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Abstract

We consider the initial-boundary value problem of a simplified nematic liquid
crystal flow in a bounded, smooth domain Ω⊂R2. Given any k distinct points in
the domain, we develop a new inner–outer gluing method to construct solutions
which blow up exactly at those k points as t goes to a finite time T . Moreover,
we obtain a precise description of the blow-up.
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1 Introduction

In this paper, we consider the following initial-boundary value problem of ne-
matic liquid crystal flow in a bounded, smooth domain Ω in R2, and T > 0

(1.1)


∂tv+ v ·∇v+∇P = ∆v− ε0∇ ·

(
∇u�∇u− 1

2 |∇u|2I2
)

in Ω× (0,T ),
∇ · v = 0 in Ω× (0,T ),
∂tu+ v ·∇u = ∆u+ |∇u|2u in Ω× (0,T ),

with initial condition

(v,u)
∣∣
t=0 = (v0,u0) in Ω,(1.2)

and boundary condition
v = 0 on ∂Ω× (0,T ),

u = u0 on ∂Ω× (0,T ),
(1.3)

where v : Ω× [0,T )→ R2 is the fluid velocity field, P : Ω× [0,T )→ R is the fluid
pressure function, u : Ω× [0,T )→ S2 stands for the orientation field of nematic
liquid crystal molecules, ∇· denotes the divergence operator, ∇u�∇u denotes the
2× 2 matrix given by (∇u�∇u)i j = ∇iu ·∇ ju, and I2 is the identity matrix on
R2. The parameter ε0 > 0 represents the competition between kinetic energy and
elastic energy. (v0,u0) : Ω→ R2×S2 is a given initial data such that ∇ · v0 = 0.

The system (1.1) can be viewed as a coupling between the incompressible
Navier–Stokes equations and the equations of heat flow of harmonic maps. Both
the incompressible Navier–Stokes equations and the equations of harmonic map
heat flow have been studied extensively. For the incompressible Navier–Stokes
equations, the existence of global weak solutions to the initial value problem has
been well-known since the fundamental works of Leray [42] and Hopf [35]. A
more comprehensive theory on the Navier–Stokes equation can be found in clas-
sical books of Temam [67], Lions [53], see also [41], [26], [58], [68] and the
references therein. The fundamental solution of the Stokes system, which is a lin-
earized Navier–Stokes equation, was established by Solonnikov in [61], together
with estimates of weak solutions to the Cauchy problem. Solonnikov also derived
similar estimates of the initial-boundary value problem of the Stokes system in
[62, 65, 64], and these sharp estimates would be very important in our construction.
For the harmonic map heat flow, Struwe [66] and Chang [4] established the exis-
tence of a unique global weak solution in dimension two, which has at most finitely
many singular points. In higher dimensions, the existence of a global weak solution
has been proved by Chen and Struwe in [9] (see also Chen and Lin [8]). Examples
of finite time blow-up solutions have been constructed in dimension n ≥ 3 in [11]
and [7], see also [27, 28]. In dimension two, Chang, Ding and Ye [5] established
the first example of finite time singularities by a sub-super solution method for ax-
ially symmetric maps into the standard sphere. Angenent, Hulshof and Matano [2]
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analyzed a 1-corotational blow-up solution in a disk with profile

u(x, t) =W
(

x
λ (t)

)
+O(1),

where W is the least energy harmonic map (of degree one)

W (y) =
1

1+ |y|2

[
2y

|y|2−1

]
, y ∈ R2,

O(1) denotes a term that is bounded in H1-norm, and 0 < λ (t)→ 0 as t→ T . They
obtained an estimation of the blow-up rate as λ (t) = o(T − t). Using matched
asymptotics formal analysis, van den Berg, Hulshof and King [69] showed that
this rate should be given by

λ (t)∼ κ
T − t

| log(T − t)|2

for some κ > 0. Raphaël and Schweyer succeeded in constructing an entire 1-
corotational solution with this blow-up rate rigorously [57]. Recently, Davila, del
Pino and Wei [15] constructed a non-symmetric solution that exhibits finite time
blow-up at multiple points and studied its stability by using the inner–outer gluing
method. More precisely, for any given finite set of points in Ω, they constructed so-
lution blowing up exactly at those points simultaneously under suitable initial and
boundary conditions. In another aspect, for higher-degree corotational harmonic
map heat flow, global existence and blow-up have been investigated in a series of
works [30, 29, 31, 32] and the references therein. For the general analysis of the
bubbling phenomena and regularity results of the harmonic map heat flow, we refer
the readers to the book [49].

The model equations for the nematic liquid crystal flow (1.1) that will be studied
in this article are proposed in [45], and it is a simplified version of the Ericksen–
Leslie system for the hydrodynamics flow of nematic liquid crystal material es-
tablished by Ericksen [25] and Leslie [43]. The existence and uniqueness of so-
lutions to (1.1) has attracted a lot of interests in recent years. In an earlier work
[46], Lin and Liu considered the Ericksen-Leslie system with variable degree of
orientations, and established a global existence of weak and classical solutions in
dimensions three and two. There is also a partial regularity theorem for suitable
weak solutions of approximate systems for (1.1), see [47], similar to those for the
Navier–Stokes equation established by Caffarelli–Kohn–Nirenberg in [3]. Later
in [48], a global existence of Leray–Hopf–Struwe type weak solutions of (1.1) in
two dimensions is proved (see also [33], [34], [71], [36], [40] and [70]). More
importantly, the uniqueness of such weak solution in dimension two can also be
shown [50]. For the case of dimension three, much less is known. Lin and Wang
[52] proved a global existence of (suitable) weak solutions satisfying the global
energy inequality under a restrictive assumption that the initial orientation field
u0(Ω) ⊂ S2

+. There are also blow up criteria for finite time singularities for local
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strong solutions of (1.1) in both dimensions two and three, for instance, Huang and
Wang [38]. We should also point out a recent interesting work by Chen and Yu
[6]. They constructed global m-equivariant solutions in R2 where the orientation
field blows up logarithmically as t → +∞. For a survey of some recent important
developments of mathematical analysis of nematic liquid crystals we refer to [51].

The main concern of this paper is the existence of classical solutions to the ne-
matic liquid crystal flow (1.1), that develop finite time singularities. In dimension
three, the work [37] has provided two examples of finite time singularity of (1.1).
The first example is an axisymmetric finite time blow-up solution constructed in a
cylindrical domain (as remarked in [37] Remark 1.2(c), this blow-up example does
not satisfy the no-slip boundary condition). The second example is constructed in
a ball for any generic initial data (v0,u0) that has small enough energy, and u0 has
a non-zero Hopf-degree.

In this paper, we consider the two-dimensional nematic liquid crystal flow (1.1),
where the velocity field satisfies no-slip boundary condition, i.e., v = 0 on ∂Ω.
We wish to point out that if v ≡ 0 in (1.1), then u is not only a solution of the
harmonic map heat flow, it also satisfies the compatibility condition ∇ ·(∇u�∇u−
1
2 |∇u|2I2) = ∇P for a scalar function P. In fact, one can check that for the blow-up
solution u to the harmonic map heat flow constructed by [5], as it is axisymmetric,
(u,0) is also a blow-up solution to (1.1). On the other hand, the blow-up solutions
u to the harmonic map heat flow in [15] can not satisfy (1.1) with v≡ 0, whenever
the number of blow up points k > 1.

Using the inner–outer gluing method for both u and v, we construct a solution
(v,u) to problem (1.1) exhibiting finite time singularity when the parameter ε0 is
sufficiently small. More precisely, we have

Theorem 1.1. There exists a sufficiently small ε0 > 0 such that given k distinct
points q1, · · · ,qk ∈Ω, if T > 0 is sufficiently small, then there exists a smooth initial
data (v0,u0) such that the short time smooth solution (v,u) to the system (1.1) blows
up exactly at those k points as t→ T . More precisely, there exist numbers κ∗j > 0,
ω∗j and u∗ ∈ H1(Ω)∩C(Ω̄) such that

u(x, t)−u∗(x)−
k

∑
j=1

Q1
ω j

Q2
α j

Q3
β j

[
W
(

x−q j

λ j(t)

)
−W (∞)

]
→ 0 as t→ T,

in H1(Ω)∩L∞(Ω), where the blow-up rate and angles satisfy

λ j(t) = κ
∗
j

T − t
| log(T − t)|2

(1+o(1)) as t→ T,

ω j→ ω
∗
j , α j→ 0, β j→ 0, as t→ T,
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and Q1
ω ,Q

2
α and Q3

β
are rotation matrices defined in (2.2). In particular, it holds

that

|∇u(·, t)|2 dx ⇀ |∇u∗|2 dx+8π

k

∑
j=1

δq j as t→ T,

as convergence of Radon measures. Furthermore, the velocity field satisfies

|v(x, t)| ≤ c
k

∑
j=1

λ
ν j−1
j (t)

1+
∣∣∣ x−q j

λ j(t)

∣∣∣ , 0 < t < T,

for some c > 0 and 0 < ν j < 1, j = 1, · · · ,k.

Concerning Theorem 1.1, we would like to make two remarks.

Remark 1.2.
• At each blow-up point q j ∈Ω, 1≤ j ≤ k, the behavior of the velocity field

v is precisely

|v(x, t)| ≤ cλ
ν j−1
j (t)+o(1) for ν j ∈ (0,1).

Theorem 1.1 suggests that v might also blow up in finite time. In fact
we conjecture that ‖v(·, t)‖L∞ ∼ | log(T − t)| as t → T . The singularity
formation of the velocity field is driven by the Ericksen stress tensor ∇ ·
(∇u�∇u− 1

2 |∇u|2I2), which is induced by the liquid crystal orientation
field u(x, t). Namely, u(x, t) plays a role on generating the singular forcing
in the incompressible Navier–Stokes equation. For results of the Navier–
Stokes equation with singular forcing in dimension two, we refer to [10].

• It is well-known that the pressure P can be recovered from the velocity
field v and the forcing. See for instance [26] and [68].

• The proof of Theorem 1.1 actually yields, on one hand, that the small con-
stant ε0 can be chosen to be a universal constant, that is independent of the
domain Ω, blow-up points q1, · · · ,qk, and time T . On the other hand, no
matter how small ε0 would be, the two systems are fully coupled, because
of the following scaling invariance:

(vλ (x, t),Pλ (x, t),uλ (x, t)) = (λv(λx,λ 2t),λ 2P(λx,λ 2t),u(λx,λ 2t)).

In addition, this nonlinear coupling property is also preserved in the lin-
earized inner problem:

vτ +∇P = ∆v− ε0∇ · (∇W �∇φ) ,

∇ · v = 0,
φτ + v ·∇φ = ∆φ + |∇W |2φ +2(∇W ·∇φ)W.
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Remark 1.3. While, in order to carry out fixed point argument in the inner–outer
gluing procedure, we need to assume ε0 > 0 in (1.1) to be sufficiently small, The-
orem 1.1 does cover the relevant physical cases of the hydrodynamics of nematic
liquid crystals where the fluid tends to have a large viscous effect. More precisely,
instead of (1.1), if we consider
(1.4)

∂tv+ v ·∇v+∇P = µ∆v− λ̃∇ ·
(
∇u�∇u− 1

2 |∇u|2I2
)

in Ω× (0,T ),
∇ · v = 0 in Ω× (0,T ),
∂tu+ v ·∇u = γ̃(∆u+ |∇u|2u) in Ω× (0,T ),

where µ > 0, λ̃ > 0, and γ̃ > 0 represents the fluid viscosity, the competition pa-
rameter between the kinetic energy of fluid and the elastic energy of the liquid
crystal orientation field, and the macroscopic relaxation time parameter respec-
tively. Assume that µ

λ̃
� 1 and γ̃

µ
≈ 1. If we set (ṽ, ũ, P̃)(x, t) =

( 1
µ

v,u, 1
µ2 P
)
(x, t

µ
),

then it follows from direct calculations that (ṽ, ũ, P̃) solves (1.1) with the parameter
ε0 =

λ̃

µ
� 1.

The proof of Theorem 1.1 is based on the inner–outer gluing method, which
has been a very powerful tool in constructing solutions in many elliptic problems,
see for instance [18, 19, 20, 16] and the references therein. Also, this method has
been successfully applied to various parabolic flows recently, such as the infinite
time and finite time blow-ups in energy critical heat equations [12, 23, 22, 24, 21],
singularity formation for the 2-dimensional harmonic map heat flow [15], vortex
dynamics in Euler flows [14], and others arising from geometry and fractional
context [13, 59, 55, 60]. We refer the interested readers to a survey by del Pino
[17] for more results in parabolic settings.

The nematic liquid crystal flow (1.1) is a strongly coupled system of the incom-
pressible Navier–Stokes equation and the transported harmonic map heat flow. In
this paper, the construction of the finite time blow-up solution is close in spirit to
the singularity formation of the standard two dimensional harmonic map heat flow

(1.5)


∂tu = ∆u+ |∇u|2u, in Ω× (0,T ),
u = u0, on ∂Ω× (0,T ),
u(·,0) = u0, in Ω.

In [15], by the inner–outer gluing method, Davila, del Pino and Wei successfully
constructed type II finite time blow-up for the harmonic map heat flow (1.5). More
precisely, the solution constructed in [15] takes the bubbling form

|∇u(·, t)|2 ⇀ |∇u∗|2 +8π

k

∑
j=1

δq j , as t→ T,

where u∗ ∈H1(Ω)∩C(Ω̄), (q1, . . . ,qk)∈Ωk are given k points, and δq j denotes the
unit Dirac mass at q j for j = 1, · · · ,k. The construction in [15] consists of finding
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a good approximate solution based on the 1-corotational harmonic maps and then
looking for the inner and outer profiles of the small perturbations. Basically, the in-
ner problem is the linearization around the harmonic map which captures the heart
of the singularity formation, while the outer problem is a heat equation coupled
with the inner problem.

Our construction of a finite time blow-up solution to the nematic liquid crystal
flow (1.1)–(1.3) relies crucially on the delicate analysis carried out in [15]. How-
ever, because of the strong coupling between the Navier–Stokes equation with forc-
ing for v and the transported harmonic map heat flow equation for u, we have to
develop several new ingredients in our inner–outer gluing procedure for the system
(1.1)–(1.3):

• Although the advection term v ·∇v can be realized as a small perturbation in
the Stokes system with forcing, the transported term v ·∇u in the equation
for the orientation field u can only be realized as a small perturbation of the
outer problem for u, but not of the inner problem for u where the singularity
occurs. In fact, since the system (1.1) is invariant under the following
parabolic scalings:

(vλ (x, t),Pλ (x, t),uλ (x, t)) = (λv(λx,λ 2t),λ 2P(λx,λ 2t),u(λx,λ 2t)), ∀λ > 0,

in the self-similar variable (y,τ) near a singular point (q,T ), roughly speak-
ing, the order of v[φ ] ·∇U is the same as that of h in the inner-linearized
equation:

∂τφ + v[φ ] ·∇yW = LW [φ ]+h,
where LW is the linearization of harmonic map equation around W given
by (2.3). See Section 4 for more details.

• In [15], the parameter functions λ (t), ξ (t), ω(t), which correspond to the
dilation, translation in the domain, and rotation about z-axis in the target
space, respectively, were introduced to adjust certain orthogonality condi-
tions to guarantee the existence of desired solutions to the harmonic map
heat flow. However, to find the desired solution of the nematic liquid crys-
tal flow (1.1) as stated in Theorem 1.1, we need to introduce two new
parameter functions α(t) and β (t) associated to the rotations about x and
y axes in the target space, respectively. The reasons behind this are:

i) Heuristically, in the inner problem of u, the velocity v may exhibit
a logarithmic singularity induced by the off-diagonal effect of the
Oseen-kernel Si j (see (3.8)). The addition of these new parameter
functions α(t) and β (t) can balance such a logarithmic singularity
off.

ii) We need to solve the inner linearized problem of u to get a solution
with space and time decay rates faster than that by [15], since we need
to control the stress-tensor ∇ · (∇u�∇u− 1

2 |∇u|2I2) appearing in the
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equation for velocity field v of (1.1). For this purpose, we introduce
two new parameter functions α(t) and β (t) associated to the rotations
about x and y axes in the target space, respectively, to adjust the or-
thogonality conditions at mode −1. See Section 2 for details.

iii) After the adjustment by suitable α(t) and β (t), the smallness of pa-
rameter ε0 can reduce v ·∇u into a truly small perturbation in the inner
problem of u.

• We also need to develop a new linear theory for the Stokes system with
some novel weighted L∞ estimates, which shall have its own interest. The
construction of desired velocity field v shall be carried out by another
new inner–outer gluing procedure, since the forcing term ∇ · (∇u�∇u−
1
2 |∇u|2I2) in (1.1)1 is concentrated near the blow-up points. See Section 3
for details.

The following picture roughly describes the above process.

Forcing in (1.1)1:− ε0∇ ·
(
∇u�∇u− 1

2 |∇u|2I2
) (1)−−−−→ v in (1.1)3

(4)

x (2)

y
Mode k in the inner problem of u: φk

(3)←−−−− v ·∇u in (1.1)3

(1) Solve the incompressible Navier–Stokes equation with forcing coupled
from the orientation u.

(2) The velocity v provides transported effect in the harmonic map heat flow.

(3) The transported term v ·∇u is coupled in a nontrivial way through the inner
problem at mode k since the velocity v = v[φk] carries the information of
φk in step (1).

(4) Faster spatial and time decay of φk yields better forcing term in (1.1)1,
ensuring the implementation of the whole loop.

The paper is organized as follows. In Section 2, we will develop a new inner–
outer gluing method for the harmonic map heat flow in order to handle the difficul-
ties arising from the coupling effects of (1.1). In Section 3, we develop the linear
theory for the Stokes system. In Section 4, using the newly developed inner–outer
gluing method, we construct a finite time blow-up solution to the nematic liquid
crystal flow by the fixed point argument.

Notation. Throughout the paper, we shall use the symbol “ . ” to denote “ ≤ C ”
for a positive constant C independent of t and T . Here C might be different from
line to line.
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2 Singularity formation for the harmonic map heat flow in dimension
two

Closely related to the harmonic map heat flow in dimension two, the equation
for the orientation field u can be regarded as a transported version with drift term.
In this Section, we consider the two dimensional harmonic map heat flow u : Ω×
[0,T )→ S2: 

∂tu = ∆u+ |∇u|2u, in Ω× (0,T ),
u = u0, on ∂Ω× (0,T ),
u(·,0) = u0, in Ω.

While following closely the general strategy of the construction developed by [15],
we will establish several new estimates that are needed for the system (1.1). More
precisely,

• A new linear theory at mode −1: This procedure consists of the following
steps

– Step 1: New corrections are added at mode −1 to cancel out the lead-
ing order of slow decaying error corresponding to the rotations around
x and y axes in the target space (see Section 2.2).

– Step 2: New orthogonality conditions are imposed at mode −1 which
determine the dynamics of the new parameters α(t) and β (t) (see
Section 2.4).

– Step 3: Under the orthogonality conditions at mode−1, the new linear
theory at mode −1 is developed (see Section 2.5).

