interval

between BWT[q0] and BWT[q00]—that is, between two consecutive runs of copies of R[i]—such that if

BWT[q] is above that threshold, then we can choose M[i]:pos as the position in S of BWT[q0], and we can

otherwise choose M[i]:pos as the position in S of BWT[q00].

Bannai et al. proposed storing a rank data structure over the RLBWT of S, and so, we can compute LF,

the SA entry at the beginning and ending of each run in the BWT and, for each consecutive pair of runs of

the same character, the position of a threshold in the interval between them. With these, we can compute

M[1]:pos‚ . . . ‚M[jRj]:pos from right to left. We note they only said the thresholds exist and did not say

how to find them efficiently; consequently, they did not give an implementation.

They also proposed storing a data structure supporting random access to S so that, once we have all the

pos values, we can compute the len values, from left to right: if we already have M[1]:len‚ . . . ‚M[i - 1]:len

and now we want to compute M[i + 1]:len; since M[i]:len � M[i - 1]:len - 1, we can find M[i]:len by

comparing S[M[i]:pos +M[i - 1]:len - 1::jSj] with R[i +M[i - 1]:len - 1::jRj] character by character until we

find a mismatch. The number of characters we compare is a telescoping sum over i, so we use O(jRj)
random accesses in total. Figure 1 shows an example of the computation of the matching statistics using the

algorithm of Bannai et al.

Examining Bannai et al.’s observations, we realized that we can choose the threshold between a con-

secutive pair of runs to be the position of the minimum LCP value in the interval between them. This allows

us to build Bannai et al.’s index efficiently.

2.5. Prefix-free parsing

Kuhnle et al. (2020) showed how to compute the r-index (i.e., RLBWTS and the SA entries at the

starting and ending positions of runs in RLBWTS) using PFP. For PFP, we parse S into overlapping

phrases by passing a sliding window of length w over it and inserting a phrase boundary whenever the

Karp-Rabin hashing of the contents of the window is 0 modulo a parameter. This can be done efficiently

using only sequential access to S, so it works well in external memory, and it can also be parallelized

easily.

We call the substring contained in the window when we insert a phrase boundary a trigger string and we

include it as both a suffix of the preceding phrase and a prefix of the next phrase. We treat S as cyclic, so the

contents of the sliding window during the last w steps of the parsing are S[jSj -w::jSj]‚

172 ROSSI ET AL.

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

S[jSj -w+ 1::jSj]S[1]‚ . . . ‚ S[jSj]S[1::w - 2]. It follows that: (1) each phrase starts with a trigger string, ends

with a trigger string, and contains no other trigger strings; and (2) each character of S appears in exactly one

phrase where it is not in the last w characters of that phrase.

The first property means no phrase suffix of length at least w is a proper prefix of any phrase suffix,

which is the reason for PFP’s name. This and the second property mean that, for any pair of characters S[i]

and S[j], we can compare lexicographically the suffixes starting at S[i + 1] and S[j+ 1], again viewing S as

cyclic, by (1) finding the unique phrases containing S[i] and S[j] not in their last w characters, (2)

comparing the suffixes of those phrases starting at S[i + 1] and S[j+ 1]; and (3) if those phrase suffixes are

equal, comparing the suffixes of S starting at the next phrase boundaries.

Example 1. Let S =GATTACAT#GATACAT#GATTAGATA and w = 2. Let E = fAC‚AG‚T#g be

the set of strings where the Karp-Rabin hash is 0 modulo a parameter, therefore the parsing is

P =D[1]‚D[2]‚D[4]‚D[2]‚D[5]‚D[3] and the dictionary is D = f##GATTAC, ACAT#, AGATA##,

T#GATAC, T#GATTAGg. We note that in this example, the set of proper phrase suffixes of D[2] is

fAT#‚T#‚CAT#‚ #g, and AT# and CAT# are the only one of length at least w.

2.5.1. Data structures on parse and dictionary. We let D be the dictionary of distinct phrases and

let P =P[1] � � �P[jPj] be the parse, viewed as a string of phrase identifiers. We define D to be the text

obtained by the concatenation of the phrases of the dictionary, that is, D =D[1]D[2] � � �D[jDj]. With a

slight abuse of the notation, we refer to D as D when it is clear from the context. We build the SA SAD of

D, the inverse SA ISAD of D, the LCP array LCPD of D, and a succinct range minimum query (RMQ) data

structure on top of LCPD. Our last data structure we compute from D is a bitvector bD[1::jDj] of length jDj,

FIG. 1. An illustration of the thresholds and matching statistics for identifying pattern R in the string S. Shown on the

left is pattern R, the longest Prefix of the suffix of the pattern that occurs in S, its length in the matching statisticsM, and

the position of Prefix in the text. Shown on the right, continuing from left to right, are the SAS, LCPS, the thresholds

THRS for the characters A, T, and $, the BWTS, and all rotations of S, with the LCP between each consecutive rotation

highlighted in red. We note that in practice we build the RLBWT and the SAS entries at the beginning and end of each

run in the BWTS. For example, we would store f8‚ 21g for the first run of T’s in the BWTS. Moreover, the LCPS is just

shown in red for illustrative purposes. The arrows illustrate the position in the SAS, which each prefix corresponds to.

BWT, Burrows/Wheeler transform; LCP, longest common prefix; SA, suffix array.

MONI: A PANGENOMIC INDEX FOR FINDING MEMS 173

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

which contains a 1 at the positions in D that correspond to the beginning of a phrase. We also provide bD
with rank and select support, that is, rankq(i) and selectq(i) return the number of elements equal to q up to

position i and select returns the position of the i-th occurrence of q where q is 0 or 1.

Finally, we build the SA SAP of P, the inverse SA ISAP of P, and the LCPP array of P. This leads to the

following result describing the total time and space needed for the construction from P and D. Kuhnle et al.

