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Abstract. In this paper, we consider weak solutions of the Euler-Lagrange equation to
a variational energy functional modeling the geometrically nonlinear Cosserat micropolar
elasticity of continua in dimension three, which is a system coupling between the Poisson
equation and the equation of p-harmonic maps (2 ≤ p ≤ 3). We show that if a weak
solutions is stationary, then its singular set is discrete for 2 < p < 3 and has zero 1-
dimensional Hausdorff measure for p = 2. If, in addition, it is a stable-stationary weak
solution, then it is regular everywhere when p ∈ [2, 32

15
].

1. Introduction

General continuum models involving independent rotations were introduced by the Eu-
gene and Francois Cosserat brothers in 1909 [1], and were later rediscovered in 1960’s (see
Eringen [2]). The micromorphic balance equations were derived by Eringen [2]. The major
difficulty of mathematical treatment in the finite strain case comes from the geometrically
exact formulation of the theory and the appearance of nonlinear manifolds that are nec-
essary to describe the microstructure. The geometrically nonlinear Cosserat framework is
also encountered in the modeling of thin-structures [5]. Among many variants and vast
body of results of Cosserat theory available in the literature, P. Neff [3, 4, 7] has made some
systematical analysis of the Cosserat theory for micropolar elastic bodies by establishing
the existence of minimizers in the framework of calculus of variations. Very recently, in
an interesting article [8], Gastel has shown a partial regularity theorem of minimizer of a
Cosserat energy functional for microplar elastic bodies.

The elastic body Ω ⊂ R3 is assumed to be a bounded Lipschitz domain. The elastic
body can be deformed by a translation mapping φ : Ω → R3, and φ(x) − x denotes the
displacement of the point x ∈ Ω. Furthermore, the micropolar structure of the material
associates each point x ∈ Ω with an orthonormal frame that is free to rotate in R3 by an
orthogonal matrix R(x) ∈ SO(3). Both translations and rotations induce material stresses
that are given by Rt∇φ − I3 and Rt∇R respectively. We point out that since RTCurlR
is isomorphic to RT∇R (cf. [6]), it seems possible to measure the material stress induced
by rotation by RTCurlR. The Cosserat energy functional stored in the elastic body Ω
consists of the contributions by both translations and rotations. For a pair of translation
and rotation maps (φ,R) : Ω→ R3 × SO(3), the contribution of rotational stresses to the
Cosserat energy is given by

lc

∫
Ω
|Rt∇R|p dx (= lc

∫
Ω
|∇R|p dx)

1
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for some lc > 0 and 2 ≤ p ≤ 3, while the contribution of translational stresses is given by∫
Ω

∣∣P(Rt∇φ− I3)
∣∣2 dx,

where P : R3×3 → R3×3 is the linear map defined by

P(A) =
√
µ devsym A+

√
µc skew A+

√
µ2

3
(trA)I3, A ∈ R3×3,

and

devsym A =
1

2
(A+At)− 1

3
(trA)I3, skew A =

1

2
(A−At),

denotes the deviatoric symmetric part of A and the skew-symmetric part of A respectively.
The constants µ > 0, µc ≥ 0, and µ2 represent the shear modulus, the Cosserat couple
modulus, and the bulk modulus for isotropic response.

The elastic body Ω may be subject to external forces, such as gravity or electromagnetic
forces, that can be modeled by∫

Ω
〈φ− x, f〉 dx+

∫
Ω
〈R,M〉 dx,

where f : Ω → R3 stands for the potential of external volume forces applied to the
displacement of the material and M : Ω→ R3×3 is a matrix-valued function representing
the role of the potential of external volume couples applied to the microscopic rotation of
the material, both of which are assumed to be given in this paper.

Collecting together all these terms, the Cosserat energy functional1 is given by

Coss(φ,R) =

∫
Ω

(
|P(Rt∇φ− I3)|2 + |∇R|p + 〈φ− x, f〉+ 〈R,M〉

)
dx. (1.1)

Recall that (φ,R) ∈ H1(Ω,R3) ×W 1,p(Ω, SO(3)) is a minimizer of the Cosserat energy
functional, if

Coss(φ,R) ≤ Coss(φ̃, R̃),

holds for any (φ̃, R̃) ∈ H1(Ω,R3) ×W 1,p(Ω,SO(3)) that belongs to the same class of de-

formation configurations (for example, (φ̃, R̃) = (φ,R) on a given part Γ ⊂ ∂Ω, while

there is no restriction imposed on (φ̃, R̃) over the free boundary portion ∂Ω \ Γ ). The
existence of minimizers of Coss(φ,R) in the Sobolev spaces, under various boundary con-
ditions including either the Dirichlet or some other natural mixed boundary conditions,
has been obtained by Neff [4]. We point out that since we only consider the interior partial
regularity of certain weak solutions of the Cosserat equation, the boundary condition does
not play a role in this analysis. By direct calculations, any minimizer (φ,R) of Coss(φ,R)
solves the Euler-Lagrange equation, called as the Cosserat equation:{

div
(
RPtP(Rt∇φ− I3)

)
= 1

2f,{
div(|∇R|p−2∇R)− 2

p∇φ
(
PtP(Rt∇φ− I3)

)t − 1
pM
}
⊥ TRSO(3).

(1.2)

1We may consider a more general Cosserat energy functional by replacing the translational material
stress density |P(Rt∇φ− I3)|2 in (1.1) by a non-Hilbert type form |P(Rt∇φ− I3)|q for some 2 ≤ q ≤ p ≤ 3.
It seems possible that the arguments in this paper can be extended to show the main results remain to
be true for all 2 ≤ q ≤ p. However, to make this paper slightly less technical we only consider the power
q = 2 for the translational material stress density function.



COSSERAT ELASTICITY 3

Here TRSO(3) denotes the tangent space of SO(3), at R ∈ SO(3), that is given by

TRSO(3) =
{
X ∈ R3×3

∣∣ RtX +XtR = 0
}
,

and Pt : R3×3 → R3×3 is the adjoint map of P.
When µ1 = µ2 = µc = 1, we have that P = Pt = Id is the identity map. Hence

|P(Rt∇φ− I3)|2 = |∇φ|2 − 2〈R,∇φ〉+ 3,

and the Cosserat equation (1.2) reduces to the following simplified form:{
∆φ = divR+ 1

2f,(
div(|∇R|p−2∇R) + 2

p∇φ−
1
pM
)
⊥ TRSO(3).

(1.3)

We would like to remark that the system (1.2) and (1.3) are systems coupling between
the Poisson equation for the macroscopic translational deformation variable φ : Ω → R3

and the (nonlinear) p-harmonic map equation for the microscopic rotational deformation
variable R : Ω→ SO(3).

By extending the techniques in the study of minimizing p-harmonic maps by Schoen-
Uhlenbeck [13], Hardt-Lin [9], Fuchs [10], and especially Luckhaus [11], Gastel has recently
shown in an interesting article [8] that any minimizer (φ,R) ∈ H1(Ω,R3)×W 1,p(Ω, SO(3))
of the Cosserat energy functional Coss(φ,R) of the Cosserat functional (1.1) belongs to
C1,α×Cα in Ω away from a singular set Σ of isolated points for all 2 ≤ p < 3. Moreover, Σ
is shown to be an empty set when p ∈ [2, 32

15 ] by extending stability inequality arguments
by Schoen-Uhlenbeck [14], Xin-Yang [15], and Chang-Chen-Wei [16].

An interesting question to ask is whether the regularity result on minimizers of the
Cosserat functional in [8] remains to hold for certain classes of weak solutions to the
Cosserat equation (1.2). In this paper, we will answer this question affirmatively. To
address it, we first need to introduce a few definitions.

For 1 ≤ p <∞, recall the Sobolev space

W 1,p
(
Ω, SO(3)

)
=
{
R ∈W 1,p(Ω,R3×3)

∣∣ R(x) ∈ SO(3), a.e. x ∈ Ω
}
.

Definition 1.1. For 2 ≤ p ≤ 3, given f ∈ H−1(Ω,R3) and M ∈W−1, p
p−1 (Ω,R3×3), a pair

of maps (φ,R) ∈ H1(Ω,R3)×W 1,p(Ω,SO(3)) is a weak solution to the Cosserat equation
(1.2), if it satisfies (1.2) in the sense of distributions, i.e.,

∫
Ω

(〈P(Rt∇φ− I3),PRt∇ψ1〉+
1

2
〈f, ψ1〉) dx = 0,∫

Ω

(
〈|∇R|p−2∇R,∇ψ2〉+

2

p
〈P(Rt∇φ− I3),Pψt2∇φ〉+

1

p
〈M,ψ2〉

)
dx = 0,

hold for any ψ1 ∈ H1
0 (Ω,R3) and ψ2 ∈W 1,p

0 (Ω, TRSO(3)) ∩ L∞(Ω,R3×3).

It is readily seen that any minimizer (φ,R) of the Cosserat energy functional (1.1) is a
weak solution of the Cosserat equation (1.2). A restricted class of weak solutions of (1.2)
is the class of stationary weak solutions, which is defined as follows.

Definition 1.2. For 2 ≤ p ≤ 3, f ∈ H−1(Ω,R3), and M ∈ W−1, p
p−1 (Ω,R3×3), a weak

solution (φ,R) ∈ H1(Ω,R3) ×W 1,p(Ω, SO(3)) to the Cosserat equation (1.2) is called a
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stationary weak solution, if, in addition, (φ,R) is a critical point of the Cosserat energy
functional (1.1) with respect to the domain variations, i.e,

d

dt

∣∣∣
t=0

Coss(φt, Rt) = 0, (1.4)

where (φt(x), Rt(x)) = (φ(x+ tY (x)), R(x+ tY (x))) for x ∈ Ω, and Y ∈ C∞0 (Ω,R3).

