REGULARITY OF WEAK SOLUTION OF VARIATIONAL PROBLEMS
MODELING THE COSSERAT MICROPOLAR ELASTICITY
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ABSTRACT. In this paper, we consider weak solutions of the Euler-Lagrange equation to
a variational energy functional modeling the geometrically nonlinear Cosserat micropolar
elasticity of continua in dimension three, which is a system coupling between the Poisson
equation and the equation of p-harmonic maps (2 < p < 3). We show that if a weak
solutions is stationary, then its singular set is discrete for 2 < p < 3 and has zero 1-
dimensional Hausdorff measure for p = 2. If, in addition, it is a stable-stationary weak

solution, then it is regular everywhere when p € [2, %]

1. INTRODUCTION

General continuum models involving independent rotations were introduced by the Eu-
gene and Francois Cosserat brothers in 1909 [1], and were later rediscovered in 1960’s (see
Eringen [2]). The micromorphic balance equations were derived by Eringen [2]. The major
difficulty of mathematical treatment in the finite strain case comes from the geometrically
exact formulation of the theory and the appearance of nonlinear manifolds that are nec-
essary to describe the microstructure. The geometrically nonlinear Cosserat framework is
also encountered in the modeling of thin-structures [5]. Among many variants and vast
body of results of Cosserat theory available in the literature, P. Neff [3, 4, 7] has made some
systematical analysis of the Cosserat theory for micropolar elastic bodies by establishing
the existence of minimizers in the framework of calculus of variations. Very recently, in
an interesting article [8], Gastel has shown a partial regularity theorem of minimizer of a
Cosserat energy functional for microplar elastic bodies.

The elastic body © C R? is assumed to be a bounded Lipschitz domain. The elastic
body can be deformed by a translation mapping ¢ : @ — R3, and ¢(x) — x denotes the
displacement of the point x € ). Furthermore, the micropolar structure of the material
associates each point = € { with an orthonormal frame that is free to rotate in R? by an
orthogonal matrix R(x) € SO(3). Both translations and rotations induce material stresses
that are given by R*V¢ — I3 and R'V R respectively. We point out that since R CurlR
is isomorphic to RV R (cf. [6]), it seems possible to measure the material stress induced
by rotation by RTCurlR. The Cosserat energy functional stored in the elastic body
consists of the contributions by both translations and rotations. For a pair of translation
and rotation maps (¢, R) :  — R? x SO(3), the contribution of rotational stresses to the
Cosserat energy is given by

L / \R'VRP dz (=1, / VR dz)
Q Q
1
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for some [, > 0 and 2 < p < 3, while the contribution of translational stresses is given by
/Q IP(R'V$ — I3)|” da,

where P : R3*3 — R3*3 is the linear map defined by

P(A) = \/u devsym A + /. skew A + \/?/;TQ(trA)Ig, A € R¥3,

and
devsym A — %(A + Al — %(trA)Ig, skew A — %(A oy
denotes the deviatoric symmetric part of A and the skew-symmetric part of A respectively.
The constants g > 0,4, > 0, and py represent the shear modulus, the Cosserat couple
modulus, and the bulk modulus for isotropic response.

The elastic body 2 may be subject to external forces, such as gravity or electromagnetic
forces, that can be modeled by

/ﬂ<¢—:c,f>dx+/Q<R,M>dx,

where f : © — R3 stands for the potential of external volume forces applied to the
displacement of the material and M :  — R3*3 is a matrix-valued function representing
the role of the potential of external volume couples applied to the microscopic rotation of
the material, both of which are assumed to be given in this paper.

Collecting together all these terms, the Cosserat energy functional® is given by

Coss(gb,R):/Q(\P(Rtv¢—13)|2+|VR\p+((b—x,f)Jr(R,M))dx. (1.1)

Recall that (¢, R) € HY(Q,R3) x WHP(Q,SO(3)) is a minimizer of the Cosserat energy
functional, if

Coss(¢, R) < Coss(czz, E)a

holds for any (¢, R) € H'(Q,R3) x WP(Q,S0(3)) that belongs to the same class of de-
formation configurations (for example, ((5, ﬁ) = (¢, R) on a given part I' C 99, while
there is no restriction imposed on (5, ﬁ) over the free boundary portion 9 \ I" ). The
existence of minimizers of Coss(¢, R) in the Sobolev spaces, under various boundary con-
ditions including either the Dirichlet or some other natural mixed boundary conditions,
has been obtained by Neff [4]. We point out that since we only consider the interior partial
regularity of certain weak solutions of the Cosserat equation, the boundary condition does
not play a role in this analysis. By direct calculations, any minimizer (¢, R) of Coss(¢, R)
solves the Euler-Lagrange equation, called as the Cosserat equation:

{div(RIPt]P’(RtV¢ —1I3)) =3/,

{div(\VR|p*2VR) — 2V(P'P(R'Vo — I5))' — }DM} L TRrSO(3). (12)

lwe may consider a more general Cosserat energy functional by replacing the translational material
stress density [P(R*V¢ — I3)|? in (1.1) by a non-Hilbert type form |P(R*V¢ — I3)|? for some 2 < ¢ < p < 3.
It seems possible that the arguments in this paper can be extended to show the main results remain to
be true for all 2 < ¢ < p. However, to make this paper slightly less technical we only consider the power
q = 2 for the translational material stress density function.
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Here TrSO(3) denotes the tangent space of SO(3), at R € SO(3), that is given by
TRSO(3) = {X e R¥3 | R'X + X'R = o},

and P! : R3*3 — R3*3 is the adjoint map of P.
When p1 = po = e = 1, we have that P = P! = Id is the identity map. Hence

IP(R'V¢ — I3)]* = |[V|* — 2(R, V) + 3,

and the Cosserat equation (1.2) reduces to the following simplified form:

{A¢ =divR + 3 f,

(div(]VR|p_2VR) + 2V — %M) L TRSO(3). (13)

We would like to remark that the system (1.2) and (1.3) are systems coupling between
the Poisson equation for the macroscopic translational deformation variable ¢ :  — R3
and the (nonlinear) p-harmonic map equation for the microscopic rotational deformation
variable R : Q — SO(3).

By extending the techniques in the study of minimizing p-harmonic maps by Schoen-
Uhlenbeck [13], Hardt-Lin [9], Fuchs [10], and especially Luckhaus [11], Gastel has recently
shown in an interesting article [8] that any minimizer (¢, R) € H'(Q,R3) x WhP(Q,SO(3))
of the Cosserat energy functional Coss(¢, R) of the Cosserat functional (1.1) belongs to
C1® x C® in Q away from a singular set ¥ of isolated points for all 2 < p < 3. Moreover, ¥
is shown to be an empty set when p € [2, %] by extending stability inequality arguments
by Schoen-Uhlenbeck [14], Xin-Yang [15], and Chang-Chen-Wei [16].

An interesting question to ask is whether the regularity result on minimizers of the
Cosserat functional in [8] remains to hold for certain classes of weak solutions to the
Cosserat equation (1.2). In this paper, we will answer this question affirmatively. To
address it, we first need to introduce a few definitions.

For 1 < p < oo, recall the Sobolev space

WP (Q,80(3)) = {R € WhP(Q,R¥3) | R(z) € SO(3), ae. x € Q}

Definition 1.1. For2 < p <3, given f € H-1(Q,R3) and M € W_l’p%l(Q,R?’X:s), a pair
of maps (¢, R) € HY(,R3) x WP(Q,SO(3)) is a weak solution to the Cosserat equation
(1.2), if it satisfies (1.2) in the sense of distributions, i.e.,

1
[ (@(1V6 — 1) PRIGU) + 5 (7. 00)) do =0,
Q
2 1
| (VR 2VR ) + 2 (BIR'V0 ~ 1) PUsV6) + (M, 00)) da =0,
Q
hold for any ¢y € HY(Q,R3) and 9 € WyP(Q, TrSO(3)) N L= (€, R3*3).
It is readily seen that any minimizer (¢, R) of the Cosserat energy functional (1.1) is a

weak solution of the Cosserat equation (1.2). A restricted class of weak solutions of (1.2)
is the class of stationary weak solutions, which is defined as follows.

