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Abstract

We consider the initial-boundary value problem of a simplified nematic liquid
crystal flow in a bounded, smooth domain Q C R?. Given any k distinct points in
the domain, we develop a new inner—outer gluing method to construct solutions
which blow up exactly at those k points as ¢ goes to a finite time 7. Moreover,
we obtain a precise description of the blow-up.
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1 Introduction

In this paper, we consider the following initial-boundary value problem of ne-
matic liquid crystal flow in a bounded, smooth domain Q in R?, and T > 0

v +v-Vyv+VP=Av—&V - (Vu®Vu—1|VuPL) in Qx(0,T),

(1.1) ¢V.-v=0 in Qx(0,7),
du+v-Vu=Au+|Vu|®u in Qx(0,7),

with initial condition

(1.2) (vu)|,_o = (vo,uo) in &,

and boundary condition
v=0 on dQx (0,7T),
u=uy on dQx (0,7),

where v: Q x [0,T) — R? is the fluid velocity field, P: Q x [0,T) — R is the fluid
pressure function, u : Q x [0,T) — S? stands for the orientation field of nematic
liquid crystal molecules, V- denotes the divergence operator, Vu © Vu denotes the
2 x 2 matrix given by (Vu ® Vu);; = Viu-Vu, and I is the identity matrix on
R2. The parameter & > 0 represents the competition between kinetic energy and
elastic energy. (vo,up) : Q — R? x S? is a given initial data such that V - vy = 0.

(1.3)

The system (1.1) can be viewed as a coupling between the incompressible
Navier—Stokes equations and the equations of heat flow of harmonic maps. Both
the incompressible Navier—Stokes equations and the equations of harmonic map
heat flow have been studied extensively. For the incompressible Navier—Stokes
equations, the existence of global weak solutions to the initial value problem has
been well-known since the fundamental works of Leray [42] and Hopf [35]. A
more comprehensive theory on the Navier—Stokes equation can be found in clas-
sical books of Temam [67], Lions [53], see also [41], [26], [58], [68] and the
references therein. The fundamental solution of the Stokes system, which is a lin-
earized Navier—Stokes equation, was established by Solonnikov in [61], together
with estimates of weak solutions to the Cauchy problem. Solonnikov also derived
similar estimates of the initial-boundary value problem of the Stokes system in
[62, 65, 64], and these sharp estimates would be very important in our construction.
For the harmonic map heat flow, Struwe [66] and Chang [4] established the exis-
tence of a unique global weak solution in dimension two, which has at most finitely
many singular points. In higher dimensions, the existence of a global weak solution
has been proved by Chen and Struwe in [9] (see also Chen and Lin [8]). Examples
of finite time blow-up solutions have been constructed in dimension n > 3 in [11]
and [7], see also [27, 28]. In dimension two, Chang, Ding and Ye [5] established
the first example of finite time singularities by a sub-super solution method for ax-
ially symmetric maps into the standard sphere. Angenent, Hulshof and Matano [2]
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analyzed a 1-corotational blow-up solution in a disk with profile

u(x,t) =W <x> +o(1),

A(t)
where W is the least energy harmonic map (of degree one)
1 2_)7 2
W(y)=———> , yER?,
Y= e [Iyl2 - 1] g

O(1) denotes a term that is bounded in H'-norm, and 0 < A(¢) — O as¢ — T. They
obtained an estimation of the blow-up rate as A(z) = o(T —¢). Using matched
asymptotics formal analysis, van den Berg, Hulshof and King [69] showed that
this rate should be given by
T—t

" Mo =)

for some x > 0. Raphaél and Schweyer succeeded in constructing an entire 1-
corotational solution with this blow-up rate rigorously [57]. Recently, Davila, del
Pino and Wei [15] constructed a non-symmetric solution that exhibits finite time
blow-up at multiple points and studied its stability by using the inner—outer gluing
method. More precisely, for any given finite set of points in Q, they constructed so-
lution blowing up exactly at those points simultaneously under suitable initial and
boundary conditions. In another aspect, for higher-degree corotational harmonic
map heat flow, global existence and blow-up have been investigated in a series of
works [30, 29, 31, 32] and the references therein. For the general analysis of the
bubbling phenomena and regularity results of the harmonic map heat flow, we refer
the readers to the book [49].

A1)

The model equations for the nematic liquid crystal flow (1.1) that will be studied
in this article are proposed in [45], and it is a simplified version of the Ericksen—
Leslie system for the hydrodynamics flow of nematic liquid crystal material es-
tablished by Ericksen [25] and Leslie [43]. The existence and uniqueness of so-
lutions to (1.1) has attracted a lot of interests in recent years. In an earlier work
[46], Lin and Liu considered the Ericksen-Leslie system with variable degree of
orientations, and established a global existence of weak and classical solutions in
dimensions three and two. There is also a partial regularity theorem for suitable
weak solutions of approximate systems for (1.1), see [47], similar to those for the
Navier—Stokes equation established by Caffarelli-Kohn—Nirenberg in [3]. Later
in [48], a global existence of Leray—Hopf—Struwe type weak solutions of (1.1) in
two dimensions is proved (see also [33], [34], [71], [36], [40] and [70]). More
importantly, the uniqueness of such weak solution in dimension two can also be
shown [50]. For the case of dimension three, much less is known. Lin and Wang
[52] proved a global existence of (suitable) weak solutions satisfying the global
energy inequality under a restrictive assumption that the initial orientation field
up(Q) C Si. There are also blow up criteria for finite time singularities for local
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strong solutions of (1.1) in both dimensions two and three, for instance, Huang and
Wang [38]. We should also point out a recent interesting work by Chen and Yu
[6]. They constructed global m-equivariant solutions in R? where the orientation
field blows up logarithmically as ¢ — +oo. For a survey of some recent important
developments of mathematical analysis of nematic liquid crystals we refer to [51].

The main concern of this paper is the existence of classical solutions to the ne-
matic liquid crystal flow (1.1), that develop finite time singularities. In dimension
three, the work [37] has provided two examples of finite time singularity of (1.1).
The first example is an axisymmetric finite time blow-up solution constructed in a
cylindrical domain (as remarked in [37] Remark 1.2(c), this blow-up example does
not satisfy the no-slip boundary condition). The second example is constructed in
a ball for any generic initial data (vg,uo) that has small enough energy, and u( has
a non-zero Hopf-degree.

In this paper, we consider the two-dimensional nematic liquid crystal flow (1.1),
where the velocity field satisfies no-slip boundary condition, i.e., v =0 on dQ.
We wish to point out that if v =0 in (1.1), then u is not only a solution of the
harmonic map heat flow, it also satisfies the compatibility condition V- (Vu® Vu —
1|Vu|?1,) = VP for a scalar function P. In fact, one can check that for the blow-up
solution u to the harmonic map heat flow constructed by [5], as it is axisymmetric,
(u,0) is also a blow-up solution to (1.1). On the other hand, the blow-up solutions
u to the harmonic map heat flow in [15] can not satisfy (1.1) with v = 0, whenever
the number of blow up points k£ > 1.

Using the inner—outer gluing method for both u and v, we construct a solution
(v,u) to problem (1.1) exhibiting finite time singularity when the parameter & is
sufficiently small. More precisely, we have

Theorem 1.1. There exists a sufficiently small & > 0 such that given k distinct
points q1,--- ,qx € Q, if T > 0 is sufficiently small, then there exists a smooth initial
data (vo,ug) such that the short time smooth solution (v,u) to the system (1.1) blows
up exactly at those k points ast — T. More precisely, there exist numbers K; > 0,

o7 and u, € H'(Q)NC(Q) such that

A1)

in H'(Q) N L*(Q), where the blow-up rate and angles satisfy
T—t
10 = g —1)P

k ,
o) =)~ Y 08,08, 0 [W (32 ) - wie)| 0 as 1
=1 |

(I+0(1)) as t =T,

0 — o;, a;—0,5;—0, as t =T,
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and Qé,, Q%c and QI33 are rotation matrices defined in (2.2). In particular, it holds

that
k

|Vu(-,t)|2dx — \Vu*|2dx+ LY Z 0y as t =T,
j=1
as convergence of Radon measures. Furthermore, the velocity field satisfies

v,l
t
xt]<cz ©
11

,0<t<T,
1+
forsomec>0and0<v; <1, j=1,--- k.

Concerning Theorem 1.1, we would like to make two remarks.

Remark 1.2.

e At each blow-up point g; € , 1 < j <k, the behavior of the velocity field
v is precisely

v(x,0)] < A" (1) +o(1) for vj e (0,1).

Theorem 1.1 suggests that v might also blow up in finite time. In fact
we conjecture that ||v(+,2)||= ~ |log(T —1)| as t — T. The singularity
formation of the velocity field is driven by the Ericksen stress tensor V -

(Vu ® Vu — §|Vu|*1,), which is induced by the liquid crystal orientation
field u(x,t). Namely, u(x,t) plays a role on generating the singular forcing
in the incompressible Navier—Stokes equation. For results of the Navier—
Stokes equation with singular forcing in dimension two, we refer to [10].

e It is well-known that the pressure P can be recovered from the velocity
field v and the forcing. See for instance [26] and [68].

e The proof of Theorem 1.1 actually yields, on one hand, that the small con-
stant &y can be chosen to be a universal constant, that is independent of the
domain Q, blow-up points ¢qi,- -+ ,gx, and time 7. On the other hand, no
matter how small & would be, the two systems are fully coupled, because
of the following scaling invariance:

(va(x,0), Py (x,1), 15 (x,2)) = (Av(Ax,A%t), A*P(Ax, A%t),u(Ax, A%t)).
In addition, this nonlinear coupling property is also preserved in the lin-
earized inner problem:
vi+VP=Av—gV- (VWO V9),
Vov=0,
O +v-Vo =Ad +|VW|>9 +2(VW - Vo)W
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Remark 1.3. While, in order to carry out fixed point argument in the inner—outer
gluing procedure, we need to assume & > 0 in (1.1) to be sufficiently small, The-
orem 1.1 does cover the relevant physical cases of the hydrodynamics of nematic
liquid crystals where the fluid tends to have a large viscous effect. More precisely,
instead of (1.1), if we consider

(1.4)
Ov+v-Vv+VP=pAv—2AV- (Vu®Vu—3|Vul’L) in Qx(0,T),
Vov=0 in Qx(0,7),
du+v-Vu = y(Au+|Vul*u) in Qx(0,7),

where u > 0, A >0, and ¥ > 0 represents the fluid viscosity, the competition pa-
rameter between the kinetic energy of fluid and the elastic energy of the liquid
crystal orientation field, and the macroscopic relaxation time parameter respec-
tively. Assume that % > 1 and % ~ 1. If we set (v,u,P)(x,t) = (ﬁv,u, ﬁP) (x, ﬁ),
then it follows from direct calculations that (v, u, P) solves (1.1) with the parameter
g =1 < 1.

The proof of Theorem 1.1 is based on the inner—outer gluing method, which
has been a very powerful tool in constructing solutions in many elliptic problems,
see for instance [18, 19, 20, 16] and the references therein. Also, this method has
been successfully applied to various parabolic flows recently, such as the infinite
time and finite time blow-ups in energy critical heat equations [12, 23, 22, 24, 21],
singularity formation for the 2-dimensional harmonic map heat flow [15], vortex
dynamics in Euler flows [14], and others arising from geometry and fractional
context [13, 59, 55, 60]. We refer the interested readers to a survey by del Pino
[17] for more results in parabolic settings.

The nematic liquid crystal flow (1.1) is a strongly coupled system of the incom-
pressible Navier—Stokes equation and the transported harmonic map heat flow. In
this paper, the construction of the finite time blow-up solution is close in spirit to
the singularity formation of the standard two dimensional harmonic map heat flow

du=Au+|Vul>u, in Qx(0,T),
(1.5) u=uy, on dQx (0,T),
u(-,0) = uo, in Q.
In [15], by the inner—outer gluing method, Davila, del Pino and Wei successfully

constructed type II finite time blow-up for the harmonic map heat flow (1.5). More
precisely, the solution constructed in [15] takes the bubbling form

k
Vu(- )P = |Vu,*+8n Y. 8, as t > T,
j=1
where u, € H'(Q)NC(Q), (q1,- .. ,qx) € Q" are given k points, and &, denotes the
unit Dirac mass at g; for j = 1,--- k. The construction in [15] consists of finding
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a good approximate solution based on the 1-corotational harmonic maps and then
looking for the inner and outer profiles of the small perturbations. Basically, the in-
ner problem is the linearization around the harmonic map which captures the heart
of the singularity formation, while the outer problem is a heat equation coupled
with the inner problem.

Our construction of a finite time blow-up solution to the nematic liquid crystal
flow (1.1)—(1.3) relies crucially on the delicate analysis carried out in [15]. How-
ever, because of the strong coupling between the Navier—Stokes equation with forc-
ing for v and the transported harmonic map heat flow equation for u, we have to
develop several new ingredients in our inner—outer gluing procedure for the system
(1.1)-(1.3):

e Although the advection term v- Vv can be realized as a small perturbation in
the Stokes system with forcing, the transported term v - Vu in the equation
for the orientation field u can only be realized as a small perturbation of the
outer problem for u, but not of the inner problem for u# where the singularity
occurs. In fact, since the system (1.1) is invariant under the following
parabolic scalings:

(vi(x,0), Py (x,1),u; (x,1)) = (Av(Ax,A%1), A2P(Ax, A%t), u(Ax,A%t)), VA > 0,

in the self-similar variable (y, T) near a singular point (¢, T'), roughly speak-
ing, the order of v[@] - VU is the same as that of / in the inner-linearized
equation:

0c9 +v[9]- VW = Ly [9] +h,
where Ly is the linearization of harmonic map equation around W given
by (2.3). See Section 4 for more details.

e In [15], the parameter functions A(7), (), ®(z), which correspond to the
dilation, translation in the domain, and rotation about z-axis in the target
space, respectively, were introduced to adjust certain orthogonality condi-
tions to guarantee the existence of desired solutions to the harmonic map
heat flow. However, to find the desired solution of the nematic liquid crys-
tal flow (1.1) as stated in Theorem 1.1, we need to introduce two new
parameter functions ¢(7) and B(¢) associated to the rotations about x and
y axes in the target space, respectively. The reasons behind this are:

1) Heuristically, in the inner problem of u, the velocity v may exhibit
a logarithmic singularity induced by the off-diagonal effect of the
Oseen-kernel §;; (see (3.8)). The addition of these new parameter
functions a(¢) and B(¢) can balance such a logarithmic singularity
off.

i1) We need to solve the inner linearized problem of u to get a solution
with space and time decay rates faster than that by [15], since we need
to control the stress-tensor V - (Vu ® Vu — 3| Vu|*I,) appearing in the
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equation for velocity field v of (1.1). For this purpose, we introduce
two new parameter functions ¢ () and f3(r) associated to the rotations
about x and y axes in the target space, respectively, to adjust the or-
thogonality conditions at mode —1. See Section 2 for details.

iii) After the adjustment by suitable o(z) and B(¢), the smallness of pa-
rameter & can reduce v- Vu into a truly small perturbation in the inner
problem of u.

e We also need to develop a new linear theory for the Stokes system with
some novel weighted L™ estimates, which shall have its own interest. The
construction of desired velocity field v shall be carried out by another
new inner—outer gluing procedure, since the forcing term V- (Vu ® Vu —
%\Vu\z]lg) in (1.1); is concentrated near the blow-up points. See Section 3
for details.

