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Abstract. Many real-world analytics problems involve two significant challenges: pre-
diction and optimization. Because of the typically complex nature of each challenge, the
standard paradigm is predict-then-optimize. By and large, machine learning tools are
intended to minimize prediction error and do not account for how the predictions will be
used in the downstream optimization problem. In contrast, we propose a new and very
general framework, called Smart “Predict, then Optimize” (SPO), which directly leverages
the optimization problem structure—that is, its objective and constraints—for designing
better prediction models. A key component of our framework is the SPO loss function,
which measures the decision error induced by a prediction. Training a prediction model
with respect to the SPO loss is computationally challenging, and, thus, we derive, using
duality theory, a convex surrogate loss function, which we call the SPO+ loss. Most
importantly, we prove that the SPO+ loss is statistically consistent with respect to the SPO
loss under mild conditions. Our SPO+ loss function can tractably handle any polyhedral,
convex, or even mixed-integer optimization problem with a linear objective. Numerical
experiments on shortest-path and portfolio-optimization problems show that the SPO
framework can lead to significant improvement under the predict-then-optimize para-
digm, in particular, when the prediction model being trained is misspecified. We find that
linear models trained using SPO+ loss tend to dominate random-forest algorithms, even

when the ground truth is highly nonlinear.
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1. Introduction

In many real-world analytics applications of opera-
tions research, a combination of both machine learn-
ing and optimization are used to make decisions.
Typically, the optimization model is used to generate
decisions, while a machine learning tool is used to
generate a prediction model that predicts key unknown
parameters of the optimization model. Because of the
inherent complexity of both tasks, a broad-purpose
approach that is often employed in analytics practice
is the predict-then-optimize paradigm.

For example, consider a vehicle-routing problem
that may be solved several times a day. First, a pre-
viously trained prediction model provides predic-
tions for the travel time on all edges of a road network
based on current traffic, weather, holidays, time, etc.
Then, an optimization solver provides near-optimal
routes using the predicted travel times as input. We
emphasize that most solution systems for real-world
analytics problems involve some component of both

prediction and optimization (see Mehrotra et al. 2011,
Chan et al. 2012, Chan et al. 2013, Angalakudati et al.
2014, Besbes et al. 2015, Deo et al. 2015, Ferreira et al.
2015, Gallien et al. 2015, and Cohen et al. 2017 for
recent examples and recent expositions by Simchi-
Levi 2013, den Hertog and Postek 2016, Deng et al.
2018, and Misi¢ and Perakis 2020). Except for a few
limited options, machine learning tools do not ef-
fectively account for how the predictions will be
used in a downstream optimization problem. In this
paper, we provide a general framework called Smart
“Predict, then Optimize” (SPO) for training predic-
tion models that effectively utilizes the structure of
the nominal optimization problem—that is, its con-
straints and objective. Our SPO framework is funda-
mentally designed to generate prediction models that
aim to minimize decision error, not prediction error.
One key benefit of our SPO approach is that it
maintains the decision paradigm of sequentially pre-
dicting and then optimizing. However, when training
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our prediction model, the structure of the nominal
optimization problem is explicitly used. The quality
of a prediction is not measured based on prediction
error, such as least-squares loss or other popular loss
functions. Instead, in the SPO framework, the quality
of a prediction is measured by the decision error.
That is, suppose a prediction model is trained using
historical feature data (xy,...,x,) and associated pa-
rameter data (cy,...,c,). Let (¢1,...,¢,) denote the
predictions of the parameters under the trained model.
The least-squares (LS) loss, for example, measures error
with the squared norm ||c; — &3, completely ignoring
the decisions induced by the predictions. In contrast,
the SPO loss is the true cost of the decision induced by
¢; minus the optimal cost under the true parameter c;.
In the context of vehicle routing, the SPO loss mea-
sures the extra travel time incurred due to solving the
routing problem on the predicted, rather than true,
edge cost parameters.

In this paper, we focus on predicting unknown
parameters of a contextual stochastic optimization
problem, where the parameters appear linearly in
the objective function—that is, the cost vector of any
linear, convex, or integer optimization problem. The
core of our SPO framework is a new loss function for
training prediction models. Because the SPO loss
function is difficult to work with, significant effort
revolves around deriving a surrogate loss function,
SPO+, that is convex and, therefore, can be optimized
efficiently. To show the validity of the surrogate
SPO+ loss, we prove a highly desirable statistical
consistency property and show that it performs well
empirically compared with standard predict-then-
optimize approaches. In essence, we prove that the
function that minimizes the Bayes risk associated to
the SPO+ loss is the regression function E[c|x], which
also minimizes the Bayes risk of the SPO loss (under
mild assumptions). Interestingly, E[c|x] also mini-
mizes the Bayes risk associated with the LS loss under
the same conditions. Thus, SPO+ and LS (or any
convex combination of the two) are essentially on
“equal footing”—they are both theoretically valid
(consistent) and computationally tractable choices for
the loss function. However, when the ultimate goal is
to solve a downstream optimization task, the SPO+
loss is the natural choice, as it is tailored to the op-
timization problem and works significantly better in
practice than LS.

Empirically, we observe that, even when the predic-
tion task is challenging due to model misspecification,
the SPO framework can still yield near-optimal deci-
sions. We note that a fundamental property of the
SPO framework is the requirement that the prediction
is directly “plugged in” to the downstream optimi-
zation problem. An alternative procedure may alter
the decision-making process in some way, such as by

adding robustness or by taking into account the en-
tire data set (instead of just the prediction). A strong
advantage of our SPO approach is that it has good
performance, even when the naive prediction prob-
lem is challenging; see the illustrative example in
Section 3.1. Another advantage is that the down-
stream optimization problem is typically more com-
putationally tractable and more attractive to practi-
tioners than a more complex alternative procedure.
On the other hand, alternative decision-making pro-
cedures may provide other advantages, such as im-
proved generalization performance via the introduc-
tion of bias and/or robustness. However, designing
such procedures is more challenging in the presence
of contextual data, and combining them with the SPO
approach would be worthwhile of future research.
Overall, we believe our SPO framework provides a
clear foundation for designing operations-driven
machine learning (ML) tools that can be leveraged
in real-world optimization settings.

Our contributions may be summarized as follows:

1. We first formally define a new loss function,
which we call the SPO loss, that measures the error in
predicting the cost vector of a nominal optimization
problem with linear, convex, or integer constraints.
The loss corresponds to the suboptimality gap—with
respect to the true/historical cost vector—due to
implementing a possibly incorrect decision induced
by the predicted cost vector. Unfortunately, the SPO
loss function can be nonconvex and discontinuous in
the predictions, implying that training ML models
under the SPO loss may be challenging.

2. Given the intractability of the SPO loss function,
we develop a surrogate loss function, which we call
the SPO+ loss. This surrogate loss function is derived
by using a sequence of steps motivated by duality
theory (Proposition 2), a data-scaling approximation,
and a first-order approximation. The resulting SPO+
loss function is convex in the predictions (Proposition 3),
which allows us to design an algorithm based on
stochastic gradient descent for minimizing SPO+ loss
(Proposition 8). Moreover, when training a linear re-
gression model to predict the objective coefficients of a
linear program, only a linear optimization problem needs
be solved to minimize the SPO+ loss (Proposition 7).

3. We prove a fundamental connection to classical
machine learning under a very simple and special
instance of our SPO framework. Namely, under this
instance, the SPO loss is exactly the 0-1 classification
loss (Proposition 1), and the SPO+ loss is exactly the
hingeloss (Proposition 4). The hinge loss is the basis of
the popular support-vector machine (SVM) method
and is a surrogate loss to approximately minimize the
0-1 loss, and, thus, our framework generalizes this
concept to a very wide family of optimization prob-
lems with constraints.
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4. We prove a key consistency result of the
SPO+ loss function (Theorem 1, Proposition 5, and
Proposition 6), which further motivates its use.
Namely, under full distributional knowledge, mini-
mizing the SPO+ loss function is, in fact, equivalent
to minimizing the SPO loss if two mild conditions
hold: The distribution of the cost vector (given the
features) is continuous and symmetric about its mean.
For example, these assumptions are satisfied by the
standard Gaussian noise approximation. This con-
sistency property is widely regarded as an essential
property of any surrogate loss function across the
statistics and machine learning literature. For exam-
ple, the famous hinge loss and logistic loss functions
are consistent with the 0-1 classification loss.

