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We study the dynamics of the focusing 3d cubic nonlin-
ear Schrödinger equation in the exterior of a strictly con-
vex obstacle at the mass-energy threshold, namely, when 
EΩ[u0]MΩ[u0] = ER3 [Q]MR3 [Q] and ‖∇u0‖L2(Ω) ‖u0‖L2(Ω) <

‖∇Q‖L2(R3) ‖Q‖L2(R3), where u0 ∈ H1
0 (Ω) is the initial data, 

Q is the ground state on the Euclidean space, E is the energy 
and M is the mass. In the whole Euclidean space Duyckaerts 
and Roudenko (following the work of Duyckaerts and Merle 
on the energy-critical problem) have proved the existence of 
a specific global solution that scatters for negative times and 
converges to the soliton in positive times. We prove that these 
heteroclinic orbits do not exist for the problem in the exterior 
domain and that all solutions at the threshold are globally 
defined and scatter. This is the first step in the study of 
the global dynamics of the equation above the ground-state 
threshold. The main difficulty is to control the position of 
the center of mass of the solution for large time without the 
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momentum conservation law and the Galilean transformation 
which are not available for this equation.

© 2021 Published by Elsevier Inc.
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1. Introduction

We consider the focusing nonlinear Schrödinger equation in the exterior of a smooth 
compact strictly convex obstacle Θ ⊂ R3 with Dirichlet boundary conditions:

⎧⎪⎪⎨⎪⎪⎩
i∂tu + ΔΩu = −|u|2u (t, x) ∈ R× Ω,

u(t0, x) = u0(x) x ∈ Ω,

u(t, x) = 0 (t, x) ∈ R× ∂Ω,

(NLSΩ)

where Ω = R3 \ Θ, ΔΩ is the Dirichlet Laplace operator on Ω and t0 ∈ R is the initial 
time. Here, u is a complex-valued function,

u : R× Ω −→ C

(t, x) �−→ u(t, x).

We take the initial data u0 ∈ H1
0 (Ω), where H1

0 (Ω) is the Sobolev space

{u ∈ L2(Ω) such that |∇u| ∈ L2(Ω) and u|∂Ω = 0}.

The NLSΩ equation is locally wellposed in H1
0 (Ω), see [1], [33], [16] and [3]. The 

solutions of the NLSΩ equation satisfy the mass and energy conservation laws:



T. Duyckaerts et al. / Journal of Functional Analysis 282 (2022) 109326 3
MΩ[u(t)] :=
∫
Ω

|u(t, x)|2dx = M [u0],

EΩ[u(t)] := 1
2

∫
Ω

|∇u(t, x)|2dx− 1
4

∫
Ω

|u(t, x)|4 dx = E[u0].

Unlike the nonlinear Schrödinger equation NLSR3 posed on the whole Euclidean space 
R3, the NLSΩ equation does not have the momentum conservation.

The NLSR3 equation is invariant by the scaling transformation, that is,

u(t, x) �−→ λu(λx, λ2t) for λ > 0.

This scaling identifies the critical Sobolev space Ḣ
1
2
x . Since the presence of an obstacle 

does not change the intrinsic dimensionality of the problem, we regard the NLSΩ equa-
tion as having the same criticality, and thus as an energy-subcritical, mass-supercritical 
equation.

In this paper, we study the global well-posedness and scattering of solutions to the 
NLSΩ equation. We start recalling earlier results on global existence and scattering ([33], 
[21]): if u has a finite Strichartz norm (Cf. Theorem 2.7), then u scatters in H1

0 (Ω), i.e.,

∃u± ∈ H1
0 (Ω) such that lim

t−→±∞

∥∥u(t) − eitΔΩu±
∥∥
H1

0 (Ω) = 0.

This holds in particular if the initial data is sufficiently small in H1
0 (Ω).

Global existence and scattering for large data was studied for the NLSR3 equation, 
posed on the whole Euclidean space R3, in several articles in different contexts. The 
NLSR3 equation has solutions of the form eitΔR3Q, where Q solves the following nonlinear 
elliptic equation {

−Q + ΔQ + |Q|2 Q = 0,
Q ∈ H1(R3).

(1.1)

In this paper, we denote by Q the ground state solution, that is, the unique radial, 
vanishing at infinity, positive solution of (1.1). Such Q is smooth, exponentially decay-
ing at infinity, and characterized as the unique minimizer for the Gagliardo-Nirenberg 
inequality up to scaling, space translation and phase shift, see [23].

In [14], the authors have studied the global existence and scattering1 for large initial 
data of the radial solutions of the cubic NLSR3 equation on R3, below a threshold given 
by the ground state. This result was later extended to the non-radial case in [6] and 
to arbitrary space dimensions and focusing intercritical power nonlinearities in [10] and 
[13]. This was generalized to the cubic NLSΩ equation outside a strictly convex obstacle 
in [21] (see also [37] for 1 < p < 5).

1 also, blow-up, however, we do not need it in this paper.
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Theorem A. Let u0 ∈ H1
0 (Ω) satisfy

‖u0‖L2(Ω) ‖∇u0‖L2(Ω) < ‖Q‖L2(R3) ‖∇Q‖L2(R3) , (1.2)

MΩ[u0]EΩ[u0] < MR3 [Q]ER3 [Q]. (1.3)

Then u scatters in H1
0 (Ω), in both time directions.

Note that in the case Ω = R3, the criteria (1.2) and (1.3) are expressed in terms of 
the scale-invariant quantities ‖∇u0‖L2 ‖u0‖L2 and M [u0]E[u0].

The purpose of this paper is to study the behavior of solutions to the NLSΩ equation 
exactly at the mass-energy threshold, i.e., when

EΩ[u0]MΩ[u0] = ER3 [Q]MR3 [Q], (1.4)

‖u0‖L2(Ω) ‖∇u0‖L2(Ω) < ‖Q‖L2(R3) ‖∇Q‖L2(R3) . (1.5)

In [8] T. Duyckaerts and S. Roudenko described the behavior of the solutions of the 
NLSR3 equation at the mass-energy threshold. At this mass-energy level, the NLSR3

equation has a richer dynamics for the long time behavior of the solutions compared 
to the result mentioned above. The authors proved the existence of special solutions, 
denoted by Q+ and Q−. These special solutions have the same mass-energy of the soli-
ton, MR3 [Q±]ER3 [Q±] = MR3 [Q]ER3 [Q], however, ‖∇Q−(t)‖L2(R3) < ‖∇Q‖L2(R3) and 
‖∇Q+(t)‖L2(R3) > ‖∇Q‖L2(R3), for all t in the interval of existence of Q±. Only the 
solution Q− is relevant in the study of the global existence and scattering. This solution 
Q− scatters for negative time and approach the soliton, up to symmetries, for positive 
time direction: there exists e0 > 0 such that

∥∥Q− − eitQ
∥∥
H1(R3) ≤ ce−e0t for t ≥ 0. (1.6)

Furthermore, if we consider initial data u0 ∈ H1(R3) such that (1.4) and (1.5) hold 
on R3 then the corresponding solution u(t) of the NLSR3 equation is global and either 
scatters in H1(R3) or u ≡ Q−, up to the symmetries.

Note that for the NLSΩ equation, there do not exist analogs of the solutions eitQ, Q−

at the threshold MΩ[u]EΩ[u] = MR3 [Q]ER3 [Q]. Indeed there is no function u0 ∈ H1
0 (Ω)

satisfying (1.4) and ‖∇u0‖L2(Ω) ‖u0‖L2(Ω) = ‖∇Q‖L2(R3) ‖Q‖L2(R3). By extending u0

with 0 on the obstacle, the solution u0 must be equal to Q, up to the symmetries, which 
would not satisfy Dirichlet boundary conditions. Similarly, in the presence of the obstacle 
there is no function in H1

0 (Ω) such that (1.6) holds, since such a solution has to converge 
to Q for the sequence of times tn = 2πn, contradicting the fact that Q does not satisfy 
Dirichlet boundary conditions.

