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Abstract. We study behavior of solutions to the nonlinear generalized Hartree equation, where the

nonlinearity is of the non-local type and is expressed as a convolution,

iut + ∆u + (|x|−(N−γ) ∗ |u|p)|u|p−2u = 0, x ∈ RN , t ∈ R.

Our main goal is to understand global behavior of solutions of this equation in various settings. In

this work we make an initial attempt towards this goal and study H1 (finite energy) solutions. We

first investigate the H1 local wellposedness and small data theory. We then, in the intercritical regime

(0 < s < 1), classify the behavior of H1 solutions under the mass-energy assumption ME [u0] < 1,

identifying the sharp threshold for global versus finite time solutions via the sharp constant of the

corresponding convolution type Gagliardo-Nirenberg interpolation inequality (note that the uniqueness

of a ground state is not known in the general case). In particular, depending on the size of the initial

mass and gradient, solutions will either exist for all time and scatter in H1, or blow up in finite time,

or diverge along an infinite time sequence. To either obtain H1 scattering or divergence to infinity, in

this paper we employ the well-known concentration compactness and rigidity method of Kenig-Merle [36]

with the novelty of studying the nonlocal nonlinear potential given via convolution with negative powers

of |x| and different, including fractional, powers of nonlinearities.
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1. Introduction

Consider the focusing generalized Hartree, or Schrödinger - Hartree, equation of the form

iut + ∆u+

(
1

|x|N−γ
∗ |u|p

)
|u|p−2u = 0, x ∈ RN , t ∈ R, 0 < γ < N, p ≥ 2. (1.1)

Here, the function u(x, t) is complex-valued and ∗ denotes the convolution operator in RN .

The equation (1.1) is a generalization of the standard Hartree equation with p = 2,

iut + ∆u+

(
1

|x|N−γ
∗ |u|2

)
u = 0, x ∈ RN , (1.2)

which can be considered as a classical limit of a field equation describing a quantum mechanical non-

relativistic many-boson system interacting through a two body potential V (x) = 1
|x|N−γ , see [22]. How

it arises as an effective evolution equation in the mean-field limit of many-body quantum systems can

be traced to work of Hepp [30], see also [22], [56], [7], [6], [16]. Lieb & Yau [44] mention it in a context

of developing theory for stellar collapse, and in particular, in the boson particles setting. A special case

of the convolution with 1
|x| in R3 is referred to as the Coulomb potential, which goes back to work of

Lieb [40] and has been intensively studied since then, see reviews [20], [19]. With γ = 2 and N = 3, a

pseudo-relativistic version of this equation arises in the mean field limit of weakly interacting molecules

and bosonic atoms (for example, see [17], [18]), taking the form

iut −
√
−∆ +m2 u+ (|x|−1 ∗ |u|2)u = 0, x ∈ R3, (1.3)

which has recently generated many interesting questions about the dynamics of its solutions.

Unlike the standard nonlinear Schrödinger equation with pure nonlinearity |u|p−1u, the distinct fea-

ture of the Hartree equation (1.2) is that it models systems with long-range interactions. Possible

experimental realizations of such interaction, where the power in the convolution changes, include the

interaction of ultracold Rydberg atoms that have large principal quantum numbers [48]. These interac-

tions between atoms in highly excited Rydberg levels are long range and dominated by dipole-dipole-type

forces (the strength of the interaction between Rb atoms is about 1012 times stronger than that between

Rb atoms in the ground state [55]). The spatial dependence of interactions may be 1/|x|3 for small |x|
and 1/|x|6 for larger |x|. Other powers such as 1/|x|2 are also possible, see [52]. Even more general, the

potential can incorporate not only radial dependence, but also angular dependence θ(x)
|x|N−γ [48], though,

in this work we will not consider this case.

The equation (1.1) can be written (in terms of the wave function u and the potential V ) as the

Schrödinger - Poisson system of the form{
iut + ∆u+ V |u|p−2u = 0

−∆V = (N − 2)|SN−1| |u|p.
(1.4)

This can be thought of as an electrostatic version of the Maxwell-Schrödinger system, which describes

the interaction between the electromagnetic field and the wave function related to a quantum non-

relativistic charged particle (see, for example, [12] and [42]).

With numerous applications, it makes sense to develop a unified mathematical theory of solutions

behavior for the general equation (1.1). For that purpose we consider initial data in the H1 space,

u0(x) ∈ H1(RN ), so that we can study finite Hamiltonian or finite energy solutions (definitions below).

The local existence of H1 solutions is available in the standard Hartree equation (1.2) from the work of

Ginibre & Velo [22], see also Cazenave [10]. We prove the local well-posedness in H1 for the generalized

Hartree (1.1) with p ≥ 2 in Section 2.

Denote the maximal time existence interval of solutions to (1.1) by (T∗, T
∗). We say a solution

is global in forward time if T ∗ = +∞ (and similarly for the backward time). If (T∗, T
∗) = R, the
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solution is said to be global. The global existence for (1.1) is delicate due to the focusing nature of the

nonlinearity, and is investigated in this paper. During their lifespan, solutions to (1.1) satisfy mass,

energy (Hamiltonian) and momentum conservations:

M [u(t)]
def
=

∫
RN
|u(x, t)|2 dx = M [u0],

E[u(t)]
def
=

1

2

∫
RN
|∇u(x, t)|2 dx− 1

2p

∫
RN

(
1

|x|N−γ
∗ |u( · , t)|p

)
|u(x, t)|p dx = E[u0],

P [u(t)]
def
= Im

∫
RN

ū(x, t)∇u(x, t) dx = P [u0].

The equation (1.1) has several invariances: if u(x, t) is a solution to (1.1), so is ũ(x, t):

• Spatial translation: for a fixed x0 ∈ RN , ũ(x, t) = u(x− x0, t).

• Time translation: for a fixed τ ∈ R, ũ(x, t) = u(x, t+ τ).

• Time reversal: ũ(x, t) = u(x,−t).
• Phase rotation: for a fixed θ ∈ [0, π), ũ(x, t) = eiθu(x, t).

• Spatial rotation: for a fixed R ∈ SO(N), ũ(x, t) = u(R−1x, t).

• Galilean transformation: for a fixed ξ0 ∈ RN , ũ(x, t) = ei(x·ξ0−t|ξ0|
2) u(x− ξ0t, t).

• Scaling: for a fixed λ ∈ (0,∞), ũ(x, t) = λ
γ+2

2(p−1) u(λx, λ2t).

• Pseudo-conformal transformation: If p = 1 + γ+2
N , then ũ(x, t) =

1

|t|N/2
u

(
x

t
,−1

t

)
e
i|x|2
4t .

The equation (1.1) is referred to as the Ḣsc - critical, if the Ḣsc norm of the solution is invariant

under the scaling. The critical scaling index sc coming from the scaling invariance is defined as

sc =
N

2
− γ + 2

2(p− 1)
. (1.5)

If sc = 0, or p = 1 +
γ + 2

N
, the equation (1.1) is referred to as the mass-critical (or L2-critical). For

the standard Hartree nonlinearity (p = 2), the mass-critical case corresponds to N − γ = 2, and thus,

occurs only in dimensions N > 2 with the nonlinearity
(

1
|x|2 ∗ |u|

2
)
u regardless of the dimension. If

sc = 1, or p = 1 +
γ + 2

N − 2
, the problem is called the energy-critical (or Ḣ1 - critical). For the standard

Hartree nonlinearity (p = 2), the energy-critical case corresponds to N − γ = 4, which implies that it

occurs only in dimensions N greater than 4 with the nonlinearity
(

1
|x|4 ∗ |u|

2
)
u, also regardless of the

dimension. Note that the generalized Hartree equation (1.1), being flexible in power p, can be, say,

energy-critical in dimensions less than 4, e.g., in 3d
(

1
|x| ∗ |u|

5
)
|u|3u or

(
1
|x|2 ∗ |u|

4
)
|u|2u, which can

make analysis and methods more accessible.

A global solution u(t) to (1.1) is said to scatter in Hs(RN ) as t→ +∞, if there exists u+ ∈ Hs(RN )

such that

lim
t→+∞

‖u(t)− eit∆u+‖Hs(RN ) = 0.

There is a number of early works on global existence, asymptotic behavior of solutions and scattering

theory for the standard Hartree equation (1.2). Studies trace back to Ginibre & Velo [22], where the

local wellposedness is established and the authors also prove asymptotic completeness for a repulsive

potential. Hayashi & Tsutsumi [29] continue developing the scattering theory and obtain the asymptotic

completeness of wave operators in Hm ∩ Lp(|x|βdx). We refer the reader to Ginibre & Ozawa [21] for

results in the case of the convolution with |x|−1, or N − γ = 1, for N ≥ 2; to Ginibre & Velo [25]

for 2 < N − γ < min(4, N) when N ≥ 3. In a sequence of papers [23]-[26] Ginibre & Velo considered

the time-dependent potential ±tµ−γ |x|−µ and studied the asymptotic dynamics and scattering (for any

data in the repulsive case or small data otherwise) first when the convolution power is 1
2 < N −γ < 1 in
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[23], and then in the whole range 0 < N −γ ≤ 1 in [24]. These two papers are written in the framework

of Sobolev spaces with the assumption µ ≤ N − 2 (N ≥ 3). In [26] the Hartree was treated in Gevrey

spaces, which made it possible to cover the whole range 0 < µ ≤ N with an arbitrary space dimensions

N ≥ 1. In [28] Hayashi, Naumkin & Ozawa studied the Hartree equation with N − γ = 1 (N ≥ 2) and

initial data in a weighted Sobolev space H0,α ∩Hα,0 with 1
2 < α < N

2 .

Our aim is to understand global behavior and dynamics of solutions to the generalized Hartree (1.1),

in particular, how the nonlocal potential with the flexibility of different powers in nonlinearity may

influence the global behavior and dynamics of solutions either with infinite or finite time of existence.

We are also curious whether solutions behave in a manner similar to local potentials as, for example,

in the standard semilinear Schrödinger equation with |u|p−1 u nonlinearity, or if nonlocality creates

significant differences in solutions behavior. In addition, we want to develop methods needed to study

such solutions.

In this work we describe the global behavior of solutions to (1.1) with H1 initial data in the inter-

critical regime (0 < sc < 1), provided that p ≥ 2, that is,

1 +
γ + 2

N
< p < 1 +

γ + 2

N − 2
, 0 < γ < N and p ≥ 2, (1.6)

with the appropriate modification of the right-hand side for N = 1, 2 (p < ∞). (As a byproduct,

we also obtain local wellposedness for any energy-critical and subcritical cases, s ≤ 1, and small data

theory in the energy-subcritical setting, s < 1.) We establish a dichotomy for global vs. finite time

solutions under the mass-energy threshold and show H1 scattering for the global solutions, following the

concentration-compactness approach of Kenig & Merle [36], and divergence along a time sequence for

nonradial infinite variance data (also via concentration-compactness method). This is in the spirit of [32],

[14], [27], [33] for the focusing NLS. We emphasize that while the concentration-compactness approach is

well-known in the field by now, it is important first, to understand the behavior of solutions and describe

their asymptotic dynamics and thresholds (and if possible in the unified general setting); secondly, to

demonstrate that this method works in the general nonlocal setting while showing modifications needed

to handle a general convolution term with fractional powers in nonlinearity, and finally, simply to

make well-posedness available in a complete general nonlocal setting of the intercritical range, which is

needed for future investigations. Some of the immediate questions we investigate in subsequent papers,

for example, in [1] we explore the scattering approach of Dodson & Murphy [13] and with their method

prove scattering for globally existing in time solutions in this nonlocal inter-critical regime; in [4] we

investigate the local well-posedness at the (non-conserved) critical regularity Ḣsc for sc ≥ 0 (including

energy-supercritical regime) and extend the local existence to global for small Ḣsc data while for certain

large data with positive energy we show blow-up in finite time. One of the interesting questions for this

equation compared to the standard NLS is to investigate the spectral properties and blow-up dynamics

and how they are influenced by the nonlocal potential. We will address this in [3] and [5].

In order to characterize the sharp threshold for the dichotomy, one needs a notion of a ground state.

The equation (1.1) admits solitary waves solutions of the form u(x, t) = eitQ(x), where Q solves the

nonlinear nonlocal elliptic equation

−Q+ ∆Q+
(
|x|−(N−γ) ∗ |Q|p

)
|Q|p−2Q = 0. (1.7)

The equation (1.7) is known as the nonlinear Choquard or Choquard-Pekar equation. A special case of

(1.7) when N = 3, p = 2, and γ = 2,

∆Q−Q+
(
|x|−1 ∗ |Q|2

)
Q = 0 (1.8)

appeared back in 1954 in the work of S. I. Pekar [53] describing the quantum mechanics of a polaron

at rest. Lieb in [40] mentions it in the context of the Hartree-Fock theory of plasma, pointing out that
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P. Choquard proposed investigating minimization of the corresponding functional in 1976. In 1996 R.

Penrose proposed equation (1.8) as a model of self-gravitating matter, in which quantum state reduction

is understood as a gravitational phenomenon, see [49].

The existence of positive solutions to (1.8) was first proved by Lieb [40], see also Lions [45], [46]. The

general existence result of positive solutions along with the regularity and radial symmetry of solutions

to (1.7) for N+γ
N < p < N+γ

N−2 with 0 < γ < N was shown by Moroz & Schaftingen [50] (see also a review

by Moroz & Schaftingen [51] and references therein).

The uniqueness proof1 for p = 2 with γ = 2 in dimension N = 3 dates back to 1976-77 work of

Lieb [40] and later in 2009 was extended to the dimension N = 4 by Krieger, Lenzmann & Raphaël

in [37]; the uniqueness in the pseudo-relativistic 3d version of (1.8) was established by Lenzmann [39].

We review the proof of uniqueness for any (reasonable) N (and p = 2, γ = 2) in the Appendix. For

other cases of γ and p, it is an intricate issue, and while several authors made attempts to obtain

uniqueness, it is still an open question. A recent work [59] shows uniqueness and nondegeneracy of the

ground state for p = 2 + ε, i.e., when p is sufficiently close to 2 in dimension N = 3 and γ = 2 via

perturbation methods. We note that the proof of uniqueness for the nonlinear elliptic equation with

convolution (1.7) differs from the corresponding results for the NLS-type equations (e.g., with |u|p−1u

type nonlinearity), for which it is given, for example, by Kwong [38] and Berestycki & Lions [8]-[9]. The

proof in the Hartree case uses Newton’s theorem for the convolution in (1.8) and linearity in Q outside

of the convolution (p = 2), see more on this in Section 4 and Appendix. In this work, we do not need

the uniqueness, it suffices to use minimizing properties of the Weinstein-type functional and the value

of the sharp constant in the Gagliardo-Nirenberg convolution type inequality via ground state solutions

as that value will be unique. Thus, we denote by Q any ground state solution of (1.7) and use such

quantities as M [Q], ‖∇Q‖L2 and E[Q], which are obtained from the sharp constant.

As in [31] and [32] for the NLS equation, we observe that the quantities ‖u0‖1−scL2(RN )
‖∇u0‖scL2(RN )

and M [u0]1−sc E[u0]sc are also scale-invariant in the generalized Hartree equation, and for sc > 0 with

θ = 1−sc
sc

we define

• renormalized mass-energy: ME [u] =
M [u]θE[u]

M [Q]θE[Q]
,

• renormalized gradient (dependent on t): G[u(t)] =
‖u‖θ

L2(RN )
‖∇u(t)‖L2(RN )

‖Q‖θ
L2(RN )

‖∇Q‖L2(RN )

, and

• renormalized momentum: P[u] =
‖u‖θ−1

L2(RN )
P [u]

‖Q‖θ
L2(RN )

‖∇Q‖L2(RN )

.

We now state the main result of this paper about solutions behavior under the mass-energy threshold.

We consider (1.1) with given N, γ, and p ≥ 2 so that sc defined by (1.5) is 0 < sc < 1. We first consider

solutions with zero momentum.

Theorem 1.1 (Zero momentum). Let u0 ∈ H1(RN ) with P [u0] = 0 and let u(t) be the corresponding

solution to (1.1) with the maximal time interval of existence (T∗, T
∗). Suppose that ME [u0] < 1.

(1) If G[u0] < 1, then

(a) the solution exists globally in time with G[u(t)] < 1 for all t ∈ R, and

(b) u(t) scatters in H1, in other words, there exists u± ∈ H1 such that

lim
t→±∞

‖u(t)− eit∆u±‖H1(RN ) = 0.

1In certain existing literature there seem to be a misconception about the uniqueness of the ground state even in the

standard (p = 2) Hartree equation: statements such as “take the positive unique ground state solution Q of the equation

∆Q −Q +
(
|x|−b ∗ |Q|2

)
Q = 0” are not justified for any 0 < b < N as the uniqueness of the ground state is only proved

when b = N − 2, 2 < N < 6, see Appendix.
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(2) If G[u0] > 1, then G[u(t)] > 1 for all t ∈ (T∗, T
∗). Moreover, if

(a) |x|u0 ∈ L2(RN ) (finite variance) or u0 is radial, then the solution blows up in finite time,

(b) u0 is of infinite variance and nonradial, then either the solution blows up in finite time or

there exits a sequence of times tn → +∞ (or tn → −∞) such that ‖∇u(tn)‖L2(RN ) →∞.

The general case when P [u0] 6= 0 is given by the following

Theorem 1.2. Let u0 ∈ H1(RN ) and u(t) be the corresponding solution to (1.1) with the maximal time

interval of existence (T∗, T
∗). Assume that

ME [u0]− N(p− 1)− γ
N(p− 1)− γ − 2

P[u0]2 < 1. (1.9)

(1) If

G[u0]2 − P[u0]2 < 1, (1.10)

then

(a) the solution exists globally in time with G[u(t)]2 − P[u0]2 < 1 for all t ∈ R, and

(b) u(t) scatters in H1, i.e., there exists u± ∈ H1 such that

lim
t→±∞

‖u(t)− eit∆u±‖H1(RN ) = 0.

