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momentum conservation law and the Galilean transformation
which are not available for this equation.
© 2021 Published by Elsevier Inc.
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1. Introduction

We consider the focusing nonlinear Schrédinger equation in the exterior of a smooth
compact strictly convex obstacle © C R? with Dirichlet boundary conditions:

i0pu + Aqu = —|ul?u (t,z) € R x Q,
u(to, x) = ug(x) x € Q, (NLSq)
u(t,z) =0 (t,x) € R x 09,

where Q = R3\ ©, Aq is the Dirichlet Laplace operator on Q and tg € R is the initial
time. Here, u is a complex-valued function,

u:RxQ—C

(t,x) — u(t, x).
We take the initial data ug € Hg (), where HE () is the Sobolev space
{u € L*(Q) such that |Vu| € L*(Q) and ujpq = 0}.

The NLSq equation is locally wellposed in H}(2), see [1], [33], [16] and [3]. The
solutions of the NLS¢, equation satisfy the mass and energy conservation laws:
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Malu(t)] := / Jut, 2)dec = Mlu],

Q
Eqlu(t)] := % / \Vu(t,z)|>dz — i/\u(t,x)rl dx = Eluy).
Q Q

Unlike the nonlinear Schrédinger equation NLSgs posed on the whole Euclidean space
R3, the NLSq equation does not have the momentum conservation.
The NLSgs equation is invariant by the scaling transformation, that is,

u(t, z) — du(Az, \%t) for A > 0.

This scaling identifies the critical Sobolev space Hx% . Since the presence of an obstacle
does not change the intrinsic dimensionality of the problem, we regard the NLSq equa-
tion as having the same criticality, and thus as an energy-subcritical, mass-supercritical
equation.

In this paper, we study the global well-posedness and scattering of solutions to the
NLSq equation. We start recalling earlier results on global existence and scattering ([33],
[21]): if u has a finite Strichartz norm (Cf. Theorem 2.7), then u scatters in H}(Q), i.e.,

1 : _ itAq
Juy € Hy(2) such that tjg:loo Hu(t) e 0.

“iHH(}(Q) =

This holds in particular if the initial data is sufficiently small in HJ(£2).
Global existence and scattering for large data was studied for the NLSgs equation,

posed on the whole Euclidean space R2, in several articles in different contexts. The

NLSRgs equation has solutions of the form e***r3 Q, where @ solves the following nonlinear

elliptic equation

~Q+AQ+[QIQ =0, a1
Q € H(R3).

In this paper, we denote by @ the ground state solution, that is, the unique radial,
vanishing at infinity, positive solution of (1.1). Such @ is smooth, exponentially decay-
ing at infinity, and characterized as the unique minimizer for the Gagliardo-Nirenberg
inequality up to scaling, space translation and phase shift, see [23].

In [14], the authors have studied the global existence and scattering' for large initial
data of the radial solutions of the cubic NLSgs equation on R?3, below a threshold given
by the ground state. This result was later extended to the non-radial case in [6] and
to arbitrary space dimensions and focusing intercritical power nonlinearities in [10] and
[13]. This was generalized to the cubic NLSq equation outside a strictly convex obstacle
in [21] (see also [37] for 1 < p < 5).

1 also, blow-up, however, we do not need it in this paper.
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Theorem A. Let ug € Hj(2) satisfy

Hu0||L2(Q) HVUO||L2(Q) < ||Q||L2(]R3) ||VQHL2(R3) J (1.2)
Ma[uo)Eq[uo] < Mp:[Q]ERs|[Q)]. (1.3)

Then u scatters in Hg (), in both time directions.

Note that in the case Q = R3, the criteria (1.2) and (1.3) are expressed in terms of
the scale-invariant quantities ||Vug||; 2 ||uol|; 2 and Mug]E[ug].

The purpose of this paper is to study the behavior of solutions to the NLSq equation
exactly at the mass-energy threshold, i.e., when

Eqluo]Ma[uo] = Ers[Q]Mrs|[Q)], (1.4)
lwoll 20y IVuoll L2y < QN L2Re) IVQI L2 (R - (1.5)

In [8] T. Duyckaerts and S. Roudenko described the behavior of the solutions of the
NLSgs equation at the mass-energy threshold. At this mass-energy level, the NLSgs
equation has a richer dynamics for the long time behavior of the solutions compared
to the result mentioned above. The authors proved the existence of special solutions,
denoted by QT and Q. These special solutions have the same mass-energy of the soli-
ton, Mes[Q*] Es[Q] = Mas[Q) s [Q), however, [VQ™ (1) 2gs) < V@ (go) and
IVQT ()l 12 (rsy > IIVQI 12(gs), for all ¢ in the interval of existence of QF. Only the
solution Q~ is relevant in the study of the global existence and scattering. This solution
@~ scatters for negative time and approach the soliton, up to symmetries, for positive
time direction: there exists ey > 0 such that

||Q_ - eitQHHl(RS) < ce %t fort>0. (1.6)

Furthermore, if we consider initial data ug € H'(R?) such that (1.4) and (1.5) hold
on R? then the corresponding solution u(t) of the NLSgs equation is global and either
scatters in H(R3) or u = Q~, up to the symmetries.

Note that for the NLSq equation, there do not exist analogs of the solutions e*Q, Q~
at the threshold Mq[u]Eq[u] = Mgs[Q]Egrs[Q]. Indeed there is no function ug € H}(Q)
satisfying (1.4) and [|Vuol| 2y [uoll 2y = [IVQl 12(rs) IQlp2(rs)- By extending uo
with 0 on the obstacle, the solution uy must be equal to @, up to the symmetries, which
would not satisfy Dirichlet boundary conditions. Similarly, in the presence of the obstacle
there is no function in H}(£2) such that (1.6) holds, since such a solution has to converge
to @ for the sequence of times t,, = 27wn, contradicting the fact that ) does not satisfy
Dirichlet boundary conditions.

We now state the main result of this paper.
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Theorem 1. Let ug € H}(Q) and let u(t) be the corresponding solution to (NLSq) such
that ug satisfy

Mg[u] Eglu] = Mgs[Q]ERrs[Q)], (1.7)
luoll 2y IVuollr2) < 1@l L2me) IVQI L2(rs) - (1.8)

Then u scatters in H}(Q) in both time directions.

Remark 1.1. The existence of initial data that satisfy (1.7) and (1.8) can be obtained
using the variational characterization of the ground state Q). Indeed, let A > 0, ¢ €
H}(2)\{0} and let uy(t) be the solution of the NLSq equation with initial data
ux(to) == uo,» = A¢. Then, there exists a unique A; > 0, such that Mq[ug x,|Ealuor,] =
Mgs[Q]ERs Q] and ||u0,>\1||L2(Q) ||VU0,A1||L2(Q) < ||Q||L2(]R3) ||VQ||L2(R3)~ (Cf. Ap-
pendix A for more details).

The proof of Theorem 1 is based on the approach of the Euclidean setting results in
[7] and [8]. The first step is similar to the proof of the compactness of the critical solution
developed by C. Kenig and F. Merle in [18] in the energy-critical setting and adapted to
the energy-subcritical case in [14] and [6]. It uses a concentration-compactness argument
that requires a profile decomposition as in the works of F. Merle and L. Vega [29], P.
Gérard [11], and S. Keraani [19], adapted by R. Killip, M. Visan and X. Zhang for the
problem in the exterior of a convex obstacle in [22] (in the energy-critical case) and in
[21] (in the energy-subcritical case). The second step of the proof is a careful study of
the space translation and phase parameters for a solution of NLSg, that is close to @), up
to the transformations. The presence of the obstacle brings significant difficulties. One
of them (that we tackle with the techniques developed in [25] by the second author)
is that we must linearize around a space translation of the solitary wave €@, which
is not an exact solution of (NLSq). Another difficulty is the fact that the momentum
conservation law and Galilean transformation, which were used in [8] to control the space
translation of the solution, are not available for the equation outside an obstacle. This
control is achieved through a new intricate compactness argument for solutions escaping
at infinity, that relies among other things on the uniqueness theorem in [6].

In [24], the second author has proved that when the obstacle is the Euclidean ball
of R3, solutions such that Mq[u]Equ] < Mgs[Q]ER:[Q] and [uoll 2 () Vuoll 2y >
1@l 123y IVQIlp2(rsy With a finite variance and a certain symmetry blow up in fi-
nite time. In view of the known results on R3, one should expect blow-up in finite
or infinite time for all solutions of this type, however, the blow-up for the NLSq
equation is a delicate issue. One of the difficulties is the appearance of boundary
terms with the wrong sign in the virial identity that is used to prove blow-up on
R3. Blow-up is also expected in the threshold case Mq[u]Eq[u] = Mgs[Q]Er:[Q] and
[woll 2o [Vuoll 2y > QI L2 (s IVQIl p2(rs), Which is an open question. Let us men-
tion however that linear scattering is precluded for these solutions. Indeed, if u is such
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a solution, then by the bound [[u(t)|| 12 (q) [Vu(®)l 120) > [1Qll 2 (s VRl p2(rs) (Which
is valid on the domain of existence of u), we have

lim )HU(t)H%z(g)HVU(t)H%z(m > [|1QI72 @) [VQIZ2®s) = 61 QL2 @s) B2 (Q) (1.9)

t—T1 (u

(where we have used Pohozaev’s identity, see (2.4) below). However, if u is a scattering
solution with Mqlu|Eq[u] = Mp:[Q|Ers[Q], we have Ty (u) = +oo and (using the
conservation of mass and that lim; o [[u(t)[|z2(q) = 0),

T [[u(6) 3 g | V(8) |22 ) = 2Malul Ealu] = 21Q13: ms) Frs Q).

contradicting (1.9).

When Q = R3, K. Nakanishi and W. Schlag [32] described the dynamics of solu-
tions slightly above the mass-energy threshold, that is such that Egr:[Q|rzM[Q] <
ERrs[ug)Mgs[ug] < Egr:[Q|rs M[Q] + € for a small £ > 0, showing that all 9 expected
behaviors (any combination of blow-up in finite time, linear scattering or scattering to
the ground state solution) do indeed occur. Some sufficient conditions for scattering and
blow-up in this regime are given by the first and third authors in [9]. The analog of
the result in [32] outside of an obstacle is currently out of reach, due to insufficient
understanding of blow-up in finite time. Let us mention however that in this case, the
soliton-like behavior is possible. Indeed, the second author in [25] constructed a solution
behaving as a traveling wave in R3 for large ¢, moving away from the obstacle with an
arbitrary small speed v and such that Elug]M[ug] = E[QIM|Q] + c|v|? for a constant
¢ > 0. See also [26] for numerical investigations in this regime.