5. Finally, we validate our framework through nu-
merical experiments on the shortest-path and portfolio-
optimization problem. We test our SPO framework
against standard predict-then-optimize approaches
and evaluate the out-of-sample performance with
respect to the SPO loss. Generally, the value of our SPO
framework increases as the degree of model mis-
specification increases. This is precisely due to the fact
the SPO framework makes “better” wrong predic-
tions, essentially “tricking” the optimization problem
into finding near-optimal solutions. Remarkably, a
linear model trained using SPO+ even dominates a
state-of-the-art random-forests algorithm, even when
the ground truth is highly nonlinear.

1.1. Applications

Settings where the input parameters (cost vectors) of
an optimization problem need to be predicted from
contextual (feature) data are numerous. Let us now
highlight a few, of potentially many, application
areas for the SPO framework.

1.1.1. Vehicle Routing. In numerous applications, the
cost of each edge of a graph needs to be predicted
before making a routing decision. The cost of an edge
typically corresponds to the expected length of time
a vehicle would need to traverse the correspond-
ing edge. For clarity, let us focus on one important
example—the shortest-path problem. In the shortest-
path problem, oneis given a weighted directed graph,
along with an origin node and destination node, and
the goal is to find a sequence of edges from the origin
to the destination at minimum possible cost. A well-
known fact is that the shortest-path problem can be
formulated as a linear optimization problem, but
there are also alternative specialized algorithms,
such as the famous Dijkstra’s algorithm (see, e.g.,
Ahuja et al. 1993). The data used to predict the cost
of the edges may incorporate the length, speed limit,
weather, season, day, and real-time data from mo-
bile applications, such as Google Maps and Waze.

Simply minimizing prediction error may not suf-
fice or be appropriate, as overpredictions or under-
predictions have starkly different effects across the
network. The SPO framework would ensure that the
predicted weights lead to shortest paths and would
naturally emphasize the estimation of edges that
are critical to this decision. See Section 3.1 for an in-
depth example.

1.1.2. Inventory Management. In inventory-planning
problems, such as the economic lot-sizing problem
(Wagner and Whitin 1958) or the joint-replenishment
problem (Levi et al. 2006), the demand is the key
input into the optimization model. In practical set-
tings, demand is highly nonstationary and can depend
on historical and contextual data, such as weather,
seasonality, and competitor sales. The decisions of
when to order inventory are captured by a linear- or
integer-optimization model, depending on the com-
plexity of the problem. Under a common formulation
(see Levi et al. 2006 and Cheung et al. 2016), the de-
mand appears linearly in the objective, which is
convenient for the SPO framework. The goal is to
design a prediction model that maps feature data to
demand predictions, which, in turn, lead to good
inventory plans.

1.1.3. Portfolio Optimization. In financial-services ap-
plications, the returns of potential investments need
to be somehow estimated from data and can depend
on many features, which typically include historical
returns, news, economic factors, social media, and
others. In portfolio optimization, the goal is to find a
portfolio with the highest return subject to a constraint
on the total risk, or variance, of the portfolio. Although
the returns are often highly dependent on auxiliary
feature information, the variances are typically much
more stable and are not as difficult or sensitive to
predict. Our SPO framework would result in predic-
tions that lead to high-performance investments that
satisfy the desired level of risk. A least-squares loss
approach places higher emphasis on estimating higher
valued investments, even if the corresponding risk
may not be ideal. In contrast, the SPO framework
directly accounts for the risk of each investment when
training the prediction model.

1.2. Related Literature

Perhaps the most related work is that of Kao et al. (2009),
who also directly seek to train a machine learning
model that minimizes loss with respect to a nominal
optimization problem. In their framework, the nomi-
nal problem is an unconstrained quadratic optimiza-
tion problem, where the unknown parameters appear
in the linear portion of the objective. Their work does
not extend to settings where the nominal optimization
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problem has constraints, which our framework does.
Donti et al. (2017) proposes a heuristic to address a
more general setting than that of Kao et al. (2009) and
also focus on the case of quadratic optimization.
These works also bypass issues of nonuniqueness
of solutions of the nominal problem (because their
problem is strongly convex), which must be addressed
in our setting to avoid degenerate prediction models.

In Ban and Rudin (2019), ML models are trained to
directly predict the optimal solution of a newsvendor
problem from data. Tractability and statistical prop-
erties of the method are shown, as well as its effec-
tiveness in practice. However, it is not clear how this
approach can be used when there are constraints,
because feasibility issues may arise.

The general approach in Bertsimas and Kallus (2020)
considers the problem of accurately estimating an un-
known optimization objective using ML models where
the predictions can be described as a weighted combi-
nation of training samples—for example, nearest
neighbors and decision trees. In their approach, they
estimate the objective of an instance by applying the
same weights generated by the ML model to the
corresponding objective functions of those samples.
This approach differs from standard predict-then-
optimize only when the objective function is nonlin-
ear in the unknown parameter. Note that the un-
known parameters of all the applications mentioned
in Section 1.1 appear linearly in the objective.
Moreover, the training of the ML models does not rely
on the structure of the nominal optimization problem,
in contrast to the SPO framework.

The approach in Tulabandhula and Rudin (2013)
relies on minimizing a loss function that combines
the prediction error with the operational cost of the
model on an unlabeled data set. However, the op-
erational cost is with respect to the predicted pa-
rameters, and not the true parameters. Gupta and
Rusmevichientong (2017) consider combining estima-
tion and optimization in a setting without features/
contexts. We also note that our SPO loss, although
mathematically different, is similar in spirit to the no-
tion of relative regret introduced in Lim et al. (2012) in
the specific context of portfolio optimization with
historical return data and without features. Other
approaches for finding near-optimal solutions from
data include operational statistics (Liyanage and
Shanthikumar 2005, Chu et al. 2008), sample aver-
age approximation (Kleywegt et al. 2002, Schiitz et al.
2009, Bertsimas et al. 2018b), and robust optimiza-
tion (Bertsimas and Thiele 2006, Wang et al. 2016,
Bertsimas et al. 2018a). There has also been some
recent progress on submodular optimization from
samples (Balkanski et al. 2016, 2017). These ap-
proaches typically do not have a clear way of using

feature data, nor do they directly consider how to train a
machine learning model to predict optimization parameters.

Another related stream of work is in data-driven
inverse optimization, where feasible or optimal so-
lutions to an optimization problem are observed, and
the objective function has to be learned (Keshavarz
et al. 2011, Chan et al. 2014, Bertsimas et al. 2015,
Aswani et al. 2018, Esfahani et al. 2018). In these
problems, there is typically a single unknown ob-
jective, and no previous samples of the objective are
provided. We also note there have been recent ap-
proaches for regularization (Ban et al. 2018) and
model selection (Besbes et al. 2010, Den Boer and
Sierag 2020, Sen and Deng 2017) in the context of
an optimization problem.

Lastly, we note that our framework is related to the
general setting of structured prediction (see, e.g.,
Taskar et al. 2005, Tsochantaridis et al. 2005, Nowozin
et al. 2011, Osokin et al. 2017, and the references
therein). Motivated by problems in computer vision
and natural language processing, structured predic-
tion is a version of multiclass classification that is
concerned with predicting structured objects, such
as sequences or graphs, from feature data. The SPO+
loss is similar in spirit to that of the structured
SVM (SSVM) and is, indeed a convex, upper bound on
the SPO loss, akin to the SSVM. However, there are
fundamental differences with our approach and the
SSVM approach. In the SSVM approach, the struc-
tured object one would be predicting is the decision w
directly from the feature x (Taskar et al. 2005). In our
setting, we have access to historical data on ¢, which
are richer than observations of decisions, because cost
vectors induce optimal decisions naturally. Under
one special case of our framework, we prove that
the SPO loss is equivalent to 0/1 loss, whereas the
SPO+ loss is equivalent to the hinge loss. Thus, our
framework can be seen as a type of generalization of
the SSVM. Finally, we remark that our derivation
of the surrogate SPO+ loss relies on completely new
ideas using duality theory, which help explain the
strong empirical performance.

2. “Predict, then Optimize” Framework

We now describe the “Predict, then Optimize” (PO)
framework, which is central to many applications of
optimization in practice. Specifically, we assume that
there is a nominal optimization problem of interest
with a linear objective, where the decision variable
w € R? and feasible region S C R” are well defined and
known with certainty. However, the cost vector of the
objective, ¢ € R?, is not available at the time the de-
cision must be made; instead, an associated feature
vector x € R? is available. Let D, be the conditional
distribution of ¢ given x. The goal for the decision
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maker is to solve, for any new instance characterized
by x, the contextual stochastic optimization problem

minEc.p [c"w|x] = minEcp,[c|x]"w. (1)
weS weS .

