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Abstract— This work considers active deanonymization of
bipartite networks. The scenario arises naturally in evaluating
privacy in various applications such as social networks, mobil-
ity networks, and medical databases. For instance, in active
deanonymization of social networks, an anonymous victim is
targeted by an attacker (e.g. the victim visits the attacker’s
website), and the attacker queries her group memberships (e.g.
by querying the browser history) to deanonymize her. In this
work, the fundamental limits of privacy, in terms of the minimum
number of queries necessary for deanonymization, is investigated.
A stochastic model is considered, where 1) the bipartite network
of group memberships is generated randomly; 2) the attacker
has partial prior knowledge of the group memberships; and
3) it receives noisy responses to its real-time queries. The
bipartite network is generated based on linear and sublinear
preferential attachment, and the stochastic block model. The
victim’s identity is chosen randomly based on a distribution
modeling the users’ risk of being the victim (e.g. probability
of visiting the website). An attack algorithm is proposed which
builds upon techniques from communication with feedback, and
its performance, in terms of expected number of queries, is ana-
lyzed. Simulation results are provided to verify the theoretical
derivations.

Index Terms— Privacy, social network, bipartite graph,
information thresholds, active attack, deanonymization.

I. INTRODUCTION

AS TRACKING technologies — both online and in the
real-world — become more sophisticated and perva-

sive, there is a critical need to understand and quantify the
resulting privacy risk. For instance, on the internet, users
reasonably expect their online identities and web browsing
activities to remain private. Unfortunately, this is far from
the case in practice; in reality, users are constantly tracked
on the internet. Often this is for benign, if somewhat dis-
concerting, reasons — for instance, websites track users to
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serve them with targeted digital advertisements [1], [2]. More
disturbingly, web tracking can be used to stifle individuals’
free speech rights, or target vulnerable minority groups [3].
Furthermore, in wireless applications, the location-based ser-
vices offered by mobile devices, such as smart phones and
autonomous vehicles, can cause significant privacy threats to
users, since the time series of locations can be statistically
matched to prior user behavior and lead to identification and
tracking [4]–[8]. As a result, there is an urgent need to
understand and quantify users’ privacy risk, that is, what is the
likelihood that users can be uniquely identified based on their
fingerprints? In this work, we study the fundamental limits
of privacy in bipartite networks under active attacks. These
networks arise naturally in modeling social network group
memberships [9]–[11], medical databases [12], and wireless
mobility data [5]–[8], among others.

The browser social network deanonymization attack devel-
oped by Wondracek et al. [9] is a good representative of
practical active bipartite network deanonymization (ABND)
attacks in the literature, where the attacker runs a malicious
website and seeks to deanonymize users who visit the website
(see Figure 1). To this end, the attacker first uses a web
scraper to scrape the group memberships of users. This serves
as the attacker’s scanned bipartite graph, Gs, capturing the
social network group memberships. Note that the scanned
graph might be different from the ground-truth because of
users privacy settings that act as a source of noise. When
an unknown user (the victim) visits the attacker’s website,
the attacker queries social network group memberships to
find the victim’s identity. This is done by using browser
history sniffing [13]–[15] to ask questions of the form “is
the webpage of social network group ‘rj’ in the victim’s
browser history?” If yes, the attacker assumes that the victim
is a member of the social network group rj , and if no
then the attacker assumes the victim is not a member of rj .
Of course, a user might be a member of a group they have
not visited, or conversely, might not be a member of a group
they have visited; consequently, the attacker’s measurement is
noisy. The attacker repeats this query for all social network
groups in a pre-determined set to obtain the unknown victim’s
partial fingerprint. By matching the partial fingerprint of query
responses to the scanned fingerprints in the scanned graph the
victim is deanonymized. In [9], this simple deanonymization
strategy is evaluated by using it to find the identities of the
users in the Xing social network. It is shown that over 42% of
the users who are members of at least one group on Xing (more
than 5.7 million users) can be deanonymized successfully
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Fig. 1. (Left) An example of a group membership bipartite graph. (Right) An
anonymous user (victim) is to be deanonymized based on partial fingerprints.

using the algorithm. Although effective, Wondracek et al.’s
attack does not answer fundamental questions about the
optimal number and type of group memberships to query,
and the order in which to issue queries. Other fingerprinting
attacks proposed in literature [16]–[20] have also adopted
similar ad-hoc approaches without theoretical guarantees or
analyses.

A user’s fingerprint is the set of group memberships that
reflect the user’s activities and habits, e.g. websites the user
has visited and social network groups that a user is a member
of [21], [22], characteristics of the user’s web browser (e.g.
font size) [23], and physical device features [24]. Finger-
printing based deanonymization attacks build on the empirical
observation that, for a large enough set of group memberships,
a user’s fingerprints are unique. The challenge, from an
attacker’s standpoint, is that the victim’s fingerprints may not
be accurately or easily available; i.e., fingerprints may be noisy
and the attacker may have to actively query the victim’s group
memberships, one group at a time, to measure their fingerprint.
However, an attacker may only be able to issue a limited
number of queries to the victim’s device. Our objective is
to provide a rigorous mathematical formulation along with
theoretical privacy guarantees for the ABND scenario.

In [25], we proposed a mathematical formulation for the
ABND problem and introduced a typicality-based strategy
by making analogies to the problem of channel coding in
information theory, and quantified the amount of informa-
tion the attacker obtains from each query. We showed that
under the assumption that users are equally likely to visit
the attacker’s website, the total number of queries required
for deanonymization grows logarithmically in the number of
users. Furthermore, the coefficient of the logarithm is inversely
proportional to the mutual information between the random
variables corresponding to the scanned graph elements and
query responses. In [26], we considered a general distribution,
as opposed to a uniform one, on the victim’s index among
the social network users. This is based on the intuition
that more active users would be more likely to visit an
attacker’s website, resulting in a non-uniform distribution on
the victim index. We used techniques from communication
over channels with feedback with non-uniform message sets,
to propose attack strategies and derive theoretical performance
guarantees.

In [25], [26], we considered random bipartite network
models in which the edges are independent and identically
distributed. However, many bipartite networks of interest, such

as social networks [27], [28], networks in cell biology [29],
mobility networks [30], and collaboration networks [31], [32]
resemble graphs which are generated based on a growing
model that grows in accordance to the preferential attach-
ment (PA) rule, first proposed by Simon [33] and rediscovered
by Barbási and Albert [34]. In this model, edges are added
to the graph iteratively, where at each step, a set of edges
are added to the graph randomly such that vertices which
have a higher degree are more likely to attract more new
connections. In addition to the PA model, another random
bipartite graph generation model of interest is the stochastic
block (SB) model, where groups are divided into commu-
nities, and community memberships of groups affects their
likelihood of attracting new users [35], [36]. In this work,
we propose a general formulation for the ABND problem,
where the bipartite graph random generation model encom-
passes the PA and SB models, and the scan and query
noise models capture the users’ different privacy settings and
device specifications. We further propose several information-
threshold-based deanonymization strategies which build upon
the channel coding and hypothesis testing methods studied
in [37], [38] to devise deanonymization attacks, and analyze
their performance in terms of expected number of queries
for successful deanonymization. Our main contributions are
summarized below:

• We build upon the ideas in [25], [26] to develop a
general mathematical formulation of the ABND problem
which encompasses the network generation models such
as PA and SB models, and allows for scan and query
noises with general distributions. These distributions cap-
ture the users’ various privacy preferences and device
specifications.

• We study the degree distribution and statistical properties
of the graph under the proposed generation model. We
prove that under certain sparsity conditions on the graph
edges — that the number of edges grows linearly in
the number of users — the correlation among the user
fingerprints is ‘weak’, so that the fingerprint vector’s dis-
tribution is well-approximated by a product distribution.
These derivations may be of independent interest in the
study of bipartite networks.

• We propose information-threshold-based attack strate-
gies and derive theoretical guarantees for theirs success.
Roughly speaking, in the proposed strategies, the attacker
queries the selected victim’s group memberships sequen-
tially and calculates the amount of information obtained,
i.e. the amount of uncertainty regarding each user index
based on previous query responses. The attack ends when
the uncertainty is lower than a given threshold for one
of the user indices. The strategy reduces to the one
in [26] if the graph edges are assumed to be independent
and equally probable, which was proved to be optimal
in terms of expected number of queries necessary for
successful deanonymization for asymptotically large net-
works.

• We simulate the performance of the proposed strategies
both for synthesized as well as real-world networks, and
compare the results with our analytical derivations.
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The rest of the paper is organized as follows: Section II
describes the notation. In Section III, we provide the problem
formulation. In Section IV, we study the degree distribution
and other statistical properties of the graph. In Section V,
we propose the attack strategy and derive theoretical guar-
antees for its success. In Section VI, we provide simula-
tion results to verify the theoretical derivations. Section VII,
concludes the paper.