The study of the obstacle problem for dispersive equations, motivated by the un-
derstanding of the influence of the underlying space geometry on the dynamics of the
equation, started long ago. Let us mention some of the works on a wave-type equation
in the exterior of an obstacle with Dirichlet or Neuman boundary conditions. In 1959,
H. W. Calvin studied the rate of decay of solutions to the linear wave equation outside of
a sphere, see [36]. Later, Morawetz extended this result to star-shaped obstacles, see [30]
and, with Ralston and Strauss, to non-trapping obstacles, see [31]. The Cauchy theory
for the NLSq, equation with initial data in H}(2), was initiated in 2004 by N. Burq, P.
Gérard and N. Tzvetkov in [4]. Assuming that the obstacle is non-trapping, the authors
proved a local existence result for the 3d sub-cubic (i.e., p < 3) NLSq equation. This was
later extended by R. Anton in [1] for the cubic nonlinearity, by F. Planchon and L. Vega
in [33] for the energy-subcritical NLSq equation in dimension d = 3 (i.e., 1 < p < 5) and
by F. Planchon and O. Ivanovici in [17] for the energy-critical case in dimension d = 3
(i.e., p=5), see also [3] and [15], [16], [27] for convex obstacle. The local well-posedness
in the critical Sobolev space was first obtained in [17], for 3+ 2 < p < 5. In [25], the
second author extended this result for % < p < 5, using the fractional chain rule in the
exterior of a compact convex obstacle from [20].
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The paper is organized as follows: In Section 2, we recall known properties of the
ground state and coercivity property associated to the linearized operator under certain
orthogonality conditions. There, we also recall Strichartz estimates, stability theory and
the profile decomposition for the NLSq, equation outside of a strictly convex obstacle. In
Section 3, we discuss modulation, in particular, in §3.2 we use the modulation in phase
rotation and in space translation parameters near the truncated ground state solution, in
order to obtain orthogonality conditions. Section 4 is dedicated to the proof of the main
theorem. In §4.1 we use the profile decomposition to prove a compactness property, which
yields the existence of a continuous translation parameter z(t) such that the extension of
a non-scattering solution u(t, z+x(t)), that satisfy (1.7) and (1.8), is compact in H!(R?).
In §4.2, we control the space translation x(t) by approximating it by auxiliary translation
parameter given by modulation on R3, in [8]. Moreover, we use a local virial identity
with estimates from previous sections on the modulation parameter to prove that x(¢) is
bounded. In §4.3, we prove that the parameter 6(¢) := |[|VQ|| ;2 — || Vul| ;2| converges to
0 in mean. Finally, we conclude the proof of Theorem 1 using the compactness properties
with the control of the space translation parameter z(t) and the convergence in mean.
In Appendix A, we prove the existence of an initial data in H{(f2) that satisfies the
mass-energy threshold.

Acknowledgments. T.D. was partially supported by Institut Universitaire de France and
Labex MME-DII. Part of the research on this project was done while O.L. was visiting
the Department of Mathematics and Statistics at Florida International University, Mi-
ami, USA, during his PhD training. He thanks the department and the university for
hospitality and support. S.R. was partially supported by the NSF grant DMS-1927258.
Part of O.L/s research visit to FIU was funded by the same grant DMS-1927258 (PI:
Roudenko).

Notation. Define ¥ as a C°° function such that

0 near O,
U= (1.10)
1 if |zl > 1.

We write a = O(b), when a and b are two quantities, and there exists a positive constant
C independent of parameters, such that |a| < Cb, and a =~ b, when a = O(b) and
b = O(a). For h € C, we denote h; = Reh and hy = Im h. Throughout this paper, C
denotes a large positive constant and ¢ is a small positive constant, that may change
from line to line; both do not depend on parameters. We denote by || the Euclidean
norm on R3. For simplicity, we write A = Aq. The real L2-scalar product (-,-) means

(f,g)=Re/f§=/RegRef+/ImgImf.
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2. Preliminaries
2.1. Properties of the ground state

We recall here some well-known properties of the ground state. We refer the reader
to [35], [23], [34, Appendix B] for a general setting and [14] for the 3d cubic NLSgs case,
for more details. Consider the following nonlinear elliptic equation on R3

—-Q+AQ+1|QP*Q =0. (2.1)

We are interested in a positive, decaying at infinity, solution @ € H'(R?). The ground
state solution is the unique positive, radial, vanishing at infinity, smooth solution of
(2.1). Tt is also (up to standard transformations) the unique minimizer of the Gagliardo-
Nirenberg inequality: if u € H'(R?), then

4 3 4 3
lullzarsy < Con [[Vullpemsy lullpzrsy s 1Qpawrs) = Can V@I 12ms 1@l 2 (rs) -
(2.2)
Moreover,

4 3
[ullpsmsy = Con [IVullp2gs l[ull L2 g
= I\ € C, 3o € R, 39 € R? s u(z) = MoQ(po(z + 20)). (2.3)
We also have the Pohozhaev identities
4 2 2 2
||Q||L4(]R3) =4 ||QHL2(R3) and ||VQ||L2(R3) =3 ||QHL2(]R3)' (24)

As a consequence of (2.2), (2.3) and the concentration-compactness principle [28] one
has

Proposition 2.1. There exists a function €(n), defined for small n > 0, such that
lim e(n) =0 and
n—0

vue H'®Y), | ull oo — 19l gscgo) | + [l sy = 190 sy +
1902y = IVQ L2y

Jdag € R?: ||u - eieoQ(' - :EO)"Hl(R?,) <e(n). (25)

<n= 30y € R and

Next, we recall some known properties on the decay of @, see [12], [2] and [5, Chapter
8].
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Proposition 2.2 (Ezponential decay of Q). Let Q be the ground state solution of (2.1),
then there exist a,C > 0 such that for |x| > 1,

~z|
_ 8 el o
o - | < e
Moreover,
~lz|
VQ() + V2Q(=)| < cew

Lemma 2.3. Let Q be the ground state solution of (2.1), M > 0 large, X € R3 and let g
be an L'-function. Then for k > 0, we have

o—kIX|
1X| > 2M = / (@ = X) +1vQ - X)) gl() dz = O <—> . (2.6)

|| <M

where O(-) depends on k, g and M.
Furthermore, there exists cpr > 0 such that

(2.7)

Proof. First, note that
1
§\X| <|X|-M<|z—X|, and |X| > 2M.

This implies that, for | X| > 2M we have

X M X 1 1
—|x ‘ < 1X| d I —
e e e an 2‘:1: ),‘ |Y|

Using the exponential decay of @ from Proposition 2.2, we obtain,

e_klxl

X"

Q’“(xX)g(x)dx—O< ) for k> 0.

|z|<M

Similarly, we get

VQ(x_X)|kg(x)dx:O< X >, for k> 0.

|| <M

The proof of (2.7) is similar by applying again Proposition 2.2 and we omit it. O
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Let u € H}(Q) and define u € H'(R3) such that

Vo € Q,
uw) = " (238)

0 Vo e Q°.
Remark 2.4. We denote by Mpgs[u] = ||QH22(R3) and Fgsu] = %||Vy||iZ(R3) -
# HgH’L’ﬁl(Rg). Note that, we have Mqlu] = Mgs[u] and Eqlu] = Egrs[u]. To sim-

plify notations in what follows we drop the index €2 in the mass and the energy of the
NLSq equation, so that we just write M[u] and F[u] instead of Mq[u] and Eq[u].

Assume that u satisfies the left-hand side of (2.5). Then there exists zo € R3 and
0o € R such that

”H - eieoQ(’ - CCO)HHl(]RS) <e(n),
which yields, by Proposition 2.2 and (2.7),

1 e~ ol

C |z

<R = 2o)ll g1 (aey < () (2.9)
This implies that |z is large when 7 is small.
2.2. Coercivity property

We next recall some known properties of the linearized operator on R3. Consider a
solution u of NLSgs close to Q) and write u(t) as

u(t, ) = e (Q(z) + h(t,x)).
Note that # is the solution of the equation
Oh+ Lh =R(h), Lh=—L_hy+iL;hy,
where

£+h1 =—-Ah +h1 — 3Q2h1,
L_hy = —Ahy + hy — Q*ha,
R(h) = iQ(2|h* + h?) + i|h[*h.

Define ®(h), a linearized energy on R3, by

1 1 1
®(h) := 5/|h|2 +/§|sz|2 - 5/Q2(3h%+h§). (2.10)
R3 R3

R3
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We next define a subspace of H!(R?), on which ® is positive
G = {h € H'(R?) |/8ijh1 - o,/Qh2 =0,j= 1,2,3}.
R3 R3

Then by [8], there exists ¢ > 0 such that

Let h € HY(R?). Define

1 1 1
dx(h):= 5/|Vh|2 — 5/Q?\Iﬂ(~+X)(3h% +h3) + 5/|h|2, (2.12)
R3 R3 R3

where U is defined in (1.10).

Lemma 2.5. There exist ¢ > 0 such that for all h € H*(R3), if the following orthogonality
relations hold for all X € R3 with |X| large

Re/A(Q(m)\I/(x + X))z + X) do = 0, Im/Q(w)\I!(x b X)h(e + X)de =0,
R3

R3
(2.13)
Re/@zk(Q(x)\I/(:v +X)h(z 4 X)de =0, k=1,2,3, (2.14)
R3
then

Proof. Define
Az{feHl(R3):Re AQf=Im [ Qf =Re Okuf:O,kzl,Q,S},
Jpaszimforxe]

B = Span {ZQ7 AQ? 6121 Q7 8332@7 8ZD3Q})

then we write h(- + X) = h(- + X) + r(- + X) with A(- + X) € A and r(- + X) € B.
By (2.10) and (2.11), we have

Since r(- + X) € B, we can write r as
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3
=) a0, Q + BiQ +7AQ.

k=1

Taking the real L2-scalar product in R? of » with Q) and using the fact that @ is radial,
we get

1 1

B=—a—(r(-+X),iQ) = ————((h(- + X) — h(- + X),iQ
Qg TR T g, A X =R X))
1

Im/h(:z:JrX)Q(:z:) d:cIm]R/3 h(z + X)Q(x) dx

= 2
QN7 (rs) s

By the definition of i, we have Imffz(a; + X)Q(z)dx = 0. Using the orthogonality
conditions in Lemma 2.5 and the exponential decay of @) from Lemma 2.3, we obtain

8= Im/ (z+ X)Q(x)dx

i &
Im/ (z+X)Q(x)¥(z+ X) dx
- I J
Im/ (x 4+ X)Q(z)(¥(x + X) — 1)dx
R3
=O0(e ™ 2]l g1 (may)-

||Q||L2(1R3)

Similarly, by taking the scalar product of r with AQ and 0,, Q) and using the fact
that @ is radial, the orthogonality condition in Lemma 2.5 and the exponential decay of
Q from Lemma 2.3, we obtain v = a; = O(e™ X 12l 1 (r))-

Thus,

171 sy < Ce 1] 1/l 1 sy -
@ (r(- + X)| < X || gy -
We now have
Ox (h(-+ X)) = Ox (h(-+ X)) + x (r(- + X)) + 2Bx (h(- + X), (- + X)),

where the bilinear form By is defined as

Bx(t0) = [ (VA@T0@) + A0 0(o) - 3@ + X)) (o)) do

1

#5 [ (T£0)V0(0) + o)) - @@)¥ e+ X)) (a) ) d
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Note that
| Bx(h(- + X),7(- + X))| < e [0l g1 s -
Then,
Dx(h(- + X)) = @(h(- + X)) + O (™ X hll s gy ) = e 1hll3 g -
This implies that there exists ¢, R > 0 such that for | X| > R
Ox (h(-+ X)) = c|| Pl gay - O

2.3. Cauchy theory and profile decomposition

Next, we review tools needed in Section 4.1 to prove the compactness property, up to
space translation, of a critical solution of the NLSq equation, using a profile decompo-

sition. We use the same notations as in [21]. Without loss of generality, we assume that
0€©=0°and © C B(0,1). We define x to be a smooth cutoff function in R3

x(z) = {1 o=

0 |z| >

)

N[ =

We define spaces S*(I), k = 0, 1, as follows

SOI) = LEL2(I x Q) N LELS (I % Q),
SYI) ={u:IxQ— C|uand (~Ag)>u € S°(I)}.