We now state the main result of this paper.
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Theorem 1. Let u0 ∈ H1
0 (Ω) and let u(t) be the corresponding solution to (NLSΩ) such 

that u0 satisfy

MΩ[u]EΩ[u] = MR3 [Q]ER3 [Q], (1.7)

‖u0‖L2(Ω) ‖∇u0‖L2(Ω) < ‖Q‖L2(R3) ‖∇Q‖L2(R3) . (1.8)

Then u scatters in H1
0 (Ω) in both time directions.

Remark 1.1. The existence of initial data that satisfy (1.7) and (1.8) can be obtained 
using the variational characterization of the ground state Q. Indeed, let λ > 0, ϕ ∈
H1

0 (Ω)\{0} and let uλ(t) be the solution of the NLSΩ equation with initial data 
uλ(t0) := u0,λ = λ ϕ. Then, there exists a unique λ1 > 0, such that MΩ[u0,λ1 ]EΩ[u0,λ1 ] =
MR3 [Q]ER3 [Q] and ‖u0,λ1‖L2(Ω) ‖∇u0,λ1‖L2(Ω) < ‖Q‖L2(R3) ‖∇Q‖L2(R3). (Cf. Ap-
pendix A for more details).

The proof of Theorem 1 is based on the approach of the Euclidean setting results in 
[7] and [8]. The first step is similar to the proof of the compactness of the critical solution 
developed by C. Kenig and F. Merle in [18] in the energy-critical setting and adapted to 
the energy-subcritical case in [14] and [6]. It uses a concentration-compactness argument 
that requires a profile decomposition as in the works of F. Merle and L. Vega [29], P. 
Gérard [11], and S. Keraani [19], adapted by R. Killip, M. Visan and X. Zhang for the 
problem in the exterior of a convex obstacle in [22] (in the energy-critical case) and in 
[21] (in the energy-subcritical case). The second step of the proof is a careful study of 
the space translation and phase parameters for a solution of NLSΩ that is close to Q, up 
to the transformations. The presence of the obstacle brings significant difficulties. One 
of them (that we tackle with the techniques developed in [25] by the second author) 
is that we must linearize around a space translation of the solitary wave eitQ, which 
is not an exact solution of (NLSΩ). Another difficulty is the fact that the momentum 
conservation law and Galilean transformation, which were used in [8] to control the space 
translation of the solution, are not available for the equation outside an obstacle. This 
control is achieved through a new intricate compactness argument for solutions escaping 
at infinity, that relies among other things on the uniqueness theorem in [6].

In [24], the second author has proved that when the obstacle is the Euclidean ball 
of R3, solutions such that MΩ[u]EΩ[u] < MR3 [Q]ER3 [Q] and ‖u0‖L2(Ω) ‖∇u0‖L2(Ω) >

‖Q‖L2(R3) ‖∇Q‖L2(R3) with a finite variance and a certain symmetry blow up in fi-
nite time. In view of the known results on R3, one should expect blow-up in finite 
or infinite time for all solutions of this type, however, the blow-up for the NLSΩ
equation is a delicate issue. One of the difficulties is the appearance of boundary 
terms with the wrong sign in the virial identity that is used to prove blow-up on 
R3. Blow-up is also expected in the threshold case MΩ[u]EΩ[u] = MR3 [Q]ER3 [Q] and 
‖u0‖L2(Ω) ‖∇u0‖L2(Ω) > ‖Q‖L2(R3) ‖∇Q‖L2(R3), which is an open question. Let us men-
tion however that linear scattering is precluded for these solutions. Indeed, if u is such 
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a solution, then by the bound ‖u(t)‖L2(Ω) ‖∇u(t)‖L2(Ω) > ‖Q‖L2(R3) ‖∇Q‖L2(R3) (which 
is valid on the domain of existence of u), we have

lim
t→T+(u)

‖u(t)‖2
L2(Ω)‖∇u(t)‖2

L2(Ω) ≥ ‖Q‖2
L2(R3)‖∇Q‖2

L2(R3) = 6‖Q‖2
L2(R3)ER3(Q) (1.9)

(where we have used Pohozaev’s identity, see (2.4) below). However, if u is a scattering 
solution with MΩ[u]EΩ[u] = MR3 [Q]ER3 [Q], we have T+(u) = +∞ and (using the 
conservation of mass and that limt→∞ ‖u(t)‖L4(Ω) = 0),

lim
t→∞

‖u(t)‖2
L2(Ω)‖∇u(t)‖2

L2(Ω) = 2MΩ[u]EΩ[u] = 2‖Q‖2
L2(R3)ER3 [Q],

contradicting (1.9).
When Ω = R3, K. Nakanishi and W. Schlag [32] described the dynamics of solu-

tions slightly above the mass-energy threshold, that is such that ER3 [Q]R3M [Q] ≤
ER3 [u0]MR3 [u0] < ER3 [Q]R3M [Q] + ε for a small ε > 0, showing that all 9 expected 
behaviors (any combination of blow-up in finite time, linear scattering or scattering to 
the ground state solution) do indeed occur. Some sufficient conditions for scattering and 
blow-up in this regime are given by the first and third authors in [9]. The analog of 
the result in [32] outside of an obstacle is currently out of reach, due to insufficient 
understanding of blow-up in finite time. Let us mention however that in this case, the 
soliton-like behavior is possible. Indeed, the second author in [25] constructed a solution 
behaving as a traveling wave in R3 for large t, moving away from the obstacle with an 
arbitrary small speed v and such that E[u0]M [u0] = E[Q]M [Q] + c|v|2 for a constant 
c > 0. See also [26] for numerical investigations in this regime.

The study of the obstacle problem for dispersive equations, motivated by the un-
derstanding of the influence of the underlying space geometry on the dynamics of the 
equation, started long ago. Let us mention some of the works on a wave-type equation 
in the exterior of an obstacle with Dirichlet or Neuman boundary conditions. In 1959, 
H. W. Calvin studied the rate of decay of solutions to the linear wave equation outside of 
a sphere, see [36]. Later, Morawetz extended this result to star-shaped obstacles, see [30]
and, with Ralston and Strauss, to non-trapping obstacles, see [31]. The Cauchy theory 
for the NLSΩ equation with initial data in H1

0 (Ω), was initiated in 2004 by N. Burq, P. 
Gérard and N. Tzvetkov in [4]. Assuming that the obstacle is non-trapping, the authors 
proved a local existence result for the 3d sub-cubic (i.e., p < 3) NLSΩ equation. This was 
later extended by R. Anton in [1] for the cubic nonlinearity, by F. Planchon and L. Vega 
in [33] for the energy-subcritical NLSΩ equation in dimension d = 3 (i.e., 1 < p < 5) and 
by F. Planchon and O. Ivanovici in [17] for the energy-critical case in dimension d = 3
(i.e., p = 5), see also [3] and [15], [16], [27] for convex obstacle. The local well-posedness 
in the critical Sobolev space was first obtained in [17], for 3 + 2

5 < p < 5. In [25], the 
second author extended this result for 7

3 < p < 5, using the fractional chain rule in the 
exterior of a compact convex obstacle from [20].
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The paper is organized as follows: In Section 2, we recall known properties of the 
ground state and coercivity property associated to the linearized operator under certain 
orthogonality conditions. There, we also recall Strichartz estimates, stability theory and 
the profile decomposition for the NLSΩ equation outside of a strictly convex obstacle. In 
Section 3, we discuss modulation, in particular, in §3.2 we use the modulation in phase 
rotation and in space translation parameters near the truncated ground state solution, in 
order to obtain orthogonality conditions. Section 4 is dedicated to the proof of the main 
theorem. In §4.1 we use the profile decomposition to prove a compactness property, which 
yields the existence of a continuous translation parameter x(t) such that the extension of 
a non-scattering solution u(t, x +x(t)), that satisfy (1.7) and (1.8), is compact in H1(R3). 
In §4.2, we control the space translation x(t) by approximating it by auxiliary translation 
parameter given by modulation on R3, in [8]. Moreover, we use a local virial identity 
with estimates from previous sections on the modulation parameter to prove that x(t) is 
bounded. In §4.3, we prove that the parameter δ(t) := |‖∇Q‖L2 − ‖∇u‖L2 | converges to 
0 in mean. Finally, we conclude the proof of Theorem 1 using the compactness properties 
with the control of the space translation parameter x(t) and the convergence in mean. 
In Appendix A, we prove the existence of an initial data in H1

0 (Ω) that satisfies the 
mass-energy threshold.