(2020) showed that the construction of BWTS and SAS from the dictionary and parse is linear in the size of

the parse and dictionary. Moreover, the construction of the remaining structures is also linear (Navarro,

2016). Therefore, it follows that this data structure can be constructed in O(jDj + jPj) space and time since

each individual structure can be constructed in time and space linear to the size of D or P.

2.5.2. Computing the BWT. Suppose we lexicographically sort the distinct proper phrase suffixes of

length at least w, and store the frequency of each such suffix in S. For each such phrase suffix a, all the

characters preceding occurrences of a in S occur together in BWTS, and the starting position of the interval

containing them is the total frequency in S of all such phrase suffixes lexicographically smaller than a. It may

be that a is preceded by different characters in S, because a is a suffix of more than one distinct phrase, but then

those characters’ order in BWTS is the same as the order of the phrases containing them in the BWT of P.

These observations allow us to compute BWTS from D and P without decompressing them. Kuhnle et al.

(2020) showed that computing BWTS using PFP as a preprocessing step takes much less time and memory

than computing it from S directly since D and P are significantly much smaller than S. The pseudocode for

the construction algorithm of Kuhnle et al. is shown in Algorithm 1 in the Supplementary Data.

2.5.3. Random access to the SA. Now suppose, as shown by Boucher et al. (2021), we store a

wavelet tree over the BWT of P, with the leaves labeled from left to right with the phrase identifiers in the

colexicographic order of the phrases. For any phrase suffix a, all the identifiers of phrases ending with a

appear consecutively in the wavelet tree; therefore, given an integer j and a, with the wavelet tree we can

perform a 3-side range selection query to find the jth phrase in the BWT of P that ends with a. With some

other auxiliary data structures whose sizes are proportional to the sizes of D and P, this lets us support

random access to SA.

We emphasize that we keep the wavelet tree and auxiliary data structures only during the construction of

the r-index or Bannai et al.’s index, and that once we discard them we lose random access to SA. If we want

to find SA[i], we first determine (1) which such phrase suffix a follows BWT[i] in S, and (2) the lexico-

graphic rank j of the suffix of S preceded by BWT[i], among all the suffixes of S prefixed by a, from the

cumulative frequencies of the proper phrase suffixes of length at least w. We then use the wavelet tree to

find the jth phrase in the BWT of P that ends with a. Finally, we use the SA of P to find that phrase’s

position in S and compute the position of BWT[i] in S.

3. COMPUTING THRESHOLDS, COMPUTING MATCHING
STATISTICS, AND FINDING MEMS

In the previous section, we reviewed PFP. In this section, we augment the PFP-based algorithm to

compute the BWT and the SA samples to additionally compute the thresholds. Our description starts with

our observation that the threshold positions correspond to the position of a minimum of the LCP array in

the interval between the two consecutive runs of the same character. This is our refinement of the definition.

Next, we describe how to retrieve the thresholds. We show how to find MEMs from the matching statistics

computed using Bannai et al.’s algorithm. Finally, we show implementation details on the threshold

construction algorithm.

3.1. Redefining thresholds

Here, we show that Bannai et al.’s thresholds are equivalent to the positions of a minimum LCP value in

the interval between two consecutive runs of the same character. Given two suffixes p1 and p2 of S, we let

q1 and q2 be their positions in the SA, that is, p1 = SAS[q1] and p2 = SAS[q2]. We recall that the length of the

LCP between S[p1::n] and S[p2::n] can be computed as the minimum value of the LCP array of S in the

interval LCPS[q1 + 1::q2], assuming w.l.o.g. that q1 < q2. Let MINLCPS[q1 + 1::q2] = minfLCPS[q1 + 1]‚

174 ROSSI ET AL.

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

. . . ‚ LCPS[q2]g. This insight allows us to rewrite the definition of threshold in terms of LCP values as

follows. Given a text S, let BWTS[j
0::j] and BWTS[k::k

0] be two consecutive runs of the same character in

BWTS. From the definition of thresholds, we want to find a position i between positions j and k, such that

for all j < i0 � i, MINLCPS[j + 1::i
0] is larger than or equal to MINLCPS[i

0
+ 1::k], while for all i < i0 � k,

MINLCPS[i
0
+ 1::k] is larger than or equal to MINLCPS[j + 1::i

0]. This shows that position i is a threshold if

the following holds:

MINLCPS[j + 1::i] � MINLCPS[i + 1::k]‚ and

MINLCPS[j + 1::i + 1] � MINLCPS[i + 2::k]‚

assuming that MINLCPS[i + 2::k] =1 if i > k - 2, that is, i is the position of a minimum value in

LCPS[j + 1::k]. This can be summarized by the following observation.

Observation 1 Given text S, let BWTS[j
0::j] and BWTS[k::k

0] be two consecutive runs of the same

character in BWTS. A position j < i � k is a threshold if it corresponds to the minimum value in

LCPS[j + 1::k].

3.2. Computing thresholds

We can find positions of minima in intervals in the LCP of S, similarly to how we can compute the SA

samples, and thus compute Bannai et al.’s thresholds. If we want to find the position of a minimum in

LCP[i + 1::j], we first check if BWT[i] and BWT[j] are followed in S by the same proper phrase suffix of

length at least w. If they are not, we can find the position of the minimum from the LCP array of the proper

phrase suffixes of length at least w: since the suffixes of S following BWT[i] and BWT[j] are not prefixes of

each other, their LCP is a proper prefix of both of them. The situation is more complicated when BWT[i]

and BWT[j] are followed in S by the same proper phrase suffix a of length at least w.

First, let us consider the simpler problem of finding the length of the LCP of the suffixes of S following

BWT[i] and BWT[j], using some more auxiliary data structures. From SA[i] and SA[j] we can find the

phrases containing BWT[i] and BWT[j] in S. Using the inverse SA of P, we find the lexicographic rank of

the suffixes of S starting at the next phrase boundaries after BWT[i] and BWT[j], among all suffixes of S

starting at phrase boundaries. Using a range-minimum data structure over all jPj such suffixes of S, we find

the length of the LCP of those two suffixes. Finally, we add jaj -w, the length of the phrase suffixes after

BWT[i] and BWT[j] minus the length of their overlaps with the next phrases.