• Higher order estimates for inner and outer solutions are obtained in or-
der to handle the forcing −ε0∇ ·

(
∇u�∇u− 1

2 |∇u|2I2
)

in the equation for
velocity (1.1)1 (see Sections 2.5–2.6).

We first introduce some notations and preliminaries.

2.1 Stationary problem: the equation of harmonic maps and its lin-
earization

The equation of harmonic maps for U : R2→ S2 is the quasilinear elliptic sys-
tem

(2.1) ∆U + |∇U |2U = 0 in R2.

For λ > 0, ξ ∈ R2, ω,α,β ∈ R, we consider the family of solutions to (2.1) given
by the following 1-corotational harmonic maps

Uλ ,ξ ,ω,α,β (x) = Q1
ωQ2

αQ3
β
W
(

x−ξ

λ

)
, x ∈ R2,
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where

Q1
ω :=

cosω −sinω 0
sinω cosω 0

0 0 1

 , Q2
α :=

1 0 0
0 cosα −sinα

0 sinα cosα

 ,
Q3

β
:=

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

(2.2)

are the rotation matrices about z, x and y axes in the target space, respectively, and
W is the least energy harmonic map

W (y) =
1

1+ |y|2

[
2y

|y|2−1

]
, y ∈ R2.

In the polar coordinates y = ρeiθ , W (y) can be represented as

W (y) =
[

eiθ sinw(ρ)
cosw(ρ)

]
, w(ρ) = π−2arctan(ρ),

and we have

wρ =− 2
ρ2 +1

, sinw =−ρwρ =
2ρ

ρ2 +1
, cosw =

ρ2−1
ρ2 +1

.

For simplicity, we write
Qω,α,β := Q1

ωQ2
αQ3

β
.

The linearization of the harmonic map operator around W is the elliptic operator

(2.3) LW [φ ] = ∆yφ + |∇W (y)|2φ +2(∇W (y) ·∇φ)W (y),

whose kernel functions are given by

(2.4)



Z0,1(y) = ρwρ(ρ)E1(y),

Z0,2(y) = ρwρ(ρ)E2(y),

Z1,1(y) = wρ(ρ)[cosθE1(y)+ sinθE2(y)],

Z1,2(y) = wρ(ρ)[sinθE1(y)− cosθE2(y)],

Z−1,1(y) = ρ
2wρ(ρ)[cosθE1(y)− sinθE2(y)],

Z−1,2(y) = ρ
2wρ(ρ)[sinθE1(y)+ cosθE2(y)],

where the vectors

E1(y) =
[

eiθ cosw(ρ)
−sinw(ρ)

]
, E2(y) =

[
ieiθ

0

]
form an orthonormal basis of the tangent space TW (y)S2. We see that

LW [Zi, j] = 0 for i =±1,0, j = 1,2.
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Note that

LU [ϕ] = λ
−2Qω,α,β LW [φ ], ϕ(x) = φ(y), y =

x−ξ

λ
.

In the sequel, it is of significance to compute the action of LU on functions whose
value is orthogonal to U pointwisely. Define

ΠU⊥ϕ := ϕ− (ϕ ·U)U.

We invoke several useful formulas proved in [15, Section 3]:

LU [ΠU⊥Φ] = ΠU⊥∆Φ+ L̃U [Φ],

where

(2.5) L̃U [Φ] := |∇U |2ΠU⊥Φ−2∇(Φ ·U)∇U,

with
∇(Φ ·U)∇U = ∂x j(Φ ·U)∂x jU.

In the polar coordinates

Φ(x) = Φ(r,θ), x = ξ + reiθ ,

(2.5) can be expressed as (see [15, Section 3])

L̃U [Φ] =− 2
λ

wρ(ρ)

[
(Φr ·U)Qω,α,β E1−

1
r
(Φθ ·U)Qω,α,β E2

]
, r = λρ.

Assume that Φ(x) : Ω→ C×R is a C1 function in the form

(2.6) Φ(x) =
[

ϕ1(x)+ iϕ2(x)
ϕ3(x)

]
.

If we write
ϕ = ϕ1 + iϕ2, ϕ̄ = ϕ1− iϕ2

and
divϕ = ∂x1ϕ1 +∂x2ϕ2, curlϕ = ∂x1ϕ2−∂x2ϕ1,

then we have the following formula (see [15, Section 3])

L̃U [Φ] = [L̃U ]0[Φ]+ [L̃U ]1[Φ]+ [L̃U ]2[Φ],(2.7)

where

(2.8)



[L̃U ]0[Φ] = λ
−1

ρw2
ρ [div(e−iω

ϕ)Qω,α,β E1 + curl(e−iω
ϕ)Qω,α,β E2],

[L̃U ]1[Φ] = −2λ
−1wρ cosw[(∂x1ϕ3)cosθ +(∂x2ϕ3)sinθ ]Qω,α,β E1

−2λ
−1wρ cosw[(∂x1ϕ3)sinθ − (∂x2ϕ3)cosθ ]Qω,α,β E2,

[L̃U ]2[Φ] = λ
−1

ρw2
ρ [div(eiω

ϕ̄)cos2θ − curl(eiω
ϕ̄)sin2θ ]Qω,α,β E1

+λ
−1

ρw2
ρ [div(eiω

ϕ̄)sin2θ + curl(eiω
ϕ̄)cos2θ ]Qω,α,β E2.

If we assume

Φ(x) =
[

φ(r)eiθ

0

]
, x = ξ + reiθ , r = λρ,
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where φ(r) is complex-valued, then we have the following formula

L̃U [Φ] =
2
λ

w2
ρ(ρ)

[
Re(e−iω

∂rφ(r))Qω,α,β E1 +
1
r

Im(e−iω
φ(r))Qω,α,β E2

]
.

If Φ is of the form

Φ(x) = ϕ1(ρ,θ)Qω,α,β E1 +ϕ2(ρ,θ)Qω,α,β E2, x = ξ +λρeiθ

in the polar coordinates, then the linearized operator LU acting on Φ can be ex-
pressed as (see [15, Section 3])

LU [Φ]

= λ
−2
(

∂ρρϕ1 +
∂ρϕ1

ρ
+

∂θθ ϕ1

ρ2 +(2w2
ρ −

1
ρ2 )ϕ1−

2
ρ2 ∂θ ϕ2 cosw

)
Qω,α,β E1

+λ
−2
(

∂ρρϕ2 +
∂ρϕ2

ρ
+

∂θθ ϕ2

ρ2 +(2w2
ρ −

1
ρ2 )ϕ2 +

2
ρ2 ∂θ ϕ1 cosw

)
Qω,α,β E2.

In next section, we shall find proper approximate solutions to the harmonic map
heat flow based on the 1-corotational harmonic maps, and evaluate the error.

2.2 Approximate solution and error estimates

We now consider the harmonic map heat flow

(2.9)


∂tu = ∆u+ |∇u|2u, in Ω× (0,T ),
u = u0, on ∂Ω× (0,T ),
u(·,0) = u0, in Ω,

where u : Ω̄× (0,T )→ S2, and u0 : Ω̄→ S2 is a given smooth map. For notational
simplicity, we shall only carry out the construction in the single bubble case k = 1
and mention the minor changes for the general case when needed. We define the
error operator

S[u] =−∂tu+∆u+ |∇u|2u.
We shall look for solution u(x, t) to problem (2.9) which at leading order takes the
form

(2.10) U(x, t) :=Uλ (t),ξ (t),ω(t),α(t),β (t) = Qω(t),α(t),β (t)W
(

x−ξ (t)
λ (t)

)
.

Here λ (t), ξ (t), ω(t), α(t) and β (t) are parameter functions of class C1((0,T )) to
be determined later. To get a desired blow-up solution, we assume

λ (t)→ 0, ξ (t)→ q as t→ T,

where q is a given point in Ω.
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A useful observation is that as long as the constraint |u| = 1 is kept for all
t ∈ (0,T ) and u =U + w̃ where the perturbation w̃ is uniformly small, say, |w̃| ≤ 1

2 ,
then for u to solve (2.9), it suffices that

(2.11) S(U + w̃) = b(x, t)U

for some scalar function b. Indeed, since |u|= 1, we get

b(U ·u) = S(u) ·u =−1
2

d
dt
|u|2 + 1

2
∆|u|2 = 0.

Thus b≡ 0 follows from U ·u≥ 1
2 .

We look for the small perturbation w̃(x, t) with |U + w̃|= 1 in the form

w̃ = ΠU⊥ϕ +a(ΠU⊥ϕ)U,

where ϕ is an arbitrarily small perturbation with values in R3, and

ΠU⊥ϕ := ϕ− (ϕ ·U)U, a(ζ ) =
√

1−|ζ |2−1.

By ∆U + |∇U |2U = 0, we compute

S(U +ΠU⊥ϕ +aU) =−Ut −∂tΠU⊥ϕ +LU(ΠU⊥ϕ)+NU(ΠU⊥ϕ)+ c(ΠU⊥ϕ)U,

where for ζ = ΠU⊥ϕ , a = a(ζ ),

LU(ζ ) = ∆ζ + |∇U |2ζ +2(∇U ·∇ζ )U,

NU(ζ )

=
[
2∇(aU) ·∇(U +ζ )+2∇U ·∇ζ + |∇ζ |2 + |∇(aU)|2

]
ζ −aUt +2∇a ·∇U,

c(ζ ) = ∆a−at +(|∇(U +ζ +aU)|2−|∇U |2)(1+a)−2∇U ·∇ζ .

Since we just need to have an equation in the form (2.11) satisfied, we obtain that

(2.12) u =U +ΠU⊥ϕ +a(ΠU⊥ϕ)U

solves (2.9) if ϕ satisfies

(2.13) −Ut −∂tΠU⊥ϕ +LU(ΠU⊥ϕ)+NU(ΠU⊥ϕ)+b(x, t)U = 0

for some scalar function b(x, t). The strategy for constructing ϕ is based on the
inner–outer gluing method. We decompose ϕ in (2.12) into inner and outer profiles

ϕ = ϕin +ϕout ,

where ϕin, ϕout solve the inner and outer problems we shall describe below. In
terms of ϕin and ϕout , equation (2.13) is reduced to

−∂tϕin +LU [ϕin]+ L̃U [ϕout ]−ΠU⊥ [∂tϕout −∆ϕout +Ut ]

+NU(ϕin +ΠU⊥ϕout)+(ϕout ·U)Ut +bU = 0.(2.14)

The inner solution ϕin will be assumed to be supported only near x= ξ (t) and better
expressed in the scaled variable y= x−ξ (t)

λ (t) with zero initial condition and ϕin ·U = 0
so that ΠU⊥ϕin = ϕin, while the outer solution ϕout will consist of several parts
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whose role is essentially to satisfy (2.14) in the region away from the concentration
point x = ξ (t).

For the outer problem, since we want the size of the error to be small, we shall
add three corrections Φ0, Φα and Φβ which depend on the parameter functions
λ (t), ξ (t), ω(t), α(t), β (t) such that

ΠU⊥ [∂t(Φ
0 +Φ

α +Φ
β )−∆(Φ0 +Φ

α +Φ
β )+Ut ]

gets concentrated near x = ξ (t) by eliminating the leading orders in the first error
Ut associated to the dilation and rotations about x, y and z axes. We write

ϕout(x, t) = Ψ
∗(x, t)+Φ

0(x, t)+Φ
α(x, t)+Φ

β (x, t),

where
Ψ
∗ = ψ +Z∗

with Z∗ : Ω× (0,∞)→ R3 satisfying
∂tZ∗ = ∆Z∗, in Ω× (0,∞),

Z∗(·, t) = 0, on ∂Ω× (0,∞),

Z∗(·,0) = Z∗0 , in Ω.

For the inner problem, we define

ϕin(x, t) = ηRQω,α,β φ(y, t)

with

ηR(x, t) = η

(
|x−ξ (t)|
λ (t)R(t)

)
, y =

x−ξ (t)
λ (t)

, η(s) =

{
1, for s < 1,
0, for s > 2,

where φ(y, t) satisfies φ(·,0) = 0 and φ(·, t) ·W = 0, and R(t) > 0 is determined
later. Then equation (2.13) becomes

0 = λ
−2

ηRQω,α,β [−λ
2
φt +LW [φ ]+λ

2Q−1
ω,α,β L̃U [Ψ

∗]]

(2.15)

+ηRQω,α,β (λ
−1

λ̇y ·∇yφ +λ
−1

ξ̇ ·∇yφ − (Q−1
ω,α,β

d
dt

Qω,α,β )φ)

+ L̃U [Φ
0 +Φ

α +Φ
β ]−ΠU⊥ [∂t(Φ

0 +Φ
α +Φ

β )−∆x(Φ
0 +Φ

α +Φ
β )+Ut ]

−∂tΨ
∗+∆Ψ

∗+(1−ηR)L̃U [Ψ
∗]+Qω,α,β [(∆xηR)φ +2∇xηR∇xφ − (∂tηR)φ ]

+NU(ηRQω,α,β φ +ΠU⊥(Φ
0 +Φ

α +Φ
β +Ψ

∗))

+((Ψ∗+Φ
0 +Φ

α +Φ
β ) ·U)Ut +bU.

We now give the precise definitions of Φ0, Φα , Φβ , and estimate the error

L̃U [Φ
0 +Φ

α +Φ
β ]−ΠU⊥ [∂t(Φ

0 +Φ
α +Φ

β )−∆x(Φ
0 +Φ

α +Φ
β )+Ut ].

We shall choose Φ0, Φα , Φβ in a way such that

∂t(Φ
0 +Φ

α +Φ
β )−∆x(Φ

0 +Φ
α +Φ

β )+Ut ≈ 0 for |x−ξ | � λ
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so that the error in the outer problem is of smaller order.
The error of the approximate solution defined in (2.10) is

S [U ] =−∂tU =−
[

λ̇ ∂λU + ω̇∂ωU︸ ︷︷ ︸
:=E0

+ ξ̇ ·∂ξU︸ ︷︷ ︸
:=E1

+ α̇∂αU + β̇ ∂βU︸ ︷︷ ︸
:=E−1

]
where 

∂λU(x) = λ
−1Qω,α,β Z0,1(y)

∂ωU(x) = Qω,α,β Z0,2(y)+Qω,α,β (Aα,β − J1)W (y)

∂ξ1U(x) = λ
−1Qω,α,β Z1,1(y)

∂ξ2U(x) = λ
−1Qω,α,β Z1,2(y)

∂αU(x) =
1
2

Qω,α,β [Z−1,2(y)+Z1,2(y)]+Qω,α,β (Aβ − J2)W (y)

∂βU(x) =−1
2

Qω,α,β [Z−1,1(y)+Z1,1(y)]

with Zi, j defined in (2.4) for i = 0,±1, j = 1,2,

(2.16) Aα,β =

 0 −cosα cosβ sinα

cosα cosβ 0 cosα sinβ

−sinα −cosα sinβ 0

 , J1 =

0 −1 0
1 0 0
0 0 0

 ,
and

Aβ =

 0 −sinβ 0
sinβ 0 −cosβ

0 cosβ 0

 , J2 =

0 0 0
0 0 −1
0 1 0

 .
It is worth mentioning that Aα,β − J1 = o(1) and Aβ − J2 = o(1) as α,β � 1.
Writing y = x−ξ

λ
= ρeiθ , we have

E0(x, t) = −Qω,α,β

[
λ̇λ
−1

ρwρ(ρ)E1(y)+ ω̇ρwρ(ρ)E2(y)
]
,

E1(x, t) = − ξ̇1λ
−1wρ(ρ)Qω,α,β [cosθE1(y)+ sinθE2(y)]

− ξ̇2λ
−1wρ(ρ)Qω,α,β [sinθE1(y)− cosθE2(y)] .

Notice that the slow decaying part of the error S [U ] consists of

E0(x, t) = −
2r

r2 +λ 2

(
λ̇Qω,α,β E1 +λω̇Qω,α,β E2

)
≈ − 2r

r2 +λ 2

[
(λ̇ + iλω̇)ei(θ+ω)

0

]
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and
E−1(x, t)

= Qω,α,β

[
α̇

2
[Z−1,2(y)+Z1,2(y)]+ α̇(Aβ − J2)W −

β̇

2
[Z−1,1(y)+Z1,1(y)]

]
:= E−1,2 +E−1,1,

where

E−1,2 = Qω,α,β
α̇

1+ρ2

 −2ρ sinβ sinθ

2ρ sinβ cosθ − (ρ2−1)cosβ

2ρ cosβ sinθ


and

E−1,1 = Qω,α,β
β̇

1+ρ2

 ρ2−1
0

−2ρ cosθ

 .
In the sequel, we write

p(t) = λ (t)eiω(t).

Then

− 2r
r2 +λ 2

[
(λ̇ + iλω̇)ei(θ+ω)

0

]
=− 2r

r2 +λ 2

[
ṗ(t)eiθ

0

]
:= Ẽ0(x, t).

To reduce the size of S [U ], we add corrections

(2.17) Φ
0[p,ξ ] :=

[
ϕ0(r, t)eiθ

0

]
, Φ

α = Qω,α,β

 0
α(t)

0

 , Φ
β = Qω,α,β

−β (t)
0
1

 ,
where

ϕ
0(r, t) =−

∫ t

−T
r ṗ(s)k(z(r), t− s)ds

with

z(r) =
√

r2 +λ 2, k(z, t) = 2
1− e−

z2
4t

z2 .

By direct computations, the new error produced by Φ0 is

Φ
0
t −∆xΦ

0 + Ẽ0 = R̃0 + R̃1, R̃0 =

[
R0
0

]
, R̃1 =

[
R1
0

]
where

R0 :=−reiθ λ 2

z4

∫ t

−T
ṗ(s)(zkz− z2kzz)(z(r), t− s)ds
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and

R1 :=−eiθ Re(e−iθ
ξ̇ (t))

∫ t

−T
ṗ(s)k(z(r), t− s)ds

+
r
z2 eiθ (λλ̇ (t)−Re(reiθ

ξ̇ (t)))
∫ t

−T
ṗ(s) zkz(z(r), t− s)ds.

Observe that R1 is of smaller order. Moreover, we can evaluate

L̃U [Φ
0]+ΠU⊥ [−Ut +∆Φ

0−Φ
0
t ]

= L̃U [Φ
0]−E1 +ΠU⊥ [Ẽ0]−E0−ΠU⊥ [R̃0]−ΠU⊥ [R̃1]−E−1

= K0[p,ξ ]+K1[p,ξ ]−ΠU⊥ [R̃1]−E−1

where

K0[p,ξ ] = K01[p,ξ ]+K02[p,ξ ]

with

K01[p,ξ ] :=−

(2.18)

2
λ

ρw2
ρ

∫ t

−T

[
Re(ṗ(s)e−iω(t))Qω,α,β E1 + Im(ṗ(s)e−iω(t))Qω,α,β E2

]
· k(z, t− s)ds

K02[p,ξ ]

:=
1
λ

ρw2
ρ

[
λ̇ −

∫ t

−T
Re(ṗ(s)e−iω(t))rkz(z, t− s)zr ds

]
Qω,α,β E1

− 1
4λ

ρw2
ρ cosw

[∫ t

−T
Re(ṗ(s)e−iω(t))(zkz− z2kzz)(z, t− s)ds

]
Qω,α,β E1

− 1
4λ

ρw2
ρ

[∫ t

−T
Im(ṗ(s)e−iω(t))(zkz− z2kzz)(z, t− s)ds

]
Qω,α,β E2,

(2.19)

K1[p,ξ ] :=
1
λ

wρ

[
Re
(
(ξ̇1− iξ̇2)eiθ)Qω,α,β E1 + Im

(
(ξ̇1− iξ̇2)eiθ)Qω,α,β E2

]
.