Remark 2.6. In order to avoid the endpoints in Strichartz estimates for an exterior do-

main, see Theorem 2.7 below, we take a specific pair (3,32), for simplicity. However,
one could use another pair (p,q) withp =2+¢ and g = 62(1'5? instead of (3, %), where
€ > 0 is small enough.

By interpolation,

2 3 3 .. 5
||uHLng(IXQ) < ”uHSU(I)’ for all 5—1— S 5 with 5 <g<

Similar estimates hold for S*(I). We will, in particular, use (¢,7) equal to (5,2) and
(00,2).

One particular Strichartz space we use is

1 571,30
XYI) = LHY Y (I % Q).
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Note that, S*(I) C X!(I) and by Sobolev embedding, there exists C' > 0 such that

||f||L§,z(I><Q) <C ||fHX1(1)~
We next define NY(I) as the corresponding dual of S°(I) and

NYI)={u:1x9Q—C| uand (~Ag)?u € N°(I)}. (2.16)
Then, we have
2 3 3 .. 5

[ull yory < ||U||L3’L;’(IXQ) for all 4 LT3 with 5 S¢S 00 (2.17)

1 1 1 1

where —+—-=1 and -4+ —-=1

a ¢ v
In particular, we will use (¢’,r’') = (%, g—g), the Holder dual to the Strichartz pair
(¢.r) = (5,22). One can get a similar estimate to (2.17) for N'(I) using the same pair,

see Theorem 2.7.
Next, we state the Strichartz estimates using the above pairs and other necessary
results from [21].

Theorem 2.7 (Strichartz estimates, [16]). Let I be a time interval and to € I. Let ug €
H{(SY), then there exists a constant C > 0 such that the solution u(t,x) to the nonlinear
Schrodinger equation on R x Q with Dirichlet boundary condition

1w+ Aqu=Ff onR xQ
u(0,2) = ug(x)

ujpo =0
satisfies
oy < € (ol zqay + 1 llnogsy)
and
el < € (ol ey + 1l ) - (2.18)

In particular,

||U||X1(I><Q) <C <|“0||H01(Q) + ”f”LgHé’gg(IXQ)) '

Proposition 2.8 (Local smoothing, [22, Corollary 2.14] ). Given wy € H (), we have

. . 1 5
||V6nAQwOHLgL%(|t7'r\§T,|gcfz|§R) < RoT* HezmnwOHz?,x(RxQ) ||W0H1615(Q) )
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uniformly in wo and the parameters R,T >0, z € R and 7 € R.

Lemma 2.9 (Stability, [21]). Let I C R be a time interval and let @ be an approxzimate
solution to (NLSq) on I x § in the sense that

00+ Aqii = — |a> @+ e for some function e.
Assume that
Ha”Long(le) <& and ||a||L§=I(I><Q) <L

for some positive constants & and L. Let to € I and ug € HE(Q) and assume the
smallness conditions

[a(to) — woll gz ) <€ and |lellyrpy <€

for some 0 < € < e1 =¢e1(E,L). Then there exists a unique solution u : I x Q@ — C to
(NLSq ) with initial data u(ty) = ug satisfying

lu— 7:L||X1(1xﬂ) < C(&, L.

Theorem 2.10 (Linear profile decomposition in HE(Q), [21, Theorem 3.2]). Let {f,}
be a bounded sequence in HZ(Y). After passing to a subsequence, there exist J* €
{0,1,2,....,00}, {4} /2, € HY(Q)\ {0}, {tJ}/=, C R such that, for each j either t}, = 0
or ti — doo and {zJ 3]:1 C Q conforming to one of the following two cases for each j:
Case 1: zJ, = 0 and there exists ¢ € HL(Q) so that ¢}, == eithdagi,

Case 2: |x)| — oo and there ewists ¢/ € H*(R?) so that

o = A0 [ )(x —ad)] with xh(2) = x <||> |
Tn
Moreover, for any finite 0 < J < J* we have the decomposition
J .
fo =) bl +w)]
j=1
with the remainder w; € HE () satisfying
T itAq, J _
JILmJ* llgsotép He “wn’ L3, (RxQ) = 0, (2.19)
J
> i — Il — S8 = )
CESH R EYTAR S ARV B (220)

J=1
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vzt i {El] - Y Bl - Bl | <o (221)

lim |z) —ak| + |t —th| =00 for each j # k. (2.22)

n—roo

Theorem 2.11 (/21, Theorem 4.1]). Let {t,} C R be such that t, =0 ort, — too. Let
{2} C Q be such that |x,| tends to oo, as n goes to co. Assume ¢ € H'(R?) satisfies

IVOll L2 msy 191 L2 (may < IVQIlL2(Ro) 1@l L2 3y - (2.23)
Mps [¢]ER3 [¢] < Mps [Q]ERs [Q] (2.24)

Define

, . x
bp = e B2 [(x0)(x — x,)]  with xn(z) ==X (m> .
n
Then, for n sufficiently large, there exists a global solution v, to (NLSq) with initial data
v (0) := ¢y, which satisfies

HUHHL?E(RxQ) < C(||¢||H1(R3))-

Furthermore, for any e > 0 there exists N. € N and 1. € C.(R x R3) such that, for all
n > Ng,

lv, (t = tn, z + xp) — Ye(t, z)|] E. (2.25)

s ®RxR3) <

Remark 2.12. Note that, we have made a slight modification in the notation of the above
Theorem 2.11, in order to keep the consistent notation in this paper. We denote v,, the
extension of the solution v,, by 0 on Q¢ such that v,, € H!(R?). Let us mention that ¢,
is well defined in H{(€2). Indeed, by the definition of x,, and as |z,| — oo, we have

€Y = xulx)=0 asn— +oo.

Moreover, one can check that the energy-mass assumption (2.24) is equivalent to the
one given in [21, Theorem 4.1] using the following identity:

{U/O € Hl(Rg) : Egslug) MRrs[uo) < Ers[Q]Mgs [Q}}
= U {’u,o S Hl(Rg) : E]Rs [Uo] + /\MRS [Uo] < 2\/ /\E]RB [Q]MRB [Q] }7
0< A<

which follows by computing the minimum, of A +— Egrs[ug] + AMgs[ug] —

2/ \Era [Q] Mgs [Q)].
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3. Modulation

Let u € H}(Q) and define
stw) = | [ 1var - [ 1va?].
8 Q
In this section and the next one, we will consider a solution w such that M[u]E[u] =

JE|
Mgrs[Q]ERr:[Q]. We first rescale the solution and the obstacle, letting a(t,z) =

(A2t Az) and Q = A71Q with A = J\%RQT[[%] = Eé%[[?]. Then 4 is solution of (NLSg) and

satisfies Mg[u] = Mgs[Q], Eglu] = Ers[Q).

Replacing u by 4 and 2 by €2, we conclude that can assume without loss of generality
M[u] = Mg3[Q] and FElu] = Ers[Q]- (3.1)

Lemma 3.1. Let u € H}(Q) satisfying (3.1) and §(u) small enough. Then there exists
Xo € R? large and 6y € R such that

e Wou(x) = Q(x — Xo)U(z) + h(z) (3.2)
with ||| g1 ) < €(6(u)), where E(6(u)) — 0 as 6(u) — 0.

Proof. Let u € H'(R3) be defined as above in (2.8) and observe that d(u) = §(u). By
Proposition 2.1, since

Mu] = Mgs[u] = Mgs[Q], E[u] = Egrs[u] = Ers[Q)], (33)
and 6(u) being small enough, there exist fy € R and X, € R? such that
e u(r) = Q(z — Xo) + h(x)

with |\i~z||H1(Rs) < &(6(w)), where £(6(u)) — 0 as d(u) — 0.
Moreover, if x € Q°, then u(x) = 0, which implies that

reQ = Qz—Xy)+h(z)=0, (3.4)

and for d(u) small enough, by (2.9), | Xo| is large such that
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We write,

e u(e) = Qz — Xo)¥(z) + (1 - ¥(2))Q(x — Xo)) + h(x)
= Q(x — Xo)¥(z) + h(z).

Using the fact that (1 — ¥) has a compact support, @ having an exponential decay, |Xo|

being large, and Lemma 2.3, we get

e—1Xol

1]l e (msy < E(6(w)) + CW < &(0(w).

By (3.4) and the definition of ¥ in (1.10), we have
h(z) =0, if € Q"

Thus, h(z) = 0 on 9Q and h(z) € H}(Q), which concludes the proof. O

Lemma 3.2. There exists o > 0 and a positive function £(9) defined for 0 < § < &g, which
tends to 0 when § — 0, such that for any u € H () satisfying (3.1) and §(u) < 8o, there

exists a couple (p, X) € R x R such that the following holds
Hu(x) - Qx — X)\I/(x)ei“HHé(Q) < e(9),

Re/u(m) 02, (Q(z — X)U(x))e #dr =0, k=1,2,3,
Q

Im/u(m) Q(z — X)¥(x)e M dr = 0.

Q

(3.5)

(3.6)

(3.7)

The parameters u and X are unique in R/7Z x R and the mapping u — (u, X) is C*.

Proof. Let

®: H(Q) xR xR — R*

(u, X, p)— (Pp(u, X, 1) <pca s

where

u(z) O, (Q(z — X)¥(x))e *dx, k=1,2,3,

Q
Dy(u, X, 1) := Im/u(m) Q(z — X)¥(x) e "da.
Q
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Let Xy € R3. Note that ®(Q(- — Xo)¥, Xo,0) = 0. Indeed, integrating by parts, we get

D (Q(- — X0)¥, Xp,0) = Re/Q(m — X0)¥(2)0z, (Q(z — Xo)¥(x)) dz
Q
_ %Re/@wk((Q(az — Xo)¥(2))?) dz = 0,
Q
@4(@( - Xo)\I/,X(),O) = Im/Q(aj — Xo)Q\IJ(I)Q d.jL‘ = 0
Q

e Step 1: Computation of d(x ) Py.
We have

%%(ua X,p) = —Re / e " u(x) 0, (0x,Q(z — X)¥(2)) da.
Q

Integrating by parts, we obtain

aan‘b’“(Q(' — Xo)¥, Xo,0) = Re/&ch(x — X0)¥(2)ds, (Qz — Xo)¥(z)) da.
Q

If kK = j, we have

0

Tqu)k(Q(' — Xo)¥, Xo,0) = Re

(00, Q2 — X0))*(¥(2)* — 1) dov

+
j=s]

+
4
D O o

e | Qx— X0)0:,Q(x — Xo)¥(x)0,, V() dx.

Since 0., ¥ and (U2 — 1) have a compact support and @ has an exponential decay,

we deduce
0 2 —2|X,
T&ék(Q( - XO)\I/;XOaO) = ||aTjQHL2(R3) + 0(6 21X ‘)
1 _
= 5 IVQIlLa@s) +O(e*).
If k # j, then
0

5, PHQ — X)W, Xo,0) = Re/&ch(x X)) U(2)Bs, (Qz — Xo)U(x)) da
Q
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= Re/@ij(x — X0)0:,Q(z — Xo)dx
Q

+ Re/@sz(x — X0)05,Q(x — Xo)(¥(z)? — 1)dz
Q

+ Re/@ij(m — X0)¥(2)Q(x — X0)0x, ¥ (x)dx.
Q

Using the same argument as before and the fact that @ is radial ([ 0r,Q0,,Q =0,

if k # j), we obtain

0

a—X]}I)k(QQ - X0)¥, Xo,0) = 0(672|X0\).