It is easy to check that any minimizer (φ,R) of the Cosserat energy functional (1.1)
is a stationary weak solution of the Cosserat equation (1.2). It can also be shown by a
Pohozaev argument that any regular solution (φ,R) ∈ C1,α(Ω,R3×SO(3)) of the Cosserat
equation (1.2) is a stationary weak solution.

In section 2 below, we will show that when µ1 = µc = µ2 = 1, any stationary weak
solution (φ,R) of Cosserat equation (1.3) satisfies the following stationarity identity: for
any Y ∈ C∞0 (Ω,R3), it holds that∫

Ω

(
|∇φ|2 − 2〈R,∇φ〉+ |∇R|p

)
(−divY ) dx+

∫
Ω

(〈f, Y · ∇φ〉+ 〈M,Y · ∇R〉) dx

+

∫
Ω

(
2∇φ⊗∇φ : ∇Y − 2Rij

∂φi

∂xk

∂Y k

∂xj
+ p|∇R|p−2∇R⊗∇R : ∇Y

)
dx = 0. (1.5)

As a direct consequence of (1.5), we will establish an almost energy monotonicity inequality
for stationary weak solutions to (1.3) when µ1 = µc = µ2 = 1 holds. This, combined with
the symmetry of SO(3), enables us to extend the compensated regularity technique by
Hélein [19], Evans [20], and Toro-Wang [21] to show the following partial regularity.

Theorem 1.3. For 2 ≤ p < 3, f ∈ L∞(Ω,R3) and M ∈ L∞(Ω,R3×3), if (φ,R) ∈
H1(Ω,R3)×W 1,p(Ω,SO(3)) is a stationary weak solution to the Cosserat equation (1.3),
then there exist α ∈ (0, 1) and a closed set Σ ⊂ Ω such that (φ,R) ∈ C1,α(Ω \ Σ,R3) ×
Cα(Ω \ Σ,SO(3)). Here Σ is a discrete set when p ∈ (2, 3), and has zero 1-dimensional
Hausdorff measure when p = 2.

We would like to point out that the discreteness of singular set Σ for 2 < p < 3
is a corollary of H1 ×W 1,p-compactness property of weakly convergent stationary weak
solutions of the Cosserat equation (1.3), which is a consequence of monotonicity inequality
(2.3) and the Marstrand Theorem (see [23]).

To further improve the estimate of the singular set Σ for a stationary weak solution
(φ,R) of the Cosserat equation (1.2) both for p = 2 and 2 < p < 3, we restrict our
attention to a subclass of stationary weak solutions that are stable.

Definition 1.4. For 2 ≤ p < 3, f ∈ H−1(Ω,R3), and M ∈ W−1, p
p−1 (Ω,R3×3), a weak

solution (φ,R) ∈ H1(Ω,R3) ×W 1,p(Ω, SO(3)) to the Cosserat equation (1.2) is called a
stable weak solution, if, in addition, the second order variation of the Cosserat energy
functional at (φ,R) is nonnegative, i.e.,

d2

dt2

∣∣∣
t=0

Coss(φt, Rt) ≥ 0, (1.6)

where (φt, Rt) ∈ C2
(
(−δ, δ), H1(Ω,R3) × W 1,p(Ω, SO(3))

)
for some δ > 0, satisfying

(φ0, R0) = (φ,R), is a variation of (φ,R) in the target space R3 × SO(3).
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From the definition, any minimizer (φ,R) ∈ H1(Ω,R3)×W 1,p(Ω,SO(3)) of the Cosserat
energy functional Coss(·, ·) is a stable weak solution of the Cosserat equation (1.2).

In section 3, we will establish in the stability Lemma 3.2 that any stable weak solutions
(φ,R) of Cosserat equation satisfies the following stability inequality:∫

Ω

(
(p+ 1)|∇R|p−2|∇ψ|2 − 2|∇R|p|ψ|2

)
dx ≥ 0, ∀ψ ∈ C∞0 (Ω). (1.7)

Utilizing the stability inequality (1.7), we can extend the ideas by Hong-Wang [17] and
Lin-Wang [18] to establish a pre-compactness property of stable-stationary weak solutions
of the Cosserat equation for p = 2, which can be employed to improve the estimate of
singular set Σ. Moreover, by applying the non-existence theorem on stable p-harmonic
maps from S2 to SO(3) for p ∈ [2, 32

15 ] that was established by Schoen-Uhlenbeck [14],
Xin-Yang [15], and Chang-Chen-Wei [16], we prove a complete regularity result for stable
stationary weak solutions to the Cosserat equation (1.3) when p belongs to the range
[2, 32

15 ]. More precisely, we have

Theorem 1.5. For p ∈ [2, 32
15 ], f ∈ L∞(Ω,R3), and M ∈ L∞(Ω,R3×3), if (φ,R) ∈

H1(Ω,R3)×W 1,p(Ω, SO(3)) is a stable stationary weak solution to the Cosserat equation
(1.3), then there exists α ∈ (0, 1) such that (φ,R) ∈ C1,α(Ω,R3)× Cα(Ω,SO(3)).

Now we would like to mention a couple of questions.

Remark 1.6. 1) It remains to be an open question whether Theorem 1.5 remains to be
true when 32

15 < p < 3. The main difficulty arises from that we can’t rule out the existence

of nontrivial stable p-harmonic maps from S2 to SO(3) when p lies in the interval (32
15 , 3).

2) It is an open question whether Theorems 1.3 and 1.5 hold true when the positive con-
stants µ1, µc, µ2 are not necessarily equal. Note that Neff [4] has shown the existence
of minimizers of the Cosserat energy functional even when the Cosserat couple modulus
µc = 0. The main difficulty is that it is unknown whether an almost energy monotonicity
inequality holds for stationary weak solutions (φ,R) of the Cosserat equation (1.2) when
P is not an identity map.
3) It is also an interesting question to ask whether the regularity theorems remain to hold,
if we replace the rotational stress energy density |RT∇R|p by |RTCurlR|p in the Cosserat
energy functional.

The paper is organized as follows. In section 2, we will derive both stationarity identity
and an almost energy monotonicity inequality for stationary weak solutions (φ,R) of the
Cosserat equation (1.2). In section 3, we will rewrite the Cosserat equation (1.3) into a
form in which the nonlinearity exhibits div-curl structures. In section 4, we will prove an
ε0-regularity theorem for stationary weak solutions (φ,R) of the Cosserat equation (1.3),
and apply Marstrand’s theorem to obtain a refined estimate of the singular set when
2 < p < 3. In section 5, we will derive the stability inequality for stable weak solutions
and obtain the full regularity for stable stationary weak solutions (φ,R) of the Cosserat
equation (1.3) when p ∈ [2, 32

15 ].

2. Stationarity identity and almost monotonicity inequality

This section is devoted to the derivation of stationarity identity and almost energy
monotonicity inequality for stationary weak solutions to the Cosserat equation (1.3).
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Lemma 2.1. For 2 ≤ p < 3, assume µ1 = µc = µ2 = 1, f ∈ L2(Ω,R3), and M ∈
L

p
p−1 (Ω, SO(3)). If (φ,R) ∈ H1(Ω,R3) ×W 1,p(Ω, SO(3)) is a stationary weak solution of

the Cosserat equation (1.3), then for any Y ∈ C∞0 (Ω,R3) it holds that∫
Ω

(
2∇φ⊗∇φ : ∇Y + p|∇R|p−2∇R⊗∇R : ∇Y − 2Rik

∂φk

∂xj

∂Y j

∂xi

)
dx (2.1)

=

∫
Ω

[(
|∇φ|2 − 2〈R,∇φ〉+ |∇R|p

)
divY − 〈Y (x) · ∇φ, f〉 − 〈Y (x) · ∇R,M〉

]
dx.

Proof. For Y ∈ C∞0 (Ω,R3), there is a sufficiently small δ > 0 so that dist(supp(Y ), ∂Ω) >
δ. Define (φt, Rt)(x) = (φ,R)(x + tY (x)) for x ∈ Ω and t ∈ (−δ, δ). Since (φ,R) is a
stationary weak solution of (1.3), we have that

0 =
d

dt

∣∣
t=0

∫
Ω

(
|∇φt|2 − 2〈Rt,∇φt〉+ |∇Rt|p + 〈φt − x, f〉+ 〈Rt,M〉

)
dx.

Applying change of variables and direct calculations, it is not hard to see that∫
Ω

(
|∇φ|2 − 2〈R,∇φ〉+ |∇R|p

)
(−divY ) dx+

∫
Ω

(
〈Y · ∇φ, f〉+ 〈Y · ∇R,M〉

)
dx

+

∫
Ω

(
2∇φ⊗∇φ : ∇Y − 2Rαβ

∂φβ

∂xγ

∂Y γ

∂xα
+ p|∇R|p−2∇R⊗∇R : ∇Y

)
dx = 0. (2.2)

This yields (2.1). �

By choosing suitable test variation fields Y ∈ C∞0 (Ω,R3), we will obtain an almost
energy monotonicity inequality for stationary weak solutions to the Cosserat equation
(1.3).

Corollary 2.2. For 2 ≤ p < 3, assume µ1 = µc = µ2 = 1, f ∈ L∞(Ω,R3) and M ∈
L∞(Ω, SO(3)). If (φ,R) ∈ H1(Ω,R3) ×W 1,p(Ω,SO(3)) is a stationary weak solution of
the Cosserat equation (1.3), then for any x ∈ Ω and 0 < r1 ≤ r2 < dist(x, ∂Ω), it holds
that

Cossx((φ,R), r1) +

∫ r2

r1

rp−3

∫
∂Br

(
p|∇R|p−2|∂R

∂r
|2 + |∂φ

∂r
|2
)
dH2dr

≤ Cossx((φ,R), r2), (2.3)

where Cossx((φ,R), r) is the modified renormalized Cosserat energy defined by

Cossx((φ,R), r) := eCr
2
rp−3

∫
Br(x)

(
|∇R|p + |∇φ|2

)
dx+ Cr3, (2.4)

where C > 0 depends on p, ‖f‖L∞(Ω), and ‖M‖L∞(Ω).