Acknowledgments. T.D. was partially supported by Institut Universitaire de France and 
Labex MME-DII. Part of the research on this project was done while O.L. was visiting 
the Department of Mathematics and Statistics at Florida International University, Mi-
ami, USA, during his PhD training. He thanks the department and the university for 
hospitality and support. S.R. was partially supported by the NSF grant DMS-1927258. 
Part of O.L.’s research visit to FIU was funded by the same grant DMS-1927258 (PI: 
Roudenko).

Notation. Define Ψ as a C∞ function such that

Ψ =
{

0 near Θ,

1 if |x| 
 1.
(1.10)

We write a = O(b), when a and b are two quantities, and there exists a positive constant 
C independent of parameters, such that |a| ≤ C b, and a ≈ b, when a = O(b) and 
b = O(a). For h ∈ C, we denote h1 = Reh and h2 = Im h. Throughout this paper, C
denotes a large positive constant and c is a small positive constant, that may change 
from line to line; both do not depend on parameters. We denote by |·| the Euclidean 
norm on R3. For simplicity, we write Δ = ΔΩ. The real L2-scalar product (·, ·) means

(f, g) = Re
∫

f g =
∫

Re g Re f +
∫

Im g Im f .
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2. Preliminaries

2.1. Properties of the ground state

We recall here some well-known properties of the ground state. We refer the reader 
to [35], [23], [34, Appendix B] for a general setting and [14] for the 3d cubic NLSR3 case, 
for more details. Consider the following nonlinear elliptic equation on R3

−Q + ΔQ + |Q|2Q = 0. (2.1)

We are interested in a positive, decaying at infinity, solution Q ∈ H1(R3). The ground 
state solution is the unique positive, radial, vanishing at infinity, smooth solution of 
(2.1). It is also (up to standard transformations) the unique minimizer of the Gagliardo-
Nirenberg inequality: if u ∈ H1(R3), then

‖u‖4
L4(R3) ≤ CGN ‖∇u‖3

L2(R3) ‖u‖L2(R3) , ‖Q‖4
L4(R3) = CGN ‖∇Q‖3

L2(R3) ‖Q‖L2(R3) .

(2.2)
Moreover,

‖u‖4
L4(R3) = CGN ‖∇u‖3

L2(R3) ‖u‖L2(R3)

=⇒ ∃λ0 ∈ C,∃μ0 ∈ R,∃x0 ∈ R3 : u(x) = λ0Q(μ0(x + x0)). (2.3)

We also have the Pohozhaev identities

‖Q‖4
L4(R3) = 4 ‖Q‖2

L2(R3) and ‖∇Q‖2
L2(R3) = 3 ‖Q‖2

L2(R3) . (2.4)

As a consequence of (2.2), (2.3) and the concentration-compactness principle [28] one 
has

Proposition 2.1. There exists a function ε(η), defined for small η > 0, such that 
lim
η→0

ε(η) = 0 and

∀u ∈ H1(R3),
∣∣ ‖u‖L4(R3) − ‖Q‖L4(R3)

∣∣+ ∣∣∣‖u‖L2(R3) − ‖Q‖L2(R3)

∣∣∣+∣∣∣‖∇u‖L2(R3) − ‖∇Q‖L2(R3)

∣∣∣ ≤ η =⇒ ∃ θ0 ∈ R and

∃x0 ∈ R3 :
∥∥u− eiθ0Q(· − x0)

∥∥
H1(R3) ≤ ε(η). (2.5)

Next, we recall some known properties on the decay of Q, see [12], [2] and [5, Chapter 
8].
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Proposition 2.2 (Exponential decay of Q). Let Q be the ground state solution of (2.1), 
then there exist a, C > 0 such that for |x| > 1,∣∣∣∣Q(x) − a

|x|e
−|x|

∣∣∣∣ ≤ C
e−|x|

|x|3/2 .

Moreover,

∣∣∇Q(x) + ∇2Q(x)
∣∣ ≤ C

e−|x|

|x| .

Lemma 2.3. Let Q be the ground state solution of (2.1), M > 0 large, X ∈ R3 and let g
be an L1-function. Then for k > 0, we have

|X| ≥ 2M =⇒
∫

|x|≤M

(
Qk(x−X) + |∇Q(x−X)|k

)
g(x) dx = O

(
e−k|X|

|X|k

)
, (2.6)

where O(·) depends on k, g and M .
Furthermore, there exists cM > 0 such that∫

|x|≤M

Qk(x−X) dx ≥ cM
e−k|X|

|X|k
. (2.7)

Proof. First, note that

1
2 |X| < |X| −M < |x−X| , and |X| ≥ 2M.

This implies that, for |X| ≥ 2M we have

e−|x−X| ≤ eMe−|X| and 1
2 |x−X| ≤

1
|X| .

Using the exponential decay of Q from Proposition 2.2, we obtain,

∫
|x|≤M

Qk(x−X)g(x) dx = O

(
e−k|X|

|X|k

)
, for k > 0.

Similarly, we get

∫
|x|≤M

|∇Q(x−X)|k g(x) dx = O

(
e−k|X|

|X|k

)
, for k > 0.

The proof of (2.7) is similar by applying again Proposition 2.2 and we omit it. �
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Let u ∈ H1
0 (Ω) and define u ∈ H1(R3) such that

u(x) =
{
u(x) ∀x ∈ Ω,

0 ∀x ∈ Ωc.
(2.8)

Remark 2.4. We denote by MR3 [u] = ‖u‖2
L2(R3) and ER3 [u] = 1

2 ‖∇u‖2
L2(R3) −

1
p+1 ‖u‖

p+1
Lp+1(R3). Note that, we have MΩ[u] = MR3 [u] and EΩ[u] = ER3 [u]. To sim-

plify notations in what follows we drop the index Ω in the mass and the energy of the 
NLSΩ equation, so that we just write M [u] and E[u] instead of MΩ[u] and EΩ[u].

Assume that u satisfies the left-hand side of (2.5). Then there exists x0 ∈ R3 and 
θ0 ∈ R such that ∥∥u− eiθ0Q(· − x0)

∥∥
H1(R3) ≤ ε(η),

which yields, by Proposition 2.2 and (2.7),

1
C

e−|x0|

|x0|
≤ ‖Q(x− x0)‖H1(Ωc) ≤ ε(η). (2.9)

This implies that |x0| is large when η is small.

2.2. Coercivity property

We next recall some known properties of the linearized operator on R3. Consider a 
solution u of NLSR3 close to eitQ and write u(t) as

u(t, x) = eit (Q(x) + �(t, x)) .

Note that � is the solution of the equation

∂t� + L� = R(�), L� = −L−�2 + iL+�1,

where

L+�1 = −Δ�1 + �1 − 3Q2
�1,

L−�1 = −Δ�2 + �2 −Q2
�2,

R(�) = iQ(2|�|2 + �
2) + i|�|2�.

Define Φ(�), a linearized energy on R3, by

Φ(�) := 1
2

∫
|�|2 +

∫ 1
2 |∇�|2 − 1

2

∫
Q2(3�

2
1 + �

2
2). (2.10)
R3 R3 R3
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We next define a subspace of H1(R3), on which Φ is positive

G :=
{

� ∈ H1(R3) |
∫
R3

∂xj
Q�1 = 0,

∫
R3

Q�2 = 0, j = 1, 2, 3
}
.

Then by [8], there exists c > 0 such that

∀� ∈ G, Φ(�) ≥ c ‖�‖2
H1(R3) . (2.11)

Let h ∈ H1(R3). Define

ΦX(h) := 1
2

∫
R3

|∇h|2 − 1
2

∫
R3

Q2Ψ2(· + X)(3h2
1 + h2

2) + 1
2

∫
R3

|h|2, (2.12)

where Ψ is defined in (1.10).