Definition 1.2. For 2 < p <3, f € H Y(Q,R?), and M € W_I’P%(Q,Rgx‘g), a weak
solution (¢, R) € H*(Q,R3) x WHP(,S0(3)) to the Cosserat equation (1.2) is called a
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stationary weak solution, if, in addition, (¢, R) is a critical point of the Cosserat energy
functional (1.1) with respect to the domain variations, i.e,

d
7 tZOCoss(qﬁt,Rt) =0, (1.4)

where (¢1(z), Ri(z)) = (¢p(z + tY (v)), R(z + tY (x))) forz € Q, and Y € C§(Q,R3).

It is easy to check that any minimizer (¢, R) of the Cosserat energy functional (1.1)
is a stationary weak solution of the Cosserat equation (1.2). It can also be shown by a
Pohozaev argument that any regular solution (¢, R) € C1¥(Q, R? x SO(3)) of the Cosserat
equation (1.2) is a stationary weak solution.

In section 2 below, we will show that when u; = pu. = pe = 1, any stationary weak
solution (¢, R) of Cosserat equation (1.3) satisfies the following stationarity identity: for
any Y € C§°(Q,R?), it holds that

/Q(|v¢>|2 —2(R,V¢) + |[VR]P)(—divY) daz+/9(<f,Y-v¢> +(M,Y -VR))dz

o' oYk

2 VY — 2R;j
+/Q( Voo Ve:V Rjaxk o,

p|VRP?VR®VR:VY)dzr=0. (1.5)
As a direct consequence of (1.5), we will establish an almost energy monotonicity inequality
for stationary weak solutions to (1.3) when u; = . = o = 1 holds. This, combined with
the symmetry of SO(3), enables us to extend the compensated regularity technique by
Hélein [19], Evans [20], and Toro-Wang [21] to show the following partial regularity.

Theorem 1.3. For 2 < p < 3, f € L®(Q,R?) and M € L>®(Q,R3>*3), if (p,R) €
H'(Q,R3) x WLP(Q,S0(3)) is a stationary weak solution to the Cosserat equation (1.3),
then there exist a € (0,1) and a closed set ¥ C ) such that (¢, R) € CH*(Q\ T, R3) x
C(Q\ £,5S0(3)). Here X is a discrete set when p € (2,3), and has zero 1-dimensional
Hausdorff measure when p = 2.

We would like to point out that the discreteness of singular set ¥ for 2 < p < 3
is a corollary of H' x WP-compactness property of weakly convergent stationary weak
solutions of the Cosserat equation (1.3), which is a consequence of monotonicity inequality
(2.3) and the Marstrand Theorem (see [23]).

To further improve the estimate of the singular set 3 for a stationary weak solution
(¢, R) of the Cosserat equation (1.2) both for p = 2 and 2 < p < 3, we restrict our
attention to a subclass of stationary weak solutions that are stable.

Definition 1.4. For 2 < p < 3, f € H-Y(Q,R3), and M € W V51 (Q,R3*3), a weak
solution (¢, R) € H*(Q,R3) x WHP(Q,S0(3)) to the Cosserat equation (1.2) is called a
stable weak solution, if, in addition, the second order variation of the Cosserat energy
functional at (¢, R) is nonnegative, i.e.,

d2
dt? li=

where (¢, Ry) € C?((—6,6), H'(Q,R?) x WHP(Q,S0(3))) for some 6 > 0, satisfying
(¢0, Ro) = (¢, R), is a variation of (¢, R) in the target space R® x SO(3).

OCoss(qﬁt, R;) >0, (1.6)
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From the definition, any minimizer (¢, R) € H(Q,R3) x W1P(Q,SO(3)) of the Cosserat
energy functional Coss(+,-) is a stable weak solution of the Cosserat equation (1.2).

In section 3, we will establish in the stability Lemma 3.2 that any stable weak solutions
(¢, R) of Cosserat equation satisfies the following stability inequality:

[ (+ DIVRP VP ~ 2V RPIS?) de 2 0, 6 € G (@), a.7)
Q

Utilizing the stability inequality (1.7), we can extend the ideas by Hong-Wang [17] and
Lin-Wang [18] to establish a pre-compactness property of stable-stationary weak solutions
of the Cosserat equation for p = 2, which can be employed to improve the estimate of
singular set 3. Moreover, by applying the non-existence theorem on stable p-harmonic
maps from S? to SO(3) for p € [2, ‘%] that was established by Schoen-Uhlenbeck [14],
Xin-Yang [15], and Chang-Chen-Wei [16], we prove a complete regularity result for stable
stationary weak solutions to the Cosserat equation (1.3) when p belongs to the range

2, %] More precisely, we have

Theorem 1.5. For p € [2, %], f e L¥(Q,R3), and M € L*®(Q,R3*3), if (p,R) €
HY(Q,R3) x WLP(Q,S0(3)) is a stable stationary weak solution to the Cosserat equation

(1.3), then there exists a € (0,1) such that (¢, R) € CH*(,R3) x C*(2,S0(3)).
Now we would like to mention a couple of questions.

Remark 1.6. 1) It remains to be an open question whether Theorem 1.5 remains to be
true when % < p < 3. The main difficulty arises from that we can’t rule out the existence
of nontrivial stable p-harmonic maps from S? to SO(3) when p lies in the interval (%, ).
2) It is an open question whether Theorems 1.3 and 1.5 hold true when the positive con-
stants 1, e, 2 are not necessarily equal. Note that Neff [4] has shown the existence
of minimizers of the Cosserat energy functional even when the Cosserat couple modulus
e = 0. The main difficulty is that it is unknown whether an almost energy monotonicity
inequality holds for stationary weak solutions (¢, R) of the Cosserat equation (1.2) when
P is not an identity map.

3) It is also an interesting question to ask whether the regularity theorems remain to hold,
if we replace the rotational stress energy density |RTVR[P by |RTCurlR|P in the Cosserat
energy functional.

The paper is organized as follows. In section 2, we will derive both stationarity identity
and an almost energy monotonicity inequality for stationary weak solutions (¢, R) of the
Cosserat equation (1.2). In section 3, we will rewrite the Cosserat equation (1.3) into a
form in which the nonlinearity exhibits div-curl structures. In section 4, we will prove an
eo-regularity theorem for stationary weak solutions (¢, R) of the Cosserat equation (1.3),
and apply Marstrand’s theorem to obtain a refined estimate of the singular set when
2 < p < 3. In section 5, we will derive the stability inequality for stable weak solutions
and obtain the full regularity for stable stationary weak solutions (¢, R) of the Cosserat
equation (1.3) when p € [2, %]

2. STATIONARITY IDENTITY AND ALMOST MONOTONICITY INEQUALITY

This section is devoted to the derivation of stationarity identity and almost energy
monotonicity inequality for stationary weak solutions to the Cosserat equation (1.3).
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Lemma 2.1. For 2 < p < 3, assume py = pe = po = 1, f € L2(Q,R?), and M €
Lﬁ(Q,SO(Z%)). If (o, R) € HY(Q,R3) x WLP(Q,S0(3)) is a stationary weak solution of
the Cosserat equation (1.3), then for any Y € C§°(Q,R3) it holds that

k J
o ik 99" )dx (2.1)

/ (2V¢> ®Ve: VY +p|VRP2VR® VR : VY —
Q Oxj Ox;
= / (Vo> = 2(R, V) + |[VRPP)divY — (Y(z) - V¢, f) — (Y(z) - VR, M)]da.
Q
Proof. For Y € C§°(Q,R?), there is a sufficiently small § > 0 so that dist(supp(Y’), ) >

0. Define (¢4, Ri)(x) = (¢, R)(x + tY (z)) for z € Q and ¢t € (—6,6). Since (¢, R) is a
stationary weak solution of (1.3), we have that

0= dt‘t:O/Q IV = 2(Ry, Vy) + VR + (¢ — x, ) + (R, M) da.

