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ABSTRACT

Efficiently finding maximal exact matches (MEMs) between a sequence read and a database of

genomes is a key first step in read alignment. But until recently, it was unknown how to build a

data structure inO(r) space that supports efficient MEM finding, where r is the number of runs

in the Burrows–Wheeler Transform. In 2021, Rossi et al. showed how to build a small auxiliary

data structure called thresholds in addition to the r-index in O(r) space. This addition enables

efficient MEM finding using the r-index. In this article, we present the tool that implements this

solution, which we call MONI. Namely, we give a high-level view of the main components of the

data structure and show how the source code can be downloaded, compiled, and used to find

MEMs between a set of sequence reads and a set of genomes.
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1. INTRODUCTION

Indexing genomes in sublinear space in a manner that supports read alignment has been an open

problem since short read aligners—such as BWA (Li and Durbin, 2009) and Bowtie (Langmead et al.,

2009; Langmead, and Salzberg, 2012)—started to make use of the FM-index (Ferragina and Manzini, 2005).

A significant breakthrough in this problem was made by Gagie et al. (2020a) when they showed most of the

functionalities of the FM-index can be retained by only storing the run-length encoded Burrows–Wheeler

Transform (RL BWT) with a suffix array (SA) sample at the beginning and end of each run of the BWT.

These data structured are called the r-index, which follows from the fact that occupiesO(r) space, where r is the

number of runs in theBWT.Table 1 shows how r can vary depending on the data and the size of the data.Yet,Gagie

et al. did not demonstrate how to construct the r-index or use it to perform read alignment. The construction of the

traditional r-indexwas later accomplished byBoucher et al. (2019) andKunhle et al. (2020) using a technique called

Prefix-Free Parsing (PFP). However, it was still unclear how to use the r-index for read alignment.

1Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA.
2Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy.
3Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.
4Faculty of Computer Science, Dalhousie University, Halifax, Canada.
iORCID ID (https://orcid.org/0000-0002-3012-1394).
iiORCID ID (https://orcid.org/0000-0003-0525-3114).
iiiORCID ID (https://orcid.org/0000-0001-7289-4988).
ivORCID ID (https://orcid.org/0000-0003-2437-1976).
vORCID ID (https://orcid.org/0000-0003-3689-327X).
viORCID ID (https://orcid.org/0000-0001-9509-9725).
*Both authors should be considered senior authors of the project.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 29, Number 2, 2022

# Mary Ann Liebert, Inc.

Pp. 188–194

DOI: 10.1089/cmb.2021.0445

188

D
o
w

n
lo

ad
ed

 b
y
 9

3
.6

3
.1

6
1
.1

0
8
 f

ro
m

 w
w

w
.l

ie
b
er

tp
u
b
.c

o
m

 a
t 

0
7
/0

9
/2

2
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



To apply the r-index to read alignment, Bannai et al. (2020) proposed the idea of finding maximal exact

matches (MEMs) between a query string (read) and the index of genomes by first calculating the query’s

matching statistics. MEMs can then be extended to find full alignments between a query string and

sequences in the index by dynamic programming or other chaining techniques (Li, 2013). Matching

statistics for a query string are computed by using a set of thresholds that are defined for each subsequent

runs of the same character in the BWT.

In particular, given two runs of character c in the BWT that are at positions i to i + ‘ and k‚ k + ‘0, the

position within the interval [i + ‘ + 1‚ k - 1] that has a smallest longest common prefix (LCP) value is stored

as the threshold for those runs, where the LCP value is the LCP between consecutive suffixes in the SA.

Bannai et al. did not describe how to construct the thresholds efficiently—this was accomplished later by

Rossi et al. (2021) by modifying the PFP algorithm to construct thresholds along with the other components

of the r-index. The implementation of their method is referred to as MONI. In this study, we describe the

practicalities of this tool, that is, how to build and use the r-index of Rossi et al. to find MEMs between a set

of sequence reads and an index of genomes.

2. INSTALLATION

We begin by giving instructions on how to download and install MONI. We assume that users are on a

system with a standard Linux or Unix installation that has a c++17 or higher compiler, and that apt is their

default package manager. If another Unix-like system is being used, then the appropriate package manager

for apt should be substituted.

Users should first download some prerequisite packages, and the source code from the github repository:

$ apt-get update
$ apt-get install -y build-essential cmake git python3 zlib1g-dev
$ pip3 install psutil
$ git clone https://github.com/maxrossi91/moni

Users can compile the code as follows; any missing dependencies will be automatically downloaded and

compiled locally.

