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ABSTRACT. We establish the global existence of weak martingale solutions to
the simplified stochastic Ericksen—Leslie system modeling the nematic liquid
crystal flow driven by Wiener-type noises on the two-dimensional bounded do-
mains. The construction of solutions is based on the convergence of Ginzburg—
Landau approximations. To achieve such a convergence, we first utilize the
concentration-cancellation method for the Ericksen stress tensor fields based
on a Pohozaev type argument, and then the Skorokhod compactness theorem,
which is built upon uniform energy estimates.

1. Introduction. In this article, we consider the following simplified stochastic
Ericksen—Leslie system on a two dimensional bounded domain D with smooth
boundary:

du+ (u-Vu+ VP — pAu)dt = —AV - (Vd © Vd)dt + & .5(u)dWy,
V-u=0, (1)
dd +u- Vddt = y(Ad + [Vd|?d)dt + &(d x h) o dWs,

where u: D x R, x Q2 — R%2 d: D x R, x Q — S? represent the fluid velocity
field and the molecular director field, respectively, P : D x Ry x Q — R stands for
the hydro-static pressure. (Vd ® Vd);; = (0;d, 0;d) (1 < i,j < 2) represents the
Ericksen stress tensor field. The multiplicative noise term S(u)dWj in (1)1 shall be
understood in the Ito sense with a cylindrical Wiener process W7 on a separable
Hilbert space K;. For a given h : R? — R3, (d x h) o dW; is understood in the
Stratonovich sense with a standard real-valued Brownian motion Ws. p, A, 7, &1, &2
are positive physical constants.
We assume, further, (u, d) satisfies the following initial-boundary conditions:

(11, d)‘t:O = (u()a d0)7 inD. (2)
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ad

811 on = 0, (or d|8D = do) (3)

11|8D = 07
where n is the unit outward normal to dD. In this paper, we use the Ginzburg—
Landau type approximation which relaxes the condition |d| =1 in (1) by introduc-
ing a penalized term. More specifically, we have a family of solutions (u®,d®)g<c<1
to

du® + (u® - Vu® + VP — pAu®)dt

= —A\V - (Vd® © Vd®)dt + & S(u®)dW,

V-u® =0, (4)
dd® + u® - Vdedt = 7(Ad5 - fe(da))dt + £(d° x h) o dWs,

where f.(d°) = VaqF.(d°) = 5%(|d5\2 — 1)d® with F.(d) = ﬁ(l —|dJ?)2.

In the deterministic case (§1 = & = 0), the global existence of the weak solutions
to the Ginzburg-Landau type Ericksen—Leslie system (4), which is a simplified
version of the full Ericksen—Leslie system [11, 12, 19, 20], was first investigated by
Lin-Liu [23]. For the simplified Ericksen-Leslie system (1), motivated by Struwe
[27] on harmonic map heat flows in dimension two, the existence of a unique global
weak solution with partial regularity was established Lin-Lin—-Wang [21] and Lin-
Wang [22], which was generalized by Huang-Lin—Wang [15] for the full Ericksen—
Leslie system. See also Hong [16] and Hong—Xin [17] for related works. We refer the
readers to [24] for a comprehensive survey for the recent developments. The question
that whether one can obtain a weak solution of (1) via sending € — 0 in (4) remains
open due to the difficulty with possible defect measures appearing in the Ericksen
stress tensor field. In a very recent paper [18], Kortum applied a concentration-
cancellation method initiated by Diperna-Majda [9] on the 2-D incompressible Euler
equation to show that div(Vd®©®Vd®) — div(Vd®Vd) in the torus T2. For general
domains and full Ericksen—Leslie system, the weak compactness result was shown
in [10] via the Hopf differential and the Pohozaev technique. We also want to point
out that in 3-D, the Ginzburg-Landau approximation was implemented in [25] to
construct a global weak solutions to the simplified Ericksen—Leslie system (1) with
the half-sphere assumption imposed on directors (d € Si)

On the other hand, there is a growing number of research studies that are devoted
to the simplified stochastic Ericksen—Leslie system (4) with various types of random
noises (£ + &2 > 0). See for instance, [4, 6, 7, 8]. For the mathematical model-
ing, taking the stochastic terms into account reflects the influence of environmental
noises, the measurement uncertainties as well as the thermal fluctuations. Anal-
ogously, Bouard-Hocquet—Prohl obtained the Struwe-like global solution to (1) in
[2] by a bootstrap argument together with Gyongy—Krylov LP estimates [14]. Very
recently, Brzezniak, Deugoué, and Razafimandimby in [3] proved the existence of
short time strong solutions to the simplified stochastic Ericksen—Leslie system. The
main goal of this paper is to obtain a global weak solution to (1) by extending the
compactness argument from [10] into the stochastic setting.

For simplicity, we assume A = & = v = & = 1. We introduce some function
spaces:

H = closure of C§°(D,R?*) N {f|V - f =0} in L*(D,R?),
J = closure of C§°(D,R*) N {f|V - f =0} in H}(D,R?),
H'(D,S*)={f e H(D,R®)||f|=1ae. z € D}.
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For a complete probability space (2, F,P) with a filtration {F;}i>0, let Ky be
an infinite dimensional separable Hilbert space and Wy = {Wi(t)}i>0 be a K;-
cylindrical Wiener process such that it is formally written as a series

t)=>_ Bi(t)e;,Vt >0,

where {B;(t)}52, is a family of i.i.d. standard Brownian motions and {e;}$2; is an
orthonormal base of K;. The above series does not converge in K;, but it does
converge in K» if K> is a larger Hilbert space containing K7 such that the inclusion
map J : K1 — Ks is Hilbert-Schmidt. It is always possible to construct a space Ks
with this property. For example, we can define K5 to be the closure of K7 under

the norm
o0

1
||x||%{2 = Z fz@v €i>§<1-
=1

Then we can view W as a Ky-valued Wiener process. Let Wy = {Wa(t)}+>0 be a
standard Brownian motion on (2, F,P) adapted to {F;};>0. S is a map from H to
Lo(K7,J), where L£2(K71,J) denotes the space of all HilbertSchmidt operators from
KitoJ,ie, Yoo 1S()(ei)]5 < oo, if {€;}52, is an orthonormal base of K.