Next, we compute %@k(u, X, p):

0 .
@@C(u,X, NES ReQ/ —ie” M u(x)0y, (Qz — X)TU(x))dx,

;L@k(Q( - X0)¥, Xo,0) = ImQ/Q(x — X0)¥(2)0y, (Q(z — Xo)¥(x))dx = 0.

Step 2: Computation of d(x ,,)®Pa.

We have
9 i
3 o) = I [ u@)(0.,Q( — X)0(@) do.
Q
and thus,
6?(4 D4(Q(- — X0)¥, Xp,0) = — Im/Q(m — X0)¥(2)0,,(Q(z — Xo)¥(x)) dr = 0.
! Q
Also,
%qu(u, X, p) = ImQ/ —ie”Mu(z)Q(x — X))V (z) de,
9 L _ _ox2 2 _ _ 2 —2|Xo|
Bu(m(Q( Xo)¥, Xo,0) = Qz — X0)"¥(2)” = — Q72 (gsy + Ofe )-
Q

e Step 3: Conclusion.
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Combining Step 1 and Step 2, we get

d(X,M)q)(Q( - XO)\II7 XOa 0)

VeI gs) 02 0 0
_ 0 3 1VQIT2 sy 02 0
0 0 3 IVl sy 02
0 0 0 — QI (rs)
+ O(e™2%Xoly,

We can deduce that d(x ,)® is invertible at (Q(- — Xo)¥(-), Xo,0), if [Xo| is large.
Then, by the implicit function theorem there exists €p,79 > 0 such that for u €
H (), we have

Ju() = QC = X)W () ry ) < €0 = (X, 1) s [l + X — Xol <o and

P(u, X,p)=0. O

Let u(t) be a solution of (NLSgq) satisfying (3.1). In the sequel we write

Let Ds, ={t € 1: 0(t) < do}, where I is the maximal time interval of existence of w.
By Lemma 3.2, we can define C! functions X (t) and pu(t) for t € Ds,. We now work
with the parameter 0(t) = u(t) — t. Write
e POy (t,x) = (14 p(t))Q(z — X(8)¥(2) + hlt, ), (3.8)

where h(z) € H}(Q) and define

e—i@(t)—itfv(@(l, _ X(t))\I/(x)) - Vu(t, z)dx

plE) = Re [V(Q — X (1) ¥ ()|’ da -
This implies that
e 0O=ty (b oz + X (1) = (14 p(£))Q(2)U(x + X (t)) + h(t,z + X (t)), (3.9)

where h(z) € H'(R3) is defined by



22 T. Duyckaerts et al. / Journal of Functional Analysis 282 (2022) 109326

One can see that p(t) is chosen such that h satisfies the orthogonality condition
Re/A(Q(x = X(0)U(@)h(t, z) da
Q

- Re/A(Q(x)\Il(x + X(0)h(t, x + X () dz = 0. (3.10)

By Lemma 3.2, h also satisfies the orthogonality conditions
Im/h(t, 2)Q( — X ())¥(z) dz = Tm /@(t, 24 X(0)Q)U(x+ X(8) de =0, (3.11)
4
and
Re/h(t, )00, (Q — X (£)U(x) da
4

= Re/ﬁ(t, x4+ X(t)0:, (Q(z)¥(x+ X(t)))de =0, k=1,2,3. (3.12)

In the following lemma, to simplify notation, we denote f(- + X) by fx(:) for any

function f. If f is a complex function, then we denote by f1, (-) the real part of fx and
by fay (-) the imaginary part.

Proposition 3.3. Let u(t) be a solution of (NLSq) satisfying (3.1). Then the following

estimates hold for t € Ds,
(o) O<e—2|xu>|> ‘ OVl d O<e—2X(t>|) 6t O<e—2X(t>|>
p(t)| + — |~ / xhy  dz| + —— | =o(t) + ——
X ()] X (8)[? X ()
e~ 1X @]

~ W) gy ) + O <W> . (3.13)

Proof. Let 6(t) = |p(t)| + ||h/| ;1 +d(t), which is small, if §(¢) is small. By the expansion
of u in (3.9) we have e~ =y (t 2 4+ X () = (1 + p(t))Q(2)¥ x (z) + hy (¢, z), thus, if
x4+ X(t) € Q, then u(t,z + X(¢)) = u(t,z + X(¢)), otherwise u(t,z + X (t)) = 0.

e Step 1: Approximation of |p| using the mass conservation.
Since M[u] = Mgs[u] = Mg:[QV x + pQV x + hy] = Mgs[Q], we have,

/ <Q2(‘If§c —1)+20Q°VX +2pQUxh  + p*Q*V% +2QVxh,  + |@X|2>dx =0.
(3.14)
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Using (3.14) and Lemma 2.3, we obtain

2l ‘ [ @w

= ‘2 Jauan + [ Qi -1 520 [ Quan,
0 [ @k + [ Ihxl

:2’/Q\1/X@1X +0 (52+ix(2|> ,
[ X (®)]

which yields

/ QUxh,  dx

TP

1 L e2X

o Step 2: Approximation of |p| in terms of 4.
By the definition of §(t), we have

5(t) = \ [v@ux+pux +n)far - [1vaPa

=| [19@u) 209 Qu 4 2 IVIQUA 4 27(@0x) - i,

L OV(QUx) - Vhy, + [Vhyl — / vQP

Using integration by parts and the orthogonality condition (3.10), we get

5(t) = ] /IVQI2 (V% —1)+2VQ - VUxQUx + Q*|VU x|

L@t ) / V(QUx) + / Vhyl?

Using the fact that (U2 —1) and V¥ have compact supports and applying Lemma 2.3,
we get

e—21X(0)]
rE ). (3.16)

) -
— 10 (52 + .
2 (V@I e X(0)]

e Step 3: Energy and Mass conservation.
We define: g = pQVUx + hy. Since Frslu] = Er3[Q¥ x + g] = Fr3[Q)], we have

5 [1v@ux =3 [1ver - [t
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+g @'+ [v@ux) Ve - [Quka (317)
+y [ 1998 =5 [ @uiat+ 6 - [ QuxloPor— flal* 0. (318)
First, we estimate (3.17). For that we denote
—5 [ v@uar -3 [ver - [etvi+ g et
Asle) = [ VQUx)- Vo~ [ Q¥

In this step, we estimate Ay and Ay (g). Using the fact that V¥, (¥2—1) and (¥*—1)
have compact supports and Lemma 2.3, we have

o—21X ()]
= %/|g|2 - 2/VQ~V‘I’X g1 — /QA‘I’X g1 — /Q3‘I’X(\IJ%( - g

e—2X ()]
Ol———|. (320
<|X(t) )

/V(Q‘IJX) Vg1 = /A QUx)g = /AQ‘I’Xm —Q/VQ VVUxg

Next, we show that

Integrating by parts, we obtain

- /QA‘I’XQL
/Q3‘I’Xg1 /Q3‘I’X 91— /Qg‘l’x(‘l@c —Da
Using the equation (2.1 for Q, we deduce
Ar(g) = —/Q‘I’Xgl - Q/VQ -V¥xg — /QA‘I’X 91— /QS‘I’X(\P%( - g

Since M[u] = M[u] = M[Q¥x + g] = M[Q)], we have

[k -v+2 [Quag+ [192 =0,
- [Quco =3 [1P+ ( Q(X;'Z').
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This implies (3.20).
« Step 4: Approximation of [|A 1 (q)-
Recall that g = pQ¥ x + hy. In this step we prove

- =X (®)]
h -0 P} JEEpa——
Iy = (161 + 5% +

Summing up all terms (3.18), (3.19) and (3.20), we obtain
1
5 [1QUx+ b —2 [ VQ- VUx(0QUx + b) ~ [(QAV(pQUx+ 1)
1
- /QS‘I}X(\P%( - 1)(pQ¥x +hy )+ B / IV(pQUx + hy)|

1
) / QUXB(pQUx + b, ) + 13,

2 . \ o—21X(0)]
_/Q‘IJX|pQ‘I/X+hX‘ (pQ\I’X—Fﬁlx)_Z/MQ\IIX_‘_EX' -0 W .

Denote
Br(h) = —Q/VQ.V\I/X(pQ\I/X +hy)— /QA\I/X(,OQ\I!X +hyy)
- [ QU - Qux + by,
By (h) = %/\PQ‘PX +hx |+ %/lprfoX +hx)l*
Bho(h) = —5 [ QU GBQUx + by, )+ 1)
- [ QuloQux + s pQux +11) — 1 [I0Qux +

Next, we estimate each term. Using the fact that V¥, AW and (¥?—1) have compact
supports and Lemma 2.3, we obtain

Br(h) = - /(QVQ VV¥x + QAYX)(pQ¥Yx +hy )

- / QMU (W% — 1)(pQUx +hy )

of] |672\X(t)| 1 X(®)] A o] |ef4|X<t>\ A 31X ()]
= p + Ml | +O ol t bl — | -
X X@oF X (t)* o x @)

Using the orthogonality condition (3.10), we get
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2
Bu) =1 [@20% + / Quxhy, + [IxP+ 5 [I9@QUx)
:p/wxﬁlx +§/|@\2+§/|vm2+0<\p|2>7
1
Bhot) =5 [ @G, + 13~ [l =5 [ QUxlinPhy,
2
- [QuxlixPh, - 5 [ QUG +13,) - p [ Q*UkIaxP
o [ Q@R - [PV, -3 [ QU
33 p* 44 3 iga 3P 4.q,4
—3P/Q ‘I’xhu—Z/Q Uy —p /Q \IIX_T/Q Uy.
By the equation (1.1) and using again the orthogonality condition (3.10), we have
“30 [ Q@b =30 [ QUxhi, ~ 3 [(@- Q) Wy (wx — 1,
- 6p/VQ.WX by, — 3p/A\I/XQQ1X
39 [ Qus i, +0 (1 Il
=-3p X + p 1)
T (X&)
Using the facts that
p [ QUxlhhi, = Olol Il

/ QUGN + 15, - p [ @Vl - 20 [ @WiH
= O(Ipl2 1A + Il IA%),

L / Q Wi, — 307 / Q¥ Wk, = O kIl + 1012 1Bl o),

3 2
/ Qi - [ QUuy - - [ Qtuk = 0(st + 147,

we obtain

1 1
B = [ @G, +13,) ~ [QUxliahi, -1 [ 1130 [ QU



T. Duyckaerts et al. / Journal of Functional Analysis 282 (2022) 109326 27

e~ I X
o 12 + ol S 11 +|p|)
( i oy 1

Thus,
Bu(b) + Byu(b) + Bru(t) = 5 [ 1P =5 [ @20kt + 88,0+ [ 1vAP
— 5 [t [ Quxlnglhy, ~ 2 / QUxhy,
c—2AXW o-IX()
:O(p B2 + 1ol + + h 1) 3.21
el + bl + o+ Ty Il ) 21
Recall that, from (2.12) we have
1
= [ v -5 [@uer i+ [k
By (3.21), one can see that,
1
slhx) =5 [0+ [ QUalinPh, +20 [ Quach,
c—AX@O] o~ IX )
+0 | Iol 15 + 1o + + IAll g1 ) -
( " X)) x@F T
Thus,
O (hy)| < O [IR]%: +2 Uyh 2, L PO,
()| < € el + 20| [ Qx| + " + o + T Il