(2) If

G[u0]2 − P[u0]2 > 1, (1.11)

then G[u(t)]2 − P[u0]2 > 1 for all t ∈ (T∗, T
∗). Moreover, if

(a) |x|u0 ∈ L2(RN ) or u0 is radial, then the solution blows up in finite time,

(b) u0 is of infinite variance and nonradial, then either the solution blows up in finite time or

there exits a sequence of times tn → +∞ (or tn → −∞) such that ‖∇u(tn)‖L2(RN ) →∞.

While we follow the strategy of [32], [27], [14] and [33], the fundamental difference is in the nonlocal

potential, and control of convolution terms arising in various steps of this work. For example, to obtain

local well-posedness and small data theory in H1 we do not get the contraction automatically as the

difference produces extra terms due to convolution. We use Lemma 2.4 to estimate the inhomogeneous

term in Duhamel’s formula via Strichartz estimate in Proposition 2.8, Theorem 3.1, Theorem 3.2, The-

orem 3.3 and in Theorem 6.3 (Claim 6.5). Also note that to control the potential energy in Proposition

6.2 and in Lemma 4.1, we rely on L
2Np
N+γ
x norm (using the assumption that sc < 1) along with the

Lemma 2.4. Moreover, the local virial identity (5.8), (5.9), (5.10) in Theorem 5.1 and Theorem 7.1 has

some extra terms involving convolution which demands a careful study and application of convolution

properties, Lemma 2.4 and Lemma 2.6. We also have to review the sharp constant coming from the

convolution-type Gagliardo-Nirenberg inequality and discuss the values coming from the minimization

process as there is no uniqueness.

The paper is organized as follows: in Section 2, we review the necessary preliminaries such as

Strichartz estimates, embeddings and other useful inequalities. There, we also discuss the local well-

posedness in the energy-critical and subcritical cases and p ≥ 2. It would be interesting to investigate

well-posedness for p < 2. In Section 3, we prove the small data theory in the energy-subcritical setting

as well as the H1 scattering along with the long-time perturbation lemma. In Section 4, we introduce a

generalized convolution type Gagliardo - Nirenberg inequality and show that the minimizer is given by

a positive minimizer (a ground state) Q and identify the sharp constant. In Section 5, we prove The-

orem 1.1, the dichotomy result: global existence vs. blow-up; we also include several Lemmas needed

to prove scattering later. In section 6, we prove Theorem 1.1(1), part (b), the scattering, using the

concentration-compactness and rigidity approach of Kenig & Merle [36], and the adaptation of Holmer
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& Roudenko [32]. In Section 7 we exclude the existence of the critical element using the rigidity argu-

ment applied to the corresponding localized virial identity. In the last Section 8 we consider the case

of nonradial solutions with infinite variance and larger than 1 renormalized gradient (part 2(b) of both

theorems), and discuss either the divergence to infinity along a time sequence or finite time existence

of solution in a spirit of [33]. In appendix we review the uniqueness argument.
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2. Preliminaries

2.1. Strichartz estimates and admissible pairs. For s > 0, the pair (q, r) is referred to as an

Ḣs-admissible (for s = 0, it is called an L2-admissible), if

2

q
+
N

r
=
N

2
− s with 2 ≤ q, r ≤ ∞ and (q, r,N) 6= (2,∞, 2). (2.1)

To control the constants uniformly in Strichartz estimates below, we restrict the range for the pair

(q, r), defined in (2.1), depending on the dimension N (as in [27]):

(
2

1−s

)+
≤ q ≤ ∞, 2N

N−2s ≤ r ≤
(

2N
N−2

)−
, if N ≥ 3(

2
1−s

)+
≤ q ≤ ∞, 2

1−s ≤ r ≤
((

2
1−s

)+
)′
, if N = 2

4
1−2s ≤ q ≤ ∞,

2
1−2s ≤ r ≤ ∞, if N = 1.

(2.2)

Here, n+ is a fixed number (slightly) greater than n such that 1
n = 1

n+ + 1
(n+)′ . Respectively, n− is a

fixed number (slightly) less than n.

Following [32], we introduce the S(Ḣs) notation:

‖u‖S(Ḣs) = sup{‖u‖Lqt Lrx : (q, r) as in (2.1) and (2.2)}. (2.3)

Similarly, in order to define the dual Strichartz norm, we set the following restrictions:

(
2

1+s

)+
≤ q ≤

(
1
s

)−
,
(

2N
N−2s

)+
≤ r ≤

(
2N
N−2

)−
, if N ≥ 3(

2
1+s

)+
≤ q ≤

(
1
s

)−
,
(

2
1−s

)+
≤ r ≤

((
2

1+s

)+
)′
, if N = 2

2
1+2s ≤ q ≤

(
1
s

)−
,
(

2
1−s

)+
≤ r ≤ ∞, if N = 1,

(2.4)

and define the dual Strichartz norm as

‖u‖S′(Ḣ−s) = inf{‖u‖
Lq
′
t L

r′
x

: 1
q′ + 1

q = 1, 1
r′ + 1

r = 1 with (q, r) as in (2.1) and (2.4)}. (2.5)

In the sequel, for given N , p, γ, and hence, a fixed 0 < sc < 1, we use the following L2-admissible

pairs :

(q1, r1) =

(
2p

1 + sc(p− 1)
,

2Np

N + γ

)
(2.6)

and

(q2, r2) =

(
2p

1− sc
,

2Np

N + γ + 2scp

)
. (2.7)
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Observe that sc < 1 implies 2p
1+sc(p−1) > 2. As an L2-dual admissible pair we take

(q′1, r
′
1) =

(
2p

2p− 1− sc(p− 1)
,

2Np

2Np−N − γ

)
. (2.8)

The specific Ḣsc-admissible pair we use is

(q2, r1) =

(
2p

1− sc
,

2Np

N + γ

)
, (2.9)

and the Ḣ−sc dual admissible pair is given by

(q′3, r
′
1) =

(
2p

(2p− 1)(1− sc)
,

2Np

2Np−N − γ

)
. (2.10)

Note that
(

2p
1+sc(2p−1) ,

2Np
N+γ

)
is also an Ḣ−sc admissible pair. Observe that sc < 1 imply that both

2p
1+sc(2p−1) >

2
1+sc

and 2p
1+sc(2p−1) <

1
sc

, thus, confirming to be in the range of (2.4).

Using Duhamel’s formula, the equation (1.1) is equivalent to the integral equation

u(x, t) = eit∆u0 + i

∫ t

0
ei(t−t

′)∆(|x|−(N−γ) ∗ |u|p)|u|p−2 u(t′) dt′. (2.11)

We recall the following well-known Strichartz estimates (see Cazenave [10], Foschi [15], and Keel-Tao

[35]).

Lemma 2.1. For the range of p and q as in (2.3), we have

‖eit∆φ‖S(L2) ≤ c ‖φ‖L2 , (2.12)∥∥∥∥∫ t

0
ei(t−t

′)∆f(· , t′) dt′
∥∥∥∥
S(L2)

≤ c ‖f‖S′(L2). (2.13)

Using the Sobolev embedding (since eit∆ commutes with derivatives), we obtain

Corollary 2.2. For the range of p and q as in (2.3), we have

‖eit∆φ‖S(Ḣs) ≤ c ‖φ‖Ḣs (2.14)

‖
∫ t

0
ei(t−t

′)∆f(· , t′) dt′‖S(Ḣs) ≤ c ‖D
sf‖S′(L2). (2.15)

We also recall a more refined than (2.15) Strichartz estimate, which includes a larger set of admissible

indexes than (2.15).

Lemma 2.3 (Kato-Strichartz estimate, [34]). If F ∈ S′(Ḣ−s), then

‖
∫ t

0
ei(t−t

′)∆F (t′)dt′‖S(Ḣs) . ‖F‖S′(Ḣ−s). (2.16)

Note that we can use the dual of Ḣs pair on the right side of above inequality (for example, from

(2.5)), which would not follow from (2.15).

2.2. Embeddings. In this section we state embeddings and inequalities used later.

Lemma 2.4 (Hardy-Littlewood-Sobolev inequality, [41]). For 0 < γ < N and 1 < p, q < ∞, there

exists a sharp constant cN,p,γ > 0 such that∥∥∥∥∫
RN

u(y)

|x− y|N−γ
dy

∥∥∥∥
Lq(RN )

≤ cN,p,γ‖u‖Lp(RN ),

where 1
q = 1

p −
γ
N and p < N

γ .
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Remark 2.5. Observe that

∇
(
|x|−(N−γ)

)
= CN,γ |x|−(N−(γ−1)).

Lemma 2.6 (Radial Sobolev inequality, [57]). Let u ∈ H1(RN ) be radially symmetric. Then

‖|x|
N−1

2 u‖L∞(RN ) ≤ C‖u‖
1/2

L2(RN )
‖∇u‖1/2

L2(RN )
.

2.3. Local well-posedness in H1. We end this section with the local existence result in H1 for the

equation (1.1). We consider the integral equation (2.11) with u0 ∈ H1(RN ) and 0 < γ < N with{
2 ≤ p ≤ 1 + γ+2

N−2 , if N ≥ 3

2 ≤ p <∞, if N = 1, 2.
(2.17)

Remark 2.7. Let f(z) = |z|p−2z. The complex derivative of f is given by

fz(z) =
p

2
|z|p−2 and fz̄(z) =

p− 2

2
|z|p−4z2.

For z1, z2 ∈ C we get

f(z1)− f(z2) =

∫ 1

0

[
fz1(z2 + θ(z1 − z2))(z1 − z2) + fz1(z2 + θ(z1 − z2))(z1 − z2)

]
dθ.

Hence,

|f(z1)− f(z2)| . (|z1|p−2 + |z2|p−2)|z1 − z2|. (2.18)

Also, observe that for p ≥ 1 (e.g., see [11])

||z1|p − |z2|p| . (|z1|p−1 + |z2|p−1)|z1 − z2|. (2.19)

Proposition 2.8. If p satisfies (2.17), then for u0 ∈ H1(RN ) there exists T > 0 and a unique solution

u(x, t) of the integral equation (2.11) in the time interval [0, T ] with

u ∈ C([0, T ];H1(RN )) ∩ Lq1([0, T ];W 1,r1(RN )), (2.20)

where (q1, r1) is given by (2.6). In the energy-critical case p = 1 + γ+2
N−2 (or sc = 1) we require an

additional assumption of smallness of ‖u0‖H1
x
. In any energy-subcritical case p < 1 + γ+2

N−2 the time

T = T (‖u0‖H1 , N, p, γ) > 0.

Proof. For T > 0, specified later, define ν(u) = max
{

sup
t∈[0,T ]

‖u‖H1
x
, ‖u‖

L
q1
t W

1,r1
x

}
and for an appropri-

ately defined constant M > 0, also specified later, let

S = {u ∈ C([0, T ]);H1
x(RN ) ∩ Lq1t ([0, T ]);W 1,r1

x (RN ) : ν(u) ≤M}. (2.21)

We prove that the following operator

Φ(u(t)) = eit∆u0 + i

∫ t

0
ei(t−t

′)∆N(u(t′)) dt′ (2.22)

is a contraction on the set S, where N(u(t′)) = (|x|−(N−γ) ∗ |u|p)|u|p−2u(t′). Using (2.12) and (2.13),

we obtain

‖Φ(u(t))‖Lq1t Lr1x . ‖u0‖L2
x

+ ‖N(u)‖
L
q′1
t L

r′1
x

(2.23)

and

‖∇Φ(u(t))‖Lq1t Lr1x . ‖∇u0‖L2
x

+ ‖∇N(u)‖
L
q′1
t L

r′1
x

. (2.24)
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Using Hölder’s in time on the second term in (2.23) and (2.24), we have

‖N(u)‖
L
q′1
t L

r′1
x

. T θ‖N(u)‖
L
q1
t L

r′1
x

and ‖∇N(u)‖
L
q′1
t L

r′1
x

. T θ‖∇N(u)‖
L
q1
t L

r′1
x

,

where θ = (1−sc)(p−1)
p . Using Hölder’s inequality, Lemma 2.4 and Sobolev inequality, we estimate

‖N(u)‖
L
q1
t L

r′1
x

. ‖(|x|−(N−γ) ∗ |u|p)‖
L
q1
t L

2N
N−γ
x

‖|u|p−2u‖
L∞t L

2Np
(N+γ)(p−1)
x

. ‖u‖p
L
q1p
t L

r1
x
‖u‖p−1

L∞t L
r1
x

. ‖u‖2(p−1)

L∞t L
r1
x
‖u‖Lq1t Lr1x . ‖u‖

2(p−1)
L∞t H

1
x
‖u‖Lq1t Lr1x (2.25)

and (noting that the gradient lands on two different terms)

‖∇N(u)‖
L
q1
t L

r′1
x

. ‖(|x|−(N−(γ−1)) ∗ |u|p)‖
L
q1
t L

2N
N−γ
x

‖|u|p−2u‖
L∞t L

2Np
(N+γ)(p−1)
x

+ ‖(|x|−(N−γ) ∗ |u|p)‖
L∞t L

2N
N−γ
x

‖|u|p−2∇u‖
L
q1
t L

2Np
(N+γ)(p−1)
x

. ‖u‖p
L
q1p
t L

2Np
N+γ−2
x

‖u‖p−1

L∞t L
r1
x

+ ‖u‖p
L∞t L

r1
x
‖u‖p−2

L∞t L
r1
x
‖∇u‖Lq1t Lr1x

. ‖u‖
L
q1
t L

2Np
N+γ−2p
x

‖u‖2(p−1)

L∞t L
r1
x

+ ‖u‖2(p−1)

L∞t L
r1
x
‖∇u‖Lq1t Lr1x

. ‖u‖2(p−1)
L∞t H

1
x
‖∇u‖Lq1t Lr1x . (2.26)

Combining (2.23) and (2.24), respectively, with (2.25) and (2.26), we obtain

‖Φ(u(t))‖
L
q1
t W

1,r1
x
. ‖u0‖H1

x
+ T θ‖u‖2(p−1)

L∞t H
1
x
‖u‖

L
q1
t W

1,r1
x

.

Following a similar argument, we also have

‖Φ(u(t))‖L∞t H1
x
. ‖u0‖H1

x
+ T θ‖u‖2(p−1)

L∞t H
1
x
‖u‖

L
q1
t W

1,r1
x

.

Adding the last two lines, we get that for u ∈ S

‖Φ(u(t))‖
L
q1
t W

1,r1
x

+ ‖Φ(u(t))‖L∞t H1
x
≤ C‖u0‖H1

x
+ CT θM2p−1. (2.27)

Set M = 2C‖u0‖H1
x

and take T so that

CT θM2(p−1) ≤ 1

2
, (2.28)

yielding that the right-hand side of (2.27) is bounded by M . Therefore, for T . ‖u0‖
− 2p

1−sc
H1
x

, we obtain

Φ : S → S. Note that the above estimate works for any sc < 1. In the energy-critical case, sc = 1, we

have θ = 0, and thus, there is no time dependence in (2.27),

‖Φ(u(t))‖
L
q1
t W

1,r1
x

+ ‖Φ(u(t))‖L∞t H1
x
≤ C‖u0‖H1

x
+ CM2p−1. (2.29)

Hence, we can proceed only if ‖u0‖H1
x

is small enough, namely, if

C‖u0‖2(p−1)
H1
x

<
1

2
, (2.30)

which then bounds the right-hand side of (2.29) by M : C‖u0‖H1
x

+CM2p−1 < M , yielding Φ mapping

S into itself.

To complete the proof we need to show that the operator Φ is a contraction. This is achieved by

running the same argument as above on the difference

d(Φ(u(t)),Φ(v(t))) := ‖Φ(u(t))− Φ(v(t))‖
L
q1
t W

1,r1
x

+ ‖Φ(u(t))− Φ(v(t))‖L∞t H1
x
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for u, v ∈ S. We again note that because of the convolution and also estimating at the H1 level, we end

up with extra terms to work unlike the proof for the mapping Φ into itself above (or which would be

simply repeating that argument in the pure nonlinearity case of NLS).

We first apply Hölder’s in time to get

d(Φ(u(t)),Φ(v(t))) . T θ
(
‖Φ(u(t))− Φ(v(t))‖

L
q1
t L

r′1
x

+ ‖∇(Φ(u(t))− Φ(v(t)))‖
L
q1
t L

r′1
x

)
,

where

‖Φ(u(t))− Φ(v(t))‖
L
q1
t L

r′1
x

. ‖
(
|x|−(N−γ) ∗ |u|p

)(
|u|p−2u− |v|p−2v

)
‖
L
q1
t L

r′1
x

+ ‖
(
|x|−(N−γ) ∗ (|u|p − |v|p)

)
|v|p−2v‖

L
q1
t L

r′1
x

= A1 +A2

and

‖∇(Φ(u(t))− Φ(v(t)))‖
L
q1
t L

r′1
x

. ‖∇
[(
|x|−(N−γ) ∗ |u|p

)(
|u|p−2u− |v|p−2v

)]
‖
L
q1
t L

r′1
x

+ ‖∇
[(
|x|−(N−γ) ∗ (|u|p − |v|p)

)
|v|p−2v

]
‖
L
q1
t L

r′1
x

= B1 +B2.