Proof. For simplicity, assume x = 0 ∈ Ω and 0 < r < dist(0, ∂Ω) and write Br = Br(0).
Let Y (x) = xηε(|x|), where ηε ∈ C∞0 (Br) is chosen such that ηε → χBr as ε→ 0. Plugging
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Y into (2.1) and sending ε to 0, we obtain that

(p− 3)

∫
Br

|∇R|p dx+ r

∫
∂Br

|∇R|p dH2 −
∫
Br

|∇φ|2 dx+ r

∫
∂Br

|∇φ|2 dH2

= −4

∫
Br

〈R,∇φ〉 dx+ 2r

∫
∂Br

〈R,∇φ〉 dH2 −
∫
Br

(〈x · ∇φ, f〉+ 〈x · ∇R,M〉) dx

+pr

∫
∂Br

|∇R|p−2|∂R
∂r
|2 dH2 + 2r

∫
∂Br

|∂φ
∂r
|2 dH2 − 2

∫
∂Br

xiRik
∂φk

∂r
dH2. (2.5)

It is easy to estimate∣∣2r ∫
∂Br

〈R,∇φ〉 dx
∣∣ ≤ Cr2

∫
∂Br

|∇φ|2 dH2 + Cr2,

∣∣− 4

∫
Br

〈R,∇φ〉 dx
∣∣ ≤ Cr ∫

Br

|∇φ|2 dx+ Cr2,

∣∣− 2

∫
∂Br

R : x⊗ ∂φ

∂r
dH2

∣∣ ≤ r ∫
∂Br

|∂φ
∂r
|2 dH2 + Cr3,

∣∣− ∫
Br

〈x · ∇φ, f〉 dx
∣∣ ≤ Cr ∫

Br

|∇φ|2 dx+ C‖f‖2L∞(Ω)r
4,

∣∣− ∫
Br

〈x · ∇R,M〉 dx
∣∣ ≤ Cr ∫

Br

|∇R|p dx+ C‖M‖
p
p−1

L∞(Ω)r
4.

Substituting these estimates into (2.5) yields

(p− 3)

∫
Br

|∇R|p dx+ r

∫
∂Br

|∇R|p dH2 −
∫
Br

|∇φ|2 dx+ r

∫
∂Br

|∇φ|2 dH2

≥ pr
∫
∂Br

|∇R|p−2|∂R
∂r
|2 dH2 + r

∫
∂Br

|∂φ
∂r
|2 dH2

−Cr
∫
Br

|∇R|p dx− Cr
∫
Br

|∇φ|2 dx− Cr2

∫
∂Br

|∇φ|2 dH2

−C
(
1 + ‖f‖2L∞(Ω) + ‖M‖

p
p−1

L∞(Ω)

)
r2. (2.6)

Hence we obtain for 0 < r ≤ min
{

1,dist(0, ∂Ω)
}

,

d

dr

{
eCr

2
rp−3

∫
Br

(
|∇R|p + |∇φ|2

)
dx
}

≥ eCr2rp−3

∫
∂Br

(
p|∇R|p−2|∂R

∂r
|2 + 2|∂φ

∂r
|2
)
dH2 + (p− 2)eCr

2
rp−4

∫
Br

|∇φ|2 dx

−C
(
1 + ‖f‖2L∞(Ω) + ‖M‖

p
p−1

L∞(Ω)

)
eCr

2
r2

≥ rp−3

∫
∂Br

(
p|∇R|p−2|∂R

∂r
|2 + 2|∂φ

∂r
|2
)
dH2

−C
(
1 + ‖f‖2L∞(Ω) + ‖M‖

p
p−1

L∞(Ω)

)
r2. (2.7)
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Integrating from 0 < r1 ≤ r2 ≤ min{1,dist(0, ∂Ω)}, we obtain that the following mono-
tonicity inequality:

eCr
2
2r2

p−3

∫
Br2

(
|∇R|p + |∇φ|2

)
dx+ Cr3

2

≥ eCr21r1
p−3

∫
Br1

(
|∇R|p + |∇φ|2) dx+ Cr3

1

+

∫ r2

r1

rp−3

∫
∂Br

(
p|∇R|p−2|∂R

∂r
|2 + |∂φ

∂r
|2
)
dH2dr, (2.8)

where C > 0 depends on p, ‖f‖L∞(Ω), and ‖M‖L∞(Ω). This completes the proof of
(2.3). �

3. Div-curl structure of the Cosserat equation (1.3)

This section is devoted to rewriting of the Cosserat equation (1.3)2 into a form where
the nonlinearity exhibits algebraic structures similar to that of p-harmonic maps into
symmetric manifolds given by Hélein [19] and Toro-Wang [21].

Let so(3) be the Lie algebra of SO(3) or equivalently the tangent space of SO(3) at I3.
Recall that a standard orthonormal base of so(3) is given by

a1 =
1√
2

 0 0 0
0 0 −1
0 1 0

 , a2 =
1√
2

 0 0 1
0 0 0
−1 0 0

 , a3 =
1√
2

 0 −1 0
1 0 0
0 0 0

 .

For any R ∈ SO(3), {
V1(R) = a1R, V2(R) = a2R, V3(R) = a3R

}
forms an orthonormal base of TRSO(3), the tangent space of SO(3) at R.

From (1.3)2 we have that for i = 1, 2, 3,

〈div(|∇R|p−2∇R),Vi(R)〉 = −2

p
〈∇φ,Vi(R)〉+

1

p
〈M,Vi(R)〉. (3.1)

For i = 1, 2, 3, since ai is skew-symmetric, we have that

〈|∇R|p−2∇R,∇(Vi(R))〉 = 〈|∇R|p−2∇R,ai∇R〉 = 0.

Thus we can rewrite the Cosserat equation (1.3)2 as follows.

div(|∇R|p−2∇R) =

3∑
i=1

div
(
〈|∇R|p−2∇R,Vi(R)〉Vi(R)

)
=

3∑
i=1

[
〈div(|∇R|p−2∇R),Vi(R)〉+ 〈|∇R|p−2∇R,∇(Vi(R))〉

]
Vi(R)

+
3∑
i=1

〈|∇R|p−2∇R,Vi(R)〉∇(Vi(R)) (3.2)

=

3∑
i=1

[(
− 2

p
〈∇φ,Vi(R)〉+

1

p
〈M,Vi(R)〉

)
Vi(R) + 〈|∇R|p−2∇R,Vi(R)〉∇(Vi(R))

]
.
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From the above derivation, we see that for i = 1, 2, 3,

div
(
〈|∇R|p−2∇R,Vi(R)〉

)
= −2

p
〈∇φ,Vi(R)〉+

1

p
〈M,Vi(R)〉. (3.3)

For i = 1, 2, 3, let Yi : Ω→ R solve the auxiliary equation

∆Yi =
2

p
〈∇φ,Vi(R)〉 − 1

p
〈M,Vi(R)〉, (3.4)

so that

div
(
〈|∇R|p−2∇R,Vi(R)〉+∇Yi

)
= 0. (3.5)

Putting (3.2), (3.3), (3.4), (3.5) together, we obtain an equivalent form of (1.3)2:

div(|∇R|p−2∇R)

=

3∑
i=1

(
〈|∇R|p−2∇R,Vi(R)〉+∇Yi

)
∇(Vi(R))

−
3∑
i=1

∇Yi · ∇(Vi(R)) +

3∑
i=1

(
− 2

p
〈∇φ,Vi(R)〉+

1

p
〈M,Vi(R)〉

)
Vi(R). (3.6)

It is readily seen that as the leading order term of nonlinearity in the right hand side of the
equation (3.6),

(
〈|∇R|p−2∇R,Vi(R)〉+∇Yi

)
∇(Vi(R)) is the inner product of a divergence

free vector field
(
〈|∇R|p−2∇R,Vi(R)〉+∇Yi

)
and a curl free vector field ∇(Vi(R)).

4. ε0-regularity of stationary solutions of the Cosserat equation

In this section, we will establish an ε0-regularity estimate and a partial regularity of
stationary weak solutions of the Cosserat equation (1.3) and give a proof of Theorem 1.3.
The key ingredient is the following energy decay lemma, under the smallness condition.

Lemma 4.1. For any 2 ≤ p < 3, µ1 = µc = µ2 = 1, f ∈ L∞(Ω,R3) and M ∈
L∞(Ω, SO(3)), there exist ε0 > 0 and θ0 ∈ (0, 1

2) depending on p, ‖f‖L∞(Ω), and ‖M‖L∞(Ω)

such that if (φ,R) is a stationary weak solution of the Cosserat equation (1.3), and satis-
fies, for x ∈ Ω and 0 < r < dist(x, ∂Ω),

rp−3

∫
Br(x)

(
|∇R|p + |∇φ|2

)
dx ≤ εp0, (4.1)

then

(θ0r)
p−3

∫
Bθ0r(x)

(
|∇R|p + |∇φ|2

)
dx

≤ 1

2
max

{
rp−3

∫
Br(x)

(
|∇R|p + |∇φ|2

)
dx, rp

}
. (4.2)

Proof. We argue it by contradiction. Suppose that the conclusion were false. Then for
any L > 0 with ‖f‖L∞(Ω) + ‖M‖L∞(Ω) ≤ L and θ ∈ (0, 1

2), there exist εk → 0, xk ∈ Ω, and
rk → 0 such that

rp−3
k

∫
Brk (xk)

(
|∇R|p + |∇φ|2

)
dx ≤ εpk, (4.3)
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but

(θrk)
p−3

∫
Bθrk (xk)

(
|∇R|p + |∇φ|2

)
dx

>
1

2
max

{
rp−3
k

∫
Brk (xk)

(
|∇R|p + |∇φ|2

)
dx, rpk

}
. (4.4)

Define the rescaling maps
Rk(x) = R(xk + rkx),

φk(x) = r
p−2
2

k φ(xk + rkx),

fk(x) = r
p+2
2

k f(xk + rkx),

Mk(x) = rpkM(xk + rkx),

∀x ∈ B1.

