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GLOBAL BEHAVIOR OF SOLUTIONS TO
THE FOCUSING GENERALIZED HARTREE EQUATION

ANUDEEP KUMAR ARORA AND SVETLANA ROUDENKO

ABSTRACT. We study behavior of solutions to the nonlinear generalized Hartree equation, where the
nonlinearity is of the non-local type and is expressed as a convolution,

iue + Au+ (2| N s u)|ufPu=0, zeRYteR.

Our main goal is to understand global behavior of solutions of this equation in various settings. In
this work we make an initial attempt towards this goal and study H' (finite energy) solutions. We
first investigate the H' local wellposedness and small data theory. We then, in the intercritical regime
(0 < s < 1), classify the behavior of H' solutions under the mass-energy assumption M&EJuo] < 1,
identifying the sharp threshold for global versus finite time solutions via the sharp constant of the
corresponding convolution type Gagliardo-Nirenberg interpolation inequality (note that the uniqueness
of a ground state is not known in the general case). In particular, depending on the size of the initial
mass and gradient, solutions will either exist for all time and scatter in H*, or blow up in finite time,
or diverge along an infinite time sequence. To either obtain H! scattering or divergence to infinity, in
this paper we employ the well-known concentration compactness and rigidity method of Kenig-Merle [36]
with the novelty of studying the nonlocal nonlinear potential given via convolution with negative powers
of |z| and different, including fractional, powers of nonlinearities.
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1. INTRODUCTION

Consider the focusing generalized Hartree, or Schrodinger - Hartree, equation of the form
1
x

Here, the function u(zx,t) is complex-valued and * denotes the convolution operator in RN,
The equation (1.1) is a generalization of the standard Hartree equation with p = 2,

1
iug + Au + <W*]u\2>u:0, zeRY, (1.2)

which can be considered as a classical limit of a field equation describing a quantum mechanical non-
relativistic many-boson system interacting through a two body potential V' (z) = m%, see [22]. How
it arises as an effective evolution equation in the mean-field limit of many-body quantum systems can
be traced to work of Hepp [30], see also [22], [56], [7], [6], [16]. Lieb & Yau [44] mention it in a context
of developing theory for stellar collapse, and in particular, in the boson particles setting. A special case
of the convolution with ﬁ in R3 is referred to as the Coulomb potential, which goes back to work of
Lieb [40] and has been intensively studied since then, see reviews [20], [19]. With v =2 and N = 3, a
pseudo-relativistic version of this equation arises in the mean field limit of weakly interacting molecules
and bosonic atoms (for example, see [17], [18]), taking the form

iug = VA +m2 ut (|27 JuP)u =0, zeR? (1.3)

which has recently generated many interesting questions about the dynamics of its solutions.

Unlike the standard nonlinear Schrédinger equation with pure nonlinearity |u[P~!u, the distinct fea-
ture of the Hartree equation (1.2) is that it models systems with long-range interactions. Possible
experimental realizations of such interaction, where the power in the convolution changes, include the
interaction of ultracold Rydberg atoms that have large principal quantum numbers [48]. These interac-
tions between atoms in highly excited Rydberg levels are long range and dominated by dipole-dipole-type
forces (the strength of the interaction between Rb atoms is about 10'? times stronger than that between
Rb atoms in the ground state [55]). The spatial dependence of interactions may be 1/|z|? for small |z|
and 1/|z[% for larger |z|. Other powers such as 1/|x|? are also possible, see [52]. Even more general, the

potential can incorporate not only radial dependence, but also angular dependence |10|](\]sz [48], though,

in this work we will not consider this case.
The equation (1.1) can be written (in terms of the wave function w and the potential V') as the
Schrodinger - Poisson system of the form

{iut—i-Au—i-Vu\pzu =0 (1.4)

~AV = (N — 2)|SN=Y ulP.

This can be thought of as an electrostatic version of the Maxwell-Schrodinger system, which describes
the interaction between the electromagnetic field and the wave function related to a quantum non-
relativistic charged particle (see, for example, [12] and [42]).

With numerous applications, it makes sense to develop a unified mathematical theory of solutions
behavior for the general equation (1.1). For that purpose we consider initial data in the H' space,
up(z) € HY(RYN), so that we can study finite Hamiltonian or finite energy solutions (definitions below).
The local existence of H! solutions is available in the standard Hartree equation (1.2) from the work of
Ginibre & Velo [22], see also Cazenave [10]. We prove the local well-posedness in H! for the generalized
Hartree (1.1) with p > 2 in Section 2.

Denote the maximal time existence interval of solutions to (1.1) by (7%, 7). We say a solution
is global in forward time if 7% = +oo (and similarly for the backward time). If (T.,7*) = R, the
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solution is said to be global. The global existence for (1.1) is delicate due to the focusing nature of the
nonlinearity, and is investigated in this paper. During their lifespan, solutions to (1.1) satisfy mass,
energy (Hamiltonian) and momentum conservations:

Mu(t)] /RN (e, 6)|? dx = Mlug),

Elu(t) % 1 /RN IV, b)) dz - ;p . <|$|]1M i Ju( -,t)|7’> (e, )P dz = Elug),

Plu(t)] = Im u(z,t)Vu(z,t) dr = Plug).
RN
The equation (1.1) has several invariances: if u(x,t) is a solution to (1.1), so is @(z,t):
t)

Spatial translation: for a fixed zg € RY, ii(z,t) = u(x — z0,1).

Time translation: for a fixed 7 € R, u(x,t) = u(x,t + 7).

Time reversal: u(z,t) = u(x, —t).

Phase rotation: for a fixed 0 € [0,7), a(z,t) = e®u(x,t).

Spatial rotation: for a fixed R € SO(N), a(z,t) = u(R™ 'z, t).

Galilean transformation: for a fixed & € RV, @(x,t) = e!(wto=tléol) u(z — &ot, t).
o Scaling: for a fixed A € (0,00), @(z,t) = )\% u( Az, A%t).

1 x 1 ilz|?
e Pseudo-conformal transformation: If p =1+ WTH, then u(z,t) = |t|N/2u (t’ _t> e 4t .,

The equation (1.1) is referred to as the H® - critical, if the H® norm of the solution is invariant

under the scaling. The critical scaling index s. coming from the scaling invariance is defined as
N v+2

Se = — —

1 (1.5)

+2 . . . .
If sc=0,orp=1+ L, the equation (1.1) is referred to as the mass-critical (or L2-critical). For
the standard Hartree nonlinearity (p = 2), the mass-critical case corresponds to N — v = 2, and thus,

occurs only in dimensions N > 2 with the nonlinearity (ﬁ * |u|2) u regardless of the dimension. If

2 .
se=1l,orp=1+ X[—i_ 5 the problem is called the energy-critical (or H' - critical). For the standard

Hartree nonlinearity (p = 2), the energy-critical case corresponds to N — v = 4, which implies that it
occurs only in dimensions N greater than 4 with the nonlinearity <ﬁ * \u!2> u, also regardless of the
dimension. Note that the generalized Hartree equation (1.1), being flexible in power p, can be, say,

energy-critical in dimensions less than 4, e.g., in 3d (é * |u|5) lu|3u or <ﬁ * |u|4) |u|?u, which can
make analysis and methods more accessible.

A global solution u(t) to (1.1) is said to scatter in H*(RY) as t — oo, if there exists ut € H*(R")
such that

: iAo+ _
tl}inoo”u(t) "2 uT || @iy = 0.

There is a number of early works on global existence, asymptotic behavior of solutions and scattering
theory for the standard Hartree equation (1.2). Studies trace back to Ginibre & Velo [22], where the
local wellposedness is established and the authors also prove asymptotic completeness for a repulsive
potential. Hayashi & Tsutsumi [29] continue developing the scattering theory and obtain the asymptotic
completeness of wave operators in H™ N LP(|z|’?dx). We refer the reader to Ginibre & Ozawa [21] for
results in the case of the convolution with |x|~!, or N — v = 1, for N > 2; to Ginibre & Velo [25]
for 2 < N —~ < min(4, N) when N > 3. In a sequence of papers [23]-[26] Ginibre & Velo considered
the time-dependent potential £¢t#~7|z|7# and studied the asymptotic dynamics and scattering (for any
data in the repulsive case or small data otherwise) first when the convolution power is % <N-v<1lin
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[23], and then in the whole range 0 < N —~ < 1 in [24]. These two papers are written in the framework
of Sobolev spaces with the assumption ¢ < N —2 (N > 3). In [26] the Hartree was treated in Gevrey
spaces, which made it possible to cover the whole range 0 < p < N with an arbitrary space dimensions
N > 1. In [28] Hayashi, Naumkin & Ozawa studied the Hartree equation with N —~ =1 (N > 2) and
initial data in a weighted Sobolev space H%* N H*? with % <a< %

Our aim is to understand global behavior and dynamics of solutions to the generalized Hartree (1.1),
in particular, how the nonlocal potential with the flexibility of different powers in nonlinearity may
influence the global behavior and dynamics of solutions either with infinite or finite time of existence.
We are also curious whether solutions behave in a manner similar to local potentials as, for example,
in the standard semilinear Schrédinger equation with |u[P~!w nonlinearity, or if nonlocality creates
significant differences in solutions behavior. In addition, we want to develop methods needed to study
such solutions.

In this work we describe the global behavior of solutions to (1.1) with H' initial data in the inter-
critical regime (0 < s, < 1), provided that p > 2, that is,

v+2 v+2
14+ = 1+-—2,0 N and p > 2 1.6
ty <p<lt 5 0<y<Nandp=>2 (1.6)

with the appropriate modification of the right-hand side for N = 1,2 (p < o). (As a byproduct,
we also obtain local wellposedness for any energy-critical and subcritical cases, s < 1, and small data
theory in the energy-subcritical setting, s < 1.) We establish a dichotomy for global vs. finite time
solutions under the mass-energy threshold and show H'! scattering for the global solutions, following the
concentration-compactness approach of Kenig & Merle [36], and divergence along a time sequence for
nonradial infinite variance data (also via concentration-compactness method). This is in the spirit of [32],
[14], [27], [33] for the focusing NLS. We emphasize that while the concentration-compactness approach is
well-known in the field by now, it is important first, to understand the behavior of solutions and describe
their asymptotic dynamics and thresholds (and if possible in the unified general setting); secondly, to
demonstrate that this method works in the general nonlocal setting while showing modifications needed
to handle a general convolution term with fractional powers in nonlinearity, and finally, simply to
make well-posedness available in a complete general nonlocal setting of the intercritical range, which is
needed for future investigations. Some of the immediate questions we investigate in subsequent papers,
for example, in [1] we explore the scattering approach of Dodson & Murphy [13] and with their method
prove scattering for globally existing in time solutions in this nonlocal inter-critical regime; in [4] we
investigate the local well-posedness at the (non-conserved) critical regularity H#e for s, > 0 (including
energy-supercritical regime) and extend the local existence to global for small H*¢ data while for certain
large data with positive energy we show blow-up in finite time. One of the interesting questions for this
equation compared to the standard NLS is to investigate the spectral properties and blow-up dynamics
and how they are influenced by the nonlocal potential. We will address this in [3] and [5].

In order to characterize the sharp threshold for the dichotomy, one needs a notion of a ground state.
The equation (1.1) admits solitary waves solutions of the form u(z,t) = e®Q(x), where Q solves the
nonlinear nonlocal elliptic equation

~Q+2Q+ (lal =M« QF) [QP2Q = 0. (L.7)

The equation (1.7) is known as the nonlinear Choquard or Choquard-Pekar equation. A special case of
(1.7) when N =3, p=2, and v = 2,

AQ-Q+ (lzI '+ |Q*) Q=0 (1.8)

appeared back in 1954 in the work of S. I. Pekar [53] describing the quantum mechanics of a polaron
at rest. Lieb in [40] mentions it in the context of the Hartree-Fock theory of plasma, pointing out that
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P. Choquard proposed investigating minimization of the corresponding functional in 1976. In 1996 R.
Penrose proposed equation (1.8) as a model of self-gravitating matter, in which quantum state reduction
is understood as a gravitational phenomenon, see [49].

The existence of positive solutions to (1.8) was first proved by Lieb [40], see also Lions [45], [46]. The
general existence result of positive solutions along with the regularity and radial symmetry of solutions

o (1.7) for N+7 <p< N+7 with 0 < v < N was shown by Moroz & Schaftingen [50] (see also a review
by Moroz & Schaftlngen [51] and references therein).