Lemma 2.5. There exist c > 0 such that for all h ∈ H1(R3), if the following orthogonality 
relations hold for all X ∈ R3 with |X| large

Re
∫
R3

Δ(Q(x)Ψ(x + X))h(x + X) dx = 0, Im
∫
R3

Q(x)Ψ(x + X)h(x + X) dx = 0,

(2.13)

Re
∫
R3

∂xk
(Q(x)Ψ(x + X))h(x + X) dx = 0, k = 1, 2, 3, (2.14)

then

ΦX(h(· + X)) ≥ c ‖h‖2
H1(R3) . (2.15)

Proof. Define

A =
{
f ∈ H1(R3) : Re

∫
R3

ΔQf = Im
∫
R3

Qf = Re
∫
R3

∂xk
Qf = 0, k = 1, 2, 3

}
,

B = span {iQ,ΔQ, ∂x1Q, ∂x2Q, ∂x3Q},

then we write h(· + X) = h̃(· + X) + r(· + X) with h̃(· + X) ∈ A and r(· + X) ∈ B.
By (2.10) and (2.11), we have

Φ(h̃(· + X)) ≥ c‖h̃‖2
H1(R3).

Since r(· + X) ∈ B, we can write r as
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r(· + X) =
3∑

k=1

αk∂xk
Q + βiQ + γΔQ.

Taking the real L2-scalar product in R3 of r with iQ and using the fact that Q is radial, 
we get

β = 1
‖Q‖2

L2(R3)
(r(· + X), iQ) = 1

‖Q‖2
L2(R3)

((h(· + X) − h̃(· + X), iQ)

= 1
‖Q‖2

L2(R3)

⎛⎝Im
∫
R3

h(x + X)Q(x) dx− Im
∫
R3

h̃(x + X)Q(x) dx

⎞⎠ .

By the definition of h̃, we have Im
∫
h̃(x + X)Q(x)dx = 0. Using the orthogonality 

conditions in Lemma 2.5 and the exponential decay of Q from Lemma 2.3, we obtain

β = 1
‖Q‖2

L2(R3)
Im

∫
R3

h(x + X)Q(x)dx

= 1
‖Q‖2

L2

Im
∫
R3

h(x + X)Q(x)Ψ(x + X) dx

− 1
‖Q‖2

L2(R3)
Im

∫
R3

h(x + X)Q(x)(Ψ(x + X) − 1)dx

= O(e−|X| ‖h‖H1(R3)).

Similarly, by taking the scalar product of r with ΔQ and ∂xk
Q and using the fact 

that Q is radial, the orthogonality condition in Lemma 2.5 and the exponential decay of 
Q from Lemma 2.3, we obtain γ = αk = O(e−|X| ‖h‖H1(R3)).

Thus,

‖r‖H1(R3) ≤ Ce−|X| ‖h‖H1(R3) ,

|ΦX(r(· + X))| ≤ e−2|X| ‖h‖2
H1(R3) .

We now have

ΦX(h(· + X)) = ΦX(h̃(· + X)) + ΦX(r(· + X)) + 2BX(h̃(· + X), r(· + X)),

where the bilinear form BX is defined as

BX(f, g) := 1
2

∫ (
∇f1(x)∇g1(x) + f1(x) g1(x) − 3Q2(x)Ψ2(x + X)f1(x) g1(x)

)
dx

+ 1
2

∫ (
∇f2(x)∇g2(x) + f2(x)g2(x) −Q2(x)Ψ2(x + X)f2(x)) g2(x)

)
dx.
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Note that ∣∣BX(h̃(· + X), r(· + X))
∣∣ ≤ e−|X| ‖h‖H1(R3) .

Then,

ΦX(h(· + X)) = Φ(h̃(· + X)) + O
(
e−|X| ‖h‖H1(R3)

)
≥ c ‖h‖2

H1(R3) .

This implies that there exists c, R > 0 such that for |X| > R

ΦX(h(· + X)) ≥ c ‖h‖2
H1(R3) . �

2.3. Cauchy theory and profile decomposition

Next, we review tools needed in Section 4.1 to prove the compactness property, up to 
space translation, of a critical solution of the NLSΩ equation, using a profile decompo-
sition. We use the same notations as in [21]. Without loss of generality, we assume that 
0 ∈ Θ = Ωc and Θ ⊂ B(0, 1). We define χ to be a smooth cutoff function in R3

χ(x) =
{

1 |x| ≤ 1
4 ,

0 |x| > 1
2 .

We define spaces Sk(I), k = 0, 1, as follows

S0(I) = L∞
t L2

x(I × Ω) ∩ L
5
2
t L

30
7
x (I × Ω),

S1(I) = {u : I × Ω −→ C | u and (−ΔΩ) 1
2u ∈ S0(I)}.

Remark 2.6. In order to avoid the endpoints in Strichartz estimates for an exterior do-
main, see Theorem 2.7 below, we take a specific pair (5

2 , 
30
7 ), for simplicity. However, 

one could use another pair (p, q) with p = 2 + ε and q = 6(2+ε)
2+3ε instead of (5

2 , 
30
7 ), where 

ε > 0 is small enough.

By interpolation,

‖u‖Lq
tL

r
x(I×Ω) ≤ ‖u‖S0(I) , for all 2

q
+ 3

r
= 3

2 with 5
2 ≤ q ≤ ∞.

Similar estimates hold for S1(I). We will, in particular, use (q, r) equal to (5, 3011 ) and 
(∞, 2).

One particular Strichartz space we use is

X1(I) := L5
tH

1, 3011
0 (I × Ω).
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Note that, S1(I) ⊂ X1(I) and by Sobolev embedding, there exists C > 0 such that 
‖f‖L5

t,x(I×Ω) ≤ C ‖f‖X1(I).
We next define N0(I) as the corresponding dual of S0(I) and

N1(I) = {u : I × Ω −→ C | u and (−ΔΩ) 1
2u ∈ N0(I)}. (2.16)

Then, we have

‖u‖N0(I) ≤ ‖u‖
Lq′

t Lr′
x (I×Ω) for all 2

q
+ 3

r
= 3

2 with 5
2 ≤ q ≤ ∞, (2.17)

where 1
q

+ 1
q′

= 1 and 1
r

+ 1
r′

= 1.

In particular, we will use (q′, r′) = (5
3 , 

30
23 ), the Hölder dual to the Strichartz pair 

(q, r) = (5
2 , 

30
7 ). One can get a similar estimate to (2.17) for N1(I) using the same pair, 

see Theorem 2.7.
Next, we state the Strichartz estimates using the above pairs and other necessary 

results from [21].

Theorem 2.7 (Strichartz estimates, [16]). Let I be a time interval and t0 ∈ I. Let u0 ∈
H1

0 (Ω), then there exists a constant C > 0 such that the solution u(t, x) to the nonlinear 
Schrödinger equation on R × Ω with Dirichlet boundary condition⎧⎪⎪⎨⎪⎪⎩

i∂tu + ΔΩu = f on R× Ω
u(0, x) = u0(x)
u|∂Ω = 0

satisfies

‖u‖S0(I) ≤ C
(
‖u0‖L2(Ω) + ‖f‖N0(I)

)
,

and

‖u‖S1(I) ≤ C
(
‖u0‖H1

0 (Ω) + ‖f‖N1(I)

)
. (2.18)

In particular,

‖u‖X1(I×Ω) ≤ C

(
‖u0‖H1

0 (Ω) + ‖f‖
L

5
3 H

1, 3023
0 (I×Ω)

)
.

Proposition 2.8 (Local smoothing, [22, Corollary 2.14] ). Given ω0 ∈ H1
0 (Ω), we have

∥∥∇eitΔΩω0
∥∥ 5 30 ≤ R

31
60T

1
5
∥∥eitΔΩω0

∥∥ 1
6
5 ‖ω0‖

5
6

1 ,

L 2 L 17 (|t−τ |≤T, |x−z|≤R) Lt,x(R×Ω) H0 (Ω)
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uniformly in ω0 and the parameters R, T > 0, z ∈ R3 and τ ∈ R.