Then (φk, Rk) solves in B1

∆φk = r
p
2
k div(Rk) + 1

2fk,

div(|∇Rk|p−2∇Rk) =
3∑

α=1

〈|∇Rk|p−2∇Rk,Vα(Rk)〉∇(Vα(Rk))

−1

p

3∑
α=1

[
2r

p
2
k 〈∇φk,Vα(Rk)〉 − 〈Mk,Vα(Rk)〉

]
Vα(Rk).

(4.5)

Moreover, it holds that∫
B1

(
|∇Rk|p + |∇φk|2

)
dx = rp−3

k

∫
Brk (xk)

(
|∇R|p + |∇φ|2

)
dx = εpk, (4.6)

and

θp−3

∫
Bθ

(
|∇Rk|p + |∇φk|2

)
dx >

1

2
max

{∫
B1

(
|∇Rk|p + |∇φk|2

)
dx, rpk

}
. (4.7)

Now we define the blow-up sequence:
R̂k(x) =

Rk(x)−Rk
εk

,

φ̂k(x) =
φk(x)− φk

ε
p
2
k

,
∀x ∈ B1,

where f =
1

|B1|

∫
B1

f denotes the average of f over B1. Then (φ̂k, R̂k) solves, in B1,

∆φ̂k = r
p
2
k ε

1− p
2

k div(R̂k) + 1
2ε
− p

2
k fk,

div(|∇R̂k|p−2∇R̂k) = εk

3∑
α=1

〈|∇R̂k|p−2∇R̂k,Vα(Rk)〉∇(Vα(R̂k))

−1

p

3∑
α=1

[
2r

p
2
k ε

1− p
2

k 〈∇φ̂k,Vα(Rk)〉 − ε1−pk 〈Mk,Vα(Rk)〉
]
Vα(Rk),

(4.8)
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satisfies ∫
B1

R̂k dx = 0,

∫
B1

φ̂k dx = 0,

∫
B1

(
|∇R̂k|p + |∇φ̂k|2

)
dx = 1, (4.9)

and

θp−3

∫
Bθ

(
|∇R̂k|p + |∇φ̂k|2

)
dx >

1

2
max

{
1,

rpk
εpk

}
. (4.10)

In particular, we have

rpk
εpk
≤ 2θp−3

∫
Bθ

(
|∇R̂k|p + |∇φ̂k|2

)
dx ≤ 2θp−3. (4.11)

This implies that

rk ≤ Cεk. (4.12)

We may assume that there exist φ∞ ∈ H1(B1,R3), R∞ ∈W 1,p(B1, SO(3)) such that, after
passing to a subsequence,

(φ̂k, R̂k) ⇀ (φ∞, R∞) in H1(B1)×W 1,p(B1), (φ̂k, R̂k)→ (φ∞, R∞) in L2(B1)× Lp(B1).

Then (φ∞, R∞) satisfies 
φ∞ = 0,

R∞ = 0,∫
B1

(
|∇R∞|p + |∇φ∞|2

)
dx ≤ 1.

Moreover, it follows from (4.11) that∥∥ε− p2k fk
∥∥
L∞(B1)

≤ Cε−
p
2

k r
p+2
2

k ≤ Crk → 0,∥∥ε1−pk Mk

∥∥
L∞(B1)

≤ Cε1−pk rpk ≤ Cεk → 0,

and ∥∥r p2k ε1− p2k div(R̂k)
∥∥
Lp(B1)

+ ‖
∥∥r p2k ε2−pk ∇φ̂k

∥∥
L2(B1)

≤ Cε1−
p
2

k r
p
2
k ≤ Cεk → 0.

Hence, after sending k → ∞ in the equation (4.8), we conclude that φ∞ is a harmonic
function and R∞ is a p-harmonic function, i.e.,{

∆φ∞ = 0

div
(
|∇R∞|p−2∇R∞

)
= 0,

in B1. (4.13)

Hence we have that for 0 < θ < 1
2 ,

θp−3

∫
Bθ

(|∇R∞|p + |∇φ∞|2) dx

≤ Cθp
(∥∥∇R∞∥∥pL∞(B 1

2
)

+
∥∥∇φ∞∥∥2

L∞(B 1
2

)

)
≤ Cθp

∫
B1

(|∇R∞|p + |∇φ∞|2) dx ≤ Cθp. (4.14)
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Next we need to show that (φ̂k, R̂k) converges strongly to (φ∞, R∞) in H1(B 1
2
) ×

W 1,p(B 1
2
), which is based on the duality between the Hardy space and the BMO space.

Let η : R3 → R be a smooth cutoff function satisfying

0 ≤ η ≤ 1, η = 1 on B 1
4
, η = 0 on R3\B 3

8
.

Then we have the following lemma, whose proof is based on the energy monotonicity
inequality (2.3) and is similar to that by [20] and [21]. Denote by BMO(R3) the space of
functions of bounded mean oscillations in R3.

Lemma 4.2. The sequence {ηR̂k}k≥1 is bounded in BMO(R3).

Proof. This is a well-known fact. We skip the details and refer the readers to either [20]
or [21] for a proof. �

Lemma 4.3. ∇R̂k converge strongly to ∇R∞ in Lp(B 1
4
), and ∇φ̂k converge strongly to

∇φ∞ in L2(B 1
4
).

Proof. First notice that scalings of the equation (3.3) imply that for i = 1, 2, 3,

div
(
〈|∇R̂k|p−2∇R̂k,Vi(Rk)〉) = −2

p
r
p
2
k ε

1− p
2

k 〈∇φ̂k,Vi(Rk)〉+
1

p
ε1−pk 〈Mk,Vi(Rk)〉. (4.15)

As in (3.4), let Y i
k : B1 → R solve∆Y i
k =

2

p
r
p
2
k ε

1− p
2

k 〈∇φ̂k,Vi(Rk)〉 −
1

p
ε1−pk 〈Mk,Vi(Rk)〉 in B1,

Y i
k = 0 on ∂B1.

(4.16)

It is easy to see that by W 2,2-theory, Y i
k satisfies∥∥∇Y i

k

∥∥
L2(B1)

+
∥∥∇2Y i

k

∥∥
L2(B1)

≤ Cr
p
2
k ε

1− p
2

k

∥∥∇φ̂k∥∥L2(B1)
+ Cε1−pk

∥∥Mk

∥∥
L2(B1)

≤ C
(
r
p
2
k ε

2−p
2

k + rpkε
1−p
k

)
≤ Cεk, (4.17)

where we have used (4.11) in the last step.
Adding the equations (4.15) and (4.16), we have that

div
(
〈|∇R̂k|p−2∇R̂k,Vi(Rk)〉+∇Y i

k ) = 0 in B1, (4.18)

and the blowup equation (4.8)2 becomes

div(|∇R̂k|p−2∇R̂k)

= εk

3∑
i=1

(
〈|∇R̂k|p−2∇R̂k,Vi(Rk)〉+∇Y i

k

)
· ∇(Vi(R̂k))

−1

p

3∑
i=1

[
2r

p
2
k ε

1− p
2

k 〈∇φ̂k,Vi(Rk)〉 − ε1−pk 〈Mk,Vi(Rk)〉
]
Vi(Rk)

−εk
3∑
i=1

∇Y i
k · ∇(Vi(R̂k))

in B1. (4.19)

Define
H i
k :=

(
〈|∇R̂k|p−2∇R̂k,Vi(Rk)〉+∇Y i

k

)
· ∇(Vi(R̂k)).
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Then it follows from (4.18) that H i
k ∈ H1

loc(B1), the local Hardy space (see [19] and [20]
for some basic properties of Hardy spaces). For any compact K ⊂ B1 and i = 1, 2, 3, we
can use 3

2 <
p
p−1 ≤ 2 and (4.17) to estimate∥∥H i

k

∥∥
H1(K)

≤ C
∥∥〈|∇R̂k|p−2∇R̂k,Vi(Rk)〉+∇Y i

k

∥∥
L

p
p−1 (B1)

∥∥∇(Vi(R̂k)
∥∥
Lp(B1)

≤ C
[
‖∇R̂k‖p−1

Lp(B1) + ‖∇Y i
k‖L

p
p−1 (B1)

]∥∥∇(Vi(R̂k))‖Lp(B1)

≤ C, ∀k ≥ 1.

and ∥∥H i
k

∥∥
L1(B1)

≤ C
[
‖∇R̂k‖p−1

Lp(B1) + ‖∇Y i
k‖L

p
p−1 (B1)

]
‖∇(Vi(R̂k))‖Lp(B1)

≤ C, ∀k ≥ 1.

Assume

∫
R3

η dx 6= 0. For i = 1, 2, 3, set

µik =

∫
R3 H

i
kη dx∫

R3 η dx
, ∀k ≥ 1.