The uniqueness proof! for p = 2 with v = 2 in dimension N = 3 dates back to 1976-77 work of
Lieb [40] and later in 2009 was extended to the dimension N = 4 by Krieger, Lenzmann & Raphaél
in [37]; the uniqueness in the pseudo-relativistic 3d version of (1.8) was established by Lenzmann [39].
We review the proof of uniqueness for any (reasonable) N (and p = 2,7 = 2) in the Appendix. For
other cases of v and p, it is an intricate issue, and while several authors made attempts to obtain
uniqueness, it is still an open question. A recent work [59] shows uniqueness and nondegeneracy of the
ground state for p = 2 + ¢, i.e., when p is sufficiently close to 2 in dimension N = 3 and v = 2 via
perturbation methods. We note that the proof of uniqueness for the nonlinear elliptic equation with
convolution (1.7) differs from the corresponding results for the NLS-type equations (e.g., with |u[P~1u
type nonlinearity), for which it is given, for example, by Kwong [38] and Berestycki & Lions [8]-[9]. The
proof in the Hartree case uses Newton’s theorem for the convolution in (1.8) and linearity in @) outside
of the convolution (p = 2), see more on this in Section 4 and Appendix. In this work, we do not need
the uniqueness, it suffices to use minimizing properties of the Weinstein-type functional and the value
of the sharp constant in the Gagliardo-Nirenberg convolution type inequality via ground state solutions
as that value will be unique. Thus, we denote by @ any ground state solution of (1.7) and use such
quantities as M[Q)], |[VQ||.2 and E[Q], which are obtained from the sharp constant.

As in [31] and [32] for the NLS equation, we observe that the quantities |Jug||}; 12 RN Vo |75 (RN

and M [ug]!=%¢ E[ug]* are also scale-invariant in the generalized Hartree equation, and for se > 0 with
0= % we define

. MIu]’Elu]
e renormalized mass-energy: ME|u| = ,
= erER)
[ullf2 gy IV (B) | L2
e renormalized gradient (dependent on t): Glu(t)] = LA@Y) LR ), and
QN7 vy IV L2 vy
[t Pl

e renormalized momentum: Plu] =

HQ”L2(RN HVQHL2(RN) ‘

We now state the main result of this paper about solutions behavior under the mass-energy threshold.
We consider (1.1) with given N,~, and p > 2 so that s. defined by (1.5) is 0 < s, < 1. We first consider
solutions with zero momentum.

Theorem 1.1 (Zero momentum). Let ug € H*(RY) with Plug] = 0 and let u(t) be the corresponding
solution to (1.1) with the maximal time interval of existence (Ty,T™*). Suppose that MEJug] < 1.
(1) If Gluo) < 1, then
(a) the solution exists globally in time with Glu(t)] < 1 for allt € R, and
(b) w(t) scatters in H', in other words, there exists ux € H' such that

itA _
i u(t) — €y = 0.

" certain existing literature there seem to be a misconception about the uniqueness of the ground state even in the
standard (p = 2) Hartree equation: statements such as “take the positive unique ground state solution @ of the equation

AQ —Q+ (|x\_b * |Q|2) @ = 0” are not justified for any 0 < b < N as the uniqueness of the ground state is only proved
when b= N — 2, 2 < N < 6, see Appendix.



6 ANUDEEP K. ARORA AND SVETLANA ROUDENKO

(2) If Glug) > 1, then Glu(t)] > 1 for all t € (Ty,T*). Moreover, if
(a) |z|ug € L2(RN) (finite variance) or ug is radial, then the solution blows up in finite time,
(b) wo is of infinite variance and nonradial, then either the solution blows up in finite time or
there exits a sequence of times t,, — 400 (or t,, — —00) such that |[Vu(t,)| L2@~y — 0.

The general case when Plug] # 0 is given by the following

Theorem 1.2. Let ug € HY(RY) and u(t) be the corresponding solution to (1.1) with the maximal time
interval of existence (T, T*). Assume that

MEug) — N](;(f 1)1: z 5Pluol” < 1. (1.9)
(1) If
Gluo)* — Pluo)® < 1, (1.10)
then

(a) the solution exists globally in time with Glu(t)]> — Pluo]® < 1 for allt € R, and
(b) u(t) scatters in H*, i.c., there exists ux € H' such that

: it A _
t_l}rinoo [u(t) — " Futl| g1 @ny = 0.

(2) If
Gluo)* — Pluol® > 1, (1.11)

then Gu(t)]? — Plugl® > 1 for all t € (T., T*). Moreover, if

(a) |z|uo € L2(RYN) or ug is radial, then the solution blows up in finite time,

(b) wo is of infinite variance and nonradial, then either the solution blows up in finite time or
there exits a sequence of times t, — +oo (or t, — —oc) such that ||Vu(t,)| 2@yy — oo.

While we follow the strategy of [32], [27], [14] and [33], the fundamental difference is in the nonlocal
potential, and control of convolution terms arising in various steps of this work. For example, to obtain
local well-posedness and small data theory in H' we do not get the contraction automatically as the
difference produces extra terms due to convolution. We use Lemma 2.4 to estimate the inhomogeneous
term in Duhamel’s formula via Strichartz estimate in Proposition 2.8, Theorem 3.1, Theorem 3.2, The-

orem 3.3 and in Theorem 6.3 (Claim 6.5). Also note that to control the potential energy in Proposition
2Np

6.2 and in Lemma 4.1, we rely on LY norm (using the assumption that s. < 1) along with the
Lemma 2.4. Moreover, the local virial identity (5.8), (5.9), (5.10) in Theorem 5.1 and Theorem 7.1 has
some extra terms involving convolution which demands a careful study and application of convolution
properties, Lemma 2.4 and Lemma 2.6. We also have to review the sharp constant coming from the
convolution-type Gagliardo-Nirenberg inequality and discuss the values coming from the minimization
process as there is no uniqueness.

The paper is organized as follows: in Section 2, we review the necessary preliminaries such as
Strichartz estimates, embeddings and other useful inequalities. There, we also discuss the local well-
posedness in the energy-critical and subcritical cases and p > 2. It would be interesting to investigate
well-posedness for p < 2. In Section 3, we prove the small data theory in the energy-subcritical setting
as well as the H' scattering along with the long-time perturbation lemma. In Section 4, we introduce a
generalized convolution type Gagliardo - Nirenberg inequality and show that the minimizer is given by
a positive minimizer (a ground state) @ and identify the sharp constant. In Section 5, we prove The-
orem 1.1, the dichotomy result: global existence vs. blow-up; we also include several Lemmas needed
to prove scattering later. In section 6, we prove Theorem 1.1(1), part (b), the scattering, using the
concentration-compactness and rigidity approach of Kenig & Merle [36], and the adaptation of Holmer
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& Roudenko [32]. In Section 7 we exclude the existence of the critical element using the rigidity argu-
ment applied to the corresponding localized virial identity. In the last Section 8 we consider the case
of nonradial solutions with infinite variance and larger than 1 renormalized gradient (part 2(b) of both
theorems), and discuss either the divergence to infinity along a time sequence or finite time existence
of solution in a spirit of [33]. In appendix we review the uniqueness argument.
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2. PRELIMINARIES

2.1. Strichartz estimates and admissible pairs. For s > 0, the pair (q,r) is referred to as an
H*-admissible (for s = 0, it is called an L?-admissible), if

2 N N
-+ — =5 s with 2<g¢,r<oo and (q,7,N)# (2,00,2). (2.1)
q
To control the constants uniformly in Strichartz estimates below, we restrict the range for the pair
(g,7), defined in (2.1), depending on the dimension N (as in [27]):

+
(L> <g<oo, 2 <7"<<N—N) CifN >3

1—s

+ +\’
(%) <a<oo, H<v s((f) ),ifN:2 (2.2)
2 <qg< oo, 15 <r<oo, if N=1.

Here, n™ is a fixed number (slightly) greater than n such that % = n%r + ﬁ Respectively, n™ is a
fixed number (slightly) less than n.
Following [32], we introduce the S(H?®) notation:

lullgqrey = sup{llulls ; : (a.7) as in (2.1) and (2.2)}. (2.3)
Similarly, in order to define the dual Strichartz norm, we set the following restrictions:
+
2 1\~ 2N .
(1Ts> §q<(’> v (N—2s) <r<(N 2> , iEN 23
+ !/
() <o), (&) < ((lis) ) N =2 (2.4)
2 \* -

1+2s—q— ) (T) <r<oo, if N =1,

and define the dual Strichartz norm as

| /\

[l grgr-sy = mE{]lull 7t o=15+ 3 =1with (¢,7) as in (2.1) and (2.4)}. (2.5)

L'y g r
In the sequel, for given N, p, 7, and hence, a fixed 0 < s, < 1, we use the following L2-admissible

pairs :
2p 2Np
7’[” = 5 26
(qr,m1) <1+Sc(p—1) N+7> (26)

2p 2Np
1) = , - 2.7
@) = (12 ) (2.7

and




8 ANUDEEP K. ARORA AND SVETLANA ROUDENKO

Observe that s, < 1 implies 2p -1y > 2. As an L?-dual admissible pair we take

1+Sc(p

2p 2Np
/ /
_ . 2.
(Q17r1) <2p_1_sc(p—1)72Np_N_7> ( 8)

The specific H5-admissible pair we use is

2p 2Np
= 2.
@)= (12 ). (29)

and the H ¢ dual admissible pair is given by

AN 2p 2Np
(g3,71) = <(2p_1)(1_sc),2Np_N_7>. (2.10)

Note that (L 2Np> is also an H % admissible pair. Observe that s, < 1 imply that both

1+sc(2p—1)° N+v
2 2 2 1 . .
1+Sc(gp_1) > 11, and ng—l) < 5., thus, confirming to be in the range of (2.4).

Using Duhamel’s formula, the equation (1.1) is equivalent to the integral equation

. t . 12
w(z, t) = e Pug + i / A (2]~ (N =) s |uP) P2 w(t') dt' . (2.11)
0

We recall the following well-known Strichartz estimates (see Cazenave [10], Foschi [15], and Keel-Tao
[35]).
Lemma 2.1. For the range of p and q as in (2.3), we have

16" lls(2) < e [19l| 2, (2.12)

t
/ Ay at <clfllsz2)- (2.13)
Using the Sobolev embedding (since ¢

S(L2)

0
A commutes with derivatives), we obtain

Corollary 2.2. For the range of p and q as in (2.3), we have
1l g i < clll e (2.14)

t
|| /0 D F( Y d ey < ¢ 1D Flloriaey. (2.15)

We also recall a more refined than (2.15) Strichartz estimate, which includes a larger set of admissible
indexes than (2.15).

Lemma 2.3 (Kato-Strichartz estimate, [34]). If F € S'(H %), then
t
A
H /O OB g0y S 1P i (2.16)
Note that we can use the dual of H® pair on the right side of above inequality (for example, from
(2.5)), which would not follow from (2.15).
2.2. Embeddings. In this section we state embeddings and inequalities used later.

Lemma 2.4 (Hardy-Littlewood-Sobolev inequality, [41]). For 0 < v < N and 1 < p,q < oo, there
exists a sharp constant cy gy~ > 0 such that

u(y)
/RN Wdy < enpllull Lo @ny,

La(RN)
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Remark 2.5. Observe that
v (m—(N—v)) = Oy |z~ N -0-1),

Lemma 2.6 (Radial Sobolev inequality, [57]). Let u € HY(RY) be radially symmetric. Then

1/2
L2(RN)

1/2

IVull 2 gy

e “2 e vy < Cllu

2.3. Local well-posedness in H!. We end this section with the local existence result in H' for the
equation (1.1). We consider the integral equation (2.11) with ug € H'(R™) and 0 < v < N with

N-2 - (2.17)

2<p<1+32, ifN>3
2<p< o0, it N=1,2.

Remark 2.7. Let f(z) = |2[P~22. The complex derivative of f is given by

-2
fa(z) = §|z|1>*2 and fz(z) = pT|Z’pf422'

For z1, z0 € C we get

P = e = [ [Faten b 001 = 2)(e1 = )+ Fon 001 = ) =) .
Hence,
[f(z21) = F(z2)| S (121772 + [22P72) 21 — 2. (2.18)
Also, observe that for p > 1 (e.g., see [11])
P = 22 S (P~ + [zl — ). 2.19)

Proposition 2.8. If p satisfies (2.17), then for ug € H*(RYN) there exists T > 0 and a unique solution
u(z,t) of the integral equation (2.11) in the time interval [0,T] with

uwe C([0,T); HYRM)) n La ([0, T]; Wh(RN)), (2.20)

where (q1,71) is given by (2.6). In the energy-critical case p = 1 + 7+2 (or s = 1) we require an

additional assumption of smallness of Hu0||H; In any energy- subcmtzcal case p < 1+ 7+2 the time
T =T(l[uollgrr, N, p,y) > 0.