We now introduce the notion of a weak martingale solution to (1).

Definition 1.1. A weak martingale solution to (1), (2), (3) is a system consisting
of a complete filtered probability space (£, F,P) with a filtration {F;}+>0, and F;
adapted stochastic processes (u(t), d(t), Wi(t), Wa(t))s>o such that for any 0 < T' <
00

1. {Wi(t)}i>0 (or {Wa(t)}i>0) is a Kj-cylindrical (resp. real-valued) Wiener
process.

2. (u,d): Q2 xRy — H x HY(D,S?) is progressively measurable with respect to
the filtration {F;},-, such that for almost surely w € €,

uc L([0,T],H)n L¥([0,7],d), de L*[0,T], H*(D,S?)).

3. We have

T
E[sup/ \u\2+\Vd|2—|—/ /(|Vu\2+\Ad+|Vd\2d|2)dxds
0<t<T JDx{t} 0 D
< 00.

Here E stands for the expectation.
4. For almost surely w € 2, for every t € [0, T}, for any p € C°(D,R?), divp =
0, we have

/Dx{t}m’ S”W/t/ (u®u, Vi) + (u, Ap))dads

:_/ (W, ) dw+/ / Vd@w—qvou Iy, Vo)) dwds (6)

// o, S(W)dW, (s))d,
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and for any v € C*°(D,R3),
-/ IS | [ (wea.ve)+ (@, o) dods
:_/D<d0,1/))d:1c+/0 /D<|Vd|2d,w>dmds (7)
+/0 /D<1/),(d><h)>dxodW2(s).

We introduce the following assumptions that are required by our main theorem.

Assumption 1. Let S : H — L5(K;1,J) be a global Lipschitz map. In partic-
ular, there exists C' > 0 such that ||S(u)||%2(K17J) < C(1 + |lulj) for all u €

H. h € H%*R?%R?) and (ug,dg) € H x HY(D;S?). Furthermore, we assume
{(u§,d§) }ocec1 C IX H?(D;S?) and satisfies (u§,d§) — (ug,dg) in Hx H*(D;R3).

Similar to Definition 1.1, a weak martingale solution (u®(t), d®(¢t), W (t), W5 (t))
adapted to a family of complete filtered probability spaces (Q°, F¢, P, {F5 }i>0) to
(4), (2), (3) can be defined. Under Assumption 1, the existence of weak martingale
solutions (u®,d®, W§, W5) with respect to (2%, F°,P°, {Ff }1>0) was established in
[7, Theorem 3.2] via the Faedo—Galerkin approximation and the weak compactness
method, together with the path-wise uniqueness in 2-D [7, Theorem 3.4]. It has
been proved in the recent work [5, Theorem 3.17] that (4) possesses a unique strong
solution, that is, given (Q, F, P, {F; }1>0, W1, Wa), there exists a unique pair of sto-
chastic processes (u®, d*) which solves (4) with respect to (2, F, P, {F; }+>0, W1, W2)
for initial data (u§,d§) € J x H?(D;R3).

Our main result asserts the existence of a global weak martingale solution to (1)
via passing the limit of solutions (u®,d®) to (4):

Theorem 1.2. Under Assumption 1, there exist a completed filtered probability
space (Y, F',P’) and a sequence of weak martingale solutions (ﬁE,HE,Wi,W;) to
(4), (2), (3) on (', F',P') and a weak martingale solution (u,d, W, W3) to (1),
(2), (3) such that after passing to a subsequence,

T — uin L2(Q; L2([0,7), H'(D))), d —d in L*(Q';L*([0,T), H'(D)))
as € — 0.

We would like to remark that it is feasible to extend the conclusion of Theorem
1.2 to dimension three, if, in addition, the initial data do(2) C S% and h satisfies
h x e3 = 0, where e3 = (0,0,1)7. In this case, one can first show that the third
component of d¢, (d€)? > 01in Q x R, , and then modify the argument by Lin-Wang
[25] from the deterministic to stochastic case accordingly.

The paper is organized as follows. In section 2 we establish some uniform energy
estimates for the approximate solutions (u®,d®) by Itd’s formula. The conver-
gence of the approximate system, in particular, the Ericksen stress tensor field and
martingale terms will be discussed in section 3. In Appendix A, we provide the
computation of It6’s formula for two functionals of d.