Here, we have added and subtracted the term
(
|x|−(N−γ) ∗ |u|p

)
|v|p−2v. For A1, we use Hölder’s in-

equality, Lemma 2.4 and (2.18) to obtain

A1 . ‖(|x|−(N−γ) ∗ |u|p)‖
L
q1
t L

2N
N−γ
x

‖|u|p−2u− |v|p−2v‖
L∞t L

2Np
(N+γ)(p−1)
x

. ‖u‖p
L
q1p
t L

r1
x

(
‖u‖p−2

L∞t L
r1
x

+ ‖v‖p−2

L∞t L
r1
x

)
‖u− v‖L∞t Lr1x

. ‖u‖p−1

L∞t L
r1
x
‖u‖Lq1t Lr1x

(
‖u‖p−2

L∞t L
r1
x

+ ‖v‖p−2

L∞t L
r1
x

)
‖u− v‖L∞t Lr1x

. ‖u‖p−1
L∞t H

1
x
‖u‖Lq1t Lr1x

(
‖u‖p−2

L∞t H
1
x

+ ‖v‖p−2
L∞t H

1
x

)
‖u− v‖L∞t H1

x
. (2.31)

We again use Hölder’s, Lemma 2.4 and (2.19) to estimate A2

A2 . ‖|x|−(N−γ) ∗ (|u|p − |v|p)‖
L
q1
t L

2N
N−γ
x

‖|v|p−2v‖
L∞t L

2Np
(N+γ)(p−1)
x

. ‖|u|p − |v|p‖
L
q1
t L

2N
N+γ
x

‖v‖p−1

L∞t L
r1
x

.
(
‖u‖p−1

L∞t L
r1
x

+ ‖v‖p−1

L∞t L
r1
x

)
‖u− v‖Lq1t Lr1x ‖v‖

p−1

L∞t L
r1
x

.
(
‖u‖p−1

L∞t H
1
x

+ ‖v‖p−1
L∞t H

1
x

)
‖u− v‖Lq1t Lr1x ‖v‖

p−1
L∞t H

1
x
. (2.32)

For B1 we first use the product rule

B1 . ‖(|x|−(N−(γ−1)) ∗ |u|p)‖
L
q1
t L

2N
N−γ
x

‖|u|p−2u− |v|p−2v‖
L∞t L

2Np
(N+γ)(p−1)
x

+ ‖(|x|−(N−γ) ∗ |u|p)‖
L∞t L

2N
N−γ
x

‖∇(|u|p−2u− |v|p−2v)‖
L
q1
t L

2Np
(N+γ)(p−1)
x

,
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then applying Hölder’s inequlaity, Lemma 2.4, Sobolev inequality and (2.18) yields

B1 . ‖u‖p
L
q1p
t L

2Np
N+γ−2
x

(
‖u‖p−2

L∞t L
r1
x

+ ‖v‖p−2

L∞t L
r1
x

)
‖u− v‖L∞t Lr1x

+ ‖u‖p
L∞t L

r1
x

(
‖u‖p−2

L∞t L
r1
x

+ ‖v‖p−2

L∞t L
r1
x

)
‖∇(u− v)‖Lq1t Lr1x

. ‖u‖
L
q1
t L

2Np
N+γ−2p
x

‖u‖p−1

L∞t L
r1
x

(
‖u‖p−2

L∞t L
r1
x

+ ‖v‖p−2

L∞t L
r1
x

)
‖u− v‖L∞t Lr1x

+ ‖u‖p
L∞t L

r1
x

(
‖u‖p−2

L∞t L
r1
x

+ ‖v‖p−2

L∞t L
r1
x

)
‖∇(u− v)‖Lq1t Lr1x

. ‖∇u‖Lq1t Lr1x ‖u‖
p−1
L∞t H

1
x

(
‖u‖p−2

L∞t H
1
x

+ ‖v‖p−2
L∞t H

1
x

)
‖u− v‖L∞t H1

x

+ ‖u‖p
L∞t H

1
x

(
‖u‖p−2

L∞t H
1
x

+ ‖v‖p−2
L∞t H

1
x

)
‖∇(u− v)‖Lq1t Lr1x . (2.33)

Again using the product rule and Lemma 2.4 to estimate B2, we get

B2 . ‖|x|−(N−(γ−1)) ∗ (|u|p − |v|p)‖
L
q1
t L

2N
N−γ
x

‖|v|p−2v‖
L∞t L

2Np
(N+γ)(p−1)
x

+ ‖|x|−(N−γ) ∗ (|u|p − |v|p)‖
L∞t L

2N
N−γ
x

‖∇(|v|p−2v)‖
L
q1
t L

2Np
(N+γ)(p−1)
x

. ‖|u|p − |v|p‖
L
q1
t L

2N
N+γ−2
x

‖v‖p−1

L∞t L
r1
x

+ ‖|u|p − |v|p‖
L∞t L

2N
N+γ
x

‖v‖p−2

L∞t L
r1
x
‖∇v‖Lq1t Lr1x .

Using (2.19) and Sobolev, we obtain

B2 .
(
‖u‖p−1

L∞t L
r1
x

+ ‖v‖p−1

L∞t L
r1
x

)
‖u− v‖

L
q1
t L

2Np
N+γ−2p
x

‖v‖p−1

L∞t L
r1
x

+
(
‖u‖p−1

L∞t L
r1
x

+ ‖v‖p−1

L∞t L
r1
x

)
‖u− v‖L∞t Lr1x ‖v‖

p−2

L∞t L
r1
x
‖∇v‖Lq1t Lr1x

.
(
‖u‖p−1

L∞t H
1
x

+ ‖u‖p−1
L∞t H

1
x

)(
‖∇(u− v)‖Lq1t Lr1x ‖v‖

p−1
L∞t H

1
x

+ ‖u− v‖L∞t H1
x
‖v‖p−2

L∞t H
1
x
‖∇v‖Lq1t Lr1x

)
. (2.34)

Combining (2.31), (2.32), (2.33) and (2.34), we obtain that for u, v ∈ S

d(Φ(u(t)),Φ(v(t))) . T θM2(p−1)d(u, v).

This together with (2.28), the bound on time T , implies that Φ is a contraction on S for the energy-

subcritical case. Similarly, for the energy-critical case, we have that for u, v ∈ S

d(Φ(u(t)),Φ(v(t))) .M2(p−1)d(u, v),

which with the smallness of (2.30) implies that Φ is again a contraction on S. To prove the continuous

dependence with respect to u0, we note that if u and v are the corresponding solutions of (2.11) with

initial data u0 and v0, respectively, then

u(t)− v(t) = eit∆(u0 − v0) + i

∫ t

0
ei(t−t

′)∆(N(u)−N(v))(t′) dt′.

Thus, the same argument as in (2.31), (2.32), (2.33) and (2.34) (and the appropriate modifications when

sc = 1) yields

d(u(t), v(t)) := ‖u(t)− v(t)‖
L
q1
t W

1,r1
x

+ ‖u(t)− v(t)‖L∞t H1
x

. ‖u0 − v0‖H1 + CN,pγT
θM2(p−1)d(u(t), v(t)).
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This implies that if ‖u0 − v0‖H1 is small enough (see (2.28) or (2.30)), we have that

d(u(t), v(t) ≤ C̃‖u0 − v0‖H1 ,

which completes the proof. �

3. Small data theory

As we now have the H1 local well-posedness, we investigate the global existence of small data and

scattering in H1. At the end of this section we also include the long-time perturbation argument. This

may appear to be standard, however, we give a careful and detailed proof demonstrating how we tackle

the nonlocal potential term. In this section we consider the integral equation (2.11) with u0 ∈ H1(RN )

and 0 < γ < N with p ≥ 2 satisfying{
1 + γ+2

N ≤ p < 1 + γ+2
N−2 , if N ≥ 3

1 + γ+2
N ≤ p <∞, if N = 1, 2.

(3.1)

In the energy-subcritical case (sc < 1) it is possible to obtain Ḣsc small data theory, replacing the

right-hand side bound below in (3.3) with the Ḣsc norm (instead of H1 norm) as done in [31], [27].

This requires fractional derivatives, introduction of different Strichartz pairs and considering different

cases of smoothness, depending on p and sc; it is done in [2]. For the purpose of this paper, it suffices

to have H1 small data, and thus, we consider the bound on the right-hand side of (3.3) by the full

H1 norm. Also note that while the norm on the left-hand side of (3.3) is at the Hsc level, it can be

replaced with the norms at the H1 level, that is by ‖u‖S(L2) +‖∇u‖S(L2) (by the interpolation and then

separating it into the sum by Peter-Paul), which we will do in the proof. For brevity, we chose to state

(3.3) at the Hsc level. Furthermore, we note that the Proposition 3.1 also holds true for the L2-critical

equations (sc = 0) with u0 ∈ H1(RN ) and (3.3) reduces just to one condition (3.2). We also mention

that one would need to use different Strichartz pairs to obtain small data theory for the energy-critical

case (sc = 1), which is possible but beyond the scope of this paper.

Proposition 3.1 (Small data theory in H1). Let p ≥ 2 satisfy (3.1) with 0 < γ < N and u0 ∈ H1(RN ).

Suppose ‖u0‖H1 ≤ A. There exists δ = δ(A) > 0 such that if ‖eit∆u0‖S(Ḣsc ) ≤ δ, then there exists a

unique global solution u of (1.1) in H1(RN ) such that

‖u‖S(Ḣsc ) ≤ 2‖eit∆u0‖S(Ḣsc ) (3.2)

and

‖|∇|scu‖S(L2) ≤ 2 c ‖u0‖H1 , (3.3)

where c depends on constants from the Gagliardo-Nirenberg interpolation estimate and the Strichartz

inequality.

Proof. First, note that by Strichartz (2.14) and Sobolev estimates, we can track the dependence of δ on

A (if needed, splitting the time interval). Next, denote

B =
{
u : ‖u‖S(Ḣsc ) ≤ 2 ‖eit∆u0‖S(Ḣsc ) and ‖|∇|scu‖S(L2) ≤ 2 c‖u0‖H1

}
,

and define

Φu0(u) = eit∆u0 + i

∫ t

0
ei(t−t

′)∆F (u(t′)) dt′, where F (u) = (|x|−(N−γ) ∗ |u|p)|u|p−2u. (3.4)

Applying the triangle inequality and (2.16) to (3.4), we obtain

‖Φu0(u)‖S(Ḣsc ) ≤ ‖e
it∆u0‖S(Ḣsc ) + c‖F (u)‖S′(Ḣ−sc ). (3.5)
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Using the pair (q′3, r
′
1), Hölder’s inequality yields

‖F (u)‖
L
q′3
t L

r′1
x

≤ ‖|x|−(N−γ) ∗ |u|p‖
L

2
1−sc
t L

2N
N−γ
x

‖u‖p−1

L
q2
t L

r1
x
. (3.6)

Applying Lemma 2.4 for N > γ, we estimate

‖|x|−(N−γ) ∗ |u|p‖
L

2
1−sc
t L

2N
N−γ
x

≤ cN,p,γ‖u‖pLq2t Lr1x
. (3.7)

Using (3.7), we can write the estimate (3.6) as

‖F (u)‖S′(Ḣ−sc ) ≤ cN,p,γ‖u‖
p

S(Ḣsc )
‖u‖p−1

S(Ḣsc )
. (3.8)

Thus, for u ∈ B, (3.8) gives

‖F (u)‖S′(Ḣ−sc ) ≤ cN,p,γ 22p−1 ‖eit∆u0‖2p−1

S(Ḣsc )
. (3.9)

Inserting (3.9) into (3.5) and redefining the constant cN,p,γc =: c1, we have

‖Φu0(u)‖S(Ḣsc ) ≤ ‖e
it∆u0‖S(Ḣsc )

(
1 + c1 22p−1 ‖eit∆u0‖2(p−1)

S(Ḣsc )

)
,

and thus, we need

c1 22p−1 ‖eit∆u0‖2(p−1)

S(Ḣsc )
≤ 1.

To estimate ‖|∇|scΦu0(u)‖S(L2), we recall the Gagliardo-Nirenberg interpolation inequality

‖|∇|scv‖L2 ≤ cGN‖∇v‖scL2‖v‖1−scL2 ,

and taking v = Φu0(u), we bound the L2 and Ḣ1 norms as follows:

‖Φu0(u)‖S(L2) ≤ c ‖u0‖L2 + c ‖F (u)‖S′(L2). (3.10)

From Hölder’s inequality, we get

‖F (u)‖
L
q′1
t L

r′1
x

≤ ‖|x|−(N−γ) ∗ |u|p‖
L2
tL

2N
N−γ
x

‖u‖p−1

L
q2
t L

r1
x
. (3.11)

We estimate the convolution term in (3.11) again by Lemma 2.4 for N > γ and then use Hölder’s to

obtain

‖F (u)‖S′(L2) ≤ cN,p,γ‖ |u|p‖
L2
tL

2N
N+γ
x

‖u‖p−1

L
q2
t L

r1
x

≤ cN,p,γ‖u‖p−1

L
q2
t L

r1
x
‖u‖Lq1t Lr1x ‖u‖

p−1

L
q2
t L

r1
x

≤ cN,p,γ‖u‖2(p−1)

S(Ḣsc )
‖u‖S(L2). (3.12)

Using (2.15) (and triangle inequality) in (3.4), we get

‖∇Φu0(u)‖S(L2) ≤ c ‖∇u0‖L2 + c ‖∇F (u)‖S′(L2), (3.13)

where the nonlinear term is estimated as

‖∇F (u)‖
L
q′1
t L

r′1
x

≤ ‖|x|−(N−γ) ∗ |u|p‖
L

2
1−sc
t L

2N
N−γ
x

‖∇(|u|p−2u)‖
L

2p
p−(1−sc)
t L

2Np
(N+γ)(p−1)
x

+ ‖|x|−(N−(γ−1)) ∗ |u|p‖
L2
tL

2N
N−γ
x

‖u‖p−1

L
q2
t L

r1
x

≤ cN,p,γ‖u‖2(p−1)

L
q2
t L

r1
x
‖∇u‖Lq1t Lr1x + cN,p,γ‖u‖p

L2p
t L

2Np
N+γ−2
x

‖u‖p−1

L
q2
t L

r1
x

≤ cN,p,γ‖u‖2(p−1)

L
q2
t L

r1
x
‖∇u‖Lq1t Lr1x + cN,p,γ‖∇u‖Lq1t Lr1x ‖u‖

2(p−1)

L
q2
t L

r1
x

≤ 2cN,p,γ‖u‖2(p−1)

S(Ḣsc )
‖∇u‖S(L2). (3.14)



SOLUTIONS TO GENERALIZED HARTREE EQUATION 15

Combining (3.10) and (3.13), and applying (3.12) and (3.14), we obtain

‖Φu0(u)‖S(L2) + ‖∇Φu0(u)‖S(L2) ≤ c (‖u0‖L2 + ‖∇u0‖L2)

+c1‖u‖2(p−1)

S(Ḣsc )

(
‖u‖S(L2) + ‖∇u‖S(L2)

)
≤ c‖u0‖H1 + 22p−1c1c‖eit∆u0‖2(p−1)

S(Ḣsc )
‖u0‖H1

≤ c‖u0‖H1

(
1 + 22p−1c1‖eit∆u0‖2(p−1)

S(Ḣsc )

)
, (3.15)

where cN,p,γc =: c1. Now, if we take

22p−1 c1 ‖eit∆u0‖2(p−1)

S(Ḣsc )
≤ 1,

and recalling that ‖eit∆u0‖S(Ḣsc ) < δ, then (3.15) would give the required bound for the space B:

2c‖u0‖H1 . Hence, choosing δ < δ0 = 1
2

2(p−1)

√
1

2c1
implies that Φu0 ∈ B. Now we show that Φu0(u) is a

contraction on B with the metric

d(u, v) = ‖u− v‖S(L2) + ‖∇(u− v)‖S(L2) + ‖u− v‖S(Ḣsc ).

(The last norm is included for convenience.) For u, v ∈ B, by Strichartz estimates (2.16) and (2.13),

we obtain

‖Φu0(u)− Φu0(v)‖S(Ḣsc ) ≤ c‖F (u)− F (v)‖S′(Ḣ−sc ) (3.16)

and

‖(1 +∇)(Φu0(u)− Φu0(v))‖S(L2) ≤ c‖(1 +∇)(F (u)− F (v))‖S′(L2). (3.17)

The triangle inequality applied to the right-hand side of (3.16) yields

‖F (u)− F (v)‖S′(Ḣ−sc ) ≤ ‖
(
|x|−(N−γ) ∗ |u|p

)(
|u|p−2u− |v|p−2v

)
‖S′(Ḣ−sc )

+ ‖
(
|x|−(N−γ) ∗ (|u|p − |v|p)

)
|v|p−2v‖S′(Ḣ−sc ),

where we have added and subtracted the term
(
|x|−(N−γ) ∗ |u|p

)
|v|p−2v to the difference. Using (2.18),

(2.19) and calculations in (3.6), we obtain

‖F (u)− F (v)‖S′(Ḣ−sc ) ≤ cN,p,γ‖|x|−(N−γ) ∗ |u|p‖
L

q2
p
t L

2N
N−γ
x

‖|u|p−2u− |v|p−2v‖
L

q2
p−1
t L

r1
p−1
x

+ cN,p,γ‖|x|−(N−γ) ∗ (|u|p − |v|p)‖
L

q2
p
t L

2N
N−γ
x

‖v‖p−1

S(Ḣsc )

≤ cN,p,γ‖u‖pLq2t Lr1x
(
‖u‖p−2

L
q2
t L

r1
x

+ ‖v‖Lq2t Lr1x
)
‖u− v‖Lq2t Lr1x

+ cN,p,γ‖|u|p − |v|p‖
L

q2
p
t L

r1
p
x

‖v‖p−1

S(Ḣsc )

≤ cN,p,γ‖u‖pS(Ḣsc )

(
‖u‖p−2

S(Ḣsc )
+ ‖v‖p−2

S(Ḣsc )

)
‖u− v‖S(Ḣsc )

+ cN,p,γ

(
‖u‖p−1

S(Ḣsc )
+ ‖v‖p−1

S(Ḣsc )

)
‖u− v‖S(Ḣsc )‖v‖

p−1

S(Ḣsc )
.