Proof. For T > 0, specified later, define v(u) = max { sup ||ul/g1, HuHquWl,rl} and for an appropri-
telo, ‘ v

ately defined constant M > 0, also specified later, let

S ={u e C([0,T)); H:®RN) N LI ([0, T]); W (RY) : v(u) < M}. (2.21)
We prove that the following operator
. t . /
B(ut)) = g + i / =D N (1) d! (2.22)
0

is a contraction on the set S, where N (u(t')) = (Jz|~ V=7 x [u[P)|u[P~2u(’). Using (2.12) and (2.13),
we obtain

1@ (u(E)l oy S lluollpz + |N (u) (2.23)

I L;/l L
and

IV®(u®)lpor e S [Vuollzz + VN (u) (2.24)

/ /
|| ay ;71"
LhL,



10 ANUDEEP K. ARORA AND SVETLANA ROUDENKO

Using Hélder’s in time on the second term in (2.23) and (2.24), we have

IN@I g, S TN, 4 and (TN S TIVN @)

!
q1 771
x t x t x Lt Lm

where § = (=3)(p=1)
P

. Using Holder’s inequality, Lemma 2.4 and Sobolev inequality, we estimate

N (N—7) P p—2
Ol I [ )HL?L P [
S !

r lull

qupL Loo Lrl

2(p—1
Sl Ml o g S el 72 el o o (2.25)
and (noting that the gradient lands on two different terms)

VN (N=(v=1)) 4 [P p—2
VN ()| G A 2l

quLr/l ~ ”
(2™ x| e ([Pl awy
goLéV*W quL(NJF’Y)(P*l)
p
S HuHqupLé\fiA;% ”uHLooLTl + ||U||Loo]j“1 ||U”Loo]j“1 ||VUHL‘“LT1

o+ el 3Vl g

L°°L LLy
Sl ||LooH1 IVull o g (2.26)
Combining (2.23) and (2.24), respectively, with (2.25) and (2.26), we obtain
0

1D pargyrrs S Muollay +T ||U||LooH1 lll g1 g7

Following a similar argument, we also have
o1..12(p—1)
[Pz S lwolley +T7u HL(iHl ull par gy

Adding the last two lines, we get that for u € S

L@ o y2rs + [ 2(u()) | ey < Clluoll gy + CT M7 (2.27)
Set M = 2C/|ugl| 1 and take T" so that
CcTo M2P-Y < % (2.28)

_2p

yielding that the right-hand side of (2.27) is bounded by M. Therefore, for T' < [jug|| Hl *c, we obtain
®: § — S. Note that the above estimate works for any s. < 1. In the energy-critical case, s, = 1, we
have 6 = 0, and thus, there is no time dependence in (2.27),

1PN pary2rs + |12 (u()) | oy < Clluoll iy + CMPE (2.29)
Hence, we can proceed only if [|ug| g1 is small enough, namely, if
1
Cluolzr ™" < 5 (2.30)

which then bounds the right-hand side of (2.29) by M: Clluol| g1 + CM?*~! < M, yielding ® mapping
S into itself. '

To complete the proof we need to show that the operator ® is a contraction. This is achieved by
running the same argument as above on the difference

d(®(u(t)), 2(v(1))) := [[®(u(?)) — PO Laryyrr + [@(u(t)) = W) Lgo m2
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for u,v € S. We again note that because of the convolution and also estimating at the H! level, we end
up with extra terms to work unlike the proof for the mapping ® into itself above (or which would be
simply repeating that argument in the pure nonlinearity case of NLS).

We first apply Holder’s in time to get

d(®(u(t)), 2(v(1)) S T° (II@(U(t)) — o) + V(@ (u(t) - q’(v(t)))lnglL;g> )

Lo
where
| (u(t)) — <I>(v(t))HLglL;’1 S (12N s fuf?) (fufP~2u - ’U|p72U)HL;“L;/1
+ | (27N (Juf? - )P0l
t x
= A1+ Ay
and

gzt S IV L= s ) (=2 = pop=20)]

IV (@(u(t)) — (v(t)))] Lot
IV (2~ 5 (Jul” = o) [oP~2o] |

= By + Bs.

a1 77
Ltl LII

Here, we have added and subtracted the term (|z|~V=7) x |u[P)|v[P~2v. For A;, we use Hélder’s in-
equality, Lemma 2.4 and (2.18) to obtain

A < —(N=7) 4 P =2, |, |p—2
1 S (|2 |u| )IIquLNzyWIHUI u— |vl v”LtooLéNﬁ)V@m

t x
Sl s (Il 2+ 101222 ) = 0l e
S ulth 2 lall o o (22 + 00222, Yl = ol e
S Tl el g (ellyeiy + Mol )l = vll ey (2.31)

We again use Holder’s, Lemma 2.4 and (2.19) to estimate As

Ag < lJ|" N (JulP — |v? v[P~ %y
2 S [lfe]” * (ful? — | ‘)HLflL;V%'H | HL?OL%

S el = 1ol S e

L L;v L°°L’1
-1
S (a2 + Lo )l = vll g o ol
S (Nallygy + 10y )l = vl o ol (2.32)

For B; we first use the product rule

B < I(lzl=N=0=1)) & |IP ulP~2u — lulP~2y
15 (e R [ e T
O (T S V(|uP~?u — [v[P~2
(]| | \)HL?OL%H (lul [v] )”L‘glL;vaJ)V@*U’
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then applying Holder’s inequlaity, Lemma 2.4, Sobolev inequality and (2.18) yields

p —
Bslel, o, (el 2 + ol 2 ) o= ol e

ol (Nl + 0020 )19 = ) o

Sl (a2 + ol 2 e = ol e

ol (Nl 4 01220 )19 = )
S IVl g a2y (el + 0l 2y ) e = vl zzey
ol oy (a2 + N2 ) IVt = )l 11 (2:33)
Again using the product rule and Lemma 2.4 to estimate By, we get

By < |||z YD) & (|ul? — |o|P vlP~2y

2 S 2l (=P, Pl e

el (ul? = o) e IV (0P 0))| 2
LeLy 7

a L;imw@—n

t T

< p_ p p_ p
S wl? = [0l o T e o | e T [

t t

1 ||V’U||L‘Z1L71

L° L,

Using (2.19) and Sobolev, we obtain

1
By S (ol s + ol Y=ol ool
t T

(a2 A+ 0l 2 Yl = vl e [ol22 190l
S (= + el ) (19 = )l o2
e = vl ot Il 2 190l ). (2.34)
Combining (2.31), (2.32), (2.33) and (2.34), we obtain that for u,v € S
d(®(u(t)), ®(v(t))) < T M>P~Dd(u,v).

This together with (2.28), the bound on time 7', implies that ® is a contraction on S for the energy-
subcritical case. Similarly, for the energy-critical case, we have that for u,v € S

d(®(u(t)), ®(v(t))) S M~ Vd(u, v),

which with the smallness of (2.30) implies that ® is again a contraction on S. To prove the continuous
dependence with respect to ug, we note that if u and v are the corresponding solutions of (2.11) with
initial data ug and vy, respectively, then

u(t) — vt) = e (ug — vo) + i / A (N () — N(0)() dt'.
0

Thus, the same argument as in (2.31), (2.32), (2.33) and (2.34) (and the appropriate modifications when
se = 1) yields

d(u(t), v(t)) := l[u(t) = v poryyrm +[lult) = o)l Lo ny
< luo = vollar + O T MP®=Dd(u(t), v(1))-
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This implies that if |jug — vo|| 1 is small enough (see (2.28) or (2.30)), we have that
d(u(t), v(t) < Cllug — voll s

which completes the proof. ]

3. SMALL DATA THEORY

As we now have the H! local well-posedness, we investigate the global existence of small data and
scattering in H'. At the end of this section we also include the long-time perturbation argument. This
may appear to be standard, however, we give a careful and detailed proof demonstrating how we tackle
the nonlocal potential term. In this section we consider the integral equation (2.11) with up € H'(RY)
and 0 < v < N with p > 2 satisfying

{1+7;2§p<1+g,+22, if N >3 51)

1+ 52 < p < oo, it N=1,2.

In the energy-subcritical case (s. < 1) it is possible to obtain H?e small data theory, replacing the
right-hand side bound below in (3.3) with the H* norm (instead of H' norm) as done in [31], [27].
This requires fractional derivatives, introduction of different Strichartz pairs and considering different
cases of smoothness, depending on p and s.; it is done in [2]. For the purpose of this paper, it suffices
to have H! small data, and thus, we consider the bound on the right-hand side of (3.3) by the full
H' norm. Also note that while the norm on the left-hand side of (3.3) is at the H* level, it can be
replaced with the norms at the H' level, that is by ||lullg(z2) +[|Vullg(r2) (by the interpolation and then
separating it into the sum by Peter-Paul), which we will do in the proof. For brevity, we chose to state
(3.3) at the H*c level. Furthermore, we note that the Proposition 3.1 also holds true for the L2-critical
equations (s. = 0) with ug € H'(R"™) and (3.3) reduces just to one condition (3.2). We also mention
that one would need to use different Strichartz pairs to obtain small data theory for the energy-critical
case (s, = 1), which is possible but beyond the scope of this paper.

Proposition 3.1 (Small data theory in H'). Let p > 2 satisfy (3.1) with0 < v < N and ug € H'(RY).
Suppose ||up|| g1 < A. There exists 6 = 6(A) > 0 such that if HeimuoHS(Hsc) < 6, then there exists a

unique global solution u of (1.1) in H'(RY) such that
HUHS(HSC) < 2|’eimu0”s(f139) (3:2)

and
[[V[*eullgz2y < 2¢lluoll g, (3.3)

where ¢ depends on constants from the Gagliardo-Nirenberg interpolation estimate and the Strichartz
inequality.

Proof. First, note that by Strichartz (2.14) and Sobolev estimates, we can track the dependence of § on
A (if needed, splitting the time interval). Next, denote

B ={u : Jullgne) < 21160l gy and 91 ullsizz) < 2¢luolla }

and define

t
B (u) = Pug + i / AR () dt!,  where  F(u) = (Ja|~ ™= s [ulP) [uP~>u. (3.4)
0

Applying the triangle inequality and (2.16) to (3.4), we obtain

1@y ()l i1ee) < 1605 ey + €I F (W)l gr(gr-eey- (3.5)
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Using the pair (g5, 7)), Holder’s inequality yields

||F(u)||L:]§L;/1 < "N s ul? 2 HUHL‘I?L”‘ (3.6)
t T
Applying Lemma 2.4 for N > -, we estimate
—(N—=v) P P
e s g S el (37)
Using (3.7), we can write the estimate (3.6) as
HF(WHSI({%SC) < CN,pm/HuHI;(HSC)H Hp S(Fse)" (3.8)
Thus, for u € B, (3.8) gives
— itA 2p—1
HF(U)HSI(H—SC) < eNpy 277 e UO”SZZHSC)- (3.9)
Inserting (3.9) into (3.5) and redefining the constant ¢y, ¢ =: ¢1, we have
A 1
1@ ()l ggz5e) < e toll gy (1+ 2227 e 2o 30D )
and thus, we need
cq 221 ||eitAu I (pHsl)) <1.
To estimate [||V|*®y,(u)||g(z2), we recall the Gagliardo-Nirenberg interpolation inequality
I1V1%<0l| 2 < canl[Voll3s o)l
and taking v = ®,, (u), we bound the L? and H' norms as follows:
[Puo (Wl s(z2) < clluollrz + ¢l F(u)l| s (r2)- (3.10)
From Holder’s inequality, we get
[F (u)] Ly S <" N s Pl ||U\|Lq2Lr1 (3.11)
t ac

We estimate the convolution term in (3.11) again by Lemma 2.4 for N > ~ and then use Holder’s to
obtain

1E(w)llsr L2y < enpall [l Lo lull 2

1
< CN7PW|’uHLq2yl ”uHL‘“L’"1 ”“HquL;l

S CN,p«/HUHS(HSP [ull s(z2)- (3.12)

Using (2.15) (and triangle inequality) in (3.4), we get

IV ®uq (u)ll 522y < cl[Vuollr2 + e [VF(u)lls(z2), (3.13)
where the nonlinear term is estimated as
VF o < —(N—-v) p \V4 p—2
IVF g < Wl b IR0 e
—(N—
+ [~ IUI”II 2 HUHquLm
t T
2(p—1)
< CN,pﬁ”UHL(quLrl ’ququLrl + enpayllull’ L] ||U”LQ2LT1
Ly
< 2(p—1) 2(p—1)

cN,va“HL%LH ”VUHL‘“L” + CN,vaVUHLQILTl HUHL%LQ

IN

2en pollullg HSC)IIWHS r?)- (3.14)
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Combining (3.10) and (3.13), and applying (3.12) and (3.14), we obtain
[Pug (W)l 52) + [[V®ug (W)l 5(22) < ¢ (lluollze + [[Vuol|r2)

tellullyh) (lullsee) + [ Vallss)

< clluoll g + 227 ercll e u A Hsc)ll uo || g1
< clluollzr (1427 Ler el 2% 1) (3.15)
where cy ¢ =: c1. Now, if we take
27 ey [l Bl ) < 1.

and recalling that [ ug| s(irsey < 0, then (3.15) would give the required bound for the space B:

2¢||ug|| 1. Hence, choosing § < dp = % 2p— 1,)/ - implies that ®,, € B. Now we show that ®,,(u) is a
contraction on B with the metric

d(u,v) = [u = vllsr2) + [V(w = 0)llsr2) + llu = vllg¢gee-

(The last norm is included for convenience.) For u, v € B, by Strichartz estimates (2.16) and (2.13),
we obtain