The following picture roughly describes the above process.

Forcing in (1.1): — &V - (Vu© Vi — 1Vul’l) — 2 v in(1.1)3

) T (2) l

Mode k in the inner problem of u: ¢ <(3—) v-Vuin (1.1)3

(1) Solve the incompressible Navier—Stokes equation with forcing coupled
from the orientation u.

(2) The velocity v provides transported effect in the harmonic map heat flow.

(3) The transported term v- Vu is coupled in a nontrivial way through the inner
problem at mode k since the velocity v = v[¢] carries the information of
@ in step (1).

(4) Faster spatial and time decay of ¢ yields better forcing term in (1.1)q,
ensuring the implementation of the whole loop.

The paper is organized as follows. In Section 2, we will develop a new inner—
outer gluing method for the harmonic map heat flow in order to handle the difficul-
ties arising from the coupling effects of (1.1). In Section 3, we develop the linear
theory for the Stokes system. In Section 4, using the newly developed inner—outer
gluing method, we construct a finite time blow-up solution to the nematic liquid
crystal flow by the fixed point argument.

Notation. Throughout the paper, we shall use the symbol “ < ” to denote “ < C”
for a positive constant C independent of  and 7. Here C might be different from
line to line.
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2 Singularity formation for the harmonic map heat flow in dimension
two

Closely related to the harmonic map heat flow in dimension two, the equation
for the orientation field u can be regarded as a transported version with drift term.
In this Section, we consider the two dimensional harmonic map heat flow u : Q x
[0,T) — S%

du=Au+|Vul>u, in Qx(0,T),

u = ug, on dQx (0,T),

u(-,0) = uo, in Q.
While following closely the general strategy of the construction developed by [15],
we will establish several new estimates that are needed for the system (1.1). More
precisely,

e A new linear theory at mode —1: This procedure consists of the following
steps
— Step 1: New corrections are added at mode —1 to cancel out the lead-
ing order of slow decaying error corresponding to the rotations around
x and y axes in the target space (see Section 2.2).

— Step 2: New orthogonality conditions are imposed at mode —1 which
determine the dynamics of the new parameters a(¢) and B(z) (see
Section 2.4).

— Step 3: Under the orthogonality conditions at mode —1, the new linear
theory at mode —1 is developed (see Section 2.5).

e Higher order estimates for inner and outer solutions are obtained in or-
der to handle the forcing —&yV - (Vu OVu— %|Vu]2}12) in the equation for
velocity (1.1); (see Sections 2.5-2.6).

We first introduce some notations and preliminaries.

2.1 Stationary problem: the equation of harmonic maps and its lin-
earization

The equation of harmonic maps for U : R? — S? is the quasilinear elliptic sys-
tem
(2.1) AU +|VU]*U =0 in R*.

For A >0, £ € R%, @, «, B € R, we consider the family of solutions to (2.1) given
by the following 1-corotational harmonic maps

x—
Ut0.ap®) = 000aQpW (f) , x€R?,



10 C.C.LAL ET ALL

where
[cosw —sinw 0 1 0 0
QL= |sin@ cosw O, Q%:=|0 cosa —sinal,
| 0 0 1 0 sina cosa
[ cosB 0 sinf
(2.2) Qg =1 0 1 0
|—sinf 0 cosp

are the rotation matrices about z, x and y axes in the target space, respectively, and
W is the least energy harmonic map

W(y)=1[ zy_l],yeRz-

T+ 2 [P
In the polar coordinates y = pe’®, W(y) can be represented as
i .
W) = oo 0)] (o) = 7~ 2urctan(p),
and we have
2 _ 2p p2—1
Wp = —m, siIw = —pr = m, Ccosw = p2+1

For simplicity, we write

Qu.ap = Q0005
The linearization of the harmonic map operator around W is the elliptic operator
2.3) Lw[9] = A9+ [VW () +2(YW () - V)W (),

whose kernel functions are given by

Zo,1(y) = pwp(p)E1(y),

Zo2(y) = pwp(P)E2(y),

Z11(y) = wp(p)[cos OE1 (y) +sin O, (y)],
e Z12(y) = wp(p)[sin OF1 () — cos OEs ()],

Z_11(y) = p*wp(p)[cos O, (y) — sin OE; (y)],

Z.1200) = PPwp()[Sin OE (3) + cos OE> ()],

where the vectors
_ [e®cosw(p) _ [ie'®
El()’)_ [—sinw(p) ) EZ(Y)_ 0
form an orthonormal basis of the tangent space Ty, (y)SZ. We see that
Lw[Z,'J] =0 fori= :|:1,0, ]: 1,2
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Note that :

_ xX—

LU[(P] =21 2Qa)7a,,BLW[¢]7 (p(x) = ¢(y)7 y= 1
In the sequel, it is of significance to compute the action of Ly on functions whose
value is orthogonal to U pointwisely. Define
Myio:=¢—(¢p-U)U.

We invoke several useful formulas proved in [15, Section 3]:

Ly, @] =T, AP+ Ly [®],

where
(2.5) Ly[®] := |VU[*TI;.® —2V(®-U)VU,
with

V(®-U)VU = 9,,(®-U)a,,U.
In the polar coordinates

D(x) =DP(r,0), x=E+re'®,
(2.5) can be expressed as (see [15, Section 3])

Ly[®] = —%Wp (p) [(‘I’r U)Qw,apE1 — %(‘1’9 'U)Qw,a,ﬁE2:| , r=Ap.
Assume that ®(x) : Q — C x R is a C! function in the form
1(x) +i@a(x
2.6) D(x) = [‘p ( sz (XEPZ( )} .
If we write
P=01+ip2, =1 — i
and
divep = 0y, @1 + Iy, @2, curlg = dy, @2 — 9y, ¢,

then we have the following formula (see [15, Section 3])
Q2.7) Ly[®] = [Ly]o[®@] + [Lu]1 [®] + [Lu 2 [®],

where

[Lulo[®] = A" pw3 [div(e @) Qg o pE1 +curl(e " 9) 0y o p ),
[Ly)1[®] = — 21 'wp cosw[(dy, 3) cos B + Iy, @3) sin 0100 . pE1
(2.8) - ZA_lwp cosw[(dy, @3)sin O — (dy, P3) cos 0]Qyy o pE2,
[Ly]a @] = l_lpwf) [div(e'®P) cos26 — curl(e'®P) 5in20]Q, o pE1

+ )L*lpwlzj [div(e"®P)sin26 + curl(e"’P) c0s26]Qy ¢ g Eo.

If we assume

D(x) = [q)(rgeie} L x=E+rd® r=12p,
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where @ (r) is complex-valued, then we have the following formula

- 2 i 1 _
Ly[®] = 1 p(p) Re(e “9 -9 (r ))Qw,a,BEl +;Im(e wq)(r))Qa),a,ﬁEZ .
If & is of the form
CI)(x) =0 (P, G)Qa),a,BEl =+ (PZ(p’ G)QCO,OC,[)'E27 X = é JFA'peie

in the polar coordinates, then the linearized operator Ly acting on @ can be ex-
pressed as (see [15, Section 3])

Ly|®]

) P 2
— 22 (app(P] + pp‘Pl 66 P +(2wf, — )P — pzagq)zcosw> Qo,apE

1
p? p?
-2 P> 399(1’2 1 2
+A Dpp P2+ — + +(2wp p)(pz—i—pae(p] cosw | Q.q,pE-

In next section, we shall find proper approximate solutions to the harmonic map
heat flow based on the 1-corotational harmonic maps, and evaluate the error.

2.2 Approximate solution and error estimates

We now consider the harmonic map heat flow

du=Au+|Vul’u, in Qx(0,T),
2.9) u=uy, on dQx (0,T),

u(+,0) = uy, in Q,
where u: Q x (0,T) — S?, and ug : @ — S? is a given smooth map. For notational
simplicity, we shall only carry out the construction in the single bubble case k = 1
and mention the minor changes for the general case when needed. We define the
error operator

Slu] = —du+ Au+ |Vul?u.

We shall look for solution u(x,#) to problem (2.9) which at leading order takes the
form

x—E(t
(2.10) U(x,1) == Up() ),000),00),80) = Qo),a).8(0W ( l(étg )> :

Here A (1), (1), ®(t), a(t) and B(t) are parameter functions of class C!((0,T)) to
be determined later. To get a desired blow-up solution, we assume
A(t) —>0,&E(t)—>q as t—T,

where ¢ is a given point in Q.
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A useful observation is that as long as the constraint |u| = 1 is kept for all
t € (0,T) and u = U + W where the perturbation 1 is uniformly small, say, || < 1,
then for u to solve (2.9), it suffices that

(2.11) S(U+w) =b(x,1)U
for some scalar function b. Indeed, since |u| = 1, we get
1d 1
b(U -u) =S(u) u=—=—ul*+ -Alul* = 0.
(U ) = S(u) - = =5 - |u + 2 Alu

Thus b = 0 follows from U - u > %
We look for the small perturbation w(x,7) with |[U +w| = 1 in the form

w=Iy ¢ +a(lly.)U,

where ¢ is an arbitrarily small perturbation with values in R?, and

Ny @:=¢—(9-U)U, a(f)=y/1-|CP—1.

By AU + |VU|*U = 0, we compute
S(U+Ty.@+aU) = —U;, — 9T ¢ + Ly (T @) + Ny (T @) + c(T, 9)U,
where for { =11 ¢, a =a({),
Ly() = AL+ VUL +2(VU - VE)U,
Ny(€)
= [2V(aU)-V(U + ) +2VU - V¢ + |VE* + |V (aU) *] & — aU, +2Va- VU,
(&)= Aa—a;+ (VU + ¢ +aU)|? = |VU*)(1 +a) —2VU - VE.

Since we just need to have an equation in the form (2.11) satisfied, we obtain that

(2.12) u=U+TI .0 +a(Il,;L @)U
solves (2.9) if ¢ satisfies
(2.13) —U, — oy @+ Ly(Ily1 @) + Ny (I @) + b(x,6)U =0

for some scalar function b(x,t). The strategy for constructing ¢ is based on the
inner—outer gluing method. We decompose ¢ in (2.12) into inner and outer profiles
O = Qin+ Qout,
where @;,, @, solve the inner and outer problems we shall describe below. In
terms of ¢;, and ¢@,,,, equation (2.13) is reduced to
—0,Qin + Ly [@Qin] + Ly [@our] — IT; . [0 Pour — AQoys + U]

(2.14) +Nu (Pin + Ty Qour) + (@ous - U)Us +bU = 0.

The inner solution @;, will be assumed to be supported only near x = & (¢) and better
expressed in the scaled variable y = xii()t) with zero initial condition and ¢;,,-U =0
so that IT;;1 ¢;, = @i, while the outer solution ¢,,, will consist of several parts
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whose role is essentially to satisfy (2.14) in the region away from the concentration
point x = & (¢).

For the outer problem, since we want the size of the error to be small, we shall
add three corrections ®°, ®* and &P which depend on the parameter functions
At), E(1), o(1), ae(t), B(r) such that

11, [0 (@° + D% + BF) — A(@° + D% + BP) + U]
gets concentrated near x = &(7) by eliminating the leading orders in the first error
U, associated to the dilation and rotations about x, y and z axes. We write
Qo (x,1) = P (x,1) + DO (x,1) + D (x,1) + PP (x,1),

where
with Z* : Q x (0,00) — R3 satisfying

oz =AZ*, in Q x (0,00),

Z*(-,t) =0, on dQ x (0,00),

Z*(-,0)=2;, inQ.
For the inner problem, we define

Oin(x,1) = NRQw .0, p P (1:1)

B |x—&(2)] _x—é(t) _J1, fors<1,
m(mﬂ—n(W),y— 20) ,n(s)—{

0, fors>2,

with

where ¢ (y,?) satisfies ¢(-,0) =0 and ¢(-,7)-W =0, and R(¢) > 0 is determined
later. Then equation (2.13) becomes
(2.15)

0=2""NkQu.ap[~A*¢+Lw[9] + 210, sLu[¥"]]

Qg Ay 30+ E V0~ (Ol Coe)9)
+ Ly [@° + % + P — 0. [0 (@0 4 D% 4 DP) — A (@° + ®* + @F) + U]
— O + A" + (1= M) Ly[¥"] + Q.06 (ATIR)® +2V.R V9 — (9,1R) 9]
+ Ny (Mr Qo059 + 1y (B0 + %+ @F +97))
+ (P + @0+ % +@P) . U)U, +bU.
We now give the precise definitions of ®°, %, ®B, and estimate the error
Ly[@°+ &% + ®P] — 11, [0, (D0 + D* + DP) — A (B° 4+ D% + DP) + U]
We shall choose @Y, ®%, ®P ina way such that
O (D04 D% + DP) — A (B + D + BP) 4 U, = 0 for [x— E| > A
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so that the error in the outer problem is of smaller order.
The error of the approximate solution defined in (2.10) is

U] =-0U = —[AdU + @9pU +& - 0sU + 19U + IgU |

=6 =& =&
where

QUx)=1""0papZ0,1 ()
8a)U(x) Qow.a B2o, 2(y) + Qw,aﬁ (Aoc,ﬁ —J)W(y)

U(x) A 1Qa)7a7ﬂ l,l(y)

95,U(x) =17 Q0.a.pZ12(y)

1
9aU (%) = 5Q0.ap [Z-1200) +Z120)] + Qo a p(Ap =)W ()

U (x) = _EQw,a,ﬁ Z_11()+Zi11(y)]

with Z; ; defined in (2.4) fori = 0, %1, j = 1,2,

0 —cosocosf3 sina 0 -1 0
(2.16) Aqp = |cosacosf 0 cosasinf|,Ji=|1 0 0],
—sinoe —cosasinf 0 0 0 O
and
0 —sinf 0 0 0 O
Ag = |sinf 0 —cosB|,h=10 0 —1
0 cosf3 0 01 0

It is worth mentioning that A, g —J; = o(1) and Ag —J> = o(1) as «,B < 1.
Writing y = %% = pe®, we have

Go(x,1) = = Quap | AL~ pwp(P)Ei(y) + dpwp (p)Ea(y) |,
E(x,1) = —EA 'Wp(0)Qo..p [cos O (y) +sin OE; ()]

— &AW (0) Qo8 [N OE1(y) — cos O (y)] .
Notice that the slow decaying part of the error .’ [U] consists of
2r
&o(x,1) = T2z (AQwaﬁEl‘FlewaﬁEz)
_2r [(A+ida)e®Fo
rr4+A? 0
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and
éa,l(x,t)
& . B
= Qoap |5 Z-120)+Zi20)] + (A =)W = SZ-11 () +Z1.1 ()]
= &1+ 811,
where
o —2psinfsin 6
gfl,ZZQm,a,ﬁﬁ 2psinfBcos® — (p? —1)cos
TP 2pcosfBsin6
and

& ﬁ !
*I’I_Q“”O"BTpZ _2p(:;059 .