Then we have that

sup
k≥1

∥∥η(H i
k − µik)

∥∥
H1(R3)

≤ C sup
k≥1

(
‖H i

k‖H1(suppη) + ‖H i
k‖L1(B1)

)
≤ C, (4.20)

and

|µik| ≤ C‖H i
k‖L1(B1) ≤ C. (4.21)

Observe that

div
(
|∇R̂k|p−2∇R̂k − |∇R∞|p−2∇R∞

)
= εk

3∑
i=1

H i
k − εk

3∑
i=1

∇Y i
k · ∇(Vi(R̂k))

− 1

p

3∑
i=1

[
2r

p
2
k ε

1− p
2

k 〈∇φ̂k,Vi(Rk)〉 − ε1−pk 〈Mk,Vi(Rk)〉
]
Vi(Rk).

Multiplying this equation by η2(R̂k −R∞) and integrating it over R3, we obtain that∫
B1

η2(|∇R̂k|p−2∇R̂k − |∇R∞|p−2∇R∞) : ∇(R̂k −R∞) dx

+ 2

∫
B1

η(|∇R̂k|p−2∇R̂k − |∇R∞|p−2∇R∞) : ∇η ⊗ (R̂k −R∞) dx

= εk

∫
B1

[
∇Y i

k · ∇(Vi(R̂k))−H i
k

]
η2(R̂k −R∞) dx

+
1

p

3∑
i=1

∫
B1

[
2r

p
2
k ε

1− p
2

k 〈∇φ̂k,Vi(Rk)〉 − ε1−pk 〈Mk,Vi(Rk)〉
]
Vi(Rk)η

2(R̂k −R∞) dx.
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It is not hard to see that∫
B1

η2|∇R̂k −∇R∞|p dx

≤ C
∫
B1

η|(|∇R̂k|p−2∇R̂k − |∇R∞|p−2∇R∞)||∇η||R̂k −R∞| dx

+ Cεk
∣∣ ∫

B1

H i
k · η2(R̂k −R∞) dx

∣∣+ Cεk

∫
B1

η2|∇Y i
k ||∇R̂k||R̂k −R∞| dx

+ C

∫
B1

[
2r

p
2
k ε

1− p
2

k |∇φ̂k|+ ε1−pk |Mk|
]
η2|R̂k −R∞| dx

= Ik + IIk + IIIk + IVk.

Since

|∇R̂k|p−2∇R̂k ⇀ |∇R∞|p−2∇R∞ in L
p
p−1 (B1), R̂k → R∞ in Lp(B1),

we conclude that

Ik → 0.

For IIIk, we have

|IIIk| ≤ Cεk‖∇Y i
k‖L6(B1)‖∇R̂k‖L2(B1)‖R̂k −R∞‖L3(B1)

≤ Cεk‖∇Y i
k‖H1(B1)‖∇R̂k‖L2(B1)‖R̂k −R∞‖L3(B1)

≤ Cεk → 0.

We can apply (4.11) to estimate IVk by

|IVk| ≤ Cr
p
2
k ε

1− p
2

k ‖∇φ̂k‖L2(B1)‖R̂k −R∞‖L2(B1) + Crpkε
1−p
k ‖R̂k −R∞‖L1(B1)

≤ Cr
p
2
k ε

2−p
2

k ‖R̂k −R∞‖L2(B1) + Crpkε
1−p
k ‖R̂k −R∞‖L1(B1)

≤ Cεk‖R̂k −R∞‖L2(B1) → 0.

While the most difficult term IIk can be estimated by employing the duality between
H1(R3) and BMO(R3) as follows.∫

B1

H i
kη

2(R̂k −R∞) dx

=

∫
B1(0)

η(H i
k − µik)η(R̂k −R∞) dx+ µik

∫
B1

η2(R̂k −R∞) dx

= Vk + V Ik.

It is easy to estimate

|V Ik| ≤ C|µik|
∫
B1

|R̂k −R∞| dx ≤ C‖H i
k‖L1(B1)

∫
B1

|R̂k −R∞| dx→ 0.

We can apply Lemma 4.2 and (4.20) and (4.21) to estimate Vk by

|Vk| =
∣∣ ∫

B1

η(H i
k − µik)η(R̂k −R∞) dx

∣∣
≤ C

∥∥η(H i
k − µik)

∥∥
H1(R3)

∥∥η(R̂k −R∞)‖BMO(R3) ≤ C.
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Therefore we obtain that

|IIk| ≤ Cεk(|Vk|+ |V Ik|) ≤ Cεk → 0.

Putting all the estimates of Ik, IIk, IIIk, IVk together, we arrive that∫
B 1

4

|∇(R̂k −R∞)|p dx→ 0.

Next, we are going to prove that

∇φ̂k −→ ∇φ∞ in L2(B 1
4
).

Since

−∆φ̂k = r
p
2
k ε

1− p
2

k div(R̂k) +
1

2
ε
− p

2
k fk in B1,

and
−∆φ∞ = 0 in B1,

multiplying both equations by η2(φ̂k − φ∞), subtracting the resulting equations, and in-
tegrating over R3, we obtain that∫

B1

η2|∇(φ̂k − φ∞)|2 dx+ 2

∫
B1

η∇(φ̂k − φ∞)∇η(φ̂k − φ∞) dx

=

∫
B1

[
r
p
2
k ε

1− p
2

k div(R̂k) +
1

2
ε
− p

2
k fk

]
η2(φ̂k − φ∞) dx.

Since φ̂k −→ φ∞ and ∇φ̂k ⇀ ∇φ∞ in L2(B 1
4
), we conclude that

2

∫
B1

η∇(φ̂k − φ∞)∇η(φ̂k − φ∞) dx→ 0.

Also, since ∥∥r p2k ε1− p2k div(R̂k) +
1

2
ε
− p

2
k fk

∥∥
L2(B1)

≤ Cr
p
2
k ε

1− p
2

k ‖∇R̂k‖L2(B1) + Cε
− p

2
k r

p+2
2

k ≤ Cεk → 0,

we conclude that ∫
B1

[
r
p
2
k ε

1− p
2

k div(R̂k) +
1

2
ε
− p

2
k fk

]
η2(φ̂k − φ∞) dx→ 0.

Thus we obtain that ∫
B 1

4

|∇(φ̂k − φ∞)|2 dx→ 0.

This completes the proof of Lemma 4.3. �

Now we return to the proof of Lemma 4.1. It follows from Lemma 4.3 and the estimate
(4.14) that for sufficiently large k > 1, it holds that

θp−3

∫
Bθ

(
|∇R̂k|p + |∇φ̂k|2

)
≤ Cθp + o(1) ≤ 1

2
max

{
1,
rpk
εpk

}
,

provided that 0 < θ < 1
4 is chosen to be sufficiently small. This contradicts to the assumed

inequality (4.10). Hence the proof of Lemma 4.1 is complete. �
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Next we apply Lemma 4.1 and the Marstrand Theorem to give a proof of Theorem 1.3.

Proof of Theorem 1.3. First, define the concentration set Σ of (φ,R) by

Σ =
{
x ∈ Ω

∣∣ Θ3−p((φ,R), x) ≡ lim
r→0

Cossx
(
(φ,R), r

)
≥ 1

2
εp0

}
.

Here Cossx
(
(φ,R), r

)
denotes the modified renormalized Cosserat energy of (φ,R) in Br(x)

defined by (2.4), which is monotonically increasing with resepct to r > 0 by Corollary 2.2.
Hence the density function

Θ3−p((φ,R), x) = lim
r→0

Cossx
(
(φ,R), r

)
exists for any x ∈ Ω and is upper semicontinuous in Ω. From a simple covering argument
(see [22]), we know that the (3− p)-dimensional Hausdorff measure of Σ

H3−p(Σ) = 0.

For any x0 ∈ Ω \ Σ, there exists r0 > 0 such that Br0(x0) ⊂ Ω, and

Cossx1((φ,R),
r0

2
) = eCr

2
0(
r0

2
)
p−3

∫
B r0

2
(x1)

(
|∇R|p + |∇φ|2

)
dx+ C(

r0

2
)3 ≤ εp0

holds for all x1 ∈ B r0
2

(x0).

Applying Lemma 4.1 repeatedly, we would obtain that there exists θ0 ∈ (0, 1
2) such that

(θl0r0)p−3

∫
B
θl0r0

(x1)
(|∇R|p + |∇φ|2) dx

≤ 2−l max
{
rp−3

0

∫
Br0 (x0)

(|∇R|p + |∇φ|2) dx,
Crp0

1− 2θp0

}
(4.22)

holds for all x1 ∈ B r0
2

(x0) and l ≥ 1.

It follows from (4.22) that there exists α0 ∈ (0, 1) such that

rp−3

∫
Br(x1)

(|∇R|p + |∇φ|2) dx

≤
( r
r0

)pα0 max
{
rp−3

0

∫
Br0 (x0)

(|∇R|p + |∇φ|2) dx,
Crp0

1− 2θp0

}
≤ C(ε0)

( r
r0

)pα0 (4.23)

holds for all x1 ∈ B r0
2

(x0) and 0 < r ≤ r0
2 . Thus, by Morrey’s decay Lemma [22], we

conclude that (φ,R) ∈ Cα0(B r0
2

(x0)). Since

∆φ = div(R) +
1

2
f in Br0(x0),

the higher order regularity theory of Poisson equation implies that φ ∈ C1,α0(B r0
2

(x0)).

Since x0 ∈ Ω \ Σ is arbitrary, we obtain that (φ,R) ∈ C1,α0(Ω \ Σ)× Cα0(Ω \ Σ).
Next we will employ the Marstrand Theorem [23] to show that the singular set Σ is

discrete for 2 < p < 3. We argue it by contradiction. Suppose Σ is not discrete. Then there
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exist a sequence of points {xk} ⊂ Σ and x0 ∈ Σ such that xk → x0. Set rk = |xk−x0| → 0
and define

(φk, Rk, fk, Mk)(x) = (r
p−2
2

k φ, R, r
p+2
2

k f, rpkM)(x0 + rkx), ∀x ∈ B2.