Applying change of variables and direct calculations, it is not hard to see that

/Q (IVé|* — 2(R,V¢) + [VRIP)(—divY) dx + /Q (Y -V, f)+ (Y -VR,M)) dx

/ (2Vo @ Ve : VY — 2Ra53¢ ‘?)Y

+p|VRPP2VR® VR : VY)dz =0. (2.2)

This yields (2.1). O

By choosing suitable test variation fields Y € C§°(Q2,R?), we will obtain an almost
energy monotonicity inequality for stationary weak solutions to the Cosserat equation
(1.3).

Corollary 2.2. For 2 < p < 3, assume i1 = jic = po = 1, f € L¥(Q,R3) and M €
L>(Q,80(3)). If (p,R) € HY(Q,R3) x WLP(Q,S0(3)) is a stationary weak solution of
the Cosserat equation (1.3), then for any x € Q and 0 < r < ry < dist(z,09), it holds
that

Cossz((¢, R),r1) / rP 3/ p|VRP™ 2\8R\2 \?;;52) dH?dr
T
< Cossz((¢, R), (2.3)

where Cossy((¢, R),r) is the modified renormalized Cosserat energy defined by

Cossz((¢, R),r) == eCT2rp_3/ (IVRIP + |qu5\2) dz + Cr3, (2.4)
r(z)

where C > 0 depends on p, || f||Le(q), and || M||pe(q)-

Proof. For simplicity, assume z = 0 € Q and 0 < r < dist(0,09) and write B, = B,(0).
Let Y (x) = anc(|z|), where n. € C3°(B,) is chosen such that n. = xp, as e — 0. Plugging



COSSERAT ELASTICITY 7
Y into (2.1) and sending € to 0, we obtain that
(p—3) / |VRP dx + r/ \VRIP dH? — / V| dx + r/ \Vo|? dH?
BT aBr Br 8B7~
_ _4/ (R, Vo) dx+2r/ (R, Vo) dHQ—/ (z -V, f) + (z - VR, M) da
™ 8B'r Br
—i—pr/ IVR[P~ anRPdH? + 27«/ \@de — 2/ ety (2.5)
OB OB, 87“ 87“

0B

It is easy to estimate
\2r/ (R,V¢) du| <C’7“2/ |Vo|2dH? + Cr?,
0B, 0B,
\—4/ (R, V) da| gcr/ |Vo|? dz 4+ Cr?,
B, B
\—2/ R:x®%dH2\ gr/ \@PdHMCr?’,
OB, Br OB, 87‘
|~ [ @-Vo.pyds| <Cr [ 1VoP dat Cfwioy,
_p
\—/ (z- VR, M) dz| §Cr/ |VR|de+C||M\|g;1(Q)r4
B, B,
Substituting these estimates into (2.5) yields
(p—3)/ |VR\pd:c+r/ \VR]dez—/ |V¢y2das+7~/ IVo|* dH?
. 9B, B, 9B,
zpr/ |VR|P~ 218R|2dﬂ2+r/ | |2dH2
0B 0B

—Cr/ yVR\de—Cr/ |Vé|* dx — Cr? / V| dH?
r By OB

O+ £y + 1M1 )7 (2.6)
Hence we obtain for 0 < r < min {1, dist(0, 89)},

i Cr? p—S/ P 2
dr{e r . (IVRP + V¢ )d:v}

zec’"zrp?*/ (pIVRIP~ 2\8R\2+2|%2) dH? + (p — 2)e" 1P~ 4/ IVo|* d
OB, aT‘
f r2
—C(1+ Iy + 1M7L ) 7
er_g/ (v RP2 28
OB,

SO+ By + M) (2.7)

0¢
+2|5|2) dH?
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Integrating from 0 < r; < ro < min{1,dist(0,09Q)}, we obtain that the following mono-
tonicity inequality:

ecrgrgp_?’/ (IVRP + |V4|?) dz + O}

Bry

> eCT%rlp?’/ (|VR\p + Vo) dx + Cr3

B 1
"2 OR 1))
p=3 RPP2|—*+ |+ |*) dH?d 2.8
e R AGTE G (28)
where C' > 0 depends on p, ||f|[z~(q), and [[M|/ze(q). This completes the proof of
(2.3). O

3. DIV-CURL STRUCTURE OF THE COSSERAT EQUATION (1.3)

This section is devoted to rewriting of the Cosserat equation (1.3)2 into a form where
the nonlinearity exhibits algebraic structures similar to that of p-harmonic maps into
symmetric manifolds given by Hélein [19] and Toro-Wang [21].

Let s0(3) be the Lie algebra of SO(3) or equivalently the tangent space of SO(3) at Is.
Recall that a standard orthonormal base of so(3) is given by

1 0 0 O 1 0 01 1 0 -1 0
agj=—=| 00 -1 |, aa=—7 0 00 ],a3=—7=| 1 0 O
V2 01 0 V2 -1 0 0 V2 0 0 O
For any R € SO(3),
{Vl(R) = alR, VQ(R) = agR, V3(R) = agR}
forms an orthonormal base of TRrSO(3), the tangent space of SO(3) at R.
From (1.3)2 we have that for i = 1,2, 3,
2 1
(div(|VR[P">VR), Vi(R)) = —5<v¢, Vi(R)) + ];(M, Vi(R)). (3.1)
For i = 1,2, 3, since a; is skew-symmetric, we have that
(IVRIP72VR,V(Vi(R))) = ([VR[P"2VR,a;VR) = 0.
Thus we can rewrite the Cosserat equation (1.3)2 as follows.
3
div(|[VRP2VR) = > " div(({[VRP">VR, Vi(R))Vi(R))
i=1
3
=Y [(div(IVRPPT>VR), Vi(R)) + ([VR[P >V R, V(Vi(R)))] Vi(R)
i=1
3
+>_(VRIP2VR, Vi(R)V(Vi(R)) (3:2)

=1

(= 2096, VitR) + SO VAR)) ViR + (VRP2VRVA(R) VIVi().

I
.M“

=1



COSSERAT ELASTICITY 9

From the above derivation, we see that for : = 1,2, 3,

div(([VRP VR, Vi(R))) = —~ (V6. Vi(R)) + ;<M, Vi(R)). (3.3)

2
p
Fori=1,2,3, let Y; : 2 — R solve the auxiliary equation

2 1
p o
so that
div({[VR|P">VR, V;(R)) + VY;) = 0. (3.5)
Putting (3.2), (3.3), (3.4), (3.5) together, we obtain an equivalent form of (1.3)s:
|

div(|VR|P"2VR)
3

({[IVRPZ2VR, Vi(R)) + VYi)V(Vi(R))
1

i
3

3
- S0 VYL VIR + Y (= S(V6,VilR) + 3 ML VR ViCR). (30
=1 =1

It is readily seen that as the leading order term of nonlinearity in the right hand side of the
equation (3.6), ({([VR[P2VR, V;(R))+VY;)V(V;(R)) is the inner product of a divergence
free vector field ((|[VR[P~2VR, V;(R)) + VY;) and a curl free vector field V(V;(R)).