For u, v ∈ B, we have that

‖F (u)− F (v)‖S′(Ḣ−sc ) ≤ 22pcN,p,γ‖eit∆u0‖2(p−1)

S(Ḣsc )
‖u− v‖S(Ḣsc ). (3.18)

Combining (3.16) with (3.18), we obtain

‖Φu0(u)− Φu0(v)‖S(Ḣsc ) ≤ 22pc1‖eit∆u0‖2(p−1)

S(Ḣsc )
‖u− v‖S(Ḣsc ). (3.19)
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Next, we estimate the difference from (3.17) using again the triangle inequality and Hölder’s

‖F (u)− F (v)‖S′(L2) ≤ ‖
(
|x|−(N−γ) ∗ |u|p

)(
|u|p−2u− |v|p−2v

)
‖S′(L2)

+ ‖
(
|x|−(N−γ) ∗ (|u|p − |v|p)

)
|v|p−2v‖S′(L2)

≤ cN,p,γ‖|x|−(N−γ) ∗ |u|p‖
L

q2
p
t L

2N
N−γ
x

‖|u|p−2u− |v|p−2v‖
L

2p
p−1+sc
t L

r1
p−1
x

+ cN,p,γ‖|x|−(N−γ) ∗ (|u|p − |v|p)‖
L2
tL

2N
N−γ
x

‖v‖p−1

L
q2
t L

r1
x
.

Apply (2.18), (2.19) and calculations in (3.11), (3.12) on the right-hand side of above estimate to obtain

‖F (u)− F (v)‖S′(L2) ≤ cN,p,γ‖u‖pLq2t Lr1x
(
‖u‖p−2

L
q2
t L

r1
x

+ ‖v‖p−2

L
q2
t L

r1
x

)
‖u− v‖Lq1t Lr1x

+ cN,p,γ‖|u|p − |v|p‖
L2
tL

r1
p
x

‖v‖p−1

L
q2
t L

r1
x

≤ cN,p,γ‖u‖pS(Ḣsc )

(
‖u‖p−2

S(Ḣsc )
+ ‖v‖p−2

S(Ḣsc )

)
‖u− v‖S(L2)

+ cN,p,γ

(
‖u‖p−1

S(Ḣsc )
+ ‖v‖p−1

S(Ḣsc )

)
‖u− v‖S(L2)‖v‖

p−1

S(Ḣsc )
.

For u, v ∈ B, we have

‖F (u)− F (v)‖S′(L2) ≤ 22pcN,p,γ‖eit∆u0‖2(p−1)

S(Ḣsc )
‖u− v‖S(L2). (3.20)

Combining (3.17) with (3.20), we obtain

‖Φu0(u)− Φu0(v)‖S(L2) ≤ 22pc1‖eit∆u0‖2(p−1)

S(Ḣsc )
‖u− v‖S(L2). (3.21)

Finally, estimating the difference in (3.17) with the gradient, we obtain

‖∇(F (u)− F (v))‖S′(L2) ≤ ‖∇
[(
|x|−(N−γ) ∗ |u|p

)(
|u|p−2u− |v|p−2v

)]
‖S′(L2) (3.22)

+ ‖∇
[(
|x|−(N−γ) ∗ (|u|p − |v|p)

)
|v|p−2v

]
‖S′(L2). (3.23)

Using (3.5) along with the calculations for (3.15) and embedding Ẇ
1, 2Np
N+γ ↪→ L

2Np
N+γ−2p , we get

(3.22) ≤ 2cN,p,γ‖u‖pS(Ḣsc )

(
‖u‖p−2

S(Ḣsc )
+ ‖v‖p−2

S(Ḣsc )

)
‖∇(u− v)‖S(L2).

Similarly, we obtain

(3.23) ≤ cN,p,γ
(
‖u‖p−1

S(Ḣsc )
+ ‖v‖p−1

S(Ḣsc )

)
‖∇(u− v)‖S(L2)‖v‖

p−1

S(Ḣsc )

+ cN,p,γ

(
‖u‖p−1

S(Ḣsc )
+ ‖v‖p−1

S(Ḣsc )

)
‖u− v‖S(Ḣsc )‖∇v‖S(L2)‖v‖

p−2

S(Ḣsc )
.

Then for u, v ∈ B, we have

‖∇(Φu0(u)− Φu0(v))‖S(L2) ≤ c‖∇(F (u)− F (v))‖S′(L2)

≤ 22pc1‖eit∆u0‖2(p−1)

S(Ḣsc )
‖∇(u− v)‖S(L2) + 22p−1c1‖u0‖H1‖eit∆u0‖2(p−1)

S(Ḣsc )
‖u− v‖S(Ḣsc ). (3.24)

From (3.19), (3.20) and (3.24), we get

d(Φu0(u),Φu0(v)) ≤ 22p−1c1‖u0‖H1‖eit∆u0‖2(p−1)

S(Ḣsc )
d(u, v) ≤ 1

2
d(u, v)

for δ1 ≤ 1
2

2(p−1)

√
1

2c1A
. Finally, taking δ ≤ min(δ0, δ1) concludes that Φu0 is a contraction. �

Next we establish the scattering in H1(RN ).
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Theorem 3.2 (H1 scattering). Let u(t) be a global solution to (1.1) with initial data u0 ∈ H1(RN ). If

‖u‖S(Ḣsc ) < +∞ (globally finite Ḣsc Strichartz norm) and supt∈R+ ‖u(t)‖H1 ≤ B (uniformly bounded

H1(RN ) norm). Then u(t) scatters in H1(RN ) as t→ +∞, i.e., there exists u+ ∈ H1(RN ) such that

lim
t→+∞

‖u(t)− eit∆u+‖H1 = 0.

Proof. The assumption ‖u‖S(Ḣsc ) < +∞ implies that there exists M such that

M = ‖u‖
L

2p
1−sc
t L

2Np
N+γ
x

< +∞.

Recall that
(

2p
1−sc ,

2Np
N+γ

)
is an Ḣsc-admissible pair. Let M̃ = M

2p
1−sc . Given δ > 0 we can decompose

[0,+∞) = ∪M̃j=1Ij , where Ij = [tj , tj+1) such that for each j, we have

‖u‖
L

2p
1−sc
Ij

L

2Np
N+γ
x

< δ.

Hence, by the triangle inequality and Strichartz estimates (2.12) and (2.13) applied to the integral

equation (2.11) on Ij , we have

‖u‖S(L2;Ij) ≤ c‖u(tj)‖L2 + c‖(|x|−(N−γ) ∗ |u|p)|u|p−2u‖S′(L2;Ij). (3.25)

From (3.12), we have

‖(|x|−(N−γ) ∗ |u|p)|u|p−2u‖S′(L2;Ij) ≤ cN,p,γ‖u‖
2(p−1)

S(Ḣsc ;Ij)
‖u‖S(L2;Ij). (3.26)

Thus, (3.25) combined with (3.26) and the assumption supt∈R+ ‖u(t)‖H1 ≤ B implies

‖u‖S(L2;Ij) ≤ cB + c1δ
2(p−1)‖u‖S(L2;Ij). (3.27)

Similarly, using Strichartz estimates (2.14) and (2.15) for s = 1 along with (3.14) yields

‖∇u‖S(L2;Ij) ≤ c‖∇u(tj)||2L + c‖∇
(
(|x|−(N−γ) ∗ |u|p)|u|p−2u

)
‖S′(L2;Ij)

. cB + 2c1‖u‖2(p−1)

S(Ḣsc ;Ij)
‖∇u‖S(L2;Ij)

. cB + 2c1δ
2(p−1)‖∇u‖S(L2;Ij). (3.28)

Combining (3.27) and (3.28), we get

‖u‖S(L2;Ij) + ‖∇u‖S(L2;Ij) ≤ 2 cB + 2 c1 δ
2(p−1)

(
‖u‖S(L2;Ij) + ‖∇u‖S(L2;Ij)

)
.

Performing the summation over Ij , we obtain

‖u‖S(L2) + ‖∇u‖S(L2) ≤ 2 cBM
2p

1−sc + 2 c1 δ
2(p−1)

(
‖u‖S(L2) + ‖∇u‖S(L2)

)
,

which implies that (
1− 2c1δ

2(p−1)
) (
‖u‖S(L2) + ‖∇u‖S(L2)

)
. 2 cBM

2p
1−sc .

Thus, for small δ, we require that 1− 2δ2(p−1) ≤ 1
2 , so that

‖u‖S(L2) + ‖∇u‖S(L2) ≤ 4 cBM
2p

1−sc . (3.29)

Now, we define the wave operator

u+ = u0 + i

∫ +∞

0
e−it

′∆(|x|−(N−γ) ∗ |u|p)|u|p−2u(t′) dt′. (3.30)

By the same arguments as before, we have that

‖u+‖L2 ≤ c‖u0‖L2 + c1‖u‖2(p−1)

S(Ḣsc )
‖u‖S(L2),
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and

‖∇u+‖L2 ≤ c‖∇u0‖L2 + 2c1‖u‖2(p−1)

S(Ḣsc )
‖∇u‖S(L2).

Finally, by initial assumptions, we get

‖u+‖L2 + ‖∇u+‖L2 ≤ cB + 2c1M
2(p−1)

(
‖u‖S(L2) + ‖∇u‖S(L2)

)
.

Using (3.29), we obtain that ‖u+‖H1 ≤ constant. This implies that u+ ∈ H1(RN ). From (3.30) and the

integral equation (2.11), we have

u(t)− eit∆u+ = −i
∫ +∞

t
ei(t−t

′)∆(|x|−(N−γ) ∗ |u|p)|u|p−2u(t′) dt′.

Again using the similar computation, we obtain

‖u(t)− eit∆u+‖L2 ≤ c1‖u‖2(p−1)

S(Ḣsc ;[t,+∞))
‖u‖S(L2;[t,+∞))

and

‖∇
(
u(t)− eit∆u+

)
‖L2 ≤ c1‖u‖2(p−1)

S(Ḣsc ;[t,+∞))
‖∇u‖S(L2;[t,+∞)).

While obtaining (3.29), we have observed that the Strichartz norm on [0,+∞) for the above expression

is bounded, therefore, the tail has to vanish as t → +∞, and thus, ‖u‖S(Ḣsc ;[t,+∞)) → 0 as t → +∞.

Hence,

lim
t→+∞

‖u(t)− eit∆u+‖Ḣ1 = 0.

�

We note that Theorem 3.2 with initial data u0 ∈ H1(RN ) also holds in the L2-critical case (sc = 0

or p = 1 + γ+2
N ≥ 2). One can also obtain a similar result for the energy-critical case (sc = 1) but with

a different selection of Strichartz pairs.

We now prove the long time perturbation result in the spirit of [32], which is one of the necessary

ingredients in the subsequent analysis, specifically, in Theorem 6.3.

Theorem 3.3 (Long time perturbation). For each A � 1, there exists ε0 = ε0(A) � 1 and c =

c(A) � 1 such that the following holds. Let u = u(x, t) ∈ H1(RN ) for all time t and solve (1.1). Let

ũ = ũ(x, t) ∈ H1(RN ) for all t and define e to be

e
def
= iũt + ∆ũ+ (|x|−(N−γ) ∗ |ũ|p)|ũ|p−2ũ.

Suppose that

‖ũ‖S(Ḣsc ) ≤ A, ‖e‖S′(Ḣ−sc ) ≤ ε0 (3.31)

and

‖ei(t−t0)∆(u(t0)− ũ0(t0))‖S(Ḣsc ) ≤ ε0. (3.32)

Then

‖u‖S(Ḣsc ) ≤ c = c(A) < +∞. (3.33)

Proof. Denote by w the perturbation of u: w = u − ũ. For F (u) = (|x|−(N−γ) ∗ |u|p)|u|p−2u set

W (ũ, w) = F (u)− F (ũ) = F (ũ+ w)− F (ũ). Then, w solves

iwt + ∆w +W (ũ, w)− e = 0.
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Since ‖ũ‖S(Ḣs) ≤ A, we can partition the interval [t0,+∞) into K = K(A) intervals Ij = [tj , tj+1] such

that for each j, ‖ũ‖S(Ḣsc ;Ij)
≤ δ. Note that the number of intervals depends only on A, however, the

intervals themselves depend upon ũ. The integral equation of w at time tj is given by

w(t) = ei(t−tj)∆w(tj) + i

∫ t

tj

ei(t−t
′)∆(W − e)(t′)dt′. (3.34)

Applying Kato estimate (2.16) to (3.34) for each Ij , we obtain

‖w‖S(Ḣsc ;Ij)
≤ ‖ei(t−tj)∆w(tj)‖S(Ḣsc ;Ij)

+ c‖W (ũ, w)||S′(Ḣ−sc ;Ij)
+ c‖e‖S′(Ḣ−sc ;Ij)

≤ ‖ei(t−tj)∆w(tj)‖S(Ḣsc ;Ij)
+ c‖W (ũ, w)‖S′(Ḣ−sc ;Ij)

+ cε0. (3.35)

Next we estimate

‖W (ũ, w)‖S′(Ḣ−sc ;Ij)
. ‖F (ũ+ w)− F (ũ)‖

L
q′3
Ij
L
r′1
x

.

Adding and subtracting (|x|−(N−γ) ∗ |ũ+ w|p)|ũ|p−2ũ, we obtain

‖W (ũ, w)‖S′(Ḣ−sc ;Ij)
. ‖

(
|x|−(N−γ) ∗ |ũ+ w|p

)(
|ũ+ w|p−2(ũ+ w)− |ũ|p−2ũ)‖

L
q′3
Ij
L
r′1
x

+ ‖
(
|x|−(N−γ) ∗ (|ũ+ w|p − |ũ|p)

)
|ũ|p−2ũ‖

L
q′3
Ij
L
r′1
x

.

Using the calculations similar to (3.6), we get

‖W (ũ, w)‖S′(Ḣ−sc ;Ij)
≤ cN,γ‖ũ+ w‖p

L
q2
Ij
L
r1
x
‖|ũ+ w|p−2(ũ+ w)− |ũ|p−2ũ‖

L

q2
p−1
Ij

L

r1
p−1
x

+ cN,γ‖|ũ+ w|p − |ũ|p‖
L

q2
p
Ij
L

r1
p
x

‖ũ‖p−1

L
q2
Ij
L
r1
x
.

Using (2.18) and (2.19) yields

‖W (ũ, w)‖S′(Ḣ−sc ;Ij)
≤ cN,γ‖ũ+ w‖p

L
q2
Ij
L
r1
x
‖w‖Lq2Ij L

r1
x

(
‖ũ+ w‖p−2

L
q2
Ij
L
r1
x

+ ‖ũ‖p−2

L
q2
Ij
L
r1
x

)
(3.36)

+ cN,γ‖w‖Lq2Ij L
r1
x

(
‖ũ+ w‖p−1

L
q2
Ij
L
r1
x

+ ‖ũ‖p−1

L
q2
Ij
L
r1
x

)
‖ũ‖p−1

L
q2
Ij
L
r1
x
. (3.37)

We use the fact that (a+ b)p .
p
ap + bp for the ‖ũ+ w‖Lq2Ij L

r1
x

terms in (3.36) and (3.37) to obtain

‖W (ũ, w)‖S′(Ḣ−sc ;Ij)
. cN,γ

(
‖ũ‖p

L
q2
Ij
L
r1
x

+ ‖w‖p
L
q2
Ij
L
r1
x

)
‖w‖Lq2Ij L

r1
x

(
‖w‖p−2

L
q2
Ij
L
r1
x

+ ‖ũ‖p−2

L
q2
Ij
L
r1
x

)
+ cN,γ‖w‖Lq2Ij L

r1
x

(
‖ũ‖p−1

L
q2
Ij
L
r1
x

+ ‖w‖p−1

L
q2
Ij
L
r1
x

)
‖ũ‖p−1

L
q2
Ij
L
r1
x
.

Since (q2, r1) is a Ḣsc admissible pair by our assumption ‖ũ‖S(Ḣsc ;Ij)
≤ δ, we obtain

‖W (ũ, w)‖S′(Ḣ−sc ;Ij)
. cN,γ

(
δp + ‖w‖p

L
q2
Ij
L
r1
x

)
‖w‖Lq2Ij L

r1
x

(
‖w‖p−2

L
q2
Ij
L
r1
x

+ δp−2

)
+ cN,γ‖w‖Lq2Ij L

r1
x

(
δp−1 + ‖w‖p−1

L
q2
Ij
L
r1
x

)
δp−1.