In the sequel, we write
p(1) = A1),
Then

2r  [(A+ilw)el®+to)] 2r  [p()e®] 2
EEVE [ 0 =Tprar| o | T A
To reduce the size of .’[U], we add corrections
—B (1)
) CI)B = Qa),(x,[} 0 )
1

(po(r,t) = —/IT rp(s)k(z(r),t —s)ds

0 i0 0
2.17) ©°[p.&] = ["’ (1) } %= 0 ap {a(r)
0

where

with
2

l—e @
2(r)=VrP+ A%, k(z,1) = 2272.

By direct computations, the new error produced by ®° is

D) — AR+ Gy =T+ R, Ro= [‘%0} . %= [%l]

where
2

A !
pp— /_ 5(5) ek = ) 2(r). =) ds
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and

) = —e®Re (e & (1)) / tT SV k(z(r) ¢ — 5) ds

+Le® (AA(r) — Re (re®& (1) / p(s) ka(2(r), 1 —s)ds.
Observe that # is of smaller order. Moreover, we can evaluate
Ly[®@%] + . [~ U, + AD° — )]
= Ly[®°) — & + 111 [&) — & — Ty 1 [%o) — Ty [%1] — 61
= Holp, &)+ H[p, ]~y [%1] —

where

%[paé] = %1[p7<:] +%2[P,‘§]
with
(2.18)

%l[paé] ==
2 t .
2ow3 [ [Re(P()e )0 p 1+ Im (5(5)e ) Q0 p o] Kzt —5)ds
%2[p7§]
- %pw [ / Re (p(s)e W)k, (z,1 s)zrds} Qw.apE
— ﬁpw cosw [/TRe( (s)e 'w(t))(zkz—zzkzz)(Z,f—S)ds} Qoo pE
(2.19)
Pw [/ Im (p(s)e ") (zk, — 2%k;.) (2,1 )ds} Qo,a,pE2;
(2.20)
1 . . .
J[p, &l = " [Re (&1 —i&)e") Q.o pE1 +1Im (&1 —i&)e) Qo p E2]-

Next we consider the new error estimates produced by ®* and ®P. It is obvious
that Ly [®%] = 0 and Ly [®P] = 0. Direct computations show that

d 0 —wocosocos B —adsinf

-1

o0.p <dtQ‘”’O"B> “a = 0 . ’
0 cacosf —dacosasinf
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d _ﬁ
-1
o,o.B <dth,a,ﬁ> 0

1
@sina+
= |@(cosasinfB —BcosacosfB)—a(Bsinf +cosP) |,
wPBsina+ BB
and thus
2.21)
a)acosacosﬁ + asinf <a+ Tip? sinG)
— 0P+ AP — & 1, =0pup | — (1 — p2 cosﬁ + 1 + > sin 3 cos 9)
@acososinf — &cosf <Oc+ o smG)
= %12, B
and

— (9tq)ﬁ —I—A@‘B — (537171

HPQB @sino — B
= Qu.ap —(cosasinf — Bcosacosﬁ)+a(ﬁsinﬁ+cosﬁ)

—@Bsino—f ([3 1+p2 cos O

=%_1.1|o,B].
Consequently, we obtain
(D% + DP) L A(@* + @)~ & =% ], B],
where

(2.22) K|, B] =R 11]0, B]+ %12, B].

2.3 Inner-outer gluing system

Collecting the error estimates in the previous section, we will get a solution
solving (2.15) if the pair (¢, ¥*) solves the inner—outer gluing system
(2.23)
A20,9 = Lw[®] + A0, , 5 [Lu[¥] + Ho[p, &) + Hi[p, §] + Ty [%-1 [, BI]]

in @21{

¢(-,0) =0, in By
O-W=0, in D

(2.24) XY =AY +Y[p, &, ¥, 0, B,9] in Qx(0,T),
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where

Gp, &, 9", a,B,9]
= (1=nr)Ly[¥* |+ (¥ -U)U; + Qo8 (9AMR +2ViNg - Vi — 0 NR)

0 g (—(Qph 5 Corp)d A~ Ay-¥y0 +471€9,0)
+(1=ng) (Holp, &) + Hilp, & + 11y [Z-1[at, B]]) — 1y [221]
+ Ny [NrQw.ap® + Ty (B0 + D% + P 4+ 9)]
+ @+ +of).u) U,

the linearization Ly [¢] is defined in (2.3), and

Dor = {(,1) 1y € Bog(,t € (0,T) }
with the radius
_ |log T|(T —1)
 [log(T 1)
The reason for choosing such R(¢) and A4, (¢) will be made clear later on. If the pair

(¢, ¥*) solves the inner—outer gluing system (2.23)—(2.24), then we get a desired
solution

(2.25) R=R(t)=A(t)" ", with A.(1) and ¥ € (0,1/2).

u(x,t) = U+ [NrQp o pd +P* + 0" + 0% + P
+a(My: Mk Qu.apd + P + @0 + &%+ DF))U

)

which solves problem (2.9). We take the boundary condition u‘ g0 —€3:=

)

which amounts to
M, [P + @0 4 &% + DF) 4 a(IT,. (U + ¥ +@° + &% + DU
=e3—U on dQx(0,T).
So it suffices to take the boundary condition for the outer problem (2.24) as
|, =e3—U—d" —d%— P,

2.4 Reduced equations for parameter functions

In this section, we will derive the parameter functions A(z), &(r), @(t), o(t)
and f3(¢) at leading order ast — T.
The inner problem (2.23) has the form

A2¢ =Ly (9] +hip,&,a,B,¥](yt)  in Do,
(2.26) o-W=0 in Do,
¢(70) =0 inBZR(O).
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Here we recall that we write p(r) = A(¢)e!"). For convenience, we assume that
h(y,t) is defined for all y € R? extending outside g as

h[l’?é?a’ﬁ?l}’*]

= AZQ;}aﬁx-@zR [I:U[\P*] +%[P, é] + [pa é] +HUL [‘%—1 [OC;BH] )
where y4 denotes the characteristic function of a set A, % is defined in (2.18),
(2.19), #1 in (2.20) and Z_; in (2.22). If A(¢) has a relatively smooth vanishing

as t — T, it is then natural that the term A2¢; is of smaller order and the equation
(2.26) is approximated by the elliptic problem

(2.27) Lw[0]+h[p,E,a, B, ¥ =0, ¢ -W=0 inBag.

We consider the kernel functions Z; () defined in (2.4), which satisfy Ly [Z; ;] =0
for Il =0,+1, j = 1,2. If there is a solution ¢(y,7) to (2.27) with sufficient decay,
then necessarily

(2.28) /B hip,&,a,B,¥*|(y,1)-Z; j(y)dy=0 forallt € (0,T),

for/ =0,+£1, j =1,2. These orthogonality conditions (2.28) amount to an integro-
differential system of equations for p(t), &(z), a(t), B(¢), which, as a matter of
fact, determine the correct values of the parameter functions so that the solution
pair (¢, ¥*) with appropriate asymptotics exists.

For the reduced equations of p(¢) and & (r) which correspond to mode / = 0 and
mode [ = 1, respectively, we invoke some useful expressions and results in [15,
Section 5]. Let

Boslpl(1) = 1 [0 gl Hlp,) + il )+ Ty (901t B Zo,105)
for j =1,2. From (2.22), (2.22) and (2.21), direct computations yield

;,laﬁnw (%1, B]] - Zo(y)dy

Bor
2

(2.29) - 1OR” | i log(4R? + 1

n( T 0g(4R"+1)

-(wacosasinB — accos B — dBsina — BP),
and

[0y T 1[0, B1) - Zoa(y) dy

2R

DA R '

Combining (2.18), (2.19) with (2.29) and (2.30), the following expressions for %y,
Py, are readily obtained by similar computations as in [15, Section 5]
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Boi[p / Re (p(s)e NI, <Mt)2> s —2A(t) +o(1)

t—s J t—s
_ A()*\ ds
I l(L) ) T o
%02 / m ) 2 ( f—s f—s’
where 0o(1) =+ 0ast — T, and I';(7) are smooth functions defined as
2
= [ [ +2<:K;<c>1_’i—2 ~eos() K (0)
p L=1(1+p?)
= [ P K = CReg(D)] ey -
where
| —e ¥
K(§)=2 o
Using the expressions of I';(7), we get
Tj(t)— 1| <Ct(1+|logzt|) fort <1,
mmg% for 7> 1.
Define
1.
(231) Bolp] = 3¢ (%o [p] +1%0lp])
and
ap B )=~ [0l (Lol Z0,0)dy 1.2

ao[p,é,a,ﬁ,w*] =5

Similarly, we let

BAEN) = 2 [ gl Hilp, €]+ Lo, E] +-7 1[0 Bl) Z150)

()(a()][p,é,OC,ﬁ,lP*]+ia02[p,§,06,ﬁ7‘}’*]).

for j=1,2, and

2118](t) = 21 [E](t) +i%12[E](1).
Directly using the expressions (2.22), (2.22) and (2.21), we have

[ 04l Tl (1[0 Bl)- 211 () dy

8TR? o - ;
= m(wacosacosﬁ—kaasmﬁ—a)31n06+[3),

21

dp,
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and
ok Tl 11 [a B Z12() dy
Bor '
8nR> . o . .
:—m(a—wﬁcosacosﬁ—ocﬁs1nﬁ+a)cosa51nﬁ).

Therefore, by (2.20), (2.4) and the fact that f(;x’ pwlzjdp =2, we obtain

B[E)(t) = 2[& (1) +i& (1) +0(1)] as 1 = T.
At last, we let

al][pé 04 B IP* = 27_[/ Qwaﬁ ]ZI,J(y)dya j:1727

ap,&, 0, B, 9" := = (an[p,&, o, B, ¥ +ian[p. &, o, B, ¥)).
We thus obtain that the four conditions (2.28) for [ =0, 1 are reduced to the system
of two complex equations

(2.32) %O[P] :aO[paévavﬁalP*]?

(2.33) B1El=aip,&,a, B,
We observe that

t—A2
,@o[p]:[T ()d +0(||pll=) +o(1) as t —T.

To get an approximation for ag, we need to analyze the operator Ly in ag. To this
end, we write

W= [m V=i
From (2.7) and (2.8), we have
Lol (n1) = [Lolo¥] + (Lol (7] + (Lol [¥7],
where
([Lulo[¥*] = 17" Q. appwpldiv(e " y*)E| + curl (e "y*)Ey),
[Ly)i[¥P] = — ZA_IQw,avﬁwp cosw|[(dy, W3 )cos 0 + (dy, Y3 ) sin O] E;
—277! Qw,a,pWp cOsW|[(dy, W3) sin O — (dy, y3) cos B Es,
[Lu2[¥] = 27" Q.0 P Wy [div(e™§) cos 26 — curl(e'® ) sin 26 E
+27! Qw7a7ﬁpwlz, [div(e'®W*)sin26 + curl(e’® ") cos 20 Ey,

and the differential operators in W* on the right hand sides are evaluated at (x,7)
with x = &(t) + A(t)y, y = pe’® while E; = E;(y) for j = 1,2. From the above
decomposition, assuming that ¥* is of class C' in the space variable, we then get

aolp, &, 0, B, W] = [divy” +icurl y*|(€,1) +o(1) as 1 = T.
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Similarly, since [; w,z) coswpdp =0, we get
a[p. 8,0 B, W) = 200, i +i0, ) (1) [ coswwdpdp-+o(1)
=o(l) as t > T.

We now simplify the system (2.32)—(2.33) in the form

22 s
/Tﬁ%;mWHmW@WHMHWWQ

(2.34) E(t)=0(1) as t —» T.

For the moment, we assume that the function W*(x,) is fixed and sufficiently reg-

23

ular, and we regard T as a parameter that will always be taken smaller if necessary.

We recall that we need &(T) = g where ¢ € Q is given, and A(T) = 0. Equation
(2.34) immediately suggests us to take & (1) = g as the first approximation. Neglect-

ing lower order terms, p(t) = A(r)e’®") satisfies the following integro-differential

system
t—A%(1) p(s) ) .
(2.35) / t—ds =divy*(q,0) +icurly*(g,0) =: a.
T —s
At this point, we make the following assumption
(2.36) div y*(¢,0) <0,
which implies that afj = —|ajj|e"® for a unique oy € (—%, %). Let us take
(1) = wy.