2. Uniform estimates on approximated solutions. In this section, we will
derive an uniform energy estimate for (4), (2), (3) via Itd’s calculus.
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For simplicity, we denote || - || := || - [|z2(p). First, applying It6’s formula to
3w (@)1 yields
1 € 2 1 g2 K 12
Sl @I = Slugll” + |Vu®|“dzds (8)
2 2 0o JD

t
=/ /(VdSQVdE,Vu5>dxds

/ 1S, i, ) s + / [ St awi () da

where we have used the cancellation property

t
//(us-VuE,u‘e)dmds:O.
o Jp

From the relation between Stratonovich and It6’s integral, we have that
(d x h)odW, = %((d x h) x h)dt + (d x h)dWs.
Therefore (4)3 can be written as
dd® 4+ u® - Vddt = (AdE —f.(d°) + %(de x h) x h) dt + (d°* x h)dW,.  (9)

Now we apply the It formula to ®.(d°) := 3||Vd®|? + [, F.(d*)dx (see Appendix
A) to get

®.(d®)(t) — P<(dj) (10)

= /t/ (u - vd®, Ad® — f.(d°))dxds — /t/ |Ad® — f.(d°)|?dzds

0o JD 0o JD
+ ;/Ot/D(NdE,V((dE x h) x h)) + |V(d® x h)|*)dzds

1 t
+ f/ / (—Ad® +£.(d°),d® x h)dzdW(s).
2 0 JD

Using the fact that

¢ ¢
/ / (u® - Vd*, f.(d°))dzds = / / u® - VF,(d%)dxds = 0,
o Jp o Jp

t
—/ /(uE-VdE,Ads>d$dS
€2
/ / vd® ® Vd®, Vu*® d:rds—i—/ / <Vd| >dxds

:/ /(VdEGVdE,VuEdes,

and

we can add (8) and (10) together to obtain

Sl (@) + S V()P ()

t
+/ Fg(de)dx+/ /(|Vu5|2+|Ad5ffs(d€)|2)d;z:ds
Dx{t} 0 JD
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1 1
= gl + 519
I 2
+3 | USOE cm + 1908 B P)ds
1 t
+ f/ / (Vd®, V((d° x h) x h))dzds

/ / u®)dW, (s))dx

+ A /D (dF x b, AdE — £.(d°))daedWs(s).

It has been shown in [7, Theorem 5.1] that d° satisfies the maximum principle, i.e.,
|d®] < 1 for almost all (w,t,2) € Q x [0,T] x D provided |d§| < 1. Hence we have
that

t t t
||S(u€)|\22(K17H) ds < ||S(u€)||iz(K1,J) ds<C (1 + [u®[?)dads,
0 0 0 D

t t
/ / IV(d° x h)[2dads < c/ /(\Vd8|2+ Vh[2)dads,
0 D 0 D
t t
/ / (Vde, V((dF x h) x h))deds < 0/ /(|Vd€\2 +|Vh[2)dads.
0 D 0 D

Combine all these estimates above, we arrive at

1 13 ]‘ g
5l O + 5lvd Ol (12)
t

+/ Fs(ds)dz+/ /(|Vu5\2+|AdE—fe(d€)|2)da:ds

Dx{t} 0 JD

1 12 1 €112
< 55" + S IVds

t

+C/ /(|u5|2+\Vd5|2+|Vh\2)dmds

// u®)dW (s) d:v—f—// (dF x b, AdE — £.(d°))dzdWa(s).

We can derive from taking the expectation of (12) that

E sup [|u8(t)||2 + ||Vd8(t)||2 —|—/ Fg(da)dx] (13)
0<t<T Dx{t}
T
—HE/ / (IVue |2 + |AdE — £ (d9)[2)dads
0 D

T
< CIE/ /(\u5|2+|Vd5\2+ |Vh|?)dxds
0

+CE sup // (5))dWi (s))da
0<t<T

+CE sup / / (dF x b, Ad® — £.(d°))dzd W (s)
0<t<T 0 D

+ C(L+ [luol® + | Vdo ).
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Now we use the Burkholder-Davis—Gundy inequality, Cauchy—Schwarz inequality
and Holder inequality to show that

E sup
0<t<T

[,
gaE/
0

/t/ (d° x h, Ad® — f.(d))dzdWs(s) (14)
0 D

1

2 3
ds]

3
< CE | sup ||d° x h|e(p) (/ / |Ad® — f.(d°) 2d:z:ds>
ogth

T
< CE sup [|d® x h||7ep) + ]E/ / |Ad® — f.(d°)|?dxds
D

0<t<T

/ (dF x b, Ad® — £.(d°))da
D

T
< CE / [{d® x h, Ad® — fs(d5)>||2d81
0

N

1
C(|h] - ,T,D)—i—ZE/O /D|Ad€—f5(d5)|2dxds.

Similarly, we can show
[ [ ). st pasami o

< E sup [lu (¢ )||2+CIE/ / [u®|*dxds.
4 o Jp

E sup
0<t<T

(15)

0<t<

Now we can substitute (14) and (15) into (13) to get

E sup [||u5||2+||Vd5||2+/ Fs(df)dx]
0<t<T Dx{t}
T
—HE/ /(|Vu5|2+|Ad5—fg(d5)|2)dxds
0 D
T
< CE / / (02 + [Vd=[2 + [Vh[2)dads + C(|(ug, Vo), [ =, T, D).
0 D

It follows from Gronwall’s lemma that

0<t<T

E sup l||uf<t>|2+||w€<t>|2+ /D » Fg<df>dx] (16)

T

+]1«:/ /(|Vu5\2+|Ad€—fE(dE)\Q)da:ds
0 D

< C(|(uo, Vo), [l =, |V, T, D).