The RMQ mentioned above gives us the position of a minimum in LCP[ISA[SA[i] +

jaj -w] + 1::ISA[SA[j] + jaj -w]], which could be a much wider interval than LCP[i + 1::j]. To see why,

consider that each of the suffixes of S starting at one of the positions SA[i]‚ . . . ‚ SA[j] consists of

a[1::jaj -w] followed by a suffix starting at one of the positions SA[i] + jaj -w‚ . . . ‚ SA[j] + jaj -w, but not
all the suffixes starting at the latter positions are necessarily preceded by a[1::jaj -w]. We find the position

of a minimum in LCP[i + 1::j] by filtering out the positions SA[i] + jaj -w‚ . . . ‚ SA[j] + jaj -w in S that are

not preceded by a[1::jaj -w]: we find the value t in [i + 1::j] such that LCP[ISA[SA[tb] + jaj-w]] is after the
minimum in LCP[ISA[SA[i] + jaj -w] + 1::ISA[SA[j] + jaj -w]].

We can do this efficiently using the wavelet tree over the BWT of P: the position of a minimum in

LCP[ISA[SA[i] + jaj -w] + 1::ISA[SA[j] + jaj -w]] corresponds to a certain phrase boundary in S, and thus

to the identifier in the BWT of P for the phrase preceding that phrase boundary; we are looking for the next

identifier in the BWT of P for a phrase ending with a, which we can find quickly because the phrase

identifiers are assigned to the leaves of the wavelet tree in a colexicographic order.

3.3. Computing matching statistics and finding MEMs

Given a query string R, we compute the matching statistics of R from the thresholds using the algorithm

of Bannai et al. given in Subsection 2.4. Next, it follows that we can find the MEMs for R by storing the

nondecreasing values of the lengths of the matching statistics. This is summarized in the following lemma.

Lemma 1. Given input text S[1::n] and query string R[1::m], let M[1::m] be the matching statistics of R

against S. For all 1 < i � m, R[i::i + ‘- 1] is a maximal exact match of length ‘ in S if and only if M[i] = ‘

and M[i - 1] � M[i].

MONI: A PANGENOMIC INDEX FOR FINDING MEMS 175

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

Proof. First, we show that if R[i::i + ‘- 1] is a maximal exact match of length ‘ in S then M[i] = ‘ and

M[i - 1] � M[i]. Since R[i::i + ‘ - 1] is an MEM, then there exists a j such that R[i::i + ‘ - 1] = S[j::j+ ‘ - 1]

and hence, M[i] � ‘. Moreover, ‘ is the length of the longest prefix of R[i::m] that occurs in S since

R[i::i + ‘] does not occur in S, that is, M[i] = ‘. It also holds that R[i - 1::i + ‘ - 1] does not occur in S. This

implies that the length of the LCP of R[i - 1::n] that occurs in S is smaller than ‘+ 1, and therefore,

M[i - 1] � ‘ =M[i].

Next, we prove the other direction. Given M[i] = ‘, by definition of matching statistics, there exists a j

such that S[j::j + ‘- 1] =R[i::i + ‘ - 1] and R[i::i+ ‘] does not occur in S. We also have that

R[i - 1::i - 1 +M[i- 1]] does not occur in S. Since M[i - 1] � M[i] then also R[i - 1::i - 1 +M[i]], implying

R[i::i + ‘- 1] is a maximal exact match.

3.4. Implementation

We implemented MONI using the bitvectors of the sdsl-lite library (Gog et al., 2014) and their rank and

select supports. We used SACA-K (Nong, 2013) to lexicographically sort the parses, and gSACA-K (Louza

et al., 2017) to compute the SA and LCP array of the dictionary. We provide random access to the reference

using the practical random access to SLPs of Gagie et al. (2020b) built on the grammar obtained using

BigRePair (Gagie et al., 2019). We used the ksw2 (Suzuki and Kasahara, 2018; Li, 2018) library available

at https://github.com/lh3/ksw2 to compute the local alignment.

3.4.1. Removing the wavelet tree. In Section 2, for the sake of explanation, we used a wavelet tree

to provide random access to SAS, but as shown by Kuhnle et al. (2020), to build BWTS, we only need

sequential access to SAS. To provide sequential access to SAS, we store an array called inverted list that

stores a list for each phrase in P of the sorted occurrences of the phrases in BWTP. When processing the

proper phrase suffixes in the lexicographic order, if a proper phrase suffix a is a suffix of more than one

phrase, and is preceded by more than one character, we merge the lists of the occurrences of the phrases

that contain a in the BWT of P using a heap. Since we want to find the phrases in the BWT of P ending with

a in order, it is enough to scan the elements of the merged lists in an increasing order.

The wavelet tree is also used to find the position of the minimum LCPS in a given interval, that is, to

perform an RMQ. First, we store a variation of the LCP array of P, we called SLCP, which we define as

follows. We let SLCP[1] = 0. Next, for all 1 < i < jPj, we let SLCP[i] be equal to lcp(S[pi::n]‚ S[pi - 1::n]),

where pi and pi - 1 are the positions in SAS of the beginning of the lexicographically i-th and i - 1-th phrases

of the parse. The SLCP array can be computed in O(jPj)-time with a slight modification of the algorithm of

Kasai et al. (2001). Next, we build a succinct RMQ data structure from the SLCP.

Given the SLCP array, the following lemma shows how to compute the LCP values:

Lemma 2. Given the PFP P of S[1::n] with dictionary D, for all 1 < i � n, let a and b be the unique

proper phrase suffixes of length at least w of the phrases that SAS[i - 1] and SAS[i] belong to, and let p1 and

p2 be the positions of the phrases that a and b belong to in BWTP. Assuming w.l.o.g. that p1 < p2, then

LCPS[i] =
lcp(a‚ b) if a 6= b
jaj -w + h otherwise

�

‚

where h = minfSLCP[p1 + 1]‚ . . . ‚ SLCP[p2]g.