By the coercivity property (2.15), we obtain

el —1X (@)
‘/Q\I]Xhlx

N\Cv

)

1l e = (|p

By (3.15), we deduce

N\W

IX@l
17l gy ) = 2l g (msy = (|P| |X(t)| ) ) (3.22)

and thus, by (3.16), we get

o (| | eX(t))
= + —_— y
P x )

which implies (3.13) and concludes the proof of Proposition 3.3. O
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Lemma 3.4. Under the assumptions of Proposition 3.5, for allt € Ds,, we have

eI X®)
I ()] + | X' (t)|+10'(t)] = O (6+ ) . (3.23)

Proof. Let 6*(¢) := d(t)+ o' ()| +|X'(¢)|+10'(¢)|. Using the NLSq, equation, Lemma 2.3,
Proposition 3.3 and the Sobolev embedding H} () C L5(£2), we obtain

iOh+ Ah+ipQ_xT —iX - VQ_xVU — 0 Q_x¥

=0 6+—67‘X(m+6*(6+—67‘X(m) in L2 (3.24)
N ( X )] X )] )m S

By the orthogonality conditions (3.10), (3.11), (3.12) and Proposition 3.3, we have

) L em1xl
Im/athQ_X\I/dx = Im/hX . VQ_X\I/d.T =0 (5 ((5+ W)) 5 (325)

3
Re/ Ouh 0r, (Q-xV)dr = 3 Re / h X (00, (00, Q) dv
Q j=1
—o(r6+ 0N o123 (326
= ( ( +W))a = 1,4,9, ( )
: =X ()]
Re/athA<Q_X\II)dx - ZRe/th/‘A(aij—X\P) de =0 (6*(6 + i)) .
Q i=1

X (1)
(3.27)

Multiplying (3.24) by Q_x ¥, integrating the real part, using (3.25) and then integrating
by parts, we get

o—0(s e~ 1 X )] 55 e~ 1 X )] 398
1=0 (7 ey + 70+ ). o

Similarly, multiplying (3.24) by 0,,(Q-x¥), j € 1,2,3, integrating the imaginary part,
using (3.26) and Proposition 3.3, we obtain

/ XD X)) ‘

Multiplying (3.24) by A(Q_x7), integrating the imaginary part, and using (3.27)
and Proposition 3.3, we get

n—ols eI X @)l 505 e~ X @) 330
W1=0 5+ e +5°60+ eap). .
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Summing up (3.28), (3.29) and (3.30), we obtain

X Tt EEr

—|X ()] —|X ()]
5 =0 (5 4 ¢ c ) ,

which concludes the proof by choosing dqy sufficiently small. O
4. Scattering

In this section, we prove Theorem 1. We start by proving, in §4.1, that the extension
u of a non-scattering solution u(t) to the NLSq equation, satisfying (1.2) and (1.3), is
compact in H!(R?), up to a spatial translation parameter z(¢). In §4.2, we prove that z(t)
is bounded using an auxiliary translation parameter (obtained by ignoring the obstacle),
a local virial identity and the estimates from Section 3 for the modulation parameters.
In §4.3, we prove that the parameter 6(¢) converges to 0 in mean. Finally, combining the
compactness properties with the control of the space translation parameter z(t) and the
convergence in mean, we obtain a contradiction from the existence of a non-scattering
solution, thus, concluding the proof of Theorem 1.

4.1. Compactness properties
Proposition 4.1. Let u(t) be a solution of (NLSq) such that

Mlu] = Mg:[Q], Elu] = Ers[Q] and HU0||L2(Q) < HVQ||L2(R3)a (4.1)

which does not scatters in positive time. Then there exists a continuous function x(t)
such that

K = {u(z + (), ), t € [0, +00)} (4.2)
has a compact closure in H'(R3).

Proof. We first recall that it is sufficient to show that for every sequence of time 7, > 0,
there exists (extracting if necessary) a sequence (2, ), such that u(z+x,, 7,) has a limit
in HJ (). This fact is proved in the case = R? in the appendix of [6]. We give a proof
in Appendix B for the sake of completeness.

By the profile decomposition in Theorem 2.10, we have

un =z, ) = Y 6l (2) +w)l(2), (4.3)

j=1

where ¢/ are defined in Theorem 2.10, and w; satisfies (2.19). We need to show that
J* =1,wl — 0in H(Q), and #J = 0. By the Pythagorean expansion properties of the
profile decomposition we have
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J
> lim M[¢}] + lim Mfw;] = lim Mlu,] = M[Q), (4.4)
j=1

J

Z lim E[¢]] + lim Efw;] = lim Elu,] = E[Q]. (4.5)

We consider two possibilities.
Scenario I: More than one profile are nonzero, i.e., J* > 2. Thus, there exists an ¢ > 0
such that for all j,

M[¢}]E[¢}] < Mgs[Q]Ers[Q] — ¢, (4.6)
Hdﬂl”[ﬂ(ﬂ) ||V¢‘?7’LHL2(Q) < HQ“LQ(R3 HVQHL?(]R3) —¢&. (47)

Recall that by [21, Theorem 3.2], if vg € H}(Q) satisfies

lvoll 20y VOOl 20y < QI L2ma) V@l L2 (R » (4.8)
M{vo] E[vo] < Mgs[Q|Ers[Q], (4.9)

then the corresponding solution v(t) of (NLSq) scatters in both time directions.

e Suppose j is as in Case 1 (Theorem 2.10), i.e., 27 = 0 for all n:

When tJ, = 0, we define v7 as the solution to (NLSq) with initial data v7(0) = ¢7.

When tJ — 400, we define v/ as the solution to (NLSq), which scatters to e*42 ¢/
as t — oo:

i [0) =200y, =0
In both cases, we have
nl;rr;o ||v3 t7) ¢£L||Hé(ﬂ) =0. (4.10)

Thus, by (4.6) and (4.7), v? satisfies (4.8) and (4.9), and we see that v7 is a global
solution with finite scattering size. Therefore, we can approximate v/ in L3 HL 11 (R x Q)
by C=(R x R3) functions. More precisely, for any € > 0, there exists 1 € C°(R x R3)
such that

, €
HUj - lz}gHLsHlf%(RXQ) < 9

Let v (t,x) = vI(t + tJ, ). Then from above v} is a global and scattering solution and
by changing variables in time, for any & > 0, there exists 9 € C2°(R x R?) such that,
for n sufficiently large, we have

Hvﬁ;(t, x) — 1/12(15 + t{L, T

)||L5H1,%(RXQ) <e. (4.11)
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e Suppose j is as in Case 2 (Theorem 2.10):
We apply Theorem 2.11 to obtain a global solution v/ with vJ (0) = ¢/ . Furthermore,
this solution has finite scattering size and satisfies, for n sufficiently large,

ok (t, ) — it + .z — b)) <e. (4.12)

Lot 31 (RxR?)

In all cases, we can find ¢/ € C2° such that (4.12) holds, and there exists C; > 0,
independent of n, such that

vl x1®Rx0) < Cj . (4.13)

Note that for large j, by the small data theory, we have H’U%”Xl RxQ) S < g7 | 2 ()
Combining this with (4.4), (4.5), we deduce

hgiupz ||v”||X1(R><Q < C uniformly for finite J < J*. (4.14)

We first prove the asymptotic decoupling of the nonlinear profile, using the orthogo-
nality properties (2.22).

Lemma 4.2 (Decoupling of nonlinear profiles). For k # j, we have

ok k
mfene]] g o 1Y (R n)+||ij 1323 oy
j ok
T ||v%v"||L%L%(]R><Q) + ||V’U£L "||L2L17 (Rx€) =0. (419
Proof. We only prove ||UJUnHL 1 (mxe) + ”U%UﬁHL%L%(RxQ) = 0,(1). The other

proofs are analogous. Recall that by (4.12), for any € > 0, there exists N. € N and
Ik € C(R x R3) such that for all n > N, we have

Hﬂi(t, .73) - w?(t + tfw'x - x’]fl)HLE)Hlv%(RXRS)

+ || (8 @) — Lt + t, 2z — 2d)| 30 <e. (4.16)

|L5H1' 11 (RxR3)

Using (2.22), one can see that the supports of (¢, z) and ¥ (- + & —¢J - — 2k 4+ 27)
are disjoint for n sufficiently large (if 7, k as in Case 1, then (-, -) and ¥ (- +t& —#J )
have disjoint time supports), and similarly, for the derivatives. Hence,

HHTW|‘¢J () V(- +ty =ty —ap + 2| 3,0 L8 (Rxmey = O (4.17)
lim || (t,2) WE(+th =1, — 2l + 23| 3 —0. (4.18)

oo L3 1% (RxR?)
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Combining (4.16), (4.17) and (4.13), we have

[von < lwh =i +1, - —2h)|

k
nHL%Hé'%(RXQ) - LsHY 1 (RxR?) ”Q””LSHL%(RXW)

TN e L) [ P

< Ce,

+ ||l ) YL+t — 1, — 2 + xi)”ﬁmﬁmwﬂ =

provided n is large enough, since the last term goes to 0 as n goes to infinity.

. J k
Next, we estimate HU””””L%L%(RxQ) as follows

HU HLQ 19(RXQ) = H ¢§( +t¥l" - x%)‘ L} (RxR3) ”UﬁHLsL%(RxRB»)
+ ||W| 5L H ¢k "'tﬁ" o k>| L? . (RxR3)
[0t 2) YR ¢+t =t = 2+ 2 L5 88 gy
Using (4.16), (4.18) and (4.13) and Sobolev embedding ||HL§,T < C[ll 5 1,39 » we obtain

that, for large n,

Hv;’vaHL%L%(RXQ) < Ce,

provided n is large enough, which concludes the proof of Lemma 4.2. O

We return to the proof of Proposition 4.1. As a consequence of the asymptotic decou-
pling of the nonlinear profile in Lemma 4.2, we have

J
limsup | Y vl x1®xa) < C (4.19)

n—o0 j=1

uniformly for finite J < J*. Indeed, by (4.14) and (4.15) we obtain

2 2
J

J
j — j
2 v = 2w

ji=1 30 J=1
L5L11 (RxQ) L% TS(RX&))

J
= z;‘vngL5L%O(R><Q) C(J);CHU%UZHL%L%(RXQ)
J= J

IN
Q

+ on(1).

Similarly,
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2 2
J

J
Z Vol = Z Vol
j=1

30 j—
L5LiT (Rx9) J=1

15

L3 L1 RxQ)

J
12 .
=< Z HV%H@L%(]}MQ) +C(J) Z HVU%VUQHL%L%(RW) =C.
j=1 j#k

This completes the proof of (4.19). Using similar argument, one can check that for
given n > 0, there exists J' := J’(n) such that

J
VI > J, limsup || Y vdllximxe) < 0 (4.20)
n—00

j=J’

For each n and J, we define an approximate solution u; to (NLSq) by
J
Z vl + efthayd (4.21)
j=1

Before continuing with the rest of the proof of Proposition 4.1, we claim that the following
statements hold true.

Claim 4.3.
nh_{rgo w2 (0) — u”(O)HH(}(Q) =0.
Claim 4.4.
3C > 0, VJ, limsup HUZHXl(]RxQ) <C.
n—oo
Claim 4.5.

lim lim sup Hz’@tu;{ + Agqu! + ‘u,{f ul =0,

TST* pyes "lin(w)
with N defined in (2.16).

Applying Lemma 2.9, we get that u, is a global solution with finite scattering size,
which yields a contradiction by showing that there is only one profile. Hence, Scenario I
cannot occur.