4. €p-REGULARITY OF STATIONARY SOLUTIONS OF THE COSSERAT EQUATION

In this section, we will establish an eg-regularity estimate and a partial regularity of
stationary weak solutions of the Cosserat equation (1.3) and give a proof of Theorem 1.3.
The key ingredient is the following energy decay lemma, under the smallness condition.

Lemma 4.1. For any 2 < p < 3, i1 = fte = p2 = 1, f € L¥(Q,R3) and M <
L>(9,S0(3)), there ezist g > 0 and 0y € (0, 3) depending on p, £l oo (), and || M| Lo (q)
such that if (¢, R) is a stationary weak solution of the Cosserat equation (1.3), and satis-
fies, for x € Q and 0 < r < dist(x, 992),

rp?*/ (IVRPP + |V¢|*) dz < b, (4.1)
By (x)
then

(0P~ / (IVRP + |Vo[]?) da
BBOT(x)

1
< —max {rp_S/
2 B

Proof. We argue it by contradiction. Suppose that the conclusion were false. Then for
any L > 0 with || f|| e (q) + [| M| ooy < L and 6 € (0, 5), there exist ¢ — 0, x € €2, and
7. — 0 such that

(IVR]? + |V[?) da, rp}. (4.2)
)

r («T

r§‘3/ (IVR]P + |V¢[?) dz < €, (4.3)
Brk(xk)
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but

(Ory)P~? / (VRP + |Vo[?) da
Be'rk (xk)

> émax {ng/ (IVRP + |V¢|?) dz, ri}. (4.4)
Brk (g,

Define the rescaling maps

Then (¢, Ri) solves in By

Ady = ridiv(Ry) + e
div(|V R[>V Ry) = Zl<|VRk\p2VRk,Va(Rk))V(Va(Rk)) (4.5)
3 =
| —;Zl (20 (Vo Val(Bi)) — (M, V(R Vil Ry).
Moreover, it holds that
/ (VR + [Vor[?) do = rg?’/ (IVRP + |VP) de =, (4.6)
By By, ()

and

1
o [ (VR4 190P) do > gmax{ [ (VR VP de, ) @)
0 1

Now we define the blow-up sequence:

—~ Ry(z) — Ry,

Ry () = k(i)k 3

- o (z) — % Vx € By,

Fula) = 2 =0
62
k

_ 1 P
where f = — f denotes the average of f over By. Then (¢, Ry) solves, in By,

|B1| J g,
( —~ PP~ | -2
Ay =rpe, *div(Ry) + 5€; ° fr,

3
div(|VReP 2V Ry) = e > ([VRRIP>VRi, Vo (Bi))V(Va(Ry))

a=1

(Vor, Va(Ri)) — e P (M, Va(Ri))] Va(Re),

(4.8)
3

71 Z [27“,? 6116_

a=1

[MIS]
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satisfies
/ Ry dx =0, o dz =0, / (]VI/?\IC\”—HV@\Q) dr =1, (4.9)
B1 B1 B
and
p—3 o p -2 1 TZ
0 (IVRiP + [V |?) dz > §max{1, 7}. (4.10)
By k
In particular, we have
p —~
Q’; < 29P—3/ (IVRE|P + |Voy|?) du < 20P73. (4.11)
€k By
This implies that
rp < Ceg. (4.12)

We may assume that there exist ¢oo € H'(B1,R?), Ry, € WHP(B1,S0(3)) such that, after
passing to a subsequence,

(@7@) - (¢007Roo) in Hl(Bl) X Wl,p(Bl)v (@7}/%76) — (¢007Roo) in LQ(BI) X LP(BI)'
Then (¢oo, Roo) satisfies

b0 =0,

Roo =0,

/ (IVR|P + |Vooo|?) dz < 1.
B1

Moreover, it follows from (4.11) that

_bp _p pt2
Hek 2f’fHLoo(Bl) <C¢ *r.> <Crp—0,

lex " M| oo 5, < Ce, Prh < Cey — 0,
and
58 (B 5 2P -5 5
72 € le(Rk)HLP(Bl) + |2 e v¢kHL2(B1) < Ce¢ *rp < Ce — 0.

Hence, after sending k& — oo in the equation (4.8), we conclude that ¢, is a harmonic
function and R, is a p-harmonic function, i.e.,

Ao =0 - in B;. (4.13)
div(|V Roo|P "2V Ro) = 0,

Hence we have that for 0 < 8 < %,
0?3/ (IVRoo|? + |Voo|?) dz
By

< CH”(HVROOHPOO(B%) + HV‘JSOOHioo(B%))

< Cep/ ([VRso|P + |V¢oo|?) dz < COP. (4.14)
B1
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Next we need to show that (@,I/%;) converges strongly to (¢oo, Roo) in H 1(3% ) X
wWiP(B %), which is based on the duality between the Hardy space and the BMO space.
Let 1 : R? = R be a smooth cutoff function satisfying

0<n<1, =1 onB%7 n=0 on R?’\B%.
Then we have the following lemma, whose proof is based on the energy monotonicity

inequality (2.3) and is similar to that by [20] and [21]. Denote by BMO(R?) the space of
functions of bounded mean oscillations in R3.

Lemma 4.2. The sequence {U@}km is bounded in BMO(R3).

Proof. This is a well-known fact. We skip the details and refer the readers to either [20]
or [21] for a proof. O

Lemma 4.3. Vf?; converge strongly to VR, in LP(B1), and Vg/i); converge strongly to

Voo in LQ(Bi).

1
1

Proof. First notice that scalings of the equation (3.3) imply that for i = 1,2, 3,
. ~ o~ 2 212~ 14
div((|VRe[P~*V Ry, Vi(Ry))) = —57“15 €, 2 (Vor, Vi(R)) + 5611 P(My, Vi(Ry)). (4.15)

Asin (3.4), let Y} : By — R solve

P
2

; 2 b 1_ — 14 .
AY} = ];r,g e 2 (Vor, Vi(Ry)) — ];e}g P(My, Vi(Ry)) in By,

Yki =0 on 0B;.

(4.16)

It is easy to see that by W22-theory, Yki satisfies
. . p 1_p — _
IVl oo + V¥l 2y < Cries "IVl + Cen 1M 2 s,
2—p

D
< C(rfe,? +r£eifp) < Cey, (4.17)

where we have used (4.11) in the last step.
Adding the equations (4.15) and (4.16), we have that

div((|[VRx[P"2V Ry, Vi(Ry)) + VY) =0 in By, (4.18)

and the blowup equation (4.8)2 becomes

div(|VR, P2V Ry)
3
=,y ((IVRP>V Ry, Vi(Ry)) + VY{) - V(Vi(Ry))
=1
3 .

1 D o1_P _ in Bj. 4.19
23 b VB VilR) M ViR ViR o @19)
—ex Y VY- V(Vi(Ry))

\ i=1

—

Hj, := ((IVRiP 2V Ry, Vi(Ry)) + VY{) - V(Vi(Ry)).
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Then it follows from (4.18) that H}. € Hi (B), the local Hardy space (see [19] and [20]
for some basic properties of Hardy spaces). For any compact K C By and i = 1,2, 3, we

can use 5 < 25 < 2 and (4.17) to estimate
< VTP TR VAR + T, ey . [TV

1k 1 )
V(v Rmnm B)

< ClIV Btz + VYN oy ]
<C, Vk>1.

and
1E 1 gy < CIIVRRIY (5, + VYl et 5 IV (ViR o)

<C, Vk>1.
Assume / ndx #0. For i =1,2,3, set
R3

e = M’ VE > 1.
Jrs ndx

Then we have that
C, (4.20)

sup [0 (H, = 1) |31 sy < Cigrl) (k134 suppny + 1 Hllzr (1)) <

and
(4.21)

il < ClH L8y < C.