$ cd moni
$ mkdir build
$ cd build
$ cmake ..
$ make
$ make install
$ cd ..

Table 1. An Overview of How r Varies for Different Data sets

Name Description s n/106 n/r

cere Baking yeast genomes 5 461.28 39.85

einstein.de.txt Wikipedia articles in German 117 92.21 915.04

einstein.en.txt Wikipedia articles in English 139 465.24 1611.17

Escherichia_Coli Bacteria genomes 15 112.68 7.49

influenza Virus genomes 15 154.80 51.21

kernel Linux Kernel sources 160 249.51 92.41

para Yeast genomes 5 429.26 27.45

world_leaders CIA world leaders files 89 46.90 81.89

chr19 Human chromosome 19 (1000 haplotypes) 5 60110.54 1287.38

Salmonella Salmonella genomes database (10,000 genomes) 4 51820.38 36.61

SARS-CoV2 SARS-CoV2 genomes database (400,000 genomes) 5 11930.96 1302.87

In this study, we give the name and description of the data sets (column 1 and 2), the alphabet size (column 3), the length of the file

(column 4), and the ratio of the length to the number of runs in the BWT (column 5).
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These commands will also install the binaries of MONI in the default binary location of the system (e.g.,

/usr/local/bin for Ubuntu users), together with the moni pipeline. MONI binaries include BigBWT (Bou-

cher et al., 2019), BigRePair (Gagie et al., 2019), and ShapedSLP (Gagie et al., 2020b). In addition, MONI

uses sdsl-lite (Gog et al., 2014), ksw2 (Li, 2018; Suzuki and Kasahara, 2018), gsacak (Louza et al., 2017),

and r-index (Mun et al., 2020). If the users want the binaries in a different location, then they should replace

the cmake .. command mentioned with

$ cmake --DCMAKE_INSTALL_PREFIX= < dir> ..

where <DIR> is the desired destination directory.

3. CONSTRUCTION OF INDEX

Users can build a MONI index using the moni build command. In particular, the index can be built for a

collection of genomic sequences in a FASTA file format. The provided input file can also be gzipped. In the

data/SARS-CoV2 directory we provide an example gzipped data set of 1000 SARS-CoV2 genomes from

EBIs COVID-19 data portal (The COVID-19 Data Portal, 2021) occupying 3.9 MB. To build the index,

users can use the following command:

$ moni build -r data/SARS-CoV2/SARS-CoV2.1k.fa.gz -o sars-cov2 -f

Since MONI can handle also plain texts, the -f flag is used to specify that the input text is in FASTA

format. The command’s output consists of four files prefixed by sars-cov2 with different extensions,

namely

– sars-cov2.idx (33 KB): the file containing the starting position and name of each fasta sequence in the

reference file.

– sars-cov2 thrbv.ms (845 KB): the file containing the r-index of the concatenation of the sequences in

the reference file.

– sars-cov2 plain.slp (355 KB): the file containing the straight-line program (grammar) generating the

concatenation of the sequences in the reference file.

– sars-cov2.moni.log: the file containing log information of the construction process.

The user can configure the file prefix with the -o parameter. In this example, the total size of the final

index is 1.2 MB. By default MONI builds a plain encoded straight-line program, however, it is also able to

build a ‘‘shaped’’ straight-line program using the -g shaped option. A shaped straight-line program is about

half the size of the plain version, but is over two times slower to query. In our example, sars-cov2.slp uses

164 KB of space.

On an Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz server, building the index for data/SARS-CoV2/

SARS-CoV2.1k.fa.gz takes *6 seconds and 34 MB of RAM. On the same server, we built the index for

200 human genomes from The 1000 Genomes Project Consortium (2015), which takes 580 GB un-

compressed, in 41 hours with 418 GB of memory using 32 threads.

4. COMPUTING MATCHING STATISTICS

Users can compute the matching statistics of a set of patterns stored in a FASTA or FASTQ file using

moni ms. In our running example, we provide data/SARS-CoV2/reads.fastq.gz, which is a set of 10,000

100-bp reads simulated with Mason2 (Holtgrewe, 2010) from the first genome in the reference file using

0.001 error rate for both SNPs and small insertions/deletions (indels). The matching statistics can be

computed with the following command:

$ moni ms -i sars-cov2 -p data/SARS-CoV2/reads.fastq.gz -o reads

On the same Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz server, computing the matching statistics

for the input reads takes 2.2 seconds with an average of 0.22ms per read.
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5. FINDING MAXIMAL EXACT MATCHES

Users can compute the MEMs of a set of patterns stored in a FASTA or FASTQ file using moni mems.