Proof of Claim 4.3. Using (4.10), if j is as in Case 1, or the fact that v} (0) = ¢7 if j is
as in Case 2, together with the decomposition of u,, in (4.3) and u;} in (4.21), we obtain
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J
[|u](0) Ol sy < D 102(0) = Sl pa oy — 0 asn =00 O (4.22)
j=1

Proof of Claim 4.4. Using (4.19), Strichartz estimate (2.18) with (2.19), we obtain

J

hmsup Huonl(RXQ) < hmsup I Zv | x1Rx0) + I:Lrgitig) Hw’{HHé(Q) <C. O
j=1

Proof of Claim 4.5. Let F(z) = —|2|?z, recall ijl vl =ul —ePow! and write

(i0, + Aq)u;, — F(uy) = F(v]) = F(u;)

We have

J
Z Zvj < CZ|’U,]1| [uk|. (4.23)
j=1

J#k

Taking the derivatives, we get

J J
v{ S F(ul) - F(sz»} < O (Vo llok] + O Y ol PIVeE],
j=1 j=1

J#k J#k
which yields

J J
S F@]) - F(vi) C O lwhlls llwhonll g5 ) -
i=1 i=1 L%L;’—S ik

J J
v{ S Feh - P}

=1 =t e

< O L lebohvoill g + S IAPwkl 1, )

j#k J#k

S}

<0 [vallz; (HVU%UEHLgL% + HUZ;Vv,’ﬁHL%Ls,) ,

1
J#k

which goes to 0 as n — oo, in view of Lemma 4.2 and (4.13).
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In addition,

n

(] — e*20uw]) — F@)||, 5 oy < 1Pl —€80w]) — F@) 5,5 (429)

— Fluy)) HL%L% :

(4.25)

+ HV (F(u,Jl — e“A“w,{)

We estimate the differences as
|F(ui e“A“w;{) — F(ui)| <C (|eim“wi|2 |e“AQw;{| + |ui|2 |eim9w;{|) ,
|V {F(u] — elthayty - F(ui)}| < C’( ’eim“wﬁz |Veim“wi| + |Vui| |ui| |eim“w;{|

|V | [Vttt [P 4 ful | Veittau| )

Using Claim 4.4, Holder and Sobolev inequalities, we get

(120) < [Jeou] |
t,x

< HeitAszw;{HL? [

[l il + lle™mel]l g el |

s + N2l | + fle*22wil]l7

PR A P A

, UT{Hxl
< Clle*®owily
which converges to 0 as n — oo and J — oo. Similarly,
, , 2
(129) < [Vl 1 e, + 9l le2ot g
+ IV 2ouw)] o |40l

B
< [Vl opin [l lleowd]l .+ lle w3, |

FIve o 2wl + g Ve @5,
Thus, it remains to show that

lim limsupHuiVe“A“w;{H s 30 =0.
J—=00 n oo L2L17

(4.26)

Recall that u; = ijl vl + 2wt Then

5 <

Jg itAg JH .
||unVe Wnll, 3, %

J
E U%Ve”AQ w?

n
Jj=1

itAq, J itAq J|| -
—I—He w;, Ve 22wy L3 %
5 30
L2L17
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J
<[ Suvermnag| dpesng),, [pesu)
j=1 -

L%LT

93
'S}

Hence, Claim 4.5 holds if

J
lim lim sup Zv%V@”AQw;{ =0.
00 n—oo -
J=1 L3103
From (4.20), we have Vn > 0,3J" = J'(n) such that
J
vJ >J', limsup Z v <.
n—oo . /
j=J X1
Thus, we have
J J
lim sup Z vl | Velthay! < limsup Z v HV@”A”w,{HU; <mn,
n—00 — n—00 — t,z
j=J’ 5 30 j=J’
L2 L17 X1

where 7 is arbitrary and J' = J'(n) as in (4.20). Thus, to prove (4.26) it suffices to show
that

lim limsupHv%Ve”AQw;{H 5 30
J500  mses L3LT7

=0 foralll1<j<J. (4.27)

We approximate v} by C°(RxR?3) functions 4! obeying (4.12) with support in [T, T x
{|z| < R}. From Proposition 2.8 and (2.19), we deduce

|‘v%VeitAQwTJL||L

IN

ot < I~ vt )l (9o

02 e 1V 2205l L5 138 (e pel<ry
< Ce+ CRITY 0wl |8, [} 0

By taking the limit and choosing e small, we obtain (4.26). Hence, Claim 4.5 holds. O

Returning to the proof of the Proposition 4.1, we consider the other possibility.
Scenario II: Only one nonzero profile. By (4.3)

Uy = u(x, 7)) = (b}b + wq{b,
with

Jim{ln | g o)

=0. (4.28)
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If not, there exists € > 0 such that Vn,

El¢p]M[¢y,] < Ers[Q]Mrs[Q)] — e,

and one can show by the previous argument that u scatters in H}(Q).
It remains to show that ¢! is bounded and this will prove the convergence, up to a
subsequence.

e If t2 — 400 (similarly, £ — —o0) and ¢L conforms to Case 1, i.e., gL = eitnBagl,

e unll 5 o, +opxen = €747 n + € 2%wnll g 10 ocyy

<]

. 1
IR ¢1‘

1
L ,([0,4-00) x ) + ||wnHH(1)(Q)

< HeitAQ(bl‘

28 (e oy T 19nll iy oy

which goes to 0 as n goes to oo, showing that wu, scatters for positive (similarly
negative) time, a contradiction.
o If tl — +o0 (similarly, tL — —00) and ¢. conforms to Case 2, i.e.,

1 X
oL = B[ gl (@ — o)), where = x <||)

We first prove that

lim He’i tAq,, (X1 (bl) _ ei tAps (XTI_L

1 p—
n—+oo " ¢ )HL?,z((OF'FOC)XRS) =0, (4.29)

where Q,, := Q — {x,}. Indeed, by a density argument, for any ¢ > 0, there exist
e € C°(R3) such that

€
Hd)l - ’(/JEHHl(Ri") < Z (430)

By the definition of x,,, as |z,| — +00, for any € > 0 there exists N. € N such that

vz Ne (X0 = 6y < 7 (4.31)
Using (4.30) and (4.31), we have
VTLZNE, HX%¢1—1/J5HHl(R3) < %
Combining this with the Strichartz inequality, we obtain for large n
i i €
He thay, (Xiﬁbl - wa) HL?“T((OHroo)X]RZ‘) + He tos (X’}qul - wg) HLi’,m((O,Jroo)XRB) < 5

(4.32)
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From [21, Proposition 2.13], as |x,| — +o0, we have for large n

HeitAQn ws o eitARg 1/)6|

(3
L ((0,00)xR3) = 37 (4.33)

which yields (4.29). We now have

e unll 15 o pspeey = €228 + €Wl s o)

. 1
< |lerrttBe (o) @ - )

1
L8 (0tooyxst) leonll 3 )

<[22 (xn ") (@ — x}z)HLgm([tl +oo)x) T HW}LHH(}(Q)

n?

< [l (ht) - €4 (ko)

L (1}, +o0) xR?)

ns

+ [|ett A (X;‘i’l)HLgr((t;,Jroo)st) + ”wTILHHé(Q) ’

which goes to 0 as n goes to oo, by (4.29) and the monotone convergence theorem,
showing that u,, scatters for positive (respectively, negative) time, a contradiction.
This completes the proof of Proposition 4.1. O

Corollary 4.6. Let u be as in Proposition j.1. Then one can choose the continuous func-
tion x(t) such that X (t) = x(t) for allt € Ds,, and the set K has a compact closure in
H(R3).

Proof. Recall that by the definition of Ds,, the modulation parameters X (t),6(t) and
a(t) are well defined for all ¢ € Ds,. Let x(t) be the translation parameter given by
Proposition 4.1. Let Ry > 0. Then by the decomposition of « in (3.9), Proposition 3.3
and the fact U(xz) =1 for |z| large, there exists C, > 0 such that

. e 1X®) s
webs, [ wePrier-c (00+ )< [ IVl el
|2 < Ro lo—X(8)|<Ro

Taking §p small if necessary, there exists €y > 0 such that
Vt € Dy, / Vult, 2+ 2())2 + [ult, 2 + 2 ()2 > o > 0.
lz+2(t)—X (t)|<Ro

Using the fact that K has a compact closure in H!(R3), we get that |x(t) — X (t)| is
bounded. Thus, one can modify z(¢) such that K remains compact and for all ¢ in Ds,,
x(t)=X(t). O
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4.2. Control of the translation parameters
Proposition 4.7. Consider a solution u of (NLSq) such that
Mlu] = Mgs[Q], Elu] = Egs[Q], [[Vuoll 2 < [IVQIl 2R (4.34)
and
K = {u(t,x + x(t));t > 0} (4.35)
has a compact closure in H'(R3). Then x(t) is bounded.
We start with the following lemma.

Lemma 4.8. Let u be as in the Proposition J.7. Let {t,} be a sequence of time, such that
t, — +00. Then |z(t,)] — +00 as n — +oo, if and only if 6(t,) — 0 as n goes to
+00.

Proof. We first prove that 6(¢,) — 0 implies that |z(t,)] — +o00 as n — +o0. If not,
x(t,) converges (after extraction) to o in R3. By the compactness of the closure of
K, u(ty,- + z(t,)) converges in H*(R?3) to some vg(- — 7o) € H*(R?). By the assump-
tion (4.34) and the fact that §(¢,) — 0, Egrs[vg] = Ers[Q], Mgrs[vo] = Mgs(Q) and
Vol p2rsy = V@12 (rs)- By Proposition 2.1, there exist 6o € R and zg € R3 such
that vy = €% Q(-—z0). On the other hand, if z+z(t,,) € Q, then u(t,, z+z(t,)) converges
in H(2), as H} () is a close subspace of H!(R?). Thus, the restriction of vo(- — 7)
to Q belongs to H{(£2), which contradicts the fact that e Q(- + zo — x0) ¢ Hi ().

Next, we prove that |z(t,)] — +00 as n — 400 implies that §(t,) — 0 as n goes
to +oo.

We argue by contradiction, assuming (after extraction) that

0(tn) — doo >0 and ¢, —)t € RU {£oo}.

n—-+oo

By the continuity of z(t), using |z(t,)] — +00, we must have to, € {£o0}.
Assume, say, too = 400, and let po = liI’JIrl u(tn,r + x(t,)) in H*(R3) (after ex-
n—-+0oQo

traction). We have

E]R3 Spoo] ER3 Q]a MRB [QDDO MR3 [Q]
/|v%o| /IVQI b </|VQ|

Let ¢ be the solution of (NLSgs) with the initial datum ¢ at t = 0. By [8], ¢ is global
and one of the following holds:
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(1) ¢ scatters in both time directions.
(2) 37,0 € R and € € {£1} such that ¢(t) = e?U_(ct + 1), where U_(¢) = Q@ and
—+0o0

U_ scatters for negative time.

In case (1) or in the case (2) with € = —1, one can prove by approximation, following
the proof of Theorem 4.1 in [21], that u scatters for positive time.
In case (2) with e = +1, we obtain for large n, with the same argument

lulls(—oon) < C NU-llg(—00.y» Where C is a fixed constant.