II. NOTATION

We represent random variables by capital letters such as
X, U and their realizations by small letters such as x, u.
Sets are denoted by calligraphic letters such as X ,U . The
set of natural numbers, and the real numbers are represented
by N, and R respectively. The random variable E is the
indicator function of the event E . The set of numbers {n, n +
1, · · · , m}, n, m ∈ N is represented by [n, m]. Furthermore,
for the interval [1, m], we sometimes use the shorthand nota-
tion [m] for brevity. For a given n ∈ N, the n-length vector
(x1, x2, . . . , xn) is written as xn.

III. PROBLEM FORMULATION

In this section, we describe our mathematical formulation
of the ABND scenario, which generalizes the formulation
provided in [25], [26], and encompasses the statistical models
for bipartite networks proposed in [39]–[41]. To facilitate
explanation, and provide justifications for the model assump-
tions, we describe the model by focusing on the scenario of
deanonymizing social network users using the bipartite net-
work of their group memberships. An ABND attack unfolds in
two phases, a passive phase, and an active phase [9], [11], [42].
In the passive phase, the attacker acquires a noisy observation
of the bipartite network of group memberships by scanning the
whole social network. In the active phase, the attacker targets a
specific victim (e.g. a user visiting the attacker’s website), and
uses browser history sniffing techniques to query the victim’s
group memberships. The attacker constructs a fingerprint for
the victim using the (noisy) query responses, and identifies
the victim by comparing this fingerprint with the noisy scan
of the bipartite graph acquired in the passive phase of the
attack. As shown in Figure 2, the model consists of three
components which are described in detail in the following
sections: i) the ground-truth G0 representing the ‘true’ group
memberships of users in the social network (Section III-A),
ii) the scanned graph Gs which represents the attacker’s prior
knowledge of the ground-truth (Section III-B), and iii) the
query responses, represented by Gq , which are acquired by
the attacker by querying the victim in the active phase of the
attack (Section III-C). The objective is to design an attack
strategy which determines the sequence of queries made by
the attacker to deanonymize the victim, along with theoretical
guarantees for its success (Section III-D).

A. The Ground-Truth

The collective set of group memberships in the social
network are called the ground-truth. The ground-truth is
represented by a bipartite graph.

Fig. 2. Components of the ABND problem: i) the ground-truth characterized
by the bipartite graph G0 and generated based on PG0 , ii) the scanned graph
Gs generated based on PGs|G0 , and iii) the query responses Gq generated
based on PGq|G0 . The black edges represent ‘true’ group memberships,
whereas green and dashed-red edges show additions and omissions, respec-
tively, which may manifest due to noise in scanning the social network in
passive phase of the attack, and noisy query responses in the active phase.

Definition 1 (Bipartite Graph): A bipartite graph G =
(V1,V2, E), is a graph with vertex set V1

⋃
V2 and edge set

E ⊆ {(vi, vj)|vi ∈ V1, vj ∈ V2}, where V1 ∩ V2 = φ.
We consider a social network with user set U !

{u1, u2, · · · , um}, m ∈ N, and group set R ! {r1,
r2, · · · , rn}, n ∈ N. The ground-truth is characterized by a
bipartite graph G0 = (U ,R, E), where (U ,R) partitions the
vertex set, and the edge set E consists of all pairs (uk, rj), k ∈
[m], j ∈ [n] for which user uk is a member of the group rj .

Definition 2 (Group Size): Let the set of users which are
members of the jth group rj , j ∈ [n] be denoted by Uj !
{uk1 , uk2 , · · · , ukDj

}, k1, k2, · · · , kDj ∈ [m]. Then, Dj !
|Uj | is called the size of group rj .

Example 1: In the Facebook social network, U is the set of
users and R includes the pages/ events/ groups/ applications
on Facebook. Here, the groups under consideration are those
whose member lists are publicly available.

Each user is assigned a fingerprint based on its group
memberships. The fingerprint is a binary vector of indicator
functions, indicating the membership of the user in each par-
ticular group. Alternatively, the user’s fingerprint is the vector
of indicator functions corresponding to the edges between the
user and each of the groups.

Definition 3 (Fingerprint): Consider the ground-truth
bipartite graph G0 = (U ,R, E):

• For a user uk, k ∈ [m], the set Rk ! {rj |(uk, rj) ∈
E}, k ∈ [m] is called the set of groups associated with
uk.

• The fingerprint of user uk, k ∈ [m] is the vector
(Rk,j)j∈[n] ! (Rk,1, Rk,2, · · · , Rk,n), where

Rk,j !
{

1 if rj ∈ Rk

0 otherwise
, k ∈ [m], j ∈ [n].

• The vector Rk,I ! (Rk,j)j∈I is called a partial finger-
print of uk, k ∈ [m], where I ⊆ [n].

We consider a stochastic model which is a generalization
of those considered in prior works on active social network
deanonymization [11], [25], [26], and includes as a special
case several statistical models such as SB model, and PA
model which have been used for bipartite networks such as
social network group memberships, collaboration networks,
authorship networks, and location networks [39]–[41].
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The ground-truth G0 is generated iteratively based on a
‘growing network’ model as follows. Fix µ ∈ N, and define
∆ ! µn, where n is the number of social network groups.
The iterative process is initiated by considering a bipartite
graph (U ,R,φ), which has no edges connecting its two sets
of vertices. The ground-truth graph is generated in ∆ iterative
steps, where at each step a single edge is added to the graph,
so that |E| = ∆ after the last iteration. As a result, the
average group size is equal to ∆

n = µ. For t ∈ [∆], define
G0(t) ! (U ,R, E(t)) as the bipartite graph at step t. The group
membership sets at step t ∈ [∆] are denoted by Uj(t), j ∈ [n],
and the group sizes are denoted by Dt,j ! |Uj(t)|. Building
upon the idea of PA graph generation models — where the
likelihood that a given vertex connects to a new vertex is
linearly related with the degree of that vertex — we assume
that, at each step, groups attract new members in accordance
with their popularity at that step. To elaborate, we assume
that each group rj , j ∈ [n] is assigned a popularity value
τj(t) which captures its popularity at time t. The value of
τj(t), which may depend on the size of group rj among other
factors, affects the probability of rj attracting new members
as described in the sequel. In this work, we restrict to the
case where the value of τj(t), j ∈ [n], t ∈ [∆] depends only
on the group size Dt,j and an initial value τj(0). The vector
τ (t) = (τ1(t), τ2(t), · · · , τn(t)) represents the vector of group
popularity values at time t.

Initiation: Each group rj , j ∈ [n] is assigned an initial
popularity value τj(0) > 0. The ground-truth graph is initiated
as G0(0) ! (U ,R,φ). So, the group membership sets are
Uj(0) = φ, j ∈ [n] and D0,j = 0, j ∈ [n].

Step t: At each step t ∈ [∆], a group rJt and a user
uKt are chosen as described next, and the corresponding
edge (uKt , rJt) is added to the bipartite graph, i.e. E(t) =
E(t − 1) ∪ {(uKt , rJt)}. First, a group rJt is chosen among
the set of all groups R according to the probability distribution
P(t) = (P1(t), P2(t), · · · , Pn(t)) defined below:

Pj(t) ! τj(t − 1)∑n
j′=1 τj′ (t − 1)

,

Next, a user uKt is chosen randomly and uniformly from the
set of users which are not members of rJt , i.e. [m]−UJt(t−
1). The edge (uKt , rJt) is added to the edge set. The group
popularity values are updated as follows:

τj(t) =

{
τj(t − 1) if j &= Jt

f(τj(t − 1), τj(0)) if j = Jt,
j ∈ [n] (1)

where f : R × R → R is a strictly increasing function which
captures the increase in a group’s popularity due to the addition
of a new member and its subsequent effect on the group’s
attractiveness to new members. For tractability, we assume
that f(·, ·) is the same for all groups and fixed over time.
If f(x, y), x, y ∈ R is a linear function of x for any fixed y,
then we recover the PA model in [33], [34]. On the other
hand, if f(x, y) is concave in x for any fixed y, then an
increase in the popularity of an unpopular group increases its
attractiveness to new users more significantly than a similar
increase in the popularity of an already popular group. On the
other hand, a convex f(·, ·) creates the opposite effect.

Remark 1: We have assumed that at each step, there exists
a user which is not already a member of rJt . We will show
that due to the sparsity conditions considered in this work,
the probability that there exists a group for which every
user is its member, vanishes exponentially in the number of
users as the graph becomes larger (Proposition 2). However,
for completeness, we assume that if every user is already a
member of rJt (i.e. if UJt(t − 1) = [m]), then an edge is
not added in this step, the group popularities are updated as
usual, and the generation process advances to the next step.

Remark 2: We study bipartite graphs where the edges are
binary-valued, i.e. a single edge between a given user and a
given group is either present or absent. A natural extension
is to consider edges with non-binary attributes and multi-
graphs. The attribute captures the nature of a users’ group
membership, e.g. group administrator, active member, etc.
Inclusion of such information in the network graph may assist
the attacker in deanonymizing the victim. The information
theoretic derivations provided in the next sections can be
extended in a straightforward manner to graphs with attributed
edges and multigraphs, where attributes are taken from an
arbitrary finite set, and a finite number of edges is allowed
between each two vertices, respectively.