Furthermore, if we raise both sides of (12) to the power p (p > 1) and take the
expectation, we arrive at

p
E sup lllus(t)ll“rIIVdg(t)IIQJr/ Fa(ds)dw] (17)
0<t<T Dx{t}
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+E [/Ot/D(quF +]Ad® —fe(d5)|2)d;vdsr

T
< C(|[aol; [[Vdol[, p) + CT]E(/O [lu= @)1 + [Va“(®)||* + [|Vhl[*] dt)”

p
+ CE sup // £(s)))dzdWi(s)
0<t<T
p
+CE sup / / (d x b, Ad® — £.(d°))dadWs(s)
0<t<T 0 D

Now we apply the Burkholder-Davis—Gundy, Cauchy—Schwarz, and Holder inequal-
ities to the last two terms in the righg hand side to get

p
E sup / [ ), S (5w () o (18)
0<t<T
< CE /0 [[us(s) 1215 (u® (s ))IIQdS]
T 5
< CE | sup [u(t)]” </ (1+||u€(5)||2)d5>
0<t<T 0
T
e sup [lu(t )||2p+CE/ (1+ [[u® (s)[|*)7ds.
4 0<t<T 0
A similar argument yields
t p
E sup / / (d® x h, Ad® — £.(d°))dzdWs(s) (19)
0<t<T

P
+CE sup ||d° x h|*.
0<t<T

/ / |Ad® — f.(d°)|?dxds

Combine (17), (18) and (19), by Gronwall’s inequality we obtain that for p > 1, it
holds

E sup [IIH()IIQJrIIVds()II2 /D “ a(ds)dw] (20)

/ [ (9w + jad — g >|2>dxdsr

< C(|[(ao, Vo) [, [l o, [[VhI[, T, D, p).

+E

Similar to the Aubin-Lions lemma in the deterministic case, we need some frac-
tional Sobolev estimates in ¢ variable as in [13] for stochastic Navier-Stokes equa-
tions. Write

u®(t) = ugj + /0 PAu®(s)ds — /0 PV . (u® ® u®)(s)ds

_ / PV (VA © V) (s)ds + / " S ()W (s)
0 0
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4

=g+ 3 I (1),

i=1

where P is the Leray projection operator. We have that

E [HllsH%VLZ([O,T];H*(D)) + 15152 20,7311 (D) | < Cs
E {HI§|\12,V1,2([0,T];W_2,5(D))] < C, for some p > 2.

Applying [13, Lemma 2.1] to I§ we conclude that for any a € (0, 3) and p € [2,00),
it holds
P

E[||I4||Wa #([0,T);L2(D)) dWl( )

Wer([0,T];L2(D))
< C’E/O S (u ())Hiz(l{l,H)dt

T
chA<me<mmeusa

Now we define
X = L>=([0,T]; L*(D)) n L*([0, T]; H' (D))
N (Wh2((0, T, H1(D)) + WH2([0,T); W=2P(D)) + WP([0,T); L*(D))) -
Let {£(u®)}o<e<1 be a family of probability measures define on X as following:
L(uf)(B) = P(u® € B)

for any Borel set B C X. For a fix R > 0, we can derive from Chebyshev’s inequality
that

P(llu®llx > R)
R R
<P <||UE||L<>°([0,T];L2(D)) > 3> +P (”uE”L?([O,T];Hl(D)) > 3)
. R
+ P o llwezqory i) +wr2omiw-20 (D) +wer(o,1122(0)) > 5
c
S —

m.

By a fractional version of Aubin-Lions lemma and the Sobolev interpolation in-
equality, X is compactly embedded in LP([0,T]; LP(D)) N C([0,T]); W~2?(D)) for
1 <p<4(ct [13, 26]). Therefore {L£(u®)}o<e<1 is tight in LP([0,T7]; LP(D)) N
C([0,T); W=2P(D)) for 1 < p < 4. Similarly, we have

—ds - /1v ®dE(Ms+/?Ad@—QMﬂX$@
0
+2A«&xm )(s)ds + [ (@ xm)(s)awa (o)

4
=dj+)_J ()
i=1
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Then we have

[||J1||W1 4 OT]L3(D))] <G

E [”JSHWlﬂ([O,T];L?(D)) + ||J§||I2/V112([O,T];L°°(D))} <C,

and by an argument similar to that of I§ we can show that for any « € (0, %) and

p € [2,00), it holds
P

t
/ d® x hdWa(s)
0

[||J4 ||Wa »([0,T7; L2(D))] E ’
We.r([0,T);L2(D))

T
<CE [ X h(O)fp
0

T
< CIE/O Il ([ (8) 122t < C.

Hence, the laws {£(d®)}o<c<1 are bounded in probability in
Y = 1((0, T}, H'(D))
N (W30, 7): L3 (D)) + Wh3([0, T); LA(D)) + W([0, T); L*(D)) ).

Since Y is compactly embedded into L2([0,T]; L9(D)) N C([0,T); L3 (D)), p > 1,
{£(d%)}o<e<r is tight in L9([0, T]; L4(D)) N C((0, T}; L3 (D)), p > 1.

3. Convergence of Ginzburg-Landau approximation. The main purpose of
this section is mainly devoted to show the convergence of Ericksen stress tensor and
the martingale terms. From the uniform energy estimates in the previous section,
we know that (L£(u®),£(d®)) is tight in LP([0,T]; LP(D)) N C([0, T]; W =2P(D)) x
L4([0,T); LY(D)) N C([0,T); L3 (D)) for 1 < p < 4,1 < q < oo. Now we apply
the Prohorov’s theorem, there exists a probability measure p on LP([0,T]; LP(D))N
C([0, T); W27(D)) x L([0, T}; L4(D)) NC([0, T; L# (D)) x C([0, TT; K2) x C([0, T1),
1< p<4,1<q< oo such that after passing to a subsequence,

E(ue,ds, Wl, Wg) — W.

Then by Skorokhod’s embedding theorem, there exists a complete probability space
(€, F/,P') and a sequence of random variables (w°,d, W, W) on (€, F',P') such
that

L@, d", W, W,) = L(us,d°, Wy, Wa), (21)
and (u,d, W{, W}) defined on (Q', F/,P') such that
L(u,d, Wi, W;) =

u® — uin LP([0, T] P(D))NC([0,T); W=2P(D)),1 < p < 4,P-as.,

u —uin L?(Q' x [0,7;J), \

d” — din L9([0,T]; LY(D)) N C([0,T); L3 (D)),1 < q < oo, Pl-a.s., (22)
d —din L2 x [0,T), HY),

],
We — Wi in C([0,T]; K2), P-as.,
Ws — W) in C([0,T];R), P-as..