It is readily seen that (φk, Rk) is singular at 0 and yk = xk−x0
rk
∈ S2. Moreover, similar to

(4.5), (φk, Rk) solves

∆φk = r
p
2
k div(Rk) + 1

2fk,

div(|∇Rk|p−2∇Rk) =
3∑
i=1

〈|∇Rk|p−2∇Rk,Vi(Rk)〉∇(Vi(Rk))

−1

p

3∑
i=1

[
2r

p
2
k 〈∇φk,Vi(Rk)〉 − 〈Mk,Vi(Rk)〉

]
Vi(Rk)

in B2. (4.24)

It follows from the monotonicity inequality (2.3) for (φ,R) and the scaling argument that
(φk, Rk) also enjoys the following monotonicity inequality, i.e., for 0 < r1 < r2 ≤ 2

eCr
2
1rp−3

1

∫
Br1

(|∇Rk|p + |∇φk|2) dx+ Cr3
1

+

∫ r2

r1

rp−3

∫
∂Br

(
p|∇Rk|p−2

∣∣∂Rk
∂r

∣∣2 +
∣∣∂φk
∂r

∣∣2) dH2dr

≤ eCr22rp−3
2

∫
Br2

(
|∇Rk|p + |∇φk|2) dx+ Cr3

2.

(4.25)

Moreover, for k > 1 sufficiently large,

1

4
εp0 ≤ 2p−3

∫
B2

(|∇Rk|p + |∇φk|2) dx

= (2rk)
p−3

∫
B2rk

(x0)
(|∇R|p + |∇φ|2) dx ≤ C. (4.26)

Hence ∫
B2

(|∇Rk|p + |∇φk|2) dx is uniformly bounded above and below.

Then there exists (φ∞, R∞) ∈ H1(B2,R3) ×W 1,p(B2, SO(3)) such that, after passing to
a subsequence,

(φk, Rk) ⇀ (φ∞, R∞) in H1(B2)×W 1,p(B2).

Now we want to show

Claim 0. φ∞ is a harmonic function in B2, and R∞ is a p-harmonic map from B2 to
SO(3).

In fact, since∥∥r p2k div(Rk) +
1

2
fk
∥∥
Lp(B2)

≤ C
(
r
p
2
k ‖∇Rk‖Lp(B2) + ‖fk‖L∞(B2)

)
≤ Cr

p
2
k

(
‖∇Rk‖Lp(B2) + ‖f‖L∞(Ω)

)
≤ Cr

p
2
k → 0,
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after passing to the limit in (4.24) we have that ∆φ∞ = 0 in B2. For Rk, observe that

div〈|∇Rk|p−2∇Rk,Vi(Rk)〉
= 〈|∇Rk|p−2∇Rk,Vi(∇Rk)〉+ 〈div(|∇Rk|p−2∇Rk),Vi(Rk)〉

= −1

p
〈2r

p
2
k∇φk −Mk,Vi(∇Rk)〉 := gk,

where we have used the skew-symmetry of Vi, and the equation of Rk in the last step.
Observe that ∥∥gk∥∥L2(B2)

≤ C
(
r
p
2
k

∥∥∇φk∥∥L2(B2)
+ r

p
2
k

∥∥M∥∥
L∞(Ω)

)
→ 0,

we can apply the Div-Curl Lemma to conclude that

〈|∇Rk|p−2∇Rk,Vi(Rk)〉∇(Vi(Rk))→ 〈|∇R∞|p−2∇R∞,Vi(R∞)〉∇(Vi(R∞))

in L1(B2). Hence by passing to the limit in the equation (4.24), we see that R∞ solves
the equation

div(|∇R∞|p−2∇R∞) =

3∑
i=1

〈|∇R∞|p−2∇R∞,Vi(R∞)〉∇(Vi(R∞)),

or equivalently R∞ is a p-harmonic map in B2. This shows Claim 0.
Moreover, it follows from the lower semicontinuity and the monotonicity inequality

(4.25) that for any 0 < s ≤ 2, it holds∫ 2

s
rp−3

∫
∂Br

(
p|∇R∞|p−2

∣∣∂R∞
∂r

∣∣2 +
∣∣∂φ∞
∂r

∣∣2) dH2dr = 0,

this follows from the fact that for any fixed 0 < s ≤ 2,

eCs
2
sp−3

∫
Bs

(|∇Rk|p + |∇φk|2) dx+ Cs3 → Θ3−p((φ,R), x0

)
, as k →∞.

Therefore we must have that

(
∂φ∞
∂r

,
∂R∞
∂r

) = (0, 0),

or equivalently (φ∞, R∞) is homogeneous of degree zero:(
φ∞(x), R∞(x)

)
=
(
φ∞(

x

|x|
), R∞(

x

|x|
)
)
, x ∈ B2. (4.27)

Since φ∞ is a smooth harmonic function with homogeneous degree zero, it follows that
φ∞ is a constant.

Next we need to show
Claim 1.

(φk, Rk) −→ (φ∞, R∞) in H1(B1)×W 1,p(B1).

Assume the claim for the moment. Then it follows from (4.26) and φ∞ = constant
that R∞ : B2 → SO(3) is a nontrivial stationary p-harmonic map, which has at least two
singular points 0 and y∞ ∈ S2 given by

y∞ = lim
k→∞

xk − x0

|xk − x0|
.

The singular set of R∞ contains the line segement [0y∞] so that H1(Sing(R∞)) > 0, which
is impossible. Thus Σ is a discrete set.
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Finally, we would like to apply Marstrand theorem to prove Claim 1. To do it, we
consider a sequence of Radon measures

µk = (|∇Rk|p + |∇φk|2) dx.

Since µk(B2) is uniformly bounded, we may assume that there is a nonnegative Radon
measure µ in B2 such that after passing to a subsequence,

µk → µ

as convergence of Radon measures. By Fatou’s lemma, we can decompose µ into

µ = (|∇R∞|p + |∇φ∞|2) dx+ ν

for a nonnegative Radon measure ν, called a defect measure. The monotonicity inequality
(4.25) for (φk, Rk) implies that µ is a monotone measure in the following sense: for x ∈ B1,
0 < r1 < r2 < dist(x, ∂B2),

eCr
2
1rp−3

1 µ(Br1(x)) + Cr3
1 ≤ eCr

2
2rp−3

2 µ(Br2(x)) + Cr3
2.

In particular, for any x ∈ B1, the density function

Θ3−p(µ, x) = lim
r→0

rp−3µ(Br(x))

exists and is upper semicontinuous in B1. Define the concentration set

S :=
⋂
r>0

{
x ∈ B1

∣∣ lim inf
k→∞

rp−3

∫
Br(x)

(|∇Rk|p + |∇φk|2) dx ≥ 1

2
εp0

}
.

We claim that S is a closed subset of B1. In fact, let {xk} be a sequence of points in S
such that xk → x0 ∈ B1. If x0 6∈ S, then there exists r0 > 0 and δ0 > 0 such that for
k > 1 sufficiently large it holds that

rp−3
0

∫
Br0 (x0)

(|∇Rk|p + |∇φk|2) dx ≤ 1

2
εp0 − δ0.

Taking k large enough so that |xk − x0| < r0
2 and applying the monotonicity inequality to

each (φk, Rk), we have

eC(
r0
2

)2
(r0

2

)p−3
∫
B r0

2
(xk)

(|∇Rk|p + |∇φk|2) dx+ C
(r0

2

)3

≤ eC(r0−|xk−x0|)2(r0 − |xk − x0|)p−3

∫
Br0−|xk−x0|(xk)

(|∇Rk|p + |∇φk|2) dx

+ C ((r0 − |xk − x0|)3

≤ eC(r0−|xk−x0|)2
( r0

(r0 − |xk − x0|)
)3−p

rp−3
0

∫
Br0 (x0)

|∇Rk|p + |∇φk|2) dx

+ C ((r0 − |xk − x0|)3

≤ eCr20
( r0

(r0 − |xk − x0|)
)3−p

(
1

2
εp0 − δ0) + C ((r0 − |xk − x0|)3

≤ 1

2
εp0,
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provided that k large enough and r0 is chosen sufficiently small. This contradicts to the
fact xk ∈ S. Hence S is a closed subset.

Suppose x∗ ∈ B1 \ S. Then there exists r∗ > 0 such that

lim inf
k→∞

r∗
p−3

∫
Br∗ (x∗)

(|∇Rk|p + |∇φk|2) dx <
1

2
εp0.

Applying the ε0-regularity Theorem 1.3, we may conclude that after passing to another
subsequence,

Rk −→ R∞ in C1
loc ∩W

1,p
loc (B1 \ S),

and

φk −→ R∞ in C1
loc ∩H1

loc(B1 \ S).

If we denote by Sing(φ∞, R∞) the set of discontinuity of (φ∞, R∞), and supp(ν) the
support of the defect measure ν. Then the above convergence implies that

Sing(φ∞, R∞) ∪ supp(ν) ⊂ S.

On the other hand, if x̂ ∈ S, then after sending k →∞, we have that

µ(Br(x̂))

r3−p ≥ 1

2
εp0, ∀r > 0.

If x̂ 6∈ Sing(φ∞, R∞), then (φ∞, R∞) is regular near x̂ and hence for r sufficiently small,

rp−3

∫
Br(x̂)

(|∇R∞|p + |∇φ∞|2)dx ≤ 1

4
εp0,

this implies that for small r > 0,

ν(Br(x̂))

r3−p ≥ 1

4
εp0,

and hence x̂ ∈ supp(ν). Therefore, we conclude that

Lemma 4.4.

Sing(φ∞, R∞) ∪ supp(ν) = S.