In this work, we focus on the particular choice of f(x, y) =
((x − y) 1

α + 1)α + y,α ∈ (0, 1]. This choice recovers several
models for bipartite networks studied in prior works —-
such as equiprobable edges model, SB model, and linear
and sublinear PA model — by taking different values of α
as described next. The parameter α is an intrinsic network
parameter. In this case, Equation (1) can be rewritten as:

τj(t) =






τj(t − 1) if j &= Jt

Dα
t−1,j + τj(0) if j = Jt, Dt−1,j < n

ταj (t − 1) + τj(0) otherwise,

where j ∈ [n], and t ∈ [∆]. At a high level, α determines
the effect of the groups’ sizes on the membership choices of
new users, where larger α means that the group-size plays
a significant role in attracting new users, with large groups
being more attractive, and at the other end of the spectrum,
if α→ 0, then the group popularities are constant through the
generation process regardless of the group sizes. We focus
on α ≤ 1 which leads to linear or sublinear PA and has
been shown to be a suitable model for various networks of
interest [27]–[32].

Definition 4 (Ground-Truth Parameters): The ground-truth
statistics are parametrized by (n, m,α, ∆, (τj(0))j∈[n]). The
following scenarios are considered in this work:
α-Preferential Attachment (α-PA): This is a generalization

of the PA model, where f(x) = ((x−y) 1
α +1)α+y,α ∈ (0, 1]

and initial popularities are τj(0) = τj′ (0) = 1, j, j′ ∈ [n].
Stochastic Blocks (SB): We take α → 0 and τj(0) ∈ T ,

where T is a finite set. The collection of subsets Cτ = {rj :
τj(0) = τ}, τ ∈ T are called the communities of social
network groups.

Remark 3: As a special case of the SB model, let us take
α → 0 and τj(0) = τj′ (0), j, j′ ∈ [n]. Then, f(x, y) = x
for all x, y ∈ R, and τj(t) = τj′ (t), j, j′ ∈ [n], t ∈ [∆].
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We call this the Independent and Equiprobable Edges (IEE)
scenario. This is analogous to the Erdös-Rényi model for
non-bipartite graphs [43], and was studied in [26]. In this
case, Pj(t) = Pj′(t), j ∈ [n], t ∈ [∆], and the groups are
equally likely to attract new users regardless of their current
number of members.

Remark 4: In the SB scenario, we have Pj(t) =
τ

τ′∈T τ ′|Cτ′ | , rj ∈ Cτ , t ∈ [∆], τ ∈ T . So, the groups
which belong to the same community Cτ , τ ∈ T are
equally likely to attract new users regardless of their cur-
rent number of members. Groups may be classified into
different communities based on the shared interests of their
users, e.g. age group, profession, etc. This model resembles
the stochastic block model for social network friendship
graphs [35], [36].

Remark 5: In the α-PA scenario, if α = 1, we have
f(x, y) = x−y+1, x, y ∈ R and the model becomes the well-
studied (linear) PA model. In this case, with appropriate choice
of initial popularities, the group sizes follow a power-law. This
is in agreement with empirical studies of social network group
memberships (e.g. [27], [28]), where such power-law behavior
has been observed.

Remark 6: In practice, the ground-truth statistics parame-
trized by (n, m, ∆, (τj(0))j∈[n],α) are not available to the
attacker. Rather, the attacker acquires an estimate of these
parameters as in [39] based on prior observations of the
bipartite network.

B. The Scanned Graph

As described in previous sections, the first phase of the
fingerprinting attack is the passive phase, in which the attacker
scans the social network for publicly available information
regarding the users’ group memberships. The attacker’s obser-
vation of the ground-truth, acquired through this scanning
process, is represented by the bipartite graph Gs = (U ,R, Es),
which is a partial and noisy observation of the users’ group
memberships. One reason for the noise in the scanned graph
is that some users may have made a subset of their group
memberships hidden which results in edge omissions in the
scanned graph. We model the resulting noise stochastically
by assuming that the set of edges Es in the scanned graph is
generated randomly, conditioned on the set of edges E0 in
the ground-truth graph. As discussed above, the difference
between E0 and Es is due to the privacy preferences of a
specific user. As a result, we assume that the noise statistics
in scanning a specific user-group edge (uk, rj) is dependent
on the corresponding user preference which is captured by the
parameter γ(k) ∈ Γ, where Γ is a finite set. This is formalized
below.

Definition 5 (Scanned Graph Statistics): Let
P γ(k)

Es|E0
(·|·), γ(k) ∈ Γ, k ∈ [m] be a collection of conditional

probability distributions, where Es and E0 take binary
values, and Γ is a finite set. Let Rk,j ! ((uk, rj) ∈ E0) and
Fk,j ! ((uk, rj) ∈ Es), k ∈ [m], j ∈ [n]. Then,

P (Es|E0) =
∏

k∈[m],j∈[n]

P γ(k)
ES |E0

(Fk,j |Rk,j).

In particular, the following Markov chains are assumed:

Fk,j ↔ Rk,j , k ↔ (Fk′,j′ , Rk′,j′)(k′,j′) $=(k,j),

k ∈ [m], j ∈ [n].
Example 2 (Erasure Model for Gs): Assume that the

attacker scans a social network to acquire the scanned
graph. The attacker observes a subset of the true group
memberships of users [9] since some users choose to keep
their membership in certain groups private. As a result, the
scanned graph Gs consists of a sampled subset of the edges
in the ground-truth G0. For simplicity, let us assume that the
membership of user uk in group rj is publicly available with
probability 1 − sk, k ∈ [m], j ∈ [n], where sk ∈ [0, 1]. Then,

Pr(Es|E0) = (Es ⊂ E0) ×
∏

k∈[m]

s
|R′

k|
k (1 − sk)|Rk|−|R′

k|,

where Rk and R′
k are the groups in which uk, k ∈ [n] is a

member of in G0 and Gs, respectively.
Remark 7: We assume that the attacker does not have

knowledge of the users’ privacy preferences, i.e., it does not
know the value of γ(k), k ∈ [m] in Γ. The attacker only has
access to the statistics P γ

Es|E0
, γ ∈ Γ.

C. Query Responses

In the active phase of the attack, the attacker targets a victim,
and actively queries its group memberships. For instance,
the victim visits a malicious website, and the attacker uses
browser history sniffing techniques to query the victim’s
group memberships. The attacker may query the victim’s
group memberships sequentially by sending a single query
regarding the victim’s membership in a group at each step of
the active attack, receiving a response, and deciding on the
next query [9]. Alternatively, it may query a batch of group
memberships simultaneously [13]–[15]. In this work, we focus
on the first scenario, where the queries are made sequentially,
one after the other. However, the analysis can be extended to
the second scenario, where queries are made in batches, in a
straightforward manner.

The objective is to deanonymize the victim based on their
group membership fingerprint. We model the victim stochas-
tically by assuming that it is chosen randomly from the user
set. In general, the users are not equally likely to be a victim
of an attack, For instance, users are not equally likely to visit
a malicious website, risk-averse users are less likely to be the
victim of a fingerprinting attack compared to risk-taker users.
As a result, we assume that the victim uM is chosen from U
based on an underlying distribution PM .

Remark 8: In this work, following the conventional
approach in privacy and security literature, we investigate a
‘genie-aided’ attacker by assuming access to PM in order
to derive theoretical guarantees for users’ privacy. However,
it should be noted that, in practice, the attacker may only have
an estimate P̂M of PM or it may not have any prior knowledge
of these statistics at all. In such cases, the attack strategies
investigated in the following sections may be extended nat-
urally, and their probability of success can evaluated with
respect to a ‘worst-case’ distribution P̂M .
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Let us assume that the attacker queries the group mem-
berships of the victim uM in the sequence of groups
(rj1 , rj2 , · · · , rj#), j ∈ [n] in % ∈ N queries, and receives
the binary vector of query responses Y1, Y2, · · · , Y$, where
Yi = 1 indicates a positive response and Yi = 0 a negative
response. Generally, query responses are noisy since browser
history sniffing techniques are imperfect and only provide
noisy observations of the victim’s browsing history. That is,
Y $ is a noisy version of the true group membership indicators
(Rj1 , Rj2 , · · · , Rj#). The noise statistics are determined by the
users’ software (e.g. browser [14]) and hardware specifications
(e.g. CPU and memory specifications [13]), and depend on the
type of history sniffing attack. However, these statistics do not
depend on the specific website or group whose membership is
being queried. This dependency is captured by the parameter
θ(M), where θ : [m] → Θ, and Θ is a finite set. The
following definition formalizes the stochastic model for the
query responses.

Definition 6 (Noisy Query Responses): Let % ∈ N and let
P θ

Y |R, θ ∈ Θ be a collection of probability distributions, where
Y and R are binary variables and Θ is a finite set. For the
sequence j1, j2, · · · , j$ ∈ [n], assume that victim’s fingerprint
is (Rj1 , Rj2 , · · · , Rj#) and the received query responses are
Y1, Y2, · · · , Y$. Then,

P (Y $ = y$|(Rji)i∈[$] = r$) =
$∏

i=1

P θ(M)
Y |R (yi|ri),

y$, r$ ∈ {0, 1}$,

where the parameter θ(M) takes values from Θ and its value
depends on the victim’s index M .