The predict-then-optimize framework relies on using
a prediction for E..p [c|x], which we denote by ¢, and
solving the deterministic version of the optimization
problem based on ¢—that is, minges ¢"w. Our primary
interests in this paper concern defining suitable loss
functions for the predict-then-optimize framework,
examining their properties, and developing algo-
rithms for training prediction models using these
loss functions.

We now formally list the key ingredients of
our framework:

1. Nominal (downstream) optimization problem,
which is of the form

P(c): z*(c):= min cTw
st.wes, (2)

where w € R? are the decision variables, ¢ € R? is
the problem data describing the linear objective func-
tion, and S C R? is a nonempty, compact (i.e., closed
and bounded), and convex set representing the fea-
sible region. Because we are focusing on linear opti-
mization problems herein, the assumptions that S is
convex and closed are without loss of generality.
Indeed, if S in (2) is, instead, possibly nonconvex or
nonclosed, then replacing S by its closed convex hull
does not change the optimal value z*(c) (lemma 8 in
Jaggi 2011). Thus, this basic equivalence for linear
optimization problems implies that our methodology
can be applied to combinatorial and mixed-integer
optimization problems, which we elaborate on fur-
ther in Section 3.2. Because S is assumed to be fixed
and known with certainty, every problem instance
can be described by the corresponding cost vector,
hence, the dependence on ¢ in (2). When solving a
particular instance where c is unknown, a prediction
for cis used instead. We assume access to a practically
efficient optimization oracle, w*(c), that returns a
solution of P(c) for any input cost vector. For in-
stance, if (2) corresponds to a linear, conic, or mixed-
integer optimization problem, then a commercial
optimization solver or a specialized algorithm suf-
fices for w*(c).

2. Trainingdata of the form (x1, ¢1), (X2, ¢2), . .., (X, Cn),
where x; € X is a feature vector representing con-
textual information associated with c;.

3. A hypothesis class H of cost-vector prediction
models f : X — R?, where ¢ := f(x) is interpreted as the
predicted cost vector associated with feature vector x.

4. A loss function {(-,-): RYxRY — R,, whereby
{(¢,c) quantifies the error in making prediction ¢
when the realized (true) cost vector is actually c.

Given the loss function £(,-) and the training data
(x1,¢1),...,(xn,¢y), the empirical risk minimization
(ERM) principle states that we should determine a
prediction model f* € H by solving the optimiza-
tion problem

min +33¢(fx)c). )

Provided with the prediction model f* and given a
feature vector x, the predict-then-optimize decision
rule is to choose the optimal solution with respect to
the predicted cost vector—that is, w*(f(x)). Example 1
in Online Appendix A contextualizes our framework
in the context of a network optimization problem.

In standard applications of the “Predict, then Op-
timize” framework, as in Example 1, the loss function
that is used is completely independent of the nominal
optimization problem. In other words, the underly-
ing structure of the optimization problem P(-) does
not factor into the loss function and, therefore, the
training of the prediction model. For example, when
t(,c) =5llc - c|l3, this corresponds to the least-squares
loss function. Moreover, if H is a set of linear pre-
dictors, then (3) reduces to a standard least-squares
linear regression problem. In contrast, our focus in
Section 3 is on the construction of loss functions that
measure decision errors in predicting cost vectors by
leveraging problem structure.

2.1. Useful Notation

Let p be the dimension of a feature vector, d be the
dimension of a decision vector, and n be the number
of training samples. Let W*(c) := arg minges{c’w} de-
note the set of optimal solutions of P(-), and let w™(-) :
R? — S denote a particular oracle for solving P(-). That
is, w*(-) is a fixed deterministic mapping such that
w”(c) € W*(c). Note that nothing special is assumed
about the mapping w”(-); hence, w*(c) may be regar-
ded as an arbitrary element of W*(c). Let &(+) : RY —
R denote the support function of S, which is de-
fined by supp(c) := maxyes{c’w}. Because S is compact,
&s(+) is finite everywhere, the maximum in the defi-
nition is attained for every c € RY, and note that
supp(c) = —z*(—c) = c'w*(~c) forall c € R?. Recall also
that supp(-) is a convex function. For a given convex
function h(-):R? - R, recall that g€ R? is a sub-
gradientof h(-)atc € RYif h(c’) > h(c) + gT(c’ — c) forall
¢ €R?, and the set of subgradients of h(-) at c is
denoted by Jh(c). For two matrices By, B, € R the
trace inner product is denoted by B; e B, := trace(BI B,).
Finally, we note that the name of the framework is
inspired by Farias (2007).

3. SPO Loss Functions
Herein, we introduce several loss functions that fall
into the predict-then-optimize paradigm, but that are
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also smart in that they take the nominal optimization
problem P(-) into account when measuring errors in
predictions. We refer to these loss functions as Smart
“Predict, then Optimize” loss functions. As a start-
ing point, let us consider a true SPO loss function
that exactly measures the excess cost incurred when
making a suboptimal decision due to an imprecise
cost-vector prediction. Following the PO paradigm,
given a cost-vector prediction ¢, a decision w*(¢) is
implemented based on solving P(¢). After the decision
w*(¢) is implemented, the cost incurred is with respect
to the cost vector ¢ that is actually realized. The excess
cost due to the fact that w*(¢) may be suboptimal with
respect to c is then cTw*(¢) — z*(c), which we call the
SPO loss.

In Figure 1 fig : geometry, we show how two pre-
dicted values of ¢ with the same prediction error can
result in different decisions and different SPO losses.
We consider a two-dimensional polyhedron and el-
lipse for the feasible region S. We plot the (negative of
the) true cost vector ¢, as well as two candidate
predictions ¢4 and Cp that are equidistant from ¢ and
thus have equivalent LS loss. One can see that the
optimal decision for ¢4 coincides with that of ¢, since
w*(€a) = w*(c), and thus the SPO loss is zero. In con-
trast, we see that w*(¢g) # w*(c) and thus results in
positive SPO loss. In the polyhedron example, any
predicted cost vector whose negative is notin the gray
region will result in a positive SPO loss, where as in
the ellipse example any predicted cost vector that is
not exactly parallel with ¢ results in a positive SPO
loss. Definition trueg formalizes this true SPO loss
associated with making the prediction ¢ when the
actual cost vector is ¢, given a particular oracle w”(-)
for P(-).

Definition 1 (SPO Loss). Given a cost-vector prediction
¢ and a realized cost vector c, the true SPO loss £&5(C, c)
with respect to optimization oracle w*(-) is defined
as (&0, ¢) = cTw*(e) —z*(c) .

Note that there is an unfortunate deficiency in
Definition 1, which is the dependence on the particular

Figure 1. Geometric Illustration of SPO Loss

(b)

Notes. (a) Polyhedral feasible region. (b) Elliptic feasible region.

oraclew™(-) used to solve (2). Practically speaking, this
deficiency is not a major issue because we should
usually expect w”(¢) to be a unique optimal solution—
that is, we should expect W*(¢) to be a singleton.
Note that if any solution from W*(¢) may be used by
the loss function, then the loss function essentially
becomes min ¢ cfw—2z*(c). Thus, a prediction
model would then be incentivized to always make
the degenerate prediction ¢ =0 because W*(0) = S.
This would then imply that the SPO loss is zero.

Inany case, if one wishes to address the dependence
on the particular oracle w*(-) in Definition 1, then it
is most natural to “break ties” by presuming that the
implemented decision has worst-case behavior with
respect to c. Definition 2 is an alternative SPO loss
function that does not depend on the particular choice
of the optimization oracle w*(-).

Definition 2 (Unambiguous SPO Loss). Given a cost-
vector prediction ¢ and a realized cost vector c, the
(unambiguous) true SPO loss {spo(C,c) is defined
as lspo(¢, €) := max,cy+ e {cTw} — 2%(c).