[Pug (1) = Pug (V)| 575y < €l F(u) = F(0) || grg-se) (3.16)
and
[(L+ V)(Puy (1) = Puy (v))l[5(22) < cl|(1 4+ V)(F(u) = F(v))lls(z2)- (3.17)
The triangle inequality applied to the right-hand side of (3.16) yields
1B () — FO)llgrggsey < (el s ) (1?20 — [0l 20) g gy
+ (12N s (ufP = [v]P)) [P0l g0 grse )

where we have added and subtracted the term (|x]*(N*7) * |u[P) [v[P~2v to the difference. Using (2.18),
(2.19) and calculations in (3.6), we obtain

1FG) = FO)gr-so < expallel s bl s gl = =20l o

t T

(N—) P _ [P
+ enpalllz]” * (|ul? — |v] )HL}?L 2N IIUHS(HSC)

< enpallelfen o (I3 + anquLn) s = ol 220

+ eNpllluf” = o] %L%Hvllp S(frse)

< enpalltl? ey (1l ey + 1015 s )t = 0l e
gy (%, + T2 Yt = gy [0
For u, v € B, we have that
itA
1)~ F@)llgr-ne) < 2Perpn e uol 200 fu— ol gy (3.18)
Combining (3.16) with (3.18), we obtain

[y (1) = Bug () ey < 22Prlle® o 252 flu = o]l 0 (3.19)
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Next, we estimate the difference from (3.17) using again the triangle inequality and Holder’s

1 (1) = F(@)llgr(z2) < (2~ s ul”) (lulP~2u = [0]P~20) | g12)
+ (1l =N (Jul? = o)) o0l 22y

< expallel Y el g g P P g
t z t

+enpallel ™ w (ul? = P)] e |07
2Ly

t iz

Lq2 Lyt”
Apply (2.18), (2.19) and calculations in (3.11), (3.12) on the right-hand side of above estimate to obtain

1P(w) = POz < enpallul o (lla?n + Nol52n )l = vl o o

Fenpollulf =[Pl o ol

t x

< enpallul? ey (0l 7y + 01 Yl = vls(r2y

ey (I ey + 1018y Ve = sz 01 -
For u, v € B, we have
1F(w) = F(0)lls/(12) < 2%Penpalle™uo ||S(Hsc [ = vl s(z2)- (3.20)
Combining (3.17) with (3.20), we obtain
|Dug (1) = Bug (0) 522y < 2%Per | ™ uo||2 S(Erse) Dl = vlls(ze). (3.21)
Finally, estimating the difference in (3.17) with the gradient, we obtain
IV(F(u) = F)llsezy < IV [ (1N ul?) (lufP2u = [0 720)][|g22) (3.22)
IV (2l =N s (Jul? = o)) [0 ~20] | 5r(22)- (3.23)

. Np Np
Using (3.5) along with the calculations for (3.15) and embedding Whas o LNiW*%, we get

p p— p
(3:22) < 2w Il oy (0l sy + 012 ) ) IV = )52

Similarly, we obtain
(323) < enp (Il ) + 10 ) IV G = )l

ey (Ul ey + 1015 ey ) e = 0ll ey [ V0502 015 -

Then for u, v € B, we have

IV (@ (1) — @, ())Hs@2 < | V(F(u) = F(u)lls (12

< 2%e [l Bug||2 HV(u—v)IIS(L2 + 2% ey |lug | [l

st woll 3l = vl (3:24)

From (3.19), (3.20) and (3.24), we get

1
Aoy (1), Bup () < 22 e ol e Ao 2052 o, v) < S, v)
for 61 < 1 2=/ 5——. Finally, taking < min(do,d1) concludes that ®,, is a contraction. O

Next we establish the scattering in H!(RY).
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Theorem 3.2 (H' scattering). Let u(t) be a global solution to (1.1) with initial data ug € H*(RY). If
”“HS(HSC) < 400 (globally finite H% Strichartz norm) and supcp+ ||u(t)||g1 < B (uniformly bounded
HY(RN) norm). Then u(t) scatters in H*(RY) as t — 400, i.e., there exists ut € HY(RYN) such that

: A
Jimfu(t) = ¢t = 0.

Proof. The assumption ||u|| S(frse) < F00 implies that there exists M such that

M=ull 5 2w <+oc.

1— N+
Lt Sc Lz 0l

. — 2
Recall that (ﬁps - %) is an H®c-admissible pair. Let M = M T-w. Given § > 0 we can decompose

[0, +00) = Uj]\/illj, where I; = [tj,t;41) such that for each j, we have

HUH 2 2np < 0.
L}chLIN"F’Y
J

Hence, by the triangle inequality and Strichartz estimates (2.12) and (2.13) applied to the integral
equation (2.11) on I, we have
lull sz, < ellult)lzz + el (=N % ul?) w2 ull g 2.1, (3.25)
From (3.12), we have
_(N— _ 2(p—1
1l s fulP) Pl a2 < envpallullyfn el sz, (3.26)
Thus, (3.25) combined with (3.26) and the assumption sup,cp+ ||u(t)|| g1 < B implies
lulls(ze;z,) < eB + 18PV lul|gz2,p,).- (3.27)
Similarly, using Strichartz estimates (2.14) and (2.15) for s = 1 along with (3.14) yields
IVull sz, < el Vult)lIz + ellV (2N [ul?)[ul?~?u) | g2
2p—1
< eB+2ailullyl)IVulse,
< eB + 216827V | Vul| 2,1, (3.28)
Combining (3.27) and (3.28), we get
lullspz:r;) + [IVullser) £2¢B+2a 521 (Hu||S(L2;Ij) + ||VUHS(L2;IJ-)> -
Performing the summation over I;, we obtain
_2r _
[ullser2y + [ Vullscrey < 2 BMT5¢ + 261 8*P7 (Jlullg 2y + |Vl s22)) »

which implies that
2,
(1 — 26152(1071)) (HUHS(LQ) + HVUHS(LQ)) < QCBMﬁ_

Thus, for small §, we require that 1 — 262~ < %, so that
_2p
Huus(LQ) + HVUHS(LQ) <4cBM1-sc, (329)
Now, we define the wave operator
400 .
ut =g +i / e A (|2 m N s JulP) |ufP2u(t) di. (3.30)
0

By the same arguments as before, we have that

2(p—1
lutllze < elluollze + exllull ) lulscrs),
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and
2(p—1
IVat e < el Vol 12 + 2enlull ) | Vullsire)-
Finally, by initial assumptions, we get
lutllz2 + V|2 < eB +2e M0 (|[ull g2y + |Vl gez2)) -
Using (3.29), we obtain that ||u™| ;: < constant. This implies that u* € H'(RY). From (3.30) and the
integral equation (2.11), we have
) too
u(t) — eyt = / A (3]~ 4 P [P 2u(t') dt
t
Again using the similar computation, we obtain
itA 2(p—1
lu(t) = e*Sut gz < enllullgh o lullseep o
and

7 2(p—1
IV () = **a?) 12 < eallullgi oo IVl sz 400

While obtaining (3.29), we have observed that the Strichartz norm on [0, 4+00) for the above expression
is bounded, therefore, the tail has to vanish as ¢ — +oo, and thus, ”UHS(Hsc-[ ) = 0ast — +oo.

Hence,

t,+00)
lm |Ju(t) — eimzﬁ'||H1 =0.

t—+o00

0

We note that Theorem 3.2 with initial data ug € H'(R") also holds in the L2-critical case (s. = 0
orp=1+ VTH > 2). One can also obtain a similar result for the energy-critical case (s. = 1) but with
a different selection of Strichartz pairs.

We now prove the long time perturbation result in the spirit of [32], which is one of the necessary
ingredients in the subsequent analysis, specifically, in Theorem 6.3.

Theorem 3.3 (Long time perturbation). For each A > 1, there ezists ¢g = €(A) < 1 and ¢ =
c(A) > 1 such that the following holds. Let u = u(x,t) € HY(RN) for all time t and solve (1.1). Let
u=u(x,t) € HY(RYN) for all t and define e to be

e ity + AU+ (|2« [P jap-2a.

Suppose that

||17||5(Hsc) <A, ||€||s/(H—sC) <€ (3.31)
and
1"~ (u(to) — o (t0) | g(grsc) < €o- (3:32)
Then
[ull g(grsey < €= c(A) < +o0. (3.33)
Proof. Denote by w the perturbation of u: w = u — @. For F(u) = (Jz|~N=7 % |u?)|ulP~2u set

W (u,w) = F(u) — F(u) = F(u+ w) — F(u). Then, w solves

iwg + Aw + W(u,w) —e =0.
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Since [|ul|g sy < A, we can partition the interval [to, +00) into K = K(A) intervals I = [t;,t;41] such
that for each j, ||| g zs.. L) < d. Note that the number of intervals depends only on A, however, the
intervals themselves depend upon w. The integral equation of w at time t; is given by

t
w(t) = DBy (1) + i / =AW —e)(t)dt. (3.34)
tj
Applying Kato estimate (2.16) to (3.34) for each I;, we obtain
||w‘|s(H5c;[j) < ||ei(t_tj)Aw(tj)||5(H5c;]j) + c||W (u, w)”s”(H*Sc;Ij) + C”eHS/(HfSC;[]-)
< D2 w0t g ey + AW (@) g eer ) + et (3.35)
Next we estimate

W (@, w)l g1 fr-se,r,y S 1 (U +w) — F(ﬂ)||L§gL;3-
Adding and subtracting (||~ ™V~ % | 4+ w|P)|u[P~ %, we obtain

W @)l g0 gr-se.ryy S (121775 @+ wlP) (Ja+ wP = (@ + w) — [alP~*a)|| Lo
+ ("N s (i 4+ wlP — [al?)) [P L

Using the calculations similar to (3.6), we get

1 l|a+ wlP™ 2(u—l—w) [P~ 2uH I

HW(a7w)HS/(H756;Ij) < enplli+wlf o 72 7

Lq2L
m P _|glP il
ewslli+wl” = (@) g o [T
J

Using (2.18) and (2.19) yields

W (W, )l g0 (g7-5e.1,) < CN,vllquwlquszIIwHLmLT1 (Hquwl eyt [ IILqQLn> (3.36)

+ ch’YHwHL?Q'L;l <”u+w||L[12LT1 + ’uHLqQLTl) HUHL‘DLrl (337)
J

We use the fact that (a + b)P < a? + bP for the ||u + wHU}ng terms in (3.36) and (3.37) to obtain
P it

W@, 0l -ovory S N (nunL@Ln e Y (nwuw ¥ ||u||Lq2Ln)
L

renlolugan (1 + ol ) 1
<

Since (go,71) is a H% admissible pair by our assumption ||u||S Froe;1,) J, we obtain

W @0y S v (4 10l ) Bollgers (mnww ror?)
J J

onlulgerz (97704 il ) 977
Substituting the above estimate in (3.35),
-1 _
leollsqrzeessyy S 1€ 2w sqrzee sy + a0l o ) + 2287 ”Hstmse;m

+ 1677 2Hw||p + 1677 1||w||p —|—01Hw|| + cep.

S(Hse;1;) S(Hse;1;) HSCI)
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Let HwHS(HSC;Ij) <. If ¢e02—1) < -, by choosing § < min (1,4;), where §; = 2} 12;5 together

with (3.32), we can make sure that at time ¢}, Hei(t_tj)AUJ(tj)Hs(Hsc) < €1, where €; depends on ¢, thus,
we take

(it . o
192w () 5 gee 1) + 0 < min (17 21) - (3.38)
Therefore, (3.38) ensures that,
loll g grse; ) < zy\ei@*tj)ﬂw(tj)HS(HSCJJ_) + 2ceq. (3.39)

Taking ¢t = t;41 in (3.34), applying e!l=ti+1)A o both sides and repeating the similar argument used
for (3.39) (since the Duhamel integral is confined to I; = [t;,t;4+1]), we obtain

e 058wt g goey < 220 g o) + 260
Iterating down to j = 0 and using (3.32), we get
€% (85) | g sy < 2 1€ OB w(t0) [l g 700 + (27 — 1)2ce0 < 27 2ceq. (3.40)

Now to satisfy the assumption (3.38) for all intervals I;, 0 < j < n — 1, we require that
n+2 : o1
2""%ceg < min | 1, 5 ) (3.41)

This quantifies € in terms of n (number of time subintervals), which is determined by A (given). Hence,
substituting w = u — @ on the left-hand side of (3.34) and applying Kato estimate (2.16), we obtain

lullg(rsey < ||€i(t_tj)Aw(tj)||s(HsC) + W, w)llgr(gg-se;1,) + €0 + [ull g grsey-

Thus, by repeating the argument used to deduce (3.39) and using (3.40) (3.31) and (3.41), we can
conclude that

lallgggee) < e(A)-

4. PROPERTIES OF GROUND STATE

Now that we have local existence and that it was extended to get global existence of small data
and H' scattering, we would like to study how large the initial data can be taken to continue enjoying
the property of global existence and scattering. As in most focusing dispersive equations, there is
typically a (sharp) threshold, which can be identified via the so-called ground state. However, one
would need to know that such ground state solutions exist, whether they are unique (perhaps up to
certain symmetries), and if ground state solutions can be obtained as minimizers of a certain functional
(as it was originally done by Weinstein for the NLS in [58]). Minimization will identify the value of the
threshold via some sharp constants of inequalities from which the functional is derived. We proceed
along this route: we consider an appropriate interpolation inequality, set up a functional, minimize
it and identify the sharp constant. One property that we do not know is if the minimizer is unique.
Nevertheless, for the purpose of this work, it is sufficient to use the value of the sharp constant.