(2.20)

Next we consider the new error estimates produced by Φα and Φβ . It is obvious
that L̃U [Φ

α ] = 0 and L̃U [Φ
β ] = 0. Direct computations show that

Q−1
ω,α,β

(
d
dt

Qω,α,β

)0
α

0

=

−ω̇α cosα cosβ −αα̇ sinβ

0
α̇α cosβ − ω̇α cosα sinβ

 ,
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Q−1
ω,α,β

(
d
dt

Qω,α,β

)−β

0
1


=

 ω̇ sinα + β̇

ω̇(cosα sinβ −β cosα cosβ )− α̇(β sinβ + cosβ )

ω̇β sinα + β̇β

 ,
and thus

−∂tΦ
α +∆Φ

α −E−1,2 = Qω,α,β


ω̇α cosα cosβ + α̇ sinβ

(
α + 2ρ

1+ρ2 sinθ

)
−α̇

(
1− ρ2−1

1+ρ2 cosβ + 2ρ

1+ρ2 sinβ cosθ

)
ω̇α cosα sinβ − α̇ cosβ

(
α + 2ρ

1+ρ2 sinθ

)


:= R−1,2[α,β ]

(2.21)

and
−∂tΦ

β +∆Φ
β −E−1,1

= Qω,α,β


2

1+ρ2 β̇ − ω̇ sinα− β̇

−ω̇(cosα sinβ −β cosα cosβ )+ α̇(β sinβ + cosβ )

−ω̇β sinα− β̇

(
β − 2ρ

1+ρ2 cosθ

)


:= R−1,1[α,β ].

Consequently, we obtain

−∂t(Φ
α +Φ

β )+∆(Φα +Φ
β )−E−1 = R−1[α,β ],

where

R−1[α,β ] := R−1,1[α,β ]+R−1,2[α,β ].(2.22)

2.3 Inner–outer gluing system

Collecting the error estimates in the previous section, we will get a solution
solving (2.15) if the pair (φ ,Ψ∗) solves the inner–outer gluing system
(2.23)

λ
2
∂tφ = LW [φ ]+λ

2Q−1
ω,α,β

[
L̃U [Ψ

∗]+K0[p,ξ ]+K1[p,ξ ]+ΠU⊥ [R−1[α,β ]]
]
,

in D2R

φ(·,0) = 0, in B2R(0)

φ ·W = 0, in D2R

(2.24) ∂tΨ
∗ = ∆xΨ

∗+G [p,ξ ,Ψ∗,α,β ,φ ] in Ω× (0,T ),
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where
G [p,ξ ,Ψ∗,α,β ,φ ]

:= (1−ηR)L̃U [Ψ
∗]+ (Ψ∗ ·U)Ut +Qω,α,β (φ∆xηR +2∇xηR ·∇xφ −φ∂tηR)

+ηRQω,α,β (−(Q−1
ω,α,β

d
dt

Qω,α,β )φ +λ
−1

λ̇y ·∇yφ +λ
−1

ξ̇ ·∇yφ)

+(1−ηR)(K0[p,ξ ]+K1[p,ξ ]+ΠU⊥ [R−1[α,β ]])−ΠU⊥ [R̃1]

+NU [ηRQω,α,β φ +ΠU⊥(Φ
0 +Φ

α +Φ
β +Ψ

∗)]

+
(
(Φ0 +Φ

α +Φ
β ) ·U

)
Ut ,

the linearization LW [φ ] is defined in (2.3), and

D2R :=
{
(y, t) : y ∈ B2R(t), t ∈ (0,T )

}
with the radius

(2.25) R = R(t) = λ∗(t)−γ∗ , with λ∗(t) =
| logT |(T − t)
| log(T − t)|2

and γ∗ ∈ (0,1/2).

The reason for choosing such R(t) and λ∗(t) will be made clear later on. If the pair
(φ ,Ψ∗) solves the inner–outer gluing system (2.23)–(2.24), then we get a desired
solution

u(x, t) =U +ΠU⊥ [ηRQω,α,β φ +Ψ
∗+Φ

0 +Φ
α +Φ

β ]

+a(ΠU⊥ [ηRQω,α,β φ +Ψ
∗+Φ

0 +Φ
α +Φ

β ])U

which solves problem (2.9). We take the boundary condition u
∣∣
∂Ω

= e3 :=

0
0
1

,

which amounts to
ΠU⊥ [Ψ

∗+Φ
0 +Φ

α +Φ
β ]+a(ΠU⊥ [U +Ψ

∗+Φ
0 +Φ

α +Φ
β ])U

= e3−U on ∂Ω× (0,T ).

So it suffices to take the boundary condition for the outer problem (2.24) as

Ψ
∗∣∣

∂Ω
= e3−U−Φ

0−Φ
α −Φ

β .

2.4 Reduced equations for parameter functions

In this section, we will derive the parameter functions λ (t), ξ (t), ω(t), α(t)
and β (t) at leading order as t→ T .

The inner problem (2.23) has the form

(2.26)


λ 2φt = LW [φ ]+h[p,ξ ,α,β ,Ψ∗](y, t) in D2R,

φ ·W = 0 in D2R,

φ(·,0) = 0 in B2R(0).
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Here we recall that we write p(t) = λ (t)eiω(t). For convenience, we assume that
h(y, t) is defined for all y ∈ R2 extending outside D2R as

h[p,ξ ,α,β ,Ψ∗]

= λ
2Q−1

ω,α,β χD2R

[
L̃U [Ψ

∗]+K0[p,ξ ]+K1[p,ξ ]+ΠU⊥ [R−1[α,β ]]
]
,

where χA denotes the characteristic function of a set A, K0 is defined in (2.18),
(2.19), K1 in (2.20) and R−1 in (2.22). If λ (t) has a relatively smooth vanishing
as t → T , it is then natural that the term λ 2φt is of smaller order and the equation
(2.26) is approximated by the elliptic problem

LW [φ ]+h[p,ξ ,α,β ,Ψ∗] = 0, φ ·W = 0 in B2R.(2.27)

We consider the kernel functions Zl, j(y) defined in (2.4), which satisfy LW [Zl, j] = 0
for l = 0,±1, j = 1,2. If there is a solution φ(y, t) to (2.27) with sufficient decay,
then necessarily

(2.28)
∫

B2R

h[p,ξ ,α,β ,Ψ∗](y, t) ·Zl, j(y)dy = 0 for all t ∈ (0,T ),

for l = 0,±1, j = 1,2. These orthogonality conditions (2.28) amount to an integro-
differential system of equations for p(t), ξ (t), α(t), β (t), which, as a matter of
fact, determine the correct values of the parameter functions so that the solution
pair (φ ,Ψ∗) with appropriate asymptotics exists.

For the reduced equations of p(t) and ξ (t) which correspond to mode l = 0 and
mode l = 1, respectively, we invoke some useful expressions and results in [15,
Section 5]. Let

B0 j[p](t) :=
λ

2π

∫
R2

Q−1
ω,α,β [K0[p,ξ ]+K1[p,ξ ]+ΠU⊥ [R−1[α,β ]]] ·Z0, j(y)dy,

for j = 1,2. From (2.22), (2.22) and (2.21), direct computations yield∫
B2R

Q−1
ω,α,β ΠU⊥ [R−1[α,β ]] ·Z0,1(y)dy

= π

(
− 16R2

4R2 +1
+4log(4R2 +1)

)
· (ω̇α cosα sinβ −αα̇ cosβ − ω̇β sinα−ββ̇ ),

(2.29)

and ∫
B2R

Q−1
ω,α,β ΠU⊥ [R−1[α,β ]] ·Z0,2(y)dy

= π

(
− 16R2

4R2 +1
+4log(4R2 +1)

)
α̇ sinβ .

(2.30)

Combining (2.18), (2.19) with (2.29) and (2.30), the following expressions for B01,
B02 are readily obtained by similar computations as in [15, Section 5]
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B01[p](t) =
∫ t

−T
Re(ṗ(s)e−iω(t))Γ1

(
λ (t)2

t− s

)
ds

t− s
−2λ̇ (t)+o(1)

B02[p](t) =
∫ t

−T
Im(ṗ(s)e−iω(t))Γ2

(
λ (t)2

t− s

)
ds

t− s
,

where o(1)→ 0 as t→ T , and Γ j(τ) are smooth functions defined as

Γ1(τ) =−
∫

∞

0
ρ

3w3
ρ

[
K(ζ )+2ζ Kζ (ζ )

ρ2

1+ρ2 −4cos(w)ζ 2Kζ ζ (ζ )

]
ζ=τ(1+ρ2)

dρ,

Γ2(τ) =−
∫

∞

0
ρ

3w3
ρ

[
K(ζ )−ζ

2Kζ ζ (ζ )
]

ζ=τ(1+ρ2)
dρ ,

where

K(ζ ) = 2
1− e−

ζ

4

ζ
.

Using the expressions of Γ j(τ), we get
|Γ j(τ)−1| ≤Cτ(1+ | logτ|) for τ < 1,

|Γ j(τ)| ≤
C
τ

for τ > 1.

Define

B0[p] :=
1
2

eiω(t) (B01[p]+ iB02[p])(2.31)

and

a0 j[p,ξ ,α,β ,Ψ∗] :=− λ

2π

∫
B2R

Q−1
ω,α,β L̃U [Ψ

∗] ·Z0, j(y)dy, j = 1,2,

a0[p,ξ ,α,β ,Ψ∗] :=
1
2

eiω(t) (a01[p,ξ ,α,β ,Ψ∗]+ ia02[p,ξ ,α,β ,Ψ∗]) .

Similarly, we let

B1 j[ξ ](t) :=
λ

2π

∫
R2

Q−1
ω,α,β [K0[p,ξ ]+K1[p,ξ ]+R−1[α,β ]] ·Z1, j(y)dy,

for j = 1,2, and

B1[ξ ](t) := B11[ξ ](t)+ iB12[ξ ](t).

Directly using the expressions (2.22), (2.22) and (2.21), we have∫
B2R

Q−1
ω,α,β ΠU⊥ [R−1[α,β ]] ·Z1,1(y)dy

=
8πR2

4R2 +1
(ω̇α cosα cosβ + α̇α sinβ − ω̇ sinα + β̇ ),
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and ∫
B2R

Q−1
ω,α,β ΠU⊥ [R−1[α,β ]] ·Z1,2(y)dy

=− 8πR2

4R2 +1
(α̇− ω̇β cosα cosβ − α̇β sinβ + ω̇ cosα sinβ ).

Therefore, by (2.20), (2.4) and the fact that
∫

∞

0 ρw2
ρdρ = 2, we obtain

B1[ξ ](t) = 2[ ξ̇1(t)+ iξ̇2(t)+o(1) ] as t→ T.

At last, we let

a1 j[p,ξ ,α,β ,Ψ∗] :=
λ

2π

∫
B2R

Q−1
ω,α,β L̃U [Ψ

∗] ·Z1, j(y)dy, j = 1,2,

a1[p,ξ ,α,β ,Ψ∗] :=−eiω(t)(a11[p,ξ ,α,β ,Ψ∗]+ ia12[p,ξ ,α,β ,Ψ∗]).

We thus obtain that the four conditions (2.28) for l = 0,1 are reduced to the system
of two complex equations

B0[p] = a0[p,ξ ,α,β ,Ψ∗],(2.32)

B1[ξ ] = a1[p,ξ ,α,β ,Ψ∗].(2.33)

We observe that

B0[p] =
∫ t−λ 2

−T

ṗ(s)
t− s

ds +O
(
‖ ṗ‖∞

)
+o(1) as t→ T.

To get an approximation for a0, we need to analyze the operator L̃U in a0. To this
end, we write

Ψ
∗ =

[
ψ∗

ψ∗3

]
, ψ

∗ = ψ
∗
1 + iψ∗2 .

From (2.7) and (2.8), we have

L̃U [Ψ
∗](y, t) = [L̃U ]0[Ψ

∗]+ [L̃U ]1[Ψ
∗]+ [L̃U ]2[Ψ

∗],

where

[L̃U ]0[Ψ
∗] = λ

−1Qω,α,β ρw2
ρ [div(e−iω

ψ
∗)E1 + curl(e−iω

ψ
∗)E2],

[L̃U ]1[Ψ
∗] = −2λ

−1Qω,α,β wρ cosw[(∂x1ψ
∗
3 )cosθ +(∂x2ψ

∗
3 )sinθ ]E1

−2λ
−1Qω,α,β wρ cosw[(∂x1ψ

∗
3 )sinθ − (∂x2ψ

∗
3 )cosθ ]E2,

[L̃U ]2[Ψ
∗] = λ

−1Qω,α,β ρw2
ρ [div(eiω

ψ̄
∗)cos2θ − curl(eiω

ψ̄
∗)sin2θ ]E1

+λ
−1Qω,α,β ρw2

ρ [div(eiω
ψ̄
∗)sin2θ + curl(eiω

ψ̄
∗)cos2θ ]E2,

and the differential operators in Ψ∗ on the right hand sides are evaluated at (x, t)
with x = ξ (t)+ λ (t)y, y = ρeiθ while E j = E j(y) for j = 1,2. From the above
decomposition, assuming that Ψ∗ is of class C1 in the space variable, we then get

a0[p,ξ ,α,β ,Ψ∗] = [divψ
∗+ icurlψ

∗](ξ , t)+o(1) as t→ T.
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Similarly, since
∫

∞

0 w2
ρ coswρ dρ = 0, we get

a1[p,ξ ,α,β ,Ψ∗] = 2(∂x1ψ
∗
3 + i∂x2ψ

∗
3 )(ξ , t)

∫
∞

0
cosww2

ρρ dρ +o(1)

= o(1) as t→ T.

We now simplify the system (2.32)–(2.33) in the form∫ t−λ 2

−T

ṗ(s)
t− s

ds = [divψ
∗+ icurlψ

∗](ξ (t), t)+o(1)+O(‖ ṗ‖∞)

ξ̇ (t) = o(1) as t→ T.(2.34)

For the moment, we assume that the function Ψ∗(x, t) is fixed and sufficiently reg-
ular, and we regard T as a parameter that will always be taken smaller if necessary.
We recall that we need ξ (T ) = q where q ∈ Ω is given, and λ (T ) = 0. Equation
(2.34) immediately suggests us to take ξ (t)≡ q as the first approximation. Neglect-
ing lower order terms, p(t) = λ (t)eiω(t) satisfies the following integro-differential
system ∫ t−λ 2(t)

−T

ṗ(s)
t− s

ds = divψ
∗(q,0)+ icurlψ

∗(q,0) =: a∗0.(2.35)

At this point, we make the following assumption

divψ
∗(q,0)< 0,(2.36)

which implies that a∗0 =−|a∗0|eiω0 for a unique ω0 ∈ (−π

2 ,
π

2 ). Let us take

ω(t)≡ ω0.

Equation (2.35) then becomes

(2.37)
∫ t−λ 2(t)

−T

λ̇ (s)
t− s

ds =−|a∗0|.

We claim that a good approximate solution to (2.37) as t→ T is given by

λ̇ (t) =− κ

log2(T − t)
for a suitable κ > 0. Indeed, we have∫ t−λ 2(t)

−T

λ̇ (s)
t− s

ds =
∫ t−(T−t)

−T

λ̇ (s)
t− s

ds+ λ̇ (t) [log(T − t)−2log(λ (t))]

+
∫ t−λ 2(t)

t−(T−t)

λ̇ (s)− λ̇ (t)
t− s

ds

≈
∫ t

−T

λ̇ (s)
T − s

ds − λ̇ (t) log(T − t) := ϒ(t)
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as t→ T . We see that

log(T − t)
dϒ(t)

dt
=

d
dt
(log2(T − t) λ̇ (t)) = 0

from the explicit form of λ̇ (t). Thus ϒ(t) is a constant. As a consequence, equation
(2.37) is approximately satisfied if κ is such that

κ

∫ T

−T

λ̇ (s)
T − s

ds = −|a∗0|,

which finally gives us the approximate expression

λ̇ (t) =−|divψ
∗(q,0)+ icurlψ

∗(q,0)| λ̇∗(t),
where

λ̇∗(t) =−
| logT |

log2(T − t)
.

Naturally, imposing λ∗(T ) = 0, we then have

(2.38) λ∗(t) =
| logT |

log2(T − t)
(T − t)(1+o(1)) as t→ T.

Next, we consider (2.28) for the case of mode l =−1, which gives the reduced
equations of α(t) and β (t). By (2.22), (2.22) and (2.21), we evaluate∫

B2R

Q−1
ω,α,β ΠU⊥ [R−1[α,β ]] ·Z−1,1(y)dy

= 4π

(
−4R2(2R2 +1)

4R2 +1
+ log(4R2 +1)

)
· (−β̇ − ω̇ sinα + ω̇α cosα cosβ + α̇α sinβ )

= 8π

[
(R2− logR)β̇ (1+o(1))

]
,

and ∫
B2R

Q−1
ω,α,β ΠU⊥ [R−1[α,β ]] ·Z−1,2(y)dy

= 4π

(
4R2(2R2 +1)

4R2 +1
− log(4R2 +1)

)
· (α̇(1−β sinβ −2cosβ )+ ω̇ cosα(sinβ −β cosβ ))

= 8π
[
(−R2 + logR)α̇(1+o(1))

]
,

where we recall that ω(t)≡ ω0. Since∫
B2R

λ
2Q−1

ω,α,β

[
L̃U [Ψ

∗]+K0 +K1
]
·Z−1, j(y)dy = c jλ
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for some c j ∈ R, for j = 1,2, the orthogonality condition (2.28) with l =−1 gives

8πλ
2(−R2 + logR) β̇ (1+o(1)) = c1λ ,

8πλ
2(R2− logR) α̇(1+o(1)) = c2λ .

Thus, by (2.38) and the definition of R = R(t) in (2.25), good choices for α(t) and
β (t) at leading orders are

α(t) = cα(T − t)δ1(1+o(1)), β (t) = cβ (T − t)δ2(1+o(1)), as t→ T

for some δ1, δ2 > 0 and cα , cβ ∈ R.

2.5 Linear theory for the inner problem

To capture the heart of the singularity formation, a linear theory of the inner
problem (2.23) is required. In contrast with that by [15], it turns out that we will
have to establish a decay estimate of second order derivative of φ in order to handle
the coupling effects between the inner–outer problem of u and that of v below. We
consider

(2.39)


λ 2∂tφ = LW [φ ]+h(y, t), in D2R,

φ(·,0) = 0, in B2R(0),

φ ·W = 0, in D2R,

where we recall from (2.25) that

R = R(t) = λ∗(t)−γ∗ , with λ∗(t) =
| logT |(T − t)
| log(T − t)|2

and γ∗ ∈ (0,1/2).