Proof. First, we consider the case where a 6= b. Since a‚b 2 S, where S is the prefix-free set of proper

phrase suffixes of length at least w, then LCPS[i] =lcp(a‚ b). In the second case, that is, if a = b,

LCPS[i] = jaj + lcp(S[SAS[i - 1]+ jaj::n]‚ S[SAS[i] + jaj::n]). We note that S[SAS[i - 1] + jaj::n] and

S[SAS[i] + jaj::n] are suffixes of S starting at phrase boundaries, and hence, their LCP can be computed

using SLCP as follows. Let h = minfSLCP[p1 + 1]‚ . . . ‚ SLCP[p2]g. We have to show that

lcp(S[SAS[i - 1] + jaj::n]‚ S[SAS[i] + jaj::n])= h.
Since the phrases in P are represented by their lexicographic rank in D, the relative lexicographic rank of

suffixes of P is the same as the relative lexicographic rank of their corresponding suffixes on S. Hence, the

value of SLCP[i] corresponds the minimum value in the LCP interval between the positions in SAS of the

suffixes starting with phrases SAP[i - 1] and SAP[i]. Thus, computing the minimum value in SLCP[j::i] is

176 ROSSI ET AL.

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

equivalent to computing the minimum value in the LCP interval between the positions in SAS of the

suffixes starting with phrases SAP[j] and SAP[i]. Then LCPS[i] = jaj -w+ h. We subtract w to the length

because the last w character of a is the same as the first w character of the phrase following a, included in

the values of SLCP.

We observe that, during the construction of the thresholds, we do not need to answer an arbitrary range of

minimum queries, but only those between two equal-letter runs. In addition we are building the BWT

sequentially. Hence, while building the BWT, we can store, for each character of the alphabet, the position

of the minimum LCP in the interval starting at the last occurrence of the character. We can clearly compute

all the values of LCPS, while building the BWT, however, this would require to visit, for each proper phrase

suffix, all the occurrences of the phrases containing it, in the BWT of P.

This can be avoided by noticing that if a proper phrase suffix is always preceded by the same character, the

minimum LCP value in the interval is in the position of the first suffix, because the previous suffix starts with a

different proper phrase suffix. For the other LCP values, we use the positions of the phrases in the BWT of P

that are computed using the inverted list, and we use the RMQ over the SLCP to compute the length of the

LCP between two consecutive suffixes of S. We also note that the P, SAP, and ISAP are used only during the

construction of SLCP and the inverted list, and therefore are discarded after this construction.

Algorithm 2 in the Supplementary Data gives the pseudocode for building the thresholds.

4. EXPERIMENTS

We demonstrate the performance of MONI through the following experiments: (1) comparison

between our method and general data structures and algorithms that can calculate thresholds, (2)

comparison between the size and time required to build the index of MONI and that of competing read

aligners, and (3) comparison between MONI and competing read aligners with respect to their

alignment performance.

The experiments were performed on a server with Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz with

40 cores and 756 GB of RAM running Ubuntu 16.04 (64bit, kernel 4.4.0). The compiler was g++ version

5.4.0 with -O3 -DNDEBUG -funroll-loops -msse4.2 options. The running time was found using the C ++

11 high_resolution_clock facility, and memory usage was found with the malloc_count tool (https://

github.com/bingmann/malloc_count) when available; otherwise, we used the maximum resident set size

provided by/usr/bin/time. Where not specified, we refer to wall clock time as runtime. All experiments that

either exceeded 24 hours or require more than 756 GB of RAM were omitted from further consideration,

for example, chr19.1000 and salmonella.10,000 for gsacak and sdsl. MONI is publicly available at https://

github.com/maxrossi91/moni.

4.1. Data sets

We used the following data for our experiments: Salmonella genomes taken from GenomeTrakr (Stevens

et al. (2017) and sets of haplotypes from The 1000 Genomes Project Consortium (2015). In particular, we

used collections of 50, 100, 500, 1‚ 000, 5‚ 000, and 10‚ 000 Salmonella genomes, where each collection is

a superset of the previous. We denote these as salmonella.50,.., salmonella.10,000. We created a collection

of chromosome 19 haplotypes using the bcftools consensus tool to integrate variant calls from the phase-3

callset into chromosome 19 of the GRCh37 reference.

We did this for sets of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1‚ 000 distinct haplotypes, where each set

is a superset of the previous. We denote these as chr19.1,.., chr19.1000. Lastly, we repeated this for the

whole human genome and obtained sets of 1, 10, 20, 50, 100, and 200 distinct haplotypes, where each set is

a superset of the previous. We denote these as HG, HG.10, HG.20, HG.50, HG.100, and HG.200. All DNA

characters in the reference besides A, C, G, T, and N were removed from the sequences before construction.

4.2. Competing read aligners

We compare MONI with Bowtie2 (Langmead and Salzberg, 2012) (v2.4.2) and BWA-MEM (Li and

Durbin, 2009) (v0.7.17), and to more recent tools that have demonstrated efficient alignment to repetitive

text, that is, PuffAligner (Almodaresi et al., 2021) (v1.0.0) and CHIC (Valenzuela et al., 2018) (v0.1).

PuffAligner was released in 2020 and compared against deBGA (Liu et al., 2016), STAR (Dobin et al.,

MONI: A PANGENOMIC INDEX FOR FINDING MEMS 177

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

2013), and Bowtie2. We build Bowtie2, BWA-MEM, and PuffAligner using the default options, while we

build CHIC using the relative Lempel-Ziv parsing method –lz-parsing-method =RLZ with 10% as prefix

length of text from which phrases in the parse can be sourced, and we fixed the maximum pattern length to

be 100.

We tested CHIC with both BWA-MEM and Bowtie2 as kernel managers, which we denote as chic-bwa

and chic-bowtie2. We run all methods using 32 threads, except the construction of the BWA-MEM index

where multithreading is not supported.