We start with the Gagliardo-Nirenberg type inequality of convolution type. For brevity we denote

200) = [ (el s up) ul? da.
RN
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Lemma 4.1. Suppose p > 2 and 0 <~ < N. Then
Z(u) < Canl|Vul[ 2~V | 15— (V=20 (4.1)

Moreover, the equality is attained on ground state solutions Q, which solve?

N N-—-2 N N
_ ( T ) Q+ <2 B 2?) AQ+ (la"* 7 s lQP) IQr*Q =0, (42)

and the sharp constant for (4.1) is attained at (any ground state) Q, which may be expressed as Can =
—2(p—1)
QI e,

Remark 4.2. We note that the ground state solutions @) are positive, vanishing at infinity solutions,

which are radial (modulo translations). These and other properties are investigated in [50], see also
early works on the Hartree case in R3 in [40], [41], [45], [46], [47]. As we mentioned in the introduction
the uniqueness is only known in the standard Hartree case p = 2,y =2 and N > 3 (also for p = 2 + ¢,
v = 2 in dimension N = 3).
Proof. We consider the Weinstein-type functional for functions u € H*(R™)\ {0}
Sy = Tl G
Z(u)

We mention that since we are interested in minimizing the value of J, replacing u with its symmetric

(4.3)

decreasing rearrangement will decrease both the L? norm and the H' norm (by Hardy-Littlewood and
Pélya-Szegd inequalities). On the other hand, the symmetric decreasing rearrangement will increase
the value of Z(u) by Riesz’s inequality, and thus, also will decrease the value of J. Hence, we can
consider only radially symmetric functions v = wu(r), which are radially non-increasing (this is up to
translations).

We proceed as in Weinstein [58] by defining

n=inf{J(u): uwe H' ,\ {0}}.
Since J(u) > 0, there exists a minimizing sequence {uy} such that n = hm J(ug) < co. Note that if
we set uy, = pu(Az), then [luy )2 = A Vp2|ul2,  and  [|Vuy )2, = )\2 N2 Vul|2,. By choosing
N_ N
Ao = |lugllp2/[|Vugl| g2 and pg = [Jug| 2 1/|]VukHL22, we obtain the sequence {uy, ,, }, denoting it also
by {ux}, with ||Vug||z2 = ||ug||z2 = 1. Thus, {us} is a bounded non-negative sequence in H'. Therefore,
there exists u* € H' \ {0}, radial, nonnegative and non-increasing, such that a subsequence of {uy}

converges weakly in H' to u* with |Ju*||;2 <1 and [|[Vu*|| 2 < 1.
We next claim that Z(u*) = klim Z (ug), which is justified as follows: since {uy} is uniformly bounded
—00

2Np
in Hﬂad, we have up — u* in LN¥+7 (note that 2 < ]%,]jfy < 2N2). Now evaluating the difference, we
obtain

20w) = 20y = [ (1173 <) (sl = ' P) da
RN
L (N=) P _ |*|P *|p
+/RN(\ T (gl [ P) ) P d

S llull® oy el = [Pl ax + [lukl” = [Pl an flu*[ang ———O-
LN+ N+~ k—o0

We can now conclude

< < Za) = ) = 1. (4.4)

2In this equation we use the normalization for Q as in Weinstein [58] when [|Q||z2 = [[VQ|z2 = Z(Q). Below we rescale
Q@ to have as elliptic equation with unit coefficients.
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This implies that ||u*||;2 = |Vu*|z2 = 1, and also uj, — u* strongly in H'. Therefore, u* is indeed a
minimizer of J.
Next we note that a minimizer u* satisfies the Euler - Lagrange equation

p) J(u*+eh)=0 forall heCg,
€

e=0

which, with [[u*||2 =1 and ||[Vu*| ;2 = 1, can be written as

N4+~ N-=-2 N N+~ —_(N— -1
— — * A Au* ( (N=v) *p) *Ip—1 _ . 4.
( o 5 >u +<2 5 > u* +n |z w [u*|P ) |u*| 0 (4.5)

With equality in (4.4), we have Cogn = %
function, satisfying the above equation, thus, it is a ground state solution of (4.5) with the normalization
lu*l[ze = V™2 = 1.

Setting @ = n2r-Dy*, we obtain that @ satisfies (4.2). With this rescaling, we have HQH%Q =

1
IVQI3: = Z(Q) = n*»1, and the sharp constant Cay = % = 1/HQHi(§)_1). Note that 7 is the

= Z(u"). Recall that u* is a positive, vanishing at infinity

infimum, it uniquely determines Cgn or such a quantity as ||Q||zz2.
One can also use another approach to find Cgy and compute Pohozhaev identities for the equation
(4.2): first, multiplying (4.2) by @ and integrating to obtain

(For =252 el + (5 - 520 ) IVl = 2(@) (46)
Secondly, multiplying (4.2) by x - VQ and integrating, yields
5 (-T2 nae+ 2 (5 - S val - 2@, )
which also gives
2(Q) = Q%= = IVQIIZ, (48)
and substituting these values into (4.1), we obtain 7 = Con sharp = HQHZg(p_l). O

Remark 4.3. Tt is convenient to rescale @ as Q(x) = BQ(PI*U@ (@ x), which gives the equation (1.7)
(with all unit coefficients) for Q instead of (4.2) for Q. Here, o = N(p;ipl)_y and 8 = %}w.
From now on we only use @ (denoting it again by @), solving (1.7) and the sharp constant

N(p—1)—v
> —1

1

2p <N+7—(N—2)p>
Con = —_— 4.9
NTNp-1D-y\ Np-1)—y Q3" 49)
For future reference we also compute,
0 _ sc(p—1) 26 2
M(QIEQ) = 3 P QI Qs (110)

and

1
-1 2(P-1)
—Sc Sc b CG
|wm|wmpzﬁéhg+g . (111)
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5. DicHOTOMY: GLOBAL VS BLOW UP SOLUTIONS

In this section we obtain the proof of Theorem 1.2 part (1)(a) and part (2). We show that the
condition in Theorem 1.2 is sharp.

Theorem 5.1. Consider (1.1) with ug € HY(RY) and 0 < s. < 1. Assume that

MEug] < 1. (5.1)
If
Gluo) < 1, (5.2)
then the solution u(t) ewists for allt € R (i.e., I =R), and
Glu(t)] < 1. (5.3)
If
Gluo] > 1, (5.4)
then fort e I = (=T,T)
Glu(t)] > 1. (5.5)

Moreover, if either x|ug| € L>(RYN) or ug is radial, then I is finite, and thus, the solution blows up in
finite time.

The proof of this theorem goes along the established convexity arguments and the relevant Gagliardo-
Nirenberg inequality with its sharp constant, we include it partially for completeness and also since the
constants and coefficients are specific for the generalized Hartree case. The localized virial part deals
with the convolution term, and thus, is new.

Proof. Using the energy conservation and (4.1), we have

1 1 1
Mel] = (GIVulRs ol e, = 520l ) Traw7a
1 CG 2s¢(p—1)+2 1
> (2HVUH%Q(RN)HUOH%%(RN) - TpN (HVUHL2HUOH%2> > MOPEQ] (5.6)
Using (4.10) and (4.11) and the value of Cqn, we get

se(p—1)+1 2 1 280 (p—1)+2

MEu| > ———————Gu(t)]* — ——= (Glu(t elp .

[u] sep—1) [u(?)] sc(p—l)( [u(?)])

Now the proof of (5.3) and (5.5) follows the same argument as in [32], [14] (see [2] for details).
Next if, zug € L*(RY), we write the virial identity as

Vie = 16(sc(p — 1)+ D Blug] — 850(p — D[Vl 5.7
Multiplying the virial identity by M[u]? and proceeding as in [32], [27], we get
M[uo)"Viy < =8s¢(p — oM [QI"|VQ] <0,

which by the convexity argument implies that the time interval I must be finite, thus, blow-up occurs
in finite time.

If ug is radial, define ¢ € C*°(R),
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such that ¢ is smooth for 2 < r < 3 and 92¢(r) < 1 for all » > 0. Now, for R > 0 large, let

or = R?¢ (%‘) Define the localized variance

loc /¢R ’U x t)|2 dz

and compute the second derivative to obtain

02V (1) / o ]Vu|2d:z—/ A2pg|ul? dx
RN
2(p — 2) lu(z) [Plu(y)]?
A A [RE)PY)T 1
PR =y
(z — y)|u(z)Plu(y)P
/]RN RNV [ — [N 72 dxdy.

We bound the two terms in (5.8) using Agr = N and A2¢pr = 0 for |z| < 2R as follows
4/¢’Igyvu\2da¢ 54/ |Vul|® de,
/A2¢Rlu\2 do < =5 lu|? da.
2R<|z|<3R

Estimate (5.9) using again the fact that A¢r(r) = N

_ M A¢R(|x\_(N_7) % |u|P)|ulP dx
p RN

p p

(5.11)

(5.12)

SHOZD [ el e 2D [ (s s
|z|<2R R<|z|<3R

2N(p —2
<= 2D [ (ol O sl uPda e [ (Y ¢
p RN z[>2R

Next we turn our attention to the term in (5.10), which can be rewritten as

om0 [ o () R
_ AN - V/RN/RN T —y |“|N)|:f§( W ey
AT (1 ),
- L R

T o Jo (o (R)) R e

Combining the above expression with (5.11), (5.12) and (5.13), we write

C

O Vipe(t) < 4/ ]Vu|2+2/ \u|2+c1/ (|~ N =) s ufP) |u[Pda
RN R? Jor<|z|<3R |z|>2R

<2N( —2) 2N - 7)) /}RNOxr(N—w s |ulP)|ulPda

D[ B ()

(5.13)



SOLUTIONS TO GENERALIZED HARTREE EQUATION 25

Writing the above inequality in terms of energy and gradient, we get

Vi) < AN = 1) =) Elucl = NG = 1) =) =) [ [Vu da (514)
+62/ \u|2dx+c1/ (]~ N =7 s [ul?) [u]? da: (5.15)
R* Jop<|z|<3R |z|>2R

P () S

The second term in the expression (5.15) can be estimated as

_N N ..
[ (il s fup do S e ul? | gl g, (Hoder'
|z|>2R i it
< HuHprp (Lemma 2.4)
N+~
|z[>2R
1 Np—1=v N(p+D)+y

N OG- [Vull,2 ¥ full. ¥ (radial Sobolev). (5.17)
N
We rewrite the integral in (5.16), using symmetry, as follows

/RN /RN (( 2] ('Z')) T - (1 ol ('y’» y) & _|xy)_u;|aj\2‘_p7|z§y)|pdxdy, (5.18)

which can be broken down into the following regions (observe that the integral vanishes in the region
|| < 2R);

e Region I: |x| & |y|. In this region we have

|z| > 2R, |y| > 2R.

O (7)== (e (R)) o s

We estimate (5. 18) in a similar fashion as (5.17) to obtain

X] |>2R|u 1 N( *1)*7 N(p+1)+~
// ; X'””‘”R‘u(x)‘pdmdyg Rw”vu”m lull 2 ¥ (5.19)
N

Observe that

-yl

e Region II: max{|z|,|y|} > min{|x|, |y|} and max{|z|,|y|} > 2R. We consider two cases:
— Case (a): |z| < |yl = |z —y|, |y| > 2R and |z| < 2R. In this case (5.18) becomes

1
/ / T =y Xwi>2rlu) [u(@)[? dady,

since using the triangle inequality and the definition of ¢, we have

(-2e(5)- (- 2(2).
(o () (o (9)

Sly\%!x—y!

||

since 1 — %(ﬁ’ <§) <land1- WRIQS/ <%) > 1. Again using Holder’s inequality, Lemma
2.4 and radial Sobolev as in (5.17), we bound the above integral by
1 N( *1)*7 N(p+1)+~

= ||VUHL2 HUHLz N (5.20)

(Nfl)(N(P D)
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— Case (b): |y| < |z| = |x —y|, |z|> 2R and |y| < 2R. This case is symmetric and treated
with a similar argument as in Case (a).