Remark 9: In practice, the attacker does not have access
to the statistics P θ(k)

Y |R (yi|ri), k ∈ [m]. Rather, it may query
the victim’s software and hardware specifications to acquire
θ(k), and then estimate the noise statistics based on prior
observations of the querying process with these specifications
and based on the history sniffing technique used by the
attacker. This is in contrast with the noise model in the scanned
graph P γ(k)

Y |R (yi|ri), k ∈ [m], where the attacker has no means
of learning the user’s privacy preferences γ(k).

To summarize, an active bipartite network deanonymization
setup is characterized as follows.

Definition 7 (Active Bipartite Network Deanonymization):
An active bipartite network deanonymization setup
is characterized by parameters (n, m, ∆, Θ, Γ,α,
(τj(0))j∈[n], PM , (P γ(k)

ES |E0
)k∈[m],γ∈Γ, (P θ(k)

Y |R )k∈[m],θ∈Θ),
where n is the number of groups, m the number of users, PM

determines the victim’s (uM ) distribution among the users
U , P θ(k)

Y |R , θ(k) ∈ Θ is the query response noise statistics

for user k ∈ [m], P γ(k)
ES|E0

, γ(k) ∈ Γ is the scanned graph
noise statistics for user k ∈ [m], α is the network growth
parameter, ∆ is the total number of edges, and (τj(0))j∈[n]

are the initial group popularities.

D. Attack Strategy

Given the scanned graph Gs acquired by scanning the
ground-truth G0, the attacker’s objective is to identify the

victim using the minimum number of queries possible, and
with small probability of error. An attack strategy determines
the sequence of queries made by the attacker, and identifies
the victim based on the query responses. It consists of a
sequence of query functions xt(·, ·), t ∈ N and identifica-
tion functions Idt(·, ·), t ∈ N, where at time1 t, the query
function xt(Gs, Y t−1) takes the scanned graph Gs and the
received query responses Y t−1 as input, and outputs the group
rjt = xt(Gs, Y t−1), jt ∈ [n] whose connection with the
victim is to be queried next. Assume that the response Yt

is received. The identification function Idt(Gs, Y t) compares
the received query responses Y t with the users’ fingerprints
in the scanned graph Gs, and either outputs the identity of
the victim, or indicates that the identity cannot be determined
yet, hence the attack continues with the next query. This is
formalized below.

Definition 8 (Attack Strategy): Consider an
ABND scenario parametrized by (n, m, ∆, Θ, Γ,α,
(τj(0))j∈[n], PM , (P γ(k)

ES |E0
)k∈[m],γ∈Γ, (P θ(k)

Y |R )k∈[m],θ∈Θ).
An attack strategy consists of a sequence of query functions
xt : {0, 1}m×n × {0, 1}(t−1) → R, t ∈ N and identification
functions Idt : {0, 1}m×n × {0, 1}t → U ∪ {e}, where
xt(Gs, Y t−1) outputs the group whose edge connection
with the victim is queried at time t, and Idt(Gs, Y t) either
outputs the victim’s identity among the user set U or outputs
‘e’ in which case further queries are made and the attack
continues. Let Q = min{t ∈ N : Idt(Gs, Y t) ∈ U}. Then, the
probability of error Pe and expected number of queries Q
are defined as:

Pe((xt, Idt)t∈N) ! P (IdQ(Gs, Y
Q) &= uM )

Q((xt, Idt)t∈N) ! E(Q),

where the probabilities are with respect to M,G0,Gs and
Yt, t ∈ [Q].

Definition 9 (Minimum Expected Queries): For the
ABND problem characterized by (n, m, ∆, Θ, Γ,α,
(τj(0))j∈[n], PM , (P γ(k)

ES |E0
)k∈[m],γ∈Γ, (P θ(k)

Y |R )k∈[m],θ∈Θ),
and error probability ε > 0, the minimum expected number
of queries is defined as:

Q∗
ε ! inf

(xt,Idt)t∈N
{Q((xt, Idt)t∈N)|Pe((xt, Idt)t∈N) ≤ ε}.

Our objective is to investigate the necessary and sufficient
conditions under which an attacker can deanonymize the
victim reliably (i.e. with vanishing error probability) over
asymptotically large bipartite networks. That is, we want to
investigate the problem when the number of users m grow
asymptotically large. In particular, based on observations of
real-world social networks (e.g. [39], [44]), we investigate the
ABND problem under the following asymptotic regime:

• Number of Groups: The number of groups n grows
linearly in m, i.e. m = βn for a fixed β > 0.

• Noise Parameters: The sets Θ, Γ and P θ
Y |R, P γ

Es|E0
, θ ∈

Θ, γ ∈ Γ are fixed in m. This is justified since P γ
Es|E0

1Note that we have used the variable ‘t’ to refer to two different time
quantities. One is the steps in the ground-truth generation process (t ∈ [∆])
in Section III-A, and the other one is the number of queries sent in the active
phase of the attack (t ∈ N) which is discussed here.
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and P θ
Y |R are determined by the users’ privacy preference

options in the social network, and their software/hardware
specifications, respectively, and do not change as the
number of users increases asymptotically.

• Sparsity: The average number of groups in which any
given user is a member of is constant as the network
grows. That is, ∆ = µn = µ

βm, µ ≥ 1, so that the average
group size µ is constant in n.

• Victim’s Distribution: The users’ likelihood of being the
victim decreases inversely in m, that is PM (uk) = ck

m ,
where

∑
k∈[m] ck = m and ck < λ, k ∈ [m] as n → ∞

for some constant λ > 0.
Remark 10: As mentioned in the prequel, the deanonymiza-

tion scenario considered in this work is closely related
to problems in hypothesis testing and communication over
channels with feedback (e.g. [37], [38]), and some of the
proof techniques presented here build upon those prior
works. An additional application scenario which is related
to this work is the guesswork problem, where the attacker’s
objective is to guess the victim’s fingerprint vector rather
than their identity (e.g., [45]). Exploring the connections
between these two problems is an interesting avenue of future
research.

IV. MEMORY STRUCTURE OF THE GROUND-TRUTH EDGES

The scanned graph and the query responses provide the
attacker with two noisy observations of the victim’s group
membership fingerprint in the ground-truth. The attacker iden-
tifies the victim by reconciling the query responses with
the user fingerprints in the scanned graph and finding a
unique match (e.g. jointly typical pair of fingerprint and query
response vectors). One major obstacle in analyzing the funda-
mental performance limits of attack strategies is the memory
structure in the user’s fingerprint induced due to the generation
model of the ground-truth described in Section III-A. That
is, the generation model induces correlation among the users’
membership in different groups. This prohibits the conven-
tional methods such as type analysis and large deviations
techniques which have been used in deriving theoretical per-
formance limits in similar scenarios in group testing [38]
and communications [37] problems, as well as the analysis
techniques in prior work on ABND [25], [26]. In this section,
we show that under the sparsity assumption on the total num-
ber of edges that ∆ = µn, the memory in the users’ fingerprint
is weak, so that its joint distribution is well-approximated by a
product distribution. The derivations are used in the next sec-
tions, where we propose attack strategies and derive sufficient
conditions for their success. These are also of independent
interest in analyzing degree distributions of vertices in bipartite
networks.

A. Weakly Correlated Group Sizes

Let us recall that the size of group rj , j ∈ [n] at step t ∈ [∆]
of the generation process is defined as Dt,j = |Uj |, j ∈ [n].
As a first step towards investigating the correlation among
users’ memberships in different groups, we study the joint

moments of (D∆,j)j∈[n] and show that they converge to a
finite constant as n → ∞, and ∆ = µn → ∞.

Proposition 1 (Group Size Correlation): Let 0 < α < 1.
For a ground-truth graph generated according to the α-PA
model, the following holds:

E(D∆,j) = µ, j ∈ [n], (2)

E(D2
∆,j) = O(1), j ∈ [n], (3)

E(D∆,iD∆,j) = µ2 + O(
1
n

), i &= j, (4)

E(D∆,1D∆,2 · · ·D∆,ζ) = µζ(1 + ζO(
1
n

)), ζ ∈ [n],

(5)

E(D2
∆,1D∆,2D∆,3 · · ·D∆,ζ) ≤ µζ−1E(D2

1,∆), ζ ∈ [n],
(6)

E(D∆,1D∆,2D∆,3 · · ·D∆,ζ) ≤ µζ , ζ ∈ [n]. (7)
Proof: Please see [46]. "

Proposition 1 can be interpreted as follows: Equation (2)
shows that E(D∆,j), j ∈ [n], the average size of the jth
group after ∆ generation steps, is equal to µ = ∆

n . This
holds due to symmetry in the ground-truth generation process.
Equation (3) shows that the variance of the jth group size
E(D2

∆,j) − E2(D∆,j), j ∈ [n] is bounded from above as the
number of groups is increased asymptotically. Equation (4)
shows that the group sizes have weak pairwise correlation.
That is, they become uncorrelated as the number of groups
is increased asymptotically. This follows from the sparsity
assumption, ∆ = µn, described in Section III. Equations (5)
and (7) generalize Equation (4) and show that the sizes of any
finite subset of groups have weak joint correlation and become
uncorrelated as the number of groups grows asymptotically.
Equation (6) generalizes Equation (5) to some of the higher
joint moments of the group sizes, and is used in the derivations
in the sequel.