4.3. Comparison with general data structures: threshold construction

We compare MONI with other data structures that can compute thresholds. First, we compute the

thresholds using the minimum LCP value in each run of the BWT, which we build using the LCP

construction algorithm of Prezza and Rosone (2019) that is available at https://github.com/nicolaprezza/

rlbwt2lcp. We denote this method as bwt2lcp. Next, we compute the thresholds directly from the LCP array

computed using gSACA-K (Louza et al., 2017). We denote this method as gsacak. Both methods take as

input the text S and provide as output the BWTS, the samples of SAS at the beginning and at the end of a

BWT run, and the thresholds.

Hence, MONI includes the construction of the PFP using the parsing algorithm of BigBWT (Boucher

et al., 2019), while bwt2lcp includes the construction of the BWT and the samples using BigBWT. In both

cases, BigBWT is executed with 32 threads, window size w = 10, and parameter p = 100. We ran each

algorithm five times for sets of chromosome 19 up to 64 distinct haplotypes.

We compare MONI, gsacak, and bwt2lcp with respect to the time and peak memory required to construct

the thresholds using the Chromosome 19 data set. Figure 2 illustrates these values. We can observe that

MONI is fastest except for very small data sets, that is, chr19.1 and chr19.2, where gsacak is fastest.

MONI’s highest speedup is 8.9 ·with respect to bwt2lcp on chr19.1000 and 17.3 ·with respect to gsacak

on chr19.512. bwt2lcp uses the least memory for collections up to 32 sequences, but MONI uses the least

for larger collections.

On the Salmonella data set, in Figure 3 we report that MONI is always the fastest with the highest

speedup of 4.1 ·with respect to gsacak on salmonella.5000 and 3.1 ·with respect to bwt2lcp on salmo-

nella.10,000. On the contrary, bwt2lcp always uses less memory than MONI and gsacak. The high memory

consumption of MONI on salmonella is mainly due to the size of the dictionary for salmonella, about 16

times larger than the dictionary for chromosome 19.

4.4. MEM-finding in a pangenomic index

Next, we evaluated the degree to which indexing more genomes allowed MONI to find longer MEMs,

and thus, more reliable anchors for alignment. We used MONI to build the thresholds for the GRCh37

reference genome (HG), and for GRCh37 and i - 1 randomly selected haplotypes from The 1000 Genomes

a b

FIG. 2. Chromosome 19 data set threshold construction running time (a) and peak memory (b).

178 ROSSI ET AL.

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

Project phase-3 callset, which we denote as HG.i for i = 10‚ 20‚ 50‚ 100‚ 200. Next, we computed the MEMs

for 611,400,000 100-bp reads from Mallick et al. (2016) (accession no. ERR1019034_1). Table 1 shows the

number of reads having an MEM of length at least 25, 50, and 75.

For larger collections, we also measured the number of additional reads having an MEM of each

length with respect to the next-smaller collection (‘‘+Reads’’). For example, MONI was able to find

over an additional 10,452,669 MEMs of length at least 75 when using the HG.10 collection compared

with using HG, an increase of 4.12%. This demonstrates the utility of indexing a set of reference

genomes rather than a single genome: reads tend to have longer MEMs, corresponding to longer

uninterrupted stretches of genetically identical sequence between the read and a closely related ref-

erence in the set.

4.5. Comparison with read aligners: construction space and time

We compare MONI with competing read aligners with respect to the time used for construction, peak

memory used for construction, and size of the resulting data structure on disk. Figures 4 and 5 illustrate

these comparisons for the human chromosome 19 and Salmonella data sets, respectively. For chromosome

19, MONI is faster than Bowtie2, BWA-MEM, and PuffAligner for 16 or more copies of chromosome 19.

In particular, for 16 or more copies of chromosome 19, MONI is between 1.6 and 4 times faster than

PuffAligner, 3.8 and 32.8 times faster than BWA-MEM, and 4.6 and 20.6 times faster than Bowtie2.

Bowtie2 and BWA-MEM were only faster than MONI on chr19.1 and chr19.2. For small input (i.e.,

chr19.1 to chr19.8), there was negligible difference between all the methods, that is, <200 CPU seconds.

Bowtie2 and BWA-MEM are not shown for chr19.1000 in Figure 4 because they required over 24 hours for

construction. MONI has lower peak memory usage compared with BWA-MEM for more than 32 copies of

chromosome 19, with Bowtie2 for more than 8 copies of chromosome 19, and with PuffAligner when the

number of copies for chromosome 19 exceeded 8. Bowtie2 used between 1.2 and 14 times more memory

than MONI, BWA-MEM used between 1.1 and 3.8 times more, and PuffAligner used between 1.7 and 12

times more.

For small input (i.e., chr19.1, chr19.2, and chr19.8), there was negligible difference between the methods

(i.e., <1 GB). In addition, MONI’s data structure was the smallest for all experiments using chromosome

19. The index of Bowtie2, BWA-MEM, and PuffAligner was between 2.8 and 945, between 3.3 and 913,

and between 9.8 and 1114 times larger than ours. PuffAligner consistently had the largest index. Although

chic-bwa and chic-bowtie had competitive construction time and produced smaller indexes compared with

Bowtie2, BWA-MEM, and PuffAligner, they required more memory and produced larger indexes com-

pared with MONI. Moreover, the chic-based methods were unable to index more than 32 copies of

chromosome 19; after this point it truncated the sequences.

Results for Salmonella are similar to those for chromosome 19. MONI was faster and used less memory

for construction compared with PuffAligner, Bowtie2, and BWA-MEM for all sets of salmonella greater

than 50; the one exception is salmonella.500, where Bowtie2 used *2 GB less memory for construction.

a b

FIG. 3. Salmonella data set threshold construction running time (a) and peak memory usage (b).