Equation (2.35) then becomes

=A%(1) },
(2.37) / () gy — —|aj].
-T t—s
We claim that a good approximate solution to (2.37) as t — T is given by
; K
At)=————
) log?(T —1)

for a suitable k¥ > 0. Indeed, we have
(=A%) }, 1—(T—1) ), .
/ A 4 = / A0) 45+ A1) [log(T — 1) — 2log(A (1))
-T r—s -T r—s

+ /t U=,

—(T-1) t—s

~ /’ M) 40 A loa(T — 1) = Y1)
-T T—s



24 C.C.LAL ET ALL

ast — T. We see that

diit) = %(logz(T —1) A1) =0

from the explicit form of A (). Thus Y(¢) is a constant. As a consequence, equation
(2.37) is approximately satisfied if « is such that

i
o[ 2 as = al,

-T T—s

log(T —1)

which finally gives us the approximate expression
A1) = ~|divy* (q,0) +icurl y*(¢,0)| 2. (1),

where

: logT
A1) = _‘2"#.
log“(T —1)
Naturally, imposing A, (7T') = 0, we then have
|logT|
2.38 M(t)=—5——(T—1t)(14+0(1)) as t = T.
239) 0= og2r T~ 1-+o(1)
Next, we consider (2.28) for the case of mode / = —1, which gives the reduced

equations of a(¢) and B(z). By (2.22), (2.22) and (2.21), we evaluate
A o pllut [ 2110, Bl Z- 11 (y) dy
2R

4R?(2R?
4R% +1
(=B — @sina + dacosacos B+ cosin B)

—8r [(Rz—logR)B(l +0(1))} 7

+log(4R* + 1)>

and
|0y g (1[0 Bl) - Zo12(v) dy
2R

2 (72
=4n (W —log(4R* + 1)>
-(a(1—Bsinf —2cosB)+ wcoso(sinf —Pcosf))
=87 [(—R*+logR)a(1+0(1))],
where we recall that ®(7) = @y. Since

AZ —1

.0,

5 [Ly[ W)+ A+ 0] - Z-1 j(y)dy = cjA
2R



FINITE TIME SINGULARITY FOR NLCF IN 2D 25

for some c¢; € R, for j = 1,2, the orthogonality condition (2.28) with [ = —1 gives
8TA%(—R? +1ogR) B(1+0(1)) = c|A,
8TA%(R? —logR) & (1+0(1)) = c2A.

Thus, by (2.38) and the definition of R = R(¢) in (2.25), good choices for o () and
B(¢) at leading orders are

a(t) = ca(T =) (1+0(1)), B(t) = cg(T —1)2(1+0(1)), as t > T
for some 01, 6, >0 and cq, cg € R.

2.5 Linear theory for the inner problem

To capture the heart of the singularity formation, a linear theory of the inner
problem (2.23) is required. In contrast with that by [15], it turns out that we will
have to establish a decay estimate of second order derivative of ¢ in order to handle
the coupling effects between the inner—outer problem of u and that of v below. We
consider

220,¢ = Ly [0] +h(y,t), in D,

(2.39) 0(-,0)=0, in Byg(o),
¢ -W = 0, in @2137
where we recall from (2.25) that
. log T'|(T —1)
R=R(t) = A, % th A, :|7 d 7. €(0,1/2).
() =R, with Au() = Pro S and 7€ (0172

We regard h(y,?) as a function defined in R? x (0, 7') with compact support, and
assume that & (y,7) has the space-time decay of the following type

AY (1)

h(y,t)] < , h-W=0,
01 S T
where v > 0 and a € (2,3). Define the norm
IAllva:= " sup — A;V(O)(1+|y[))IR(y0)].
(r,t)€R?x(0,T)

In the polar coordinates, /(y,t) can be written as
h(yat) = hl (pv 97t)El(y) +h2(p7 G,I)Ez(y), y= peie
since h- W = 0. Expanding in the Fourier series, we write

(2.40) h(p,0,t):=h"+in* = Y h(p,0)e*®, = hi+ihe
k=—c0

such that

@41) bty = Y ) = ho(r) + i (0n) +hos () o (1)

k=—o0
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with
(2.42) hi(y,1) = Re(hi(p,1)e*®)E| +Im(hy(p,1)e*®)Es, k € Z.

We consider the kernel functions Z; ; defined in (2.4), and define

%Zk G\

(2.43) fzk(y,t) = e
& T xlzi,P

/hzt Zyj(2)dz, k=0,%x1, j=1,2,

where
w2 if [y| < 2R(t),
201 = 5 (1) ‘ vl (t)
0 if [y| > 2R(2).

The main result of this section is stated as follows.

Proposition 2.1. Assume that a € (2,3), v >0, 8 € (0,1) and ||h||y 4 < 4oo. Let
us write
h=ho+hy+h_1+h, with h| = Z hy,.
k#0,+1
Then there exists a solution @ [/] of problem (2.39), which defines a linear operator
of h, and satisfies the following estimate in %>z

100+ (1+ ) Ve o ()| + (14 y])* V3o (3,1)]

ROG-9) (1) 1 . AY (R (1) -
< A)(t) mi , ho — ————|holv.a
~ *()mm{ 1+|y’3 1_|_|y|a72 H 0 1+’y| || 0||v7
AY (1) AY ()Rt
+1+‘ |a 2 th thVa 1+| |2 H IHVa
FAL @) |-y = h-tlv.a+AY (1) 1ogR(2) [[A-1]|v.a
A (1)
+WW1LHV,LP

The construction of the solution ¢ to problem (2.39) will be carried out in each
Fourier mode. Write

0= 00 0ul00) = Re(@u(p.))E +Im(u(p.1)e*)Es.

k=—cc
In each mode k, the pair (¢, /) satisfies

A0 ¢k = Lw[¢] +hi(v,1),  in Dag,
¢k(y70) =0, in B4R(0)7
which is equivalent to the following problem

{/128,<pk Lo +Iup,), in Dug,

(2.44)

¢k<p70)_ ) in (074R(0))7
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where Z4r = {(p,t): t €(0,T), p € (0,4R(¢))}, and

o,
L] = Dpp i+ [;)% — (K +2kCOSw—|—cos(2w))%.

It is direct to see that the kernel functions for .%} such that .Z;[Z;] = 0 at modes
k =0,=%1 are given by

. p 1 2p
_1+p2’Zl(p)_1+p2’Z

We have the following lemma proved in [15, Section 7].
Lemma 2.1 ([15]). Supposev >0,0<a <3,a+# 1,2 and
(3, 0)llv.a < oo
Then problem (2.44) has a unique solution which takes the form
0 (,1) = Re(@(p,1)e"®)E1 +Im(qx(p,1)e"® ) Ex
and satisfies the boundary condition
O(y,1) =0, y € IByr((0), V1 € (0,T).
Moreover, the following estimates hold
R*¢, for a<?2
(1+p)> %, for a>2

(2.45) Z(p)

fork>2,

[AORIIPS llk_zllh\\v,a{

R>4,  for a<?
logR, for a>?2,

01| S A:uhuv,a{
A

R3¢ <1
o0(r,1)] 5 2e Lillva RS, - for
1+p R-, for a>1,

AR Allva
(1+p)?
The higher regularity estimates for solutions constructed in Lemma 2.1 are

given by the following lemma. Before we state the lemma, we first introduce the
Holder semi-norm, which is better expressed in the (y, 7)-variable. Define

tds
(1) = A QLT(s)

91 (» 1) S

(2.46)
so that
¢(‘7 O) =0 in B4YR(0).

We denote the parabolic ball
B3, 7) = {0, 7) : y—y P lr - <2},

{afq) = Lw[9] +h(y,7) in Zup,
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and also introduce the Holder semi-norm

gy, 7) — g0, 7))
[glaa:=  sup
(), (v.e)ea |y — Y |% + |1 — |%/2

for a € (0,1) and a set A. We denote C*%/%(A) by the set of functions on A such
that [g]o.4 < +oo, endowed with the norm

||8Hca<,a/2(A) = Hg||L°°(A) + [g]ouA-

Lemma 2.2. Let ¢ be a solution to
lzatq) :LW[¢]+h(y,t), in 947/1%
¢(-,0) =0, in Byyr(0),

where h(y,t) € C*%/(%(y,t) N Dayr) for some ot >0 and { = % + 1. If for some
a,b,y,M > 0 we have

0,0+ (1+ VD[RO, + (14 D> (04 1)] 0, 0,000 7400

(2.47)

(2.48) AL (1)
<M——"— in Dayr,
(14 1yl 4
then there exists a constant C such that
Ab(t _
249) (14 [y)[Vy0 0ot)| + (14 [¥)2[V39 (3,1)] < CMmTy)Da in Dyg.

Here

Dy ={(n1): [y| <yR(t), 1€ (0,T)}.
Moreover, if ¢ satisfies the Dirichlet boundary condition ¢ (-,t) = 0 on dByyg, for
allt € (0,T), then the estimate (2.49) is valid in the entire region Dyyg.

Proof. In the (y, T)-variable with T given by (2.46), problem (2.47) reads as

0:0 =Ly (0] +h(y,T) in Dap,
¢(-,0)=0 in Bayg(0)-

Let 71 > 0 and y; € B3yg(r,)(0). Let p = |sz1\ + 1 so that By (y1) C Bayr(z)(0)- We
prove (2.49) by the scaling argument. Define

0 T
#(z,5) = ¢ (y1 +pz, 71 +p°s), z€ B1(0), s > _p%.

For the case 7| < p2, ¢(z,s) satisfies the following equation
asé = AZ& +A(Z7S) VZ& +B(Z,S>(]§ + il(LS) in B, (O> X (_170]7

where the coefficients A(z,s) and B(z,s) are uniformly bounded by O((1+p)~2)
in B;(0) x (—1,0] and

h(z,5) = p*h(y1 + pz, 71 + p°s).
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Let b’ > 0 such that 7% ~ Af(¢) from (2.46). By the facts p < CR(t;) and
R*(1) < 7 for 7| large, we have

ar” < (u+p’s) M <G
for some positive constants C|, C, independent of 7;. Then standard interior gradi-
ent estimates together with the assumption (2.48) imply

V2B l=(8,,40)x (1.2)) S 10118 2 (0)x(0.2)) + I1Bll=(8, 0 < (0.2))
Sotp
which in particular gives

PIVyo (v, )| = [V.0(0,1)] < be p> .

On the other hand, from interior parabolic Schauder estimates and (2.48), we have
5z - -
IV llr=(8, u0)x(12)) S 1011228, (0)x 0.2)) T I1hll canar s,  0)x (02))
LR

and in particular

P IVi0 (v, m)| = Vi(0,1)| S 77 p* .
For the case 7; > p? the argument is similar. In this case ¢ satisfies the equation
in B1(0) x (—;—12,0] and it has initial condition 0 at s = —Z;. Then similarly by
the standard boundary estimate, we get the desired bound. Finally, translating the
above bounds into (y,7)-variable, we conclude the validity of (2.49). O

As we can see from Lemma 2.1, the estimates at modes k = 0,1 are worse
than high modes k& > 2. In fact, if certain orthogonality conditions are imposed on
h(y,t), better estimates of ¢ can be obtained at modes k = 0,+1. In the sequel, we
omit the subscript for each mode if there is no confusion.

Mode k =0

We consider
22010 = Ly [@] +h(y,1) + ¥ ;-1 28020 jwp  in Dog

(2.50) o-W=0 in 9xr
Q= 0 on 882R X (0, T)
¢(,0)=0 in Bog(o)

at mode 0. By carrying out another inner—gluing scheme for mode 0, the following
Lemma was proved in [15, Proposition 7.2].
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Lemma 2.3 ([15]). Let § € (0,1), v>0and a € (2,3). Assume ||h||y 4 < +oo. Then
there exists a solution (¢, ¢o;) of problem (2.50) which defines a linear operator in
h(y,t) such that

RS(5-a) s
[900)|+ (1 DIV, @000 £ A OllAllva § TTID )
W’ 2R §|)’|§2R
and Wz
oy = — BB Gry

Jr2 w31 Zo 12

where G is linear in h satisfying

|GIH]| S AL (OR™2|A]lv.a

~

for o' € (0,a—2).

Mode k = —1

We consider problem (2.44) for k = —1 and the kernel functions defined in
(2.4). We first state a result proved in [15, Lemma 7.5].

Lemma 2.4 ([15]). Let a € (2,3), v >0 and k = —1. If h_ in (2.44) satisfies
|h-1]|v.a < oo and

L a0 Zo1(0)dy =0 for j=12,V1€ (0.7),

then there exists a solution ¢_; to problem (2.44) at mode —1 which defines a linear
operator of h_1, and ¢_ satisfies

R4—(l
10, )| < AY(O)||h- inq logR, ——— ¢.
‘(b l(ya )‘N *()H 1HV~,amln{ og ’1+’y‘2}

Since the incompressible Navier—Stokes equation is essentially coupled with
the transported harmonic map heat flow through the inner problem, the linear the-
ory required for mode k = —1 should be very refined, and Lemma 2.4 cannot be
applied to gain contraction when we finally show the existence of desired blow-up
solution. Instead, we shall develop a new linear theory at mode —1. The main
result for mode —1 is stated as follows.

Lemma 2.5. Letra € (2,3), v>0and k= —1. If h_y in (2.44) satisfies |h_1 ||y« <
oo and

/th,l(yjt)Z,ljj(y)dy:O for j=1,2,Vt€(0,7T),

then there exists a solution ¢_1 to problem (2.44) at mode —1 which defines a linear
operator of h_1, and ¢_, satisfies

010D S A Ol-1llv.a-
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Proof. For convenience, we change variable (2.46) and consider
0cp_1 = L[] +h_y.
By letting ¢_1(p,7) =Z_1(p)f-1(p, ) and using .Z_[Z_;] = 0, we obtain

Iyl

—1

)

N

1
(2.51) Orf 1= ZTdiv(z%IVf,IH
—1 -1

where Z_1(p) is defined in (2.45). We first solve
(2.52) div(Z® Vo) =h_Z_,.
By the orthogonality condition [ h_1(y,1)Z_1 j(y)dy = 0, we get

_v/

T

2.53 Vil ———

where V' > 0 is the number such that 1.¥ ~ 7" under the change of variable (2.46).
Thus, by (2.52), the problem (2.51) becomes

17-1lv.as

| L.
Oef1 = Zwa(z%lVf,l) + Zwa(ZEIVfO).
~1 —1
In order to estimate f_;, we need to estimate the fundamental solution S to the
problem
1 .
0:S = Zwa(zE \VS),
—1
S“c:O - 60’
where & is the Dirac delta function at the origin. We consider
r .
arSe = ZTdIV(Zzlvss),
~1
L
=0~ ppe2¢

We note that as € — 0, S‘g‘T:O dx — &. Let V€ =S, Then differentiating the
above equation with respect to p, we obtain

S|

1
0V = _div(Z2 | VV®) + Gpp (log 22 )V*,
(2.54) -
Ve

|x| k2

=0 "ot
We claim that V¢ < 0. Indeed, we can easily check that dp, (logZ? ) < 0. There-

[

_h2 . o
—5ger€ 2> <0 and the maximum principle, we have VE <O.