Notice that if x ∈ S, then

Θ3−p(µ, x) = lim
r→0

r3−pµ(Br(x)) ≥ 1

2
εp0.

Moreover, for any compact subset K ⊂⊂ B1, and any x ∈ S ∩K,

1

2
εp0 ≤ Θ3−p(µ, x) ≤ rp−3

K µ(B2) ≤ rp−3
K E0,

where rK = 1
2dist(K, ∂B2) > 0, and E0 = sup

k

∫
B2

(|∇Rk|p + |∇φk|2) dx. Recall that by

Federer-Ziemer theorem (see [22])

lim
r→0

rp−3

∫
Br(x)

(|∇R∞|p + |∇φ∞|2) dy = 0

holds for H3−p a.e. x ∈ B2. Thus we obtain that
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Lemma 4.5. For any compact K ⊂ B1, if x ∈ S ∩K, then

1

2
εp0 ≤ Θ3−p(µ, x) < C(K) <∞.

For H3−p a.e. x ∈ S,

Θ3−p(µ, x) = Θ3−p(ν, x).

It follows from Lemma 4.5 and standard covering arguments that for any compact set
K ⊂ B1

εpH3−p(S ∩K) ≤ ν(S ∩K) ≤ CH3−p(S ∩K).

Therefore,

ν(S) = 0 ⇐⇒ H3−p(S) = 0.

In particular, we have that

Lemma 4.6. (φk, Rk) 9 (φ∞, R∞) strongly in H1(B1)×W 1,p(B1) if and only if ν(B1) > 0
if and only if H3−p(S) > 0.

Return to the proof of Claim 1. For 2 < p < 3, if

(φk, Rk) 9 (φ∞, R∞) in H1(B1)×W 1,p
loc (B1),

then by Lemma 4.6, we must have H3−p(S) > 0. Hence by Lemma 4.4 we have for H3−p

a.e. x ∈ S,

0 < Θ3−p(ν, x) <∞.
Now we recall the following theorem due to Marstrand [23].

Theorem 4.7. Let s be a positive number. Suppose that ν̂ is a Radon measure on Rn such
that the density Θs(ν̂, a) exists and is positive and finite in a set S of positive ν̂ measure.
Then s is an integer.

Applying Theorem 4.7 to s = 3 − p, ν̂ = ν and S = S, we conclude that 3 − p must
be an integer. This is impossible. Hence Claim 1 is true. This completes the proof of
Theorem 1.3. �

5. Stable-stationary solutions of the Cosserat equation

This section is devoted to the proof of Theorem 1.5. More precisely, we will show that
if (φ,R) is a stable stationary solution to the Cosserat equation (1.3). Then the singular
set is empty for p belonging to the range [2, 32

15 ].

It is well-known that S3 is the universal cover of SO(3), and we can choose a matrix
norm on SO(3) such that S3 is locally isometric to SO(3). In fact, a canonical, locally
isometric 2-to-1 covering map π : S3 → SO(3) is given by

π(w, x, y, z) =

 1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw
2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw
2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2

 , ∀(w, x, y, z) ∈ S3.

In particular, the curvature operator of SO(3), RSO(3), satisfies

〈RSO(3)(v, w)v, w〉 = |v|2|w|2 − 〈v, w〉2, v, w ∈ TRSO(3).
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For (φ,R) ∈ H1(Ω,R3)×W 1,p(Ω, SO(3)), let

(φt, Rt) ∈ C2((−δ, δ), H1(Ω,R3)×W 1,p(Ω, SO(3)))

be a family of variations of (φ,R). Denote by

η =
d

dt
|t=0φt, η̂ =

d2

dt2
|t=0φt,

and

v =
∂Rt
∂t

∣∣
t=0

, v̂ = ∇ ∂
∂t

∂Rt
∂t

∣∣
t=0

.

Applying the equation (1.3) for (φ,R) and direct calculations as in Smith [12], we obtain
that

d2

dt2
∣∣
t=0

Coss(φt, Rt)

=
d2

dt2
∣∣
t=0

∫
Ω

(
|∇φt|2 − 2〈Rt,∇φt〉+ |∇Rt|p + (φt − x) · f + 〈Rt,M〉

)
dx

=

∫
Ω

(
2|∇η|2 − 4〈v,∇η〉+ p|∇R|p−2(|∇v|2 − tr〈RSO(3)(v,∇R)v,∇R〉)

+p(p− 2)|∇R|p−4〈∇R,∇v〉2
)
dx

=

∫
Ω

(
2|∇η|2 − 4〈v,∇η〉+ p|∇R|p−2(|∇v|2 − |∇R|2|v|2)

+p(p− 2)|∇R|p−4〈∇R,∇v〉2
)
dx

holds for any η ∈ H1
0 (Ω,R3) and v ∈ H1

0 ∩ L∞(Ω, TRSO(3)).

Definition 5.1. For 2 ≤ p < 3, µ1 = µc = µ2 = 1, f ∈ L∞(Ω,R3) and M ∈
L∞(Ω, SO(3)), a stationary weak solution (φ,R) of the Cosserat equation (1.3) is called a
stable, stationary weak solution of the Cosserat equation (1.3) if, in addition,

d2

dt2
∣∣
t=0

Coss(φt, Rt) ≥ 0,

or, equivalently, ∫
Ω

(
2|∇η|2 − 4〈v,∇η〉+ p|∇R|p−2(|∇v|2 − |∇R|2|v|2)

+p(p− 2)|∇R|p−4〈∇R,∇v〉2
)
dx ≥ 0 (5.1)

holds for any η ∈ C∞0 (Ω,R3) and v ∈ H1
0 (Ω, TRSO(3)).

Lemma 5.2. For 2 ≤ p < 3, µ1 = µc = µ2 = 1, f ∈ L∞(Ω,R3) and M ∈ L∞(Ω,SO(3)),
if (φ,R) is a stable, stationary weak solution of the Cosserat equation (1.3), then∫

Ω

(
6|∇ω|2 − 4

3∑
i=1

ψ〈aiR,∇ω⊗ ei〉+ p(p+ 1)|∇R|p−2|∇ψ|2 − 2p|∇R|p|ψ|2
)
dx ≥ 0 (5.2)

holds for any ω ∈ C∞0 (Ω) and ψ ∈ C∞0 (Ω). Here (e1, e2, e3) is the standard base of R3.
In particular, ∫

Ω

(
(p+ 1)|∇R|p−2|∇ψ|2 − 2|∇R|p|ψ|2

)
dx ≥ 0 (5.3)
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holds for any ψ ∈ C∞0 (Ω).

Proof. It is readily seen that (5.3) follows immediately from (5.2) by taking ω = 0. Thus
it suffices to show (5.2). For any ω ∈ C∞0 (Ω) and ψ ∈ C∞0 (Ω), let η = ωei and v = ψaiR
and substitute them into (5.1) and then take summation over i = 1, 2, 3 , we obtain that∫

Ω

(
2

3∑
i=1

|∇(ωei)|2 − 4
3∑
i=1

ψ〈aiR,∇ω ⊗ ei〉+ p(p− 2)|∇R|p−4
3∑
i=1

〈∇R,∇(ψaiR)〉2

+p|∇R|p−2
3∑
i=1

(|∇(ψaiR)|2 − |∇R|2|ψaiR|2)
)
dx ≥ 0. (5.4)

Observe that
3∑
i=1

〈∇R,∇(ψaiR)〉2 =
3∑
i=1

[ 3∑
j=1

∇jψ〈∇jR,aiR〉+ ψ〈∇R,ai∇R〉
]2

=

3∑
i=1

〈∇ψ · ∇R,aiR〉2 = |∇ψ · ∇R|2 ≤ |∇ψ|2|∇R|2,

3∑
i=1

|∇(ωei)|2 = 3|∇ω|2,
3∑
i=1

|∇R|2|ψaiR|2 = 3|∇R|2|ψ|2,

and
3∑
i=1

|∇(ψaiR)|2

= |∇ψ|2
3∑
i=1

|aiR|2 + 2ψ∇ψ
3∑
i=1

〈aiR,ai∇R〉+ |ψ|2
3∑
i=1

〈ai∇R,ai∇R〉

= 3|∇ψ|2 + ψ∇ψtr(RTaTi ai∇R+∇RTaTi aiR) + |ψ|2tr
(
∇RT∇R(

3∑
i=1

aTi ai)
)

= 3|∇ψ|2 + ψ∇ψtr[(RT∇R+∇RTR)(aTi ai)] + |ψ|2tr
(
∇RT∇R(

3∑
i=1

aTi ai)
)

= 3|∇ψ|2 + |∇R|2|ψ|2,
where we have used

aT1 a1 = diag(0,
1

2
,
1

2
), aT2 a2 = diag(

1

2
, 0,

1

2
), aT3 a3 = diag(

1

2
,
1

2
, 0),

and
〈R,ai∇R〉 = 0, RT∇R+∇RTR = 0.

Plugging these identities into (5.4), we obtain (5.2). �

Now we can extend the partial regularity theorem for stationary weak solutions of
the Cosserat euqation (1.3) obtained in the previous section to the class of stable weak
solutions of the Cosserat euqation (1.3). First, we consider Theorem 1.5 in the case that
p = 2. Namely, we will show that
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Theorem 5.3. For f ∈ L∞(Ω,R3) and M ∈ L∞(Ω, SO(3)), and µ1 = µc = µ2 = 1,
assume that (φ,R) ∈ H1(Ω,R3) × H1(Ω,SO(3)) is a stable, stationary weak solution of
the Cosserat equation (1.3) for p = 2. Then (φ,R) ∈ C1,α(Ω,R3)×Cα(Ω, SO(3)) for some
α ∈ (0, 1).