Observe that
div(|VRy P2V Ry, — |V Roo|’ >V Roo)

3 3
=y Hj—e,» VYi-V(Vi(Ry))
=1 =1

3
x [2r] & H{Vor Vi(Ry) — ¢ P(My, Vi(Ry))| Vi(Rg).

Multiplying this equation by 7? (é; — R..) and integrating it over R3, we obtain that
/ 2(|VRe[P 2V Ry, — [VRo|P 2V Reo) : V(Ry, — Reo) da
By
+ 2/ N(|VRRP 2V R, — |VRoo|P 2VRu) : V) ® (Ri — Roo) dz
1

— e [ VY (ViE) - B (R - Roc)da
B

1)) — ex P(My,, Vi(Re)) ] Vi(Ri)n?(Ry — Roo) dar.

p

P q_P —
+ - Z/ 2r7 e, > (Vop, Vi(R
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It is not hard to see that
/ 12|V Ry, — VRoo|P da
B

<c / DV RP2V Ry — |V Roo|? 2V Ro) || V|| Rk — Roo| d
B
+Cek\/ H,i-n2(1fz;—Roo)dm|+cek/ 2| VY|V Re| | Ry — Rool dz
B B1

P _b — o~
+C’/ [27"56,1 2]V¢k]—|—e,1€_p\MkH772]Rk—Roo]dx
B1
Since
IVRLP2VRy, — |[VRoo[P 2VRs in L7 1(B;), Ry — Re in LP(By),

we conclude that
1 r— 0.

For I11;, we have

11| < CekHVYkiHLG(Bl)HVRk”LQ(Bl)HRk — Reolln3(my)
< Cerl VYl ) IV Rel 25 | Rk — Roollza(my)
< C’ek — 0.

We can apply (4.11) to estimate IV}, by

\"@

)
P q_ — —_ o

1IVi] < Crie, 2||V€Z5lc||L2(Bl)||Rk—Roo”L?(Bl)‘FCTZEIIC PIIR — Reoll L1 (1)
p 2—

< Crie? || Ri- Roolli2(,) + Criey P Ri = Rooll 1y
< Cel|Ry, — Rosllz2(By) — 0.

While the most difficult term Il can be estimated by employing the duality between
HY(R3) and BMO(R?) as follows.

H Rk — )dx

B

- / n(HL — g yn(Fn — Roo) da + sl / (B — Roo) da
B1(0) B

= Vi + VI,

It is easy to estimate
VI < Clil [ |Ba~ Rl do < Clluscs,) [ 1R = Bocldi >0,
B1 B
We can apply Lemma 4.2 and (4.20) and (4.21) to estimate Vj, by

Vil = | /B n(H} — in(Br — Reo) de|
1

< Clln(HE = 1)y gy [19(Fr — Boo)llmatoes) < C-
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Therefore we obtain that
11| < Ce(|Vi| + [VIk]) < Cep — 0.
Putting all the estimates of Iy, Iy, 11y, IV} together, we arrive that
/ V(Br — Roo)P dz — 0.
B
1

Next, we are going to prove that

Vor — Voo in L*(By).
Since
- L 1-2 — 1 _2
—A¢p =rie, *div(Ry) + 5% 2fr in Bi,
and

*Agf)oo =0 in Bl,

multiplying both equations by n? (g/b; — 0o ), subtracting the resulting equations, and in-
tegrating over R3, we obtain that

/ IV (B — o) dar +2 / IV (% — boe) V(@ — Goo) di
B By

:/Bl[r

Since ¢p — doo and Voy — Voo in L2(B

ya
2

Tk

div(Er) + S E £ n2(n — éso) do.

1—
€L B

1 ), we conclude that
2 [ 9 = ) V(@ = ) da =01
1
Also, since

Bago 1ot
Hrkek le(Rk)+§6k kaL2<Bl)

—~ _p pf2
HVR]CH[;(B” +Ce. ?r.? <Ce — 0,

5 1
<Crie,

we conclude that

PP~ 1 -2 —
/B [r,ﬁ €, “div(Ry) + 56’“ 2]%}772(@ — ¢oo) dz — 0.
1
Thus we obtain that
/ V(65 — o) dz — 0.

1

4
This completes the proof of Lemma 4.3. 0

Now we return to the proof of Lemma 4.1. It follows from Lemma 4.3 and the estimate
(4.14) that for sufficiently large k£ > 1, it holds that

03 [ (VR + Vo) < O+ of1) < § max {1, F},
By F

provided that 0 < 6 < i is chosen to be sufficiently small. This contradicts to the assumed
inequality (4.10). Hence the proof of Lemma 4.1 is complete. O
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Next we apply Lemma 4.1 and the Marstrand Theorem to give a proof of Theorem 1.3.

Proof of Theorem 1.3. First, define the concentration set X of (¢, R) by
1
— 3"p — |i :> —_ b
z {x €| 0°P((¢,R),x) _}%Cossx((qS,R),r) > 260}.

Here Coss,, (((b, R), r) denotes the modified renormalized Cosserat energy of (¢, R) in B, ()
defined by (2.4), which is monotonically increasing with resepct to r > 0 by Corollary 2.2.
Hence the density function

O%P((9, R),x) = lim Coss (9, ), )

exists for any = € ) and is upper semicontinuous in 2. From a simple covering argument
(see [22]), we know that the (3 — p)-dimensional Hausdorff measure of ¥

H3P(X) = 0.
For any zg € Q\ ¥, there exists ro > 0 such that B,,(zo) C €, and

-3
Cossa, (9 R), 5) = ¢“8(2) /B (VRP +[VoP) do+ C(2) < e

2 (1)

o
2
holds for all x; € B%o (o).
Applying Lemma 4.1 repeatedly, we would obtain that there exists 6y € (0, 3) such that
@l [ (VR4 |V6P) da
B, 1

00T0

) o
<2 max {1} 3/3 (VRE 4 Vo) e (4.22)
ro (Zo 0

holds for all x; € B%o (xp) and [ > 1.
It follows from (4.22) that there exists ag € (0, 1) such that

rp—?’/B )(|VR\p+]qu|2)dx
r\T1

T\ pag p—3/ P 2 CTg
< (— max- T VR + 1|V dx,
< (5) {+ . o [VRP +1V6F) )

< C(eo)(%)m0 (4.23)

holds for all z; € B%o (vg) and 0 < r < %. Thus, by Morrey’s decay Lemma [22], we
conclude that (¢, R) € C’O‘O(B%o (z9)). Since

A¢ =div(R) + %f in By, (o),

the higher order regularity theory of Poisson equation implies that ¢ € C1*(B u (x0)).-
Since ¢ € Q\ ¥ is arbitrary, we obtain that (¢, R) € Ch*(Q\ ) x C%(Q\ ¥).
Next we will employ the Marstrand Theorem [23] to show that the singular set X is

discrete for 2 < p < 3. We argue it by contradiction. Suppose ¥ is not discrete. Then there
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exist a sequence of points {x;} C ¥ and ¢ € ¥ such that xp — xg. Set ry = |z — x| — 0
and define

(¢k7 Rkv fk7 Mk)(ﬂf) ( (z), R Tk‘ f, Tk )($0+Tk$)7 Y GBQ.