Lemma 2.9 (Stability, [21]). Let I ⊂ R be a time interval and let ũ be an approximate 
solution to (NLSΩ) on I × Ω in the sense that

i∂tũ + ΔΩũ = − |ũ|2 ũ + e for some function e.

Assume that

‖ũ‖L∞H1
0 (I×Ω) ≤ E and ‖ũ‖L5

t,x(I×Ω) ≤ L

for some positive constants E and L. Let t0 ∈ I and u0 ∈ H1
0 (Ω) and assume the 

smallness conditions

‖ũ(t0) − u0‖H1
0 (Ω) ≤ ε and ‖e‖N1(I) ≤ ε

for some 0 < ε < ε1 = ε1(E , L). Then there exists a unique solution u : I × Ω −→ C to 
(NLSΩ) with initial data u(t0) = u0 satisfying

‖u− ũ‖X1(I×Ω) ≤ C(E , L)ε.

Theorem 2.10 (Linear profile decomposition in H1
0 (Ω), [21, Theorem 3.2]). Let {fn}

be a bounded sequence in H1
0 (Ω). After passing to a subsequence, there exist J∗ ∈

{0, 1, 2, ...., ∞}, {φj
n}J

∗

j=1 ⊂ H1
0 (Ω) \ {0}, {tjn}J

∗

j=1 ⊂ R such that, for each j either tjn ≡ 0
or tjn → ±∞ and {xj

n}J
∗

j=1 ⊂ Ω conforming to one of the following two cases for each j:
Case 1: xj

n = 0 and there exists φj ∈ H1
0 (Ω) so that φj

n := eit
j
nΔΩφj.

Case 2: |xj
n| → ∞ and there exists φj ∈ H1(R3) so that

φj
n := eit

j
nΔΩ [(χj

nφ
j)(x− xj

n)] with χj
n(x) := χ

(
x

|xj
n|

)
.

Moreover, for any finite 0 ≤ J ≤ J∗ we have the decomposition

fn =
J∑

j=1
φj
n + ωJ

n

with the remainder ωJ
n ∈ H1

0 (Ω) satisfying

lim
J→J∗

lim sup
n→∞

∥∥eitΔΩωJ
n

∥∥
L5

t,x(R×Ω) = 0, (2.19)

∀J ≥ 1, lim
n→∞

{
M [fn] −

J∑
M [φj

n] −M [ωJ
n ]
}

= 0, (2.20)

j=1
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∀J ≥ 1, lim
n→∞

{
E[fn] −

J∑
j=1

E[φj
n] − E[ωJ

n ]
}

= 0, (2.21)

lim
n→∞

∣∣xj
n − xk

n

∣∣+ ∣∣tjn − tkn
∣∣ =∞ for each j �= k. (2.22)

Theorem 2.11 ([21, Theorem 4.1]). Let {tn} ⊂ R be such that tn ≡ 0 or tn → ±∞. Let 
{xn} ⊂ Ω be such that |xn| tends to ∞, as n goes to ∞. Assume φ ∈ H1(R3) satisfies

‖∇φ‖L2(R3) ‖φ‖L2(R3) < ‖∇Q‖L2(R3) ‖Q‖L2(R3) , (2.23)

MR3 [φ]ER3 [φ] < MR3 [Q]ER3 [Q]. (2.24)

Define

φn := eitnΔΩ [(χnφ)(x− xn)] with χn(x) := χ

(
x

|xn|

)
.

Then, for n sufficiently large, there exists a global solution vn to (NLSΩ) with initial data 
vn(0) := φn, which satisfies

‖vn‖L5
t,x(R×Ω) ≤ C(‖φ‖H1(R3)).

Furthermore, for any ε > 0 there exists Nε ∈ N and ψε ∈ Cc(R ×R3) such that, for all 
n ≥ Nε,

‖vn(t− tn, x + xn) − ψε(t, x)‖
L5H1, 3011 (R×R3)

< ε. (2.25)

Remark 2.12. Note that, we have made a slight modification in the notation of the above 
Theorem 2.11, in order to keep the consistent notation in this paper. We denote vn the 
extension of the solution vn by 0 on Ωc such that vn ∈ H1(R3). Let us mention that φn

is well defined in H1
0 (Ω). Indeed, by the definition of χn and as |xn| → ∞, we have

x ∈ ∂Ω =⇒ χn(x) = 0 as n → +∞.

Moreover, one can check that the energy-mass assumption (2.24) is equivalent to the 
one given in [21, Theorem 4.1] using the following identity:

{
u0 ∈ H1(R3) : ER3 [u0]MR3 [u0] < ER3 [Q]MR3 [Q]

}
=

⋃
0<λ<∞

{
u0 ∈ H1(R3) : ER3 [u0] + λMR3 [u0] < 2

√
λER3 [Q]MR3 [Q]

}
,

which follows by computing the minimum, of λ �→ ER3 [u0] + λMR3 [u0] −
2
√

λER3 [Q]MR3 [Q].
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3. Modulation

Let u ∈ H1
0 (Ω) and define

δ(u) =

∣∣∣∣∣∣
∫
R3

|∇Q|2 −
∫
Ω

|∇u|2
∣∣∣∣∣∣ .

In this section and the next one, we will consider a solution u such that M [u]E[u] =
MR3 [Q]ER3 [Q]. We first rescale the solution and the obstacle, letting ũ(t, x) =
λu(λ2t, λx) and Ω̃ = λ−1Ω with λ = MΩ[u]

MR3 [Q] = ER3 [Q]
EΩ[u]

. Then ũ is solution of (NLSΩ̃) and 

satisfies MΩ̃[u] = MR3 [Q], EΩ̃[u] = ER3 [Q].
Replacing u by ũ and Ω by Ω̃, we conclude that can assume without loss of generality

M [u] = MR3 [Q] and E[u] = ER3 [Q]. (3.1)

Lemma 3.1. Let u ∈ H1
0 (Ω) satisfying (3.1) and δ(u) small enough. Then there exists 

X0 ∈ R3 large and θ0 ∈ R such that

e−iθ0u(x) = Q(x−X0)Ψ(x) + h(x) (3.2)

with ‖h‖H1
0 (Ω) ≤ ε̃(δ(u)), where ε̃(δ(u)) → 0 as δ(u) → 0.

Proof. Let u ∈ H1(R3) be defined as above in (2.8) and observe that δ(u) = δ(u). By 
Proposition 2.1, since

M [u] = MR3 [u] = MR3 [Q], E[u] = ER3 [u] = ER3 [Q], (3.3)

and δ(u) being small enough, there exist θ0 ∈ R and X0 ∈ R3 such that

e−iθ0u(x) = Q(x−X0) + h̃(x)

with ‖h̃‖H1(R3) ≤ ε̃(δ(u)), where ε̃(δ(u)) −→ 0 as δ(u) −→ 0.
Moreover, if x ∈ Ωc, then u(x) = 0, which implies that

x ∈ Ωc =⇒ Q(x−X0) + h̃(x) = 0, (3.4)

and for δ(u) small enough, by (2.9), |X0| is large such that

e−|X0|
≤ C ε̃(δ(u)).
|X0|
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We write,

e−iθ0u(x) = Q(x−X0)Ψ(x) + (1 − Ψ(x))Q(x−X0)) + h̃(x)

= Q(x−X0)Ψ(x) + h(x).

Using the fact that (1 −Ψ) has a compact support, Q having an exponential decay, |X0|
being large, and Lemma 2.3, we get

‖h‖H1(R3) ≤ ε̃(δ(u)) + C
e−|X0|

|X0|
≤ ε̃(δ(u)).

By (3.4) and the definition of Ψ in (1.10), we have

h(x) = 0, if x ∈ Ωc.