And for P'-a.s., u € L>=([0,T]; H) N L2([0,T);J), d € L>([0,T]; HY(D)).
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For martingale solutions, for each 0 < ¢ < 1, we define Mye (t), Mq-(t) as

Mye (t) =u®(t) —uf + /Ot[PV -(uf ®@u®) —PAu® + PV - (Vd® & Vd)](s)ds,

M- (t) = d°(t) — d5 + /Ot[v S (uf @ d°) — Ad® + £.(d°) — %(df » h) x h](s)ds,

for any t € (0,T]. Also define My=, Mg- by replacing u®,d® in My-, Mg- by ﬁE,HE.
Next we show that for P'-a.s.,

w (t) = /0 t S(u®)dW (s), (23)
Mg )= [ @ xwaics (21)
for every ¢ > 0 and every t € [0,T]. For any z € L*(0,T; H™ 1) we set
o(z) = o 125

o :
L+ fo llz(s)lF-1ds

By a argument similar to that in [1, 7] we can show that

' (M) - [ @ )T ) =Be (Ma() - [ Swo)am(s) =o.

This implies that for P’-a.s. (23) holds for all ¢ € (0,7]. Similarly, we can show
(24) is also true.
Let My(t) and Mq(t) be defined by

My(t) =u(t) —ug + /Ot[PV -(u®u) —PAu+PV - (Vd e Vd)](s)ds,

Ma(t) = d(t) — do + /Ot[v S(u®d) - Ad — |Vd[*d — %(d x h) x h](s)ds.

With (22), we have the almost surely convergence of every term in Mg- except the
Ericksen stress tensor (Vd ® Vd ). Now we claim that for P'-a.s.

T
—& - ]. ——E
lim / / (Vd ® Vvd —§|Vd 1Ty, V) dxds (25)
D

e—0 0
T 1

z/ /(Vd@Vd—ﬂVdPHg,V@)dl‘ds.
o Jp 2

For any 0 < Ay, Ay < 0o, define the set X(Ay, As) consisting of solutions d_ to
Ad —f.(d)=7"inD (26)
such that the following properties hold:
1. [d] <1forae zeD.

—€ 1 —E —€
sup &.(d) = /D <2|Vd >+ F.(d )) dx < Aj.

0<e<1

sup HTEHLZQﬂ S AQ.
0<e<1

The following small energy regularity lemma [18, 25] plays a key role in our analysis.
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Lemma 3.1. Suppose {Hs}0<5§1 C X(A1,A2) and ¢ — 7 in L*(D). Then there
exists a o > 0 such that if for xo € D and 0 < ro < dist(zg, 9Q),

1 _
sup / <2|Vd6|2 + Fs(d€)> dz < 52, (27)
0<e<1J B, (z0)

then there exists an approximated harmonic map d € Hl(B%(xo),Sz) with tensor
field T, i.e.,
Ad + |Vd*d =T, (28)
such that
d” —d in H' (B (0)) (29)
as e — 0.

This leads to the following H' precompactness result.

Lemma 3.2. Under the same assumption as Lemma 3.1,
d"—dinHL (D\Y),
where

e R H . 2
E._ﬂ{xeD.hg(r)lf/Br(z)( |Va'|? + F.(d ))dx>50}

r>0
Moreover, 3 is a finite set.

From (16) and (21), we have

E" sup [HUE(UQ + IV (1)))? +/ Fs(de)dﬂf] (30)
0<t<T Dx{t}
T
B | [V R+ A @)
=E sup |[u*(®)|*+ [Va (1) +/ Fs(dg)dv’U]
<t<T Dx{t}
T
+E| [ (9e? + ade - g(df)ﬂ%dt]
0
<c.
Hence, there exists N' C Q' such that P'(N) = 0, and it holds for w € Q' \ NV that
T
liminf/ / (VA2 4 |AT — £.(d@)]2)dwdt = C1 (w) < oo, (31)
e—0 0 D
and
liminf sup / (&2 + [V ]2 4+ F(@))dz = Ca(w) < 00, (32)
=0 o<t<T JDx{t}

Now fix w € '\ NV, by Fatou’s lemma, we have

T
/ liminf/(\Vd 24+ |AT — £ (@) 2)dads
0

e—0

<hm1nf/ / (VA ]? + |Ad" — f.(d")|*)dxds < co.
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Hence there exists A C [0, 7] with full Lebesgue such that for any t € A,

e—0

liminf/ (VEP + AT — £(@)2)de < oo.
Dx{t}
For t € A, we set
INEES DO {x € D : lim inf Br(z)x{t}(;v(ﬂ? + F.(d"))dz > 53} .
By Lemma 3.2, it holds that #(%;) < C3(w) < oo and
d (t) —» d(t) in HL (D \ ).