It is readily seen that (¢, Rk) is singular at 0 and yx = % € S%. Moreover, similar to
(4.5), (¢k, Ry) solves

(Agy = r2div(Re) + L fi.,
3
1 -2 = —2 . .
div(|V Ry |? VRk)_;<\VRk\p VR VilRi)V(Vi(Ry) B (424
3
23 [2rf (Vo VilRi) = (Mo V(R ViR
=1

It follows from the monotonicity inequality (2.3) for (¢, R) and the scaling argument that
(¢k, Ry;) also enjoys the following monotonicity inequality, i.e., for 0 < r; < ro <2

eo’"%rlf_g/ (|VRi|P + |Véi|?) dx + Cr3

1

T2 OR 6¢k
p—3 p—2 k 24
+/T r /8 (p|V Ry \ { \ )dH (4.25)

ka

< ecrgrg_3/ (IVRE|P + |Vy|?) dz + C’rg.

Br,

Moreover, for k > 1 sufficiently large,
i< 2 [ (VRS va o
B>
= (2r)P 3 / (IVR[P 4 |V¢|?) dx < C. (4.26)
Bar, (w0)

Hence

/ (|VRLP + |Véi|?) dz  is uniformly bounded above and below.
Bs

Then there exists (¢oo, Roo) € H'(B2,R?) x WHP(By, SO(3)) such that, after passing to
a subsequence,

(6p, Ri) = (¢oo, Roo) in  HY(By) x WHP(By).
Now we want to show

Claim 0. ¢oo s a harmonic function in Bs, and Ry is a p-harmonic map from Bs to
SO(3).

In fact, since

p
C(rZ IV Rl Lo sy + 1fxll oo (Bs))

)2
Cri (IVRillzo(my) + 1fll () < Crk -0,

IA

- 1
2 div(Re) + 5 Fell oy

IN
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after passing to the limit in (4.24) we have that A¢s, = 0 in By. For Ry, observe that
div(|V R, P2V Ry, Vi(Ry))
= (|VRi|P"2VRy, Vi(VR})) + (div(|[VR P72V R}), Vi(Ry))

P

1z
= —]*9(27";3 Vo — My, Vi(VRy)) := gi,

where we have used the skew-symmetry of V;, and the equation of Ry in the last step.
Observe that

4 Y4
HQkHH(BQ) <CO(ry ||v¢kHL2(B2) Ty HMHLOO(Q)) — 0,
we can apply the Div-Curl Lemma to conclude that
(VRLPT>V Ry, Vi(Bi))V(Vi(Ri)) = (VB[P >V Rog, Vi(Roo))V(Vi(Rc))
in L!(By). Hence by passing to the limit in the equation (4.24), we see that R solves
the equation
3
div(|VRooP >V Roo) = 3 (|VRoo|? >V Rao, Vi(Roo)) V(Vi(Reo)),

i=1

or equivalently R, is a p-harmonic map in Bs. This shows Claim 0.

Moreover, it follows from the lower semicontinuity and the monotonicity inequality
(4.25) that for any 0 < s < 2, it holds

2
/ rp_3/ (PIV R [P~?| Oftce |+ |a¢°° %) dH?dr = 0,
s OB, or

or
this follows from the fact that for any fixed 0 < s < 2,

608251’—3/ (IVRiP + |Vor?) dz + Cs* — ©°7P((¢, R),x0), as k — oco.
Bs

Therefore we must have that
0o ORso,
((97“ " Or ) =10, 0),

or equivalently (¢oo, Roo) is homogeneous of degree zero:
x x
(gboo(m),Roo(:n)) = (gboo(m),Roo(m)), T € Bs. (4.27)

Since ¢oo is a smooth harmonic function with homogeneous degree zero, it follows that
¢ is a constant.

Next we need to show
Claim 1.

(61, Ri) — (oo, Roo) in H'(B1) x WHP(By).
Assume the claim for the moment. Then it follows from (4.26) and ¢, = constant
that Ry : By — SO(3) is a nontrivial stationary p-harmonic map, which has at least two
singular points 0 and 35, € S? given by

The singular set of R, contains the line segement [0ys] so that H'(Sing(Rs)) > 0, which
is impossible. Thus ¥ is a discrete set.
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Finally, we would like to apply Marstrand theorem to prove Claim 1. To do it, we
consider a sequence of Radon measures
pe = (|VRy[P + [Vr[*) da.

Since py(Bs2) is uniformly bounded, we may assume that there is a nonnegative Radon
measure p in By such that after passing to a subsequence,

M —
as convergence of Radon measures. By Fatou’s lemma, we can decompose u into
= (VR + [Vooo|") dz + v
for a nonnegative Radon measure v, called a defect measure. The monotonicity inequality
(4.25) for (¢r, Ry) implies that p is a monotone measure in the following sense: for x € By,
0 <r <ry<dist(x,0Bs),
P (Bry (@) + O} < PRy (B, (@) + O
In particular, for any = € By, the density function

O P (p, x) = lim "> (B, (x))
r—0

exists and is upper semicontinuous in Bj. Define the concentration set

S = m {1‘ € By ‘ likrgiolgfrp?’/B

1
(IVRk|P + |Vér|?) dz > 2615} .
r>0

r(T
We claim that S is a closed subset of B;. In fact, let {x}} be a sequence of points in S
such that xp — zo € By. If 2o € S, then there exists ryp > 0 and §y > 0 such that for
k > 1 sufficiently large it holds that

_ 1
[ (VR VP do < o
BTQ(J;O

Taking k large enough so that |z, —xg| < 3 and applying the monotonicity inequality to
each (¢, Ry), we have

T ) 3
O (20)P7 / (VR + [Voul?) dw+ O ()
2 Brg (z, ?

< Ct0—l=a0)? (1) |y — g3 / (VR + [Véul?) da
Brof\zkfzm Tk

+ C (('f‘o — \mk — l‘o’)g

< Clolm (T [ TR V) de
- ((To—\iﬂk—xo!)) 0 Byy (20 ’ k| | k| )
+C ((ro — |z — x0))®
2 T 3—p, 1
< 0((7”0 - |x2 — xo|)) p(§€g — 80) + C ((ro = |k — o))

< =é,

1
2
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provided that k large enough and 7 is chosen sufficiently small. This contradicts to the
fact x;, € S. Hence S is a closed subset.
Suppose z, € By \ S. Then there exists r, > 0 such that

1
lim inf 7~ / (VR + [Vonl?) da < ~eb.
k—o00 By, (zx) 2

Applying the eg-regularity Theorem 1.3, we may conclude that after passing to another
subsequence,

Ry — Roe in CL.NWIP(B\ S),

loc
and
¢p — Row in CL.NHL.(B\S).

If we denote by Sing(¢oo, Roo) the set of discontinuity of (¢eo, Reo), and supp(v) the
support of the defect measure v. Then the above convergence implies that

Sing(¢eo, Reo) Usupp(v) C S.
On the other hand, if £ € S, then after sending & — oo, we have that

p(Br(2) 1,
> > 560, vr > 0.

If Z & Sing(poo, Reo), then (¢oo, Reo) is regular near & and hence for r sufficiently small,

1
rp—3/ (VReel? + VP < e

(%)
this implies that for small r > 0,

v(Br() (1,
e > —€0s

and hence Z € supp(v). Therefore, we conclude that

Lemma 4.4.
Sing(¢oo, Reo) Usupp(v) = S.