£ —
fore, by V ‘ 0=
Then we can write

| 185 plds == [ V(s p)ds =M (p).
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Integrating equation (2.54) over T from 0 to oo, we get

|x| B2

e 22,
2met

1
~1
Let M® = d, G®, where G* satisfies

1
(2.55) ZTdiv(ZEIVGE) =
—1

2
By Z_i(p) = p22/11’ we write

1
——div(Z2 | VG®) = ———
72, : 72 (p)p

= JppG° +

2.56
220 s
p(p2+1) P77
From (2.55) and (2.56), we obtain

| 185(s.p)lds = = (p) = ~3,G*(p)

p (

- 2mer pd 1+ r2)?
< ! 7(14-[)2)2 /Mre_’;ezzdr
2rer pd o
1 1+p*
= E p5
Therefore, by letting € — 0, we obtain
14 p*

2.57 /oo Sp(s,p)|ds <
@5) 185t p)lds £
Duhamel’s formula gives

f-1(0,7) = /f /:Sp(s—r,p)VfoZEI(p)pdpds

S /O (/T !Sp(S—T,p)\ds> IV foZ2 ,(p)pdp.
By (2.53) and (2.57), we conclude
lf-1(0,7)| ST

In the original time variable 7, we get

‘f71(07t>| S )L:(t)v
and parabolic regularity theory readily yields

[f-i(p, ) S AL ().
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Therefore, we obtain
1910, SA (Ol h-1]lv.a
as desired. ]

Mode k =1

We assume that /1 (y,¢) is defined in the entire space R? x (0, T') such that

(258) hl(yvt) = diVyG(yat)
with
A1) 2
2.59 G S——— R*x (0,T
2:59) GO0 S e 0) R X (07)

for v>0anda € (2,3). By the blow-up argument, the following lemma was proved
in [15, Lemma 7.6].

Lemma 2.6 ([15]). Assume that v >0, a € (2,3) and h; takes the form (2.58) such
that (2.59) holds and
[ m0.0Z1,(0)dy =0 forall 1 € (0.)
R

for j =1,2. Then there exists a solution ¢ (y,t) to problem (2.44) for k = 1 which
defines a linear operator of hy(y,t), and ¢\ (y,t) satisfies

101(0,1)] S A Ollva

1+ ‘y|a_2 n .@313.

A direct consequence of Lemma 2.6 is the following

Lemma 2.7 ([15]). Assume v >0, a € (2,3) and

hi(y,t)Z1,j(y)dy =0 forall t € (0,T)
Bog
for j=1,2. Then there exists a solution ¢;(y,t) to problem (2.44) with k = 1 which
defines a linear operator of hy(y,t), and ¢, (y,t) satisfies

AL Ol Pllv.a
DS — :

By the construction in each mode, now we prove Proposition 2.1.
Proof of Proposition 2.1. Let h be defined in Z»g with ||h|y 4, < +c0. We consider

/’LZ(M) = Lw[¢] +h in @4]{,
¢(-,0)=0 in Bygo)-
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Let ¢ be the solution estimated in Lemma 2.1 to
A20¢x = Lw[oe] +hi  in Dug,
¢k(',t)20 on 8B4Rx(O,T),
¢k(-,0) =0 in B4R(0).

In addition, we let ¢g 1, ¢1,1, ¢—1,1 solve

A209 1 = Lw[¢ia] +he  in Dag,
Oe1(-1) =0 on dBag x (0,T),
P1(-,0)=0 in Byg(0)»
for k = 0,41, where hy is defined in (2.43). Consider the functions @ > constructed

in Lemma 2.3, ¢_; > constructed in Lemma 2.5, and ¢ > constructed in Lemma 2.6,
that solve for k =0, +£1

{Wzm = Lyldeo) +h—T  in D
¢k72('>0) =0 in B3R(0).
Define

0:= ) (daitta)+ ), &

k=0,%+1 k#0,%1
which is a bounded solution to the following equation
A0, = Lw[8]+h(y1) in Dag.

Moreover, it defines a linear operator of 4. Applying the estimates for the compo-
nents in Lemmas 2.1, 2.3, 2.5, and 2.6, we obtain

Ry 1 _ AY(ORX(1) -
)| < AY(¢) min , ho — ho||v.a + =R
00:0)] S2X(0) { pr Tt (ol + 2 ol
AY (1) _ AY (Rt -
+1+|y’a72 H 1 IHV,a+ 1_|_|y|2 H 1Hv,a
+A () |-t —h-tllv.a+ AL (1) 1ogR(t) [|h-1]lv.a
AL (1)
+ 1+|y’a,2 || LHVﬂ

in Z3g. Finally, Lemma 2.2 yields that the same bound holds for (1+ |y|)|V,¢| and
(1+ |y|)2|V§¢| in 2. The function ¢ ‘ 9y, SOIVes equation (2.39), and it defines a
linear operator of / satisfying the desired estimates. The proof is complete. O
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2.6 Linear theory for the outer problem

In order to solve the outer problem (2.24), we need to develop a linear theory to
the associated linear problem of (2.24), which is basically a heat equation. How-
ever, we will have to establish a decay estimate of second order derivative of ¥ in
order to handle the coupling effects between the inner—outer problem of u and that
of v below.

For g € Q and T > O sufficiently small, we consider the problem

Vi =Ay+fxr)  inQx(0,T),
(2.60) v=0 on dQ x (0,7),

y(x,0) =0 in Q.
The right hand side of (2.60) is assumed to be bounded with respect to some
weights that appear in the outer problem (2.24). Thus we define the weights

p1 = )L?(MR)flx{rgsthp
1760

oy s
(2.61) pr:=T % 2 X{r>AR}»

p3:=T"%,

where r = |x —g|, ® > 0 and oy > 0 is small. For a function f(x,) we define the
L”-weighted norm

3 -1
(2.62) 1llei= sup (143 pilxn) ) 1f (e
Qx(0,T) i=1
The factor 7% in front of p, and p3 is a simple way to have parts of the error small
in the outer problem. Also, we define the L™-weighted norm for v

1 _
‘IOgT‘A (O)R(O) ||WHL°°(Q><(O,T)) + A’* G)(O)HVXWHL‘”(QX(O,T))

lwllz 0.0 := 24-°(0)

+ sup A0 (ORT() t)llw(x,t)—w(x,T)l

Qx(0,T) |log(T —
+ sup A C)|Vaw(x,t) = Vow(x, T)| 4+ Vil =@x 0.1)
Qx(0,T)

-0 2Y|Vxl//(x,l‘)—vxl//(xl,t/)|
(2.63) Fsup A O (R T

where ® > 0, y € (0, 1), and the last supremum is taken in the region
1
x, X eQ, t,t€(0,T), |x—x|<2L0)R(t), |t—1]< Z(T_t)'

We shall measure the solution y to the problem (2.60) in the norm || ;0.
defined in (2.63) where y € (0, %), and we require that @ and ¥, (recall that R =
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A% in (2.25)) satisfy

(2.64) Y. € (o,%), @< (0,7).

The condition ¥, € (0, %) is a basic assumption to have the singularity appear inside
the self-similar region. The condition ® > 0 is needed for Lemma 2.8. The assump-
tion ® < v, is made so that the estimates provided by Lemma 2.9 are stronger than
that of Lemma 2.8.

We invoke some useful estimates proved in [15, Appendix A] as follows.

Proposition 2.2 ([15]). Assume (2.64) holds. For T > 0 sufficiently small, there is
a linear operator that maps a function f : Q x (0,7) — R? with || f||«« < o into
which solves problem (2.60). Moreover, the following estimate holds

IWlize.y < CIS
where y € (0, 7).
The proof of Proposition 2.2 was achieved in [15] by considering
vi=Ay+f inQx(0,T),
(2.65) y(x,0)=0, xeQ,
y(x,1)=0, x€dQx(0,7),
and decomposing the equation into three parts corresponding to the weights of the
right hand side defined in (2.61).
Lemma 2.8 ([15]). Assume ¥, € (0,%) and ® > 0. Let y solve (2.65) with f
satisfying
FO0)] < A2 (A(DRE) ™ Xir—gl<30. (1)R ()} -
Then the following estimates hold

and for any vy € (0, %)

Vo) -V _ . A
N PO ()
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forany x,and 0 <t' <t <T such thatt —t' < %(T —1),

Yyl - Ve _ . 290)
e — |2 ~ (MOR@))
forany |x —x'| <2A.(t)R(t) and 0 <t <T.

Lemma 2.9 ([15]). Assume ¥, € (0,1) and m € (3,1). Let y solve (2.65) with f
satisfying
A1)
f(x0)] < [2— g Mialz2 R0}
Then the following estimates hold
W (x,1)| < CT™|log T,
W(x,t) = y(x.T)| < Cllog T|"(T —1)"log(T —1)[*~",
Tmfl ‘ logT|27m
\% HN<C——=——
V)| £ C—pas—

m—1 o _
V) - V7)) < R0

IV2y(x,1)| <C,

and for any v € (0, %),

V(o) =Vy Ol 1 A1 (r)|log(T — 1)
(k=P +le=])7 = " (A(0)R(1))* R(7)
forany |x—x'| <2, (1)R(t) and 0 < t' <t < T such thatt —t' < (T —1).

Lemma 2.10 ([15]). Let v solve (2.65) with f such that

fenl <1,
Then the following estimates hold
[w(x,1)| <Cr,
lw(x,0) = y(x,T)| < C(T —1)|log(T —1)],

Vy(xn<cT'?,

VY1)~ V(e T)| < C(T —1)'12,

Vv <C,
VW (x,12) = Vr(x,n)| < Clta — 11|,
[Vy(xi,1) = Vy(xa,1)| < Claxr —xa|[log(fx1 —x2)]-
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Remark 2.11. We note that the estimates for |V2y/(x,¢)| in Lemmas 2.8-2.10 are
achieved by writing the original equation (2.65) in the self-similar variables (y, 7):

i) = (155,50,

where y = % and 7 is defined in (2.46). Then y(y, 7) satisfies the equation

0P =AW + (A +AAy) Vo + A2 f(Ay+&,1(7)).
By similar argument as in the proof of Lemma 2.2, we can show the boundedness

of |[V2y(x,t)| by the scaling argument and parabolic regularity estimates, which is
sufficient for the final gluing procedure in Section 4 to work.

3 Model problem: Stokes system

In order to solve the incompressible Navier—Stokes equation in (1.1), a linear
theory of certain linearized problem is required. In this section, we consider the
Stokes system

dv+VP=Av+V-F, in Qx(0,T),

o V.oy=0, in Qx(0,T),
' v=0, on dQ x (0,T),
v(-,0) = vy, in Q,

which is the linearized problem of the incompressible Navier—Stokes equation in
(1.1). The idea is the following. Apriori we assume that the nonlinearity v- Vv
is a perturbation under certain topology. Then we develop a linear theory for the
Stokes system under which we shall see that v- Vv is indeed a smaller perturbation
under some assumptions in Section 4.

Our aim is to find a velocity field v solving (3.1) with proper decay ensuring the
inner—outer gluing scheme to be carried out. Suppose that F(x,) in (3.1) has the
space-time decay of the type

AY72(t
P O [ e ey
1+

AV ()

|ViF (x,1)| < C )
x—q

1+150

x=q
2.(0)

for v > 0and a > 1. Here g € Q is the singular point for the orientation field u(x,?)
and
_ |logT|(T —1)

O Trog(r =
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a+l
) |F (x,1)]

a+2
) |ViF (x,1)].

We define the norm

x—q
2.(7)

IF|lsy—2atr1:=  sup AZV(t) (1 +
(x,1)eQx(0,T)

(3.3)
X—q
1.(1)

+ sup AV 1+
(x,1)€QX (0,T)

The main result of this section is stated as follows.

Proposition 3.1. Assume ||F [[s.y—2,411 < +eo with v >0, a > 1, and [|vo|| 2-2/» <
p.p
+o0, where the Besov norm | - || g2/ 1s defined by (3.38). Then there exists a
p.p
solution (v, P) to the Stokes system (3.1) satisfying

e in the region near g: By5(q) = {x € Q: [x—¢q| <28} for 6 > 0 fixed and
small,

Ayt

)

VOIS IFllsy-2a+1

As(t)

and

A1) A2 ()

[P, S Fllsy-2.at1 x—gqf?

a+1
xX—q

L+170

e in the region away from ¢: Q\ Bs(q)

”v”sz*l((Q\Ba(q))X(OJ‘)) + HVPHLP((Q\Bg(q))X(O,T)) S IF|
for (v—1)p+1 > 0. Moreover, if v > 1/2, then

Sv—2,a+1+ ||V0|!B§;)z/p

Wlleaer @by =) S IFllsyv-2.a+1+[voll g

for0<oa<2—-4/p.

To prove Proposition 3.1, we decompose the solution v(x,?) to problem (3.1)
into inner and outer profiles

v(x,1) = NgVin(x,1) + Vour (x,2),
where the smooth cut-off function
1, for |x—g|<d
X)) =
5 (%) {0, for [x—gq| > 20
with & > 0 fixed and sufficiently small such that dist(g,dQ) > 26. We denote
Baslg) = {xeQ: [x—g <26},
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It is direct to see that a solution to problem (3.1) is found if v;, and v, satisfy
Ovin+VP = Aviy +V-F,, in R?x(0,T),

(3.4) V - vin =0, in R?x (0,7),
vin(+,0) =0, in R,

OVour + V(P —NsP) = Avys + (1 —=M5)V-F +2Vn5- Vv,
+ (Ang)vin — PiVns, in Qx (0,7T),
(3.5) V Vour = =VNs - Vin, in Qx(0,T),
Vour =0, on dQ x (0,T),
(Vour (+,0) = vo, in Q,

where Fiy = FX(p,5(4)x(0,r)}- The estimate of the inner part (3.4) is achieved by
the representation formula in the entire space, while the outer part (3.5) is done by
W,f o1 -theory of the Stokes system.