Combining (5.17), (5.19) and (5.20), we get

C
O Vie(t) <8(se(p — 1) + 1) Efug) — 4s.(p — 1)/ |Vu|? + R?/ |ul?
RN R<|z|<3R

¢ N( *1)*“1 N(p+1)+y
w1 Vel ™l
R N

+

Using Young’s inequality to separate the L? norm and gradient term in the last term, we obtain

O2Vipe(t) <8(sc(p — 1) + 1) Efug) — 4s.(p — 1)/ |Vu|? + 7 / |ul?
2R<|z|<3R

(6 N) 2(N(p+1)+7)
+€||VUHQL2 + SF o0 [|u ||LN(3 e
NG-p)Ty

Multiplying the above expression by M [ug)? and using the similar argument as in the case of finite
variance, we get

MTu)’ 07 Vipe(t) <8(sc(p — 1) + 1) MTug)’ Elug] — (4s:(p — 1) — €)[[ull 12| Vul[ 72

H H2+26' (6 N) H H Z(JVI\/(gp+p1)>-:r'7) +20
R2 2(N-1)(N(p—1)—7) L2 )
N(3—p)+~

which can be re-written as

MTu)? 07 Viee(t) < 4se(p — 1)(1 = 1) M[Q)|IVQI[72 — (4sc(p — 1) — €)(1 + 62) M[Q)° IV Q|72

(N(p+1)+v)
2420 c(e, N) :
+ R2IIUH 22+ ey el 7
N(3—p)+v

Choose

4s.(p — 1)(61 + d2)
1+ 09

and R = R(e, 01, N, p,7, Mug]) large enough to obtain

[UO] 8 ‘/loc( ) —C(E N » Dy 7Y )7

where ¢(e, N, p,v) > 0, implying that the maximum interval of existence I is finite. O

0<e

The following lemmas provide some additional estimates that will be needed for the compactness and
rigidity results in Section 6-7. We state the Lemmas without proof as the arguments are similar to the
ones presented in [32], [27]. For more details, refer to [2].

Lemma 5.2 (Comparison of Energy and Gradient). Let ug € H'(RY) satisfy (5.1) and (5.2). Then

se(p—1)
2sc(p—1)+2

Lemma 5.3 (Lower bound on the convexity of variance). Let ug € HY(RY) satisfy (5.1) and (5.2).
Then for allt € R

1
”VUH%%RN) < Elu] < §HVU”%2(RN)- (5.21)

1650u] (1 - (MEu))0=D) <3 <||Vu||%2 _ Sc(p_pf)“ Z(u)) . (5.22)
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Lemma 5.4 (Existence of wave operators). Suppose ¥+ € H'(RY) and

2s.(p—1)+2
o IV I < (220202 ) Mg sl (5:23)
se(p—1)
1
for some 0 < p < <%) ® < 1. Then there exists vy € H'(RYN) such that v(t), solving (1.1) with

initial data vy, is global in H(RN) with

lool|Z IV o (@)l 2 < [QUZ21V Qg2 Mol = w722, Elv] = %HWWH%?
and
v(t) — et || g — 0 as t — 0.
Moreover, if HeimerHS(Hsc) <4, then

itA
loollzree < 200 e and ollgggzee) < 2069 50

Proof. We consider the integral equation

[ee]
o(t) = Byt — / eilt=t)A ((|$\—<N—7> * |u|p> |uyp—2u) (t") dt', (5.24)
t

which we would like to solve for all ¢. Note that for 7' > 0 by Theorem 3.1 (small data theory) there
exists 6 > 0 such that ||eitA@Z)+||S(HSC,[T ooy < 0. Thus, we solve the equation (5.24) in H! for t > T
with T large. Estimating (5.24) in S(L?) for t > T, we obtain

IVollszzrooy S 1€ 2V6F [sragron + VI - 17D 5 o) 020l 121,00
S 19+ U202 IV ellsza oo

Taking T sufficiently large so that HUHS(HSC T00)) < 3,

above inequality, we obtain in a similar fashion,
IV (0 = €297 ls(z2imoey < IVIA- 17N 5 J0P) ol 205 (224m.00))

< ol o 19224000

< ¥l

hence, ||V (v — e/@T) |s(r2;[T,00)) = 0 as T — oo. Since, by Theorem 3.2 (H' scattering), we have
v—e®®pt = 0in H' ast — oo and the decay estimate together with the embedding HY(RN) «— LI(RN)
Withqg%forNES q<ooforN:2andq<oofoerlimplies

we get || Vollsr2roo)) S 21871 Using the

Z(e"yh) 5 He”AWH v St

Ve
thus, Z (e2¢*) = 0 in L™ as t = oo. Since lim¢ s q o0 [J0(E) |1 = VYT || g1, we have

1 1 _(N—
Blo] = Vel = 5 [ (=¥ < ool do

1 . 1 . .
_ tllf?o <2HV€“A¢+H%2 _ 2p/ Ox,—(N—v) % ‘eztAw-i-‘p) ‘ezmwﬂp)

1
= 5IVet
and Mv] = tllglo A F||2, = || F]|2,. Note that by (5.23) we now have
25.(p—1)+2
MU Bl = IV e < (240202 arigplg)
C
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and by our choice of u we conclude that M[v]? E[v] < M[Q]?E[Q]. Moreover,
. 20 2 20 2
Jim ()2 IVe()] = [+ 19612
<2 <230(p— 1)+2
B se(p—1)
= 12 QIZ VAL,
where the inequality is due to (5.23) and last equality is from (4.11). We can take T > 0 sufficiently large
so that [[o(T)[|%,[|Vo(T)| 2 < pllQ|9.]|VQ|| 2. And, since p < 1, by Theorem 5.1 (global existence of

solutions), we evolve v(T) from time T back to time 0 and obtain v with initial data vy € H' for all
time ¢ € [0, 00) with the desired properties. O

) M[QIE[Q)]

6. COMPACTNESS

6.1. Blueprint. To characterize the behavior of global solutions to (1.1), we must show that if ME[u] <
1 and G[uo] < 1, then the global-in-time H* Strichartz norm is finite, i.e., HUHS(HSC) < o0o. This would
imply that |Vu(t)||z2 < C and thus, I = (—o0,00). For completeness we provide the blueprint below,
which is based on the works of Holmer-Roudenko [32], Duyckaerts-Holmer-Roudenko [14] for the 3d
cubic nonlinear Schrédinger equation and Kenig-Merle [36] for the energy-critical NLS equation.

First Stage: Small data theory
Using Lemma 5.2, we have

— 286(})—1) 2p Sc(p—l) Se(p_l)
ool < (ol Vaolla) ™ < (S2) 7 (vt ™

HSC p — 1
2/sc
If Glup] < 1 and MEJu| < (%) m, then from the above inequality, we obtain ||ugl| .. < 054,

which by Strichartz estimates gives |le®“ug| s(frsey < €0sq- Therefore, Theorem 3.1 (small data the-
ory) implies that there exists a 6 > 0 such that if G[ug] < 1 and ME[u] < J, then T* = +oo and
luo|| 7s. < 0o. This gives us the basis for induction.

Second stage: Construction of critical solution (via induction on scattering threshold)

Let (ME), be the supremum over all § > 0 for which the following is true:

“If ugp € HY(RY) with Gup] < 1 and MEJu] < & such that § = §(M[Q]'*E[Q]*), then T* = 4o
and [|uol| gs. < 00.”

If (ME). =1, then we are done, since @ (soliton) does not scatter. So, we assume that (ME). < 1.
This implies (by definition of (ME),) that there exists a sequence of solutions {u,} to (1.1) with initial
data u,,0 € HY(RY) that approach the threshold (ME). from above but do not scatter, i.e., there exists
a sequence u, o € H'(RY) such that

Gluno] <1 and MEJuno] \y (ME). as n — oo

for which [juy|| S(frse) = +00. Using the profile decomposition (Theorem 6.1) on the sequence of ini-
tial data {u, 0}, we prove the existence of an H! solution u. to (1.1) with initial data u.o such that
Gluco] < 1 and MEuc] = (ME). (ie., it lies exactly at the threshold (ME).), but u. does not scatter
(Theorem 6.3).

Third stage: Localization of critical solution (setting the premise for rigidity theorem)
The critical solution u.(t), constructed in the second stage, will have the property that K = {u.(t) | t €
[0,00)} is precompact in H(RY) (Proposition 6.6). This will allow us to show that for a given e > 0,
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there is an R > 0 such that

/ |Vu(z,t,)]? de < e
lz+x(t)|>R

uniformly in ¢ (Lemma 6.7). Together with the zero momentum hypothesis (Lemma 6.8), this controls
the growth of path z(¢) (Lemma 6.9).

Final Stage: Rigidity theorem (Theorem 7.1)

Appealing to this uniform localization and control of x(t), we invoke the Rigidity theorem, which
leads to contradiction that such compact solution in H' exists unless it is a trivial solution, which
scatters. Therefore, the assumption (ME). < 1 is not valid, concluding the proof.

We now fill in the necessary details.

6.2. Profile decomposition.

Theorem 6.1 (Linear Profile decomposition). Let ¢, () be a uniformly bounded sequence in H'(RY).
Then for each M € N there exists a subsequence of ¢n(x) (also denoted ¢n(x)), such that, for each
1<j<M,

(1) there exist, fired in n, a profile v € HY(RN),

(2) there exists a sequence (in n) th of time shifts,

(3) there exists a sequence (in n) 2 of space shifts,

(4) there exists a sequence (in n) WM (z) of remainders in H'(RY), such that

M .
on(z) =Y e Az — 2l) + W () (6.1)
j=1

with the properties:

o Pairwise divergence for the time and space sequences. For 1 <k # j < M,
lim [t — 5] 4+ |2d, — 2F| = +o0. (6.2)
n— o0

o Asymptotic smallness for the remainder sequence

lim (nlln;o et AWM S(HSC)) —0. (6.3)

M—o0

o Asymptotic Pythagorean expansion. For fited M € N and for any 0 < s < 1, we have

M
Inllze = D197 1% + W12, + on(1). (6.4)
j=1

Proof. Refer [2], [27], [32] for details. O

Proposition 6.2 (Energy Pythagorean expansion). Under the assumptions of Theorem 6.1, we have

M .
Elpa) =Y E [e—”mw] + B [WM] + o,(1). (6.5)
j=1
Proof. By the definition of energy, FE[u], and (6.4) for s = 1, it is sufficient to establish for all M > 1,
M .
Z(pn)=> Z (ait“wﬂ) +Z (W) + on(1), (6.6)
j=1

where Z(u) = [pn (|$|_(N_7) % [ulP) ulP.
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Step 1. Pythagorean expansion of a sum of orthogonal profiles. We show that for M > 1 fixed, the
orthogonality condition (6.2) implies

M _ M .
2 (S5 )| =32 () ) 67
j=1 J=1

By rearranging and reindexing, we can find My < M such that
e For 1 < j < My, we have that tzl is bounded in n.
e For My+1 < j < M, we have that

Passing to a subsequence, we may assume that for each 1 < j < My, t converges (in n), and by
adjusting the profiles 1)7’s we can take 1 = 0. Note that either for 1 < k < My we have t¥ — 0 or for
My+1 <k < M we have |tF| — 0o as n — oco. So if t& — 0, then from (6.4) we have |z, — zF| = 0o
as n — 0o, which implies

Mo . . Mo .
SO —ad) | =7 (1) + on(D). (6.8)
=1 =1

. N( 1)7 prl
Now if |tk| — 00 as n — oo, for a function ¢ € H B ﬁLpp , by Hardy-Littlewood-Sobolev, Sobolev

embedding and LP space-time decay estimate, we obtain

_Ne-1)
G Y Y S e 1 IRl L es
LN+ H 2p L P

N( 1)
Approximating ¢* by ¢ € Cg° in H % and sending n — 0o, we obtain
: —ithA k) < 75 —itk A k(120 _
Jim 2 (e 02F) 5 limfle gy, <0 (6.9)

Thus, combining (6.8) and (6.9) together yields,

M ] My M .

] ; . L :
D EEY DO S
j=1 j=1  j=Mo+1
Mo M ) M )
. g . ) :
=z |+ Y Z(TA) 4 oa(1) = 3 2 (T A ) +0,(1),
=1 j=Mo+1 =1
which is the right-hand side of the expansion (6.7).
Step 2. Ending the proof. Note that
2 2 ; ;
||WM|| p2Np > ||eztAW7]Lw|| b anp S ||eZtAWéMHp 2 ”enAWé\/[Hp 2Np
+7 L LN+ Leo L ~2ee Lo NTr—20=se)
<N WRllP oy AWy SNSRI oy sup fdnllf.
L®L N—2s¢ LOOLN72SC n
t x t xT

Since H% —s [,1\727]\2[%7 ie., (oo, N2—]\2]sc> is an H* admissible pair, by (6.3), we get
. M o
i (Jim 1 ) =o (610

2N
Let M > 1 and € > 0. Note that {¢,}, is uniformly bounded in LNiﬁv, as it is uniformly bounded in
2N
H' by the hypothesis. Hence, by (6.10) {W},, is also uniformly bounded in L%, Hence, we can
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choose My > M and ny such that for n > n;, we have

| Z(¢n) = Z(n — W) + | Z2(W = W) — Z(Wh)] (6.11)

2
+CIWRH [ Pon, <e,

LN+~

2p—1 2 1
<o[IWM | <sup||¢n|| P, -+ s W N>
LN+v N+~ LN

+

where we have used the triangle inequality to estimate
M Mi)2 M2 My |2
Wt = Wl 7oy, — W oy | S IWRD P oy
LN+~ LN+~ LN+~
and by observing that a?” > a(a — b)?’~! together with the triangle inequality, we estimate

2p—1
S (1w - s = 1ol )6m = WA,

2p—1 2p—1
SIWAN e (sup ol + sup (W] N> .