Note that Definition 2 presents a version of the
true SPO loss that upper bounds the version from
Definition 1—that is, it holds that {55 (¢, ¢) < spo(C, ¢)
for all ¢ ceR? As mentioned previously, the dis-
tinction between Definitions 1 and 2 is only relevant
in degenerate cases. In the results and discussion
herein, we work with the unambiguous true SPO loss
given by Definition 2. Related results may often be
inferred for the version of the true SPO loss given
by Definition 1 by recalling that Definition 2 upper
bounds Definition 1 and that the two loss functions
are almost always equal, except for degenerate cases,
where W*(¢) has multiple optimal solutions.

Notice that fspo(¢,c) is impervious to the scaling
of ¢; in other words, it holds that fspo(ac, ¢) = £spo(C, )
for all @ > 0. This property is intuitive because the
true loss associated with prediction ¢ should only
depend on the optimal solution of P(-), which does not
depend on the scaling of ¢. Moreover, this property is
also shared by the 0-1 loss function in binary classi-
fication problems. Namely, labels can take values in
the set {-1,+1}, and the prediction model predicts
values in R. If the predicted value has the same sign
as the true value, the loss is zero, and otherwise the
loss is one. That is, given a predicted value ¢ € R
and alabel ¢ € {-1, +1}, the 0-1 loss function is defined
by €o-1(C, ¢) := 1(sgn(c) = ¢), where sgn(-) is the sign
function and 1(-) is an indicator function equal to one
if its input is true and zero otherwise. Therefore, the
0-1 loss function is also independent of the scale on
the predictions. This similarity is not a coincidence;
in fact, Proposition 1 illustrates that binary classifi-
cation is a special case of the SPO framework. All
proofs can be found in Online Appendix B.
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Proposition 1 (SPO Loss Generalizes 0-1 Loss). When
S=[-1/2,41/2] and ce{-1,+1}, then {spo(¢,c)=
1(sgn(¢) = c)—that is, the SPO loss function exactly matches
the 0-1 loss function associated with binary classification.

Now, given the training data, we are interested in
determining a cost-vector prediction model with min-
imal true SPO loss. Therefore, given the previous def-
inition of the true SPO loss fspo(:,-), the prediction
model would be determined by following the em-
pirical risk minimization principle as in (3), which
leads to the following optimization problem:

1 n

Ifrégl E§€SPO(f(xi)r c). (4)
Unfortunately, the above optimization problem is
difficult to solve, both in theory and in practice.
Indeed, for a fixed ¢, fspo(-,c) may not even be
continuous in ¢ because w*(¢) (and the entire set
W*(¢)) may not be continuous in ¢. Moreover, because
Proposition 1 demonstrates that our framework cap-
tures binary classification, solving (4) is at least as
difficult as optimizing the 0-1 loss function, which
may be NP-hard in many cases (Ben-David et al.
2003). We are therefore motivated to develop ap-
proaches for producing “reasonable” approximate
solutions to (4) that (i) outperform standard PO ap-
proaches, and (ii) are applicable to large-scale prob-
lems where the number of training samples n and/or
the dimension of the hypothesis class H may be
very large.

3.1. An lllustrative Example

In order to build intuition, we now compare the SPO
loss against the classical least-squares loss function
via an illustrative example. Consider a very simple

Figure 2. Difference Between Prediction and Decision Residuals

(a)

O Edge 1 cost (true)
[J Edge 2 cost (true)
O Edge 1 cost (pred.)
] Edge 2 cost (pred.)

shortest-path problem with two nodes, s and t. There
are two edges that go from s to t, edge 1 and edge 2.
Thus, a cost vector ¢ is two-dimensional in this sett-
ing, and the goal is to simply choose the edge with
the lower cost. We shall not observe c directly at the
decision-making time, but, rather, just a one-dimensional
feature x associated with the vector c. Our data consist
of (x;,¢;) pairs, and ¢; are generated nonlinearly as a
function of x;.

In Figure 2(a), the residuals for the LS loss function
are marked by the dashed lines. The residual is the
distance between the prediction and the true value.
In Figure 2(b), the residuals for the SPO loss function are
marked by the dashed black lines. The residual is zero
when the predicted values are in the right order. Other-
wise, the residual is the distance between the true values.

The goal of the decision maker is to predict the cost
of each edge from the feature by using a simple linear
regression model. The intersection of the two lines
(corresponding to each edge) will signal the decision
boundary in the predict-then-optimize framework.
The decision maker shall try both the SPO and LS loss
functions to do the linear regression. In Figure 2, we
illustrate the difference between LS and SPO by vi-
sualizing the residuals for one particular data set and
linear models for predicting the edge 1 and edge 2
costs. In LS regression, one minimizes the sum of the
residuals squared, which is denoted by the dashed
green and red lines in Figure 2(a). When using SPO
loss, we consider “decision residuals,” which only
occur when the predictions result in choosing the
wrong edge. In these cases, the SPO cost is the
magnitude difference between the two true costs of
edge 1 and edge 2, as depicted by the dashed black
lines in Figure 2(b).

(b)

O Edge 1 cost (true)
[J Edge 2 cost (true)
O Edge 1 cost (pred.)
[ Edge 2 cost (pred.)

o §
o

Notes. (a) Prediction residuals. (b) Decision residuals. Pred., prediction.
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In Figure 3, we consider another data set, but this
time plot the optimal LS and SPO linear regression
models. In the upper left panel of Figure 3, we plot the
data set and the optimal decision boundary. In the
upper right panel, we plot the best LS fit to the data,
and in the lower two panels, we plot two different
optimal solutions to the SPO linear regression. (In
fact, the SPO fitted models are also optimal for SPO+
loss, which we derive in Section 3.2.) The vertical
dotted lines correspond to the decision boundaries
under the true and prediction models. Note that the
SPO loss in Figure 3 is zero, as there are no decision
errors as described in Figure 2.

Figure 3. Illustrative Example

One can see from Figure 3 that the LS lines very
closely approximate the nonlinear data, although the
decision boundary for LS is quite far from the optimal de-
cisionboundary. For any value of x between the dotted
black and red lines, the decision maker will choose
the wrong edge. In contrast, the SPO lines need not
approximate the data well at all, yet their decision
boundary is nearly optimal. In fact, the SPO lines have
zero training error, despite not fitting the data at all.
The key intuition is that the SPO loss is incurred any
time the wrong edge is chosen, and in this example,
one can construct lines that cross at the right decision
boundary, so that the wrong edge is never chosen,
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resulting in zero SPO loss. Note that the only im-
portant consideration is where the lines intersect,
and, thus, the SPO linear regression does not neces-
sarily minimize prediction error. Of course, a convex
combination of SPO and LS loss may be used to
overcome the unusual-looking lines generated. In
fact, there are infinitely many optimal solutions to the
ERM problem for the SPO loss, all of which just re-
quire that the intersection of the lines occurs between
the x values of 1.2 and 1.3.

3.2. The SPO+ Loss Function
In this section, we focus on deriving a tractable sur-
rogate loss function that reasonably approximates
lspo(+,-). Our surrogate function fspo+(+, -), which we
call the SPO+ loss function, can be derived in a few
steps that we shall carefully justify below. Ideally,
when finding the prediction model that minimizes
the empirical risk using the SPO+ loss, this predic-
tion model will also approximately minimize (4), the
empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first
observe that, for any a € R, the SPO loss can be writ-
ten as

tspo(é,¢) = max {c'w—at’w} +az* (@) - z*(c), (5)
weW* ()

because z*(¢) = ¢Tw for all w € W*(¢). Clearly, replac-
ing the constraint w € W*(¢) with w € S in (5) results
in an upper bound. Because this is true for all values
of a, then

Lspo(C,¢) < inf{masx{cTw —atTw} + az*(é)} -z%(c).
a we

(6)

In fact, one can show that Inequality (6) is actually an
equality using duality theory, and, moreover, the
optimal value of a tends to co. Intuitively, one can see
that as a gets large, then the term c¢’w in the inner
maximization objective becomes negligible and the
solution tends to w*(a¢) = w*(¢). Thus, as a tends to oo,
the inner maximization over S can be replaced with
maximization over W*(¢), which recovers (5). We
formalize this equivalence in Proposition 2 below.

Proposition 2 (Dual Representation of SPO Loss). For
any cost-vector prediction ¢ € R? and realized cost vector
c € RY, the function o +— maxyes{c'w — atTw} + az*(¢)
is monotone decreasing on R, and the true SPO loss function
may be expressed as

lspo(C,c) = lim :masx{cTw —atTw} + az*(é)} —-z'(c).
we.