Thus, h(x) = 0 on ∂Ω and h(x) ∈ H1
0 (Ω), which concludes the proof. �

Lemma 3.2. There exists δ0 > 0 and a positive function ε(δ) defined for 0 < δ ≤ δ0, which 
tends to 0 when δ → 0, such that for any u ∈ H1

0 (Ω) satisfying (3.1) and δ(u) < δ0, there 
exists a couple (μ, X) ∈ R ×R3 such that the following holds∥∥u(x) −Q(x−X)Ψ(x)eiμ

∥∥
H1

0 (Ω) ≤ ε(δ), (3.5)

Re
∫
Ω

u(x) ∂xk
(Q(x−X)Ψ(x))e−iμ dx = 0, k = 1, 2, 3, (3.6)

Im
∫
Ω

u(x) Q(x−X)Ψ(x)e−iμdx = 0. (3.7)

The parameters μ and X are unique in R/πZ ×R3 and the mapping u → (μ, X) is C1.

Proof. Let

Φ : H1
0 (Ω) ×R3 ×R −→ R4

(u , X , μ) �−→ (Φk(u,X, μ))1≤k≤4 ,

where

Φk(u,X, μ) := Re
∫
Ω

u(x) ∂xk
(Q(x−X)Ψ(x))e−iμ dx, k = 1, 2, 3,

Φ4(u,X, μ) := Im
∫
Ω

u(x) Q(x−X)Ψ(x) e−iμdx.
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Let X0 ∈ R3. Note that Φ(Q(· −X0)Ψ, X0, 0) = 0. Indeed, integrating by parts, we get

Φk(Q(· −X0)Ψ, X0, 0) = Re
∫
Ω

Q(x−X0)Ψ(x)∂xk
(Q(x−X0)Ψ(x)) dx

= 1
2 Re

∫
Ω

∂xk
((Q(x−X0)Ψ(x))2) dx = 0,

Φ4(Q(· −X0)Ψ, X0, 0) = Im
∫
Ω

Q(x−X0)2Ψ(x)2 dx = 0.

• Step 1: Computation of d(X,μ)Φk.
We have

∂

∂Xj
Φk(u,X, μ) = −Re

∫
Ω

e−iμu(x)∂xk
(∂xj

Q(x−X)Ψ(x)) dx.

Integrating by parts, we obtain

∂

∂Xj
Φk(Q(· −X0)Ψ, X0, 0) = Re

∫
Ω

∂xj
Q(x−X0)Ψ(x)∂xk

(Q(x−X0)Ψ(x)) dx.

If k = j, we have

∂

∂Xj
Φk(Q(· −X0)Ψ, X0, 0) = Re

∫
Ω

(∂xj
Q(x−X0))2 dx

+ Re
∫
Ω

(∂xj
Q(x−X0))2(Ψ(x)2 − 1) dx

+ Re
∫
Ω

Q(x−X0)∂xj
Q(x−X0)Ψ(x)∂xj

Ψ(x) dx.

Since ∂xj
Ψ and (Ψ2 − 1) have a compact support and Q has an exponential decay, 

we deduce

∂

∂Xj
Φk(Q(· −X0)Ψ, X0, 0) =

∥∥∂xj
Q
∥∥2
L2(R3) + O(e−2|X0|)

= 1
3 ‖∇Q‖2

L2(R3) + O(e−2|X0|).

If k �= j, then

∂

∂Xj
Φk(Q(· −X0)Ψ, X0, 0) = Re

∫
∂xj

Q(x−X0)Ψ(x)∂xk
(Q(x−X0)Ψ(x)) dx
Ω
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= Re
∫
Ω

∂xj
Q(x−X0)∂xk

Q(x−X0)dx

+ Re
∫
Ω

∂xj
Q(x−X0)∂xk

Q(x−X0)(Ψ(x)2 − 1)dx

+ Re
∫
Ω

∂xj
Q(x−X0)Ψ(x)Q(x−X0)∂xk

Ψ(x)dx.

Using the same argument as before and the fact that Q is radial (
∫
∂xj

Q∂xk
Q = 0, 

if k �= j), we obtain

∂

∂Xj
Φk(Q(· −X0)Ψ, X0, 0) = O(e−2|X0|).

Next, we compute ∂
∂μΦk(u, X, μ):

∂

∂μ
Φk(u,X, μ) = Re

∫
Ω

−ie−iμu(x)∂xk
(Q(x−X)Ψ(x))dx,

∂

∂μ
Φk(Q(· −X0)Ψ, X0, 0) = Im

∫
Ω

Q(x−X0)Ψ(x)∂xk
(Q(x−X0)Ψ(x)) dx = 0.

• Step 2: Computation of d(X,μ)Φ4.
We have

∂

∂Xj
Φ4(u,X, μ) = − Im

∫
Ω

e−iμu(x)(∂xj
Q(x−X)Ψ(x)) dx,

and thus,

∂

∂Xj
Φ4(Q(· −X0)Ψ, X0, 0) = − Im

∫
Ω

Q(x−X0)Ψ(x)∂xj
(Q(x−X0)Ψ(x)) dx = 0.

Also,

∂

∂μ
Φ4(u,X, μ) = Im

∫
Ω

−ie−iμu(x)Q(x−X)Ψ(x) dx,

∂

∂μ
Φ4(Q(· −X0)Ψ, X0, 0) = −

∫
Ω

Q(x−X0)2Ψ(x)2 = −‖Q‖2
L2(R3) + O(e−2|X0|).

• Step 3: Conclusion.
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Combining Step 1 and Step 2, we get

d(X,μ)Φ(Q(· −X0)Ψ, X0, 0)

=

⎛⎜⎜⎜⎝
1
3 ‖∇Q‖2

L2(R3) 0 0 0
0 1

3 ‖∇Q‖2
L2(R3) 0 0

0 0 1
3 ‖∇Q‖2

L2(R3) 0
0 0 0 −‖Q‖2

L2(R3)

⎞⎟⎟⎟⎠
+ O(e−2|X0|).

We can deduce that d(X,μ)Φ is invertible at (Q(· −X0)Ψ(·), X0, 0), if |X0| is large. 
Then, by the implicit function theorem there exists ε0, η0 > 0 such that for u ∈
H1

0 (Ω), we have

‖u(·) −Q(· −X0)Ψ(·)‖2
H1

0 (Ω) < ε0 =⇒ ∃!(X,μ) : |μ| + |X −X0| ≤ η0 and

Φ(u,X, μ) = 0. �
Let u(t) be a solution of (NLSΩ) satisfying (3.1). In the sequel we write

δ(t) = δ(u(t)).

Let Dδ0 = {t ∈ I : δ(t) < δ0}, where I is the maximal time interval of existence of u.
By Lemma 3.2, we can define C1 functions X(t) and μ(t) for t ∈ Dδ0 . We now work 

with the parameter θ(t) = μ(t) − t. Write

e−iθ(t)−itu(t, x) = (1 + ρ(t))Q(x−X(t))Ψ(x) + h(t, x), (3.8)

where h(x) ∈ H1
0 (Ω) and define

ρ(t) = Re
e−iθ(t)−it

∫
∇
(
Q(x−X(t))Ψ(x)

)
· ∇u(t, x)dx∫ ∣∣∇(Q(x−X(t))Ψ(x)

)∣∣2 dx
− 1.

This implies that

e−iθ(t)−itu(t, x + X(t)) = (1 + ρ(t))Q(x)Ψ(x + X(t)) + h(t, x + X(t)), (3.9)

where h(x) ∈ H1(R3) is defined by

h(t, x) =
{
h(t, x) ∀x ∈ Ω,

0 ∀x ∈ Ωc.
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One can see that ρ(t) is chosen such that h satisfies the orthogonality condition

Re
∫
Ω

Δ(Q(x−X(t))Ψ(x))h(t, x) dx

= Re
∫

Δ(Q(x)Ψ(x + X(t)))h(t, x + X((t)) dx = 0. (3.10)

By Lemma 3.2, h also satisfies the orthogonality conditions

Im
∫
Ω

h(t, x)Q(x−X(t))Ψ(x) dx = Im
∫

h(t, x+X(t))Q(x)Ψ(x+X(t)) dx = 0, (3.11)

and

Re
∫
Ω

h(t, x)∂xk
(Q(x−X(t))Ψ(x)) dx

= Re
∫

h(t, x + X(t))∂xk
(Q(x)Ψ(x + X(t))) dx = 0, k = 1, 2, 3. (3.12)

In the following lemma, to simplify notation, we denote f(· + X) by fX(·) for any 
function f . If f is a complex function, then we denote by f1X

(·) the real part of fX and 
by f2X

(·) the imaginary part.