Substituting the above estimate in (3.35),

‖w‖S(Ḣsc ;Ij)
. ‖ei(t−tj)∆w(tj)‖S(Ḣsc ;Ij)

+ c1δ
p‖w‖p−1

S(Ḣsc ;Ij)
+ 2c1δ

2(p−1)‖w‖S(Ḣsc ;Ij)

+ c1δ
p−2‖w‖p+1

S(Ḣsc ;Ij)
+ c1δ

p−1‖w‖p
S(Ḣsc ;Ij)

+ c1‖w‖2p−1

S(Ḣsc ;Ij)
+ cε0.
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Let ‖w‖S(Ḣsc ;Ij)
≤ c̃δ. If c1c̃δ

2(p−1) ≤ 1
12 , by choosing δ ≤ min (1, δ1), where δ1 = 2(p−1)

√
1

12c1c̃
together

with (3.32), we can make sure that at time tj , ‖ei(t−tj)∆w(tj)‖S(Ḣsc ) ≤ ε1, where ε1 depends on ε0, thus,

we take

‖ei(t−tj)∆w(tj)‖S(Ḣsc ;Ij)
+ cε0 ≤ min

(
1,
δ1

2

)
. (3.38)

Therefore, (3.38) ensures that,

‖w‖S(Ḣsc ;Ij)
≤ 2‖ei(t−tj)∆w(tj)‖S(Ḣsc ;Ij)

+ 2cε0. (3.39)

Taking t = tj+1 in (3.34), applying ei(t−tj+1)∆ to both sides and repeating the similar argument used

for (3.39) (since the Duhamel integral is confined to Ij = [tj , tj+1]), we obtain

‖ei(t−tj+1)∆w(tj+1)‖S(Ḣsc ) ≤ 2‖ei(t−tj)∆w(tj)‖S(Ḣsc ) + 2cε0.

Iterating down to j = 0 and using (3.32), we get

‖ei(t−tj)∆w(tj)‖S(Ḣsc ) ≤ 2j‖ei(t−t0)∆w(t0)‖S(Ḣsc ) + (2j − 1)2cε0 ≤ 2j+2cε0. (3.40)

Now to satisfy the assumption (3.38) for all intervals Ij , 0 ≤ j ≤ n− 1, we require that

2n+2cε0 ≤ min

(
1,
δ1

2

)
. (3.41)

This quantifies ε0 in terms of n (number of time subintervals), which is determined by A (given). Hence,

substituting w = u− ũ on the left-hand side of (3.34) and applying Kato estimate (2.16), we obtain

‖u‖S(Ḣsc ) ≤ ‖e
i(t−tj)∆w(tj)‖S(Ḣsc ) + c‖W (ũ, w)‖S′(Ḣ−sc ;Ij)

+ cε0 + ‖ũ‖S(Ḣsc ).

Thus, by repeating the argument used to deduce (3.39) and using (3.40) (3.31) and (3.41), we can

conclude that

‖u‖S(Ḣsc ) ≤ c(A).

�

4. Properties of Ground State

Now that we have local existence and that it was extended to get global existence of small data

and H1 scattering, we would like to study how large the initial data can be taken to continue enjoying

the property of global existence and scattering. As in most focusing dispersive equations, there is

typically a (sharp) threshold, which can be identified via the so-called ground state. However, one

would need to know that such ground state solutions exist, whether they are unique (perhaps up to

certain symmetries), and if ground state solutions can be obtained as minimizers of a certain functional

(as it was originally done by Weinstein for the NLS in [58]). Minimization will identify the value of the

threshold via some sharp constants of inequalities from which the functional is derived. We proceed

along this route: we consider an appropriate interpolation inequality, set up a functional, minimize

it and identify the sharp constant. One property that we do not know is if the minimizer is unique.

Nevertheless, for the purpose of this work, it is sufficient to use the value of the sharp constant.

We start with the Gagliardo-Nirenberg type inequality of convolution type. For brevity we denote

Z(u) =

∫
RN

(
|x|−(N−γ) ∗ |u|p

)
|u|p dx.
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Lemma 4.1. Suppose p ≥ 2 and 0 < γ < N . Then

Z(u) ≤ CGN‖∇u‖Np−(N+γ)
L2 ‖u‖N+γ−(N−2)p

L2 . (4.1)

Moreover, the equality is attained on ground state solutions Q, which solve2

−
(
N + γ

2p
− N − 2

2

)
Q+

(
N

2
− N + γ

2p

)
∆Q+

(
|x|−(N−γ) ∗ |Q|p

)
|Q|p−2Q = 0, (4.2)

and the sharp constant for (4.1) is attained at (any ground state) Q, which may be expressed as CGN =

‖Q‖−2(p−1)

L2(RN )
.

Remark 4.2. We note that the ground state solutions Q are positive, vanishing at infinity solutions,

which are radial (modulo translations). These and other properties are investigated in [50], see also

early works on the Hartree case in R3 in [40], [41], [45], [46], [47]. As we mentioned in the introduction

the uniqueness is only known in the standard Hartree case p = 2, γ = 2 and N ≥ 3 (also for p = 2 + ε,

γ = 2 in dimension N = 3).

Proof. We consider the Weinstein-type functional for functions u ∈ H1(RN ) \ {0}

J(u) =
‖u‖(N+γ)−(N−2)p

L2 ‖∇u‖Np−(N+γ)
L2

Z(u)
. (4.3)

We mention that since we are interested in minimizing the value of J , replacing u with its symmetric

decreasing rearrangement will decrease both the L2 norm and the H1 norm (by Hardy-Littlewood and

Pólya-Szegö inequalities). On the other hand, the symmetric decreasing rearrangement will increase

the value of Z(u) by Riesz’s inequality, and thus, also will decrease the value of J . Hence, we can

consider only radially symmetric functions u = u(r), which are radially non-increasing (this is up to

translations).

We proceed as in Weinstein [58] by defining

η = inf{J(u) : u ∈ H1
rad \ {0}}.

Since J(u) > 0, there exists a minimizing sequence {uk} such that η = lim
k→∞

J(uk) < ∞. Note that if

we set uλ,µ = µu(λx), then ‖uλ,µ‖2L2 = λ−Nµ2‖u‖2L2 and ‖∇uλ,µ‖2L2 = λ2−Nµ2‖∇u‖2L2 . By choosing

λk = ‖uk‖L2/‖∇uk‖L2 and µk = ‖uk‖
N
2
−1

L2 /‖∇uk‖
N
2

L2 , we obtain the sequence {uλk,µk}, denoting it also

by {uk}, with ‖∇uk‖L2 = ‖uk‖L2 = 1. Thus, {uk} is a bounded non-negative sequence in H1. Therefore,

there exists u∗ ∈ H1 \ {0}, radial, nonnegative and non-increasing, such that a subsequence of {uk}
converges weakly in H1 to u∗ with ‖u∗‖L2 ≤ 1 and ‖∇u∗‖L2 ≤ 1.

We next claim that Z(u∗) = lim
k→∞

Z(uk), which is justified as follows: since {uk} is uniformly bounded

in Ḣ1
rad, we have uk → u∗ in L

2Np
N+γ (note that 2 < 2Np

N+γ < 2N
N−2). Now evaluating the difference, we

obtain

Z(uk)− Z(u∗) =

∫
RN

(
| · |−(N−γ) ∗ |uk|p

) (
|uk|p − |u∗|p

)
dx

+

∫
RN

(
| · |−(N−γ) ∗

(
|uk|p − |u∗|p

))
|u∗|p dx

. ‖uk‖p
L

2Np
N+γ

‖|uk|p − |u∗|p‖
L

2N
N+γ

+ ‖|uk|p − |u∗|p‖
L

2N
N+γ
‖u∗‖p2Np

N+γ

−−−→
k→∞

0.

We can now conclude

η ≤ J(u∗) ≤ 1

Z(u∗)
= lim

k→∞
J(uk) = η. (4.4)

2In this equation we use the normalization for Q as in Weinstein [58] when ‖Q‖L2 = ‖∇Q‖L2 = Z(Q). Below we rescale

Q to have as elliptic equation with unit coefficients.
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This implies that ‖u∗‖L2 = ‖∇u∗‖L2 = 1, and also uk → u∗ strongly in H1. Therefore, u∗ is indeed a

minimizer of J .

Next we note that a minimizer u∗ satisfies the Euler - Lagrange equation

d

dε

∣∣∣∣
ε=0

J(u∗ + εh) = 0 for all h ∈ C∞0 ,

which, with ‖u∗‖2L = 1 and ‖∇u∗‖L2 = 1, can be written as

−
(
N + γ

2p
− N − 2

2

)
u∗ +

(
N

2
− N + γ

2p

)
∆u∗ + η

(
|x|−(N−γ) ∗ |u∗|p

)
|u∗|p−1 = 0. (4.5)

With equality in (4.4), we have CGN = 1
η = Z(u∗). Recall that u∗ is a positive, vanishing at infinity

function, satisfying the above equation, thus, it is a ground state solution of (4.5) with the normalization

‖u∗‖L2 = ‖∇u∗‖L2 = 1.

Setting Q = η
1

2(p−1)u∗, we obtain that Q satisfies (4.2). With this rescaling, we have ‖Q‖2L2 =

‖∇Q‖2L2 = Z(Q) = η
1

2(p−1) , and the sharp constant CGN = 1
η ≡ 1/‖Q‖2(p−1)

L2 . Note that η is the

infimum, it uniquely determines CGN or such a quantity as ‖Q‖L2 .

One can also use another approach to find CGN and compute Pohozhaev identities for the equation

(4.2): first, multiplying (4.2) by Q and integrating to obtain(
N + γ

2p
− N − 2

2

)
‖Q‖2L2 +

(
N

2
− N + γ

2p

)
‖∇Q‖2L2 = Z(Q). (4.6)

Secondly, multiplying (4.2) by x · ∇Q and integrating, yields

N

2

(
N + γ

2p
− N − 2

2

)
‖Q‖2L2 +

N − 2

2

(
N

2
− N + γ

2p

)
‖∇Q‖2L2 =

N + γ

2p
Z(Q), (4.7)

which also gives

Z(Q) = ‖Q‖2L2 = ‖∇Q‖2L2 , (4.8)

and substituting these values into (4.1), we obtain η ≡ CGN,sharp = ‖Q‖−2(p−1)
L2 . �

Remark 4.3. It is convenient to rescale Q as Q(x) = β
1

2(p−1) Q̃
(√

β
α x

)
, which gives the equation (1.7)

(with all unit coefficients) for Q instead of (4.2) for Q̃. Here, α2 = N(p−1)−γ
2p and β = N+γ−(N−2)p

2p .

From now on we only use Q̃ (denoting it again by Q), solving (1.7) and the sharp constant

CGN =
2p

N(p− 1)− γ

(
N + γ − (N − 2)p

N(p− 1)− γ

)N(p−1)−γ
2

−1 1

‖Q‖2(p−1)
L2

. (4.9)

For future reference we also compute,

M [Q]θE[Q] =
sc(p− 1)

2sc(p− 1) + 2
‖Q‖2θL2‖∇Q‖2L2 (4.10)

and

‖Q‖1−sc
L2 ‖∇Q‖scL2 =

(
p (CGN )−1

sc(p− 1) + 1

) 1
2(P−1)

. (4.11)
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5. Dichotomy: Global vs blow up solutions

In this section we obtain the proof of Theorem 1.2 part (1)(a) and part (2). We show that the

condition in Theorem 1.2 is sharp.

Theorem 5.1. Consider (1.1) with u0 ∈ H1(RN ) and 0 < sc < 1. Assume that

ME [u0] < 1. (5.1)

If

G[u0] < 1, (5.2)

then the solution u(t) exists for all t ∈ R (i.e., I = R), and

G[u(t)] < 1. (5.3)

If

G[u0] > 1, (5.4)

then for t ∈ I = (−T, T )

G[u(t)] > 1. (5.5)

Moreover, if either x|u0| ∈ L2(RN ) or u0 is radial, then I is finite, and thus, the solution blows up in

finite time.

The proof of this theorem goes along the established convexity arguments and the relevant Gagliardo-

Nirenberg inequality with its sharp constant, we include it partially for completeness and also since the

constants and coefficients are specific for the generalized Hartree case. The localized virial part deals

with the convolution term, and thus, is new.

Proof. Using the energy conservation and (4.1), we have

ME [u] =

(
1

2
‖∇u‖2L2(RN )‖u0‖2θL2(RN ) −

1

2p
Z(u)‖u0‖2θL2(RN )

)
1

M [Q]θE[Q]

≥
(

1

2
‖∇u‖2L2(RN )‖u0‖2θL2(RN ) −

CGN
2p

(
‖∇u‖L2‖u0‖θL2

)2sc(p−1)+2
)

1

M [Q]θE[Q]
. (5.6)

Using (4.10) and (4.11) and the value of CGN , we get

ME [u] ≥ sc(p− 1) + 1

sc(p− 1)
G[u(t)]2 − 1

sc(p− 1)
(G[u(t)])2sc(p−1)+2 .

Now the proof of (5.3) and (5.5) follows the same argument as in [32], [14] (see [2] for details).

Next if, xu0 ∈ L2(RN ), we write the virial identity as

Vtt = 16(sc(p− 1) + 1)E[u0]− 8sc(p− 1)‖∇u‖2L2(RN ). (5.7)

Multiplying the virial identity by M [u0]θ and proceeding as in [32], [27], we get

M [u0]θVtt < −8sc(p− 1)δM [Q]θ‖∇Q‖2L2 < 0,

which by the convexity argument implies that the time interval I must be finite, thus, blow-up occurs

in finite time.

If u0 is radial, define φ ∈ C∞(R),

φ(|x|) =

{
|x|2
2 0 ≤ |x| ≤ 2

1 r ≥ 3
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such that φ is smooth for 2 < r < 3 and ∂2
rφ(r) ≤ 1 for all r ≥ 0. Now, for R > 0 large, let

φR = R2φ
(
|x|
R

)
. Define the localized variance

Vloc(t) =

∫
φR(x)|u(x, t)|2 dx

and compute the second derivative to obtain

∂2
t Vloc(t) = 4

∫
RN

φ′′R|∇u|2 dx−
∫
RN

∆2φR|u|2 dx (5.8)

− 2(p− 2)

p

∫
RN

∆φR
|u(x)|p|u(y)|p

|x− y|N−γ
dxdy (5.9)

− 4(N − γ)

p

∫
RN

∫
RN
∇φR

(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy. (5.10)

We bound the two terms in (5.8) using ∆φR = N and ∆2φR = 0 for |x| ≤ 2R as follows

4

∫
φ′′R|∇u|2 dx ≤ 4

∫
RN
|∇u|2 dx, (5.11)

−
∫

∆2φR|u|2 dx ≤
c

R2

∫
2R<|x|<3R

|u|2 dx. (5.12)

Estimate (5.9) using again the fact that ∆φR(r) = N

− 2(p− 2)

p

∫
RN

∆φR(|x|−(N−γ) ∗ |u|p)|u|p dx

≤− 2N(p− 2)

p

∫
|x|≤2R

(|x|−(N−γ) ∗ |u|p)|u|p dx+
2c(p− 2)

p

∫
2R<|x|<3R

(|x|−(N−γ) ∗ |u|p)|u|pdx

≤− 2N(p− 2)

p

∫
RN

(|x|−(N−γ) ∗ |u|p)|u|pdx+ c1

∫
|x|>2R

(|x|−(N−γ) ∗ |u|p)|u|p dx. (5.13)

Next we turn our attention to the term in (5.10), which can be rewritten as

(5.10) = −4(N − γ)

p

∫
RN

∫
RN

R

|x|
φ′
(
|x|
R

)
x(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy

= −4(N − γ)

p

∫
RN

∫
RN

x(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy

+
4(N − γ)

p

∫
RN

∫
RN

(
1− R

|x|
φ′
(
|x|
R

))
x(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy

= −2(N − γ)

p

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|N−γ
dxdy

+
4(N − γ)

p

∫
RN

∫
RN

(
1− R

|x|
φ′
(
|x|
R

))
x(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy

Combining the above expression with (5.11), (5.12) and (5.13), we write

∂2
t Vloc(t) ≤ 4

∫
RN
|∇u|2 +

c

R2

∫
2R<|x|<3R

|u|2 + c1

∫
|x|>2R

(|x|−(N−γ) ∗ |u|p)|u|pdx

−
(

2N(p− 2)

p
+

2(N − γ)

p

)∫
RN

(|x|−(N−γ) ∗ |u|p)|u|pdx

+
4(N − γ)

p

∫
RN

∫
RN

(
1− R

|x|
φ′
(
|x|
R

))
x(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy.
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Writing the above inequality in terms of energy and gradient, we get

∂2
t Vloc(t) ≤ 4(N(p− 1)− γ)E[u0]− (2(N(p− 1)− γ)− 4)

∫
RN
|∇u|2 dx (5.14)

+
c

R2

∫
2R<|x|<3R

|u|2 dx+ c1

∫
|x|>2R

(|x|−(N−γ) ∗ |u|p)|u|p dx (5.15)

+
4(N − γ)

p

∫
RN

∫
RN

(
1− R

|x|
φ′
(
|x|
R

))
x(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy. (5.16)

The second term in the expression (5.15) can be estimated as∫
|x|>2R

(
|x|−(N−γ) ∗ |u|p

)
|u|p dx . ‖|x|−(N−γ) ∗ |u|p‖

L
2N
N−γ
|x|>2R

‖u‖p
L

2Np
N+γ
|x|>2R

(Hölder’s)

. ‖u‖2p
L

2Np
N+γ
|x|>2R

(Lemma 2.4)

.
1

R
(N−1)(N(p−1)−γ)

N

‖∇u‖
N(p−1)−γ

N

L2 ‖u‖
N(p+1)+γ

N

L2 (radial Sobolev). (5.17)

We rewrite the integral in (5.16), using symmetry, as follows

1

2

∫
RN

∫
RN

((
1− R

|x|
φ′
(
|x|
R

))
x−

(
1− R

|y|
φ′
(
|y|
R

))
y

)
(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy, (5.18)

which can be broken down into the following regions (observe that the integral vanishes in the region

|x| ≤ 2R);

• Region I: |x| ≈ |y|. In this region we have

|x| > 2R, |y| > 2R.