@)

Using Proposition 2, we shall now revisit the SPO
ERM Problem (4), which can be written as

n
min = > lim {max{c'w — a; f(x;)Tw
fer n;ai—)m{ weS { 1 1f( 1) }

+ a,-z*(f(xi))} - z'(cy)

n
—min =S i T—--T
mip 23 i {mapdeo— oo

+ aif(xl-)Tw*( a,f(x,-))} - Z*(Ci)

1 $
- it St e

+ af(xi)Tw* (“f(xz')) - Z*(Ci)}

<min > maxidlo-2f)a)
+2f () w* (2f(x1) — 2% (1), (8)

1L T T
< min ;; ri}gsx{ci w = 2f(x;) wh+

2f (i) w* (cr) = 2*(cy). )

The first equality follows from the fact that z*(a; f(x;)) =
a;z*(f(x;)) for any a; > 0. The second equality follows
from the observation that all of the «; variables are
tending to the same value, so we can replace them
with one variable, which we call a. The first inequality
follows from Proposition 2, in particular, that setting
a =2 in (6) results in an upper bound on the SPO
loss (we shall revisit this specific choice below). Fi-
nally, the second inequality follows from the fact that
w*(c;) is a feasible solution of P(2f(x;)).

The summand expression in (9) is exactly what we
refer to as the SPO+ loss function, which we formally
state in Definition 3.

Definition 3 (SPO+ Loss). Given a cost-vector predic-
tion ¢ and a realized cost vector ¢, the SPO+ loss is
defined as £spo+ (G, ¢) := maxyes{cTw —28Tw} + 2¢Tw(c)—
Z*(c).

Recall that &g(-) is the support function of S—
that is, &s(c) := maxges{cTw}. Using this notation, the
SPO+ loss may be equivalently expressed as {spo+
(8,¢) = &Es(c —28) + 2eTw*(c) — z*(c).

Before proceeding, we shall provide reasoning as
to why Inequalities (8) and (9), which were used to
derive SPO+, are indeed reasonable approximations.
Although Inequality (8) could have been derived
without the intermediary steps before it, we now
claim that this inequality is actually an equality for
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many hypothesis classes. Namely, for any hypothesis
class H, where f € H implies af € H for all a >0,
then the inequality is tight because minimizing over
af is equivalent to minimizing over 2f. For exam-
ple, the hypothesis class of linear models satisfies
this property because all scalar multiples of linear
models are also linear. Note that a being absorbed
into the hypothesis class was possible because the a;
terms in each summand can be replaced by a single a
because they all tend to infinity. We specifically choose
a = 2 (rather than any other positive scalar) because
the Bayes risk minimizer of the SPO+ loss (under some
conditions) is exactly E[c|x] rather than a multiple of
E[c|x]. This notion will be formalized in Section 4.

The final step, (9), in the derivation of our convex
surrogate SPO+ loss function involves approximat-
ing the concave (nonconvex) function z*(-) with a
first-order expansion. Namely, we apply the bound
Z (2 f(x1) = 22°(f(x;)) < 2f(x;)"w*(c;), which can be
viewed as a first-order approximation of z*(f(x;))
based on a supergradient computed at ¢; (i.e., it
holds that w”(c;) € dz*(c;)). Note that if f(x;) = ¢;, then
€5po(f(x1»), ¢i) = fgpo+(f(xi), ¢;) =0, which implies that
when minimizing SPO+, intuitively, we are trying to
get f(x;) to be close to c;. Therefore, one might expect
w*(c;) to be a near-optimal solution to P(2f(x;)), and,
thus, Inequality (9) would be a reasonable approxi-
mation. In fact, Section 4 provides a consistency
property under some assumptions that would sug-
gest the prediction f(x;) is, indeed, reasonably close to
the expected value of ¢; if the prediction model is
trained on a sufficiently large data set.

Next, we state the following proposition, which
formally shows that the SPO+ loss is an upper bound
on the SPO loss, and it is convex in ¢. Note that, al-
though the SPO+ loss is convex in ¢, in general, it is
not differentiable because s(+) is not generally dif-
ferentiable. However, Proposition 3 also shows that
2(w*(c) — w*(2¢ — ¢)) is a subgradient of the SPO+ loss,
which is utilized in developing computational ap-
proaches in Section 5.

Proposition 3 (SPO+ Loss Properties). Given a fixed re-
alized cost vector ¢, it holds that:

1. lspo(, c) < €spo+(C,0) fOT’ all ¢ € Rd,

2. lspo+(C,c) is a convex function of the cost-vector
prediction ¢, and

3. Foranygivené, 2(w*(c) — w*(2¢ — ¢)) isa subgradient of
lspo+ (+) at c—that is, 2(w*(c) — w*(2¢ — ¢)) € dlspo. (&, ¢).

The convexity of the SPO+ loss function is also
shared by the hinge loss function, which is a convex
upper bound for the 0-1 loss function. Recall that the
hinge loss given a prediction ¢ is max{0,1 — ¢} if the
true label is 1 and max{0, 1 + ¢} if the true label is —1.
More concisely, the hinge loss can be written as
max{0, 1 — cc}, where c € {-1, +1} is the true label. The

hinge loss is central to the support-vector machine
method, where it is used as a convex surrogate to
minimize 0-1 loss. Recall that, in this setting of binary
classification, the SPO loss exactly captures the 0-1
loss, as formalized in Proposition 1. In the same
setting, it turns out that the SPO+ loss is equal to the
hinge loss evaluated at 2—that is, twice the predicted
value—which is formalized below in Proposition 4.
This mild discrepancy is due to our choice of @ = 2in
the above derivation of the SPO+ loss; the alternative
choice of @ = 1 would yield the hinge loss exactly.

Proposition 4 (SPO+ Loss Generalizes Hinge Loss).
Under the same conditions as Proposition 1—namely,
when S = [-1/2,+1/2] and ¢ € {1, +1}—it holds that
lspoy (¢, ¢) = max{0,1 —2cc}—that is, the SPO+ loss
function is equivalent to the hinge loss function asso-
ciated with binary classification.

Remark 1 (Connection to Structured Prediction). It is
worth pointing out that the previously described
construction of the SPO+ loss bears some resem-
blance to the construction of the structured hinge loss
(Taskar et al. 2004, 2005; Tsochantaridis et al. 2005;
Nowozin and Lampert 2011) in structured support
vector machines. Moreover, our problem setting
expands upon that of structured prediction by uti-
lizing the objective cost of the nominal optimization
problem to naturally define the SPO loss function.
That is, if we define w] := w*(c;), then the modified
data set (x1, wy), (xo, w3), ..., (x,, w}) may be regarded
as the training data of a structured prediction problem.
However, this reduction throws away valuable infor-
mation about the cost vectors c¢;, whereas the SPO+ loss
function naturally exploits this information and upper
bounds the SPO loss. Hence, our framework (and the
surrogate SPO+ loss function) may be viewed as a type
of refinement of the SSVM problem (and the structured
hinge loss) to settings where there is a natural cost
structure. Note that both the SPO+ loss and the struc-
tured hinge loss recover the regular hinge loss of binary
classification as a special case. The hinge loss satisfies a
key consistency property with respect to the 0-1 loss
(Steinwart 2002), which justifies its use in practice. In
Section 4, we show a similar consistency result for the
SPO+ loss with respect to the SPO loss under some mild
conditions. On the other hand, the structured hinge loss
is often inconsistent (see, e.g., the discussion around
equation (11) in Zhang 2004), although there have
been results on characterizing properties of consis-
tent loss function in multiclass classification and
structured prediction (Zhang 2004, Tewari and
Bartlett 2007, Osokin et al. 2017). o

Remark 2 (When P(-) Is a Combinatorial or Mixed-Integer
Problem). As mentioned previously, the assumptions
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that S is convex and closed are without loss of gen-
erality because one can simply replace a possibly
nonconvex or nonclosed set with its closed convex hull
in (2) without changing the optimal value z*(c). To be
more concrete, suppose that 5 C R? is a bounded, but
possibly nonconvex or nonclosed, set and that S is the
closed convex hull of S. Suppose further that the oracle
w*(-) returns an optimal solution in S—that is, w*(c) €
argmin, s c’w C arg minyes c'w for all ¢ € R?. For ex-
ample, if S represents the feasible region of a combi-
natorial or mixed-integer optimization problem, then
the oracle would correspond to a practically efficient
algorithm for this problem. Then, using the fact that
linear optimization on S is equivalent to linear opti-
mization on §, it is easy to see that the SPO and SPO+
loss functions defined with respect to S exactly equal
the corresponding loss functions defined with respect
to S. Finally, using Proposition 3, one can use the oracle
w*(c) € arg min .z c'w to compute subgradients of the
SPO+ loss function, which can be utilized in compu-
tational approaches, as described in Section 5. O

Applying the ERM principle as in (4) to the SPO+
loss yields the following optimization problem for
selecting the prediction model:

n

ffrégl %; Lspos( f(xi), ci). (10)
Much of the remainder of the paper describes results
concerning Problem (10). In Section 4, we demon-
strate the aforementioned Fisher consistency result;
in Section 5, we describe several computational ap-
proaches for solving Problem (10); and in Section 6,
we demonstrate that (10) often offers superior prac-
tical performance over standard PO approaches. Next,
we provide a theoretically motivated justification for
using the SPO+ loss.