Using our running example, the MEMs can be computed with the following command:

$ moni mems -i sars-cov2 -p data/SARS-CoV2/reads.fastq.gz -o reads

On the same Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz server, computing the MEMs for the input

reads takes 2.3 seconds with an average of 0.23ms per read.

6. EXTENDING MAXIMAL EXACT MATCHES

Users can compute the extension of MEMs of a set of patterns stored in a FASTA or FASTQ file using

moni extend. For each read of length ‘, the algorithm works as follows: first, all MEMs are found, then an

occurrence of the longest MEM is considered, a -L-length segment of the reference is extracted before and

after the occurrence of the MEM, and the alignment is extended in this extracted region using ksw2

extension functions. MONI reports the extension if the score is greater than 20 + 8 � log (‘), as in Bowtie2.

The -L parameter can be modified; it is 100 bp by default. We apply the same algorithm also to the reverse

complement of the read.

If both of the read and its reverse complement have an MEM that has an extension with a valid score,

both are reported. The default parameters for ksw2 are 2 as match score, 4 as mismatch penalty, 4 and 13 as

gap open penalties, and 2 and 1 as gap extension penalties. We refer the users to Suzuki and Kasahara

(2018) and Li (2018) for an in-depth explanation of the ksw2 parameters and the two-piece affine gap cost

function. These parameters can be changed by the user using the -A flag for the match score, the -B flag

for the mismatch penalty, the -O flag for the gap open penalty specifying the two values separated by a

coma, and the -E flag for the gap extension penalty specifying the two values separated by a comma.

Using our running example, the MEM extensions can be computed with the following command:

$ moni extend -i sars-cov2 -p data/SARS-CoV2/reads.fastq.gz -o reads

With a verbose command:

$ moni extend -i sars-cov2 -p data/SARS-CoV2/reads.fastq.gz -o reads
-L 100 -A 2 -B 4 -O 4,13 -E 2,1 -g plain

On the same Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz server, computing the extensions of the

MEMs for the input reads takes 3.6 seconds with an average of 0.36ms per read.

7. INTERPRETING THE OUTPUT

In this section, we describe the output of the three tasks performed in the previous sections.

7.1. Matching statistics

The output of moni ms is a pair of files with extensions .lengths and .pointers storing the lengths and the

pointers of the matching statistics, respectively. Both files have the same format; for each read there are two

lines: the first contains the name of the read preceded by a’>’ character, and the second contains a list of

space-separated integers, one for each nucleotide in the read. The i-th integer of the list from the .lengths

file represents the length of the longest prefix of the i-th suffix of the read that occurs in the reference, and

the i-th integer of the list from the .pointers file represents the position of that longest prefix with respect to

the reference being the concatenation of all the sequences in the input file. In our running example, the

moni ms output is as follows (with ellipses used for conciseness):

$ head reads.lengths $ head reads.pointers
> >simulated.1 > >simulated.1
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> 28 27 26.1> > 8004707 8004708 8004709.4675811
> >simulated.2 > >simulated.2
> 19 18 17.1 > 13019758 13019759 13019760.28479947
> >simulated.3 > >simulated.3
> 8 8 8.1 > 2891013 23134920 3596962.20281425
> >simulated.4 > >simulated.4
> 9 9 8.1 > 25840878 28883051 28883052.20281425
> >simulated.5 > >simulated.5
> 7 8 7.1 > 17796048 23730017 23730018.28479947

7.2. Maximal exact matches

The output of moni mems is a file with extension .mems storing the MEMs. For each read, the MEM’s

position in the read and its length is stored as a pair. The file reports two lines per read. The first contains

the name of the read preceded by a’>’ character, and the second contains a list of space-separated pairs of

integers, where the i-th pair consists of the starting position in the read of the i-th MEM, and its length. In

our running example:

$ head reads.mems
> >simulated.1
> (0,28) (21,8) (24,6) (25,6) (26,8) (27,9) (28,9) (29,71)
> >simulated.2
> (0,19) (12,8) (15,8) (17,7) (18,8) (19,81)
> >simulated.3
> (0,8) (1,8) (2,8).(89,8) (90,8) (91,9)
> >simulated.4
> (0,9) (1,9) (3,9).(89,8) (91,7) (92,8)
> >simulated.5
> (0,7) (1,8) (3,9).(85,10) (88,11) (93,7)

7.3. Extension of maximal exact matches

The output of moni extend is in a SAM file (Li et al., 2009). The SAM format is a tab-separated file that

begins with comment lines starting with the symbol ‘‘@.’’ The first line specifies the version of the SAM

file, followed by one line for each sequence in the reference genome (1000 SARS-CoV2), and a line

specifying the program used for processing the reads.