Observe that ∣∣∣∣(1− R

|x|
φ′
(
|x|
R

))
x−

(
1− R

|y|
φ′
(
|y|
R

))
y

∣∣∣∣ . |x− y|.
We estimate (5.18) in a similar fashion as (5.17) to obtain∫ ∫

χ|y|>2R|u(y)|p

|x− y|N−γ
χ|x|>2R|u(x)|p dxdy . 1

R
(N−1)(N(p−1)−γ)

N

||∇u||
N(p−1)−γ

N

L2 ||u||
N(p+1)+γ

N

L2 . (5.19)

• Region II: max{|x|, |y|} � min{|x|, |y|} and max{|x|, |y|} > 2R. We consider two cases:

– Case (a): |x| � |y| ≈ |x− y|, |y| > 2R and |x| < 2R. In this case (5.18) becomes∫ ∫
1

|x− y|N−γ
χ|y|>2R|u(y)|p |u(x)|p dxdy,

since using the triangle inequality and the definition of φ, we have∣∣∣ (1− R

|x|
φ′
(
|x|
R

))
x−

(
1− R

|y|
φ′
(
|y|
R

))
y
∣∣∣

≤ |x|
(

1− R

|x|
φ′
(
|x|
R

))
+ |y|

(
1− R

|y|
φ′
(
|y|
R

))
. |y| ≈ |x− y|

since 1 − R
|x|φ

′
(
|x|
R

)
< 1 and 1 − R

|y|φ
′
(
|y|
R

)
> 1

2 . Again using Hölder’s inequality, Lemma

2.4 and radial Sobolev as in (5.17), we bound the above integral by

1

R
(N−1)(N(p−1)−γ)

N

||∇u||
N(p−1)−γ

N

L2 ||u||
N(p+1)+γ

N

L2 . (5.20)
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– Case (b): |y| � |x| ≈ |x− y|, |x| > 2R and |y| < 2R. This case is symmetric and treated

with a similar argument as in Case (a).

Combining (5.17), (5.19) and (5.20), we get

∂2
t Vloc(t) ≤ 8(sc(p− 1) + 1)E[u0]− 4sc(p− 1)

∫
RN
|∇u|2 +

c

R2

∫
2R<|x|<3R

|u|2

+
c̃

R
(N−1)(N(p−1)−γ)

N

‖∇u‖
N(p−1)−γ

N

L2 ‖u‖
N(p+1)+γ

N

L2 .

Using Young’s inequality to separate the L2 norm and gradient term in the last term, we obtain

∂2
t Vloc(t) ≤ 8(sc(p− 1) + 1)E[u0]− 4sc(p− 1)

∫
RN
|∇u|2 +

c

R2

∫
2R<|x|<3R

|u|2

+ ε ‖∇u‖2L2 +
c(ε,N)

R
2(N−1)(N(p−1)−γ)

N(3−p)+γ

‖u‖
2(N(p+1)+γ)
N(3−p)+γ

L2 .

Multiplying the above expression by M [u0]θ and using the similar argument as in the case of finite

variance, we get

M [u0]θ∂2
t Vloc(t) ≤ 8(sc(p− 1) + 1)M [u0]θE[u0]− (4sc(p− 1)− ε)‖u‖2θL2‖∇u‖2L2

+
c

R2
‖u‖2+2θ

L2 +
c(ε,N)

R
2(N−1)(N(p−1)−γ)

N(3−p)+γ

‖u‖
2(N(p+1)+γ)
N(3−p)+γ +2θ

L2 ,

which can be re-written as

M [u0]θ∂2
t Vloc(t) ≤ 4sc(p− 1)(1− δ1)M [Q]θ‖∇Q‖2L2 − (4sc(p− 1)− ε)(1 + δ2)M [Q]θ‖∇Q‖2L2

+
c

R2
‖u‖2+2θ

L2 +
c(ε,N)

R
2(N−1)(N(p−1)−γ)

N(3−p)+γ

‖u‖
2(N(p+1)+γ)
N(3−p)+γ

L2 .

Choose

0 < ε <
4sc(p− 1)(δ1 + δ2)

1 + δ2

and R = R(ε, δ1, N, p, γ,M [u0]) large enough to obtain

M [u0]θ∂2
t Vloc(t) ≤ −c(ε,N, p, γ),

where c(ε,N, p, γ) > 0, implying that the maximum interval of existence I is finite. �

The following lemmas provide some additional estimates that will be needed for the compactness and

rigidity results in Section 6-7. We state the Lemmas without proof as the arguments are similar to the

ones presented in [32], [27]. For more details, refer to [2].

Lemma 5.2 (Comparison of Energy and Gradient). Let u0 ∈ H1(RN ) satisfy (5.1) and (5.2). Then

sc(p− 1)

2sc(p− 1) + 2
‖∇u‖2L2(RN ) ≤ E[u] ≤ 1

2
‖∇u‖2L2(RN ). (5.21)

Lemma 5.3 (Lower bound on the convexity of variance). Let u0 ∈ H1(RN ) satisfy (5.1) and (5.2).

Then for all t ∈ R

16E[u]
(

1− (ME [u])sc(p−1)
)
≤ 8

(
‖∇u‖2L2 −

sc(p− 1) + 1

p
Z(u)

)
. (5.22)
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Lemma 5.4 (Existence of wave operators). Suppose ψ+ ∈ H1(RN ) and

‖ψ+‖2θL2‖∇ψ+‖2L2 ≤ µ2

(
2sc(p− 1) + 2

sc(p− 1)

)
M [Q]θE[Q] (5.23)

for some 0 < µ ≤
(

sc(p−1)
2sc(p−1)+2

) 1
2
< 1. Then there exists v0 ∈ H1(RN ) such that v(t), solving (1.1) with

initial data v0, is global in H1(RN ) with

‖v0‖θL2‖∇v(t)‖L2 ≤ ‖Q‖θL2‖∇Q‖L2 , M [v] = ‖ψ+‖2L2 , E[v] =
1

2
‖∇ψ+‖2L2

and

‖v(t)− eit∆ψ+‖H1 → 0 as t→∞.
Moreover, if ‖eit∆ψ+‖S(Ḣsc ) ≤ δ, then

‖v0‖Ḣsc ≤ 2‖ψ+‖Ḣsc and ‖v‖S(Ḣsc ) ≤ 2‖eit∆ψ+‖S(Ḣsc ).

Proof. We consider the integral equation

v(t) = eit∆ψ+ − i
∫ ∞
t

ei(t−t
′)∆
((
|x|−(N−γ) ∗ |u|p

)
|u|p−2u

)
(t′) dt′, (5.24)

which we would like to solve for all t. Note that for T > 0 by Theorem 3.1 (small data theory) there

exists δ > 0 such that ‖eit∆ψ+‖S(Ḣsc ;[T,∞)) ≤ δ. Thus, we solve the equation (5.24) in H1 for t ≥ T

with T large. Estimating (5.24) in S(L2) for t ≥ T , we obtain

‖∇v‖S(L2;[T,∞)) . ‖eit∆∇ψ+‖S(L2;[T,∞)) + ‖∇[(| · |−(N−γ) ∗ |v|p)|v|p−2v]‖S′(L2;[T,∞))

. ‖ψ+‖Ḣ1 + ‖v‖2(p−1)

S(Ḣsc ;[T,∞))
‖∇v‖S(L2;[T,∞)).

Taking T sufficiently large so that ‖v‖2(p−1)

S(Ḣsc ;[T,∞))
≤ 1

2 , we get ‖∇v‖S(L2;[T,∞)) . 2‖ψ+‖Ḣ1 . Using the

above inequality, we obtain in a similar fashion,

‖∇
(
v − eit∆ψ+

)
‖S(L2;[T,∞)) ≤ ‖∇[(| · |−(N−γ) ∗ |v|p)|v|p−2v]‖S′(L2;[T,∞))

≤ ‖v‖2(p−1)

S(Ḣsc ;[T,∞))
‖∇v‖S(L2;[T,∞))

≤ c‖ψ+‖Ḣ1 ,

hence, ‖∇
(
v − eit∆ψ+

)
‖S(L2;[T,∞)) → 0 as T → ∞. Since, by Theorem 3.2 (H1 scattering), we have

v−eit∆ψ+ → 0 in H1 as t→∞ and the decay estimate together with the embedding H1(RN ) ↪→ Lq(RN )

with q ≤ 2N
N−2 for N ≥ 3, q <∞ for N = 2 and q ≤ ∞ for N = 1 implies

Z(eit∆ψ+) . ‖eit∆ψ+‖
L

2Np
N+γ
≤ |t|−

Np−N−γ
2p ‖ψ+‖H1 ,

thus, Z
(
eit∆ψ+

)
→ 0 in L

2Np
N+γ as t→∞. Since limt→+∞ ‖v(t)‖H1 = ‖∇ψ+‖H1 , we have

E[v] =
1

2
‖∇v‖2L2 −

1

2p

∫
(|x|−(N−γ) ∗ |v|p)|v|p dx

= lim
t→∞

(
1

2
‖∇eit∆ψ+‖2L2 −

1

2p

∫ (
|x|−(N−γ) ∗ |eit∆ψ+|p

)
|eit∆ψ+|p

)
=

1

2
‖∇ψ+‖2L2

and M [v] = lim
t→∞
‖eit∆ψ+‖2L2 = ‖ψ+‖2L2 . Note that by (5.23) we now have

M [v]θE[v] =
1

2
‖ψ+‖2θL2‖∇ψ+‖2L2 ≤ µ2

(
2sc(p− 1) + 2

sc(p− 1)

)
M [Q]θE[Q]
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and by our choice of µ we conclude that M [v]θE[v] < M [Q]θE[Q]. Moreover,

lim
t→∞
‖v(t)‖2θL2‖∇v(t)‖2L2 = ‖ψ+‖2θL2‖∇ψ+‖2L2

≤ µ2

(
2sc(p− 1) + 2

sc(p− 1)

)
M [Q]θE[Q]

= µ2‖Q‖2θL2‖∇Q‖2L2 ,

where the inequality is due to (5.23) and last equality is from (4.11). We can take T > 0 sufficiently large

so that ‖v(T )‖θL2‖∇v(T )‖L2 < µ‖Q‖θL2‖∇Q‖L2 . And, since µ < 1, by Theorem 5.1 (global existence of

solutions), we evolve v(T ) from time T back to time 0 and obtain v with initial data v0 ∈ H1 for all

time t ∈ [0,∞) with the desired properties. �

6. Compactness

6.1. Blueprint. To characterize the behavior of global solutions to (1.1), we must show that ifME [u] <

1 and G[u0] < 1, then the global-in-time Ḣsc Strichartz norm is finite, i.e., ‖u‖S(Ḣsc ) <∞. This would

imply that ‖∇u(t)‖L2 ≤ C and thus, I = (−∞,∞). For completeness we provide the blueprint below,

which is based on the works of Holmer-Roudenko [32], Duyckaerts-Holmer-Roudenko [14] for the 3d

cubic nonlinear Schrödinger equation and Kenig-Merle [36] for the energy-critical NLS equation.

First Stage: Small data theory

Using Lemma 5.2, we have

‖u0‖2(p−1)

Ḣsc
≤
(
‖u0‖θL2‖∇u0‖L2

)2sc(p−1)
<

(
2p

p− 1

)sc(p−1) (
M [u]θE[u]

)sc(p−1)
.

If G[u0] < 1 and ME [u] <
(
p−1
2p

)
δ
2/sc
sd

M [Q]θE[Q]
, then from the above inequality, we obtain ‖u0‖Ḣsc ≤ δsd,

which by Strichartz estimates gives ‖eit∆u0‖S(Ḣsc ) ≤ c δsd. Therefore, Theorem 3.1 (small data the-

ory) implies that there exists a δ > 0 such that if G[u0] < 1 and ME [u] < δ, then T ∗ = +∞ and

‖u0‖Ḣsc <∞. This gives us the basis for induction.

Second stage: Construction of critical solution (via induction on scattering threshold)

Let (ME)c be the supremum over all δ > 0 for which the following is true:

“If u0 ∈ H1(RN ) with G[u0] < 1 and ME [u] < δ such that δ = δ(M [Q]1−sE[Q]s), then T ∗ = +∞
and ‖u0‖Ḣsc <∞.”

If (ME)c = 1, then we are done, since Q (soliton) does not scatter. So, we assume that (ME)c < 1.

This implies (by definition of (ME)c) that there exists a sequence of solutions {un} to (1.1) with initial

data un,0 ∈ H1(RN ) that approach the threshold (ME)c from above but do not scatter, i.e., there exists

a sequence un,0 ∈ H1(RN ) such that

G[un,0] < 1 and ME [un,0]↘ (ME)c as n→∞

for which ‖un‖S(Ḣsc ) = +∞. Using the profile decomposition (Theorem 6.1) on the sequence of ini-

tial data {un,0}, we prove the existence of an H1 solution uc to (1.1) with initial data uc,0 such that

G[uc,0] < 1 and ME [uc] = (ME)c (i.e., it lies exactly at the threshold (ME)c), but uc does not scatter

(Theorem 6.3).

Third stage: Localization of critical solution (setting the premise for rigidity theorem)

The critical solution uc(t), constructed in the second stage, will have the property thatK = {uc(t) | t ∈
[0,∞)} is precompact in H1(RN ) (Proposition 6.6). This will allow us to show that for a given ε > 0,
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there is an R > 0 such that ∫
|x+x(t)|>R

|∇u(x, tn)|2 dx ≤ ε

uniformly in t (Lemma 6.7). Together with the zero momentum hypothesis (Lemma 6.8), this controls

the growth of path x(t) (Lemma 6.9).

Final Stage: Rigidity theorem (Theorem 7.1)

Appealing to this uniform localization and control of x(t), we invoke the Rigidity theorem, which

leads to contradiction that such compact solution in H1 exists unless it is a trivial solution, which

scatters. Therefore, the assumption (ME)c < 1 is not valid, concluding the proof.

We now fill in the necessary details.

6.2. Profile decomposition.

Theorem 6.1 (Linear Profile decomposition). Let φn(x) be a uniformly bounded sequence in H1(RN ).

Then for each M ∈ N there exists a subsequence of φn(x) (also denoted φn(x)), such that, for each

1 ≤ j ≤M ,

(1) there exist, fixed in n, a profile ψj ∈ H1(RN ),

(2) there exists a sequence (in n) tjn of time shifts,

(3) there exists a sequence (in n) xjn of space shifts,

(4) there exists a sequence (in n) WM
n (x) of remainders in H1(RN ), such that

φn(x) =
M∑
j=1

e−it
j
n∆ψj(x− xjn) +WM

n (x) (6.1)

with the properties:

• Pairwise divergence for the time and space sequences. For 1 ≤ k 6= j ≤M ,

lim
n→∞

|tjn − tkn|+ |xjn − xkn| = +∞. (6.2)

• Asymptotic smallness for the remainder sequence

lim
M→∞

(
lim
n→∞

‖eit∆WM
n ‖S(Ḣsc )

)
= 0. (6.3)

• Asymptotic Pythagorean expansion. For fixed M ∈ N and for any 0 ≤ s ≤ 1, we have

‖φn‖Ḣs =

M∑
j=1

‖ψj‖2
Ḣs + ‖WM

n ‖2Ḣs + on(1). (6.4)

Proof. Refer [2], [27], [32] for details. �

Proposition 6.2 (Energy Pythagorean expansion). Under the assumptions of Theorem 6.1, we have

E [φn] =

M∑
j=1

E
[
e−it

j
n∆ψj

]
+ E

[
WM
n

]
+ on(1). (6.5)

Proof. By the definition of energy, E[u], and (6.4) for s = 1, it is sufficient to establish for all M ≥ 1,

Z (φn) =
M∑
j=1

Z
(
e−it

j
n∆ψj

)
+ Z

(
WM
n

)
+ on(1), (6.6)

where Z(u) =
∫
RN
(
|x|−(N−γ) ∗ |u|p

)
|u|p.
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Step 1. Pythagorean expansion of a sum of orthogonal profiles. We show that for M ≥ 1 fixed, the

orthogonality condition (6.2) implies

Z

 M∑
j=1

e−it
j
n∆ψj(· − xjn)

 =
M∑
j=1

Z
(
e−it

j
n∆ψj

)
+ on(1). (6.7)

By rearranging and reindexing, we can find M0 ≤M such that

• For 1 ≤ j ≤M0, we have that tjn is bounded in n.

• For M0 + 1 ≤ j ≤M , we have that
∣∣∣tjn∣∣∣→∞ as n→∞.

Passing to a subsequence, we may assume that for each 1 ≤ j ≤ M0, tjn converges (in n), and by

adjusting the profiles ψj ’s we can take tjn = 0. Note that either for 1 ≤ k ≤ M0 we have tkn → 0 or for

M0 + 1 ≤ k ≤ M we have |tkn| → ∞ as n → ∞. So if tkn → 0, then from (6.4) we have |xjn − xkn| → ∞
as n→∞, which implies

Z

M0∑
j=1

ψj(· − xjn)

 =

M0∑
j=1

Z
(
ψj
)

+ on(1). (6.8)

Now if |tkn| → ∞ as n→∞, for a function ψ̃ ∈ Ḣ
N(p−1)−γ

2p ∩L
p+1
p , by Hardy-Littlewood-Sobolev, Sobolev

embedding and Lp space-time decay estimate, we obtain

Z
(
e−it

k
n∆ψk

)
. ‖e−itkn∆ψk‖2p

L
2Np
N+γ

. ‖ψk − ψ̃‖
Ḣ
N(p−1)−γ

2p
+
∣∣∣tkn∣∣∣−N(p−1)

2(p+1) ‖ψ̃‖
L
p+1
p
.