Notice that if z € S, then
0% P(u, x) = lim 73 Pu(B,(x)) > leg.
r—0 2
Moreover, for any compact subset K CC By, and any x € SN K,

1 _ _
568 <O P(p,z) <l Su(By) < rhe °Fo,

where rx = 3dist(K,0B2) > 0, and Ey = sup/ (IVRE|P + |Vr|?) dz. Recall that by
k B2
Federer-Ziemer theorem (see [22])

r—0

lim rp?’/ (IVRoo|” + [Veoo|?) dy = 0
By (x)

holds for H3P a.e. € By. Thus we obtain that
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Lemma 4.5. For any compact K C By, if vt € SN K, then
1
568 <O P(u,x) < C(K) < oo,

For H3P gq.e. x € S,
037 P(u, x) = ©37P(v, x).
It follows from Lemma 4.5 and standard covering arguments that for any compact set
K C B
PHPP(SNK) <v(SNK) < CHP(SNK).
Therefore,
v(S) =0 < H3P(S)=0.

In particular, we have that

Lemma 4.6. (¢, Ri) + (¢oo, Reo) strongly in H'(B1)x WYP(By) if and only if v(By) > 0
if and only if H3~P(S) > 0.

Return to the proof of Claim 1. For 2 < p < 3, if
(6k: Bi) = ($o0; Roo) in H'(B1) x W2 (By),

loc

then by Lemma 4.6, we must have #37P(S) > 0. Hence by Lemma 4.4 we have for H3~P
a.e. x € S,

0< O P(y,z) < co.

Now we recall the following theorem due to Marstrand [23].

Theorem 4.7. Let s be a positive number. Suppose that U is a Radon measure on R™ such
that the density ©°(V,a) exists and is positive and finite in a set S of positive U measure.
Then s is an integer.

Applying Theorem 4.7 to s =3 —p, v = v and S = S, we conclude that 3 — p must
be an integer. This is impossible. Hence Claim 1 is true. This completes the proof of
Theorem 1.3. U

5. STABLE-STATIONARY SOLUTIONS OF THE COSSERAT EQUATION

This section is devoted to the proof of Theorem 1.5. More precisely, we will show that
if (¢, R) is a stable stationary solution to the Cosserat equation (1.3). Then the singular
set is empty for p belonging to the range [2, %]

It is well-known that S? is the universal cover of SO(3), and we can choose a matrix
norm on SO(3) such that S? is locally isometric to SO(3). In fact, a canonical, locally

isometric 2-to-1 covering map 7 : S* — SO(3) is given by

1—2y%—222 22y — 22w 2r2 + 2yw
m(w,x,y,z) = 20y +2zw 1 —222 —222  2yz — 22w , V(w,z,y,2) € S5
2wz — 2yw 2z +2zw 1 — 222 — 292

In particular, the curvature operator of SO(3), Rgo(3), satisfies

(Rso) (v, w)v,w) = [v|w]* = (v,w)?, v,w € TRSO(3).
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For (¢, R) € H'(Q,R3) x WP(Q,S0(3)), let

(¢t7 Rt) € Cz((_57 6)7 Hl (Qv Rd) X WLP(Q7 80(3)))
be a family of variations of (¢, R). Denote by

d . d?
n= £|t:0¢ta n= @h:ocﬁt,
and
_OR,, . _ OR,
v= W‘t:o’ v= v%ﬁ’tzo‘

Applying the equation (1.3) for (¢, R) and direct calculations as in Smith [12], we obtain
that

d2
p7el ‘tZOCoss(gbt, Ry)

d2
= 2o /Q (IVil* = 2(Re, Vo) + VR + (¢ — 2) - f + (Re, M) der

= / (2|Vn? = 4(v, V) + p|VRPP2(|Vv]? — tr(Rsos) (v, VR)v, VR))
)
+p(p — 2)|VRPP"HVR, Vv)?) dz
= / (2[Vn? = 4(v, Vi) + p|VRPP72(|Vo]* — [V R[*|0]?)
Q

+p(p — 2)|[VRPP"H VR, Vv)?) dx
holds for any n € H} (2, R3) and v € H} N L>®(Q, TrRSO(3)).
Definition 5.1. For 2 < p < 3, 1 = fie = po = 1, f € L®(Q,R3) and M €

L>(92,50(3)), a stationary weak solution (¢, R) of the Cosserat equation (1.3) is called a
stable, stationary weak solution of the Cosserat equation (1.3) if, in addition,

d2
@L:OCOSS(@, R) >0,

or, equivalently,
/ (2IVnl* — 4(v, Vi) + p|VRP72(|Vol? — [V R[*|v]?)
Q

+p(p — 2)|VRIP"H VR, Vv)?) dz >0 (5.1)
holds for any n € C§°(Q,R?) and v € H (9, TrSO(3)).

Lemma 5.2. For2<p <3, uy = pic = pg = 1, f € L=(,R3) and M € L*>(Q,S0(3)),
if (¢, R) is a stable, stationary weak solution of the Cosserat equation (1.3), then

3
/ (6]Vew]* =4) w(aiR, Vw®e') +p(p+ 1)|VRIP?|V|* = 2p|VRIP[*) dee > 0 (5.2)
@ i=1
holds for any w € C§°() and v € C°(SY). Here (el,e?,e3) is the standard base of R3.
In particular,

[ @+ DIVRP S0 ~ 2T RPIO) do > 0 (5.3)
Q
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holds for any ¢ € C3°(Q).

Proof. 1t is readily seen that (5.3) follows immediately from (5.2) by taking w = 0. Thus
it suffices to show (5.2). For any w € C§°(Q2) and ¢ € C3°(R2), let n = we* and v = Ya; R
and substitute them into (5.1) and then take summation over i = 1,2,3 | we obtain that

3 3 3
| @ IV@e)E =43 vl Vw @ el + plp = 2IVRI S (VR V(vaiR)?
=1

Observe that

and

i=1 =1
3
+p| VR (IV($a;R)|* — |VRP[pa,R|?)) dz > 0. (5.4)
=1
3 3 3
STVR V(paiR)? = [ Vit(V,R,a;R) +9(VR,a;VR)]’

1= =1 j=1

1
3
=Y (V$- VR aR)’ = V¢ - VR < [V | VRP,
i=1

3 3
D O IV(we')? =3|Vwl?, > |VRP|vaR* = 3|VR[[y)%,

=1 =1

3

> IV(vaR)?

=1

3 3 3
= Vo) |aiR* +2¢Vy Y (aiR,a;VR) + [¢* ) (a;VR,a;VR)
i=1 =1 i=1

3
= 3|Vy|* + Y Vytr(RTa] a,VR + VR a] a;R) + |[¢*tr(VRTVR(D _ a] a;))
=1

3
= 3|Vy|> + ¢Vytr[(R"VR + VR R)(a] a;)] + [¢[*tr(VR'VR() _a] a;))
=1
= 3|Vy|* + [VR[[y[?,

where we have used

. 11 . 1 1 . 11
a{al = diag(0, 2 5), agag = diag(=,0, =), agag = dlag(i, 2’ 0),

2" 2
and
(R,a;VR) =0, RIVR+VR'R=0.
Plugging these identities into (5.4), we obtain (5.2). O

Now we can extend the partial regularity theorem for stationary weak solutions of
the Cosserat euqation (1.3) obtained in the previous section to the class of stable weak
solutions of the Cosserat euqation (1.3). First, we consider Theorem 1.5 in the case that
p = 2. Namely, we will show that
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Theorem 5.3. For f € L¥(Q,R3) and M € L*>®(Q,50(3)), and p1 = pe = p2 = 1,
assume that (¢, R) € H'(,R3) x HY(Q,S0(3)) is a stable, stationary weak solution of
the Cosserat equation (1.3) for p = 2. Then (¢, R) € C1¥(Q,R3) x C*(,SO(3)) for some
aec(0,1).

Proof. From the small energy regularity theorem obtained in the previous section, we
know that there exists a closed singular set ¥ C Q, with H!(X) = 0, such that (¢, R) €
CLo(Q\ X) x C*(Q\ X) for some 0 < o < 1.