N+~ LN+~

I$n — WM1|!2p H%HQP

Choose ng > n such that for n > ng, by (6.7), we get
Z($n — W) ZZ( —ith Awﬂ) ‘ (6.12)

Using the definition of Wy, we expand WM — WM to obtain

M ‘
M M —ith A G
Wy =Wyt = Z e Y (- — xy).
j=M+1
By (6.7) there exists ng > ngy such that for n > ngs,

My _
’Z(W% Wi - Yz (a“ﬁw) ’ <e. (6.13)
j=M+1
Thus, for n > ns, by (6.11), (6.12) and (6.13), we obtain

- f: z (e7ayd) — Z(w)
j=1

My

:‘an) = 260 = W) + Z(6 = W) =37 7 (78897 ) 4+ Z(W — W)
j=1
My )
—ZWMY S 7 (AT - 2w - W) < 3,
j=M+1

which implies (6.6).
U

6.3. Critical solution. In this subsection, we study a critical solution of (1.1), denoted by w.(t).
The main ingredients are Theorem 6.1 and Proposition 6.2 (proved in previous subsection) along with
Theorem 3.3 (long time perturbation theory).

Theorem 6.3 (Existence of critical solution). Let 0 < s, < 1. There exists a global solution u.(t) €
HY(RN) with initial data uco € HY(RN) such that ||ucol/2 = 1, (ME). < 1, where (ME). = %,
Gluc(t)] <1 forall 0 <t <400, and

||UC||5(HSC) = +00. (6.14)
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Proof. The argument for the linear profile expansion is similar to the one presented in [32], [14], [27].
Thus, we continue for a new nonlinear profile ¥/ associated to each original linear profile ¢/ satisfying

INLF ()47 — e=#543|| ;. — 0 (6.15)
and
INLE (=) || g 72 < +00. (6.16)

The idea now is to apply a nonlinear flow to ¢, (z) and approximate it by a combination of “nonlinear
bumps”, i.e.,

M

NLF (t)pn(x) ~ Y NLF(t — t}) ¢/ (x — aJ,).

j=1
To carry out this argument, we introduce the nonlinear evolution of each separate initial condition
Un,0 = On:

U (t) = NLF(t)¢n(x) = NLF(t)un,
the nonlinear evolution of each separate nonlinear profile (“bump”):
v/ (t) = NLF()57,

and a linear sum of nonlinear evolutions of those “bumps”:
M

Up(t,z) = Zvj(t —tl,x—al).
j=1

Intuitively, we think that w, o = ¢, is a sum of nonlinear bumps {bvj and uy,(t) is a nonlinear evolution
of their entire sum. On the other hand, u, () is a sum of nonlinear evolutions of each bump and we
want to compare uy,(t) with u,(t). Also, note that if we just had the linear evolutions, then both wu,,(t)
and 4, (t) would be the same.
Thus, u,(t) satisfies
i(un)e + At + (2]~ 5 g [P) [P 2, = 0,
and u,(t) satisfies
i(Tn)e + Aty + (2]~ s [, |P) [P~ 200, = &V,

where
e’ = (el s @) fial =2 — Y (lel= V7w o7 (¢ = th- = 27 ) o7 P20
j=1

We also define

WA = W 37 (78 (@ — ) - NLF(~t])i (@ — o) ), (6.17)

j=1
and using (6.1) we write
tno = ¥ NLF(—t])¢7 (x — a)) + W, (6.18)

j=1
such that u, o—u(0) = Wé‘/f . Applying triangle inequality together with the Strichartz inequality (2.14),

we estimate

M
1" AW s 100y S 1AWl llggroey + D e 37 — NLF(=t])0 |-
j=1
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By (6.15) and (6.3) we have that
: . HATTM| _
s (nliilo”e n ”s<HSC>> =0 (6.19)

We now approximate wuy, by @,. Then from the Theorem 3.3 (long time perturbation theory) and (6.16)
it follows that for n large enough, ||u,|| S(irsey < 100, which is a contradiction, since u,, is non-scattering.
We assume the following two claims, which we prove later.

Claim 6.4. There exists a constant A independent of M, and for every M, there exists ng = no(M)
such that if n > ng, then “ﬂn”S(HSC) < A.

Claim 6.5. For each M and € > 0, there exists ny = n1(M;¢€) such that if n > ny, then HEEV%HS/(H_SC) <
€.

By (6.19), for any € > 0 there exists M; = M (e) sufficiently large such that for each M > M; there
exists ng = ng(M) such that n > ng implies

HeltA( n(0) — un(o))Hs(HSC) <e

Thus, if the Claim 6.4 and Claim 6.5 holds true, using Theorem 3.3 for sufficiently large M and
n = max(ng,n1,n2) we obtain [lun||ggs.) < 00, a contradiction, since u, is non-scattering. Now there
are two possible scenarios in the profile decomposition (6.18):

Scenario 1: More that one Jj # 0. Observe that for s = 0 in (6.4), we have

M

G2 . M2 . 2 _
Do+t W <t sl = 1. (6.20)
]:

Thus, by (6.20), we must have M [e*itiA{/zj ] < 1 for each j, which by energy decomposition, for large
enough n yields

MNLF(8)§7]'~* E[NLF ()¢]* _ M@J]' = E[j7]* _ ME[F) < (ME)..
M[Q]l’sCE[Q]SC MQ]' = E[Q]*
Now, since ||[NLF(£)37 (- — x%)HS (Frse) < 100, the right hand side of (6.18) is bounded in S(H**). By
(6.19), we conclude that |[NLF(¢ )un 0”5 (frsey < +00, which is a contradiction.
Scenario 2: Suppose wl % 0 and W =0 for all j > 2. Hence, we have

Un,0 = NLF(_tn)Jl (:E - xn) + WT}

with
MY <1, MEW'] < (ME)e, and lim || ()W, | (s700) = 0-

n—-+o00

Let u. be the global solution to (1.1) with initial data u.o = ¥! ie., u.(t) = NLF(t))'. Assume by
contradiction that ”UcHS(HSC) < +oo. Let u,(t) = NLF(t — t1)y!, then

[ ()| gs75ey = INLE(E = 60)0 | 5350y = el ggroey < +00.
(H?e) (Hse) (He)

Therefore, using the long time perturbation theory with e = 0, we deduce that ||u,|| S(frsey < 09, which
is a contradiction, since by construction w, is non-scattering. It only remains to establish the claims
6.4 and 6.5.

Proof of Claim 6.4: See [2] or the original NLS works [14], [32], [27] for details.

Proof of Claim 6.5: Recall that (sc(zﬁﬁ’ %) is an H % admissible pair. Then

1€ 157 el

= ||€é p 2N .
fse) < | L0000 [ INp-N=
xT
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Observe that expansion of €2/ consists of cross terms of the form

M M M
—(N— j j k kyip—2,1 l
> (1= s ol (= ) P) 0" (¢ — th) =20 ¢ — ),
=1 k=1 [=1
kAl

where all of j, k and [ are not same. Assume, without loss of generality, that k # [, and thus,
[tk —tL| = 0o as n — +00. So, we estimate

(2~ o (8 = )17 [0 (¢ — 1) P20 (t — 1)

2p 2Np
(1—s¢)(2p—1) f 2Np—N—
L—se L2 g

—sc
x

< ||’ oF (t — ) P20l (¢ — ¢! :
< HL% 2 [0 (8 = 1) P70 ")”Ltu_sff’(p_nL;Nfﬁ(’;_l)

_2p  2Np
Since both v* and v' belong to L} * Ly "7, then

lo*(t = (tn = t) P2 @) — 0.

2p 2Np
Lt(l_SC)(p_l) L£N+W)(p—1)
This gives Claim 6.5, which completes the proof of Theorem 6.3. U

For the proof of the following Proposition and Lemmas 6.7, 6.8 and 6.9, see [32], [14] and [27] (or
refer to [2] for details).

Proposition 6.6 (Precompactness of the flow of the critical solution). Assume u. as in Theorem 6.5.
Then there exists a continuous path x(t) in RN such that

K = {uc(- —2(t),t) [t €]0,00)}
is precompact in H' (i.e., K is compact in H').

Lemma 6.7 (Precompactness of the flow implies uniform localization). Let u be a solution to (1.1)
such that

K = {u(- —a(t),t) | t € [0,00)}

is precompact in H*. Then for each € > 0, there exists R > 0 so that

/ |Vu(z, t)* + |u(z, t)]2de < ¢ (6.21)
le+2(t)|> R
for all 0 <t < 0.

Lemma 6.8 (Zero momentum). Let u. be the critical solution constructed in Theorem 6.3 and assume
(ME). < 1. Then Pluc] =Im [4.Vu.dz = 0.

Next, observe that

ot

Since Pluc] = 0 (Lemma 6.8), this implies that [ x|u.(x,t)|> dz = constant, provided it is finite. We
will replace this identity with a localized version adapted to a suitably large radius R > 0. To envelope
the entire path x(t) over [T, T}] the localization R should be taken large enough over the same interval
[T,T1]. We can use the precompactness of the translated flow u.(- — x(¢),t) and the zero momentum
to prove that the localized center of mass is nearly conserved. By the localization of u. in H' around
x(t) and the near conservation of localized center of mass we constrain parameter x(¢) from going too
quickly to 4o0.

9 /1‘|u(:ﬁ,t)|2daz = 2NIm/ﬂVud;U = 2NP[u].
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Lemma 6.9 (Control over z(t)). Let u be a solution of (1.1) defined on [0,400) such that Plu] = 0
and K = {u(- — z(t),t) | t € [0,00)} is precompact in H', for some continuous function z(-). Then

t
xi) —0 ast— +oo. (6.22)

7. RIGIDITY THEOREM

Theorem 7.1 (Rigidity). Let u be the global solution of (1.1) with initial data ug € H'(RY) satisfying
Plug] = 0, MEJug] < 1 and Glug] < 1. Suppose K = {u(- — x(t),t) | t € [0,00)} is precompact in H".
Then ug = 0.

Proof. Let ¢ € C° be radial, with ¢(z) = |z|> for |z| < 1 and 0 for |z| > 2. For R > 0, let
ér(x) = R%¢(x/R). Define

Viee(t) /¢R Wulz, )2 de = V(¢ _2le/ ¢)( ) 2. (7.1)

Using Holder’s inequality, we get

Viee(2) SCP”/| |<2R\u<t>||Vu<t>\dx§CR|| w(t) |25 |t 25 (7.2)

The second derivative, using the definition of ¢ and symmetrization, yields

4(N(p—1) —~ _(N—
w028 [ jvup - MEEZDZD [ (o 0 ) o
|z|<R p |z|<R
¢ 2 || 2
- = U +4/ ¢ < > Vu
R? R<\r|<2R| | R<|z|<2R R Vel

e
S A 3 (&) e ot
2 R () e

We re-write the above estimate as

" u2_4(N(p_1)_7) x—(N—’y)*up wl?
1) > (8 /v Py A up) | |) (73)

- (Ldm 9?4 B () w)
/ / < 2]® <|OCR’)> x(x@y_)z‘(ﬁ)_jﬁ(wdwdy (7.4)
/ / <1‘|yr <|y’)> . Jl‘Zfil‘i”;‘é(””’dmy, (7.5)

Q={(z,y) e RN xRY : |z| > R} U {(z,y) € RN xRY : |y| > R}.
Since {u(-—z(t),t) | t € [0,00)} is precompact in H'(R"Y), by Lemma 6.7 there exists Ry > 0 such that
taking R > Ro + supye[p,ry) [2(t)[, we obtain for all ¢ € [T, T1]

where

(7.6)

/ Ve, ) + |u(z, )Pz < <.
|z|>Ro 8
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Using Holder’s inequality, Hardy-Littlewood-Sobolev inequality and radial Sobolev inequality yields the
existence of R; > 0 such that

[ (s ru\p) ul? da
‘l‘|>R1

< e - !_( s |ulPll en |jull” ,y,  (Holder’s inequality)
2> Ry Lo,

< 63||u||2pM (HLS inequality; Lemma 2.4)

N+y
|z|>Ry
c4 N(p—1)—v N(pt+1)+~ €
< —wowen g ¥ Ml T <5 (7.7)
where the second to last inequality follows from the radial Sobolev inequality and the last one follows
(N=1D)(N(p=1)—=v) *1)*“/ N(p+1)+~
from taking R, N > 8¢y HuH llull

Let € = 16E[u] (1 — (ME[u])*P~ 1)) 7! and take R = max{Ry, R1}, combine (7.6) and (7.7) to
obtain

c1 </|x|>R |Vu ‘2 + u + (|x’*(N*’y) * ‘u’P> |u’p> < 4E[u] (1 — (ME[u ])Sc p— 1)) . (7.8)