We regard h(y, t) as a function defined in R2×(0,T ) with compact support, and
assume that h(y, t) has the space-time decay of the following type

|h(y, t)|. λ ν
∗ (t)

1+ |y|a
, h ·W = 0,

where ν > 0 and a ∈ (2,3). Define the norm

‖h‖ν ,a := sup
(y,t)∈R2×(0,T )

λ
−ν
∗ (t)(1+ |y|a)|h(y, t)|.

In the polar coordinates, h(y, t) can be written as

h(y, t) = h1(ρ,θ , t)E1(y)+h2(ρ,θ , t)E2(y), y = ρeiθ

since h ·W = 0. Expanding in the Fourier series, we write

(2.40) h̃(ρ,θ , t) := h1 + ih2 =
∞

∑
k=−∞

h̃k(ρ, t)eikθ , h̃k = h̃k1 + ih̃k2

such that

(2.41) h(y, t) =
∞

∑
k=−∞

hk(y, t) := h0(y, t)+h1(y, t)+h−1(y, t)+h⊥(y, t)
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with

(2.42) hk(y, t) = Re(h̃k(ρ, t)eikθ )E1 + Im(h̃k(ρ, t)eikθ )E2, k ∈ Z.
We consider the kernel functions Zk, j defined in (2.4), and define

(2.43) h̄k(y, t) :=
2

∑
j=1

χZk, j(y)∫
R2 χ|Zk, j|2

∫
R2

h(z, t) ·Zk, j(z)dz, k = 0,±1, j = 1,2,

where

χ(y, t) =

{
w2

ρ(|y|) if |y|< 2R(t),
0 if |y| ≥ 2R(t).

The main result of this section is stated as follows.

Proposition 2.1. Assume that a ∈ (2,3), ν > 0, δ ∈ (0,1) and ‖h‖ν ,a < +∞. Let
us write

h = h0 +h1 +h−1 +h⊥ with h⊥ = ∑
k 6=0,±1

hk.

Then there exists a solution φ [h] of problem (2.39), which defines a linear operator
of h, and satisfies the following estimate in D2R

|φ(y, t)|+(1+ |y|) |∇yφ(y, t)|+(1+ |y|)2 ∣∣∇2
yφ(y, t)

∣∣
. λ

ν
∗ (t) min

{
Rδ (5−a)(t)

1+ |y|3
,

1
1+ |y|a−2

}
‖h0− h̄0‖ν ,a +

λ ν
∗ (t)R

2(t)
1+ |y|

‖h̄0‖ν ,a

+
λ ν
∗ (t)

1+ |y|a−2

∥∥h1− h̄1
∥∥

ν ,a +
λ ν
∗ (t)R

4(t)
1+ |y|2

∥∥h̄1
∥∥

ν ,a

+λ
ν
∗ (t)‖h−1− h̄−1‖ν ,a +λ

ν
∗ (t) logR(t)‖h̄−1‖ν ,a

+
λ ν
∗ (t)

1+ |y|a−2 ‖h⊥‖ν ,a.

The construction of the solution φ to problem (2.39) will be carried out in each
Fourier mode. Write

φ =
∞

∑
k=−∞

φk, φk(y, t) = Re(ϕk(ρ, t)eikθ )E1 + Im(ϕk(ρ, t)eikθ )E2.

In each mode k, the pair (φk,hk) satisfies

(2.44)

{
λ 2∂tφk = LW [φk]+hk(y, t), in D4R,

φk(y,0) = 0, in B4R(0),

which is equivalent to the following problem{
λ 2∂tϕk = Lk[ϕk]+ h̃k(ρ, t), in D̃4R,

ϕk(ρ,0) = 0, in (0,4R(0)),
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where D̃4R = {(ρ, t) : t ∈ (0,T ), ρ ∈ (0,4R(t))}, and

Lk[ϕk] := ∂ρρϕk +
∂ρϕk

ρ
− (k2 +2k cosw+ cos(2w))

ϕk

ρ2 .

It is direct to see that the kernel functions for Lk such that Lk[Zk] = 0 at modes
k = 0,±1 are given by

(2.45) Z0(ρ) =
ρ

1+ρ2 , Z1(ρ) =
1

1+ρ2 , Z−1(ρ) =
2ρ2

1+ρ2 .

We have the following lemma proved in [15, Section 7].

Lemma 2.1 ([15]). Suppose ν > 0, 0 < a < 3, a 6= 1,2 and

‖hk(y, t)‖ν ,a <+∞.

Then problem (2.44) has a unique solution which takes the form

φk(y, t) = Re(ϕk(ρ, t)eikθ )E1 + Im(ϕk(ρ, t)eikθ )E2

and satisfies the boundary condition

φk(y, t) = 0, y ∈ ∂B4R(t)(0), ∀ t ∈ (0,T ).

Moreover, the following estimates hold

|φk(y, t)|. λ
ν
∗ k−2‖h‖ν ,a

{
R2−a, for a < 2
(1+ρ)2−a, for a > 2

for k ≥ 2,

|φ−1(y, t)|. λ
ν
∗ ‖h‖ν ,a

{
R2−a, for a < 2
logR, for a > 2,

|φ0(y, t)|.
λ ν
∗ ‖h‖ν ,a

1+ρ

{
R3−a, for a < 1
R2, for a > 1,

|φ1(y, t)|.
λ ν
∗ R4‖h‖ν ,a

(1+ρ)2 .

The higher regularity estimates for solutions constructed in Lemma 2.1 are
given by the following lemma. Before we state the lemma, we first introduce the
Hölder semi-norm, which is better expressed in the (y,τ)-variable. Define

(2.46) τ(t) =
∫ t

0

ds
λ 2(s)

so that {
∂τφ = LW [φ ]+h(y,τ) in D4γR,

φ(·,0) = 0 in B4γR(0).

We denote the parabolic ball

B`(y,τ) = {(y′,τ ′) : |y− y′|2 + |τ− τ
′|< `2},
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and also introduce the Hölder semi-norm

[g]α,A := sup
(y,τ),(y′,τ ′)∈A

|g(y,τ)−g(y′,τ ′)|
|y− y′|α + |τ− τ ′|α/2

for α ∈ (0,1) and a set A. We denote Cα,α/2(A) by the set of functions on A such
that [g]α,A <+∞, endowed with the norm

‖g‖Cα,α/2(A) = ‖g‖L∞(A)+[g]α,A.

Lemma 2.2. Let φ be a solution to

(2.47)

{
λ 2∂tφ = LW [φ ]+h(y, t), in D4γR,

φ(·,0) = 0, in B4γR(0),

where h(y, t)∈Cα,α/2(B`(y,τ)∩D4γR) for some α > 0 and `= |y|
4 +1. If for some

a,b,γ,M > 0 we have

(2.48)
|φ(y, t)|+(1+ |y|)2|h(y, t)|+(1+ |y|)2+α [h(y, t)]α,B`(y,τ)∩D4γR

≤M
λ b
∗ (t)

(1+ |y|)a in D4γR,

then there exists a constant C such that

(2.49) (1+ |y|)|∇yφ(y, t)|+(1+ |y|)2|∇2
yφ(y, t)| ≤CM

λ b
∗ (t)

(1+ |y|)a in D3γR.

Here
DγR = {(y, t) : |y|< γR(t), t ∈ (0,T )}.

Moreover, if φ satisfies the Dirichlet boundary condition φ(·, t) = 0 on ∂B4γR(t) for
all t ∈ (0,T ), then the estimate (2.49) is valid in the entire region D4γR.

Proof. In the (y,τ)-variable with τ given by (2.46), problem (2.47) reads as{
∂τφ = LW [φ ]+h(y,τ) in D4γR,

φ(·,0) = 0 in B4γR(0).

Let τ1 > 0 and y1 ∈ B3γR(τ1)(0). Let ρ = |y1|
4 + 1 so that Bρ(y1) ⊂ B4γR(τ1)(0). We

prove (2.49) by the scaling argument. Define

φ̃(z,s) = φ(y1 +ρz,τ1 +ρ
2s), z ∈ B1(0), s >− τ1

ρ2 .

For the case τ1 < ρ2, φ̃(z,s) satisfies the following equation

∂sφ̃ = ∆zφ̃ +A(z,s) ·∇zφ̃ +B(z,s)φ̃ + h̃(z,s) in B1(0)× (−1,0],

where the coefficients A(z,s) and B(z,s) are uniformly bounded by O((1+ρ)−2)
in B1(0)× (−1,0] and

h̃(z,s) = ρ
2h(y1 +ρz,τ1 +ρ

2s).
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Let b′ > 0 such that τ−b′ ∼ λ b
∗ (t) from (2.46). By the facts ρ ≤ CR(τ1) and

R2(τ1)� τ1 for τ1 large, we have

C1τ
−b′
1 ≤ (τ1 +ρ

2s)−b′ ≤C2τ
−b′
1

for some positive constants C1, C2 independent of τ1. Then standard interior gradi-
ent estimates together with the assumption (2.48) imply

‖∇zφ̃‖L∞(B1/4(0)×(1,2)) . ‖φ̃‖L∞(B1/2(0)×(0,2))+‖h̃‖L∞(B1/2(0)×(0,2))

. τ
−b′
1 ρ

2−a,

which in particular gives

ρ|∇yφ(y1,τ1)|= |∇zφ̃(0,1)|. τ
−b′
1 ρ

2−a.

On the other hand, from interior parabolic Schauder estimates and (2.48), we have

‖∇2
z φ̃‖L∞(B1/4(0)×(1,2)) . ‖φ̃‖L∞(B1/2(0)×(0,2))+‖h̃‖Cα,α/2(B1/2(0)×(0,2))

. τ
−b′
1 ρ

2−a,

and in particular

ρ
2|∇2

yφ(y1,τ1)|= |∇2
z φ̃(0,1)|. τ

−b′
1 ρ

2−a.

For the case τ1 ≥ ρ2 the argument is similar. In this case φ̃ satisfies the equation
in B1(0)× (− τ1

ρ2 ,0] and it has initial condition 0 at s = − τ1
ρ2 . Then similarly by

the standard boundary estimate, we get the desired bound. Finally, translating the
above bounds into (y, t)-variable, we conclude the validity of (2.49). �

As we can see from Lemma 2.1, the estimates at modes k = 0,±1 are worse
than high modes k ≥ 2. In fact, if certain orthogonality conditions are imposed on
h(y, t), better estimates of φ can be obtained at modes k = 0,±1. In the sequel, we
omit the subscript for each mode if there is no confusion.

Mode k = 0

We consider

(2.50)


λ 2∂tϕ = LW [ϕ]+h(y, t)+∑ j=1,2 c̃0 jZ0, jw2

ρ in D2R

ϕ ·W = 0 in D2R

ϕ = 0 on ∂B2R× (0,T )
ϕ(·,0) = 0 in B2R(0)

at mode 0. By carrying out another inner–gluing scheme for mode 0, the following
Lemma was proved in [15, Proposition 7.2].
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Lemma 2.3 ([15]). Let δ ∈ (0,1), ν > 0 and a∈ (2,3). Assume ‖h‖ν ,a <+∞. Then
there exists a solution (φ , c̃0 j) of problem (2.50) which defines a linear operator in
h(y, t) such that

|ϕ(y, t)|+(1+ |y|)|∇yϕ(y, t)|. λ
ν
∗ (t)‖h‖ν ,a


Rδ (5−a)

(1+ |y|)3 , |y| ≤ 2Rδ

1
(1+ |y|)a−2 , 2Rδ ≤ |y| ≤ 2R

and

c̃0 j =−
∫
R2 hZ0, j∫

R2 w2
ρ |Z0, j|2

−G[h],

where G is linear in h satisfying

|G[h]|. λ
ν
∗ (t)R

−δσ ′‖h‖ν ,a

for σ ′ ∈ (0,a−2).

Mode k =−1

We consider problem (2.44) for k = −1 and the kernel functions defined in
(2.4). We first state a result proved in [15, Lemma 7.5].

Lemma 2.4 ([15]). Let a ∈ (2,3), ν > 0 and k = −1. If h−1 in (2.44) satisfies
‖h−1‖ν ,a < ∞ and∫

R2
h−1(y, t)Z−1, j(y)dy = 0 for j = 1,2, ∀ t ∈ (0,T ),

then there exists a solution φ−1 to problem (2.44) at mode−1 which defines a linear
operator of h−1, and φ−1 satisfies

|φ−1(y, t)|. λ
ν
∗ (t)‖h−1‖ν ,a min

{
logR,

R4−a

1+ |y|2

}
.

Since the incompressible Navier–Stokes equation is essentially coupled with
the transported harmonic map heat flow through the inner problem, the linear the-
ory required for mode k = −1 should be very refined, and Lemma 2.4 cannot be
applied to gain contraction when we finally show the existence of desired blow-up
solution. Instead, we shall develop a new linear theory at mode −1. The main
result for mode −1 is stated as follows.

Lemma 2.5. Let a∈ (2,3), ν > 0 and k =−1. If h−1 in (2.44) satisfies ‖h−1‖ν ,a <
∞ and ∫

R2
h−1(y, t)Z−1, j(y)dy = 0 for j = 1,2, ∀ t ∈ (0,T ),

then there exists a solution φ−1 to problem (2.44) at mode−1 which defines a linear
operator of h−1, and φ−1 satisfies

|φ−1(y, t)|. λ
ν
∗ (t)‖h−1‖ν ,a.
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Proof. For convenience, we change variable (2.46) and consider

∂τϕ−1 = L−1[ϕ−1]+ h̃−1.

By letting ϕ−1(ρ,τ) = Z−1(ρ) f−1(ρ,τ) and using L−1[Z−1] = 0, we obtain

(2.51) ∂τ f−1 =
1

Z2
−1

div(Z2
−1∇ f−1)+

h̃−1

Z−1
,

where Z−1(ρ) is defined in (2.45). We first solve

(2.52) div(Z2
−1∇ f0) = h̃−1Z−1.

By the orthogonality condition
∫
R2 h−1(y, t)Z−1, j(y)dy = 0, we get

(2.53) |∇ f0|.
τ−ν ′

1+ |y|a−1 ‖h−1‖ν ,a,

where ν ′> 0 is the number such that λ ν
∗ ∼ τ−ν ′ under the change of variable (2.46).

Thus, by (2.52), the problem (2.51) becomes

∂τ f−1 =
1

Z2
−1

div(Z2
−1∇ f−1)+

1
Z2
−1

div(Z2
−1∇ f0).

In order to estimate f−1, we need to estimate the fundamental solution S to the
problem 

∂τS =
1

Z2
−1

div(Z2
−1∇S),

S
∣∣
τ=0 = δ0,

where δ0 is the Dirac delta function at the origin. We consider
∂τSε =

1
Z2
−1

div(Z2
−1∇Sε),

Sε
∣∣
τ=0 =

1
2πε2 e−

|x|2

2ε2 .

We note that as ε → 0, Sε
∣∣
τ=0 dx ⇀ δ0. Let V ε = Sε

ρ . Then differentiating the
above equation with respect to ρ , we obtain

(2.54)


∂τV ε =

1
Z2
−1

div(Z2
−1∇V ε)+∂ρρ(logZ2

−1)V
ε ,

V ε
∣∣
τ=0 =−

|x|
2πε4 e−

|x|2

2ε2 .

We claim that V ε < 0. Indeed, we can easily check that ∂ρρ(logZ2
−1) < 0. There-

fore, by V ε
∣∣
τ=0 = −

|x|
2πε4 e−

|x|2

2ε2 < 0 and the maximum principle, we have V ε < 0.
Then we can write∫

∞

0
|Sε

ρ(s,ρ)|ds =−
∫

∞

0
V ε(s,ρ)ds :=−Mε(ρ).
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Integrating equation (2.54) over τ from 0 to ∞, we get
1

Z2
−1

div(Z2
−1∇Mε)+∂ρρ(logZ2

−1)M
ε =− |x|

2πε4 e−
|x|2

2ε2 .

Let Mε = ∂ρGε , where Gε satisfies

(2.55)
1

Z2
−1

div(Z2
−1∇Gε) =

1
2πε2 e−

|x|2

2ε2 .

By Z−1(ρ) =
2ρ2

ρ2+1 , we write

(2.56)

1
Z2
−1

div(Z2
−1∇Gε) =

1
Z2
−1(ρ)ρ

∂ρ(Z2
−1(ρ)ρ∂ρGε)

= ∂ρρGε +
ρ2 +5

ρ(ρ2 +1)
∂ρGε .

From (2.55) and (2.56), we obtain∫
∞

0
|Sε

ρ(s,ρ)|ds = −Mε(ρ) =−∂ρGε(ρ)

=
1

2πε2
(1+ρ2)2

ρ5

∫
∞

ρ

r5

(1+ r2)2 e−
r2

2ε2 dr

≤ 1
2πε2

(1+ρ2)2

ρ5

∫
∞

ρ

re−
r2

2ε2 dr

≤ 1
2π

1+ρ4

ρ5 .

Therefore, by letting ε → 0, we obtain

(2.57)
∫

∞

0
|Sρ(s,ρ)|ds.

1+ρ4

ρ5 .

Duhamel’s formula gives

f−1(0,τ) =
∫

∞

τ

∫
∞

0
Sρ(s− τ,ρ)∇ f0Z2

−1(ρ)ρdρds

.
∫

∞

0

(∫
∞

τ

|Sρ(s− τ,ρ)|ds
)
|∇ f0|Z2

−1(ρ)ρdρ.

By (2.53) and (2.57), we conclude

| f−1(0,τ)|. τ
−ν1 .

In the original time variable t, we get

| f−1(0, t)|. λ
ν
∗ (t),

and parabolic regularity theory readily yields

| f−1(ρ, t)|. λ
ν
∗ (t).
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Therefore, we obtain
|φ−1(y, t)|. λ

ν
∗ (t)‖h−1‖ν ,a

as desired. �

Mode k = 1

We assume that h1(y, t) is defined in the entire space R2× (0,T ) such that

(2.58) h1(y, t) = divyG(y, t)

with

(2.59) |G(y, t)|. λ ν
∗ (t)

1+ |y|a−1 , (y, t) ∈ R2× (0,T )

for ν > 0 and a∈ (2,3). By the blow-up argument, the following lemma was proved
in [15, Lemma 7.6].

Lemma 2.6 ([15]). Assume that ν > 0, a∈ (2,3) and h1 takes the form (2.58) such
that (2.59) holds and∫

R2
h1(y, t)Z1, j(y)dy = 0 for all t ∈ (0,T )

for j = 1,2. Then there exists a solution φ1(y, t) to problem (2.44) for k = 1 which
defines a linear operator of h1(y, t), and φ1(y, t) satisfies

|φ1(y, t)|.
λ ν
∗ (t)‖h1‖ν ,a

1+ |y|a−2 in D3R.