B. Almost Memoryless Fingerprints

Next, we prove that under the sparsity condition ∆ = µn,
the fingerprints in the ground-truth are ‘almost’ memoryless.
Let the number of groups in which a user is a member be
denoted by Ci ! |Ri|, i ∈ [m]. The users’ memberships in
different groups are correlated due to the ground-truth genera-
tion model. We are interested in investigating this correlation.
As a first step, we show in the following that each user’s
fingerprint is sparse (i.e. has few ones).

Proposition 2 (Sparsity of the User Fingerprint Vector): Let
α ∈ (0, 1], µ ∈ N, and β > 0. For a ground-truth graph
generated according to the α-PA model with n ∈ N groups,
m = βn users, and ∆ = µn edges, there exists a constant
c > 0 such that:

P (Ci ≥ %) ≤ c2−nDb(
µ
m (1+ψ)|| µ

m ), (8)

where % = 1
βµ(1 + ψ), ψ ∈ (0, m

µ − 1), and Db(p||q) =
p log p

q +(1−p) log 1−p
1−q is the binary Kullback-Leibler diver-

gence. In particular, let ψn > 0, n ∈ N such that ψn = ω(1).
Then,

P (Ci ≥ ψn) → 0, as n → ∞. (9)
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Proof: The proof follows by using an extension of
Hoeffding’s inequality for weakly correlated variables given
in [47], along with (7) which shows that the group sizes are
weakly jointly correlated, i.e. their joint correlation is small.
The complete proof is provided in [46]. "

The next proposition shows that the distribution of the
fingerprint of each user in the ground-truth graph is close to
a memoryless distribution.

Proposition 3 (Memoryless Fingerprints in α-PA): Let α ∈
(0, 1]. For a ground-truth graph generated according to
the α-PA model, consider the partial fingerprint R !
(Ri,jk)k∈[n′], jk ∈ [n], n′ ∈ [n] of user ui, i ∈ [m]. The
following holds:

(1 − n′µ

m
)

n′∏

k=1

PR(sk) ≤ PR(sn′
) ≤ e

µ
β

n′∏

k=1

PR(sk),

sn′
∈ {0, 1}n′

,

where PR(·) = PRi,j (·), i ∈ [m], j ∈ [n]. Furthermore,
assume that n′ > m

µ and
∑n′

i=1 (si = 1) = o(n) for some
constant finite number C > 0. Then, there exists c′ > 0 whose
value only depends on µ and β such that:

c′
n′∏

k=1

PR(sk)(1 + o(1)) ≤ PR(sn′
)

≤
n′∏

k=1

PR(sk)(1 + o(1)),

sn′
∈ {0, 1}n′

,

as n → ∞.
Proof: The proof relies on the fact that due to the

generation process described in Section III, given that the size
of the jth group is Dj = dj , j ∈ [n], dj ∈ [m], the probability
that the user uk, k ∈ [m] is in group rj is dj

m independent
of all other users’ memberships, i.e. P ((uk, rj) ∈ E0|Dj =
dj) = dj

m . The complete proof is provided in [46]. "
In the SB scenario, edge probabilities do not change during

the generation process and the number of groups associated
with each user follows a (truncated) Binomial distribution
with parameters (∆, µ

∆ ). As a result, it is straightforward to
establish the memoryless property of the fingerprints using
standard arguments based on law of large numbers. It should
be noted that there is correlation among group sizes in this
case since for instance

E(D1,∆D2,∆) = E(D1,∆E(D2,∆|D1,∆))

= E(D1,∆)E(D2,∆)(1 − E(D1,∆)
∆

),

where we have used the smoothing property of expectation.
However, the correlation in the user fingerprint vectors is
weak, so that for any binary vector sn ∈ {0, 1}n, we have

(1 − |wH(sn)|
∆

)wH (sn) ≤
∏n

k=1 PR(sk)
P(Ri,jk

)k∈[n](sn′)

≤ (1 +
|wH(sn)|

∆
)wH(sn),

where wH(·) is the Hamming weight. Note that
wH((Ri,jk )k∈[n]) → µ with probability one due
to concentration of measure. So, we conclude that

n
k=1 PR(sk)

P(Ri,jk
)k∈[n]

(sn′ )
≈ 1. The following proposition formalizes

this statement. The proof is straightforward and is omitted
for brevity.

Proposition 4 (Memoryless Fingerprints in SB): For a
ground-truth graph generated according to the SB model,
consider the partial fingerprint R ! (Ri,jk )k∈[n′], jk ∈
[n], n′ ∈ [n] of user ui, i ∈ [m]. The following holds:

PR(sn′
) = o(1), sn′

∈ {0, 1}n : wH(sn′
) > µ(1 + ω(1)),

Furthermore,

PR(sn′
) = (1 + o(

1
n

))
n′∏

k=1

PR(sk),

as n → ∞, where sn′ ∈ {0, 1}n : wH(sn′
) = µ(1 + O(1)).

V. SUFFICIENT CONDITIONS FOR

SUCCESSFUL DEANONYMIZATION

In this section, we derive sufficient conditions on the
network parameters and the expected number of queries
under which the attacker can successfully deanonymize the
victim with vanishing probability of error as m → ∞.
Initially, we make simplifying assumptions on the scanning
and querying noise statistics and develop the tools to study the
more complex formulation in the next steps. We relax these
assumptions in steps and derive general theoretical guarantees
for successful deanonymization.

A. Identical Scanning Noise and Noiseless Query Responses

As a first step, we consider the scenario in which the
scanning noise is identical for all users, i.e. Γ = {1},
and the query responses are received noiselessly, i.e. |Θ| =
1, P 1

Y |E0
(y|s) = (y = s), y, s ∈ {0, 1}.

Let us focus on the α-PA model for a given α ∈ (0, 1].
We generalize the information threshold strategy (ITS), which
was introduced in [26], where we studied a scenario in which
the ground truth is generated according to the IEE model.
It was shown in [26] that the strategy is asymptotically optimal
under IEE model — in terms of expected number of queries
necessary for successful deanonymization with vanishing error.
In the ITS, the attacker queries the group memberships of
the victim starting from the first group r1 and continuing
by increasing the group index (i.e. xt = rt, t ∈ [n]), until
a particular stopping criterion is met. To explain the stopping
criterion, let us define the information value Ik(t), k ∈ [m], t ∈
[n] of user uk and time t as follows:

I0(k) ! log PM (k), k ∈ [m], (10)

It(k) !
t∑

i=1

log
PE0|Es

(yi|fk,i)
PE0(yi)

+ I0(k), k ∈ [m], t ∈ [n],

(11)

where (fk,i)i∈[t] ∈ {0, 1}t is the realization of the
partial fingerprint of user uk in the scanned graph
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(i.e. (Fk,i)i∈[t] = (fk,i)i∈[t]), the vector yt ∈ {0, 1}t is the
realization of the vector of query responses (i.e. Y t = yt),
and

PE0|Es
(y|f) !

PE0(y)P 1
Es|E0

(f |y)
∑

y′∈{0,1} PE0(y′)P 1
Es|E0

(f |y′)
. (12)

The concept of information values have also been used in
evaluating hypothesis testing and communication with feed-
back scenarios in prior works (e.g. [37], [38]). Intuitively,
the information value It(k) captures the attacker’s belief at
time t ∈ [n] about the possibility of user uk, k ∈ [m]
being the victim, based on the received query responses,
where a large positive It(k) indicates a strong belief that
the user is the victim, and a large negative It(k) indicates
a strong belief that the user is not the victim. For instance,
the initial information value I0(k) captures the attacker’s
initial belief and is a large negative number if PM (k) is
small. Furthermore, the terms log PE0|Es (yi|fk,i)

PE0 (yi)
, i ∈ [t] in

the definition of It(k) in (10) capture the information gain
of the attacker, after the query response at time t is received,
about the possibility that user k is the victim. The identification
function Idt first determines whether the maximum informa-
tion value of all users exceeds log 1

ε , where the parameter
ε > 0 affects the resulting probability of error. If there exists
a user whose information value exceeds log 1

ε , that user is
identified as the victim. Otherwise, the next query is made.
So,

xt(Gs, Y
t−1) = rt, t ∈ [n] (13)

Idt(Gs, Y
t) =





uk if ∃!k ∈ [m] : It(k) > log

1
ε

e Otherwise,
t ∈ [n]

(14)

We call this attack strategy the ITS due to the use of infor-
mation thresholds for deanonymization.