Approximating ψk by ψ̃ ∈ C∞0 in Ḣ
N(p−1)−γ

2p and sending n→∞, we obtain

lim
n→+∞

Z
(
e−it

k
n∆ψk

)
. lim

n→+∞
‖e−itkn∆ψk‖2p

L
2Np
N+γ

= 0. (6.9)

Thus, combining (6.8) and (6.9) together yields,

Z

 M∑
j=1

e−it
j
n∆ψj

 = Z

M0∑
j=1

ψj +
M∑

j=M0+1

e−it
j
n∆ψj


= Z

M0∑
j=1

ψj

+
M∑

j=M0+1

Z
(
e−it

j
n∆ψj

)
+ on(1) =

M∑
j=1

Z
(
e−it

j
n∆ψj

)
+ on(1),

which is the right-hand side of the expansion (6.7).

Step 2. Ending the proof. Note that

‖WM
n ‖

2p

L
2Np
N+γ

≤ ‖eit∆WM
n ‖

2p

L∞t L
2Np
N+γ
x

≤ ‖eit∆WM
n ‖

p

L∞t L
2N

N−2sc
x

‖eit∆WM
n ‖

p

L∞t L

2Np
N+γ−2(1−sc)
x

≤ ‖eit∆WM
n ‖

p

L∞t L
2N

N−2sc
x

‖eit∆WM
n ‖

p

L∞t Ḣ
1
x
≤ ‖eit∆WM

n ‖
p

L∞t L
2N

N−2sc
x

sup
n
‖φn‖pH1 .

Since Ḣsc ↪→ L
2N

N−2sc , i.e.,
(
∞, 2N

N−2sc

)
is an Ḣsc admissible pair, by (6.3), we get

lim
M→+∞

(
lim

n→+∞
‖WM

n ‖
2p
2Np
N+γ

)
= 0. (6.10)

Let M ≥ 1 and ε > 0. Note that {φn}n is uniformly bounded in L
2Np
N+γ , as it is uniformly bounded in

H1 by the hypothesis. Hence, by (6.10) {WM
n }n is also uniformly bounded in L

2Np
N+γ . Hence, we can
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choose M1 > M and n1 such that for n > n1, we have∣∣Z(φn)− Z(φn −WM1
n )

∣∣+
∣∣Z(WM

n −WM1
n )− Z(WM

n )
∣∣ (6.11)

≤ C

[
‖WM1

n ‖
L

2Np
N+γ

(
sup
n
‖φn‖2p−1

L
2Np
N+γ

+ sup
n
‖WM

n ‖
2p−1

L
2Np
N+γ

)]
+ C‖WM1

n ‖
2p

L
2Np
N+γ

≤ ε,

where we have used the triangle inequality to estimate∣∣‖WM
n −WM1

n ‖
2p

L
2Np
N+γ

− ‖WM
n ‖

2p

L
2Np
N+γ

∣∣ . ‖WM1
n ‖

2p

L
2Np
N+γ

,

and by observing that a2p > a(a− b)2p−1 together with the triangle inequality, we estimate∣∣∣‖φn −WM1
n ‖

2p

L
2Np
N+γ

− ‖φn‖2p
L

2Np
N+γ

∣∣∣ . (‖φn −WM1
n ‖

L
2Np
N+γ
− ‖φn‖

L
2Np
N+γ

)
‖φn −WM

n ‖
2p−1

L
2Np
N+γ

. ‖WM1
n ‖

L
2Np
N+γ

(
sup
n
‖φn‖2p−1

L
2Np
N+γ

+ sup
n
‖WM

n ‖
2p−1

L
2Np
N+γ

)
.

Choose n2 ≥ n1 such that for n ≥ n2, by (6.7), we get∣∣∣Z(φn −WM1
n )−

M1∑
j=1

Z
(
e−it

j
n∆ψj

) ∣∣∣ ≤ ε. (6.12)

Using the definition of W j
n, we expand WM

n −WM1
n , to obtain

WM
n −WM1

n =

M1∑
j=M+1

e−it
j
n∆ψj(· − xj).

By (6.7) there exists n3 ≥ n2 such that for n ≥ n3,∣∣∣Z(WM
n −WM1

n )−
M1∑

j=M+1

Z
(
e−it

j
n∆ψj

) ∣∣∣ ≤ ε. (6.13)

Thus, for n ≥ n3, by (6.11), (6.12) and (6.13), we obtain

Z(φn)−
M∑
j=1

Z
(
e−it

j
n∆ψj

)
− Z(WM

n )

=

∣∣∣∣Z(φn)− Z(φn −WM1
n ) + Z(φn −WM1

n )−
M1∑
j=1

Z
(
e−it

j
n∆ψj

)
+ Z(WM

n −WM1
n )

− Z(WM
n ) +

M1∑
j=M+1

Z
(
e−it

j
n∆ψj

)
− Z(WM

n −WM1
n )

∣∣∣∣ ≤ 3ε,

which implies (6.6).

�

6.3. Critical solution. In this subsection, we study a critical solution of (1.1), denoted by uc(t).

The main ingredients are Theorem 6.1 and Proposition 6.2 (proved in previous subsection) along with

Theorem 3.3 (long time perturbation theory).

Theorem 6.3 (Existence of critical solution). Let 0 < sc < 1. There exists a global solution uc(t) ∈
H1(RN ) with initial data uc,0 ∈ H1(RN ) such that ‖uc,0‖L2 = 1, (ME)c < 1, where (ME)c = E[uc]

M [Q]θE[Q]
,

G[uc(t)] < 1 for all 0 ≤ t ≤ +∞, and

‖uc‖S(Ḣsc ) = +∞. (6.14)
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Proof. The argument for the linear profile expansion is similar to the one presented in [32], [14], [27].

Thus, we continue for a new nonlinear profile ψ̃j associated to each original linear profile ψj satisfying

‖NLF(−tjn)ψ̃j − e−it
j
n∆ψj‖H1 → 0 (6.15)

and

‖NLF(−t)ψ̃j‖S(Ḣsc < +∞. (6.16)

The idea now is to apply a nonlinear flow to φn(x) and approximate it by a combination of “nonlinear

bumps”, i.e.,

NLF(t)φn(x) ≈
M∑
j=1

NLF(t− tjn) ψ̃j(x− xjn).

To carry out this argument, we introduce the nonlinear evolution of each separate initial condition

un,0 = φn:

un(t) = NLF(t)φn(x) = NLF(t)un,0,

the nonlinear evolution of each separate nonlinear profile (“bump”):

vj(t) = NLF(t)ψ̃j ,

and a linear sum of nonlinear evolutions of those “bumps”:

ũn(t, x) =

M∑
j=1

vj(t− tjn, x− xjn).

Intuitively, we think that un,0 = φn is a sum of nonlinear bumps ψ̃j and un(t) is a nonlinear evolution

of their entire sum. On the other hand, ũn(t) is a sum of nonlinear evolutions of each bump and we

want to compare un(t) with ũn(t). Also, note that if we just had the linear evolutions, then both un(t)

and ũn(t) would be the same.

Thus, un(t) satisfies

i(un)t + ∆un + (|x|−(N−γ) ∗ |un|p)|un|p−2un = 0,

and ũn(t) satisfies

i(ũn)t + ∆ũn + (|x|−(N−γ) ∗ |ũn|p)|ũn|p−2ũn = ẽMn ,

where

ẽMn =
(
|x|−(N−γ) ∗ |ũn|p

)
|ũn|p−2ũn −

M∑
j=1

(
|x|−(N−γ) ∗ |vj(t− tjn, · − xjn)|p

)
|vj |p−2vj .

We also define

W̃M
n = WM

n +
M∑
j=1

(
e−it

j
n∆ψj(x− xjn)−NLF(−tjn)ψ̃j(x− xjn)

)
, (6.17)

and using (6.1) we write

un,0 =
M∑
j=1

NLF(−tjn)ψ̃j(x− xjn) + W̃M
n , (6.18)

such that un,0−ũ(0) = W̃M
n . Applying triangle inequality together with the Strichartz inequality (2.14),

we estimate

‖eit∆W̃M
n ‖S(Ḣsc ) . ‖e

it∆WM
n ‖S(Ḣsc ) +

M∑
j=1

‖e−it
j
n∆ψj −NLF (−tjn)ψ̃j‖H1 .
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By (6.15) and (6.3) we have that

lim
M→∞

(
lim
n→∞

‖eit∆W̃M
n ‖S(Ḣsc )

)
= 0. (6.19)

We now approximate un by ũn. Then from the Theorem 3.3 (long time perturbation theory) and (6.16)

it follows that for n large enough, ‖un‖S(Ḣsc ) < +∞, which is a contradiction, since un is non-scattering.

We assume the following two claims, which we prove later.

Claim 6.4. There exists a constant A independent of M , and for every M , there exists n0 = n0(M)

such that if n > n0, then ‖ũn‖S(Ḣsc ) ≤ A.

Claim 6.5. For each M and ε > 0, there exists n1 = n1(M ; ε) such that if n > n1, then ‖ẽMn ‖S′(Ḣ−sc ) ≤
ε.

By (6.19), for any ε > 0 there exists M1 = M1(ε) sufficiently large such that for each M > M1 there

exists n2 = n2(M) such that n > n2 implies

‖eit∆(ũn(0)− un(0))‖S(Ḣsc ) ≤ ε.

Thus, if the Claim 6.4 and Claim 6.5 holds true, using Theorem 3.3 for sufficiently large M and

n = max(n0, n1, n2) we obtain ‖un‖S(Ḣsc ) <∞, a contradiction, since un is non-scattering. Now there

are two possible scenarios in the profile decomposition (6.18):

Scenario 1: More that one ψ̃j 6= 0. Observe that for s = 0 in (6.4), we have

M∑
j=1

‖ψj‖2L2 + lim
n→+∞

‖WM
n ‖2L2 ≤ lim

n→+∞
‖un,0‖2L2 = 1. (6.20)

Thus, by (6.20), we must have M [e−it
j
n∆ψ̃j ] < 1 for each j, which by energy decomposition, for large

enough n yields

M [NLF(t)ψ̃j ]1−scE[NLF(t)ψ̃j ]sc

M [Q]1−scE[Q]sc
=
M [ψ̃j ]1−scE[ψ̃j ]sc

M [Q]1−scE[Q]sc
=ME [ψ̃j ] < (ME)c.

Now, since ‖NLF(t)ψ̃j(· − xjn)‖S(Ḣsc ) < +∞, the right hand side of (6.18) is bounded in S(Ḣsc). By

(6.19), we conclude that ‖NLF(t)un,0‖S(Ḣsc ) < +∞, which is a contradiction.

Scenario 2: Suppose ψ̃1 6= 0 and ψ̃j = 0 for all j ≥ 2. Hence, we have

un,0 = NLF(−t1n)ψ̃1(x− x1
n) + W̃ 1

n

with

M [ψ̃1] < 1, ME [ψ̃1] ≤ (ME)c, and lim
n→+∞

‖eit∆(t)W̃ 1
n‖S(Ḣsc ) = 0.

Let uc be the global solution to (1.1) with initial data uc,0 = ψ̃1 i.e., uc(t) = NLF(t)ψ̃1. Assume by

contradiction that ‖uc‖S(Ḣsc ) < +∞. Let ũn(t) = NLF(t− t1n)ψ̃1, then

‖ũn(t)‖S(Ḣsc ) = ‖NLF(t− t1n)ψ̃1‖S(Ḣsc ) = ‖uc‖S(Ḣsc ) < +∞.

Therefore, using the long time perturbation theory with e = 0, we deduce that ‖un‖S(Ḣsc ) < +∞, which

is a contradiction, since by construction un is non-scattering. It only remains to establish the claims

6.4 and 6.5.

Proof of Claim 6.4: See [2] or the original NLS works [14], [32], [27] for details.

Proof of Claim 6.5: Recall that
(

2p
sc(2p−1)+1 ,

2Np
N+γ

)
is an Ḣ−sc admissible pair. Then

‖ẽMn ‖S′(Ḣ−sc ) ≤ ‖ẽ
M
n ‖

L

2p
(1−sc)(2p−1)
t L

2Np
2Np−N−γ
x

.
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Observe that expansion of ẽMn consists of cross terms of the form

M∑
j=1

M∑
k=1

M∑
l=1
k 6=l

(
|x|−(N−γ) ∗ |vj(t− tjn)|p

)
|vk(t− tkn)|p−2vl(t− tln),

where all of j, k and l are not same. Assume, without loss of generality, that k 6= l, and thus,

|tkn − tln| → ∞ as n→ +∞. So, we estimate

‖
(
|x|−(N−γ) ∗ |vj(t− tjn)|p

)
|vk(t− tkn)|p−2vl(t− tln)‖

L

2p
(1−sc)(2p−1)
t L

2Np
2Np−N−γ
x

≤ ‖vj‖
L

2p
1−sc
t L

2Np
N+γ
x

‖|vk(t− tkn)|p−2vl(t− tln)‖
L

2p
(1−sc)(p−1)
t L

2Np
(N+γ)(p−1)
x

.

Since both vk and vl belong to L
2p

1−sc
t L

2Np
N+γ
x , then

‖|vk(t− (tkn − tln))|p−2vl(t)‖
L

2p
(1−sc)(p−1)
t L

2Np
(N+γ)(p−1)
x

→ 0.

This gives Claim 6.5, which completes the proof of Theorem 6.3. �

For the proof of the following Proposition and Lemmas 6.7, 6.8 and 6.9, see [32], [14] and [27] (or

refer to [2] for details).

Proposition 6.6 (Precompactness of the flow of the critical solution). Assume uc as in Theorem 6.3.

Then there exists a continuous path x(t) in RN such that

K = {uc(· − x(t), t) | t ∈ [0,∞)}

is precompact in H1 (i.e., K is compact in H1).

Lemma 6.7 (Precompactness of the flow implies uniform localization). Let u be a solution to (1.1)

such that

K = {u(· − x(t), t) | t ∈ [0,∞)}

is precompact in H1. Then for each ε > 0, there exists R > 0 so that∫
|x+x(t)|>R

|∇u(x, t)|2 + |u(x, t)|2dx < ε (6.21)

for all 0 ≤ t <∞.

Lemma 6.8 (Zero momentum). Let uc be the critical solution constructed in Theorem 6.3 and assume

(ME)c < 1. Then P [uc] = Im
∫
ūc∇uc dx = 0.

Next, observe that

∂

∂t

∫
x|u(x, t)|2 dx = 2N Im

∫
ū∇u dx = 2NP [u].

Since P [uc] = 0 (Lemma 6.8), this implies that
∫
x|uc(x, t)|2 dx = constant, provided it is finite. We

will replace this identity with a localized version adapted to a suitably large radius R > 0. To envelope

the entire path x(t) over [T, T1] the localization R should be taken large enough over the same interval

[T, T1]. We can use the precompactness of the translated flow uc(· − x(t), t) and the zero momentum

to prove that the localized center of mass is nearly conserved. By the localization of uc in H1 around

x(t) and the near conservation of localized center of mass we constrain parameter x(t) from going too

quickly to +∞.
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Lemma 6.9 (Control over x(t)). Let u be a solution of (1.1) defined on [0,+∞) such that P [u] = 0

and K = {u(· − x(t), t) | t ∈ [0,∞)} is precompact in H1, for some continuous function x(·). Then

x(t)

t
→ 0 as t→ +∞. (6.22)

7. Rigidity Theorem

Theorem 7.1 (Rigidity). Let u be the global solution of (1.1) with initial data u0 ∈ H1(RN ) satisfying

P [u0] = 0, ME [u0] < 1 and G[u0] < 1. Suppose K = {u(· − x(t), t) | t ∈ [0,∞)} is precompact in H1.

Then u0 ≡ 0.

Proof. Let φ ∈ C∞0 be radial, with φ(x) = |x|2 for |x| ≤ 1 and 0 for |x| ≥ 2. For R > 0, let

φR(x) = R2φ(x/R). Define

Vloc(t) =

∫
φR(x)|u(x, t)|2 dx =⇒ V ′loc(t) = 2R Im

∫
ū(t) · ∇u(t) (∇φ)

( x
R

)
dx. (7.1)

Using Hölder’s inequality, we get

|V ′loc(t)| ≤ CR
∫
|x|≤2R

|u(t)| |∇u(t)| dx ≤ CR‖u(t)‖2(1−sc)
L2 ‖∇u(t)‖2sc

L2 . (7.2)

The second derivative, using the definition of φ and symmetrization, yields

V ′′loc(t) ≥ 8

∫
|x|≤R

|∇u|2 − 4(N(p− 1)− γ)

p

∫
|x|≤R

(
|x|−(N−γ) ∗ |u|p

)
|u|p

− c

R2

∫
R<|x|<2R

|u|2 + 4

∫
R<|x|<2R

φ′′
(
|x|
R

)
|∇u|2

−
(

4 c

(
1

2
− 1

p

)
+

2(N − γ)

p

)∫
R<|x|<2R

(
|x|−(N−γ) ∗ |u|p

)
|u|p

+
2(N − γ)

p

∫ ∫
Ω

(
1− R

|x|
φ′
(
|x|
R

))
x(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy

− 2(N − γ)

p

∫ ∫
Ω

(
1− R

|y|
φ′
(
|y|
R

))
y(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy.