Letting n go to 400, we see that u has a finite Strichartz norm, thus, u scatters also in
both time directions, which contradicts the fact that u satisfies (4.35) and (4.34). O

Lemma 4.9. Let X (t) be as in (3.8). Taking a smaller &y if necessary, there exists C > 0
such that

o 1X )

[ X (®)]

< C6(t) for any t € Dy,. (4.36)

Proof. Note that, by Proposition 4.1, taking a smaller J if necessary, we can assume
| X (t)] > C for an arbitrarily large constant C' > 0. The proof consists of 3 steps.

o Step 1: The estimate of §(¢) with respect to an auxiliary modulation parameter X1 (t)
on R3. Let u(t) € HY(R3) be the extension of u to R? defined as in (2.8), we then
have

Mps [@] = Mps [Q], FERs [Q] = FRs [Q], and / |V@|2 < / |VQ‘2 . (4.37)
R3 R3

Arguing as in Section 3, but on the whole space R3, see [8, Lemma 4.1 and 4.2],
there exist 61 (t) and X;(t), C! functions of ¢, such that

efiel(t)fitg(tvx + X (t)) — (1 + pl(t))Q(x) +}~L(t7x), (4.38)

where

emi0mit [Vt z + X4(t)).VQ(x)dx B

p1(t) = Re
IVQI72 s

1, (4.39)

|p1 ()| =~ /Qﬁdaz ~ HEHHI(RS) ~ 0(t). (4.40)

In this step we prove
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o 1x )]
A Cs(t). (4.41)

By (4.38), € Q° implies (14 p1(£))Q(z — X1(£)) + h(t,z — X1 (t)) = 0, i.e.,

|0+ )R — Xa () + Tt — X (1) L@

By (4.40), we have

/ Q(x — X1(8)[2dz < C6(t)>. (4.42)
QC

By (2.9), one can see that | X;(t)| is large. For z € Q°¢, we have
1
XK@l < o = X1 (@) < 21X ()]

From Lemma 2.2, we have

e~ 1l 1
Qz) = —— <a + O(—))7 for some a > 0.

] |2
Using (4.42), we obtain (4.41).
Step 2: Comparison of X (t) and X;(¢).
We prove that there exists C' > 0 such that
|X(t) — X1(t)| < C Vte Ds,. (4.43)
We fix t € Ds,. We can assume

1X(t) - X1()] = 1, (4.44)

or else we are done.
Let x € ©, by (4.38) and (3.9), we have

u(t,x) = D1 4 p())Q(x — X (1) ¥(z) + ?DHitp(t, 2)
= MO (1 4 oy (1) Q(z — X1 (1) + P OT T R(t, ).

Using (4.40) and Proposition 3.3, we have

} BT 21X
‘Q(x — X (1) U(2)e?® — Q(x — X1(1))e D] <C (52(t) + > .

X (@)

lz—X (t)|<1

Recall that | X7 (t)] and | X (¢)| are large and ¥(x) =1 for large |x|.
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—2|X (¢
/ Q@)Pde < C / Qe — Xy(1))Pdz + C8(t) + C |X|< >(|2)I
|z|<1 le—X(t)|<1
- / e 2lz—X1(?)] o Cdz(t) e 21X ()
o1 |z — X1 (8)[? IX( POR

Using the fact that |z — X1 (¢)] > |X(t) — X1(t)| — |z — X ()| > | X (t) — X1()| — 1,
in the support of the integral in the last line, we obtain

/ Qe |2d e 21X () —X1(t)] 052() e 21X (1)

xr < + t .

ot IX() Xi(t)? |X(>|2
—2|X(t)]

Recall that, by Lemma 4.8 if | X (¢)| is large, then (¢) and =y are small. By
(4.44), we get

1 ) e 21X (1) —X1 (1) )

- de<C — "~ < e 2X®)-X10)]

;| 1 i < 0 g < 0 |

lz|<1

which yields

1
X0 -Xiwl<c-tog |5 [ 1QPds
|z|<1
Thus, | X (t) — X1(t)| is bounded.

¢ Step 3: Conclusion of the proof.
From Step 2 we have | X (¢t) — X1(¢)| < C, and since | X (¢)| is large, we have

%\X(t)l <X = 1X(#) = Xa (@) < [Xa(B)] < [Xa () = X (O] + [X(B)] < 21X (2)].

(4.45)

2| X1 (1)l

By Step 1, we get 6%(t) > C ‘°|X—t)|2, which implies

e—21X(1)]

70> C e

concluding the proof of Lemma 4.9. 0O

Lemma 4.10. Let u be a solution of (NLSq) satisfying the assumptions of the Proposi-
tion 4.7. Then there exists a constant C > 0 such that if 0 <o <7

T

/5(t)§(]

o

te(o,7]

1+ sup IJG(t)I] (6(0) + (7)) (4.46)
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Proof. Let ¢ be a smooth radial function such that

2> if 2| <1,
p(x) = {

0 if || > 2.

Consider the localized variance,

Vr(t) = / R (%) lu(t, z)|? dz, (4.47)

Q

where R is large positive constant, to be specified later. Then,

V(1) —2RIm/uV<p R) Vudz, |Yi(t)| < CR. (4.48)

Furthermore,
—8/\Vu| dz —6 /\u|4da:+AR( —2/|Vu| x-fdo(x),

where 71 is the outward normal vector and
au ou 02y rx 2
=4 —— +14 —(=)-2 »
Z/amjaxk oz, zn zj_:/<ax2 (R) )"91“|
1 2 A2 4
- [ luPa% z _6) ult.  (4.49)

Q Q

As 092 is convex and 0 € 2, one can see that x - 77 < 0, for all x € 02. Thus,

—2/|Vu|2 -7t do(x) :2/|vu|2 |2 - 7| do(x).
o o0

Using the fact [|Q[|7. = ||Vul7. and E[u] = Ers[Q)], we have 8||Vul7. — 6 [Jul|;. =
446(t), which yields

V() = 46(t) + An(u ())+2/\Vu\2|x~ﬁ| do(z). (4.50)
o0

e Step 1: Bound on Ag.
In this step we prove: for ¢ > 0, there exists a constant R. > 0 such that

VE>0, R> Ro(1+ |2(t)]) = |Agr(u(t)| < e8(t). (4.51)
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We distinguish two cases: § small or not. In the first case, we will use the estimate
on the modulation parameters in Section 3. Consider §g > 0, as in the previous
Section, such that the modulation parameters, O(t), X (t), p(t) are well defined for
all t € Ds,. Let 1 to be specified later such that 0 < §; < dp. Assume that ¢t € Ds, .
Let g_x = pQ_x¥ + h, then from Proposition 3.3 with Lemma 4.9 and (3.8), we
have

u(t, ) = e?OrrQ(r — X (1)U (z) + g(t,z — X (t))e? DTt and
190l 3 ) < CO()- (4.52)
We claim that for large R,
V0o € R, Voo € R®,  Ag (e Q(- +20)) =0 (4.53)
Indeed, fix R > 0 large enough so that p(x/R) = |z|? if  is in a neighborhood of

the obstacle ©. Consider the solution U(t,z) = e!¢+%)Q(z + 2¢) of (NLS)gs. We
note that for this solution,

Vt € R, /R2<,0 (%) U(t, 2)|2da = /R%(%) 1Q(2)[2da

R3 RS
(which is independent of ¢), and
8IVU®)IIZ2 — 6[lU(t)]|12s = 0.

By the same explicit computation as the one leading to (4.50), but on the whole
space R3, we obtain

-4 / R (2) [U(t2)” = Ar(U (1),

which proves (4.53). Note that we have used that by our assumption on R, all the
integrands in the definition (4.49) of Ag are zero in a neighborhood of the obstacle ©.
Using the change of variable y = x — X (¢) in (4.49), we get

[An(u(®)] = [An(u(t) = Ar(e*OTQ - X (1))

<C / (IVQ(y)IIVg(y)I + V) I? + 1QW)lgw)| + Q)9 (y)?

ly+X (O)|=R

+ gl + Ig(y)l4> dy
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eyl
e / (W (IVg)| + lgw)| + 19(m)?)

X (D> R
+Vg(u) + lg(y) P + g<y>|4)dy
By (4.52), we have ||g||H&(Q) < C4(t), which yields

R> Ry +|X()] = |Ar(u(t))] < C [e”™(6(t) +6(t)°) +8(t)* +

IN

IN
m
<

(1),

C
C e o + e Pos(t) + 6(t) + o(¢ )3] 5(t)

45

provided Ry > 0 is such that CeFo < 5 and d; is such that Ce T2 +6, 403 < 5

Since 0 < &1 < dp and z(t) = X (¢) on Ds,, we obtain (4.51) for §(¢t) < d;.

Now consider the second case, i.e., §(t) > ;. By (4.49), we have

[Ar(u(t))] < C / V()| + [u®)|* + |u(t)*da.

|z—z(t)|>R—|z(t)]
By the compactness of K, there exists Ry > 0 such that
R > |z(t)| + Ry and () > 61 = |Agr(u(t))] < edy < ed(t),

which concludes the proof of (4.51) and completes Step 1.
Step 2: Conclusion of the proof.
By (4.50) and (4.51), we get that there exists Ry > 0 such that,

R > Ry(1+ [2(t)]) = |VR(H)] = 26(t).

Let R = Ra(1 +sup,<;<, [2(t)]). Then

/ dt</y Ydt < Vp(1) — V(o).

(4.54)

(4.55)

If 6(t) < do, then by Step 1, changing the variable y = x — X (¢) and since ¥(z) =1

for large |z|, we obtain

V(o) =2t [ g0 7o () - v Qv+ x00)

y+ X(1)

+ 2RIm/Q(y)‘I’(y + X(1))Ve (T) -Vy(y) dy

+ 2R1m/g(y)w <%ff(t)) - Vg(y)dy,



46 T. Duyckaerts et al. / Journal of Functional Analysis 282 (2022) 109326

which yields
(VR(t)] < CR(8(t) +5(t)*) < CR4(t).