A direct consequence of Lemma 2.6 is the following

Lemma 2.7 ([15]). Assume ν > 0, a ∈ (2,3) and∫
B2R

h1(y, t)Z1, j(y)dy = 0 for all t ∈ (0,T )

for j = 1,2. Then there exists a solution φ1(y, t) to problem (2.44) with k = 1 which
defines a linear operator of h1(y, t), and φ1(y, t) satisfies

|φ1(y, t)|.
λ ν
∗ (t)‖h1‖ν ,a

1+ |y|a−2 .

By the construction in each mode, now we prove Proposition 2.1.

Proof of Proposition 2.1. Let h be defined in D2R with ‖h‖ν ,a <+∞. We consider{
λ 2∂tφ = LW [φ ]+h in D4R,

φ(·,0) = 0 in B4R(0).
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Let φk be the solution estimated in Lemma 2.1 to
λ 2∂tφk = LW [φk]+hk in D4R,

φk(·, t) = 0 on ∂B4R× (0,T ),
φk(·,0) = 0 in B4R(0).

In addition, we let φ0,1, φ1,1, φ−1,1 solve
λ 2∂tφk,1 = LW [φk,1]+ h̄k in D4R,

φk,1(·, t) = 0 on ∂B4R× (0,T ),
φk,1(·,0) = 0 in B4R(0),

for k = 0,±1, where h̄k is defined in (2.43). Consider the functions φ0,2 constructed
in Lemma 2.3, φ−1,2 constructed in Lemma 2.5, and φ1,2 constructed in Lemma 2.6,
that solve for k = 0,±1{

λ 2∂tφk,2 = LW [φk,2]+hk− h̄k in D3R,

φk,2(·,0) = 0 in B3R(0).

Define
φ := ∑

k=0,±1
(φk,1 +φk,2)+ ∑

k 6=0,±1
φk

which is a bounded solution to the following equation

λ
2
∂tφ = LW [φ ]+h(y, t) in D3R.

Moreover, it defines a linear operator of h. Applying the estimates for the compo-
nents in Lemmas 2.1, 2.3, 2.5, and 2.6, we obtain

|φ(y, t)|. λ
ν
∗ (t) min

{
Rδ (5−a)(t)

1+ |y|3
,

1
1+ |y|a−2

}
‖h0− h̄0‖ν ,a +

λ ν
∗ (t)R

2(t)
1+ |y|

‖h̄0‖ν ,a

+
λ ν
∗ (t)

1+ |y|a−2

∥∥h1− h̄1
∥∥

ν ,a +
λ ν
∗ (t)R

4(t)
1+ |y|2

∥∥h̄1
∥∥

ν ,a

+λ
ν
∗ (t)‖h−1− h̄−1‖ν ,a +λ

ν
∗ (t) logR(t)‖h̄−1‖ν ,a

+
λ ν
∗ (t)

1+ |y|a−2 ‖h⊥‖ν ,a.

in D3R. Finally, Lemma 2.2 yields that the same bound holds for (1+ |y|)|∇yφ | and
(1+ |y|)2|∇2

yφ | in D2R. The function φ
∣∣
D2R

solves equation (2.39), and it defines a
linear operator of h satisfying the desired estimates. The proof is complete. �
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2.6 Linear theory for the outer problem

In order to solve the outer problem (2.24), we need to develop a linear theory to
the associated linear problem of (2.24), which is basically a heat equation. How-
ever, we will have to establish a decay estimate of second order derivative of ψ in
order to handle the coupling effects between the inner–outer problem of u and that
of v below.

For q ∈Ω and T > 0 sufficiently small, we consider the problem
ψt = ∆xψ + f (x, t) in Ω× (0,T ),
ψ = 0 on ∂Ω× (0,T ),
ψ(x,0) = 0 in Ω.

(2.60)

The right hand side of (2.60) is assumed to be bounded with respect to some
weights that appear in the outer problem (2.24). Thus we define the weights

ρ1 := λ
Θ
∗ (λ∗R)

−1
χ{r≤3λ∗R},

ρ2 := T−σ0
λ

1−σ0
∗
r2 χ{r≥λ∗R},

ρ3 := T−σ0 ,

(2.61)

where r = |x−q|, Θ > 0 and σ0 > 0 is small. For a function f (x, t) we define the
L∞-weighted norm

‖ f‖∗∗ := sup
Ω×(0,T )

(
1+

3

∑
i=1

ρi(x, t)
)−1
| f (x, t)|.(2.62)

The factor T σ0 in front of ρ2 and ρ3 is a simple way to have parts of the error small
in the outer problem. Also, we define the L∞-weighted norm for ψ

‖ψ‖],Θ,γ := λ
−Θ
∗ (0)

1
| logT |λ∗(0)R(0)

‖ψ‖L∞(Ω×(0,T ))+λ
−Θ
∗ (0)‖∇xψ‖L∞(Ω×(0,T ))

+ sup
Ω×(0,T )

λ
−Θ−1
∗ (t)R−1(t)

1
| log(T − t)|

|ψ(x, t)−ψ(x,T )|

+ sup
Ω×(0,T )

λ
−Θ
∗ (t)|∇xψ(x, t)−∇xψ(x,T )|+‖∇2

xψ‖L∞(Ω×(0,T ))

+ supλ
−Θ
∗ (t)(λ∗(t)R(t))2γ |∇xψ(x, t)−∇xψ(x′, t ′)|

(|x− x′|2 + |t− t ′|)γ
,(2.63)

where Θ > 0, γ ∈ (0, 1
2), and the last supremum is taken in the region

x, x′ ∈Ω, t, t ′ ∈ (0,T ), |x− x′| ≤ 2λ∗(t)R(t), |t− t ′|< 1
4
(T − t).

We shall measure the solution ψ to the problem (2.60) in the norm ‖ ‖],Θ,γ

defined in (2.63) where γ ∈
(

0, 1
2

)
, and we require that Θ and γ∗ (recall that R =
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λ
−γ∗
∗ in (2.25)) satisfy

γ∗ ∈
(

0,
1
2

)
, Θ ∈ (0,γ∗).(2.64)

The condition γ∗ ∈ (0, 1
2) is a basic assumption to have the singularity appear inside

the self-similar region. The condition Θ> 0 is needed for Lemma 2.8. The assump-
tion Θ < γ∗ is made so that the estimates provided by Lemma 2.9 are stronger than
that of Lemma 2.8.

We invoke some useful estimates proved in [15, Appendix A] as follows.

Proposition 2.2 ([15]). Assume (2.64) holds. For T > 0 sufficiently small, there is
a linear operator that maps a function f : Ω× (0,T )→ R3 with ‖ f‖∗∗ < ∞ into ψ

which solves problem (2.60). Moreover, the following estimate holds

‖ψ‖],Θ,γ ≤C‖ f‖∗∗,

where γ ∈ (0, 1
2).

The proof of Proposition 2.2 was achieved in [15] by considering
ψt = ∆ψ + f in Ω× (0,T ),

ψ(x,0) = 0, x ∈Ω,

ψ(x, t) = 0, x ∈ ∂Ω× (0,T ),
(2.65)

and decomposing the equation into three parts corresponding to the weights of the
right hand side defined in (2.61).

Lemma 2.8 ([15]). Assume γ∗ ∈ (0, 1
2) and Θ > 0. Let ψ solve (2.65) with f

satisfying
| f (x, t)| ≤ λ

Θ
∗ (t)(λ∗(t)R(t))

−1
χ{|x−q|≤3λ∗(t)R(t)}.

Then the following estimates hold

|ψ(x, t)| ≤Cλ
Θ
∗ (0)λ∗(0)R(0)| logT |,

|ψ(x, t)−ψ(x,T )| ≤Cλ
Θ
∗ (t)λ∗(t)R(t)| log(T − t)|,

|∇ψ(x, t)| ≤Cλ
Θ
∗ (0),

|∇ψ(x, t)−ψ(x,T )| ≤Cλ
Θ
∗ (t),

|∇2
xψ(x, t)| ≤C,

and for any γ ∈ (0, 1
2),

|∇ψ(x, t)−∇ψ(x, t ′)|
|t− t ′|γ

≤C
λ Θ
∗ (t)

(λ∗(t)R(t))2γ
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for any x, and 0≤ t ′ ≤ t ≤ T such that t− t ′ ≤ 1
10(T − t),

|∇ψ(x, t)−∇ψ(x′, t ′)|
|x− x′|2γ

≤C
λ Θ
∗ (t)

(λ∗(t)R(t))2γ

for any |x− x′| ≤ 2λ∗(t)R(t) and 0≤ t ≤ T .

Lemma 2.9 ([15]). Assume γ∗ ∈ (0, 1
2) and m ∈ (1

2 ,1). Let ψ solve (2.65) with f
satisfying

| f (x, t)| ≤ λ m
∗ (t)
|z−q|2

χ{|x−q|≥λ∗(t)R(t)}.

Then the following estimates hold

|ψ(x, t)| ≤CT m| logT |2−m,

|ψ(x, t)−ψ(x,T )| ≤C| logT |m(T − t)m| log(T − t)|2−2m,

|∇ψ(x, t)| ≤C
T m−1| logT |2−m

R(T )
,

|∇ψ(x, t)−∇ψ(x,T )| ≤C
λ m−1
∗ (t)| log(T − t)|

R(t)
,

|∇2
xψ(x, t)| ≤C,

and for any γ ∈ (0, 1
2),

|∇ψ(x, t)−∇ψ(x′, t ′)|
(|x− x′|2 + |t− t ′|)γ

≤C
1

(λ∗(t)R(t))2γ

λ m−1
∗ (t)| log(T − t)|

R(t)

for any |x− x′| ≤ 2λ∗(t)R(t) and 0≤ t ′ ≤ t ≤ T such that t− t ′ ≤ 1
10(T − t).

Lemma 2.10 ([15]). Let ψ solve (2.65) with f such that

| f (x, t)| ≤ 1,

Then the following estimates hold

|ψ(x, t)| ≤Ct,

|ψ(x, t)−ψ(x,T )| ≤C(T − t)| log(T − t)|,

|∇ψ(x, t)| ≤CT 1/2,

|∇ψ(x, t)−∇ψ(x,T )| ≤C(T − t)1/2,

|∇2
xψ(x, t)| ≤C,

|∇ψ(x, t2)−∇ψ(x, t1)| ≤C|t2− t1|1/2,

|∇ψ(x1, t)−∇ψ(x2, t)| ≤C|x1− x2|| log(|x1− x2|)|.
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Remark 2.11. We note that the estimates for |∇2
xψ(x, t)| in Lemmas 2.8–2.10 are

achieved by writing the original equation (2.65) in the self-similar variables (y,τ):

ψ(x, t) = ψ̃

(
x−ξ

λ
,τ(t)

)
,

where y = x−ξ

λ
and τ is defined in (2.46). Then ψ̃(y,τ) satisfies the equation

∂τ ψ̃ = ∆yψ̃ +(λ ξ̇ + λ̇λy) ·∇yψ̃ +λ
2 f (λy+ξ , t(τ)).

By similar argument as in the proof of Lemma 2.2, we can show the boundedness
of |∇2

xψ(x, t)| by the scaling argument and parabolic regularity estimates, which is
sufficient for the final gluing procedure in Section 4 to work.

3 Model problem: Stokes system

In order to solve the incompressible Navier–Stokes equation in (1.1), a linear
theory of certain linearized problem is required. In this section, we consider the
Stokes system

(3.1)


∂tv+∇P = ∆v+∇ ·F, in Ω× (0,T ),
∇ · v = 0, in Ω× (0,T ),
v = 0, on ∂Ω× (0,T ),
v(·,0) = v0, in Ω,

which is the linearized problem of the incompressible Navier–Stokes equation in
(1.1). The idea is the following. Apriori we assume that the nonlinearity v ·∇v
is a perturbation under certain topology. Then we develop a linear theory for the
Stokes system under which we shall see that v ·∇v is indeed a smaller perturbation
under some assumptions in Section 4.

Our aim is to find a velocity field v solving (3.1) with proper decay ensuring the
inner–outer gluing scheme to be carried out. Suppose that F(x, t) in (3.1) has the
space-time decay of the type

|F(x, t)| ≤C
λ ν−2
∗ (t)

1+
∣∣∣ x−q

λ∗(t)

∣∣∣a+1 , |∇xF(x, t)| ≤C
λ ν−3
∗ (t)

1+
∣∣∣ x−q

λ∗(t)

∣∣∣a+2(3.2)

for ν > 0 and a > 1. Here q∈Ω is the singular point for the orientation field u(x, t)
and

λ∗(t) =
| logT |(T − t)
| log(T − t)|2

.
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We define the norm

(3.3)

‖F‖S,ν−2,a+1 := sup
(x,t)∈Ω×(0,T )

λ
2−ν
∗ (t)

(
1+
∣∣∣∣ x−q
λ∗(t)

∣∣∣∣a+1
)
|F(x, t)|

+ sup
(x,t)∈Ω×(0,T )

λ
3−ν
∗ (t)

(
1+
∣∣∣∣ x−q
λ∗(t)

∣∣∣∣a+2
)
|∇xF(x, t)|.

The main result of this section is stated as follows.

Proposition 3.1. Assume ‖F‖S,ν−2,a+1 <+∞ with ν > 0, a > 1, and ‖v0‖B2−2/p
p,p

<

+∞, where the Besov norm ‖ · ‖
B2−2/p

p,p
is defined by (3.38). Then there exists a

solution (v,P) to the Stokes system (3.1) satisfying
• in the region near q: B2δ (q) = {x ∈ Ω : |x−q| < 2δ} for δ > 0 fixed and

small,

|v(x, t)|. ‖F‖S,ν−2,a+1
λ ν−1
∗ (t)

1+
∣∣∣ x−q

λ∗(t)

∣∣∣ ,
and

|P(x, t)|. ‖F‖S,ν−2,a+1

 λ ν
∗ (t)
|x−q|2

+
λ ν−2
∗ (t)

1+
∣∣∣ x−q

λ∗(t)

∣∣∣a+1

 .

• in the region away from q: Ω\Bδ (q)

‖v‖W 2,1
p ((Ω\Bδ (q))×(0,T ))

+‖∇P‖Lp((Ω\Bδ (q))×(0,T )) . ‖F‖S,ν−2,a+1 +‖v0‖B2−2/p
p,p

for (ν−1)p+1 > 0. Moreover, if ν > 1/2, then

‖v‖Cα,α/2((Ω\Bδ (q))×(0,T )) . ‖F‖S,ν−2,a+1 +‖v0‖B2−2/p
p,p

for 0 < α ≤ 2−4/p.

To prove Proposition 3.1, we decompose the solution v(x, t) to problem (3.1)
into inner and outer profiles

v(x, t) = ηδ vin(x, t)+ vout(x, t),

where the smooth cut-off function

ηδ (x) =

{
1, for |x−q|< δ

0, for |x−q|> 2δ

with δ > 0 fixed and sufficiently small such that dist(q,∂Ω)> 2δ . We denote

B2δ (q) = {x ∈Ω : |x−q|< 2δ}.
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It is direct to see that a solution to problem (3.1) is found if vin and vout satisfy

(3.4)


∂tvin +∇P1 = ∆vin +∇ ·Fin, in R2× (0,T ),
∇ · vin = 0, in R2× (0,T ),
vin(·,0) = 0, in R2,

(3.5)



∂tvout +∇(P−ηδ P1) = ∆vout +(1−ηδ )∇ ·F +2∇ηδ ·∇vin

+(∆ηδ )vin−P1∇ηδ , in Ω× (0,T ),

∇ · vout =−∇ηδ · vin, in Ω× (0,T ),

vout = 0, on ∂Ω× (0,T ),

vout(·,0) = v0, in Ω,

where Fin = Fχ{B2δ (q)×(0,T )}. The estimate of the inner part (3.4) is achieved by
the representation formula in the entire space, while the outer part (3.5) is done by
W 2,1

p -theory of the Stokes system.

Lemma 3.1. For ‖F‖S,ν−2,a+1 <+∞, the solution (vin,P1) of the system (3.4) sat-
isfies

(3.6) |vin(x, t)|. ‖F‖S,ν−2,a+1
λ ν−1
∗ (t)

1+
∣∣∣ x−q

λ∗(t)

∣∣∣ ,
and

(3.7) |P1(x, t)|. ‖F‖S,ν−2,a+1

 λ ν
∗ (t)
|x−q|2

+
λ ν−2
∗ (t)

1+
∣∣∣ x−q

λ∗(t)

∣∣∣a+1

 .

Proof. For simplicity, we shall write vin as v in the following proof. Denote v =[
v1
v2

]
. The estimate (3.6) is obtained by the well-known representation formula in

the entire space

vi(x, t) =
∫
R2

Si j(x− z, t)(v(·,0)) j(z)dz−
∫ t

0

∫
R2

∂zk Si j(x− z, t− s)Fjk(z,s)dzds,

where Si j is the Oseen tensor, which is the fundamental solution of the Stokes
system derived by Oseen [56], defined by

(3.8) Si j(x, t) = G(x, t)δi j−
1

2π

∂ 2

∂xi∂x j

∫
R2

G(y, t) log |x− y|dy

with G(x, t) = e−
|x|2
4t

4πt , and F = (Fjk)2×2. It is well known (see [61] for instance) that

(3.9) |Dl
xDk

t S(x, t)| ≤Ck,l
1

(|x|2 + t)k+ 2+l
2
.
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Since v(·,0) = 0, we then get for i = 1,2,

(3.10)
|vi(x, t)|. ‖F‖S,ν−2,a+1

∫ t

0

∫
R2

1
(|x− z|+

√
t− s)3

λ ν−2
∗ (s)

1+
∣∣∣ z−q

λ∗(s)

∣∣∣a+1 dzds

:= ‖F‖S,ν−2,a+1(I1 + I2),

where we decompose

I1 =
∫ t−(T−t)2

0

∫
R2

1
(|x− z|+

√
t− s)3

λ ν−2
∗ (s)

1+
∣∣∣ z−q

λ∗(s)

∣∣∣a+1 dzds,

and

I2 =
∫ t

t−(T−t)2

∫
R2

1
(|x− z|+

√
t− s)3

λ ν−2
∗ (s)

1+
∣∣∣ z−q

λ∗(s)

∣∣∣a+1 dzds.

Estimate of I1.