MONI: A PANGENOMIC INDEX FOR FINDING MEMS 179

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

Table 1. The Number of Reads Containing a Maximal Exact Match of Minimum Length 25, 50, and 75 for the Reference Genome,

10, 20, 50, 100, and 200 Haplotypes

MEM

HG
HG.10 HG.20 HG.50 HG.100 HG.200

No. of reads No. of reads + reads No. of reads + reads No. of reads + reads No. of reads + reads No. of reads + reads

25 411,665,608 412,292,276 626,668 412,383,562 91,286 412,580,107 196,545 412,678,277 98,170 412,818,387 140,110

50 309,876,128 311,825,333 1,949,205 311,986,530 161,197 312,172,012 185,482 312,298,469 126,457 312,460,499 162,030

75 253,953,551 264,406,220 10,452,669 264,941,235 535,015 265,311,230 369,995 265,510,475 199,245 265,770,839 260,364

We give the total number of reads that have an MEM (‘‘No. of Reads’’) and the number of additional reads that have an MEM (‘‘+Reads’’). We note that +Reads compare the number of MEMs of the

current to the next-previous set, that is, HG.100–HG.50.

MEM, maximal exact match.

1
8
0

Downloaded by 93.63.161.108 from www.liebertpub.com at 07/09/22. For personal use only.

Our final data structure had a consistently smaller disk footprint compared with indexes for BWA-MEM,

Bowtie2, and PuffAligner for 100 or more strains of Salmonella. For salmonella.50, the difference in size

between MONI, PuffAligner, Bowtie2, and BWA-MEM was negligible.

Although chic-bwa and chic-bowtie were competitive with respect to construction time and size, they

truncated the sequences after there were more than 100 strains of Salmonella. Bowtie2 and BWA-MEM are

not shown for salmonella.10,000 in Figure 5 because they required over 24 hours for construction.

In summary, MONI was the most efficient with respect to construction time and memory usage for 32 or

more copies of chromosome 19. In general, PuffAligner had faster construction time than Bowtie2 and

BWA-MEM, but had higher peak memory usage than BWA-MEM. PuffAligner and Bowtie2 had com-

parable peak memory usage. BWA-MEM had the most competitive peak memory usage to MONI, but had

the longest construction time for larger inputs, that is, for 128 or more chromosome 19 haplotypes and 1000

or more strains of Salmonella.

4.6. Comparison with short read aligners: human pangenome

We attempted to index the HG, HG.10, HG.20, HG.50, HG.100, and HG.200 collections using MONI,

BWA-MEM, Bowtie2, PuffAligner, and VG. We recorded the wall clock time, CPU time, and the max-

imum resident set size using/usr/bin/time. All tools that used >48 hours of wall clock time or exceeded a

peak memory footprint of 756 GB were omitted from further consideration. BWA-MEM required

>48 hours of wall clock time to index HG.20, Bowtie2 required >48 hours of wall clock time to index

HG.50, and PuffAligner required >756 GB of main memory to index HG.200.

a b

c

FIG. 4. Chromosome 19 data set index construction running time (a), index size (b), and peak memory usage (c).

MONI: A PANGENOMIC INDEX FOR FINDING MEMS 181

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

BWA-MEM, Bowtie2, PuffAligner, and VG all report alignments in SAM format. Although MONI

is not a full-featured aligner, we implemented a dynamic programming algorithm to extend MEMs as

a fairer comparison. MONI joins MEMs as follows: (1) we compute matching statistics and MEMs

for a given read using our index, (2) if the read has an MEM of length at least 25, we extract the

MEM plus the 100-bp regions on either side from the corresponding reference, and last, (3) we

perform Smith–Waterman alignment (Smith and Waterman, 1981) using a match score of 2, a

mismatch penalty of 2, a gap open penalty of 5, and a gap extension penalty of 2. We consider

aligning a read with a Smith–Waterman score greater than 20 + 8 log (m), where m is the length of the

read.

Using the aligners and collections for which we could successfully build an index, we aligned the

611,400,000 reads from Mallick et al. (2016) and measured the wall clock time, the CPU time, and the peak

memory footprint required for alignment (Fig. 6). All tools were run using 32 simultaneous threads. All

methods successfully built indexes for HG.10. MONI was the fastest tool to build the index when con-

sidering the CPU time (7 hours), and the second fastest when considering the wall clock time (6 hours and

45 minutes), after PuffAligner.

The tools produced indexes ranging in size from 24.06 to 58.91 GB. MONI’s index was the smallest.

Peak memory footprint varied from 44.92 to 172.49 GB, with MONI having the fourth smallest (131.83

GB). On queries, BWA-MEM’s large footprint (128.22 GB) is likely due to the fact that it was run with 32

simultaneous threads. Wall clock times required ranged from >1 to <12 hours, with MONI being the second

slowest (7 hours and 54 minutes). The CPU time required ranged from >1 to >15 days, with MONI being

the second slowest (7 days and 18 hours). For the HG.100 collection, only MONI, PuffAligner, and VG

a b

c

FIG. 5. Salmonella data set index construction running time (a), index size (b), and peak memory usage (c).

182 ROSSI ET AL.

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

were able to build an index, with VG being the fastest to build the index in terms of wall clock time

(14 hours and 36 minutes), and MONI was the second fastest (20 hours and 15 minutes). MONI was the

fastest when considering the CPU time (1 day and 2 hours).

VG used the smallest amount of peak memory (90.65 GB) and a final data structure size (25.93 GB).

MONI used 3.08 times more peak memory (206.25 GB), but the final data structure size is only 3.8 GB

larger (29.80 GB). PuffAligner used the largest amount of both peak memory (782.78 GB) and final data

structure size (368.22 GB). As shown in Figure 7, PuffAligner performed queries the fastest with respect to

both wall time (4 hours and 32 minutes) and CPU time (2 day and 23 hours), but used the largest amount of

peak memory (329.18 GB), while MONI was the second fastest on both wall clock (8 hours and 31

minutes) and CPU time (8 days and 10 hours), and used the second smallest amount of memory (29.57 GB).

VG was the slowest on both wall clock time (12 hours and 25 minutes) and CPU time (16 days and

14 hours), but used the smallest amount of peak memory (26.56 GB).