Now we want to show X = (). For, otherwise, there exists ¢y € X such that

0Y((¢, R),z0) = gigrl/B ( )(|VR]2 +|Vo|?) dx > €2 > 0.
r(Zo

For any sequence of radius r; | 0, define the blow up sequence

(i, Ris fis Mi) () = (&, R, 77 f,ri M) (w0 + riz), Va € B,
Then
lim 2—1/ (IVRi|> + |V¢i|*) dz = ©'((¢, R), x0) > €2.

11— 00 Bo

Thus there exists (¢, Ro) € H'(B2,R3) x H'(Bs,SO(3)) such that after passing to a
subsequence,

(i, i) = (60, Ro) in H' (B, R?) x H'(B,50(3)).
Since (¢;, R;) satisfies

AR; + qubi — %MZ 1 TRiSO(3)7
it follows the same argument as in Claim 0 that after sending ¢ — 00, ¢g is a harmonic
function and Ry is a harmonic map into SO(3) in Bs. We now need
Claim 2: (gﬁz, Rl) — (¢0, Ro) in Hl(B17R3) X Hl(Bl, 80(3))

We will apply the technique of potential theory by Hong-Wang [17] and Lin-Wang [18]
to prove this claim. Let v > 0 be a Radon measure in By such that
i = (VR + [Veu[2) do — = (IVRo[2 + [Vol?) da + v

as convergence of measures in By. It suffices to show v = 0 in By. Notice that (¢;, R;),
solving (5.5), is indeed a stationary weak solution of the Euler-Lagrange equation of critical
point of the Cosserart energy functional

E(G.R) = [ (VRE+|VOP - 2ri(RV0) + (G~ ) - i+ (R M) da,
Ba

In particular, the ep-regularity theorem is applicable to (¢;, R;) and we conclude that if

we define

s =N {y € Bs: lim ! (VR + [V |?) da > 63}
’ Br(y)

1—00
r>0

_ . 1 1 —1 2
= {yGBg- O (p,y) = limr M(Br(y))ZEO}-

Then the following statements hold:
(i) S is closed with H1(S) < oo, supp(v) C S and ©'(v,y) = O (u,y) > €3 for H! a.e.
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yeS.
ii) There exists a € (0,1) such that

(¢i, Ri) = (¢0, Ro) in (Cjg. N Hﬁ)c)(Bg \'S).
(iif)
C1(eo)HY(S) < v(Bg) < Ca(eg)HY(S).

In particular, v = 0 if and only if #1(S) = 0. It follows from H!(S) < +oo that Caps(S) =
0. Hence for any ¢ > 0, there exists ws € C5°(B2) such that

S Cint({ws = 1}),

and
/ |Vws|? dz < 6. (5.6)
Bs

Hence for any a € S, there exists 0 < 74 < 62 such that
1
ws > 5 on B, (a).
From the compactness of & and Vitali’s covering lemma, there exist 1 < [ < oo and
{am}t,_; C S such that {BTaTm (am)} _, are mutually disjoint, and

l
Sc | B, (am).

m=1

From the definition of S, there exists a sufficiently large i; > 0 such that

2
?s@ﬁ*/ (VR + |V¢i*) da, Vi > iy, m=1,--- 1. (5.7)
Bray, (am)

By the Wh9-estimate on ¢, we know that
Vol ey < Clg, K)

holds for any compact set K € 2 and 1 < g < co. Hence for any i >, and m=1,--- ,1,
it follows from Hélder’s inequality that
(Tam)_l/ Véi|* da < C(nram)‘l/ V6|2 dx
5 BM (am) Brﬂ"am (330+7’iam)

_6 1
< C(@)(rir,)” " <003 < 56,

2
€5\ 2
provided we choose ¢ = 12 and ¢ < (%) 3 in the last step. Substituting this estimate

into (5.7), we obtain that

1 A \ — S
ZE%S (T5m) 1/ |VRZ|2d:Ea Vi > iy, m=1,--- Nz (58)
BM(QM)




26 YIMEI LI, CHANGYOU WANG

Therefore for all ¢ > 4;, we can bound

l l
Ha(S) < C Z Fap, = 5C Z e
=1

2
< OCZ IVR;|* dz
Bram (am)
< g |V R;|*w? dx
€ uinlememm)
< Y[ \9R (5.9)
60 Bs

It follows from the stability of (¢, R) and a scaling argument that R; satisfies the stability
inequality (5.3) so that

/ IVR;|*wi dx < 3/ \Vws|? dz, Vi > . (5.10)
B2 2 B>

Plugging (5.10) into (5.9) and applying (5.6), we would obtain that
Hia(S) < COfe)d.

This, after sending § — 0, would yield #'(S) = 0 and hence Claim 2 is true.
It follows from the H'-strong convergence of (¢, R;) to (¢o, Ro) and the energy mono-
tonicity inequality (2.8), we conclude that

(¢0, Ro)(z) = (¢0,Ro)( ), Vx € B,

is homogeneous of degree zero. Since ¢g is a harmonic function in Bs, it follows that ¢
is a constant. Thus

/ Vs Rl dH? = ©1((6, R), w0) > €2,

and Ry € C*(S?,50(3)) is a nontrivial harmonic map. Since I, (S?) = {0}, it follows
that there exists a nontrivial harmonic map Ro € O=(S?, 83) such that Rg = wo R(]

Moreover, it follows from the stability inequality (5.1) that Ro is a stable harmonic map
from S? to S3, i.e.

/ (Weswl® — [VRolw|?) dH? > 0 (5.11)
SQ

for any w € C*(S?, T S3). However it follows from Schoen-Uhlenbeck [14] that there is

no nontrivial stable harmonic map from S? to S®. We get a desired contradiction. Thus
the singular set ¥ of (¢, R) is empty. O

Theorem 1.5 for the cases that p > 2 can be summarized into the following theorem.

Theorem 5.4. For f € L>®(Q,R3) and M € L*>(Q,S0(3)), and pu1 = pe = p2 = 1, if
€ (2, i’g] and (¢, R) € H'(Q,R3) x WHP(Q,S0(3)) is a stable, stationary weak solution
of the Cosserat equation (1.3), then there exists a € (0,1) such that (¢, R) € CH*(,R3) x

C(Q,S0(3)).
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Proof. Tt follows from 2 < p < 3 and Theorem 1.3 that Sing(¢, R) is discrete. Suppose
Sing(¢, R) # (. Then there exist xg € Sing(¢, R) and ro > 0 such that Sing(¢4, R) N
B,y (zg) = {xo}. For ry — 0, define (¢, Ri)(x) = (¢, R)(zg + rix) for z € By. As in
the proof of Theorem 1.3, we can apply the monotonicity inequality (2.3), Lemma 4.1,
and Marstrand theorem to show that there exists a nontrivial (¢g, Ry) € H'(B1,R3) x
WP(By,S0(3)) such that, after passing to a subsequence, (¢, R2) — (¢o, Ro) strongly
in H'(B1,R3) x WLP(B1,50(3)). Hence (¢o, Ro) is of homogeneous degree zero, ¢q is
constant and Ry € C1%(B;\{0},SO(3)) is a nontrivial, stable, stationary p-harmonic map.
However, it follows from the stability Lemma 6.3 and Proposition 6.4 in Gastel [8] that for
p € (2,32), any stable stationary p-harmonic map R(z) = R(%) € CH(By \ {0},50(3))

||
must be constant. We get a desired contradiction. Hence Sing(¢, R) = () when p € (2, %]
This completes the proof. O

Finally we would like to point out that Theorem 1.5 follows from Theorem 5.3 and
Theorem 5.4.
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