4. Consistency of the SPO+ Loss Function
In this section, we prove a fundamental consistency
property, known as Fisher consistency, to describe
when minimizing the SPO+ loss is equivalent to
minimizing the SPO loss. The Fisher consistency
of a surrogate loss function means that, under full
knowledge of the data distribution and no restric-
tion on the hypothesis class, the function that min-
imizes the surrogate loss also minimizes the true loss
(Lin 2004, Zou et al. 2008). One may also say that the
surrogate loss is calibrated with the true loss (Bartlett
etal. 2006). Our result is analogous to the well-known
consistency results of the hinge loss and logistic loss
functions with respect to the 0-1 loss—minimizing
hinge and logistic loss under full knowledge also min-
imizes the 0-1 loss—and provides theoretical motiva-
tion for their success in practice.

More formally, we let D denote the distribution of
(x, c)—thatis, (x,c) ~ D—and consider the population
version of the true SPO risk (Bayes risk) minimiza-
tion problem:

mfin Exo)~p|spo( f(x), )], (11)

and the population version of the SPO+ risk-
minimization problem:

II}il’l E(x,c)~D [fspo_,_ ( f(x), C)] (12)

Note here that we place no restrictions on f(:),
meaning that H consists of any measurable function
mapping features to cost vectors.

Definition 4 (Fisher Consistency). A loss function £(:, -) is
said to be Fisher consistent with respect to the SPO loss if
arg ming E(xo~pl€(f(x), c)] (the set of minimizers of the
Bayes risk of £) also minimizes (11).

To gain some intuition, let f{pn and fip, denote any
optimal solution of (11) and (12), respectively. From (1),
one can see that an ideal value for f3,5(x) is simply
E[c|x]. In fact, as long as the optimal solution of
P(E[c]x]) is unique with probability one (over the
distribution of x € X)—that is, almost surely—then it
is, indeed, the case that E[c|x] is a minimizer of (11)
(see Proposition 5). Moreover, any function that is al-
most surely equal to E[c|x] is also a minimizer of (11).
In Theorem 1, we show that under Assumption 1,
any minimizer of the SPO+ population risk (12) must
satisfy fipo, () = E[c|x] almost surely and, therefore,
also minimizes the SPO risk (11). In summary, the
SPO+ loss is Fisher-consistent with the SPO loss,
under Assumption 1.

Assumption 1. These assumptions imply Fisher consis-
tency of the SPO+ loss function:

1. Almost surely, W*(E[c|x]) is a singleton—that is,
Pr(W*(E[clx]) = 1) = 1.

2. For all x € X, the distribution of clx is centrally
symmetric about its mean E[c|x].

3. For all x € X, the distribution of c|x is continuous
on all of RY.

4. The interior of the feasible region S is nonempty.

Theorem 1 (Fisher Consistency of SPO+). Suppose As-
sumption 1 holds. Then, any minimizer of the SPO+
risk (12) is almost surely (over the distribution of x € X)
equal to E[clx] and is also a minimizer of the SPO risk (11).
Thus, the SPO+ loss function is Fisher consistent with
respect to the SPO loss.

The key results to prove Theorem 1 are provided in
Section 4.1, and the final proof is given in the online
appendix. We remark that Assumption 1(1) is only
needed to show that E[c|x] is a minimizer of the SPO risk.
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This assumption is rather mild, as the set of points
with multiple optimal solutions typically has mea-
sure zero. In fact, Assumption 1(1) can be removed
if one uses Definition 1 of the SPO loss, which uses
a given optimization oracle. Assumption 1(2) en-
sures that E[c|x] is a minimizer of the SPO+ risk.
Note that a random vector d is centrally symmetric
about its mean if d — E[d] is equal in distribution to
E[d] —d, or, equivalently, d is equal in distribution to
2E[d] —d. This symmetry condition is satisfied, for
instance, when the data are assumed to be of the form
f(x) + €, where € is a zero-mean Gaussian distribution
with a positive semidefinite covariance matrix. Fi-
nally, Assumption 1(3) and Assumption 1(4), both of
which are standard, are used to show that E[c|x]
uniquely minimizes the SPO+ risk, except possibly
on a set of probability measure zero. Note that As-
sumption 1(2) and Assumption 1(3) may be relaxed to
hold almost surely with respect to the probability
measure of x € X, but for ease of presentation, we
state them for all x € X. In Section 4.1, we discuss
examples (provided in the online appendix) that
show how our result may not hold if one of the as-
sumptions are violated.

As mentioned previously, any minimizer for the
least-squares risk is also almost surely equal to E[c|x],
and, thus, the least-squares loss is also Fisher con-
sistent with respect to the SPO loss. Thus, a priori, one
cannot claim LS or SPO+ to be better than the other.
Indeed, we have derived a natural surrogate loss
function, SPO+, directly from the SPO loss that main-
tains a fundamental consistency property of the de
facto standard LS loss function. In fact, it is easy to
see that under Assumption 1, any convex combination
of the LS and SPO+ loss functions is Fisher consistent.
Because this consistency property applies under full
distributional information and no model misspecifi-
cation (no restriction on hypothesis class), we show in
Section 6 that SPO+ indeed outperforms LS in several
experimental settings, due to its ability to tailor the
prediction to the optimization task.

4.1. Key Results to Prove Fisher Consistency

Throughout this section, we consider a nonpara-
metric setup, where the dependence on the features x
is dropped without loss of generality. To see this, first
observe that the SPO risk satisfies E, o) .p[fspo(f(x), c)] =
E [E.[tspo(f(x),c) | x]] and likewise for the SPO+ risk.
Because there is no constraint on f(:) (the hypothe-
sis class consists of all prediction models), solving
Problems (11) and (12) is equivalent to optimizing
each function value f(x) individually for all x € X.
Therefore, for the remainder of the section, unless
otherwise noted, we drop the dependence on x.
Thus, we now assume that the distribution D is only

over ¢, and the SPO and SPO+ risk is defined as
Rspo(€) := Ec[€spo (¢, ¢)] and Rspo+(€) := Ec[fspo+ (¢, 0)],
respectively. For convenience, let us define ¢ := E[c]
(note that we are implicitly assuming that ¢ is finite).

Next, we fully characterize the minimizers of the
true SPOrisk Problem (11) in this setting. Proposition 5
demonstrates that for any minimizer ¢* of Rgpo(-), all
of its corresponding solutions with respect to the
nominal problem, W¥(c*), are also optimal solutions
for P(C). In other words, minimizing the true SPO risk
also optimizes for the expected cost in the nominal
problem (because the objective function is linear).
Proposition 5 also demonstrates that the converse is
true—namely, any cost-vector prediction with a unique
optimal solution that also optimizes for the expected
cost is also a minimizer of the true SPO risk.

Proposition 5 (SPO Minimizer). If a cost vector ¢* is a
minimizer of Rspo(-), then W*(c*) € W*(¢). Conversely,
if ¢* is a cost vector such that W*(c*) is a singleton and
W*(c*) € W*(¢), then ¢* is a minimizer of Rspo(-).

Example 2 in Online Appendix A demonstrates
that, in order to ensure that ¢* isa minimizer of Rspo(+),
itis not sufficient to allow c* to be any cost vector such
that W*(c*) € W*(©). In fact, it may not be sufficient
for ¢* to be ¢. This follows from the unambiguity of
the SPO loss function, which chooses a worst-case
optimal solution in the event that the prediction al-
lows for more than one optimal solution.