Theorem 1: Consider the ITS described above with para-
meter ε > 0. Let QITS be the resulting expected number of
queries and Pe,ITS the resulting probability of error. Then,
in the α-PA scenario with α ∈ (0, 1]:

QITS ≤
H(M) + log 1

ε + imax

c′I(E0; Es)
, (15)

Pe,ITS ≤ ε

c′
, (16)

where c′ is from Proposition 3, the mutual information
is evaluated with respect to PE0,Es = PE0PEs|E0 , the
distribution PEs|E0 is given in (12), the variable E0 is
Bernoulli with PE0(1) = 1 − PE0(0) = µ

m , and imax !
maxy,f∈{0,1} log PE0|Es (y|f)

PE0 (y) .
Proof: Appendix. "

At a high level, the bound on the expected number of
queries necessary for successful deanonymization QITS which
is given in (15) can be interpreted as follows: the total initial
uncertainty about the victim’s index M is given by H(M).
The average information provided by each query response
is I(E0; Es), and the correlation in the group memberships
induced in the generation process inflicts an information gain

penalty captured by c′. That is, after QITS queries, the attacker
gains roughly c′QITSI(E0; Es) bits of information regarding
the victim’s identity. Hence, successful identification occurs
for QITS ≈ H(M)

c′I(E0;Es) .
Remark 11: The coefficient c′ in the denominator of

H(M)+log 1
ε +imax

c′I(E0;Es)
can be improved in special cases based on

the value of α. For instance, it is shown in [26] that for the
IEE model, where α → 0, the denominator c′I(E0; Es) can
be replaced by I(E0; Es) to derive an asymptotically optimal
bound.

Next, we focus on the SB model. Let P τ
E0

(1) =
τ

τ′∈T τ ′|Cτ′ | , τ ∈ T , and let us assume without loss of

generality that P 1
E0

(1) ≤ P 2
E0

(1) ≤ · · · ≤ P |T |
E0

≤ 1
2 .

Then, the ITS query function queries the groups starting
with most popular communities of groups. To elaborate,
assume that T = {1, 2, · · · , |T |} and τ0(j) ≥ τ0(j′), j >
j′. Then x(Gs, Y t−1) = rt, t ∈ [n]. Note that we have
assumed that the attacker knows the community membership
of the groups. In the absence of this information, the attacker
may potentially extract the group’s community memberships
using Gs.

The stopping criterion is modified as follows. The infor-
mation value Ik(t), k ∈ [m], t ∈ [n] of user uk and time t
is:

I0(k) ! log PM (k), k ∈ [m], (17)

It(k) !
∑

τ≤τ ′

|Cτ |∑

$=1

log
PE0|Es

(y$|fk,$)
PEτ

0
(y$)

(18)

+
i′∑

i=0

log
PE0|Es

(yi|fk,i)
PEτ′

0
(yi)

+ I0(k), k ∈ [m], t ∈ [n] (19)

where t =
∑
τ≤τ ′ |Cτ | + i′, i′ ≤ |Cτ ′+1|. The initial infor-

mation values I0(k), k ∈ [m] are defined in (17) in a
similar fashion as that of (10). The definition of It(k), k ∈
[m], t ∈ [n] in (11) is modified in (18) to capture the
community-dependence of the edge probabilities in the SB
model.

Theorem 2: In the SB scenario, let T = {1, 2, · · · , |T |}
and assume that τ0(j) ≥ τ0(j′), j > j′, then:

QITS ≤
∑

τ≤τ∗

|Cτ | + i∗

Pe,ITS ≤ ε,

where (τ∗, i∗) are defined as

τ∗ ! min
τ∈T

{
τ : ψ ≤

∑

τ ′≤τ+1

|Cτ |Iτ (E0; Es)
}

,

i∗ ! min
i∈[|Cτ∗ |]

{
i : ψ ≤

∑

τ≤τ∗

|Cτ |Iτ (E0; Es)

+ iIτ∗+1(E0; Es)
}

,

ψ ! H(M) + log
1
ε

+ imax,
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the mutual information Iτ (E0; Es) is evaluated with respect
to P τ

E0,Es
= P τ

E0
PEs|E0 , the variable E0 is Bernoulli with

parameter P τ (E0 = 1) = τ

τ′∈T τ ′|Cτ′ |
µ
β , and PEs|E0 is

given in (12).
The proof for the upper bound on QITS follows similar

arguments as Theorem 1, and uses (16) along with the fact
that

E(ITn′ (M)) =
∑

τ≤τ ′

|Cτ |Iτ (E0; Es) + i′Iτ ′+1(E0; Es),

where, E(Tn′) =
∑

τ≤τ ′ |Cτ | + i′, i′ ≤ |C|τ ′+1. That is,
the average information gained after Tn′ queries is equal to
E(ITn′ (M)) =

∑
τ≤τ ′ |Cτ |Iτ (E0; Es) + i′Iτ ′+1(E0; Es). So,

successful deanonymization requires an average of E(Tn′) =∑
τ≤τ ′ |Cτ | + i′, i′ ≤ |C|τ ′+1 queries such that ψ ≤∑
τ≤τ ′ |Cτ |Iτ (E0; Es) + i′Iτ ′+1(E0; Es). The derivation of

the upper bound on the error probability follows simi-
lar arguments as in the proof of Theorem 1 along with
Proposition 4.

B. Noisy Scan and Query Responses

In this section, we extend the ITS to the case of noisy scan
and query responses and arbitrary finite sets Γ and Θ. Note
that as explained in Section III, the attacker does not have
access to γ(k), k ∈ [m] but has access to θ(M). To elaborate,
the attacker knows the user device specifications, and hence it
knows the query response noise statistics P θ(M)

Y |E0
, but does not

know the users’ privacy preferences, and hence it only knows
that the scan knows statistics is given by one of the conditional
distributions P γ

Es|E0
, γ ∈ Γ, where γ may be different for

different users.
Let us focus on the α-PA model for α ∈ (0, 1]. The query

function is defined as in the previous section. The identification
function is modified as follows. The attacker has access to
θ(M) since it can query the victim’s hardware and software
specifications. So, it can find P θ(M)

Y |E0
and use it in calculating

the users’ information values as in the previous scenario.
As for the scan noise parameter, γ, the attacker computes
|Γ| different information values for each user, one for each
value of γ ∈ Γ, and assigns the maximum resulting value as
the information value of the user. This resembles the com-
munication strategies used for communicating over compound
channels when channel state information is unavailable [48].
So,

I0(k) ! log PM (k), k ∈ [m], (20)

It(k) ! max
γ∈Γ

t∑

i=1

log
P γ,θ(M)

Y |Es
(yi|fk,i)

P γ
Y (yi)

+ I0(k),

k ∈ [m], t ∈ [n], (21)

where P γ
Y (·) =

∑
s∈{0,1} PE0(s)P

γ
Y |E0

(·|s), and

P γ,θ(M)
Y |Es

(yi|fk,i) =
∑

s∈{0,1} P θ(M)
E0|Es

(s|fk,i)P γ
Y |E0

(y|s), y,
fk,i ∈ {0, 1}, and:

PΘ(M)
E0|Es

(s|f) !
PE0(s)P

Θ(M)
Es|E0

(f |s)
∑

s′∈{0,1} PE0(s′)P
Θ(M)
Es|E0

(f |s′)
. (22)

The initial information values in (20) are defined in a similar
fashion as that of (10). The definition of It(k), k ∈ [m], t ∈ [n]
in (11) is modified in (21) to capture the effects of noise in
query responses on the information gain at each step. The
following sufficient conditions for successful deanonymization
are given in the following theorem.

Theorem 3: Consider the ITS described above with para-
meter ε > 0. Let QITS be the resulting expected number of
queries and Pe,ITS the resulting probability of error. Then,
in the α-PA scenario with α ∈ (0, 1]:

QITS ≤
∑

γ∈Γ,θ∈Θ

PΓ,Θ(γ, θ)
H(M) + log 1

ε + imax

c′Iγ,θ(Y ; Es)
, (23)

Pe,ITS ≤ |Γ|ε
c′

, (24)

where c′ is from Proposition 3, the mutual informa-
tion is evaluated with respect to PE0,Es = PE0PEs|E0 ,
the distribution PEs|E0 is given in (12), the variable
E0 is Bernoulli with PE0(1) = 1 − PE0(0) = µ

m ,

imax ! maxy,f∈{0,1} log PE0|Es (y|f)

PE0(y) , and PΓ,Θ(γ, θ) !
|{uk|θ(k)=θ,γ(k)=γ}|

m , θ ∈ Θ, γ ∈ Γ.
The proof follows similar argument to that of Theorem 1.

The derivation of the bound on QITS for a given choice of
θ ∈ Θ, γ ∈ Γ is unchanged since the number of queries
needed to achieve the desired information value threshold
does not increase with the modified information values, since
users are assigned a higher information value by maximizing
over γ ∈ Γ. The bound on the probability of error follows
the exact same steps as in the proof of Theorem 1 with
the additional step of using the union bound to bound the
probability of error over the union of choices of Γ. This leads
to the addition of the coefficient |Γ| in the upper bound on
the probability of error in (24) as compared to the one given
in (16).