To estimate I1, we evaluate

(3.11)

I1

.
∫ t−(T−t)2

0

∫
R2

1
(|x− z|2 +(t− s))3/2

λ ν+a−1
∗ (s)

λ
a+1
∗ (s)+ |z−q|a+1 dzds

. λ
ν+a−1
∗ (t)

∫
R2

1

λ
a+1
∗ (t)+ |z−q|a+1

1
(|x− z|2 +(T − t)2)1/2 dz

. λ
ν+a−1
∗ (t)

·
(∫

D1(x)
+
∫

D2(x)
+
∫

D3(x)

)
1

λ
a+1
∗ (t)+ |z−q|a+1

1
(|x− z|2 +λ 2

∗ (t))1/2 dz,

where

D1(x) :=
{

z ∈ R2 : |z−q| ≤ |x−q|
2

}
,(3.12)

D2(x) :=
{

z ∈ R2 :
|x−q|

2
≤ |z−q| ≤ 2|x−q|

}
,(3.13)

D3(x) :=
{

z ∈ R2 : |z−q| ≥ 2|x−q|
}
.(3.14)

We first compute

(3.15)

∫
D1(x)

1

λ
a+1
∗ (t)+ |z−q|a+1

1
(|x− z|2 +λ 2

∗ (t))1/2 dz

.
1

|x−q|+λ∗(t)

∫ |x−q|
2

0

r
λ

a+1
∗ (t)+ ra+1

dr

.
λ 1−a
∗ (t)

|x−q|+λ∗(t)
.
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Similarly, we have

(3.16)

∫
D2(x)

1

λ
a+1
∗ (t)+ |z−q|a+1

1
(|x− z|2 +λ 2

∗ (t))1/2 dz

.
1

λ
a+1
∗ (t)+ |x−q|a+1

∫ 3|x−q|

0

r
r+λ∗(t)

dr

.
1

|x−q|a +λ a
∗ (t)

,

and

(3.17)

∫
D3(x)

1

λ
a+1
∗ (t)+ |z−q|a+1

1
(|x− z|2 +λ 2

∗ (t))1/2 dz

.
1

|x−q|+λ∗(t)

∫
∞

2|x−q|

r
λ

a+1
∗ (t)+ ra+1

dr

.
1

|x−q|a +λ a
∗ (t)

.

Collecting (3.11), (3.15), (3.16) and (3.17), we obtain

(3.18) I1 .
λ ν−1
∗ (t)
1+ |y|

,

where we write y = x−q
λ∗(t)

for simplicity.

Estimate of I2.

To estimate I2, we change variable

s̃ =
|x− z|

(t− s)1/2 ,

and thus

(3.19)

I2 .
∫
R2

∫
∞

|x−z|
T−t

1
(1+ s̃)3|x− z|

λ ν+a−1
∗ (t)

λ
a+1
∗ (t)+ |z−q|a+1

ds̃dz

. λ
ν+a+1
∗ (t)

∫
R2

1
λ

a+1
∗ (t)+ |z−q|a+1

1
|x− z|

1
λ 2
∗ (t)+ |x− z|2

dz

. λ
ν+a+1
∗ (t)

(∫
D1(x)

+
∫

D2(x)
+
∫

D3(x)

)
1

λ
a+1
∗ (t)+ |z−q|a+1

1
|x− z|

1
λ 2
∗ (t)+ |x− z|2

dz,

where D1(x), D2(x) and D3(x) are defined in (3.12), (3.13) and (3.14), respectively.
For the above integral, we consider the following two cases.
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• Case 1: |x−q| ≤ λ∗(t). We have

(3.20)

∫
D1(x)

1
λ

a+1
∗ (t)+ |z−q|a+1

1
|x− z|

1
λ 2
∗ (t)+ |x− z|2

dz

.
1

|x−q|(λ 2
∗ (t)+ |x−q|2)

∫ |x−q|
2

0

r
λ

a+1
∗ (t)+ ra+1

dr

.
λ−a−1
∗ (t)

λ∗(t)|x−q|2
|x−q|2

. λ
−a−2
∗ (t),

(3.21)

∫
D2(x)

1
λ

a+1
∗ (t)+ |z−q|a+1

1
|x− z|

1
λ 2
∗ (t)+ |x− z|2

dz

.
1

λ
a+1
∗ (t)+ |x−q|a+1

∫ 3|x−q|

0

1
λ 2
∗ (t)+ r2 dr

. λ
−a−2
∗ (t),

and

(3.22)

∫
D3(x)

1
λ

a+1
∗ (t)+ |z−q|a+1

1
|x− z|

1
λ 2
∗ (t)+ |x− z|2

dz

.
∫

∞

2|x−q|

1
λ

a+1
∗ (t)+ ra+1

1
r−|x−q|

1
λ 2
∗ (t)+(r−|x−q|)2 r dr

.
∫

∞

|x−q|

1
λ

a+1
∗ (t)+(r̃+ |x−q|)a+1

1
r̃

1
λ 2
∗ (t)+ r̃2 (r̃+ |x−q|)dr̃

. λ
−a−2
∗ (t).

Observe that in this case |x−q| ≤ λ∗(t) we have 1. 1
1+|y|ε for ε > 0, where

y = x−q
λ∗(t)

. Therefore, for the case |x−q| ≤ λ∗(t), we conclude

(3.23) I2 .
λ ν−1
∗ (t)

1+ |y|2

by (3.19)–(3.22).

• Case 2: |x−q| ≥ λ∗(t). In this case, we compute

(3.24)

∫
D1(x)

1
λ

a+1
∗ (t)+ |z−q|a+1

1
|x− z|

1
λ 2
∗ (t)+ |x− z|2

dz

.
1

λ 2
∗ (t)+ |x−q|2

1
|x−q|

∫ |x−q|
2

0

r
λ

a+1
∗ (t)+ ra+1

dr

.
λ−a−2
∗ (t)
1+ |y|2

,
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(3.25)

∫
D2(x)

1
λ

a+1
∗ (t)+ |z−q|a+1

1
|x− z|

1
λ 2
∗ (t)+ |x− z|2

dz

.
1

λ
a+1
∗ (t)+ |x−q|a+1

∫ 3|x−q|

0

1
λ 2
∗ (t)+ r2 dr

.
λ−a−2
∗ (t)

1+ |y|a+1 ,

and

(3.26)

∫
D3(x)

1
λ

a+1
∗ (t)+ |z−q|a+1

1
|x− z|

1
λ 2
∗ (t)+ |x− z|2

dz

.
1

λ 2
∗ (t)+ |x−q|2

1
|x−q|

∫
∞

2|x−q|

r
λ

a+1
∗ (t)+ ra+1

dr

.
1

λ 2
∗ (t)+ |x−q|2

1
λ∗(t)

1
λ

a−1
∗ (t)+ |x−q|a−1

.
λ−a−2
∗ (t)

1+ |y|a+1 .

From (3.19), (3.24), (3.25) and (3.26), one has

(3.27) I2 .
λ−a−2
∗ (t)
1+ |y|2

for the case |x−q| ≥ λ∗(t).

In conclusion, we get

|vin(x, t)|. ‖F‖S,ν−2,a+1
λ ν−1
∗ (t)
1+ |y|

from (3.10), (3.18), (3.23) and (3.27).

We now derive the estimate (3.7) for P1. Recall the representation formula for
P1:

P1(x, t) =
∫ t

0

∫
R2

Q j(x− z, t− s)∂zk Fjk(z,s)dzds,

where Q j is given by

Q j(x, t) =
δ (t)
2π

x j

|x|2
.

Thus,

P1(x, t) =
∫
R2

1
2π

x j− z j

|x− z|2
∂zk Fjk(z, t)dz

=

(∫
D1(x)

+
∫

D2(x)
+
∫

D3(x)

)
1

2π

x j− z j

|x− z|2
∂zk Fjk(z, t)dz

:= I+ II+ III
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where D1(x), D2(x), and D3(x) are defined in (3.12), (3.13), and (3.14), respec-
tively.

We perform integration by parts to estimate I. In fact, one has

I. ‖F‖S,ν−2,a+1
(∫

D1(x)

1
|x− z|2

λ ν−2
∗ (t)

1+
∣∣∣ z−q

λ∗(t)

∣∣∣a+1 dz

+
∫

∂D1(x)

1
|x− z|

λ ν−2
∗ (t)

1+
∣∣∣ z−q

λ∗(t)

∣∣∣a+1 dz
)

. ‖F‖S,ν−2,a+1
(λ ν−2
∗ (t)
|x−q|2

∫ |x−q|
2

0

λ a+1
∗ (t)

λ
a+1
∗ + ra+1

r dr

+
1

|x−q|
λ ν−2
∗

1+
∣∣∣ x−q

λ∗(t)

∣∣∣a+1 |x−q|
)

. ‖F‖S,ν−2,a+1
( λ ν

∗ (t)
|x−q|2

+
λ ν−2
∗

1+
∣∣∣ x−q

λ∗(t)

∣∣∣a+1

)
.

(3.28)

The way to estimate II and III is straightforward. More specifically, we have

II =
1

2π

∫
D2(x)

x j− z j

|x− z|2
∂zk Fjk(z, t)dz

. ‖F‖S,ν−2,a+1

∫
D2(x)

1
|x− z|

λ ν−3
∗ (t)

1+
∣∣∣ z−q

λ∗(t)

∣∣∣a+2 dz

. ‖F‖S,ν−2,a+1
λ ν−3
∗ (t)

1+
∣∣∣ x−q

λ∗(t)

∣∣∣a+2

∫ 3|x−q|

0

1
r

r dr

. ‖F‖S,ν−2,a+1
λ ν−2
∗

1+
∣∣∣ x−q

λ∗(t)

∣∣∣a+1 ,

(3.29)

and

III =
1

2π

∫
D3(x)

x j− z j

|x− z|2
∂zk Fjk(z, t)dz

. ‖F‖S,ν−2,a+1

∫
D3(x)

1
|x− z|

λ ν−3
∗ (t)

1+
∣∣∣ z−q

λ∗(t)

∣∣∣a+2 dz

. ‖F‖S,ν−2,a+1 λ
ν+a−1
∗ (t)

∫
∞

2|x−q|

1
r−|x−q|

1
λ

a+2
∗ (t)+ ra+2

r dr

= ‖F‖S,ν−2,a+1 λ
ν+a−1
∗ (t)

∫
∞

|x−q|

1
u

1
λ

a+2
∗ (t)+(u+ |x−q|)a+2

(u+ |x−q|)du,
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where we changed the variables u = r−|x−q|. Hence u≥ |x−q| implies that

III. ‖F‖S,ν−2,a+1 λ
ν+a−1
∗ (t)

∫
∞

|x−q|

1
λ

a+2
∗ (t)+(u+ |x−q|)a+2

du

. ‖F‖S,ν−2,a+1 λ
ν+a−1
∗ (t)

1
λ

a+1
∗ (t)+ |x−q|a+1

= ‖F‖S,ν−2,a+1
λ ν−2
∗

1+
∣∣∣ x−q

λ∗(t)

∣∣∣a+1 .

(3.30)

Collecting (3.28), (3.29), and (3.30), we obtain the estimate (3.7), and the proof is
complete. �

In order to apply W 2,1
p -theory of the Stokes system to the outer part (3.5), the

estimates for ∇vin and ∂t(vin ·∇ηδ ) are further needed. We have the following
lemma.

Lemma 3.2. Under the assumptions of Lemma 3.1, the following estimates hold

(3.31) |∇xvin(x, t)|. ‖F‖S,ν−2,a+1
λ ν−2
∗ (t)

1+
∣∣∣ x−q

λ∗(t)

∣∣∣ ,
and

(3.32) ‖∂t(vin ·∇ηδ )‖Lp((B2δ (q)\Bδ (q))×(0,T )) . ‖F‖S,ν−2,a+1

for (ν−1)p+1 > 0.

Proof. Since we impose zero initial condition on vin, we have

|∂xl vi(x, t)|. ‖F‖S,ν−2,a+1

∫ t

0

∫
R2

1

(|x− z|2 +(t− s))3/2

λ ν−3
∗ (s)

1+
∣∣∣ z−q

λ∗(s)

∣∣∣a+2 dzds

where we have used (3.9). We decompose the above integral and first estimate∫ t−(T−t)2

0

∫
R2

1

(|x− z|2 +(t− s))3/2

λ ν−3
∗ (s)

1+
∣∣∣ z−q

λ∗(s)

∣∣∣a+2 dzds

. λ
ν+a−1
∗ (t)

(∫
D1(x)

+
∫

D2(x)
+
∫

D3(x)

)
1

λ
a+2
∗ (t)+ |z−q|a+2

1
|x− z|+λ∗(t)

dz,
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where D1(x), D2(x) and D3(x) are defined in (3.12), (3.13) and (3.14), respectively.
Then we can easily check the following∫

D1(x)

1
λ

a+2
∗ (t)+ |z−q|a+2

1
|x− z|+λ∗(t)

dz.
λ−a
∗ (t)

|x−q|+λ∗(t)∫
D2(x)

1
λ

a+2
∗ (t)+ |z−q|a+2

1
|x− z|+λ∗(t)

dz.
1

|x−q|a+1 +λ
a+1
∗ (t)∫

D3(x)

1
λ

a+2
∗ (t)+ |z−q|a+2

1
|x− z|+λ∗(t)

dz.
1

|x−q|a+1 +λ
a+1
∗ (t)

and thus∫ t−(T−t)2

0

∫
R2

1

(|x− z|2 +(t− s))3/2

λ ν−3
∗ (s)

1+
∣∣∣ z−q

λ∗(s)

∣∣∣a+2 dzds.
λ ν−2
∗ (t)
1+ |y|

,

where we write y = x−q
λ∗

. For the other part, we have∫ t

t−(T−t)2

∫
R2

1

(|x− z|2 +(t− s))3/2

λ ν−3
∗ (s)

1+
∣∣∣ z−q

λ∗(s)

∣∣∣a+2 dzds

.
∫
R2

∫
∞

|x−z|
T−t

1
(1+ s̃)3|x− z|

λ ν+a−1
∗ (t)

λ
a+2
∗ (t)+ |z−q|a+2

ds̃dz

. λ
ν+a+1
∗ (t)

∫
R2

1
λ

a+2
∗ (t)+ |z−q|a+2

1
|x− z|

1
λ 2
∗ (t)+ |x− z|2

dz,

where we have changed variable s̃ = |x−z|√
t−s . Similar to the proof of Lemma 3.1, the

following bound holds∫ t

t−(T−t)2

∫
R2

1

(|x− z|2 +(t− s))3/2

λ ν−3
∗ (s)

1+
∣∣∣ z−q

λ∗(s)

∣∣∣a+2 dzds.
λ ν−2
∗ (t)

1+ |y|2
.

Collecting the above estimates, we conclude the validity of (3.31).

Next we prove (3.32). Multiplying equation (3.4) by ∇ηδ , we obtain that vin ·
∇ηδ satisfies the equation

∂t(vin ·∇ηδ )

= ∆(vin ·∇ηδ )−∆(∇ηδ ) · vin−2∇
2
ηδ ·∇vin−∇P1 ·∇ηδ +(∇ ·Fin) ·∇ηδ .

Thanks to the cut-off function ηδ , standard W 2,1
p -theory for parabolic equation

yields

(3.33)

‖∂t(vin ·∇ηδ )‖Lp((B2δ (q)\Bδ (q))×(0,T ))

. ‖vin‖Lp((B2δ (q)\Bδ (q))×(0,T ))+‖∇vin‖Lp((B2δ (q)\Bδ (q))×(0,T ))

+‖∇P1‖Lp((B2δ (q)\Bδ (q))×(0,T ))+‖∇ ·F‖Lp((B2δ (q)\Bδ (q))×(0,T )).
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Using the W 2,1
p -theory for the Stokes system (see [63] for instance), we readily see

that

(3.34) ‖∇P1‖Lp((B2δ (q)\Bδ (q))×(0,T )) . ‖∇ ·F‖Lp((B2δ (q)\Bδ (q))×(0,T )).

From (3.33), (3.34), (3.6), (3.31) and the assumption ‖F‖S,ν−2,a+1 < +∞, we ob-
tain

‖∂t(vin ·∇ηδ )‖Lp((B2δ (q)\Bδ (q))×(0,T )) . ‖F‖S,ν−2,a+1

provided (ν−1)p+1 > 0. The proof is complete. �

We are ready to estimate the outer part (3.5).

Lemma 3.3. For ‖F‖S,ν−2,a+1 < +∞ and ‖v0‖B2−2/p
p,p

< +∞, the solution (vout ,P)
of the system (3.5) satisfies
(3.35)
‖vout‖W 2,1

p (Ω×(0,T ))+‖∇(P−ηδ P1)‖Lp(Ω×(0,T )) . ‖F‖S,ν−2,a+1 +‖v0‖B2−2/p
p,p

for (ν−1)p+1 > 0. If we further assume ν ∈ (1/2,1), then we have

(3.36) ‖vout‖Cα,α/2(Ω×(0,T )) . ‖F‖S,ν−2,a+1 +‖v0‖B2−2/p
p,p

for 0 < α ≤ 2−4/p.

Proof. The W 2,1
p estimate of solutions to Stokes system with non-zero divergence

derived in [63, Theorem 3.1] shows that
‖vout‖W 2,1

p (Ω×(0,T ))+‖∇(P−ηδ P1)‖Lp(Ω×(0,T ))

. ‖(1−ηδ )∇ ·F +2∇ηδ ·∇vin +(∆ηδ )vin−P1∇ηδ‖Lp(Ω×(0,T ))

+‖∇ηδ · vin‖Lp(0,T ;W 1
p (Ω))+‖∂t(∇ηδ · vin)‖Lp(0,T ;W−1

p (Ω))+‖v0‖B2−2/p
p,p

,

(3.37)

where ‖·‖
B2−2/p

p,p
is the Besov norm defined in (3.38). Thanks to the cut-off function

ηδ , we get
|(1−ηδ )∇ ·F |. ‖F‖S,ν−2,a+1λ

ν+a−1
∗ ,

and from (3.6), (3.7), (3.31) and (3.32), one has

|∇ηδ ·∇vin|+ |(∆ηδ )vin|+ |P1∇ηδ |. ‖F‖S,ν−2,a+1λ
ν−1
∗ ,

and also

|∇ηδ · vin|. ‖F‖S,ν−2,a+1λ
ν
∗ ,

‖∂t(∇ηδ · vin)‖Lp(0,T ;W−1
p (Ω)) . ‖F‖S,ν−2,a+1.

It is worth noting that ‖ · ‖Lp(0,T ;W−1
p (Ω)) ≤ ‖ · ‖Lp(0,T ;Lp(Ω)) (see [1] for instance).

Therefore, estimate (3.37) together with the above bounds imply (3.35) for (ν −
1)p+ 1 > 0. The Hölder estimate (3.36) then follows from a standard parabolic
version of Morrey type inequality (see [44] for instance). The proof is complete.

�
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The proof of Proposition 3.1 is a direct consequence of Lemma 3.1 and Lemma
3.3.

For the behavior of the velocity field v, we further make several remarks:

Remark 3.4.
• From (3.3), Proposition 3.1 implies

‖v‖S,ν−1,1 . ‖F‖S,ν−2,a+1.

• Since v is divergence-free, we can write v ·∇v = ∇ · (v⊗ v), where ⊗ is
the tensor product defined by (v⊗w)i j = viw j. If we solve v in the class
‖v‖S,ν−1,1 < ∞, then the nonlinearity in the Navier–Stokes equation

|v ·∇v|. λ 2ν−3
∗ (t)

1+
∣∣∣ x−q

λ∗(t)

∣∣∣3
is indeed a perturbation compared to ∇ ·F , which enables us to solve v by
the fixed point argument in Section 4.
• The initial velocity v0 in the outer problem (3.5) can be chosen arbitrarily

in the Besov space B2−2/p
p,p , with (ν − 1)p+ 1 > 0, in which the norm is

defined by

‖v0‖B2−2/p
p,p

:=
(∫
|z|<1
|z|−2p

∫
Ω(z)
|v0(x+2z)−2v0(x+ z)+ v0(x)|pdxdz

)1/p

+‖v0‖Lp(Ω),

(3.38)

where Ω(z) = {x ∈Ω : x+ tz ∈Ω, t ∈ [0,1]}, as long as it agrees with zero
at the boundary and satisfies the condition

∇ · v0 =−∇ηδ · vin(x,0) = 0.