Lemma 3.1. For ||F|[s,y—2.4+1 < +oo, the solution (v, Py) of the system (3.4) sat-

isfies
)Lv 1
(3.6) ‘Vin(xvt)’ S HFHS,VfZ,aJrl x(q)
(1)
and
A (t A2t
6D PG| S IFlsezan | 2o 0 _
|X*Q| 1 x—q +
%o

Proof. For simplicity, we shall write v;, as v in the following proof. Denote v =
[‘;1] . The estimate (3.6) is obtained by the well-known representation formula in
2

the entire space

ot = [ Stz 00,0),@de— [ [ duSie—zt—5)Fules) dads,

where S;; is the Oseen tensor, which is the fundamental solution of the Stokes
system derived by Oseen [56], defined by

1 92
68 Syle) =GN8; 55 [ Gulogli—ldy
i
with G(x,1) = ¢ 4;; ,and F = (Fji)axo. Itis well known (see [61] for instance) that
1
(3.9) |DLDS (x,1)] < Gy T

(2 +0)e+=
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Since v(-,0) = 0, we then get for i = 1,2,
lv 2( )

=) dzds

i) SFllsyv—2.4
gy AR Lot z|+ﬁ>

= ||F[sv—2ar1(I1 + 1),

where we decompose

t—(T—1)? 1 /'Lv72( )
I :/ / dzds,
L R2 (|x—z| + 71— ) G e
()

()

and = 2( )
I / / dzds.
2T (-2 Jr2 (Jx — z\—i—\/ ) atl
/1(5)
Estimate of /.
To estimate I;, we evaluate
Il
t—(T—t) 1 )L*Vﬂzfl(s)
5/ /2 — .2 — )3/2 5atl a7 dads
0 R ([x—z>+ (£ —5))*> 287 (5) + [z — ¢

1 1
< kl+a ll‘ / d
3.11) = (1) B2 A9 (1) + |z — g (x— 22+ (T —1)2)1/2 2
S Al

1 1
: —l—/ +/ > dz,
</1>1<x> Da(x)  IDs(x)) ALTH(E) + |z —g|* T (Jx— 22+ A2(2))1/?

where

(3.12) Dy (x) ::{ZERzzlz—qélxzq'},

(3.13) Dy (x) ::{zeRZ:’x;q'S\z—q\gﬂx—ql},
(3.14) D3(x) :={Z€R2:|Z—6]|22|X—q|}.

We first compute

1 1
d
/Dmx) AST (1) + 2 — g7 (=22 A2(0) 2

[x—ql
1 e r
3.15 < - B
(3-15) ~lx—gl+ A1) Jo  AGT(r) 4 patl g
A=)

~lx—ql+ A ()

41
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Similarly, we have

1 1
dz
/Dz(x) AN + |z —q|* T (x—z2+2A2(1))!/?

(3.16) < 1 /3|x—q r
’ —Far
YA ) 4 x—gT o r+A)
R
x — gle+ A2(1)
and
1 1
/ 1 a+1 2 2 1/2dZ
Dy(x) AL (1) 4 |z — | (x =2 +A2(1))
1 « r
3.17 < —/ o
( ) ~ |X—Q|—{—),*(t) 2|x—q| ﬂ,f+l(t)+ra+1 r
1

<
~ = glv+ 220
Collecting (3.11), (3.15), (3.16) and (3.17), we obtain
v—1
< A1) 7
L+ 1yl
x—q

where we write y = - ) for simplicity.

(3.18)

Estimate of 1.

To estimate I, we change variable

§= M
C (t—s)V/?’
and thus
oo 1 AVv+a—l(y
125//, =3 s ) -dsdz
2l (148)3x — 2 A6H0 (1) + | — g|ot
1 1 1
< )L;/+a+1 t J
(3.19) - " R AL (1) 4 |z — glot! [x— 2 A2(2) + |x — 2|2 ¢

S A’:+a+l(t) </ +/ +/ >
D (x) Ds(x) D3 (x)
1 1 1

dz,
M) + |z = glott e =2 A2(1) + [x— 2z
where D (x), D,(x) and D3(x) are defined in (3.12), (3.13) and (3.14), respectively.
For the above integral, we consider the following two cases.
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e Case 1: |x—¢q| < A.(r). We have

1 1 1
d
/Dl(x) AT+ o — gt 2] AZ() 22
| o,
< —dr
(3.20) ~lx—ql(A2() +1x—q) Jo 28T (1) + et
A7) 2
AT
SOk -ar
SATT ),

/ 1 1 1 d
z
Da() ASTL(t) + |z — glot! [x— 2] A2(1) + |x —z|?

3.21) 1 /3Xq 1 J
r
ST g b RO
SAH),
and
/ 1 1 1 J
z
D) AL (1) + |z — gt [x—2| A2 (1) + [x —2]?
° 1 1 1

S/ atl 2 prdr

(3.22) 2br—ql AL (1) + et =[x —g| A2(0) + (r =[x —4])
o 1 1 1

< - F+ |x—q|) dF

~ /x—q| A1) + (F+ [x —g[)er! FAZ(D) TR tk-d)

SA2).

Observe that in this case |x —¢g| < A,(¢) we have 1 < ﬁ for € > 0, where
= ;’f:(f’) Therefore, for the case |x — g| < A, (), we conclude
;Lv—l (l‘)

3.23 <=
529 S TEDR

by (3.19)~(3.22).

e Case 2: [x—¢g| > A.(7). In this case, we compute

1 1 1
dz
/Dl(x) ATt + |z — qlot! [x—z AZ(r) +|x — 2|
|x—q]
1 1 7
S 73 p 2 i - dr
AHE)+Ix—ql* |x—ql Jo  AZT(£) +rat!

—a—2
L)
~ol+ P

(3.24)
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1 1 1
dz
/Dz(x) yRan (1) + |z —g|ot! |x —z] A2(1) + |x — z/?

3.25 < ! /3x “ ! dr
(3-25) AT A =gl o 220+
—a-2
_ AT
~ 1A [yfett
and

/ 1 1 1 d
z
D3(x) AL (t) + |z — qlatt v — 2] A2(1) + |x — 2|2
1 1o r

S 3 2 I dr
AZ (1) +[x—ql? [x—q| Jop—q) AF (1) + rot!

(3.26)

> 1 1 1

AR+ —g|? A1) A87(1) + [x — gl !

—a—2
B0}
~ 1+b7|a+1
From (3.19), (3.24), (3.25) and (3.26), one has
17”72(1‘)

3.27 P ———
o PP

for the case |x — g| > A.(t).

In conclusion, we get

A7)

Vin(6,0)] S 1F ls.v-2.041 Tl

from (3.10), (3.18), (3.23) and (3.27).

We now derive the estimate (3.7) for P;. Recall the representation formula for

Pli
Pl X, t / / Qj <, _S)aZijk(Z7s)dZdS7
where Q| is given by
S6(1) x;
. t) = —=~
Q) = 2 1

Thus,
1
Pl(x,t):/ YT Fyler)ds
R

227 [x—z? 5

1 x;i—z;
— +/ +/ > =L 0, Fix(z,t)dz
(/m(x) Do) JID3e) ) 27 x—z2 &1)

=I1+1I+1II
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where Dj(x), D(x), and D3(x) are defined in (3.12), (3.13), and (3.14), respec-
tively.

We perform integration by parts to estimate I. In fact, one has

1 A2t
LS IF]lsv—2.a+1 (/ —> ( )+1 dz
D (x) |)C Z’ 1 —q
+ 0
L A0
+/8D |X— | a+1 dz)
1) =2y =
« (1
QLV‘Z(t) L pat! (t)
3.28 < * M N
(328) SWPlsv2an (G |7 a7
1 Ay2
‘x_q| 1 x—q a+1 ’X—q‘)
T )W)
AL (1) A2
S ||F‘|S7v72,a+l(|x_q|2 g a+l)'
I+170

The way to estimate II and III is straightforward. More specifically, we have

1 Xj—2zj
II:—/ =29, Fil(z,t)dz
27 Jpy() e — 22 @,1)
1 A3 (1)
S IPls2ant [ N s d2
2(x 1+ |4
20
(3.29) AV-3(¢ 3| 1
Szt —— 0 [ rar
X—q
1+ 7.0
A2
SJ HF”S,V727a+1 a1’
—
1+ W‘J)
and
1 Xj—2zj
III:—/ L2 9. Fil(z,t)dz
27 Jpy(x) e — 22 (1)
1 A3
SIF sz | W
D;3(x) |x_Z| 1+ |4
©)
< |IF| ety [ ! L
~ S,v—2,a+1 L 2v—q] r—|x—q| )Lf+2(t)+ra+2
_ © ] 1
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where we changed the variables u = r — |x — ¢|. Hence u > |x — g| implies that

o 1
AYra=l / du
D o 2+ Gt gl
1
karafl ¢
(3.30) * ®) A1) + |x — glet!
AY—2
= ||F"S,v—27a+lﬁ-
L+ 155
Collecting (3.28), (3.29), and (3.30), we obtain the estimate (3.7), and the proof is
complete. O

In order to apply sz ’l—theory of the Stokes system to the outer part (3.5), the
estimates for Vv;, and d;(vy, - Vng) are further needed. We have the following
lemma.

Lemma 3.2. Under the assumptions of Lemma 3.1, the following estimates hold

/'va2
(331 Va0 S Pl nann ),
A.(t)
and
(3.32) 19 (Vin - VN15) |20 ((By5(9)\B5 (@) x 0.7)) S I F [ls,v—2.a+1

for(v—1)p+1>0.
Proof. Since we impose zero initial condition on v;,, we have
t 1 )yv73(s>
Q0] S [Fllsvzarr | [ ) dzas
X Vi V—2a o Jr2 (’X—Z‘Z—f‘ ([—S))3/2 14 —q a+2
A (s)

where we have used (3.9). We decompose the above integral and first estimate

t—(T—1)? 1 V-3
/ / 3/2 , (slﬂ dzds
o IR 1 £

1 1
< A{V‘i’a*l ¢ </ + +/ ) d 7
~oT ®) Di(x)  JDy(x A1) + |z — q|ot? |x— 2|+ A (1) .
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where D (x), D(x) and D3(x) are defined in (3.12), (3.13) and (3.14), respectively.
Then we can easily check the following

/ 1 1 dz A1)
Di(x) AT () + |z — gl =2+ A(t) T fx—q|+ A (1)

dz S
/Dz(x) QLfJFZ(Z) + ’Z — q’u-‘rZ |X—Z| + A, (t) ’x_ q‘a—i-] 4 Af+1 ([)

dz 5
/D3(x) A9 (1) + |z — g|ot2 [x — 2] + A () x—glet + 2971 (r)
and thus

=1 1 OIS )
) /Rz T [ T
(x=2P+ (=) 1+);7(g)

where we write y =

/'Lv 3(5)
x dzds
/ (T—)? /Rz (lx—z]*+ t—S)) =T

7.(5)

A{V‘i’d*l ¢
N/ / 3 ®) dsdz
r2 i (145) \x 2| A812(1) + |z — g|o+?
1 1 1

B2 AST2(1) + |z — glot2 [x — 2] A2() + |x — 2

S )y*\/+a+l (t)

5 dz,

where we have changed variable § = l;;fz‘s Similar to the proof of Lemma 3.1, the
following bound holds
! 1 A3 AV 72 (¢
[ )
e (e =97 | LD
xS

Collecting the above estimates, we conclude the validity of (3.31).

Next we prove (3.32). Multiplying equation (3.4) by Vns, we obtain that v;, -
Vs satisfies the equation

o (Vin - V15)
= A(vin- V5) = A(VYNs) - Vin — 2V N5 - Vvig — VP - VN5 + (V- Fy) - V5.
Thanks to the cut-off function 71, standard W; ’l-theory for parabolic equation
yields
19 (Vin - V116) |l 2 (85 (9)\B5 (0)) < 0.1))
(333 Svinllerstanss@)<0.0) T IVVinl Lo (825(00\85 (@) < 0.1))
F VP Lo (8o59)\85(0) < 0,1) IV - Fllr (850085 () < (0.1))-
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Using the Wlf o1 -theory for the Stokes system (see [63] for instance), we readily see
that

(3.34) IVP o (8250085 (@) < 0.1)) S IV Fll (825 (0)\85(0)) x 0.7))-

From (3.33), (3.34), (3.6), (3.31) and the assumption ||F||s.y_24+1 < 4o, we ob-
tain

10 (Vin - V5) | L0 ((Bys (9)\Bs (9)) x (0.7)) S IIF lls.v—2.a+1
provided (v — 1)p+ 1 > 0. The proof is complete. O
We are ready to estimate the outer part (3.5).

Lemma 3.3. For ||F||s,y-24+1 < 4o and |[vo| p2-2/p < +oo, the solution (Vou,P)
p.p

of the system (3.5) satisfies
(3.35)

||v0m||W,%>1(Q><(()7T)) =+ ||V(P_ nﬁpl)HLP(Qx(O.,T)) 5 ||F||S,V*2,a+l + HVOHBZZ/P
for (v—1)p+1>0. If we further assume v € (1/2,1), then we have
(3.36) ”Voutch/z(gx(o.T)) SIFlsy—2at1 + ||VOHBZ*2/17
’ PP

for0<a<2—4/p.
Proof. The W,,2 I estimate of solutions to Stokes system with non-zero divergence
derived in [63, Theorem 3.1] shows that

||V0Mt||W5=1(Q><(0’T)) +V(P— n&PI)HLP(Qx(O,T))
(3.37) SI(1=ns)V-F+2Vns-Vviy 4+ (Ans)vin — PV N5 || r(@x (0,1))

+1IV0s - Vinll o o,r:w1 (@) 19 (Vs Vi)l oo, 7w 1)) + ”VOHBZZ/m
where || - || g2/ 18 the Besov norm defined in (3.38). Thanks to the cut-off function

PP

ns, we get
(1 =15)V-F S IFlls.y—2.ar1 A2,

and from (3.6), (3.7), (3.31) and (3.32), one has

Vs - Vvin| + [(ANs)vin| + [PIVNs] SN F |lsv—2.a014 1,

and also
Vs - vin| S HFHS,V—Z.,aH)L!:
19:(Vns 'Vin)HLp(o,T;W;I(Q)) S y-2a+1-
It is worth noting that [ - ||, 7w 1(q)) < || - lr(o,7:0(0)) (see [1] for instance).
Therefore, estimate (3.37) together with the above bounds imply (3.35) for (v —
1)p+1> 0. The Holder estimate (3.36) then follows from a standard parabolic

version of Morrey type inequality (see [44] for instance). The proof is complete.
g
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The proof of Proposition 3.1 is a direct consequence of Lemma 3.1 and Lemma
3.3.