Now we invoke Lemma 5.3 by splitting the integrals on the right side of the expression (5.22) into the re-
gions {|z| > R} and {|z| < R} and use (7.8) to obtain the following bound, (7.3) > 12E[u] (1 — (MEu])*P~1).
Next, we estimate the terms (7.4) and (7.5)

IO Eo () (1 o (b)) ) C M gy, e

where we follow the argument as we did in Theorem 5.1 to obtain

C Np-—1)—vy

5 -~ € sc(p—1
(1:9) < — gt Wl © < 7 < 48[ (1= (Mef)o)

% Np-D-—y . ) _
with R >dos|Xjz>rull;, ¥ - Putting everything together, we obtain

Vite(t) = 8Elu] (1 = (ME[u])*® ™) — |Ig] = 4E[u] (1 - (ME[u])**~) . (7.10)

By Lemma 6.9, there exists 7" > 0 such that for all t > T", we have |z(t)| < 6¢, with § > 0 to be chosen
later. Taking R = Ry + 671, we have that (7.4) holds for all ¢ € [T, T1], then integrating from 7" to 71,
we obtain

[VitelTh) = Vioe(T)| = 4B[u] (1 = (MELu])*) (13— T), (7.11)
On the other hand, from (7.2) and (5.2), we have that
Vi)l < CRIu(t) 357 IVu(t) |25 < € (Ro+ 0T ) [QUZS IV Q%5 (7.12)
Combining (7.11) and (7.12), we get
4B[u] (1= (ME))*0=) (1 = T) < C(Ro + 0T ) QU7 IV QI

Elu)(1—(ME[u])* @)
clQIZS I Ivaly

Let § = , then the above expression can be re-written as

3B[u) (1 - (ME))*?) Ty < CRo| QIS IVQISY +4E[u] (1 - (ME[u)*0 V) T,
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taking 77 — —+oo implies that the left hand side of the above expression goes to oo and we derive
a contradiction (right hand side is bounded), which can be resolved only if E[u] = 0, implying that
u=0. g

8. DIVERGENCE TO INFINITY (THEOREM 1.1 (2) PART (B))

The argument for part (2)b follows [33] and [27] proof verbatim. We give a brief overview here for
the sake of completeness.

Assume that there is no finite time blowup for a nonradial and infinite variance solution (from
Theorem 1.1 part (2)b), thus, the solutions exists for all time (i.e., 7" = 4+00). Under this assumption
of global existence, we study the behavior of G[u(t)] as t — 400, and use a concentration compactness
type argument to establish the divergence of G[u(t)] in H' as it was developed in [33], note that the
concentration compactness and the rigidity arguments are used to prove a blowup property.

We first restate (in the spirit of [33]) the characterization of @ from Lions [46], Theorem II.1, which
can be considered for any minimizer ().

Proposition 8.1. There exists a function €(p), defined for small p > 0 with lil’I[l) e(p) = 0, such that for
p—
all u € HY(RYN) with
2(u) = 2(Q)| + [lulz2 = 1@ 2
there is 0y € R and zo € RY such that

lu = € Q(- — o)l < e(p). (8.2)

+ |IVullzz = IV Q22| < o, (8.1)

This is equivalent to

Proposition 8.2. There exists a function €(p) such that e(p) — 0 as p — 0 satisfying the following:
Suppose there exists A > 0 such that

se(p—1)+1 A\Zse(p=1) N 95 (o1
ME] — 288 L [ — — 2] \2| < paZsel— D2 8.3
A iy < se(p—1) +1 = 53
and
A2sc(p—1)+1 ifA<1
Ghu®)) — M\ < - 8.4
Glu(t)] — Al p{)\ A1 (8.4)
Then there exists 0y € R and xy € RN such that
o — e®AN/267 5 QBTN 1 — 2g)) 2 < BT e(p) (8.5)
and
[V — e AN/~ QA(B™ T+ & — )| 2 < AB™ 7T T e(p), (8.6)
0
where 8 = (Aj\/}[[g}) .

Suppose that 0 < MEJu] < 1 and let Glu(t)] = XA > 0 be given. The “mass-energy” horizontal line
for this A intersects the graph of parabola, y = % < — %
exists two solutions 0 < A\; < 1 < Ag. The first case produces a solution that is global and scattering
(Theorem 1.1 (1)) and the second case produces a solution which either blows up in finite time (Theorem
1.1 (2)(a)) or diverge in infinite time (Theorem 1.1 (2)(b)) as shown in Section 8.

It is possible that G[u(t)] is much larger than 1 or Ay. The following Proposition shows that it cannot.

) A2 at two places, i.e., there
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Proposition 8.3. Let Glug] = Ao > 1. Then there exists po = po(Ao) > 0 (with the property that
po — 0 as Ao \( 1) such that for any A > Ao, the following holds: There does NOT exist a solution u(t)
of (1.1) with Plu] = 0 satisfying ||ul|r2 = [|Q||z2 and

Elu]  sc(p—1)+1 (1 B A\2sc(p—1) ) \2 87)

E[Q] a sc(p - 1) Sc(p - 1) +1
with
Vu(t
A< Nulllee 340 for alit > 0. (8.8)
IVQl[ 2
Proof. The proof relies on Proposition 8.2 and is easy to adapt as done in [33] and [27] following the
same argument as in Theorem 7.1 (Section 7) in this paper. (Il

This proves that there is NO solution at the “mass-energy” line for X\ satisfying (8.8). We want to
show that G[u(t)] on any “mass-energy” line with M&[up] < 1 and Glu(t)] > 1 will diverge to infinity.
By contradiction, we assume that such solutions have bounded renormalized gradient G[u(t)] for all
t>0.

We say the solution has a globally bounded gradient if there exists a solution at the “mass-energy”
line for A such that A < G[u(t)] < o for all £ > 0. Observe that if the solution does not have a globally
bounded gradient for some A and o, then for any ¢/ < o the solution still does not have globally bounded
gradient. We are now in a position to define the threshold.

Definition 8.4. Fiz Ay > 1. Let 0. = g.(A\g) be the supremum of all o > Ao such that the solution does
NOT have a globally bounded gradient for all A such that \g < XA < 0.

By Proposition 8.3, we have that A < G[u(t)] < A(1 + pg) does not hold for all A > Ag. We want to
prove that o.(A\g) = +o00. By contradiction, assume that o.(\o) is finite. Let u(t) be a solution to (1.1)
with initial data wu, o at the “mass-energy” line for A > Ao, satisfying the hypothesis of Proposition 8.3.
Moreover, we want to prove that G[u(t)] — oo over a sequence of times {t,} — co. Assume that such
a sequence of times does not exist. This implies that there is a finite o satisfying A < G[u(t)] < o for
all £ > 0. Invoking the nonlinear profile decomposition on the sequence {u, o} as done in Theorem 6.3
enables us to construct a “critical threshold solution” u(t) = u.(t) at the “mass-energy” line for A\, with
Ao < Ae < 0c(Ao) and Ae < Glue(t)] < oc(Ao) for all ¢ > 0. At this point we note that the nonlinear
profile decomposition gives the H! asymptotic orthogonality at ¢ = 0, but we would need to extend this
for 0 <t < T. This can be done following the argument described in [33] (Lemma 6.3) and [27] (Lemma
3.9). This critical threshold solution wu.(t) will satisfy Proposition 6.6 (precompactness of the flow)
and Lemma 6.7 (uniform localization). This localization property of u.(t) implies that u.(t) blows-up
in finite time. The arguments from [33] (Proposition 3.2) and [27] (Lemma 4.10) proves exactly that,
which contradicts the boundedness of u.(t) in H!, and hence, u.(t) cannot exist, which means that our
initial assumption that o.(\g) < oo is false. This completes the proof of Theorem 1.1.

APPENDIX A. UNIQUENESS OF THE GROUND STATE FOR p = 2, v = 2

Here for completeness we review the uniqueness of the ground state argument to the nonlocal elliptic
(Choquard) equation

~Q+2Q+ (|l ¥+ 1QP) @ =0, (A1)

since the argument is different from that for a local nonlinearity. As it was mentioned in the introduction,

for N = 3 the uniqueness is proved by Lieb [41], a slightly different proof using the comparison argument

is in Lenzmann [39]; for N = 4 it is proved in Krieger-Lenzmann-Raphael [37] via a combination of
the above. We also follow the above arguments in 3d and generalize it for 2 < N < 6. The stationary
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equation (A.l) appears in the context of the Hartree equation only in dimensions 2 < N < 6: in
dimension N = 6 the Hartree equation is energy-critical, and thus, the corresponding elliptic equation
will be different (lacking the linear term). While most of the arguments below work for dimensions 6
and higher, the equation (A.1) is only needed for N < 6.

Theorem A.l. Let 2 < N < 6. The equation (A.1) has the unique positive, radial solution @Q in
H'(RN).

The proof uses the following representation of the Newton’s potential, which can be found in the
textbook [43, Theorem 9.7].

Lemma A.2. If f is a radial C*> function on RN, then

1 r B 00

— <]ac]N_2 * f) (r) :/0 K(r,s)f(s)ds — ‘SN 1‘/0 f(s)sds, (A.2)
where
S\N-2

K(r,s) = [s¥1 (1 — (;) ) s> 0 forr>s. (A.3)
Proof. (of Theorem A.1) Using Lemma A.2 for a radial Q € H'(RY), we rewrite (A.1) as

-Q" - EQI + </ K(r,s)Q(s)? ds> Q = aQ, (A.4)

r 0

where a = —1 + |SY7| (J5° Q(s)?sds) > 0. Using the rescaling Q(r) a='Q(a~'/?r), we obtain the
version of (A.4) with a = 1, namely,

(- -2 s o)) @) = Qo) (A5)
where
o(r) = [ K(rs)a?as ). (A.6)

Suppose Q1(r) and Qz(r) are two positive radial solutions of (A.6) in H'(RY) such that Q1 # Q2 that
solve the IVP

{Q”m +221Q/() + Q) — Uo(r)Q(r) =0, )

Q(0) = Qo, Q'(0)=0.

The Volterra integral theory (for example, see Lemmas 2.4-2.6 and Theorem 2.1 in [60]) guarantees
existence and uniqueness of a local C? solution to the above initial-value problem for a given Q(0) (note
that Ug(r) is bounded, see details below). Therefore, if Q1 # Q2, then Q1(0) # Q2(0). Without loss
of generality, assume that Q1(0) > (Q2(0), and by continuity we have Q1(r) > Q2(r) on some interval
r > 0. We now prove that Q1(r) > Q2(r) for all » > 0. Multiplying the equation (A.7) written for Q1
with ()9 and subtracting the same with indexes reversed, we get

N —
Q@2 ~ Q10 =~ (122 ~ Q1QY) + U, ~ Ug,) 1Qx
or, equivalently (multiplying by rV=1),
d
(@12 — Q1Qy)) =" (Ug, — Ug,) Q1Q». (A-8)

Integrating (A.8), we obtain

PN Q2(r) — Qu(r)Qy(r)) = /OT sV HUqi (s) = Uqu(5)) Q1(5) Q2 (s)ds. (A.9)
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Suppose that Q1(r) intersects Q2(r) at r; > 0 for the first time. Then, the left-hand side of (A.9) at r;
is non-positive due to monotonicity and decay of both @)1 and Qo:

1 Qu(r1) (Q4(r) — @3(r1)) <0, (A.10)
however, the right-hand side of (A.9) satisfies

/07“1 sN_lQl(s)Qg(s)(UQl(s) —Ug,(s))ds > 0, (A.11)

since both Q1(r), Q2(r) > 0 along with Ug, (r) > Ug,(r) for 0 < r < r1. This leads to a contradiction,
thus, Q1(r) and @Q2(r) do not intersect, which implies that Q1(r) > Q2(r) must hold for all » > 0.
Now we show that this fact also leads to a contradiction. Consider the two Schrodinger operators

H; = A+ Ug,, i = 1,2, with Ug,(r) = [ (1 — (§)N72> sQ?%(s)ds. Recalling that a ground state

p
Q;(r) asymptotically behaves as i (
is not only bounded, but increases to a horizontal asymptote y = cy = const. Hence, we can apply
the classical Schrodinger operator theory (for example, [54, Chapter 13]) to show that both equations
H;Q = Q, i = 1,2, have the unique positive ground state solution, respectively denoted by @; (with
the eigenvalue 1 as we rescaled the equation in (A.5)). This implies that (H;f, f) > || f||z2 for any H*
function f with equality holding on a multiple of @);, that is when f = ¢;Q;, i = 1, 2, respectively. Now,
since Hy = Hy — (Ug, — Ug,), we obtain

Q1172 < (HaQ1, Q1) = (H1Q1, Q1) — ((Ug, — Uq,)Q1, Q1) = [|Q1]72 — 6,

since Ug, > Ug,, yielding a contradiction. This implies that (A.4) (and hence (A.1)) can not have two
distinct radial positive H! solutions. O

this is in the case p = 2), it is easy to observe that Ug,
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