4 Solving the nematic liquid crystal flow

In this section, we shall apply the linear theories developed in Section 2 and
Section 3 to show the existence of the desired blow-up solution to (1.1)–(1.3) by
means of the fixed point argument. Apriori we need some assumptions on the
behavior of the parameter functions p(t) = λ (t)eiω(t) and ξ (t)

c1|λ̇∗(t)| ≤ |ṗ(t)| ≤ c2|λ̇∗(t)| for all t ∈ (0,T ),

|ξ̇ (t)| ≤ λ
σ
∗ (t) for all t ∈ (0,T ),

where c1, c2 and σ are some positive constants independent of T . We recall that

R = R(t) = λ
−γ∗
∗ (t) with λ∗(t) =

| logT |(T − t)
| log(T − t)|2

and γ∗ ∈ (0,1/2).



50 C. C. LAI, ET ALL

Similar to the harmonic map heat flow, we look for solution u solving problem
(1.1) in the form

u =U +ΠU⊥ϕ +a(ΠU⊥ϕ)U,

with

ϕ = ηRQω,α,β φ(y, t)+Ψ
∗(x, t)+Φ

0(x, t)+Φ
α(x, t)+Φ

β (x, t),

where we decompose Ψ∗ into

Ψ
∗ = Z∗+ψ.

Here Z∗ satisfies 
∂tZ∗ = ∆Z∗, in Ω× (0,∞)

Z∗(·, t) = 0, on ∂Ω× (0,∞)

Z∗(·,0) = Z∗0 , in Ω

For the same technical reasons as shown in [15], we make some assumptions on
Z∗0(x) as follows. Let us write

Z∗0(x) =
[

z∗0(x)
z∗03(x)

]
, z∗0(x) = z∗01(x)+ iz∗02(x).

Consistent with (2.36), the first condition that we need is

divz∗0(q)< 0.

In addition, we require that Z∗0(q)≈ 0 in a non-degenerate way.
We will get a desired solution (v,u) to problem (1.1) if (v,φ ,Ψ∗, p,ξ ,α,β )

solves the following inner–outer gluing system

(4.1)


∂tv+ v ·∇v+∇P = ∆v− ε0∇ ·F [p,ξ ,α,β ,Ψ∗,φ ,v], in Ω× (0,T ),

∇ · v = 0, in Ω× (0,T ),

v = 0, on ∂Ω× (0,T ),

v(·,0) = v0, in Ω,

(4.2)


λ

2
∂tφ = LW [φ ]+H [p,ξ ,α,β ,Ψ∗,φ ,v], in D2R,

φ(·,0) = 0, in B2R(0),

φ ·W = 0, in D2R,

(4.3)


∂tΨ

∗ = ∆xΨ
∗+G [p,ξ ,α,β ,Ψ∗,φ ,v] in Ω× (0,T ),

Ψ
∗ = e3−U−Φ

0−Φ
α −Φ

β on ∂Ω× (0,T ),

Ψ
∗(·,0) = (1−χ)

(
e3−U−Φ

0−Φ
α −Φ

β

)
in Ω,

where

(4.4) F [p,ξ ,α,β ,Ψ∗,φ ,v] =
(

∇u�∇u− 1
2
|∇u|2I2

)
,
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with
u =U +ΠU⊥ [ηRQω,α,β φ +Ψ

∗+Φ
0 +Φ

α +Φ
β ]

+a(ΠU⊥ [ηRQω,α,β φ +Ψ
∗+Φ

0 +Φ
α +Φ

β ])U,

H [p,ξ ,α,β ,Ψ∗,φ ,v]

= λ
2Q−1

ω,α,β

[
L̃U [Ψ

∗]+K0[p,ξ ]+K1[p,ξ ]+ΠU⊥ [R−1]−λ
−1

ΠU⊥(v ·∇yU)

−λ
−1

ΠU⊥

(
v ·∇y

(
ΠU⊥ [ηRQω,α,β φ +Ψ

∗+Φ
0 +Φ

α +Φ
β ]
))

−λ
−1

ΠU⊥

(
v ·∇y

(
a(ΠU⊥ [ηRQω,α,β φ +Ψ

∗+Φ
0 +Φ

α +Φ
β ])U

))]
,

and
G [p,ξ ,α,β ,Ψ∗,φ ,v]

:= (1−ηR)L̃U [Ψ
∗]+ (Ψ∗ ·U)Ut +Qω,α,β (φ∆xηR +2∇xηR ·∇xφ −φ∂tηR)

+ηRQω,α,β

(
−
(

Q−1
ω,α,β

d
dt

Qω,α,β

)
φ +λ

−1
λ̇y ·∇yφ +λ

−1
ξ̇ ·∇yφ

)
+(1−ηR)(K0[p,ξ ]+K1[p,ξ ]+ΠU⊥ [R−1])−ΠU⊥ [R̃1]

+NU [ηRQω,α,β φ +ΠU⊥(Φ
0 +Φ

α +Φ
β +Ψ

∗)]

+
(
(Φ0 +Φ

α +Φ
β ) ·U

)
Ut − (1−ηR)v ·∇U

− (1−ηR)v ·∇
(

ΠU⊥

[
ηRQω,α,β φ +Ψ

∗+Φ
0 +Φ

α +Φ
β

])
− (1−ηR)v ·∇

(
a
(

ΠU⊥

[
ηRQω,α,β φ +Ψ

∗+Φ
0 +Φ

α +Φ
β

])
U
)
.

Here χ in (4.3) is a smooth cut-off function which is supported near a fixed neigh-
borhood of q independent of T .

As discussed in Section 2.5, suitable inner solution with space-time decay can
be obtained under certain orthogonality conditions, which will be achieved by ad-
justing the parameter functions p(t), ξ (t), α(t) and β (t). In order to solve the
inner problem (4.2), we further decompose it based on the Fourier modes

H = H1 +H2 +H3 +H4,
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with
H1[p,ξ ,α,β ,Ψ∗,φ ,v]

=
(

λ
2Q−1

ω,α,β

(
L̃U [Ψ

∗]0 + L̃U [Ψ
∗]2 +K0[p,ξ ]

)
+λQ−1

ω,α,β [ΠU⊥(v ·∇u)]0
)

χD2R ,

H2[p,ξ ,α,β ,Ψ∗,φ ,v]

=
(

λ
2Q−1

ω,α,β

(
L̃U [Ψ

∗]
(0)
1 +K1[p,ξ ]

)
+λQ−1

ω,α,β ([ΠU⊥(v ·∇u)]1 +[ΠU⊥(v ·∇u)]⊥)
)

χD2R ,

H3[p,ξ ,α,β ,Ψ∗,φ ,v]

= λ
2Q−1

ω,α,β

(
L̃U [Ψ

∗]1− L̃U [Ψ
∗]
(0)
1

)
χD2R ,

H4[p,ξ ,α,β ,Ψ∗,φ ,v]

=
(

λ
2Q−1

ω,α,β (ΠU⊥ [R−1,1]+ΠU⊥ [R−1,2])+λQ−1
ω,α,β [ΠU⊥(v ·∇u)]−1

)
χD2R ,

where [ΠU⊥(v ·∇u)]0, [ΠU⊥(v ·∇u)]−1, [ΠU⊥(v ·∇u)]1 and [ΠU⊥(v ·∇u)]⊥ corre-
spond respectively to modes 0, −1, 1 and higher modes k ≥ 2 defined in (2.40)–
(2.42), and

L̃U [Φ]
(0)
1

=−2λ
−1wρ cosw

[
(∂x1ϕ3(ξ (t), t))cosθ +(∂x2ϕ3(ξ (t), t)))sinθ

]
Qω,α,β E1

−2λ
−1wρ cosw

[
(∂x1ϕ3(ξ (t), t)))sinθ − (∂x2ϕ3(ξ (t), t)))cosθ

]
Qω,α,β E2

in the notation (2.6). Then by decomposing φ = φ1 + φ2 + φ3 + φ4 in a similar
manner as Hi’s, the inner problem (4.2) becomes

(4.5)



λ
2
∂tφ1 = LW [φ1]+H1[p,ξ ,α,β ,Ψ∗,φ ,v]

− ∑
j=1,2

c̃0 j[H1[p,ξ ,α,β ,Ψ∗,φ ,v]]w2
ρZ0, j

− ∑
j=1,2

c1 j[H1[p,ξ ,α,β ,Ψ∗,φ ,v]]w2
ρZ1, j in D2R

φ1 ·W = 0 in D2R

φ1(·,0) = 0 in B2R(0)

λ
2
∂tφ2 = LW [φ2]+H2[p,ξ ,α,β ,Ψ∗,φ ,v]

− ∑
j=1,2

c1 j[H2[p,ξ ,α,β ,Ψ∗,φ ,v]]w2
ρZ1, j in D2R

φ2 ·W = 0 in D2R

φ2(·,0) = 0 in B2R(0)

(4.6)
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

λ
2
∂tφ3 = LW [φ3]+H3[p,ξ ,α,β ,Ψ∗,φ ,v]

− ∑
j=1,2

c1 j[H3[p,ξ ,α,β ,Ψ∗,φ ,v]]w2
ρZ1, j

+ ∑
j=1,2

c∗0 j[p,ξ ,α,β ,Ψ∗,φ ,v]w2
ρZ0, j in D2R

φ3 ·W = 0 in D2R

φ3(·,0) = 0 in B2R(0)

(4.7)



λ
2
∂tφ4 = LW [φ4]+H4[p,ξ ,α,β ,Ψ∗,φ ,v]

− ∑
j=1,2

c−1, j[H4[p,ξ ,α,β ,Ψ∗,φ ,v]]w2
ρZ−1, j

φ4 ·W = 0 in D2R

φ4(·,0) = 0 in B2R(0)

(4.8)

c∗0 j(t)− c̃0 j(t) = 0 for all t ∈ (0,T ), j = 1,2,(4.9)

c1 j(t) = 0 for all t ∈ (0,T ), j = 1,2,(4.10)

c−1, j(t) = 0 for all t ∈ (0,T ), j = 1,2.(4.11)

Based on the linear theory developed in Section 2.5, we shall solve the inner
problems (4.5)–(4.8) in the norms below.

• We use the norm ‖ · ‖νi,ai to measure the right hand side Hi with i =
1, · · · ,4, where

‖h‖νi,ai = sup
R2×(0,T )

|h(y, t)|
λ

νi
∗ (t)(1+ |y|)−ai

(4.12)

with νi > 0, ai ∈ (2,3) for i = 1, 2, 4, and a3 ∈ (1,3).
• We use the norm ‖·‖∗,ν1,a1,δ to measure the solution φ1 solving (4.5), where

‖φ‖∗,ν1,a1,δ = sup
D2R

|φ(y, t)|+(1+ |y|)|∇yφ(y, t)|+(1+ |y|)2|∇2
yφ(y, t)|

λ
ν1∗ (t)max

{
Rδ (5−a1)

(1+|y|)3 ,
1

(1+|y|)a1−2

}
with ν1 ∈ (0,1), a1 ∈ (2,3), δ > 0 fixed small.
• We use the norm ‖ · ‖in,ν2,a2−2 to measure the solution φ2 solving (4.6),

where

‖φ‖in,ν2,a2−2 = sup
D2R

|φ(y, t)|+(1+ |y|)|∇yφ(y, t)|+(1+ |y|)2|∇2
yφ(y, t)|

λ
ν2∗ (t)(1+ |y|)2−a2

with ν2 ∈ (0,1), a2 ∈ (2,3).
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• We use the norm ‖ · ‖∗∗,ν3 to measure the solution φ3 solving (4.7), where

‖φ‖∗∗,ν3 = sup
D2R

|φ(y, t)|+(1+ |y|) |∇yφ(y, t)|+(1+ |y|)2|∇2
yφ(y, t)|

λ
ν3
∗ (t)R2(t)(1+ |y|)−1

with ν3 > 0.
• We use the norm ‖ · ‖∗∗∗,ν4 to measure the solution φ4 solving (4.8), where

‖φ‖∗∗∗,ν4 = sup
D2R

|φ(y, t)|+(1+ |y|) |∇yφ(y, t)|+(1+ |y|)2|∇2
yφ(y, t)|

λ
ν4∗ (t)

with ν4 > 0.

Based on the linear theory in Section 2.6, we shall solve the outer problem (4.3)
in the following norms.

• We use the norm ‖ · ‖∗∗ defined in (2.62) to measure the right hand side G
in the outer problem (4.3).
• We use the norm ‖ ·‖],Θ,γ defined in (2.63) to measure the solution ψ solv-

ing the outer problem (4.3), where Θ > 0 and γ ∈ (0,1/2).

Based on the linear theory developed in Section 3, we shall solve the incom-
pressible Navier–Stokes equation (4.1) in the following norms.

• We use the norm ‖ · ‖S,ν−2,a+1 defined in (3.3) to measure the forcing F ,
where ν > 0 and a ∈ (1,2).
• We use the norm ‖ ·‖S,ν−1,1 defined in (3.3) to measure the velocity field v

solving problem (4.1), where ν > 0.

We then define

Ẽ1 = {φ1 ∈ L∞(D2R) : ∇yφ1 ∈ L∞(D2R), ‖φ1‖∗,ν1,a1,δ < ∞}
Ẽ2 = {φ2 ∈ L∞(D2R) : ∇yφ2 ∈ L∞(D2R), ‖φ2‖in,ν2,a2−2 < ∞}
Ẽ3 = {φ3 ∈ L∞(D2R) : ∇yφ3 ∈ L∞(D2R), ‖φ3‖∗∗,ν3 < ∞}
Ẽ4 = {φ4 ∈ L∞(D2R) : ∇yφ4 ∈ L∞(D2R), ‖φ4‖∗∗∗,ν4 < ∞}

and use the notation

Eφ = Ẽ1× Ẽ2× Ẽ3× Ẽ4, Φ = (φ1,φ2,φ3,φ4) ∈ Eφ

‖Φ‖Eφ
= ‖φ1‖∗,ν1,a1,δ +‖φ2‖in,ν2,a2−2 +‖φ3‖∗∗,ν3 +‖φ4‖∗∗∗,ν4 .

We define the closed ball

B = {Φ ∈ Eφ : ‖Φ‖Eφ
≤ 1}.

For the outer problem (4.3), we shall solve ψ in the space

Eψ =
{

ψ ∈ L∞(Ω× (0,T )) : ‖ψ‖],Θ,γ < ∞
}
.
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For the incompressible Navier–Stokes equation (4.1), we shall solve the velocity
field v in the space

(4.13) Ev =
{

v ∈ L2(Ω;R2) : ∇ · v = 0, ‖v‖S,ν−1,1 < Mε0
}
,

where ε0 > 0 is the number in (1.1) which is fixed sufficiently small, and M > 0 is
some fixed number.

To introduce the space for the parameter function p(t), we recall the integral
operator B0 defined in (2.31) of the approximate form

B0[p] =
∫ t−λ 2

−T

ṗ(s)
t− s

ds +O
(
‖ṗ‖∞

)
.

For Θ ∈ (0,1), l ∈ R and a continuous function g : I→ C, we define the norm

‖g‖Θ,l = sup
t∈[−T,T ]

(T − t)−Θ| log(T − t)|l|g(t)|,

and for γ ∈ (0,1), m ∈ (0,∞), l ∈ R, we define the semi-norm

[g]γ,m,l = sup(T − t)−m| log(T − t)|l |g(t)−g(s)|
(t− s)γ

,

where the supremum is taken over s≤ t in [−T,T ] such that t− s≤ 1
10(T − t).

The following result was proved in [15, Section 8].

Proposition 4.1. Let α,γ ∈ (0, 1
2), l ∈ R, C1 > 1. If α0 ∈ (0,1], Θ ∈ (0,α0), m ∈

(0,Θ− γ], and a(t) : [0,T ]→ C satisfies
1

C1
≤ |a(T )| ≤C1,

T Θ| logT |1+σ−l‖a(·)−a(T )‖Θ,l−1 +[a]γ,m,l−1 ≤C1,

(4.14)

for some σ > 0, then for T > 0 sufficiently small there exist two operators P and
R0 so that p = P[a] : [−T,T ]→ C satisfies

B0[p](t) = a(t)+R0[a](t), t ∈ [0,T ]

with

|R0[a](t)|

≤C
(

T σ +T Θ log | logT |
| logT |

‖a(·)−a(T )‖Θ,l−1 +[a]γ,m,l−1

)(T − t)m+(1+α)γ

| log(T − t)|l
,

for some σ > 0.

Proposition 4.1 gives an approximate inverse P of the operator B0, so that
given a(t) satisfying (4.14), p := P [a] satisfies

B0[p] = a+R0[a], in [0,T ],
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for a small remainder R0[a]. Moreover, the proof of Proposition 4.1 in [15] gives
the decomposition

P[a] = p0,κ +P1[a],

with

p0,κ(t) = κ| logT |
∫ T

t

1
| log(T − s)|2

ds, t ≤ T,

κ = κ[a] ∈ C, and the function p1 = P1[a] has the estimate

‖p1‖∗,3−σ ≤C| logT |1−σ log2(| logT |).
Here the semi-norm ‖ ‖∗,3−σ is defined by

‖g‖∗,3−σ = sup
t∈[−T,T ]

| log(T − t)|3−σ |ġ(t)|,

and σ ∈ (0,1). This leads us to define the space

Xp := {p1 ∈C([−T,T ;C])∩C1([−T,T ;C]) : p1(T ) = 0, ‖p1‖∗,3−σ < ∞},
where we represent p by the pair (κ, p1) in the form p = p0,κ + p1.

We define the space for ξ (t) as

Xξ =
{

ξ ∈C1((0,T );R2) : ξ̇ (T ) = 0,‖ξ‖Xξ
< ∞

}
where

‖ξ‖Xξ
= ‖ξ‖L∞(0,T )+ sup

t∈(0,T )
λ
−σ
∗ (t)|ξ̇ (t)|

for some σ ∈ (0,1), and we define the spaces for α(t), β (t) as follows

Xα =
{

ξ ∈C1((0,T )) : α(T ) = 0,‖α‖Xα
< ∞

}
where

‖α‖Xα
= sup

t∈(0,T )
λ
−δ1
∗ (t)|α(t)|+ sup

t∈(0,T )
λ

1−δ1
∗ (t)|α̇(t)|

and
Xβ =

{
β ∈C1((0,T )) : β (T ) = 0,‖β‖Xβ

< ∞

}
where

‖β‖Xβ
= sup

t∈(0,T )
λ
−δ2
∗ (t)|β (t)|+ sup

t∈(0,T )
λ

1−δ2
∗ (t)|β̇ (t)|.