For the behavior of the velocity field v, we further make several remarks:

Remark 3.4.

e From (3.3), Proposition 3.1 implies

Vllsv-11 S IFls,v—2.a+1-

e Since v is divergence-free, we can write v- Vv = V. (v®v), where ® is
the tensor product defined by (v® w);; = v;w;. If we solve v in the class
||v|ls,v—1,1 < oo, then the nonlinearity in the Navier—Stokes equation

2v-3
vy < e
X—q

I+ 0

is indeed a perturbation compared to V - F, which enables us to solve v by
the fixed point argument in Section 4.
e The initial velocity vy in the outer problem (3.5) can be chosen arbitrarily

in the Besov space 3127;2/ P with (v—1)p+1 > 0, in which the norm is
defined by

(3.38)
[voll 3 2

I/p
= (/<1 |Z|—2PL( : ‘VO(X+ZZ) —2V0(X+Z)+V0(x)|pdxdz> + ||VO”L1’(Q)7
z z

where Q(z) = {x € Q:x+1z€ Q,1 € [0,1]}, as long as it agrees with zero
at the boundary and satisfies the condition

Vv = —Vng -vin(x,O) =0.

4 Solving the nematic liquid crystal flow

In this section, we shall apply the linear theories developed in Section 2 and
Section 3 to show the existence of the desired blow-up solution to (1.1)—(1.3) by
means of the fixed point argument. Apriori we need some assumptions on the
behavior of the parameter functions p(r) = A (r)e/®®) and & (r)

c1| A ()| < [p(0)| < ea|Au(2)| forall ¢ e (0,T),
|E(1)| < AL(r) forall 1€ (0,T),
where ¢, ¢; and o are some positive constants independent of 7. We recall that
_ |logT|(T —1)

R=R(t)=A"(t) with A.(r) = log(T — 1)

and 7, € (0,1/2).
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Similar to the harmonic map heat flow, we look for solution u# solving problem
(1.1) in the form
u=U+Iy.¢+a(Ily. @)U,
with
¢ = Mk Q.o p® (3:1) + " (x,1) + D0 (x, 1) + % (x,1) + P (x,1),
where we decompose W* into
Y =Z"+y.
Here Z* satisfies
0 Z" = AZ*, in Q x (0,00)
Z* (1) =0, on dQ x (0, )
Z(-,0)=2;, inQ
For the same technical reasons as shown in [15], we make some assumptions on
Z;(x) as follows. Let us write

* 7 (X) * * . %

Zi(x) =10 }, Z0(x) = 791 (x) +iz95 (X).

0= |20 ) =zt + izt

Consistent with (2.36), the first condition that we need is
divzy(g) <O.

In addition, we require that Z;(¢g) ~ 0 in a non-degenerate way.

We will get a desired solution (v,u) to problem (1.1) if (v,¢,¥*,p,&, ¢, B)
solves the following inner—outer gluing system

ov+v-Vv+VP=Av—&V-Z[p,&, o, B,¥,0,v], in Qx(0,T),
V.v=0, in Qx(0,T),

v=0, on dQx (0,T),

v(-,0) =vp, in Q,

4.1)

A209 = Lw([9]+ A#[p,&, 00, B,¥",9,V], in Zag,
4.2) ¢(-,0) =0, in Byg(g),

¢W:07 in -@21?7

oY =AY +Y[p, &, 0, B, ¥, ¢,v] in Qx(0,T),
4.3) ‘P*:e;;—U—(I)O—CI)a—(I)ﬁ on dQx (0,T),

W (-,0) = (1—y) (e3—U—c1>°—cI>“—cpﬁ) in Q,
where

(@ Flp £ p 0] = (Vuo Vi JuE: )
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with
u=U+Ty1 [NrQpap® +¥" +P° + % + P
+a(ly 1 [MRQp . p® +¥* +P° + % + DF])U,
<%[p7§7a7ﬁ7lp*a¢7v]

22,2 —1

w,o,p

[&/[‘P*] + [, &)+ A [p, &l + Ty [Z-1] = A7 Ty (v-VyU)
— 2 My (v Vy (T [M0Qa 0 0+ + 00 + 0% 40P ))

)

27, (v.vy (a(nm MR Qw0+ W + D" + B +c1>ﬁ})U))

and

g[p7€7a’ﬁ7‘lj*’¢7v]
= (1=nr)Ly[¥* ]+ (¥ -U)U; + Qo.0p (9AMR +2ViNr - Vi — 90 NR)

+ 18 Q0,.0.5 (— ( w}a,ﬁthw,a,B) 9+A7" Ay Vyp+A7'¢ -Vy¢>
+(1=1r) (Ho[p, ] + A1 [p, &) + Ty [Z-1]) — Ty [%)]

+ Ny [MRQ .0 p9 + My (B0 + % + DF - 9*)]

v ((cpo+<1>“+cbﬁ)-u) U, — (1—ng)v-VU

— (1= )y V (T [16Q o+ + 0"+ 0% + 0P| )

— (1= (a (T [MrQ a9 + ¥ + 00+ 0%+ &P ) U).

Here x in (4.3) is a smooth cut-off function which is supported near a fixed neigh-
borhood of g independent of T'.

As discussed in Section 2.5, suitable inner solution with space-time decay can
be obtained under certain orthogonality conditions, which will be achieved by ad-
justing the parameter functions p(r), &(¢), a(t) and B(¢). In order to solve the
inner problem (4.2), we further decompose it based on the Fourier modes

H = IO+ I+ S5+ G,
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with

Hp,E. 0B, 0,1]
(120, p (Lo ¥+ Ly[¥°)s + o[, 1) + A0, Ly 5 Tyt (v-V10)]0) i
H|p,E. 0B 0,1]
(10, 5 (Lul¥ 1" + Hlp.€))

20, (Mg (v Vil + [Ty (v Va)] 1) ) e
HAIp,E. 0B, 0,1]

=220, 5 (Lol¥ ) ~Lu ") 2o
H|p,E. 0B 0,0]

(12 ; p ﬁ(HUL (Z11]+ Ty [Z-12]) +AQ, aB[HUL(%Vu)],l) X Dops

where [T (v- Vu)lo, [y (v-Vu)]—1, Iy (v-Vu)]; and [II;(v-Vu)] . corre-
spond respectively to modes 0, —1, 1 and higher modes k£ > 2 defined in (2.40)—
(2.42), and

Ly[@])”
:_2171WPCOSW[(8161§03(€() ))COSG+(ax2(p3(§() )))Slne}QwalBEl

— 24" wpcosw [0y, 93(§(1),1)))sin 0 — (3, 93(§(1),1))) €03 8 ] Oy o p E
in the notation (2.6). Then by decomposing ¢ = @ + @, + ¢3 + @4 in a similar
manner as .7#;’s, the inner problem (4.2) becomes
Azat(])l — LW[(PI] +<%ﬂ1[177§ (01 ﬁ lP*’q) ]

- Y alAilp. & o B ¥, 0w 20

j=1.2

(4-5) — Z (,’1] pg o ﬁ ‘P*,¢ H IZ)Zl,j in 921{
j=12

(Pl'W:O in@zR
¢1(+,0) =0 in Bygo)

A20i¢s = Lw (o] + 765[p, &, 00, B, ¥*, §,V]

— Y cjl5B[p.E . B, Y, 9,V]WpZi; in Dog
4.6) =12

@-W=0 in P
$(-,0)=0 in 20
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A%0,¢3 = L 3] + A4 [p, &, o, B, V", 9, V]
— Y el AAIp.& . B9, IwpZ

j=12

(47) + Z céj[p,é,Ot,ﬁ,‘P*,(]),V]Wf,ZOJ in QZR
j=12

¢3 -W=0 in @2R
$3(-,0) =0 in Bygq)

lzat¢4 - LW[¢4] +<%1—[p7€7a7ﬁalp*v¢7v]

- Z Cfl,j[%‘[paév O{,ﬁ,\P*’ (P,VHW%)Z,LJ'
(4.8) j=12

Os-W =0 1in Dop
$4(+,0) =0 in Bygg)

(4.9) cy;(t) —Coj(t) =0 forall 1€ (0,T), j=1,2,
(4.10) c1;(t) =0 forall 1€ (0,T), j=1,2,
@.11) c_1,;(t)=0 forall € (0,T), j=1,2.

Based on the linear theory developed in Section 2.5, we shall solve the inner
problems (4.5)—(4.8) in the norms below.

e We use the norm || - ||y, to measure the right hand side .7 with i =
1,---,4, where

|A(y,1)]
(4.12) HhHVh ; = Sup ; :
o) MO+ )
with v; >0, a; € (2,3) fori=1,2,4,and a3 € (1,3).
e We use the norm |- ||, ,, 4, 5 to measure the solution ¢; solving (4.5), where

0O+ A+ DIV ()| + (L4 YDV (31)
H(P H*,V] ,a175 - Sou v RS(S’“I) 1
Dok Ay (t)max{ }

(T3 (1)1 ~2

with v; € (0,1), a; € (2,3), § > 0 fixed small.
e We use the norm || - [[in,v,.4,—2 to measure the solution ¢, solving (4.6),
where

e[+ A+ DIV i)+ (L4 YD V3 (3,0))]
H¢”in-vz-az—2 = sup 2 27—
o Dox A2 () (1+[y])*me
with v, € (0,1), az € (2,3).
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e We use the norm || - ||.«,v, to measure the solution @3 solving (4.7), where
10]ss, = sup 12O AHDBD V00014 (1 +DD*IV59 0,0)
**,V3 T —
Y om AZ (R () (1+[y]) !
with vz > 0.
e We use the norm || - || ,.x,v, to measure the solution ¢4 solving (4.8), where
ol — sup 190D (V000 (1 ) 1¥30021)
Kkk Vg
" 0
with v4 > 0.

Based on the linear theory in Section 2.6, we shall solve the outer problem (4.3)
in the following norms.

e We use the norm || - || defined in (2.62) to measure the right hand side ¢
in the outer problem (4.3).

e We use the norm || - |4 @,y defined in (2.63) to measure the solution y solv-
ing the outer problem (4.3), where ® > 0 and y € (0,1/2).

Based on the linear theory developed in Section 3, we shall solve the incom-
pressible Navier—Stokes equation (4.1) in the following norms.

e We use the norm || - |[s,y—2,4+1 defined in (3.3) to measure the forcing .7,
where v >0 and a € (1,2).

e We use the norm || - ||s,y—1,1 defined in (3.3) to measure the velocity field v
solving problem (4.1), where v > 0.

We then define
Ei={¢) € L”(DR)
Ey={¢ € L™(Z)
Es = {0 € L (D)
Ey= {94 € L™ (D)
and use the notation
Ey=E1 xEy xE3x Eqy, @ =(91,02,03,04) €Ey

[P, = [1911l4v,.a1.6 + [ G2llin,vaar—2 + 193] xx,vs + [| @t [l sss, v -
We define the closed ball

Vyd1 € L (Zar), 191 1lsv.01,6 < o}
Vy0r € L™(Dar), ||92]linvsar—2 < o0}
Vy93 € L(Zar); [|93]l5s,vs < oo}
Vy¢s € L*(D2r); ||l srs,vy < oo}

B={PEEy:|P|g <1}
For the outer problem (4.3), we shall solve y in the space
Ey={y e L7(Q@x (0,T)): | Ylls0y < =}
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For the incompressible Navier—Stokes equation (4.1), we shall solve the velocity
field v in the space
(4.13) E,={veX(QR*):V-v=0, [v|sy_1,1 < Meo},

where & > 0 is the number in (1.1) which is fixed sufficiently small, and M > 0 is
some fixed number.

To introduce the space for the parameter function p(r), we recall the integral
operator % defined in (2.31) of the approximate form

t—A2 ( )
Al = [ Pas+o(pl.).
For ® € (0,1), / € R and a continuous functlon g : 1 — C, we define the norm

lslles = sup (T —1)~®log(T —1)['|g(1),
te[—T,T]
and for y € (0,1), m € (0,00), [ € R, we define the semi-norm
_t)|l|g(t) —g(s)]
(t=s)r ~

where the supremum is taken over s <t in [T, T such thatr — s < %(T —1).

&lymi = sup (T —1)~"|log(T

The following result was proved in [15, Section §].

Proposition 4.1. Let o,y € (0,3), l €R, C; > 1. If o € (0,1], ® € (0, 09), m €

(0,0 —1],and a(t) : [0,T] — C satisfies

1

— <\|a(T)| <,

(4.14) ¢ Slahl=a
TOlogT|"*a() —a(T)lles1 +[alymi—1 < Ci,

for some o > 0, then for T > 0 sufficiently small there exist two operators & and
Ky so that p= Pa] : [-T,T] — C satisfies

Polpl(t) = a(t) + %olal(t), t€[0,T]
with

[%olal (1)]

log|logT| (T —r)ym+(+a)y
§C<TG +TO—=—=—|a(- T)lles—1+][a 1—1)—,
‘1 | H ) ( ) ) [ ]%”h |10g(T—t)]l
for some ¢ > 0.
Proposition 4.1 gives an approximate inverse & of the operator %y, so that
given a(t) satisfying (4.14), p := 2 [a] satisfies

Polp] = a+Zola], in [0,T],
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for a small remainder %y|a|. Moreover, the proof of Proposition 4.1 in [15] gives
the decomposition

'@[a] :po,K—i_'@l[a]’
with
T 1
1) = k|lo T/ — — __ds, t<T,
Postt) ZHOET || fioger—gjp 1=
kK = k[a] € C, and the function p; = £ [a] has the estimate
1p1]]+3-0 < CllogT|'~%log?(|log T).

Here the semi-norm || ||, 3_¢ is defined by

lglls3-0 = sup [log(T —1)]*~°|&(r)],
te[-T,T]

and o € (0, 1). This leads us to define the space
Xp:={p1 € C([-T.T:CNCY([-T.T:C]) : pi(T) =0, [|p1]s3-0 <o},

where we represent p by the pair (k, p;) in the form p = pg « + p1.
We define the space for & (z) as

Xe = {€ €C'((0,THR) : E(T) =0, € x, <<=}
where

1€llxe = 1 ll=(0.r) + sup A (D) ()]
1e(0,T)

for some o € (0, 1), and we define the spaces for a(t), B() as follows
Xa=1{E€C((0,7)): a(T) =0, [[ex]x, < oo}

where
lellx, = sup A% (1)]ee(r)|+ sup AL~ (1)[ex(s)]
t€(0,T) t€(0,T)
and
Xg = {BeC'((0,1)): B(T) =0, [Bllx, <=}
where

IBllx, = sup A7 %(@)[B(0)|+ sup AL~2(1)|B(r)].
t€(0,T) t€(0,T)

Here 61,8, € (0,1).
In conclusion, we will solve the inner—outer gluing system (4.1), (4.3), (4.5),
(4.6), (4.7), (4.8), (4.9), (4.10) and (4.11) in the space

(4.15) X =E, X Ey X Ey x X x Xe x Xo X X

by means of fixed point argument.
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4.1 Estimates of the orientation field u«

The equation for the orientation field u is close in spirit to the harmonic map
heat flow (2.9). To get the desired blow-up, we only need to show the drift term
v-Vu is a small perturbation in the topology chosen above. Then the construction
of the orientation field u is a direct consequence of [15] with slight modifications.