Remark 12: Similar to the derivation of Theorem 3 which
extends Theorem 1 to general scan and query noise statistics,
Theorem 2 can also be extended to derive sufficient conditions
for the success of ITS under the SB model and general noise
statistics. Again, the bound on the expected number of queries
Q remains the same, but the upper-bound on the probability
of error Pe grows linearly in |Γ|.

VI. SIMULATION RESULTS

In this section, we provide several simulations of synthe-
sized and real-world ABND attacks to verify the theoretical
results presented in the previous sections and gain further
intuition regarding the users’ privacy risks under such attack
scenarios.

A. Effect of Growth Parameter α on QITS

As a first step, we consider a noiseless ABND scenario
under the α-PA generation model, where the scanned graph
and the query responses are acquired noiselessly by the
attacker, and the victim is equally likely to be any of the users.
We wish to evaluate the effect of changing the preferential
attachment parameter α ∈ (0, 1] on the expected number
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Fig. 3. Expected number of queries necessary for success in the ITS
and the GIS under noiseless scanned and query response assumptions with
a victim which is uniformly chosen among the users. The green (filled)
line is the upper bound on the expected number of queries in ITS due to
Theorem 1.

of queries necessary for deanonymization under ITS. Note
that in this case, ITS reduces to a simple strategy, where
queries are made until the acquire responses have a unique
match among the user fingerprints in the scanned graph since
PY |Es

(y|f) = (y = f), y, f ∈ {0, 1}.
In order to provide a baseline for comparison, we also

investigate the performance of a natural extension of the
deanonymization strategy considered in [9] which is described
below.

The Group Intersection Strategy (GIS): The attacker queries
the group memberships of the victim sequentially starting with
the membership in the first group, that is xt(Gs, Y t−1) =
rt, t ∈ [n]. After receiving the query response at time t ∈ [n],
the attacker forms the ambiguity set At by intersecting the
members of all groups Ui for which the query response is
one, i.e. At =

⋂
i∈[t]:Yi=1 Ui, t ∈ [n]. The attack concludes

if |At| = 1 in which case the unique user which is in At is
declared as the victim.

In Figure 3, we have plotted the performance of ITS and
GIS, where we have simulated the attack with parameters
µ = 100, ε = 0.01, and β = 0.1. For each value
m = {1000, 2000, 5000, 10000}, we have simulated the attack
500 times, by generating the ground-truth five times and
choosing a victim randomly and uniformly for each generation
100 times. Our analysis in Theorem 1 predicts that QITS

grows linearly in m ∈ N since in the denominator in (15)
we have I(E0; ES) = H(E0) = m

µ (log m + o(log m)), and
in the numerator we have H(M) = log m and imax = log m.
In fact, Theorem 1 predicts that Q ! QITS − log 1

e
log m ≈ 2m

µ ,
and does not depend on the value of α. This is verified by our
simulations shown in Figure 3. Furthermore, it can be observed
that the ITS outperforms the baseline GIS for all values of α
nad m shown in Figure 3.

B. Effect of Query Response Noise on QITS

Let us recall that the set Θ captures the diversity in query
noise statistics due to the various hardware and software

Fig. 4. Expected number of queries Q necessary for success in the ITS under
noiseless scan and noisy query response assumptions with a victim which is
uniformly chosen among the users.

specifications of the users and the different browser sniffing
techniques available to the attacker, where the resulting query
response noise is captured by P θ(M)

Y |E0
(·|·) and M is the

victim’s index. Now, we investigate the effect of diversity of
query response noise on the expected number of queries for
successful deanonymization with ITS. To elaborate, we con-
sider a noiseless scanned graph but noisy query responses.
To model the query noise diversity, we consider two initial
noise statistics PY |E0 and P ′

Y |E0
, where PY |E0 is the transition

probability of a binary symmetric channel with parameter
0.01, and P ′

Y |E0
is the transition probability of a binary

symmetric channel with parameter 0.3. These statistics are
chosen to be within the range of empirical observations of
noise in browser history sniffing (e.g. [13]–[15]). We consider
5 scenarios, where Θk = {0, 1, 2, · · · , 2k − 1}, k = [5],
and define P θ

Y |E0
= θ

2k−1PY |E0 + 2k−1−θ
2k−1 P ′

Y |E0
, θ ∈ Θk.

Figure 4 shows the resulting expected number of queries as
a function of m, where we have simulated the attack with
parameters α = 1, µ = 100, ε = 0.1, and β = 0.4. For each
value m = {1000, 2000, 5000, 10000}, we have simulated the
attack 500 times, by generating the ground-truth five times and
choosing a victim randomly and uniformly for each generation
100 times. It can be observed that increasing users’ query noise
diversity does not have a significant effect on the probability
of success.

C. Effect of Scanned Noise on QITS

In this section, we consider noiseless query responses,
but noisy scanned graph and investigate the effects on the
success of the ITS. As predicted by the theoretical results in
Theorem 3, the diversity in scanned graph noise does not affect
the expected number of queries. However, the upper-bound
on the probability of error in Theorem 3 changes linearly
in |Γ|. We have plotted the resulting probability of error in
Figure 5, where in order to model the scan noise diversity,
we have considered two initial noise statistics PEs|E0 and
P ′

Es|E0
, where PEs|E0 is the transition probability of a binary
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Fig. 5. Probability of success in the ITS under varying scanned noise statistics
and noiseless query response assumptions with a victim which is uniformly
chosen among the users.

Fig. 6. Probability of success (a) and average number of queries (b) for ITS
in deanonymizing users in the LiveJournal network.

symmetric channel with parameter 0.01 and P ′
Es|E0

is the
transition probability of a binary symmetric channel with
parameter 0.3. We have considered five scenarios, where k !
|Γ| = {2, 4, 8, 16, 32}, and defined P γ

Es|E0
= γ−1

k−1PEs|E0 +
k−γ
k−1 PY |E0 , γ ∈ [|Γ|]. Figure 5 shows the resulting probability
of success (1 − Pe) as a function of m, where we have

simulated the attack with parameters α = 1, µ = 100, ε = 0.1,
and β = 0.4. For each value m = {1000, 2000, 5000, 10000},
we have simulated the attack 500 times, by generating the
ground-truth five times and choosing a victim randomly and
uniformly for each generation 100 times. It can be observed
that increasing the users’ privacy preference options (|Γ|)
does not have a significant effect on the resulting probability
of success for ITS. This suggests that the upper-bound on
the probability of error in Theorem 3 can be potentially
improved.

D. Performance in Real-World Networks

In this section, we simulate an active attack on the
LiveJournal network, which is a free on-line blogging com-
munity which allows users to form a group which other mem-
bers can then join [49]. The database2 consists of 3,997,962
members and 664,414 groups. We have extracted a subset
of 1517 groups with at least 400 members, and selected a
subset of 49,164 users which are members of at least 4 of
these groups. The simulation is run 100 times, where each
time a victim is chosen randomly and uniformly among the
users. In Figure 6, we have simulated the attack under varying
noise parameters, where we have modeled both the scanning
and query noise with binary erasure channels with erasure
probability ranging from 0.01 to 0.1. We have used ε = 0.1 for
the ITS error parameter. It can be seen that for the larger
values of the erasure probability, the 1,517 groups scanned by
the attacker are not sufficient to identify the victim and the
attacker must scan and query additional group memberships,
whereas for smaller erasure probability, the attacker succeeds
with probability close to one.

VII. CONCLUSION AND FUTURE WORK

We have studied the ABND problem for general
non-equiprobable user indices under various ground truth
generation models such as linear and sublinear preferential
attachment and stochastic block model. We have studied
the ITS deanonymization strategy which operates based on
information thresholds. The strategy measures the amount
of uncertainty in the user indices given the received query
responses. We have characterized the performance of the ITS
both for social networks with a fixed, finite number of users
as well as for asymptotically large social networks. We have
provided simulations of the attack both in synthesized as
well as real-world bipartite networks to verify the theoretical
results. Future research directions include i) extending the
theoretical results to scenarios where the scan and query
noise models allow for correlated noise, ii) exploring the
model assumptions such as sparsity in real-world bipartite
networks other than social networks such as wireless mobil-
ity, and medical databases, and iii) evaluating the perfor-
mance of the proposed algorithms in such real-world bipartite
networks.