Hence we get (25) holds for ¢ with supp ¢ C D\ ;. Now we consider the case
¢ Nsupp ¢ # (. Since ¥; is finite, we may assume (0,0) € supp . Write

2 *62 —€ —€
0n,d P — 0, d P 2(0,,d°,0,,@) ) )

— = 1, _—
vd ovd — -|Vd |?I, = ( o: L
2' T2 2\ 2(8,,d°,0,,d)  |0p,d |2 —|0,,d 2

We can now assume that there exists two real number «, 8 such that
_ e 1
(Vde ovd — 2|Vd5|2112) dx

— (;Vd ©Vd - ;|Vd2112) dx + <g ﬁ) 5(0.0)
as convergence of Radon measures. (25) is true if we can show
a=p=0.
We apply the same Pohozaev argument as that in [10]. Set 7°, e. to be
Ad —f.(d) =:7° (34)
and
(@) = VAP + R@)

For any X € C*(D,R?), multiplying (34) by X - Vd_ and integrating over B, (0)
we get

/ (X da - / (vd" o vd',VX)dx

0B,.(0) B, (0

n / div Xe.(d")dz — / LV do (35)
B,.(0) 0B, (o) |$|

= / (X -vd’,r%)dx
B(0)

If we choose X (x) = x, then (35) becomes

),
9B,(0)
—e

—7“/ eo(d)do :/ \x|<8i,7'€>dx.
9B..(0) B.0)  Or

or

da+/ 2F.(d")dx
B o) =(d)
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/ ee(d )do = /
8B,.(0) 9B,.(0)

1 —c 1 d
+ 7/ 2P (@ )dw — 7/ 224 ryaa
r B,-(0) r B,.(0) or

Integrating from r to R yields

/ eo(d)dx = /
Br(0)\B-(0) Br(0)\B:(0)

R — ad”
+/ f/ 2F.(d") — |z|{—=—,7°) | dzdT.
mm)( @) - el o)

Since X; = (0,0), then there exists v > 0 such that

Hence
od”

Wda

—€

2

od e

or

(36)

e 1
ee(d)der — 5|Vol|2da: +70(0,0)

as convergence of Radon measure. By sending € — 0 in (36) we get

1
/ L vdPds
BR(0)\B,(0) 2

/ od
>
Br(0)\B(0)

? Ry -
— daz—l—/ — lim inf 2F.(d")dxdr (37)
”
R —E
1 od
+ lim inf —f/ |x|(——, 7%)dzdr.
e—=0 r T B (0) 8T

T =0 B, (0)

or

Notice that
—E

R
1
/ —= liminf |x|(aai,75>da:d7'

T =0 B-(0) T

dr
L2(B-(0))

R
< limsup/ 171 g o) [ 7O
e—0 0
= O(R).
As a consequence, we claim that
2F.(d°) — 0 in L'(Bjs). (38)
For, otherwise, then there exists x > 0 such that
QFE (as)dl' - H5(070).

This implies

R R
1 _
lim — lim inf/ 2F.(d")dzdr = lim Bir = .
rl0 J,. T €0 B.(0) 0 J,. T
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If we choose X (z) = (x1,0) in (35), we obtain that

1/ (|ama‘f|2—|axlaf|2) dx+/ F(d)dx
2 JB,(0) B.(0)
2
= / 21(0p,d, 7°)dx + / N (@)do (39)
B,.(0) aB.(0) T

= od
—/ 21(0p,d_, —)do.
9B,.(0) or
Since e.(d)dz — 1|Vd|?dz in B, \ Bz for r > 0, it is easy to see

e od ad
/ .T1<8w1d8, Ydo — 21(0,d, —)do,
9B,(0) or 95,(0) or
2 . 1 2
/ e @)do - - | Evd|*do,
aB,(0) T 2 JoB, T

and by (38),
/ F.(d7)dz — 0.
B (0)

With the fact that
= O(T),

/ x1<azla€,75>d:17
B,

by sending £ — 0 in (39) we obtain

1

7/ (102,d[* = 05, d[*) dz + a = O(r)
2 JB,(0)

which implies a = 0 after sending r — 0.
Similarly, if we choose X (z) = (0, 1) in (35), by performing the same argument

we will arrive at )

f/ (0,,d, 0y, d)dz + B = O(r).
2 JB,(0)

Hence 8 = 0. This implies almost surely convergence of Ericksen stress tensor field
(25). From (20) and (21) we can conclude that for any 1 < p < oo, it holds
P

E" sup llus(t)ll%r IIVHE(t)IIQJr/ Fe(da)dxl (40)
0<t<T Dx{t}
P

T
+E / (VP + AT — £.(@)]P)ds

=E sup lllua(t)lerIIVdE(t)ller/

0<t<T Dx{t}
p

Fg(ds)dx]

+E

T
| avwl? + ad - fe<d€>|2>dt]
0
<cC.
Thus we have for any & € L2(€/;J), it holds

lim E/ { /D (Mg (t)@)dx] (41)

e—0
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= lim IE[/ (T () — us, €)da

e—=0
// (Va©, ve) — ( E®ﬁE+VHE®Va€—%WHE\Z]IQ,VQ)dxds}
:E'{/D@(t) . €)dx

t
+/O /D(<VH,V§>f<u®u+Vd®Vd7%|Vd|2]IQ,V§))dxds}

_E [/D<Mu(t),§>d:c} .

Now we turn to the convergence of d°. We claim that up to a subsequence,
Ad” —f£.(d°) = Ad + |Vd|*d in L*(Q' x [0,T] x D). (42)
From (16) we can assume that there exists g € L*(Q' x [0,T] x D) such that
Ad —f.(d) —gin L*(Q x [0,T] x D).
First we claim that
g L d for almost all (w',t,2) € Q' x [0,T] x D. (43)
In fact, for any test function ¢ = ¢(w’, x), if we apply the It6 formula to

—e d |2
w@) = [ 5 o

it hold that (see Appendix A)

) (1) / d2(t - 9)
LLQ 4 / ( ¢4

/té/qra w19 s +1E’Ut§/ (Ad" — f.(d°),d )pdads| .