For the HG.200 collection, only MONI and VG were able to build an index, with VG being the fastest in

terms of wall clock time (15 hours and 41 minutes), and MONI being the fastest in terms of CPU time

(2 days and 6 hours). VG used the smallest amount of peak memory (94.65 GB) and had the smallest final

data structure size (26.88 GB). On queries, MONI was the fastest (8 hours and 35 minutes), while VG used

the smallest amount of peak memory (27.84 GB).

We note that MONI running time heavily depends on the total length of the input reference, while the

running time of VG depends on the size of the VCF file representing the multiple aligned sequences. This

explains the differences in space and time growth between MONI and VG.

Furthermore, VG requires multiple aligned genomes in input, while MONI does not. Hence, MONI

would be able to index also nonmultiple-aligned genomes, for example, a set of long-read assemblies.

a b

c d

FIG. 6. Human genome data set index construction wall clock time (a), CPU time (b), index size (c), and peak

memory usage (d). CPU, central processing unit.

MONI: A PANGENOMIC INDEX FOR FINDING MEMS 183

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

4.7. Comparison with read aligners: alignment analysis

We analyze the results of the alignment of the reads from Mallick et al. (2016) computed in the previous

section. In Figure 8 we report, for each length i= 1‚ . . . ‚ 100, the cumulative number of reads with the

longest match of length at least i that is aligned. We computed the length of the longest match from the

CIGAR string and the MD:Z field of the SAM file. The MD:Z field of the SAM file is not available for VG,

and hence, it was not possible to include it in this analysis.

We observe that MONI is the tool having always more reads with a longest match of length at least 26.

BWA-MEM has a very similar trend, with MONI having more reads with a longest match from 0 to 25.

Bowtie2 has a larger gap with respect to MONI and BWA-MEM, for reads with longest matches from 0 to

50. PuffAligner has always fewer longest matches of length at least 40, than all the other tools. There is an

evident increase in the number of reads with longer matches when moving from HG to HG.10.

By increasing the number of genomes from HG.10 to HG.20 in the reference, the curve for MONI and

Bowtie2 increases, while for PuffAligner decreases. This trend is preserved increasing even more the

number of genomes in the reference. This also demonstrates the importance of indexing a population of

genomes, rather than a single genome.

a b

c

FIG. 7. Human genome query wall clock time (a), CPU time (b), and peak memory usage (c).

184 ROSSI ET AL.

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

5. CONCLUSION

We described MONI, a new indexing method and software tool for finding MEMs between sequencing

reads and large collections of reference sequences with minimal memory footprint and index size. While it

is not a full-featured aligner—for example, lacking the ability to compute mapping qualities—MONI

represents a major advance in our ability to perform MEM finding against large collections of references.

MONI proved to be competitive with graph-based pangenomic indexes such as VG. This is promising

toward the possibility to perform MEM finding on long-read assemblies. The next step is to thoroughly

investigate how to extend these MEMs to full approximate alignments in a manner that is both efficient and

accurate.

As explained in this article, our method hinges on a novel way of computing Bannai et al.’s thresholds with

the PFP while simultaneously building the r-index. We conclude by noting that there are possible uses of

thresholds beyond sequence alignment and these warrant further investigation. For example, as a by-product of

our construction, it is possible to compute the LCP array of the text, which has practical applications in

bioinformatics [i.e., single nucleotide polymorphism (SNP) finding (Prezza et al., 2019)].

AUTHORS’ CONTRIBUTIONS

M.R., T.G., and C.B. conceptualized the idea and developed the algorithmic contributions of this work.

M.R. implemented the MONI tool. M.R. and M.O. conducted the experiments. M.R., M.O., C.B., and B.L.

assisted and oversaw the experiments and implementation. All authors contributed to the writing of this

article.

ACKNOWLEDGMENT

The authors thank Nicola Prezza for the code of rlbwt2lcp.

FIG. 8. Human genome data set cumulative number of reads with the longest match of length at least i, for all

i = 1‚ . . . ‚ 100.

MONI: A PANGENOMIC INDEX FOR FINDING MEMS 185

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no competing financial interests.

FUNDING INFORMATION

M.R., M.O., T.G., B.L., and C.B. are funded by the National Science Foundation NSF IIBR (grant no.

2029552) and the National Institutes of Health (NIH) NIAID (grant no. HG011392). M.R., M.O., and C.B.

are funded by NSF IIS (grant no. 1618814) and NIH NIAID (grant no. R01AI141810). T.G. is funded by

the NSERC Discovery Grant (grant no. RGPIN-07185-2020).

SUPPLEMENTARY MATERIAL

Supplementary Data

REFERENCES

Almodaresi, F., Zakeri, M., and Patro, R. 2021. Puffaligner: An efficient and accurate aligner based on the pufferfish

index. Bioinformatics. Online ahead of print, DOI: 10.1093/bioinformatics/btab408.

Bannai, H., Gagie, T., and Tomohiro, I. 2020. Refining the r-index. Theor. Comput. Sci. 812, 96–108.

Boucher, C., Cvacho, O., Gagie, T., et al. 2021. PFP compressed suffix trees. In: 2021 Proceedings of the Symposium

on Algorithm Engineering and Experiments (ALENEX), 60–72.

Boucher, C., Gagie, T., Kuhnle, A., et al. 2019. Prefix-free parsing for building big BWTs. Algorithms Mol. Biol. 14,

13:1–13:15.

Burrows, M., and Wheeler, D.J. 1994. A block sorting lossless data compression algorithm. Technical Report 124,

Digital Equipment Corporation.

Dobin, A., Davis, C.A., Schlesinger, F., et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29,

15–21.

Fischer, J., and Heun, V. 2011. Space-efficient preprocessing schemes for range minimum queries on static arrays.

SIAM J. Comput. 40, 465–492.

Gagie, T., Navarro, G., and Prezza, N. 2020a. Fully functional suffix trees and optimal text searching in BWT-runs

bounded space. J. ACM. 67, 2:1–2:54.