2The database is available at https://snap.stanford.edu/data/com-
LiveJournal.html.
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APPENDIX

PROOF OF THEOREM 1

The proof builds upon ideas developed for studying the fun-
damental limit of communication over feedback channels [37].
Note that I(E0; Es) ≤ H(E0) = ( µ

m log m)(1 + o( log m
m ))

since P (E0 = 1) = µ
m . So, the upper-bound on Q is greater

than C3
n
µ for some constant C3 > 0. This allows us to

use Proposition 3 to approximate the fingerprint distribution
by a memoryless distribution as a lower bound. Define the
following stopping times

κk ! min
κ>

C3n
µ

{
κ
∣∣Ik(Gs, Y

κ) > log
1
ε

}
, k ∈ [m],

κ∗ ! min
k∈[m]

κm

Note that by the definition of the identification function
Idt(·, ·) in (14), we have QITS = E(κ∗). We show that
E(κ∗) ≤ H(M)+log 1

ε +imax

I(E0;Es)
. Note that E(κ∗) ≤ E(κM ) by

definition of κ∗. So, it is enough to prove the upper bound on
E(κM ). Fix n′ ∈ N. Let Tn′ = min{κM , n′}. Note that:

E
(
ITn′ (M)

)
= E




Tn′∑

i=1

log
PE0|Es

(Yi|Fk,i)
PE0(Yt)

+ Io(J)





(a)
= E




Tn′∑

j=1

log
PE0|Es

(Yi|Fk,i)
PE0(Yt)



− H (J)

(b)
≥ c′I(E0; Es)E(Tn′) − H(J), (25)

where (a) uses linearity of expectation, and (b) follows
from Wald’s identity [50] and using P ((Fk,i)i∈[t], Y

t) ≤
c′
∏t

i=1 PE0,Es(Fk,i, Yi), t ∈ N which holds due to Propo-
sition 3, and the fact that

P ((Fk,i)i∈[t], Y
t)

=
∑

st∈{0,1}t

P ((Rk,i)i∈t = st)

×
∏

i∈[t]

PEs|E0(Fk,i|si)PY |E0(Yi|si)

=
∑

st∈{0,1}t

P ((Rk,i)i∈t = st)
∏

i∈[t]

PEs|E0(Fk,i|si) (Yi = si)

≤ c′
∏

i∈[t]

∑

si∈{0,1}

P (Rk,i = si)PEs|E0(Fk,i|si) (Yi = si)

= c′
∏

i∈[t]

PE0,Es(Fk,i, Yi).

Note that the sparsity condition
∑

i∈[t] si = o(n) in Proposi-
tion 3 is satisfied with probability one due to Proposition 2.
Also, note that at each step t ∈ N, the increase in It(M) is
less than or equal to imax. It follows that:

E
(
ITn′ (M)

)
≤ E

(
ITn′−1 (M)

)
+ imax ≤ log

1
ε

+ imax,

(26)

where we have used the fact that and that by the definition of
κM and Tn′ , we have ITn′−1(M) ≤ log 1

ε since Tn′−1 < κM .

Combining (25) and (26) we get E(Tn′) ≤ H(M)+log 1
ε +imax

c′I(E0;Es)
,

and using the monotone convergence theorem by increasing
n′ asymptotically, we get E(Tn′) = E(κM ) = QITS which
yields the desired bound on QITS . It remains to prove the
bound on Pe,ITS . We have:

Pe = P (∃j &= M : κj ≤ κM ) ≤
∑

j $=M

P (κj ≤ ∞)

=
∑

j $=M

lim
η→∞

P (κj ≤ η)

(a)
=
∑

j $=M

lim
η→∞

EPY n,(FM,i)i∈[n]

×
(

PY nP(FM,i)i∈[n]

PY n,(FM,i)i∈[n]

(κj ≤ η))

)

≤
∑

j $=M

lim
η→∞

(1 + o(1))
c′

EPYi,FM,i

×




∏

i∈[n]

PYiPFM,i

PYi,FM,i

(κj ≤ η))





=
∑

j $=M

lim
η→∞

(1 + o(1))
c′

EPYi,FM,i

×




∏

i∈[η]

PYiPFM,i

PYi,FM,i

(κj ≤ η))





×EPYi,FM,i




∏

i∈[η+1,n]

PYiPFM,i

PYi,FM,i





×
∑

j $=M

lim
η→∞

(1 + o(1))
c′

EPYi,FM,i

×




∏

i∈[η]

PYiPFM,i

PYi,FM,i

(κj ≤ η))





=
∑

j $=M

lim
η→∞

(1 + o(1))
c′

EPYi,FM,i

×
(

e
i∈[η] log

PYi
PFM,i

PYi,FM,i (κj ≤ η))

)

≤
∑

j $=M

lim
η→∞

(1 + o(1))
c′

EPYi,FM,i

×
(

e
i∈[η] log

PYi
PFM,i

PYi,FM,i )

)

=
∑

j $=M

lim
η→∞

(1 + o(1))
c′

EPYi,FM,i

(
e−Iη(M)−I0(M))

)

≤
∑

j $=M

lim
η→∞

(1 + o(1))
c′

EPYi,FM,i

(
e− log 1

ε −I0(M))
)

=
∑

j $=M

1
c′
εPM (j) ≤ 1

c′
ε(1 + o(1)).

where in (a) we have used the fact that P(Fj,i)i∈[n] =
P(FM,i)i∈[n] , j ∈ [m].
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[43] P. Erdős and A. Rényi, “On random graphs I,” Mathematicae, vol. 6,
pp. 290–297, Oct. 1959.

[44] E. Zheleva, H. Sharara, and L. Getoor, “Co-evolution of social and
affiliation networks,” in Proc. 15th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2009, pp. 1007–1016.

[45] M. M. Christiansen, K. R. Duffy, F. du Pin Calmon, and M. Médard,
“Multi-user guesswork and brute force security,” IEEE Trans. Inf.
Theory, vol. 61, no. 12, pp. 6876–6886, Dec. 2015.

[46] M. Shariatnasab, F. Shirani, and E. Erkip, “Fundamental privacy limits
in bipartite networks under active attacks,” 2021, arXiv:2106.04766.

[47] R. Impagliazzo and V. Kabanets, “Constructive proofs of concentration
bounds,” in Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques. Berlin, Germany: Springer, 2010,
pp. 617–631.

[48] H. Boche, R. F. Schaefer, and H. Vincent Poor, “On the ε-capacity
of finite compound channels with applications to the strong converse
and second order coding rate,” in Proc. 54th Annu. Conf. Inf. Sci. Syst.
(CISS), Mar. 2020, pp. 1–6.

[49] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213,
Jan. 2015, doi: 10.1007/s10115-013-0693-z.

[50] A. Wald, “On cumulative sums of random variables,” Ann. Math. Statist.,
vol. 15, no. 3, pp. 283–296, Sep. 1944.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on July 11,2022 at 02:35:25 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1007/s10115-013-0693-z


954 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 3, MARCH 2022

Mahshad Shariatnasab (Graduate Student Mem-
ber, IEEE) received the B.Sc. degree from Shahid
Beheshti University in 2015 and the M.Sc. degree
from the Khajeh Nasir Toosi University of Technol-
ogy in 2017. She is currently pursuing the Ph.D.
degree with the Electrical and Computer Engineering
Department, North Dakota State University. Her
research interests are in the general areas of security
and privacy. Her recent work includes developing
information theoretic methods for analysis of funda-
mental limits of web privacy.

Farhad Shirani (Member, IEEE) received the B.S.
degree in electrical engineering from the Sharif
University of Technology, and the M.Sc. degree
in applied mathematics and the M.Sc. and Ph.D.
degrees from the University of Michigan, Ann
Arbor, MI, USA. He served as a Lecturer and a
Post-Doctoral Research Fellow at the University of
Michigan in 2017. He was a Research Assistant Pro-
fessor at New York University from 2017 to 2020.
He is an Assistant Professor at the Electrical and
Computer Engineering Department, North Dakota

State University. His research interests include privacy and security,
wireless communications, and machine learning. His recent work includes

developing information theoretic methods for analysis of fundamental limits
of web privacy, design of receiver architectures for energy efficient com-
munication over MIMO systems, and design of algorithms for opportunistic
multi-user scheduling under various fairness constraints.

Elza Erkip (Fellow, IEEE) received the B.S. degree
in electrical and electronics engineering from Middle
East Technical University, Ankara, Turkey, and the
M.S. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, USA.

She is an Institute Professor at the Electrical and
Computer Engineering Department, New York Uni-
versity Tandon School of Engineering. Her research
interests are in information theory, communication
theory, and wireless communications.

Dr. Erkip is a member of the Science Academy of
Turkey and is a Clarivate Highly Cited Researcher. She has been a member of
the Board of Governors of the IEEE Information Theory Society since 2012,
where she was the Society President in 2018. She was a Distinguished Lecturer
of the IEEE Information Theory Society from 2013 to 2014. She received the
NSF CAREER Award in 2001, the IEEE Communications Society WICE Out-
standing Achievement Award in 2016, and the IEEE Communications Society
Communication Theory Technical Committee (CTTC) Technical Achievement
Award in 2018. Her paper awards include the IEEE Communications Society
Stephen O. Rice Paper Prize in 2004 and the IEEE Communications Society
Award for Advances in Communication in 2013. She has had many editorial
and conference organization responsibilities. Some recent ones include the
General Co-Chair of the IEEE International Symposium of Information The-
ory in 2013, the Track Chair of the Asilomar Conference on Signals, Systems
and Computers, and the MIMO Communications and Signal Processing in
2017, the Technical Co-Chair of the IEEE Wireless Communications and
Networking Conference in 2017, and the Guest Editor of IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS in 2015.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on July 11,2022 at 02:35:25 UTC from IEEE Xplore.  Restrictions apply. 