Now we pass £ to 0, using the fact that |[d| = 1 for almost all (w', ¢, 2) € Q' x[0,T]x D

we get
E [/jg /D<g,d>¢dwds} =0. (44)

Since ¢ and ¢ can be arbitrary, (g, d) = 0 for almost all (v, ¢,z) € Q' x [0,T] x D.
Hence (43) holds. By taking the cross product of (42) with d ¢ we get

e—0

g | [ [ 0@ <@ pasi [ T
= lim E/ —/0 /D<VHE XHE,V@dxdt—/O /D(gxda,@da:dt]
=F l— /OT/D(Vd><d,V¢>d:cdt—/oT/D<gxd,qb)dmdt].

0 = lim E/ /T/ (Ad” —f£.(d) —g) xd, qb)dxdt]
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This implies (g—Ad) xd = 0 and hence there exists A = A(w', t,z) : Q' %[0, T|xD —
R such that

g — Ad = \d.
From (43) and (Ad,d) = —|Vd|*d we get
A= (g —Ad,d) = |Vd*.

Thus (42) holds. By (22), (40) and (42), we have for any ¢ € L?(Q'; H*(D,R?)), it
holds

ti | [ (0130, e (45)
~ B [ @0 - d5.0do

// (@ ed,vVe) - (Ad —f(d)())dxds}

— lim B’ {/ / ((d” x h) x h,C)dxds}

=F [/(d() do, ¢ dx—// (u®d,Ve) — (Ad + |Vd|2d, ¢))dads

—IE’[ // ((d x h) xhg>dxds}
& [ [ aalo). s

Taking the limit € — 0 in (30) and applying the lower semicontinuity yields (5).
To finish the construction, we need to show that for every t € (0, 7]

/ S@)dW;(s) — / u)dWj(s) in L*(Q; L*(D)), (46)

/0 (d° x h)dWy(s) — /O (d x h)dW}(s) in L?(Q; L*(D)). (47)

For this purpose, we adapt the strategy from [7]. Let A be the set of null sets of
F’ and for any t > 0 and € > 0, let

Fii=0o (0 ((ﬁs(s),ag(s),Wi(s),W;(s)); s < t) uN) ,
F,:=o (o ((u(s),d(s), Wi(s), Ws(s));s < t) UN).

Since E(HE,HE,W;W;) = L(u®,d®, Wy, W), (Wi,W;) form a sequence of cylin-
drical Wiener processes. Moreover, for 0 < s < t < T the increments (W (t) —
Wi(s), Wo(t) — Wo(s)) are independent of F¢ for r € [0,s]. Let k € N and
S50 =0 < 8 < -+ < s <T be a partition of [0,7]. By the characterization
of Ky-valued Kj-cylindrical Wiener process [7, Remark 2.8], for each £ € Kj we
have

B eiz;?1<£,Wi<sg->—Wi<sj_1)>K5,KQ}

E [ei25=1<f,vv1(sj>—wl(sj1>>K5,K2

k 2
— ez ia(sisi-1)lElk
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Thanks to (22) and the Lebesgue Dominated Convergence Theorem, we have

lim E’ eiz;&@wi(snWi<sy-1>>K5,K2} _E [ei S (W)= Wi(s-1)) ey e,
e—0

k 2
:67% j= 1(sj—sj— 1)‘5‘1(1'

Hence the finite dimensional distribution of W is Gaussian. The same argument
also works for Wj. Next we want to show that (W/(t) — W/(s ) Wi (t) — WQ/(SN)), 0<
s <t < T is independent of F, for r € [0, 5] Consider {¢;}f_, € Cy,(W2P(D) x
L5(D)), {th;}5_) € Co(EKayxR), let 0< ty < -+ <1y <s<t<T, ¢ € Cy(Ka),C €
Cy(R).

k k
E l H ¢ (@ (ry),d (7)) H i (W (r5), Wa(r;)) (48)
C BT () — TN — w;<s>>]

k k
T ). ) T s 0730), 7200,

xEWWWwW%wEMWwwW%M.
Again by the Lebesgue Dominated Convergence theorem, if we send e — 0 in (48)
we can see (48) also holds for (u,d, W{, W3) in the limit. Furthermore, it is easy to
show that T/ is independent of W3.
For any § > 0, let 75 be a standard mollifier with support in (0,¢). Define

oo

S%(u(s)) = / ns(s — r)S(u(r)dr.

—00

Let Mgs and M? be respectively defined by
t
- [ '@,
M) = [ o)

0
By the property of mollifiers, we can get for any v € H

t
tin B [ S5(v(5) = SV (DI, 0, s =0,
0

Hence, for any ¢ € (0,7, we have the following uniform approximation

lim sup E' / S(@)dw ( :0, (49)
6—=00<e<1
and
t 2
lim B || M3 (t) — / S(u)dWi(s)|| = 0. (50)
6—0 0

Next, we need to show that for any § > 0
lim B || M3 (1) = M3(0)||” = . (51)
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If we write Wi(t) = S0°, B;(t)e; and Wi(t) = 3.°°, Bi(t)e;, where {B;}2,,
{Bi(t)}32, are i.i.d. stardard Brownian motions, then

M. (t) — / SO(T(s))(e;)dB,; ( / S%(u(s))(e;)dBL(s).
By Young’s convolution inequality, we have that

/ 155 u(s) |12, (x, 12,5 < CF / 1S ()12, i, 25 < C.