Proof. From the small energy regularity theorem obtained in the previous section, we
know that there exists a closed singular set Σ ⊂ Ω, with H1(Σ) = 0, such that (φ,R) ∈
C1,α(Ω \ Σ)× Cα(Ω \ Σ) for some 0 < α < 1.

Now we want to show Σ = ∅. For, otherwise, there exists x0 ∈ Σ such that

Θ1((φ,R), x0) ≡ lim
r↓0

r−1

∫
Br(x0)

(|∇R|2 + |∇φ|2) dx ≥ ε20 > 0.

For any sequence of radius ri ↓ 0, define the blow up sequence

(φi, Ri, fi,Mi)(x) = (φ,R, r2
i f, r

2
iM)(x0 + rix), ∀x ∈ B2.

Then

lim
i→∞

2−1

∫
B2

(|∇Ri|2 + |∇φi|2) dx = Θ1((φ,R), x0) ≥ ε20.

Thus there exists (φ0, R0) ∈ H1(B2,R3) × H1(B2, SO(3)) such that after passing to a
subsequence,

(φi, Ri) ⇀ (φ0, R0) in H1(B2,R3)×H1(B2,SO(3)).

Since (φi, Ri) satisfies {
∆φi = ridivRi + 1

2fi

∆Ri + ri∇φi − 1
2Mi ⊥ TRiSO(3),

(5.5)

it follows the same argument as in Claim 0 that after sending i → ∞, φ0 is a harmonic
function and R0 is a harmonic map into SO(3) in B2. We now need

Claim 2: (φi, Ri)→ (φ0, R0) in H1(B1,R3)×H1(B1,SO(3)).

We will apply the technique of potential theory by Hong-Wang [17] and Lin-Wang [18]
to prove this claim. Let ν ≥ 0 be a Radon measure in B2 such that

µi ≡ (|∇Ri|2 + |∇φi|2) dx ⇀ µ ≡ (|∇R0|2 + |∇φ0|2) dx+ ν

as convergence of measures in B2. It suffices to show ν ≡ 0 in B1. Notice that (φi, Ri),
solving (5.5), is indeed a stationary weak solution of the Euler-Lagrange equation of critical
point of the Cosserart energy functional

Ei(φ̂, R̂) =

∫
B2

(|∇R̂|2 + |∇φ̂|2 − 2ri〈R̂,∇φ̂〉+ (φ̂− x) · fi + 〈R̂,Mi〉) dx.

In particular, the ε0-regularity theorem is applicable to (φi, Ri) and we conclude that if
we define

S =
⋂
r>0

{
y ∈ B 3

2
: lim
i→∞

r−1

∫
Br(y)

(|∇Ri|2 + |∇φi|2) dx ≥ ε20
}

=
{
y ∈ B 3

2
: Θ1(µ, y) = lim

r→0
r−1µ(Br(y)) ≥ ε20

}
.

Then the following statements hold:
(i) S is closed with H1(S) < ∞, supp(ν) ⊂ S and Θ1(ν, y) = Θ1(µ, y) ≥ ε20 for H1 a.e.
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y ∈ S.
(ii) There exists α ∈ (0, 1) such that

(φi, Ri)→ (φ0, R0) in (Cαloc ∩H1
loc)(B 3

2
\ S).

(iii)

C1(ε0)H1(S) ≤ ν(B 3
2
) ≤ C2(ε0)H1(S).

In particular, ν ≡ 0 if and only ifH1(S) = 0. It follows fromH1(S) < +∞ that Cap2(S) =
0. Hence for any δ > 0, there exists ωδ ∈ C∞0 (B2) such that

S ⊂ int({ωδ = 1}),

and ∫
B2

|∇ωδ|2 dx ≤ δ. (5.6)

Hence for any a ∈ S, there exists 0 < ra < δ2 such that

ωδ ≥
1

2
on Bra(a).

From the compactness of S and Vitali’s covering lemma, there exist 1 ≤ l < ∞ and
{am}lm=1 ⊂ S such that {B ram

5
(am)}lm=1 are mutually disjoint, and

S ⊂
l⋃

m=1

Bram (am).

From the definition of S, there exists a sufficiently large il > 0 such that

ε20
2
≤
(ram

5

)−1
∫
B ram

5
(am)

(|∇Ri|2 + |∇φi|2) dx, ∀i ≥ il, m = 1, · · · , l. (5.7)

By the W 1,q-estimate on φ, we know that

‖∇φ‖Lq(K) ≤ C(q,K)

holds for any compact set K b Ω and 1 < q <∞. Hence for any i ≥ il and m = 1, · · · , l,
it follows from Hölder’s inequality that(ram

5

)−1
∫
B ram

5
(am)
|∇φi|2 dx ≤ C

(
riram

)−1
∫
Briram (x0+riam)

|∇φ|2 dx

≤ C(q)(riram)
2− 6

q ≤ Cδ
3
2 ≤ 1

4
ε20,

provided we choose q = 12 and δ ≤
( ε20

4C

) 2
3 in the last step. Substituting this estimate

into (5.7), we obtain that

1

4
ε20 ≤

(ram
5

)−1
∫
B ram

5
(am)
|∇Ri|2 dx, ∀i ≥ il, m = 1, · · · , l. (5.8)
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Therefore for all i ≥ il, we can bound

H1
δ2(S) ≤ C

l∑
m=1

ram = 5C

l∑
m=1

ram
5

≤ 20C

ε20

l∑
m=1

∫
B ram

5
(am)
|∇Ri|2 dx

≤ 80C

ε20

∫
⋃l
m=1B ram

5
(am)
|∇Ri|2ω2

δ dx

≤ 80C

ε20

∫
B2

|∇Ri|2ω2
δ dx. (5.9)

It follows from the stability of (φ,R) and a scaling argument that Ri satisfies the stability
inequality (5.3) so that∫

B2

|∇Ri|2ω2
δ dx ≤

3

2

∫
B2

|∇ωδ|2 dx, ∀i ≥ il. (5.10)

Plugging (5.10) into (5.9) and applying (5.6), we would obtain that

H1
δ2(S) ≤ C(ε0)δ.

This, after sending δ → 0, would yield H1(S) = 0 and hence Claim 2 is true.
It follows from the H1-strong convergence of (φi, Ri) to (φ0, R0) and the energy mono-

tonicity inequality (2.8), we conclude that

(φ0, R0)(x) = (φ0, R0)(
x

|x|
), ∀x ∈ B2,

is homogeneous of degree zero. Since φ0 is a harmonic function in B2, it follows that φ0

is a constant. Thus ∫
S2
|∇S2R0|2 dH2 = Θ1((φ,R), x0) ≥ ε20,

and R0 ∈ C∞(S2, SO(3)) is a nontrivial harmonic map. Since Π1(S3) = {0}, it follows

that there exists a nontrivial harmonic map R̂0 ∈ C∞(S2, S3) such that R0 = π ◦ R̂0.

Moreover, it follows from the stability inequality (5.1) that R̂0 is a stable harmonic map
from S2 to S3, i.e. ∫

S2

(
|∇S2ω|2 − |∇R̂0|2|ω|2

)
dH2 ≥ 0 (5.11)

for any ω ∈ C∞(S2, T
R̂0

S3). However it follows from Schoen-Uhlenbeck [14] that there is

no nontrivial stable harmonic map from S2 to S3. We get a desired contradiction. Thus
the singular set Σ of (φ,R) is empty. �

Theorem 1.5 for the cases that p > 2 can be summarized into the following theorem.

Theorem 5.4. For f ∈ L∞(Ω,R3) and M ∈ L∞(Ω,SO(3)), and µ1 = µc = µ2 = 1, if
p ∈ (2, 32

15 ] and (φ,R) ∈ H1(Ω,R3)×W 1,p(Ω,SO(3)) is a stable, stationary weak solution

of the Cosserat equation (1.3), then there exists α ∈ (0, 1) such that (φ,R) ∈ C1,α(Ω,R3)×
Cα(Ω,SO(3)).
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Proof. It follows from 2 < p < 3 and Theorem 1.3 that Sing(φ,R) is discrete. Suppose
Sing(φ,R) 6= ∅. Then there exist x0 ∈ Sing(φ,R) and r0 > 0 such that Sing(φ,R) ∩
Br0(x0) = {x0}. For rk → 0, define (φk, Rk)(x) = (φ,R)(x0 + rkx) for x ∈ B2. As in
the proof of Theorem 1.3, we can apply the monotonicity inequality (2.3), Lemma 4.1,
and Marstrand theorem to show that there exists a nontrivial (φ0, R0) ∈ H1(B1,R3) ×
W 1,p(B1,SO(3)) such that, after passing to a subsequence, (φk, R2) → (φ0, R0) strongly
in H1(B1,R3) × W 1,p(B1, SO(3)). Hence (φ0, R0) is of homogeneous degree zero, φ0 is
constant and R0 ∈ C1,α(B1\{0},SO(3)) is a nontrivial, stable, stationary p-harmonic map.
However, it follows from the stability Lemma 6.3 and Proposition 6.4 in Gastel [8] that for
p ∈ (2, 32

15), any stable stationary p-harmonic map R(x) = R( x
|x|) ∈ C

1,α(B1 \ {0}, SO(3))

must be constant. We get a desired contradiction. Hence Sing(φ,R) = ∅ when p ∈ (2, 32
15 ].

This completes the proof. �

Finally we would like to point out that Theorem 1.5 follows from Theorem 5.3 and
Theorem 5.4.

Acknowledgements. The paper was complete while the first author was a visiting PhD
student of Purdue University. She would like to express her gratitude to the Department
of Mathematics for the hospitality. The second author is partially supported by NSF grant
1764417. Both authors would like to thank the anonymous referees for their many helpful
comments that improve the presentation of this paper.

References
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