We re-write the above estimate as

V ′′loc(t) ≥

(
8

∫
|x|≤R

|∇u|2 − 4(N(p− 1)− γ)

p

∫
|x|≤R

(
|x|−(N−γ) ∗ |u|p

)
|u|p
)

(7.3)

− c1

(∫
R<|x|<2R

|∇u|2 +
|u|2

R2
+
(
|x|−(N−γ) ∗ |u|p

)
|u|p
)

+
2(N − γ)

p

∫ ∫
Ω

(
1− R

|x|
φ′
(
|x|
R

))
x(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy (7.4)

− 2(N − γ)

p

∫ ∫
Ω

(
1− R

|y|
φ′
(
|y|
R

))
y(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy, (7.5)

where

Ω = {(x, y) ∈ RN × RN : |x| > R} ∪ {(x, y) ∈ RN × RN : |y| > R}.
Since {u(·−x(t), t) | t ∈ [0,∞)} is precompact in H1(RN ), by Lemma 6.7 there exists R0 ≥ 0 such that

taking R ≥ R0 + supt∈[T,T1] |x(t)|, we obtain for all t ∈ [T, T1]∫
|x|>R0

|∇u(x, t)|2 + |u(x, t)|2dx < ε

8
. (7.6)
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Using Hölder’s inequality, Hardy-Littlewood-Sobolev inequality and radial Sobolev inequality yields the

existence of R1 > 0 such that∫
|x|>R1

(
|x|−(N−γ) ∗ |u|p

)
|u|p dx

≤ c2‖| · |−(N−γ) ∗ |u|p‖
L

2N
N−γ
|x|>R1

‖u‖p
L

2Np
N+γ
|x|>R1

(Hölder’s inequality)

≤ c3‖u‖2p
L

2Np
N+γ
|x|>R1

(HLS inequality; Lemma 2.4)

≤ c4

R
(N−1)(N(p−1)−γ)

N
1

‖u‖
N(p−1)−γ

N

Ḣ1
‖u‖

N(p+1)+γ
N

L2 <
ε

8
, (7.7)

where the second to last inequality follows from the radial Sobolev inequality and the last one follows

from taking R
(N−1)(N(p−1)−γ)

N
1 > 8 c4 ‖u‖

N(p−1)−γ
N

Ḣ1
‖u‖

N(p+1)+γ
N

L2 .

Let ε = 16E[u]
(
1− (ME [u])sc(p−1)

)
c−1

1 and take R = max{R0, R1}, combine (7.6) and (7.7) to

obtain

c1

(∫
|x|>R

|∇u|2 +
|u|2

R2
+
(
|x|−(N−γ) ∗ |u|p

)
|u|p
)
≤ 4E[u]

(
1− (ME [u])sc(p−1)

)
. (7.8)

Now we invoke Lemma 5.3 by splitting the integrals on the right side of the expression (5.22) into the re-

gions {|x| > R} and {|x| < R} and use (7.8) to obtain the following bound, (7.3) ≥ 12E[u]
(
1− (ME [u])sc(p−1)

)
.

Next, we estimate the terms (7.4) and (7.5)∫ ∫
Ω

((
1− R

|x|
φ′
(
|x|
R

))
x−

(
1− R

|x|
φ′
(
|x|
R

))
y

)
(x− y)|u(x)|p|u(y)|p

|x− y|N−γ+2
dxdy, (7.9)

where we follow the argument as we did in Theorem 5.1 to obtain

(7.9) ≤ c5

R
(N−1)(N(p−1)−γ)

N

‖χ|x|>Ru‖
N(p−1)−γ

N

Ḣ1
<
ε

4
< 4E[u]

(
1− (ME [u])sc(p−1)

)
with R

(N−1)(N(p−1)−γ)
N > 4 c5‖χ|x|>Ru‖

N(p−1)−γ
N

Ḣ1
. Putting everything together, we obtain

V ′′loc(t) ≥ 8E[u]
(

1− (ME [u])sc(p−1)
)
− |IR| ≥ 4E[u]

(
1− (ME [u])sc(p−1)

)
. (7.10)

By Lemma 6.9, there exists T ≥ 0 such that for all t ≥ T , we have |x(t)| ≤ δt, with δ > 0 to be chosen

later. Taking R = R0 + δT1, we have that (7.4) holds for all t ∈ [T, T1], then integrating from T to T1,

we obtain

|V ′loc(T1)− V ′loc(T )| ≥ 4E[u]
(

1− (ME [u])sc(p−1)
)

(T1 − T ). (7.11)

On the other hand, from (7.2) and (5.2), we have that

|V ′loc(t)| ≤ CR‖u(t)‖2(1−sc)
L2 ‖∇u(t)‖2sc

L2 ≤ C
(
R0 + δT1

)
‖Q‖2(1−sc)

L2 ‖∇Q‖2sc
L2 . (7.12)

Combining (7.11) and (7.12), we get

4E[u]
(

1− (ME [u])sc(p−1)
)

(T1 − T ) ≤ C
(
R0 + δT1

)
‖Q‖2(1−sc)

L2 ‖∇Q‖2sc
L2 .

Let δ =
E[u](1−(ME[u])sc(p−1))
C‖Q‖2(1−sc)

L2 ‖∇Q‖2sc
L2

, then the above expression can be re-written as

3E[u]
(

1− (ME [u])sc(p−1)
)
T1 ≤ CR0‖Q‖2(1−sc)

L2 ‖∇Q‖2sc
L2 + 4E[u]

(
1− (ME [u])sc(p−1)

)
T,
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taking T1 → +∞ implies that the left hand side of the above expression goes to ∞ and we derive

a contradiction (right hand side is bounded), which can be resolved only if E[u] = 0, implying that

u ≡ 0. �

8. Divergence to infinity (Theorem 1.1 (2) part (b))

The argument for part (2)b follows [33] and [27] proof verbatim. We give a brief overview here for

the sake of completeness.

Assume that there is no finite time blowup for a nonradial and infinite variance solution (from

Theorem 1.1 part (2)b), thus, the solutions exists for all time (i.e., T ∗ = +∞). Under this assumption

of global existence, we study the behavior of G[u(t)] as t→ +∞, and use a concentration compactness

type argument to establish the divergence of G[u(t)] in H1 as it was developed in [33], note that the

concentration compactness and the rigidity arguments are used to prove a blowup property.

We first restate (in the spirit of [33]) the characterization of Q from Lions [46], Theorem II.1, which

can be considered for any minimizer Q.

Proposition 8.1. There exists a function ε(ρ), defined for small ρ > 0 with lim
ρ→0

ε(ρ) = 0, such that for

all u ∈ H1(RN ) with∣∣∣Z(u)− Z(Q)
∣∣∣+
∣∣∣‖u‖L2 − ‖Q‖L2

∣∣∣+
∣∣∣‖∇u‖L2 − ‖∇Q‖L2

∣∣∣ ≤ ρ, (8.1)

there is θ0 ∈ R and x0 ∈ RN such that

‖u− eiθ0Q(· − x0)‖H1 ≤ ε(ρ). (8.2)

This is equivalent to

Proposition 8.2. There exists a function ε(ρ) such that ε(ρ) → 0 as ρ → 0 satisfying the following:

Suppose there exists λ > 0 such that∣∣∣∣∣ME [u]− sc(p− 1) + 1

sc(p− 1)

(
1− λ2sc(p−1)

sc(p− 1) + 1

)
λ2

∣∣∣∣∣ ≤ ρλ2sc(p−1)+2 (8.3)

and

|G[u(t)]− λ| ≤ ρ

{
λ2sc(p−1)+1 if λ ≤ 1

λ if λ ≥ 1
. (8.4)

Then there exists θ0 ∈ R and x0 ∈ RN such that

‖u− eiθ0λN/2β−
sc

1−scQ(λ(β
− 3sc

(1−sc)N x− x0))‖L2 ≤ β
sc

2(1−sc) ε(ρ) (8.5)

and

‖∇[u− eiθ0λN/2β−
sc

1−scQ(λ(β
− 3sc

(1−sc)N x− x0))]‖L2 ≤ λβ−
sc

2(1−sc) ε(ρ), (8.6)

where β =
(
M [u]
M [Q]

)θ
.

Suppose that 0 ≤ ME [u] < 1 and let G[u(t)] = λ > 0 be given. The “mass-energy” horizontal line

for this λ intersects the graph of parabola, y = sc(p−1)+1
sc(p−1)

(
1− λ2sc(p−1)

sc(p−1)+1

)
λ2 at two places, i.e., there

exists two solutions 0 ≤ λ1 < 1 < λ2. The first case produces a solution that is global and scattering

(Theorem 1.1 (1)) and the second case produces a solution which either blows up in finite time (Theorem

1.1 (2)(a)) or diverge in infinite time (Theorem 1.1 (2)(b)) as shown in Section 8.

It is possible that G[u(t)] is much larger than 1 or λ2. The following Proposition shows that it cannot.
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Proposition 8.3. Let G[u0] = λ0 > 1. Then there exists ρ0 = ρ0(λ0) > 0 (with the property that

ρ0 → 0 as λ0 ↘ 1) such that for any λ ≥ λ0, the following holds: There does NOT exist a solution u(t)

of (1.1) with P [u] = 0 satisfying ‖u‖L2 = ‖Q‖L2 and

E[u]

E[Q]
=
sc(p− 1) + 1

sc(p− 1)

(
1− λ2sc(p−1)

sc(p− 1) + 1

)
λ2 (8.7)

with

λ ≤ ‖∇u(t)‖L2

‖∇Q‖L2

≤ λ(1 + ρ0) for all t ≥ 0. (8.8)

Proof. The proof relies on Proposition 8.2 and is easy to adapt as done in [33] and [27] following the

same argument as in Theorem 7.1 (Section 7) in this paper. �

This proves that there is NO solution at the “mass-energy” line for λ satisfying (8.8). We want to

show that G[u(t)] on any “mass-energy” line with ME [u0] < 1 and G[u(t)] > 1 will diverge to infinity.

By contradiction, we assume that such solutions have bounded renormalized gradient G[u(t)] for all

t > 0.

We say the solution has a globally bounded gradient if there exists a solution at the “mass-energy”

line for λ such that λ ≤ G[u(t)] ≤ σ for all t > 0. Observe that if the solution does not have a globally

bounded gradient for some λ and σ, then for any σ′ < σ the solution still does not have globally bounded

gradient. We are now in a position to define the threshold.

Definition 8.4. Fix λ0 > 1. Let σc = σc(λ0) be the supremum of all σ > λ0 such that the solution does

NOT have a globally bounded gradient for all λ such that λ0 ≤ λ ≤ σ.

By Proposition 8.3, we have that λ ≤ G[u(t)] ≤ λ(1 + ρ0) does not hold for all λ ≥ λ0. We want to

prove that σc(λ0) = +∞. By contradiction, assume that σc(λ0) is finite. Let u(t) be a solution to (1.1)

with initial data un,0 at the “mass-energy” line for λ > λ0, satisfying the hypothesis of Proposition 8.3.

Moreover, we want to prove that G[u(t)] → ∞ over a sequence of times {tn} → ∞. Assume that such

a sequence of times does not exist. This implies that there is a finite σ satisfying λ ≤ G[u(t)] ≤ σ for

all t > 0. Invoking the nonlinear profile decomposition on the sequence {un,0} as done in Theorem 6.3

enables us to construct a “critical threshold solution” u(t) = uc(t) at the “mass-energy” line for λc with

λ0 < λc < σc(λ0) and λc < G[uc(t)] < σc(λ0) for all t > 0. At this point we note that the nonlinear

profile decomposition gives the Ḣ1 asymptotic orthogonality at t = 0, but we would need to extend this

for 0 ≤ t ≤ T . This can be done following the argument described in [33] (Lemma 6.3) and [27] (Lemma

3.9). This critical threshold solution uc(t) will satisfy Proposition 6.6 (precompactness of the flow)

and Lemma 6.7 (uniform localization). This localization property of uc(t) implies that uc(t) blows-up

in finite time. The arguments from [33] (Proposition 3.2) and [27] (Lemma 4.10) proves exactly that,

which contradicts the boundedness of uc(t) in H1, and hence, uc(t) cannot exist, which means that our

initial assumption that σc(λ0) <∞ is false. This completes the proof of Theorem 1.1.

Appendix A. Uniqueness of the ground state for p = 2, γ = 2

Here for completeness we review the uniqueness of the ground state argument to the nonlocal elliptic

(Choquard) equation

−Q+ ∆Q+
(
|x|−(N−2) ∗ |Q|2

)
Q = 0, (A.1)

since the argument is different from that for a local nonlinearity. As it was mentioned in the introduction,

for N = 3 the uniqueness is proved by Lieb [41], a slightly different proof using the comparison argument

is in Lenzmann [39]; for N = 4 it is proved in Krieger-Lenzmann-Raphael [37] via a combination of

the above. We also follow the above arguments in 3d and generalize it for 2 < N < 6. The stationary
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equation (A.1) appears in the context of the Hartree equation only in dimensions 2 < N < 6: in

dimension N = 6 the Hartree equation is energy-critical, and thus, the corresponding elliptic equation

will be different (lacking the linear term). While most of the arguments below work for dimensions 6

and higher, the equation (A.1) is only needed for N < 6.

Theorem A.1. Let 2 < N < 6. The equation (A.1) has the unique positive, radial solution Q in

H1(RN ).

The proof uses the following representation of the Newton’s potential, which can be found in the

textbook [43, Theorem 9.7].

Lemma A.2. If f is a radial C∞ function on RN , then

−
(

1

|x|N−2
∗ f
)

(r) =

∫ r

0
K(r, s)f(s) ds−

∣∣SN−1
∣∣ ∫ ∞

0
f(s)s ds, (A.2)

where

K(r, s) =
∣∣SN−1

∣∣ (1−
(s
r

)N−2
)
s ≥ 0 for r ≥ s. (A.3)

Proof. (of Theorem A.1) Using Lemma A.2 for a radial Q ∈ H1(RN ), we rewrite (A.1) as

−Q′′ − N − 1

r
Q′ +

(∫ r

0
K(r, s)Q(s)2 ds

)
Q = aQ, (A.4)

where a = −1 +
∣∣SN−1

∣∣ (∫∞
0 Q(s)2s ds

)
> 0. Using the rescaling Q(r) 7→ a−1Q(a−1/2r), we obtain the

version of (A.4) with a = 1, namely,(
− d2

dr2
− N − 1

r

d

dr
+ UQ(r)

)
Q(r) = Q(r), (A.5)

where

UQ(r) =

(∫ r

0
K(r, s)Q(s)2 ds

)
. (A.6)

Suppose Q1(r) and Q2(r) are two positive radial solutions of (A.6) in H1(RN ) such that Q1 6= Q2 that

solve the IVP {
Q′′(r) + N−1

r Q′(r) +Q(r)− UQ(r)Q(r) = 0,

Q(0) = Q0, Q′(0) = 0.
(A.7)

The Volterra integral theory (for example, see Lemmas 2.4-2.6 and Theorem 2.1 in [60]) guarantees

existence and uniqueness of a local C2 solution to the above initial-value problem for a given Q(0) (note

that UQ(r) is bounded, see details below). Therefore, if Q1 6= Q2, then Q1(0) 6= Q2(0). Without loss

of generality, assume that Q1(0) > Q2(0), and by continuity we have Q1(r) > Q2(r) on some interval

r > 0. We now prove that Q1(r) > Q2(r) for all r ≥ 0. Multiplying the equation (A.7) written for Q1

with Q2 and subtracting the same with indexes reversed, we get

Q′′1Q2 −Q1Q
′′
2 = −N − 1

r

(
Q′1Q2 −Q1Q

′
2

)
+ (UQ1 − UQ2)Q1Q2,

or, equivalently (multiplying by rN−1),

d

dr

(
rN−1(Q′1Q2 −Q1Q

′
2)
)

= rN−1 (UQ1 − UQ2)Q1Q2. (A.8)

Integrating (A.8), we obtain

rN−1
(
Q′1(r)Q2(r)−Q1(r)Q′2(r)

)
=

∫ r

0
sN−1

(
UQ1(s)− UQ2(s)

)
Q1(s)Q2(s)ds. (A.9)
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Suppose that Q1(r) intersects Q2(r) at r1 > 0 for the first time. Then, the left-hand side of (A.9) at r1

is non-positive due to monotonicity and decay of both Q1 and Q2:

rN−1
1 Q1(r1)

(
Q′1(r1)−Q′2(r1)

)
≤ 0, (A.10)

however, the right-hand side of (A.9) satisfies∫ r1

0
sN−1Q1(s)Q2(s)

(
UQ1(s)− UQ2(s)

)
ds > 0, (A.11)

since both Q1(r), Q2(r) > 0 along with UQ1(r) > UQ2(r) for 0 < r < r1. This leads to a contradiction,

thus, Q1(r) and Q2(r) do not intersect, which implies that Q1(r) > Q2(r) must hold for all r ≥ 0.

Now we show that this fact also leads to a contradiction. Consider the two Schrödinger operators

Hi = −∆ + UQi , i = 1, 2, with UQi(r) =
∫ r

0

(
1−

(
s
r

)N−2
)
sQ2

i (s) ds. Recalling that a ground state

Qi(r) asymptotically behaves as r−
N−1

2
+εe−|x| (this is in the case p = 2), it is easy to observe that UQi

is not only bounded, but increases to a horizontal asymptote y = cN = const. Hence, we can apply

the classical Schrodinger operator theory (for example, [54, Chapter 13]) to show that both equations

HiQ = Q, i = 1, 2, have the unique positive ground state solution, respectively denoted by Qi (with

the eigenvalue 1 as we rescaled the equation in (A.5)). This implies that 〈Hif, f〉 ≥ ‖f‖L2 for any H1

function f with equality holding on a multiple of Qi, that is when f = ciQi, i = 1, 2, respectively. Now,

since H2 = H1 − (UQ1 − UQ2), we obtain

‖Q1‖2L2 ≤ 〈H2Q1, Q1〉 = 〈H1Q1, Q1〉 − 〈(UQ1 − UQ2)Q1, Q1〉 = ‖Q1‖2L2 − δ,

since UQ1 > UQ2 , yielding a contradiction. This implies that (A.4) (and hence (A.1)) can not have two

distinct radial positive H1 solutions. �
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