Effect of the drift term v - Vi in the outer problem

In the outer problem (4.3), it is direct to see that the main contribution in the
drift term v- Vu comes from v- VU since all the other terms are of smaller orders.
We get that for some positive constant €,

(4.16)
(1= ne)v- Vu

- ‘(1 —MR)v- VU + (1 —ng)v-V (HUL {nRQwﬂﬁ(P FW 40 4 % +<1>ﬁD

F(1—np)v-V (a (HUL [nRQ@mm +‘P*+<I>O+<I>°‘+<I>BD U) )
S [(L=ng)v-VU|

< AW Ollsy-11 A1)
A x—ql>+A2(t

—q )%{\x—qlzl* (OR(1)}
1.0)

STepy

provided v > m withm € (1/2, 1) obtained in Lemma 2.9, where p; is the weight of
the || - ||..-norm (see (2.61)) for the right hand side of the outer problem. Therefore,
as long as v is chosen sufficiently close to 1, the influence of the drift term v - Vu
in the outer problem is negligible, and it is indeed a perturbation compared to the
rest terms already estimated in the harmonic map heat flow [15, Section 6.6].

Effect of the drift term v - Vi in the inner problem

Since the inner problem is decomposed into different modes (4.5)—(4.8), a key
observation is that the drift term v - Vu will get coupled in each mode. In other
words, the mode k solved from the velocity equation with forcing —&V - (VU ®
V¢y,) enters mode k of the inner problem via the drift term v- Vu. We now analyze
the projections of v - Vu on different modes. Recall that

v-Vu=v-V[U + @in + Ty Qou + a(y (@in + Pou) )U]
where
Oin = MRQo.0f (91 + 92+ 93+ 1), Qo =¥+ D"+ % 1 9P,
Notice that the leading term in v-Vu is v- VU. Since (v- VU,U) = 0, we have
I, (v-VU) =v-VU.
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% . . .
Denote v = [vl} . We write U in the polar coordinates
2

sin
. pe . .
sin @w,E + % sinwE,

cos OwpEy — sinwEk,

vU =A"" [

Therefore, the projection of v- Vi on mode k (k € Z) is of the following size
HHUL(V'V”)M S HHUL(V'VU)M S

27
/ (v1 cos B cos(kO)w, + v sin 6 cos(kO)w,
0

. smlel)n(kB) Sinw — vy cos 0sin(kO) sinw)do

27
+i/ (v cos 8 sin(k6)wp + v2 sin O sin(kO)w,
0

sin 6 cos(kO) . cos 6 cos (k)

—y——————=sinw+ vy sinw)d@

from which we obtain

ME()kV
4.17 AL, (v-Vu)i| < ——=
(4.17) A ( )]k‘_1+‘y|3
where M and g are given in (4.13). Thus, it holds that

1A [y (v- Vi) lillv.a < Mep.

Since & is a sufficiently small number, we find that the projection [I1;;. (v- Vu)]x
can be regarded as a perturbation compared to the rest terms in the right hand sides

of the inner problems (4.5)—(4.8).

In summary, the coupling of the drift term v- Vu in the inner and outer problems
of the harmonic map heat flow is essentially negligible under the topology chosen

above. Therefore, with slight modifications, the fixed point formulation for
Su+v-Vu= Au+|Vul|?u

can be carried out in a similar manner as in [15].

For the outer problem (4.3), it was already estimated in [15] that in the space

2 defined in (4.15), it holds that for some € > 0
||€f[p,§,a,ﬁ,‘{‘*,¢,v] - (1 - nR)v'qu**
ST, + IWlizor+Plx, + 18 1lx, +[lallx, + 1Bllx; +1)
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provided
1
0< ®<min{y*,§—y*,v1 —14+%(a —1),
(4.18) Vz—l—H/*(az—1),V3—17V4—1+Y*},
O <min{v; — 0% (5—a1) = %, V2~ ¥, V3 = 3%, Va — Y%},
o< 1.

On the other hand, from (4.16), we find that
(1 =mnr)v- Vul|

ST +lvllzoy+plx, + 18 lx; +llorllx, +[1Bllx; +1)
provided
1
(4.19) V> .

2
Therefore, we conclude the validity of the following proposition by Proposition
2.2.

Proposition 4.2. Assume (4.18) and (4.19) hold. If T > 0 is sufficiently small, then
there exists a solution y = ¥(v,®,p, &, o, B) to problem (4.3) with

(v, ®@,p.8,a,B)lls0,y
< Tg(”V”S,vfl,l + ||(13||E¢ + ||P||Xp +|& HXg +|let||x, + Hﬁ”Xﬁ +1),
for some € > 0.

We denote .7, by the operator which returns y given in Proposition 4.2.
For the inner problems (4.5)—(4.8), our next step is to take ® € E, and substitute

(v, @,p.8,0.8) =Z"+¥(v,®,p. ¢, . B)
into (4.2). We can then write equations (4.5)—(4.8) as the fixed point problem
(4.20) D =/ (D)
where
A (@) = (A (®), (@), (@), 4(P)), o : B CEy — Ey

with

A (®) = A (AW, (v, ®,p,8,0,B),p, 5, B]),

(@) = D (A, ¥ (v, @, p, S, 0. B), p, &, . B]),

A (@) =<73<<%”3v‘1‘ (v ®.p.&,.B).p.& 0. f]

+ ZCOJ Vaq!*(v7q)7p7§7a7ﬁ)7p7€7aaﬁ]wfyzo,j)7
j=1

A(P) = (A (0. p.E. 0. B).p &t B]).
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Here 71 (), Z(+), Z5(+), Z4(-) denotes the inner solution that solves (4.5), (4.6),
(4.7), (4.8), respectively. Neglecting IT;,. (v- Vu), the contraction for the inner
problem was shown in [15, Section 6.7] under the conditions

vi<l1

V) < 1—%(ax—2)
4.21) ) 1
vz < mm{l +O+27%y,vi+ 5(Sy*(al —2)}
vy <l
On the other hand, from (4.17), we obtain

H)LQ” L, (v- Vi)

w?a7ﬁ

< Med! (1)

Vi,ai

< Mgy~ (1)

V2,42

422 205k 5 (M (v Vil + [y (v- V)], )

HQLQ*1 . (v- Vi)

w,a.

< Meod! (1)

V4,
Recall that the parameter & > 0 in (1.1) is fixed and sufficiently small. Therefore,
by letting

V=V =V, =Wy
4.23) {

l<a<?2

the smallness in (4.22) comes from & < 1. Applying the linear theory developed
in Section 2.5 for the inner problems (4.5)—(4.8), we then conclude the following
proposition.

Proposition 4.3. Assume (4.21) and (4.23) hold. If T > 0 and &j > 0 are sufficiently
small, then the system of equations (4.20) for ® = (@1, ¢,, ¢3,¢4) has a solution
b e E(p .

We denote by 7, T, T4 and I the operators which return the parameter
functions p(t), &(¢), a(t), B(z), respectively. The argument for adjusting the pa-
rameter functions such that (4.9)—(4.11) hold is essentially similar to that of [15].
Note that the influence of the coupling v- Vu is negligible as shown in Section 4.1.
Therefore, the leading orders for the parameter functions p(z), &(¢), a(z), B(t) are
the same as in Section 2.4. The reduced problem (4.9) yields an integro-differential
equation for p(¢) which can be solved by the same argument as in [15], while the
reduced problems (4.10)—(4.11) give relatively simpler equations for &(z), a(t),
B(t), which can be solved by the fixed point argument. We omit the details.

4.2 Estimates of the velocity field v

To solve the incompressible Navier—Stokes equation (4.1), we need to analyze
the coupled forcing term

&V - (Vu® Vu—1/2|Vul’T,).
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Observe that the main contribution in the forcing comes from U + NrQ 5 (¢0 +
O1+¢_1+ ¢,), where ¢y, ¢1, ¢_1, ¢, are in mode O, 1, —1 and higher modes,
respectively. From the linear theory in Section 2.5, the dominant terms are U and
¢o. So we next need to evaluate

V. (VU®VU —1/2|VU|*L) and V- (VU ®Vy—1/2(VU : V) Io),
where VU : Vo = };;9,U;0i(¢o). Recall

i0 i0 . i0
00) = [t @] 5103 = | o8] ) = ]
so that
dpU =wpE1, dgU = sinwkEy,
IpE = —wpU, dgE| = coswE».
Note that

V- (VU®VU —1/2|VU|*1,) =AU -VU = —|VU|U - VU = 0.
For V- (VU ®V¢y—1/2(VU : V@y) L), we express the forcing in the polar coor-
dinates. Since @9 = @yE| where @y = @y(p), the first component
AV (VUG Vo))
= Vy : (VyU O) Vy¢0)1
2 sin” @
=9, <cos 0 dp Powp + o2 %sinwcosw)

+9,, (sin900598p(p0wp - sme(z:osﬂ (posinwcosw> :

Changing dy, and d,, into d, and dg, we obtain

(A°V- (YU © Vo))

sin 6

=cos6d, (Cos2 6 dp powp + 2 (o sinw cos w)

sin% @

dg (coszeapq)owp + 02 q)osinwcosw>

in6 cos O
+sin6 dp (sin@coseapq)owp - % (posinwcosw)

sin 6

cos @

sin@ cos >
+

do (sinGcosO&,,(powp B — @osinwcosw

=cos 6 <8§q)0wp+8pq)owpp+;3p(powp —pl3(posinwcosw>

= COSG I:ap <ap(p()Wp + (popwp +/(POWf)>:| .
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A similar calculation implies that the second component

(A3V- (VU ® Vo)), = sin [ap (apcpowp + (POPW” —i—/(pow,z,)} .

SoV-(VU®V@) =V [1_3(8pq)owp + (PO[;VP + [ (powlz,)} is a potential. Moreover,

itis obvious that V- (|[VU|?1,) is a potential. Therefore, V- (VU ® V¢ —1/2 (VU :
V@) 1,) is a potential, which can be absorbed in the pressure P in problem (4.1).

On the other hand, the contribution from mode 1 and higher modes (|| > 2) in
# defined by (4.4) has the following bound

Vo < 20
VUGV < WH%Hin,maz—za k#—1,0.
Therefore, by (4.23) and a, € (2,3), the leading term in .% is
AV472(¢)
4.24 VUOVO 1| <206 s
( ) ’ ¢1|— 1+|y’3 Hq)]H ,Va

from which we conclude that
|eoVU ©Vo_i]lsv-2.4+1 < €.

Remark 4.1. As we can see above, using the new linear theory at mode —1 (see
Lemma 2.5), the size of the transported term turns out to be of the same order as the
right hand side at mode —1. This is the motivation of introducing new parameters
o(t), B(¢) and developing new linear theory at mode — 1, otherwise the transported
term would carry extra logarithm growth in time (see Lemma 2.4). On the other
hand, the assumption & < 1 is required here to guarantee the contraction in the
fixed point argument.

On the other hand, as mentioned in Remark 3.4, the nonlinear term v - Vv in
(4.1) is of smaller order compared to the forcing &V - .% if we look for a solution
v in the function space E, defined in (4.13). Indeed, since v € E,, we have

)‘2\/—2 ¢
v A0
L+ 1yl

so that
V- Wllsy 2,1 SA(t) <1 as t—T.
Thus, the incompressible Navier—Stokes equation (4.1) can be regarded as a per-
turbed Stokes system
ov+VP=Av—¢&V-Fp,&E a B,V ¢,
with
gll:p7§7a7ﬁ7lp*’¢7v] = g[p’é’a7ﬁ’lp*7¢)v} +V®V7
where we have used the fact that v is divergence-free so that we can write v- Vv =
V- (v®v). We denote .7, by the operator which returns the solution v, namely

7, E, —E,
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vie Z(v).
By (4.24) and the linear theory for the Stokes system developed in Section 3, we
obtain
(4.25)
17 ls.v—1.1

< Cey([vllsy-11+1®lE, + 1Wlsey+IPlx, +11E]x, + el +11Bllx; +1)-

4.3 Proof of Theorem 1.1

Consider the operator
(426) y:(’dﬂyl[h%v‘?pﬂ%v%a%)

defined in Section 4.1 and Section 4.2. To prove Theorem 1.1, our strategy is
to show that the operator .7 has a fixed point in 2" by the Schauder fixed point
theorem. Here the function space 2 is defined in (4.15). The existence of a fixed
point in the desired space 2~ follows from a similar manner as in [15].

By collecting Proposition 4.1, Proposition 4.2, Proposition 4.3 and (4.25), we
conclude that the operator maps 2~ to itself. On the other hand, the compactness
of the operator .7 can be proved by suitable variants of the estimates. Indeed, if
we vary the parameters %, ©, v, a, Vi, ai, Va2, az, V3, V4, 0 slightly such that all the
restrictions in (4.18), (4.19), (4.21) and (4.23) are satisfied, then one can show that
the operator .7 has a compact embedding in the sense that if a sequence is bounded
in the new variant norms, then there exists a subsequence which converges in the
original norms used in 2. Thus, the compactness follows directly from a standard
diagonal argument by Arzela—Ascoli’s theorem. Therefore, the existence of the
desired solution for the single bubble case k = 1 follows from the Schauder fixed
point theorem.

The general case of multiple-bubble blow-up is essentially identical. The ansatz
is modified as follows: we look for solution u of the form

k
u(x,t) =Y U +T1,.9;+a(Tly. 9;)U;,
j=1
where

Uj = Uso 4100000500 95 = Pin+ Pouts
. x—=&(1)
Pin = M) (V) 0.0, 015 35 = T(;) ’
J
Ohu = W) + 2" (x,0) + 0 + 0 + .

Here dD(])-, CIJ;?‘ and <I>5.3 are corrections defined in a similar way as in (2.17) with A4,
¢, o, a, B replaced by A}, &, wj, ct;, B;. We are then led to one outer problem and
k inner problems for u together with one Navier—Stokes equation for v with exactly
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analogous estimates. A string of fixed point problems can be solved in the same
manner. We omit the details. g
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