Thus, for any v > 0, there exists an N € N such that

Z IE’/ 15% (u(s))(es)||?ds < .

i=N+1
Since
liny B / 1% () — 5° ()%, 1,y s = 0.
there exists an €9 > 0 such that for 0 < e < &g,
E’/ 15 (T (5)) (e3) | Pds < 2.
i=N-+1

Now we split M. (t) — MJ(t) into three parts

ME. (8) — MP(t) = XNj ( / " 69w () (e1)dB / S5 (u (s))

+Z/S5 ))(e;)dB; (s)

1= N+1
s / S%(u(s))(e)dBi(s) i= J2 4 (t) + I 5(t) + J25().
1=N+1
By the It6 isometry, we have that

B2 S E'/HSH Jen)|2ds < 2,

1=N-+1

B = > & [ IS el <o

i=N-+1

For J. 1(t), we write

(/555 )(es)dB; ( /55*5 eldB()>

+§(/® (@ (s)) /55 )(e:)dB(s )>

& 8
= Iz-:,l + 15,2'
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For I 571(t), by integration by parts we obtain that

N

I;%(t)—z( [ s eniensis - [ [ng*S(uﬁ(s))}(eoB?(s)ds)

=—Z(/ o+ S (] 5) = Bi(s)ds).

From the Burkholder-Davis—Gundy inequality, we get for any p > 1, any i =
1,2,..., N,

supE’ sup (|§f(s)\p + |B;(s)\p) < CT%. (52)
e>0 s€1[0,T

Hence, by the uniform integrability (52) and the almost surely convergence (22) we
have that for i =1,2,..., N,

hmE// B, (s (s)|Pds = 0.

e—0
This implies
2

N t .
Z/ [15 % S(W (5)))(e:) (B; (5) — Bi(s))ds

2

E2,0)?=F

<NZ]E’
< NZE' [+ s@ el B ) - B;<s>|ds]
<NZ]E' [ s perias [ i >|2ds]
ZE’ [ 1SN s [ 1B - Bl
S%VZE' [ [ e - 5o ds}

[ S e B - Bl

2

CNT? 5 :
< O (& s <1+||u€<s>||>4) (= / B - Bi(o) s
0<s<t
NT? &
C(S (IE’/ |B; (s )4ds) -0,

as € — 0. Using a similar argument, we can show that
; 76 2 _
tim /|12, (1)]> = 0.
Since v can be arbitrarily small, we get

lim B [[lJ2, [ + 172201 + |12 5(8)II*] = 0, vt € (0,71,
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This implies (51). Then we can conclude from (49), (50) and (51) that for every

t e (0,7,
2
lim E' / S (s))dW ( / S(u(s))dwi(s)|| = 0.
e—0
Similarly, we can show
t . t 2
lim E/ / (d” x h)dW,(s) —/ (d x h)dWj(s)|| =0.
e—0 0 0

Hence, the convergence of martingale terms (46) and (47) holds. Putting (41), (45),
(46) and (47) together completes the proof.

Appendix A. Itd’s formulas for functionals of d. Consider the functional

de 2
T(d®) ::/D|2qbdm.

It is easy to obtain the first and and second Fréchet derivatives of ¥(d®)
V(@) = [ (@ god.
V(@) el = [ (o

Applying the Tt6 formula to U(d®) gives
1
AW (d) = W'(d°)[dd7] + 5 W(d)[dd, dd].
Since,

1
dd® = (—uf - Vd* + Ad® — f.(d%) + = (d° x h) x h) dt + (d° x h) dWx,
2 ——
k

J
we then obtain that for 0 < § < ¢,

W@ - W@ 0) = [ (W] @), k] ) ds

v [ v kemae)

:/t;/D<_u5-Vdf,d5>¢dxds+/t;/D<Ada—fg(da),d5>¢dxds

1 [t 1t
+ f/ / ((d® x h) x h,d*)¢dzds + f/ / |d® x h|*¢dzds
2JisJp 2J)isJp

t
+/t 5/ (d° x h, d*)¢dzdWa(s)

:/tt(S /”/ (Ad® — £.(d°), d°)gduxds,

where we use the fact the vector triple product

((d° x h) x h,d®) = —|d® x h|*. (53)
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and
(d® x h,d®) =0. (54)
Recall the energy functional
1
P, (d°) = 5HVdEH2 +/ F.(d°)dz.
D

The first and second Fréchet derivatives of ®. are given by

&, (d°)[g] = /D (VdF, Vg) + (£.(d°), &) de

de]? -1
- /D<—Ad5 o at L? d&°, g)dr,

®"(d° _ |d8|2_1 2 2 € 2
2(d)[g, 8] = i <Vg,Vg>+T|g\ +;2<d,g> dz

for every g € H'(D;R?). Then, the Ito formula for ®.(d°) reads
1
4D (d°) = @ (d°)[dd"] + S ®!(d7)[dd", dd].
From the identity (53) and (54) we obtain
D (d)(t) — Pc(do)

k !/ EN[s ]‘ 1" £ ! / €
= [ (@@ + jor@ k0 ) s+ [ @@ s

0

t t
= / / (uf - vd®, Ad® — f.(d°))dzds — / / |Ad® — f.(d°)|?dxds
0 JD 0 JD

L[ € |d€‘2 —1 € €
+ = (—Ad® + ———d*, (d° x h) x h)dxds
2Jo Jp €

t €12 _
+ 1/ / (|V(d€ x h)|? + |d|721|d5 X h2> dxds
2 )0 Jp €
1 t
+1 / / (—AdF + £.(d°), d° x h)dzdWa(s)
2 0 JD
t t
:/ /(ua - VdE, Ad® — fE(dE)>d:rds—/ / |Ad® — f.(d°)|?dzds
0 JD 0 D
1 t
b3 [ (9T <) <)+ 9 < ) dads
0 JD

t
+ 1/ / (—AdF + £.(d°), d° x h)dzdWs(s).
2 0 D
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