Next, we provide Proposition 6, which shows suf-
ficient conditions for ¢ to be the minimizer of the
SPO+ risk and, therefore, the minimizer of the SPO
risk, implying Fisher consistency. We also provide
conditions for when ¢ is the unique minimizer of the
SPO+ risk, which alleviates any concern that there
may be alternate minimizers of the SPO+ risk that are
not Fisher consistent.

Proposition 6 (SPO+ Minimizer). Suppose that the distri-
bution D of c is continuous and centrally symmetric about its
mean € (i.e., ¢ is equal in distribution to 2¢ — c).

a. Then, ¢ minimizes Rspo+(-).

b. In addition, suppose the interior of S is nonempty.
Then, ¢ is the unique minimizer of Rspos+(+).

The two important assumptions in Proposition 6
are that D is centrally symmetric about its mean and
continuous, both of which are not individually suf-
ficient to ensure consistency on their own. Example 3
in Online Appendix A demonstrates a situation where ¢
is continuous on R? and the minimizer of SPO+ is
unique, but it does not minimize the SPO risk. Ex-
ample 4 in Online Appendix A demonstrates a situ-
ation where the distribution of cis symmetric about its
mean, but there exists a minimizer of the SPO+ risk
that does not minimize the SPO risk. Example 5 in
Online Appendix A demonstrates a case where the
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minimizer of SPO+ is not unique if S is empty, while c
is continuous and centrally symmetric about its mean.

5. Computational Approaches

In this section, we consider computational ap-
proaches for solving the SPO+ ERM Problem (10).
Herein, we focus on the case of linear predictors,
H ={f : f(x) = Bx for some B € R*?}, with regulari-
zation possibly incorporated into the objective func-
tion, using the regularizer Q(-) : R®? — R. (This is
equivalent to working with the hypothesis class H =
{f : f(x) = Bx for some B € R, ()(B) < p} for some
p > 0.) For example, we may use the ridge penalty
Q(B) = %||B||%, where ||B||r denotes the Frobenius norm
of B—that is, the entry-wise {, norm. Other possi-
bilities include an entry-wise ¢; penalty or the nuclear
norm penalty—that is, an ¢; penalty on the singular
values of B. In any case, these presumptions lead to
the following version of (10):

1 n
BI;‘];QI})}’” " ; fspQJr(Bxl, Cl) + /\Q(B), (13)
where A >0 is a regularization parameter. Because
the SPO loss is convex, as stated in Proposition 3, then
the above problem is a convex optimization problem
as long as Q(-) is a convex function.

We mainly consider two approaches for solving
Problem (13): (i) reformulations based on modeling
tspo+(, ) using duality, and (ii) stochastic gradient-
based methods that instead rely only on an optimi-
zation oracle for Problem (2). The reformulation-
based approach (i) requires an explicit description
of the feasible region S—for example, if S is a poly-
tope, then this approach necessitates working with
an explicit list of inequality constraints describing S.
On the other hand, the stochastic gradient-based
approach (ii) does not require an explicit descrip-
tion of S and, instead, only relies on iteratively calling
the optimization oracle w(-) in order to compute sto-
chastic subgradients of the SPO+ loss (see Proposi-
tion 3). Therefore, it is much more straightforward
to apply the stochastic gradient-descent approach to
problems with complicated constraints, such as non-
linear problems, as well as combinatorial and mixed-
integer problems, as mentioned in Remark 2. Although
approach (i) is more restrictive in its requirements, it
does offer a few advantages. Depending on the struc-
ture of S—for example, if S is a polytope with known
linear inequality constraints—then approach (i) may
be able to utilize off-the-shelf conic optimization
solvers, such as CPLEX and Gurobi, that are capable
of producing high-accuracy solutions for small to
medium-sized problem instances (see Section 5.1).
However, for large-scale instances, where 4, p, and n
might be very large, conic solvers based on interior
point methods do not scale as well. Stochastic-gradient

methods, on the other hand, scale much better to in-
stances where n may be extremely large, and possibly
also to instances where d and p are large, but the
optimization oracle w*(-) is efficiently computable
due to the special structure of S. The details of the
approach (ii) can be found in Online Appendix C.

5.1. Reformulation Approach

We now discuss the reformulation approach (i), which
aims torecast Problem (13) in a form that is amenable to
popular optimization solvers. To describe this ap-
proach, we presume that S is a polytope described by
known linear inequalities—that is, S = {w: Aw > b}
for some given problem data A € R™?and b € R™. The
same approach may also be applied to particular
classes of nonlinear feasible regions, although the
complexity of the resulting reformulated problem
will be different. The key idea is that when S is a
polytope, then £spo. (-, ¢) is a (piecewise linear) convex
function of the prediction ¢, and, therefore, the epi-
graph of {spo.(,¢) can be tractably modeled with
linear constraints by employing linear-programming
duality. Proposition 7 formalizes this approach. (Re-
call that, forw € R?and x € R?, wxT denotesd x p outer
product matrix where (wa)ij = wix;.)

Proposition 7 (Reformulation of ERM for SPO+). Suppose
S ={w : Aw > b} is a polytope. Then, the reqularized SPO+
ERM Problem (13) is equivalent to the following optimiza-
tion problem:
1 < * %
min EZ[_I’T’”" +2(w*(c)x]) ® B—2z"(ci)| + AQ(B)
P i=1
st. ATp; = 2Bx; — ¢ for allie{1,...,n}
pieR"p; >0 for allie{l,...,n}
B € R™>. (14)

Thus, as we can see, Problem (14) is almost a linear
optimization problem—the only part that may be
nonlinear is the regularizer )(-). For several natural
choices of Q)(:), Problem (7) may be cast as a conic
optimization problem that can be solved efficiently
with interior point methods. For instance, for the
LASSO penalty, where Q(B) =||B||;, then (14) is
equivalent to a linear program. If Q)(-) is the ridge
penalty, ((B) =%||B||%, then (14) is equivalent to a
quadratic program. If €)(-) is the nuclear norm pen-
alty, Q(B) = ||B|l+, then (14) is equivalent to a semi-
definite program.

6. Computational Experiments

In this section, we present computational results of
synthetic data experiments, wherein we empirically
examine the quality of the SPO+ loss function for
training prediction models, using the shortest-path
problem and portfolio optimization as our exemplary
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problem classes. Following Section 5, we focus on
linear prediction models, possibly with either ridge or
entrywise {1 regularization. We compare the per-
formance of four different methods:

1. The previously described SPO+ method, (13).

2. Theleast-squares method thatreplaces the SPO+
loss function in (13) with €(¢,c) = %H& — |3 and also
uses regularization whenever SPO+ does.

3. An absolute loss function (i.e., {1) approach
that replaces the SPO+ loss function in (13) with
£(¢,c) =|[c —c|l; and also uses regularization when-
ever SPO+ does.

4. A random-forests approach that independently
trains d different random-forest models for each com-
ponent of the cost vector, using standard parameter
settings of [p/3] random features at each split and
100 trees.

Note that methods (2), (3), and (4) above do not
utilize the structure of S in any way and, hence, may
be viewed as independent learning algorithms with
respect to each of the components of the cost vector.
For methods (1), (2), and (3) above, we include an
intercept column in B that is not regularized. In order
to ultimately measure and compare the performance
of the four different methods, we compute a “nor-
malized” version of the SPO loss of each of the four
previously trained models on an independent test
set of size 10,000. Specifically, if (X1,¢1), (%2, C2), ...,
(¥ Enpee) denotes the test set, then we define the
normalized test SPO loss of a previously trained

model f by NormSPOTest(f) := W Note
that we naturally normalize by the total optimal cost
of the test set given full information, which with high
probability will be a positive number for the examples

studied herein.

6.1. Shortest-Path Problem

We consider a shortest-path problem on a 5 x5 grid
network, where the goal is to go from the northwest
corner to the southeast corner, and the edges only go
south or east. In this case, the feasible region S can
be modeled by using network flow constraints, as in
Example 1. We utilize the reformulation approach
given by Proposition 7 to solve the SPO+ training
problem (13). Specifically, we use the JuMP package
inJulia (Dunning et al. 2017) with the Gurobi solver to
implement Problem (14). The optimization problems
required in methods (2) and (3) are also solved directly by
using Gurobi. In some cases, we use {; regularization
for methods (1), (2), and (3), in which case, in order to
tune the regularization parameter A, we try 10 dif-
ferent values of A evenly spaced on the logarithmic
scale between 107 and 100. Furthermore, we use a
validation-set approach, where we train the 10 dif-
ferent models on a training set of size n and then use

an independent validation set of size /4 to pick the
model that performs best with respect to the SPO loss.