Here δ1,δ2 ∈ (0,1).
In conclusion, we will solve the inner–outer gluing system (4.1), (4.3), (4.5),

(4.6), (4.7), (4.8), (4.9), (4.10) and (4.11) in the space

(4.15) X = Ev×Eψ ×Eφ ×Xp×Xξ ×Xα ×Xβ

by means of fixed point argument.
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4.1 Estimates of the orientation field u

The equation for the orientation field u is close in spirit to the harmonic map
heat flow (2.9). To get the desired blow-up, we only need to show the drift term
v ·∇u is a small perturbation in the topology chosen above. Then the construction
of the orientation field u is a direct consequence of [15] with slight modifications.

Effect of the drift term v ·∇u in the outer problem

In the outer problem (4.3), it is direct to see that the main contribution in the
drift term v ·∇u comes from v ·∇U since all the other terms are of smaller orders.
We get that for some positive constant ε ,
(4.16)
|(1−ηR)v ·∇u|

=

∣∣∣∣(1−ηR)v ·∇U +(1−ηR)v ·∇
(

ΠU⊥

[
ηRQω,α,β φ +Ψ

∗+Φ
0 +Φ

α +Φ
β

])
+(1−ηR)v ·∇

(
a
(

ΠU⊥

[
ηRQω,α,β φ +Ψ

∗+Φ
0 +Φ

α +Φ
β

])
U
)∣∣∣∣

. |(1−ηR)v ·∇U |

.
λ ν−1
∗ (t)‖v‖S,ν−1,1

1+
∣∣∣ x−q

λ∗(t)

∣∣∣ λ∗(t)
|x−q|2 +λ 2

∗ (t)
χ{|x−q|≥λ∗(t)R(t)}

. T ε
ρ2

provided ν >m with m∈ (1/2,1) obtained in Lemma 2.9, where ρ2 is the weight of
the ‖·‖∗∗-norm (see (2.61)) for the right hand side of the outer problem. Therefore,
as long as ν is chosen sufficiently close to 1, the influence of the drift term v ·∇u
in the outer problem is negligible, and it is indeed a perturbation compared to the
rest terms already estimated in the harmonic map heat flow [15, Section 6.6].

Effect of the drift term v ·∇u in the inner problem

Since the inner problem is decomposed into different modes (4.5)–(4.8), a key
observation is that the drift term v ·∇u will get coupled in each mode. In other
words, the mode k solved from the velocity equation with forcing −ε0∇ · (∇U �
∇φk) enters mode k of the inner problem via the drift term v ·∇u. We now analyze
the projections of v ·∇u on different modes. Recall that

v ·∇u = v ·∇[U +ϕin +ΠU⊥ϕout +a(ΠU⊥(ϕin +ϕout))U ]

where

ϕin = ηRQω,α,β (φ1 +φ2 +φ3 +φ4), ϕout = Ψ
∗+Φ

0 +Φ
α +Φ

β .

Notice that the leading term in v ·∇u is v ·∇U . Since (v ·∇U,U) = 0, we have

ΠU⊥(v ·∇U) = v ·∇U.
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Denote v =
[

v1
v2

]
. We write U in the polar coordinates

∇U = λ
−1

[
cosθwρE1− sinθ

ρ
sinwE2

sinθwρE1 +
cosθ

ρ
sinwE2

]
.

Therefore, the projection of v ·∇u on mode k (k ∈ Z) is of the following size∣∣[ΠU⊥(v ·∇u)]k
∣∣. ∣∣[ΠU⊥(v ·∇U)]k

∣∣.∣∣∣∣∣
∫ 2π

0

(
v1 cosθ cos(kθ)wρ + v2 sinθ cos(kθ)wρ

+ v1
sinθ sin(kθ)

ρ
sinw− v2

cosθ sin(kθ)

ρ
sinw

)
dθ

+ i
∫ 2π

0

(
v1 cosθ sin(kθ)wρ + v2 sinθ sin(kθ)wρ

− v1
sinθ cos(kθ)

ρ
sinw+ v2

cosθ cos(kθ)

ρ
sinw

)
dθ

∣∣∣∣∣
from which we obtain

(4.17)
∣∣λ [ΠU⊥(v ·∇u)]k

∣∣≤ Mε0λ ν
∗

1+ |y|3

where M and ε0 are given in (4.13). Thus, it holds that

‖λ [ΠU⊥(v ·∇u)]k‖ν ,a ≤Mε0.

Since ε0 is a sufficiently small number, we find that the projection [ΠU⊥(v ·∇u)]k
can be regarded as a perturbation compared to the rest terms in the right hand sides
of the inner problems (4.5)–(4.8).

In summary, the coupling of the drift term v ·∇u in the inner and outer problems
of the harmonic map heat flow is essentially negligible under the topology chosen
above. Therefore, with slight modifications, the fixed point formulation for

∂tu+ v ·∇u = ∆u+ |∇u|2u

can be carried out in a similar manner as in [15].
For the outer problem (4.3), it was already estimated in [15] that in the space

X defined in (4.15), it holds that for some ε > 0
‖G [p,ξ ,α,β ,Ψ∗,φ ,v]− (1−ηR)v ·∇u‖∗∗
. T ε(‖Φ‖Eφ

+‖ψ‖],Θ,γ +‖p‖Xp +‖ξ‖Xξ
+‖α‖Xα

+‖β‖Xβ
+1)
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provided

(4.18)



0 < Θ < min
{

γ∗,
1
2
− γ∗,ν1−1+ γ∗(a1−1),

ν2−1+ γ∗(a2−1),ν3−1,ν4−1+ γ∗

}
,

Θ < min{ν1−δγ∗(5−a1)− γ∗,ν2− γ∗,ν3−3γ∗,ν4− γ∗} ,
δ � 1.

On the other hand, from (4.16), we find that
‖(1−ηR)v ·∇u‖∗∗
. T ε(‖v‖S,ν−1,1 +‖Φ‖Eφ

+‖ψ‖],Θ,γ +‖p‖Xp +‖ξ‖Xξ
+‖α‖Xα

+‖β‖Xβ
+1)

provided

(4.19) ν >
1
2
.

Therefore, we conclude the validity of the following proposition by Proposition
2.2.

Proposition 4.2. Assume (4.18) and (4.19) hold. If T > 0 is sufficiently small, then
there exists a solution ψ = Ψ(v,Φ, p,ξ ,α,β ) to problem (4.3) with

‖Ψ(v,Φ, p,ξ ,α,β )‖],Θ,γ

. T ε(‖v‖S,ν−1,1 +‖Φ‖Eφ
+‖p‖Xp +‖ξ‖Xξ

+‖α‖Xα
+‖β‖Xβ

+1),

for some ε > 0.

We denote Tψ by the operator which returns ψ given in Proposition 4.2.
For the inner problems (4.5)–(4.8), our next step is to take Φ∈Eφ and substitute

Ψ
∗(v,Φ, p,ξ ,α,β ) = Z∗+Ψ(v,Φ, p,ξ ,α,β )

into (4.2). We can then write equations (4.5)–(4.8) as the fixed point problem

Φ = A (Φ)(4.20)

where

A (Φ) = (A1(Φ),A2(Φ),A3(Φ),A4(Φ)), A : B̄1 ⊂ Eφ → Eφ

with

A1(Φ) = T1(H1[v,Ψ∗(v,Φ, p,ξ ,α,β ), p,ξ ,α,β ]),

A2(Φ) = T2(H2[v,Ψ∗(v,Φ, p,ξ ,α,β ), p,ξ ,α,β ]),

A3(Φ) = T3

(
H3[v,Ψ∗(v,Φ, p,ξ ,α,β ), p,ξ ,α,β ]

+
2

∑
j=1

c∗0 j[v,Ψ
∗(v,Φ, p,ξ ,α,β ), p,ξ ,α,β ]w2

ρZ0, j

)
,

A4(Φ) = T4

(
H4[v,Ψ∗(v,Φ, p,ξ ,α,β ), p,ξ ,α,β ]

)
.



60 C. C. LAI, ET ALL

Here T1(·), T2(·), T3(·), T4(·) denotes the inner solution that solves (4.5), (4.6),
(4.7), (4.8), respectively. Neglecting ΠU⊥(v ·∇u), the contraction for the inner
problem was shown in [15, Section 6.7] under the conditions

(4.21)



ν1 < 1

ν2 < 1− γ∗(a2−2)

ν3 < min
{

1+Θ+2γ∗γ,ν1 +
1
2

δγ∗(a1−2)
}

ν4 < 1

On the other hand, from (4.17), we obtain

(4.22)

∥∥∥λQ−1
ω,α,β [ΠU⊥(v ·∇u)]0

∥∥∥
ν1,a1
≤Mε0λ

ν−ν1
∗ (t)∥∥∥λQ−1

ω,α,β ([ΠU⊥(v ·∇u)]1 +[ΠU⊥(v ·∇u)]⊥)
∥∥∥

ν2,a2
≤Mε0λ

ν−ν2
∗ (t)∥∥∥λQ−1

ω,α,β [ΠU⊥(v ·∇u)]−1

∥∥∥
ν4,a
≤Mε0λ

ν−ν4
∗ (t)

Recall that the parameter ε0 > 0 in (1.1) is fixed and sufficiently small. Therefore,
by letting

(4.23)
{

ν = ν1 = ν2 = ν4

1 < a < 2

the smallness in (4.22) comes from ε0� 1. Applying the linear theory developed
in Section 2.5 for the inner problems (4.5)–(4.8), we then conclude the following
proposition.

Proposition 4.3. Assume (4.21) and (4.23) hold. If T > 0 and ε0 > 0 are sufficiently
small, then the system of equations (4.20) for Φ = (φ1,φ2,φ3,φ4) has a solution
Φ ∈ Eφ .

We denote by Tp, Tξ , Tα and Tβ the operators which return the parameter
functions p(t), ξ (t), α(t), β (t), respectively. The argument for adjusting the pa-
rameter functions such that (4.9)–(4.11) hold is essentially similar to that of [15].
Note that the influence of the coupling v ·∇u is negligible as shown in Section 4.1.
Therefore, the leading orders for the parameter functions p(t), ξ (t), α(t), β (t) are
the same as in Section 2.4. The reduced problem (4.9) yields an integro-differential
equation for p(t) which can be solved by the same argument as in [15], while the
reduced problems (4.10)–(4.11) give relatively simpler equations for ξ (t), α(t),
β (t), which can be solved by the fixed point argument. We omit the details.

4.2 Estimates of the velocity field v

To solve the incompressible Navier–Stokes equation (4.1), we need to analyze
the coupled forcing term

ε0∇ · (∇u�∇u−1/2|∇u|2I2).
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Observe that the main contribution in the forcing comes from U +ηRQω,α,β (φ0 +
φ1 + φ−1 + φ⊥), where φ0, φ1, φ−1, φ⊥ are in mode 0, 1, −1 and higher modes,
respectively. From the linear theory in Section 2.5, the dominant terms are U and
φ0. So we next need to evaluate

∇ · (∇U�∇U−1/2 |∇U |2 I2) and ∇ · (∇U�∇φ0−1/2(∇U : ∇φ0)I2),

where ∇U : ∇φ0 = ∑i j ∂iU j∂i(φ0) j. Recall

U(y) =
[

eiθ sinw(ρ)
cosw(ρ)

]
, E1(y) =

[
eiθ cosw(ρ)
−sinw(ρ)

]
, E2(y) =

[
ieiθ

0

]
so that

∂ρU = wρE1, ∂θU = sinwE2,

∂ρE1 =−wρU, ∂θ E1 = coswE2.

Note that

∇ · (∇U�∇U−1/2 |∇U |2 I2) = ∆U ·∇U =−|∇U |U ·∇U = 0.

For ∇ · (∇U �∇φ0−1/2(∇U : ∇φ0)I2), we express the forcing in the polar coor-
dinates. Since φ0 = ϕ0E1 where ϕ0 = ϕ0(ρ), the first component

(λ 3
∇ · (∇U�∇φ0))1

= ∇y · (∇yU�∇yφ0)1

= ∂y1

(
cos2

θ ∂ρϕ0 wρ +
sin2

θ

ρ2 ϕ0 sinwcosw
)

+∂y2

(
sinθ cosθ ∂ρϕ0 wρ −

sinθ cosθ

ρ2 ϕ0 sinwcosw
)
.

Changing ∂y1 and ∂y2 into ∂ρ and ∂θ , we obtain

(λ 3
∇ · (∇U�∇φ0))1

= cosθ ∂ρ

(
cos2

θ ∂ρϕ0 wρ +
sin2

θ

ρ2 ϕ0 sinwcosw
)

− sinθ

ρ
∂θ

(
cos2

θ ∂ρϕ0 wρ +
sin2

θ

ρ2 ϕ0 sinwcosw
)

+ sinθ ∂ρ

(
sinθ cosθ ∂ρϕ0 wρ −

sinθ cosθ

ρ2 ϕ0 sinwcosw
)

+
cosθ

ρ
∂θ

(
sinθ cosθ ∂ρϕ0 wρ −

sinθ cosθ

ρ2 ϕ0 sinwcosw
)

= cosθ

(
∂

2
ρ ϕ0 wρ +∂ρϕ0 wρρ +

1
ρ

∂ρϕ0 wρ −
1

ρ3 ϕ0 sinwcosw
)

= cosθ

[
∂ρ

(
∂ρϕ0 wρ +

ϕ0 wρ

ρ
+
∫

ϕ0w2
ρ

)]
.
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A similar calculation implies that the second component

(λ 3
∇ · (∇U�∇φ0))2 = sinθ

[
∂ρ

(
∂ρϕ0 wρ +

ϕ0 wρ

ρ
+
∫

ϕ0w2
ρ

)]
.

So ∇ ·(∇U�∇φ0) = ∇

[
λ−3(∂ρϕ0 wρ +

ϕ0 wρ

ρ
+
∫

ϕ0w2
ρ)
]

is a potential. Moreover,

it is obvious that ∇ ·(|∇U |2 I2) is a potential. Therefore, ∇ ·(∇U�∇φ0−1/2(∇U :
∇φ0)I2) is a potential, which can be absorbed in the pressure P in problem (4.1).

On the other hand, the contribution from mode 1 and higher modes (|k| ≥ 2) in
F defined by (4.4) has the following bound

|∇U�∇φk| ≤
λ ν2−2(t)

1+ |y|1+a2
‖φk‖in,ν2,a2−2, k 6=−1,0.

Therefore, by (4.23) and a2 ∈ (2,3), the leading term in F is

(4.24) |∇U�∇φ−1| ≤
λ ν4−2(t)
1+ |y|3

‖φ−1‖∗∗∗,ν4 ,

from which we conclude that

‖ε0∇U�∇φ−1‖S,ν−2,a+1 ≤ ε0.

Remark 4.1. As we can see above, using the new linear theory at mode −1 (see
Lemma 2.5), the size of the transported term turns out to be of the same order as the
right hand side at mode −1. This is the motivation of introducing new parameters
α(t), β (t) and developing new linear theory at mode−1, otherwise the transported
term would carry extra logarithm growth in time (see Lemma 2.4). On the other
hand, the assumption ε0 � 1 is required here to guarantee the contraction in the
fixed point argument.

On the other hand, as mentioned in Remark 3.4, the nonlinear term v ·∇v in
(4.1) is of smaller order compared to the forcing ε0∇ ·F if we look for a solution
v in the function space Ev defined in (4.13). Indeed, since v ∈ Ev, we have

|v ·∇v|. λ 2ν−2
∗ (t)

1+ |y|3

so that
‖v ·∇v‖S,ν−2,a+1 . λ

ν
∗ (t)� 1 as t→ T.

Thus, the incompressible Navier–Stokes equation (4.1) can be regarded as a per-
turbed Stokes system

∂tv+∇P = ∆v− ε0∇ ·F1[p,ξ ,α,β ,Ψ∗,φ ,v]

with
F1[p,ξ ,α,β ,Ψ∗,φ ,v] = F [p,ξ ,α,β ,Ψ∗,φ ,v]+ v⊗ v,

where we have used the fact that v is divergence-free so that we can write v ·∇v =
∇ · (v⊗ v). We denote Tv by the operator which returns the solution v, namely

Tv : Ev→ Ev



FINITE TIME SINGULARITY FOR NLCF IN 2D 63

v 7→Tv(v).
By (4.24) and the linear theory for the Stokes system developed in Section 3, we
obtain
(4.25)
‖Tv(v)‖S,ν−1,1

≤Cε0
(
‖v‖S,ν−1,1 +‖Φ‖Eφ

+‖ψ‖],Θ,γ +‖p‖Xp +‖ξ‖Xξ
+‖α‖Xα

+‖β‖Xβ
+1
)
.

4.3 Proof of Theorem 1.1

Consider the operator

(4.26) T = (A ,Tψ ,Tv,Tp,Tξ ,Tα ,Tβ )

defined in Section 4.1 and Section 4.2. To prove Theorem 1.1, our strategy is
to show that the operator T has a fixed point in X by the Schauder fixed point
theorem. Here the function space X is defined in (4.15). The existence of a fixed
point in the desired space X follows from a similar manner as in [15].

By collecting Proposition 4.1, Proposition 4.2, Proposition 4.3 and (4.25), we
conclude that the operator maps X to itself. On the other hand, the compactness
of the operator T can be proved by suitable variants of the estimates. Indeed, if
we vary the parameters γ∗, Θ, ν , a, ν1, a1, ν2, a2, ν3, ν4, δ slightly such that all the
restrictions in (4.18), (4.19), (4.21) and (4.23) are satisfied, then one can show that
the operator T has a compact embedding in the sense that if a sequence is bounded
in the new variant norms, then there exists a subsequence which converges in the
original norms used in X . Thus, the compactness follows directly from a standard
diagonal argument by Arzelà–Ascoli’s theorem. Therefore, the existence of the
desired solution for the single bubble case k = 1 follows from the Schauder fixed
point theorem.

The general case of multiple-bubble blow-up is essentially identical. The ansatz
is modified as follows: we look for solution u of the form

u(x, t) =
k

∑
j=1

U j +ΠU⊥j
ϕ j +a(ΠU⊥j

ϕ j)U j,

where

U j = Uλ j(t),ξ j(t),ω j(t),α j(t),β j(t), ϕ j = ϕ
j

in +ϕ
j

out ,

ϕ
j

in = ηR(t)(y j)Qω j(t),α j(t),β j(t)φ(y j, t), y j =
x−ξ j(t)

λ j(t)
,

ϕ
j

out = ψ(x, t)+Z∗(x, t)+Φ
0
j +Φ

α
j +Φ

β

j .

Here Φ0
j , Φα

j and Φ
β

j are corrections defined in a similar way as in (2.17) with λ ,
ξ , ω , α , β replaced by λ j, ξ j, ω j, α j, β j. We are then led to one outer problem and
k inner problems for u together with one Navier–Stokes equation for v with exactly
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analogous estimates. A string of fixed point problems can be solved in the same
manner. We omit the details. �
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