After these, the file consists of a line for each read in the query file. Each line consists of the following

tab-separated fields: read name, flag, reference name, position, MAPQ score, CIGAR string, reference

name for the next read in the read-pair, position of the next read in the read-pair, observed template length,

read sequence, read quality scores, and miscellaneous tags, for example, alignment score (AS), number of

mismatches (NM), and a string encoding mismatched and deleted reference bases (MD). In our running

example:

$ cat reads.sam
> @HD VN:1.6 SO:unknown
> @SQ SN:ENAjMW565758jMW565758.1 LN:29850
> @SQ SN:ENAjMW565759jMW565759.1 LN:29847
> @SQ SN:ENAjMW565760jMW565760.1 LN:29816
.

> @SQ SN:ENAjMW566845jMW566845.1 LN:29842
> @SQ SN:ENAjMW549699jMW549699.1 LN:29482
> @SQ SN:ENAjMT704034jMT704034.1 LN:29791
> @PG ID:moni PN:moni VN:0.2.0
> simulated.1 0 ENAjLR899017jLR899017.1 17789 43 100M * 0 0
AGA.TGA IHH.AHD AS:i:194 NM:i:1 MD:Z:28A71
> simulated.2 0 ENAjMW566485jMW566485.1 25291 43 19M1D81M * 0 0
TGA.AGG IIH.IEA AS:i:194 NM:i:1 MD:Z:19^G81
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> simulated.3 16 ENAjMW064948jMW064948.1 19019 43 100M * 0 0
ATG.CAC FHI.IHI AS:i:200 NM:i:0 MD:Z:100
> simulated.4 16 ENAjFR990399jFR990399.1 11322 43 100M * 0 0
ACT.TTT IDI.IHH AS:i:200 NM:i:0 MD:Z:100
.

8. CONCLUSIONS AND FUTURE STUDY

In this article, we illustrated how to use MONI to find MEMs between sequence reads and a set of

genomes. However, we note that there are several applications of our data structure that builds thresholds

alongside the standard r-index.

Homopolymer compression has been proven to be effective in improving alignment accuracy of third

generation sequencing long reads (Au et al., 2012; Li, 2018). In the homopolymer compressed represen-

tation of a sequence, homopolymers are contracted in a single base, for example, the homopolymer

compression of GGGAAATTAA is GATA. MONI can be used also to find MEMs in homopolymer

compressed space, which is suitable for removing homopolymer indel errors in PacBio long reads, for

example. This can be done by homopolymer compressing the reference, building MONI index, and que-

rying the reference with homopolymer compressed reads.

Recently, Khorsand et al. (2021) defined the problem of finding Substring-Free Sample-specific (SFS)

strings and showed it can be effective for comparing individuals in a population to detect structural variants

[see also Bannai et al. (2020), Section 5.3]. Given a set S of strings fS1‚ ::‚ Sng and a query string T, an SFS

in T, or T-specific string, is a substring s of T that does not occur as a substring in S but any proper substring

of s is a substring in the set S. The main intuition is that an SFS does not occur in the set S and hence, it

captures variations in T with respect to the sample fS1‚ ::‚ Sng.
For example, an SFS in T may include a single nucleotide polymorphisms or a portion of a structural

variation in T with respect to sample S. We note that finding an SFS can be solved efficiently using MONI

by building an index for fS1‚ ::‚ Sng, calculating the matching statistics for T, and finding MEMs between T

and fS1‚ ::‚ Sng. Any SFS can be found by analyzing the overlap of consecutive MEMs. A clear advantage

of the r-index is it can extend this approach by comparing of a query string T against a large population of

genomes. Although this problem can be solved relatively efficiently using MONI, the more general version

of the SFS problem where there is allowed to be k corrections in a substring x of T and still get a T-specific

string cannot obviously be solved using MONI. We leave this problem for future study.
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