6.1.1. Synthetic Data-Generation Process. Let us now
describe the process used for generating the synthetic
experimental data instances for both problem classes.
Note that the dimension of the cost vector d =40
corresponds to the total number of edges in the 5x 5
grid network and that p is a given number of features.
First, we generate a random matrix B* € R®? that
encodes the parameters of the true model, whereby
each entry of B* is a Bernoulli random variable that is
equal to 1 with probability 0.5. We generate the
training data (x1, ¢1), (x2,c2), - . ., (xn, ¢,) and the testing
data (X1,&1),(%2,C2), ..., (X, €y) according to the fol-
lowing generative model:

1. First, the feature vector x; € R” is generated
from a multivariate Gaussian distribution with in-
dependent and identically distributed standard nor-
mal entries—that is, x; ~ N(0, I).

2. Then, the cost vector ¢; is generated according
to ¢ = [(# (B*x,-)j +3)48 +1]- ¢ for j=1,...,d, and
where c;; denotes the jth component of ¢; and (B*.Xj)j
denotes the /" component of B*x;. Here, deg is a fixed
positive integer parameter and e’i is a multiplicative
noise term that is generated independently at random
from the uniform distribution on [1-¢,1+ €] for
some parameter £ > 0.

Note that the model for generating the cost vec-
tors employs a polynomial kernel function (see, e.g.,
Hofmann et al. 2008), whereby the regression func-
tion for the cost vector given the features—that is,
E[clx]—is a polynomial function of x, and the pa-
rameter deg dictates the degree of the polynomial.
Importantly, we still employ a linear hypothesis class
for methods (1)-(3) above; hence, the parameter deg
controls the amount of model misspecification, and, as
deg increases, we expect the performance of the SPO+
approach to improve relative to methods (2) and (3).
When deg = 1, the expected value of cis indeed linear
in x. Furthermore, for large values of deg, the least-
squares method will be sensitive to outliers in the
cost-vector-generation process, which is our main
motivation for also comparing against the absolute
loss approach that is less sensitive to outliers. On
the other hand, the random-forests method is a
nonparametric learning algorithm and will accu-
rately learn the regression function for any value of
deg. However, the practical performance of random
forests depends heavily on the sample size 1, and, for
relatively small values of n, random forests may
perform poorly.

6.1.2. Results. In the following set of experiments on
the shortest-path problem we described, we fix the
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number of features at p =5 throughout and, as pre-
viously mentioned, use a 5 X 5 grid network, which
implies that 4 = 40. Hence, in total, there are pd = 200
parameters to estimate. We vary the training-set
size n € {100, 1,000, 5,000}, we vary the parameter
deg € {1,2,4,6,8}, and we vary the noise half-width
parameter & € {0,0.5}. For every value of n, deg, and ¢,
we run 50 simulations, each of which has a different
B*, and, therefore different ground-truth model. For
the cases where n € {100, 1,000}, we employ ¢; reg-
ularization for methods (1)-(3), as previously de-
scribed. When n = 5,000, we do not use any regula-
rization (because it did not appear to provide any
value). As mentioned previously, for each simulation,
we evaluate the performance of the trained models by
computing the normalized SPO loss on a test set of
10,000 samples. The computation time for solving one
ERM problem using the SPO+ loss is approximately
0.5-1.0 seconds, 5-30 seconds, and 1-15 minutes
for n € {100, 1,000, 5,000}, respectively. The other
methods can be solved in a few seconds by using well-
developed packages. Figure 4 summarizes our find-
ings, and note that the box plot for each configuration
of the parameters is across the 50 independent trials.

From Figure 4, we can see that for small values of
the deg parameter—that is, deg € {1, 2}—the absolute-
loss, least-squares, and SPO+ methods perform
comparably, with the least-squares method slightly
dominating in the case of noise with & =0.5. The
slight dominance of least squares (and sometimes
the absolute loss as well) in these cases might be
explained by some inherent robustness properties of
the least-squares loss. It is also plausible that, because
the SPO+ loss function is more intricate than the
“simple” least-squares loss function, it may overfit
in situations with noise and a small training-set size.
On the other hand, as the parameter deg grows and
the degree of model misspecification increases, then
the SPO+ approach generally begins to perform best
across all instances, except when n = 5,000, in which
case random forests performs comparably to SPO+.
This behavior suggests that the SPO+ loss is better
than the competitors at leveraging additional data
and stronger nonlinear signals.

It is interesting to point out that random forests
generally does not perform well, except when n =
5,000, in which case it performs comparably to SPO+,
which uses a much simpler linear hypothesis class.

Figure 4. Normalized Test Set SPO Loss for the SPO+, Least Squares, Absolute Loss, and Random-Forests Methods on

Shortest-Path Problem Instances
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Figure 5. Normalized Test Set SPO Loss for the SPO+, Least-Squares, Absolute-Loss, and Random-Forests Methods on

Portfolio-Optimization Instances
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Indeed, when n € {100, 1,000}, random forests almost
always performs worst, except for when n =1,000 and
deg € {6,8}, in which case random forests outper-
forms least squares, performs comparably to the
absolute-loss method, and is strongly dominated by
SPO+. Indeed, the cases where n € {1,000, 5,000} and
deg € {6,8} suggest that least squares is prone to
outliers, whereas the absolute loss is not, random
forests is slow to converge due to its nonparametric
nature, and SPO+ is best able to adapt to the large
degree of model misspecification, even with a modest
amount of data (i.e., n = 1,000).

6.2. Portfolio Optimization

Here, we consider a simple portfolio-selection problem
based on the classical Markowitz model (Markowitz
1952). As discussed in Section 1, we presume that
there are auxiliary features that may be used to
predict the returns of d different assets, but that the
covariance matrix of the asset returns does not depend
on the auxiliary features. Therefore, we consider a
model with a constraint that bounds the overall
variance of the portfolio. Specifically, if £ € R™? de-
notes the (positive semidefinite) covariance matrix
of the asset returns and y > 0 is the desired bound
on the overall variance (risk level) of the portfolio,
then the feasible region S in (2) is given by S :=
{w:w'2w < y,e'w <1,w > 0}. Here, e denotes the
vector of all ones and because we only require that
e’w < 1, the cost vector cin (2) represents the negative
of the incremental returns of the assets above the risk-
free rate. In other words, it holds that ¢ = —#, where
F=r—1Rge, 1 represents the vector of asset returns,
and rgr is the risk-free rate. We use the SGD approach

16
Polynomial Degree

(Algorithm 1 of Online Appendix C) for training the
SPO+ model of method (1). Training the SPO+ model
takes three to five minutes for each ERM instance,
whereas the other methods typically take less than a
second. For brevity, we defer the details of the ex-
perimental setup to Online Appendix D.

Figure 5 displays our results for this experiment.
Generally, we observe similar patterns as in the
shortest-path experiment, although comparatively
larger values of deg are needed to demonstrate the
relative superiority of SPO+. Insummary, across all of
our experiments, our results indicate that as long as
there is some degree of model misspecification, then
SPO+ tends to offer significant value over competing
approaches, and this value is further strengthened in
cases where more data are available. The SPO+ ap-
proach is either always close to the best approach or
dominating all other approaches, making it a fairly
suitable choice across all parameter regimes.

7. Conclusion
In this paper, we provide a new framework for de-
veloping prediction models under the predict-then-
optimize paradigm. Our SPO framework relies on
new types of loss functions that explicitly incorporate
the problem structure of the optimization problem of
interest. Our framework applies for any problem with a
linear objective, even when there are integer constraints.
Because the SPO loss function is nonconvex, we
also derived the convex SPO+ loss function using
several logical steps based on duality theory. More-
over, we prove that the SPO+ loss is consistent with
respect to the SPO loss, which is a fundamental
property of any loss function. In fact, our results also
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directly imply that the least-squares loss function is
also consistent with respect to the SPO loss. Thus,
least squares performs well when the ground truth
is near linear, although, at least empirically, SPO+
strongly outperforms all approaches when there is
model misspecification. In subsequent work, we have
shown how to train decision trees with SPO loss
(Elmachtoub et al. 2020) and developed generaliza-
tion bounds of the SPO loss function (El Balghiti et al.
2019). Naturally, there are many important directions
to consider for future work, including more empirical
testing and case studies, handling unknown param-
eters in the constraints, and dealing with nonlin-
ear objectives.
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