Gagie, T., Tomohiro, I., Manzini, G., et al. 2019. Rpair: Rescaling RePair with Rsync. In: Proceedings of the 26th

International Symposium on String Processing and Information Retrieval (SPIRE). 35–44.

Gagie, T., Tomohiro, I., Manzini, G., et al. 2020b. Practical random access to SLP-compressed texts. In: Proceedings of

the 27th International Symposium on String Processing and Information Retrieval (SPIRE). 221–231.

Garrison, E., Sirén, J., Novak, A.M., et al. 2018. Variation graph toolkit improves read mapping by representing genetic

variation in the reference. Nat. Biotechnol. 36, 875–879.

Gog, S., Beller, T., Moffat, A., et al. 2014. From theory to practice: Plug and play with succinct data structures. In:

Proceedings of the 13th International Symposium on Experimental Algorithms (SEA). 326–337.

Kasai, T., Lee, G., Arimura, H., et al. 2001. Linear-time longest-common-prefix computation in suffix arrays and its

applications. In: Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching (CPM). 181–192.

Kuhnle, A., Mun, T., Boucher, C., et al. 2020. Efficient construction of a complete index for pan-genomics read

alignment. J. Comput. Biol. 27, 500–513.

Langmead, B., and Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357–359.

Langmead, B., Trapnell, C., Pop, M., et al. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to

the human genome. Genome Biol. 10, R25.

Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv.

Li, H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 34, 3094–3100.

Li, H., and Durbin, R. 2009. Fast and accurate short read alignment with Burrows–Wheeler Transform. Bioinformatics.

25, 1754–1760.

Li, H., Feng, X., and Chu, C. 2020. The design and construction of reference pangenome graphs with minigraph.

Genome Biol. 21, 1–19.

Li, R., Zhu, H., Ruan, J., et al. 2010. De novo assembly of human genomes with massively parallel short read

sequencing. Genome Res. 20, 265–272.

186 ROSSI ET AL.

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

Liu, B., Guo, H., Brudno, M., et al. 2016. deBGA: read alignment with de Bruijn graph-based seed and extension.

Bioinformatics. 32, 3224–3232.

Louza, F.A., Gog, S., and Telles, G.P. 2017. Inducing enhanced suffix arrays for string collections. Theor. Comput. Sci.

678, 22–39.

Maarala, A.I., Arasalo, O., Valenzuela, D., et al. 2020. Scalable reference genome assembly from compressed pan-

genome index with spark. In: Proceedings of the 9th International Conference on Big Data (BIGDATA), 68–84.

Mäkinen, V., Belazzougui, D., Cunial, F., et al. 2015. Genome-Scale Algorithm Design: Biological Sequence Analysis

in the Era of High-Throughput Sequencing. Cambridge University Press, Cambridge, United Kingdom.

Mäkinen, V., and Navarro, G. 2007. Rank and select revisited and extended. Theor. Comput. Sci. 387, 332–347.

Mallick, S., Li, H., Lipson, M., et al. 2016. The Simons genome diversity project: 300 genomes from 142 diverse

populations. Nature. 538, 201–206.

Manber, U., and Myers, G.W. 1993. Suffix arrays: a new method for on-line string searches. SIAM J. Comput. 22, 935–

948.

Miclotte, G., Heydari, M., Demeester, P., et al. 2016. Jabba: hybrid error correction for long sequencing reads.

Algorithms Mol. Biol. 11, 10.

Mun, T., Kuhnle, A., Boucher, C., et al. 2020. Matching reads to many genomes with the r-index. J. Comput. Biol. 27,

514–518.

Navarro, G. 2016. Compact Data Structures—A Practical Approach. Cambridge University Press, Cambridge, United

Kingdom.

Nong, G. 2013. Practical linear-time O(1)-workspace suffix sorting for constant alphabets. ACM Trans. Inform. Syst.

31, 15.

Prezza, N., Pisanti, N., Sciortino, M., et al. 2019. SNPs detection by eBWT positional clustering. Algorithms Mol. Biol.

14.

Prezza, N., and Rosone, G. 2019. Space-efficient computation of the LCP array from the Burrows-Wheeler transform.

In: Proceedings of the 30th Annual Symposium on Combinatorial Pattern Matching (CPM). 7, 1–7:18.

Rhie, A., McCarthy, S.A., Fedrigo, O., et al. 2021. Towards complete and error-free genome assemblies of all

vertebrate species. Nature. 592, 737–746.

Smith, T.F., and Waterman, M.S. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

Stevens, E.L., Timme, R., Brown, E.W., et al. 2017. The public health impact of a publically available, environmental

database of microbial genomes. Front. Microbiol. 8, 808.

Suzuki, H., and Kasahara, M. 2018. Introducing difference recurrence relations for faster semi-global alignment of long

sequences. BMC Bioinform. 19, 33–47.

The 1000 Genomes Project Consortium. 2015. A global reference for human genetic variation. Nature. 526, 68–74.

Turnbull, C., Scott, R.H., Thomas, E., et al. 2018. The 100,000 genomes project: bringing whole genome sequencing to

the nhs. Br. Med. J. 361.

Valenzuela, D., and Mäkinen, V. 2017. CHIC: a short read aligner for pan-genomic references. bioRxiv.

Valenzuela, D., Norri, T., Välimäki, N., et al. 2018. Towards pan-genome read alignment to improve variation calling.

BMC Genomics. 19, 123–130.

Vyverman, M., De Baets, B., Fack, V., et al. 2015. A long fragment aligner called ALFALFA. BMC Bioinform. 16, 159.

Address correspondence to:

Dr. Massimiliano Rossi

Department of Computer and Information

Science and Engineering

P.O. Box 116120

University of Florida

Gainesville, FL 32611-6550

USA

E-mail: rossi.m@ufl.edu

MONI: A PANGENOMIC INDEX FOR FINDING MEMS 187

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t

0
7
/0

9
/2

2
.
F

o
r

p
er

so
n
al

 u
se

 o
n
ly

.