This inequality is also valid for §(t) > dg, by straightforward estimates. Using (4.55),
we obtain

/ S(t)dt < C R(5(0) + 8(7))

o

<Ch (1+ sup |x<f>|) (8(0) + 5(r)).

o<t<T

This concludes the proof of Lemma 4.10. O

Lemma 4.11. There exists a constant C' > 0 such that
Vo,r >0 with o+1<7 |o(r)—a(0)] < C/(S(t)dt. (4.56)

Proof. Let dg > 0 be as in Section 3. Let us first show that there exists §; > 0 such that,

Vr >0 inf 6(t)>6; or sup d(t) < o. (4.57)
te[r,7+2] te[r,7+2]

If not, there exist t,,t!, > 0 such that

§(tn) ——— 0, 6(t)) >0, |tn —1t,] <2, (4.58)

n—-+oo

extracting a subsequence if necessary, we may assume

lim t, —t, =7¢€[-2,2]. (4.59)

n—-4oo

Note that if ¢/, goes to +o00, then |z(t])| converges (after extraction) to a limit X, € R®.
If not |z(t},)| — +o0 and by Lemma 4.8, §(¢),) — 0, which contradicts (4.58).
By the compactness of K, we have

w(t! -+ x(t))) —— wo € H(R?).

n—-+oo

Denote vo(z) = wo(x — Xo). We have

u(th, +x(t))) ——— vo(- + Xo) € H(R?). (4.60)

n—> -+00
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Thus,

u(th) ——— vo € H(R?).
n—-4oo

In particular, vg = 0 on Q¢ and we obtain,

u(t!

n

) ———— vo € HY(Q). (4.61)

n——+oo
Since 8(t,) = [ |VQ|* — [ |Vu(t,, - + =(t}))]* > 6 > 0, we have

Vol 2y < IVQI L2(rs) -

Let v(t) be a solution of (NLSq) with initial data vy at ¢ = 0 and maximal time of
existence I. Then by continuity of the flow of the NLSq equation, we have for all ¢t € I,

Vo)l L2 < IVQIl 2R3y - (4.62)

As a consequence, I = R and by continuity of the flow of the NLSg equation, (4.59) and
(4.61), we have

1
Since 6(t,) = 0, [[Vo(7)||p2(q) = [IVQI| 2 (rs), which contradicts (4.62).
Now, we prove (4.56) with an additional condition that 7 < o 4+ 2. By (4.57), we may
assume that

inf §(t)>6d; or  sup 6(t) < do.
tefo,T] t€lo,T]

In the first case, we have f; 0(t) > 41 and by a straightforward consequence of the
compactness of K and the continuity of the flow of (NLSq) equation, we have

T

3C >0, V,5 >0, |t—s| <2=>|X(t)—X(s)| < 59/5(t)dt.
1

g

In the second case, by Corollary 4.6 we have, V¢t € Ds,, x(t) = X (t), and from Lem-
mas 3.4 and 4.9, we have

| X' ()] < Co(t). (4.63)

Thus, (4.56) follows from the time integration of (4.63) for 7 < o + 2.
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To conclude the proof of Lemma 4.11, we divide [o, 7] into intervals of length at least
1 and at most 2 and combine together the previous inequalities to get (4.56). O

Proof of the Proposition 4.7. We argue by contradiction. Assume that there exists
T — +o0 such that |z(7,)| — +oo and |z(7,)| = supsejo,,,) [2(t)]- By Lemma 4.8,
§(rn) —— 0.

n——+oo

Let Ny be such that Cé(,,) < ﬁ for all n > Ny. By Lemmas 4.10 and 4.11 we have

() — (7)| < C / 5(t)dt

TNO

< O+ |z(ma))(6(Tn, ) + 6(Tn)),
hence,
2(7a)] < Cla (v, )],

which gives a contradiction. This concludes the proof of Proposition 4.7. 0O
4.3. Convergence in mean

Lemma 4.12. Consider a solution u(t) of (NLSq) satisfying assumptions of Proposi-
tion 4.7. Then

T

. 1

Jim / 5(t)dt = 0. (4.64)
0

Corollary 4.13. Under the assumptions of Proposition 4.7, there exists a sequence of
times t,, such that t,, — +00 and

lim §(t,) =0.

n—-—+oo

Proof of Lemma 4.12. Consider the localized variance defined in (4.47) and recall that
from the proof of Lemma 4.10, we have

Vi (t) = 46(t) + Ag(u(t)) + 2/ \Vul? |z - 7i|do(z), (4.65)
e}

where 7 is outward normal vector and Ap is defined in (4.49).
If |y| < 1,(A%p)(y) = 0,07, ¢(y) = 2 and Ap(y) = 6. Thus,

» X

1
A <C [ Va4 Jult + gl (4.66)

|| >R



T. Duyckaerts et al. / Journal of Functional Analysis 282 (2022) 109326 49

Let z(t) be as in Corollary 4.6 and K be defined by (4.2). Let € > 0. By the compactness

of K and Proposition 4.7, there exists Rg(g) > 0 such that
vVt >0, |Val? + Jul? + Ju]* < e. (4.67)
l2—X (t)|>Ro(e)

@) (. There exists to() such that

Furthermore, 2(t) is bounded, and thus, =~ .
—+o0

Vit > to(e), |z(t)] < et.
Let
T >to(e), R=eT + Ro(e) +1 for t € [to(e), T).
Next, we use the fact that |z(t)| < eT and Ry(e) +eT < R, to get

1
[Vl + ol + o5 lul?

1
[Vul? + [ul* + ﬁ|u|2 <
|z—a(t)|+]z(t)| >R

|2[>R
1
< |Vaul? + |ul* + §|u|2 <e. (4.68)
|—a(t)|>Ro e)
By (4.48), we have
T
[ it < @) + ittole)] < O
to(e)
From (4.65), (4.66) and (4.68) we have
T
/ 5(t)dt < C(R+Te) < CRo(e) + T + 1,
to(e)
where C' > 0, independent of T" and e.
This yields
T to(e)
! /6(t)dt <1 / 5(t) dt + S (Ro() +1) + C
T =T T o <
0 0
O

Taking first limsup as T — +o00, and letting € tend to 0, we obtain (4.64).
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Proposition 4.14. Let u be a solution of (NLSq) such that

M[u] = Mgs[Q], Elu] = Ers[Q], [[VuollL2(q) < V@Il L2(rs) (4.69)
and K = {u(t);t > 0} has a compact closure in H} (). Then u = 0.

Proof. If not, there exists a solution u # 0 such that the assumptions of this Proposition
are satisfied. From Lemma 4.12, there exists ¢, such that ¢, — 400 and §(t,,) tends to
0. By the compactness of the closure of K, u(t,) converges in H}(2) to some vy € H}(2)
and the fact that (¢,) tends to 0 implies that Evg] = Egr:[Q], M[vo] = Mgs[Q] and
[Vvoll 2y = V@I L2gsy. Thus, vo = eQ(x — x9) ¢ HL(), for some parameters
o € R and z € R®, which contradicts the fact that vo € H3 (). O

Appendix A. Proof of the existence of initial data covered by Theorem 1

In this appendix, we prove the existence of initial data ug € Hg () that satisfy

MQ[UO]EQ[U/O] = MRS [Q]E]R3 [Q] (Al)
l[woll 20y IVuoll L2y < QN L2me) IVQIl L2 (R - (A2)

Let A > 0, o € H}(Q)\{0} and let uy(t) be a solution of the NLSq equation with
initial data uy(tp) = upn = A¢ € Hg(Q). Let us assume, without loss of generality,
Malp] = Mgs[Q].

We have

Folus] Mous] = Mgs[QIF()), where F(\) i= %/IWF - %/W.

4[|Vl

LUEEL) LV F () > 0if A < Ao and
3f|<p|4>

One can see that F (\) = 0 for Ay := (

F'(N) <0if X > Ao

Let us recall that we can extend the function ¢ € H}(Q) by 0 on the obstacle and it
can be identified to an element of H!(R3), which we have denoted by . Thus, we can
apply the Gagliardo-Nirenberg inequality (2.2) to ¢.

Using (2.2) with the sharp constant Con = and the fact that

Malp] := Mgs|p] = Mgs[Q], we have

4
QN L2 w3 IVQII L2 (r3)

4 vaﬂiz(n«?’)

4
4 1Vellze ey A3
H£HL4(R3) ~3IVQ pa(rs) -

which yields
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s (J1vel)’

T =5 e

1 -
> [ 1var = Bwlal
R3

Thus, there exists a unique A1, A2 > 0 such that A\; < A\g < A2 and Egs[Q] = F (A1) =
F(A2), ie., Eqlugx, ,]Maluo,y, ,] = Ers[Q]Mgs[Q]. It remains to prove that wug x, sat-
isfies (A.2) and ug », satisfies ||u0,>\zHL2(Q) Hvu07x\2HL2(Q) > ||QHL2(R3) ||VQ||L2(R3)'

2\ 2
Using (4.3) and the fact that A} J [Vl = (4L54)" [ |ve

/IVQI2 < Aé/!MQ-

R3 R3

2
, we have

Thus, there exists A3 > 0 such that A3 < Ao, and \3 / |V£|2 = / |VQ|*. Next, we show
R3 R3

that Ay < A3 or equivalently that F(A1) < F(A3). Using (A.3), we obtain

i

Fow =5 [190F - 1 F L [ o' > Erslal = ).

Since A1 < Az, we have

2
A%/IM =A%/\W|2 </IVQ|2,
R3 Q R3

which implies that ug x, satisfies (A.2) using that Mq[p| = Mgs[Q)]. Similarly, we obtain

2
/IVQ|2 < A%/M :A%/Wsof.
R3 R3 Q

Hence,

||UO,A2||L2(Q) ||VUO,A2||L2(Q) > ||Q||L2(]R3) ||VQHL2(R3) :

Then, there exists a unique A\; > 0, such that gy, satisfy (A.1) and (A.2).
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Appendix B. Existence of a continuous translation parameter

In this appendix, we prove:

Lemma B.1. Let u(t) be a solution of (NLSq) defined for t > 0. Assume that for all
sequence of times t,, > 0, there exists a sequence x, € R® such that (g(tn,m—l—xn))n has
a subsequence that converges in H'(R3). Then there exists a continuous function x(t)
such that

K = {u(zx + z(t),t), t € [0,+00)} (B.1)
has a compact closure in H*(R?).
Proof. We can of course assume that w is not identically 0. We let x be a nonincreasing

radial cutoff function such that y(z) =1 if |z| < 1/4 and x(z) = 0 if |z| > 1/2. We let,
fort >0, R >0,

AR = s (250 lutto)as,

yeR3

At fixed ¢, R — A(t, R) is a nondecreasing continuous function such that limg_,o A(¢, R)
=0 and limg_, o0 A(t, R) = |luo||2.. We choose R(t) > 0 such that

7
A(t, R(t)) = glluOlliz-

e Step 1. In this step, we prove that R(t) is uniformly bounded for ¢ > 0. We argue by

contradiction, assuming that there exists a sequence (t,), such

lim R(t,) = oo. (B.2)

n—oo

By the assumptions of the lemma, there exists a sequence x,, € R3, and ¢ € H*(R?)
such that (after extraction)

lim ||u(t, -+ 2n) — @[l = 0.
n—oo

Since [l[|7: = [uoll72, there exists p > 0 such that [|¢72p( ) = Bjug||2 .. This
implies that liminf, _ .o Hg(tn)||2LQ(B(wmp) > %HUOH%Q, and thus, for large n, that
p > R(t,), a contradiction.

« Step 2. By Step 1, taking R = sup,~ R(t) < oo, we have

— 7
vizo, s [x (“’) u(t, ) Pde > o2
yERS R 8
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For ¢t > 0, we fix y(t) such that

[ () e = Sl ®.3)

We claim that there exists § > 0 such that

Vt,s >0, |[t—s| <= /X <x—T}/(t)> lu(s,z)|>dx > ZHuoH%z (B.4)
Vi, s >0, |t—s|<d=|y(t)—y(s)| <R. (B.5)

Indeed

< /X (Lé’(t)) lu(s, z)dx = —29%/%( (%@) Vs, 2)(s, 7)da

and (B.4) follows the fact that u is bounded in H*(R?) by the assumptions of the
lemma. By (B.4), and the definition of y(s),

[ () oot (T2 ) s )P > ol = gl

and (B.5) follows from the fact that = — x((x — y(¢))/R) and z — x((z — y(s))/R)
have disjoint support if |y(¢) — y(s)| > R.

o Step 3. We define z(¢) as the function such that for all integer n > 0, z(nd) = y(nd)
and x is affine on (nd, (n + 1)d). We claim that K defined by (B.1) has compact
closure in H*(R?). Indeed, using (B.3) and the assumptions of the lemma, it is easy
to see that

K= {E(x + y<t)7t)7 te [0)"1'00)}

has compact closure in H!(R?). Noting that (B.5) and the definition of x(¢) implies
that |z(t) — y(t)| < 2R for all ¢t > 0, we see that K has compact closure, concluding
the proof. O
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