Proposition 3.3. Let u(t) be a solution of (NLSΩ) satisfying (3.1). Then the following 
estimates hold for t ∈ Dδ0

|ρ(t)| + O

(
e−2|X(t)|

|X(t)|2

)
≈
∣∣∣∣∫ QΨXh1X

dx

∣∣∣∣+ O

(
e−2|X(t)|

|X(t)|2

)
≈ δ(t) + O

(
e−2|X(t)|

|X(t)|2

)

≈ ‖h(t)‖H1
0 (Ω) + O

(
e−|X(t)|

|X(t)|

)
. (3.13)

Proof. Let δ̃(t) = |ρ(t)| + ‖h‖H1 + δ(t), which is small, if δ(t) is small. By the expansion 
of u in (3.9) we have e−iθ(t)−itu(t, x + X(t)) = (1 + ρ(t))Q(x)ΨX(x) + hX(t, x), thus, if 
x + X(t) ∈ Ω, then u(t, x + X(t)) = u(t, x + X(t)), otherwise u(t, x + X(t)) = 0.

• Step 1: Approximation of |ρ| using the mass conservation.
Since M [u] = MR3 [u] = MR3 [QΨX + ρQΨX + hX ] = MR3 [Q], we have,∫ (

Q2(Ψ2
X − 1) + 2ρQ2Ψ2

X + 2ρQΨXh1X
+ ρ2Q2Ψ2

X + 2QΨXh1X
+ |hX |2

)
dx = 0.

(3.14)
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Using (3.14) and Lemma 2.3, we obtain

2|ρ|
∣∣∣∣∫ Q2 Ψ2

X

∣∣∣∣ =
∣∣∣∣2 ∫ QΨXh1X

+
∫

Q2(Ψ2
X − 1) + 2ρ

∫
QΨXh1X

+ ρ2
∫

Q2Ψ2
X +

∫
|hX |2

∣∣∣∣
= 2

∣∣∣∣∫ QΨXh1X

∣∣∣∣+ O

(
δ̃2 + e−2|X(t)|

|X(t)|2

)
,

which yields

|ρ| = 1
M [Q]

∣∣∣∣∫ QΨXh1X
dx

∣∣∣∣+ O

(
δ̃2 + e−2|X(t)|

|X(t)|2

)
. (3.15)

• Step 2: Approximation of |ρ| in terms of δ.
By the definition of δ(t), we have

δ(t) =
∣∣∣∣∫ |∇(QΨX + ρQΨX + hX)|2 dx−

∫
|∇Q|2 dx

∣∣∣∣
=
∣∣∣∣ ∫ |∇(QΨX)|2 + 2ρ |∇(QΨX)|2 + ρ2 |∇(QΨX)|2 + 2ρ∇(QΨX) · ∇h1X

+ 2∇(QΨX) · ∇h1X
+ |∇hX |2 −

∫
|∇Q|2

∣∣∣∣.
Using integration by parts and the orthogonality condition (3.10), we get

δ(t) =
∣∣∣∣ ∫ |∇Q|2 (Ψ2

X − 1) + 2∇Q · ∇ΨXQΨX + Q2 |∇ΨX |2

+ (2ρ + ρ2)
∫

|∇(QΨX)|2 +
∫

|∇hX |2
∣∣∣∣.

Using the fact that (Ψ2−1) and ∇Ψ have compact supports and applying Lemma 2.3, 
we get

|ρ| = δ

2 ‖∇Q‖2
L2(R3)

+ O

(
δ̃2 + e−2|X(t)|

|X(t)|2

)
. (3.16)

• Step 3: Energy and Mass conservation.
We define: g = ρQΨX + hX . Since ER3 [u] = ER3 [QΨX + g] = ER3 [Q], we have

1 ∫ |∇(QΨX)|2 − 1 ∫ |∇Q|2 − 1 ∫
Q4Ψ4

X
2 2 4
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+ 1
4

∫
Q4 +

∫
∇(QΨX) · ∇g1 −

∫
Q3Ψ3

X g1 (3.17)

+ 1
2

∫
|∇g|2 − 1

2

∫
Q2Ψ2

X(3g2
1 + g2

2) −
∫

QΨX |g|2g1 −
1
4 |g|

4 = 0. (3.18)

First, we estimate (3.17). For that we denote

A0 = 1
2

∫
|∇(QΨX)|2 − 1

2

∫
|∇Q|2 − 1

4

∫
Q4Ψ4

X + 1
4

∫
Q4,

AL(g) =
∫

∇(QΨX) · ∇g1 −
∫

Q3Ψ3
Xg1.

In this step, we estimate A0 and AL(g). Using the fact that ∇Ψ, (Ψ2−1) and (Ψ4−1)
have compact supports and Lemma 2.3, we have

A0 = O

(
e−2|X(t)|

|X(t)|2

)
. (3.19)

Next, we show that

AL(g) = 1
2

∫
|g|2 − 2

∫
∇Q.∇ΨX g1 −

∫
QΔΨX g1 −

∫
Q3ΨX(Ψ2

X − 1)g1

+ O

(
e−2|X(t)|

|X(t)|2

)
. (3.20)

Integrating by parts, we obtain∫
∇(QΨX) · ∇g1 = −

∫
Δ(QΨX)g1 = −

∫
ΔQΨXg1 − 2

∫
∇Q · ∇ΨXg1

−
∫

QΔΨXg1,

−
∫

Q3Ψ3
Xg1 = −

∫
Q3ΨX g1 −

∫
Q3ΨX(Ψ2

X − 1)g1.

Using the equation (2.1) for Q, we deduce

AL(g) = −
∫

QΨXg1 − 2
∫

∇Q · ∇ΨXg1 −
∫

QΔΨX g1 −
∫

Q3ΨX(Ψ2
X − 1)g1.

Since M [u] = M [u] = M [QΨX + g] = M [Q], we have∫
Q2(Ψ2

X − 1) + 2
∫

QΨXg1 +
∫

|g|2 = 0,

−
∫

QΨXg1 = 1
2

∫
|g|2 + O

(
e−2|X(t)|

|X(t)|2

)
.
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This implies (3.20).
• Step 4: Approximation of ‖h‖H1

0 (Ω).
Recall that g = ρ QΨX + hX . In this step we prove

‖h‖H1
0 (Ω) = O

(
|ρ| + δ̃

3
2 + e−|X(t)|

|X(t)|

)
.

Summing up all terms (3.18), (3.19) and (3.20), we obtain

1
2

∫
|ρQΨX + hX |2 − 2

∫
∇Q · ∇ΨX(ρQΨX + h1X

) −
∫

QΔΨX(ρQΨX + h1X
)

−
∫

Q3ΨX(Ψ2
X − 1)(ρQΨX + h1X

) + 1
2

∫
|∇(ρQΨX + hX)|2

− 1
2

∫
Q2Ψ2

X(3(ρQΨX + h1X
)2 + h2

2X
)

−
∫

QΨX |ρQΨX + hX |2(ρQΨX + h1X
) − 1

4

∫
|ρQΨX + hX |4 = O

(
e−2|X(t)|

|X(t)|2

)
.

Denote

BL(h) = −2
∫

∇Q.∇ΨX(ρQΨX + h1X
) −

∫
QΔΨX(ρQΨX + h1X

)

−
∫

Q3ΨX(Ψ2
X − 1)(ρQΨX + h1X

),

B1
NL(h) = 1

2

∫
|ρQΨX + hX |2 + 1

2

∫
|∇(ρQΨX + hX)|2 ,

B2
NL(h) = −1

2

∫
Q2Ψ2

X(3(ρQΨX + h1X
)2 + h2

2X
)

−
∫

QΨX |ρQΨX + hX |2(ρQΨX + h1X
) − 1

4

∫
|ρQΨX + hX |4.

Next, we estimate each term. Using the fact that ∇Ψ, ΔΨ and (Ψ2−1) have compact 
supports and Lemma 2.3, we obtain

BL(h) = −
∫

(2∇Q · ∇ΨX + QΔΨX)(ρQΨX + h1X
)

−
∫

Q3ΨX(Ψ2
X − 1)(ρQΨX + h1X

)

= O

(
|ρ|e

−2|X(t)|

|X(t)|2
+ e−|X(t)|

|X(t)| ‖h‖H1

)
+ O

(
|ρ|e

−4|X(t)|

|X(t)|4
+ ‖h‖H1

e−3|X(t)|

|X(t)|3

)
.

Using the orthogonality condition (3.10), we get
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B1
NL(h) = ρ2

2

∫
Q2Ψ2

X + ρ

∫
QΨX h1X

+ 1
2

∫
|hX |2 + ρ2

2

∫
|∇(QΨX)|2

+ ρ

∫
∇(QΨX) · ∇h1X

+ 1
2

∫
|∇hX |2

= ρ

∫
QΨXh1X

+ 1
2

∫
|h|2 + 1

2

∫
|∇h|2 + O(|ρ|2),

B2
NL(h) = −1

2

∫
Q2Ψ2

X(3h2
1X

+ h2
2X

) − 1
4

∫
|hX |4 − ρ

∫
QΨX |hX |2h1X

−
∫

QΨX |hX |2h1X
− ρ2

2

∫
Q2Ψ2

X(3h2
1X

+ h2
2X

) − ρ

∫
Q2Ψ2

X |hX |2

− 2ρ
∫

Q2Ψ2
X h2

1X
− ρ3

∫
Q3Ψ3

X h1X
− 3ρ2

∫
Q3Ψ3

X h1X

− 3ρ
∫

Q3Ψ3
X h1X

− ρ4

4

∫
Q4Ψ4

X − ρ3
∫

Q4Ψ4
X − 3ρ2

2

∫
Q4Ψ4

X .

By the equation (1.1) and using again the orthogonality condition (3.10), we have

−3ρ
∫

Q3Ψ3
X h1X

= −3ρ
∫

QΨXh1X
− 3ρ

∫
(Q− ΔQ) Ψ2

X(ΨX − 1)h1X

− 6ρ
∫

∇Q.∇ΨX h1X
− 3ρ

∫
ΔΨXQh1X

= −3ρ
∫

QΨX h1X
+ O

(
|ρ|e

−|X(t)|

|X(t)| ‖h‖H1

)
.

Using the facts that

ρ

∫
QΨX |hX |2h1X

= O(|ρ| ‖h‖3
H1),

ρ2

2

∫
Q2Ψ2

X(3h2
1X

+ h2
2X

) − ρ

∫
Q2Ψ2

X |hX |2 − 2ρ
∫

Q2Ψ2
Xh2

1X

= O(|ρ|2 ‖h‖2
H1 + |ρ| ‖h‖2

H1),

− ρ3
∫

Q3Ψ3
Xh1X

− 3ρ2
∫

Q3Ψ3
Xh1X

= O(|ρ|3 ‖h‖H1 + |ρ|2 ‖h‖H1),

and

− ρ4

4

∫
Q4Ψ4

X − ρ3
∫

Q4Ψ4
X − 3ρ2

2

∫
Q4Ψ4

X = O(|ρ|4 + |ρ2|),

we obtain

B2
NL = −1 ∫

Q2Ψ2
X(3h2

1X
+ h2

2X
) −

∫
QΨX |hX |2h1X

− 1 ∫ |h|4 − 3ρ
∫

QΨXh1X
2 4
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+ O

(
|ρ| ‖h‖2

H1 + +|ρ|e
−|X(t)|

|X(t)| ‖h‖H1 + |ρ|2
)
.

Thus,

BL(h) + B1
NL(h) + B2

NL(h) = 1
2

∫
|h|2 − 1

2

∫
Q2Ψ2

X(3h2
1X

+ h2
2X

) + 1
2

∫
|∇h|2

− 1
4

∫
|h|4 −

∫
QΨX |hX |2h1X

− 2ρ
∫

QΨXh1X

= O

(
|ρ| ‖h‖2

H1 + |ρ|2 + e−2|X(t)|

|X(t)|2
+ e−|X(t)|

|X(t)| ‖h‖H1

)
. (3.21)

Recall that, from (2.12) we have

ΦX(h) = 1
2

∫
|∇h|2 − 1

2

∫
Q2Ψ2

X(3h2
1 + h2

2) + 1
2

∫
|h|2.

By (3.21), one can see that,

ΦX(hX) = 1
4

∫
|h|4 +

∫
QΨX |hX |2h1X

+ 2ρ
∫

QΨXh1X

+ O

(
|ρ| ‖h‖2

H1 + |ρ|2 + e−2|X(t)|

|X(t)|2
+ e−|X(t)|

|X(t)| ‖h‖H1

)
.

Thus,

|ΦX(hX)| ≤ C

(
‖h‖3

H1 + 2|ρ|
∣∣∣∣∫ QΨXh1X

∣∣∣∣+ |ρ|2 + e−2|X(t)|

|X(t)|2
+ e−|X(t)|

|X(t)| ‖h‖H1

)
.

By the coercivity property (2.15), we obtain

‖h‖H1 = O

(
|ρ| + δ̃

3
2 + e−|X(t)|

|X(t)| +
∣∣∣∣∫ QΨXh1X

∣∣∣∣) .

By (3.15), we deduce

‖h‖H1
0 (Ω) = ‖h‖H1(R3) = O

(
|ρ| + δ̃

3
2 + e−|X(t)|

|X(t)|

)
, (3.22)

and thus, by (3.16), we get

δ̃ = O

(
|ρ| + e−|X(t)|

|X(t)|

)
,

which implies (3.13) and concludes the proof of Proposition 3.3. �



28 T. Duyckaerts et al. / Journal of Functional Analysis 282 (2022) 109326
Lemma 3.4. Under the assumptions of Proposition 3.3, for all t ∈ Dδ0 , we have

|ρ′(t)| + |X ′(t)| + |θ′(t)| = O

(
δ + e−|X(t)|

|X(t)|

)
. (3.23)

Proof. Let δ∗(t) := δ(t) + |ρ′(t)| + |X ′(t)| + |θ′(t)|. Using the NLSΩ equation, Lemma 2.3, 
Proposition 3.3 and the Sobolev embedding H1

0 (Ω) ⊂ L6(Ω), we obtain

i∂th + Δh + iρ′Q−XΨ − iX ′ · ∇Q−XΨ − θ′ Q−XΨ

= O

(
δ + e−|X(t)|

|X(t)| + δ∗(δ + e−|X(t)|

|X(t)| )
)

in L2. (3.24)

By the orthogonality conditions (3.10), (3.11), (3.12) and Proposition 3.3, we have

Im
∫
Ω

∂thQ−XΨdx = Im
∫
Ω

hX ′ · ∇Q−XΨ dx = O

(
δ∗(δ + e−|X(t)|

|X(t)| )
)
, (3.25)

Re
∫
Ω

∂th ∂xk
(Q−XΨ)dx =

3∑
j=1

Re
∫
Ω

hX ′
j(∂xk

(∂xj
QΨ)) dx

= O

(
δ∗(δ + e−|X(t)|

|X(t)| )
)
, k = 1, 2, 3, (3.26)

Re
∫
Ω

∂thΔ(Q−XΨ)dx =
3∑

j=1
Re

∫
Ω

hX ′
jΔ(∂xj

Q−XΨ) dx = O

(
δ∗(δ + e−|X(t)|

|X(t)| )
)
.

(3.27)

Multiplying (3.24) by Q−XΨ, integrating the real part, using (3.25) and then integrating 
by parts, we get

|θ′| = O

(
δ + e−|X(t)|

|X(t)| + δ∗(δ + e−|X(t)|

|X(t)| )
)
. (3.28)

Similarly, multiplying (3.24) by ∂xj
(Q−XΨ), j ∈ 1, 2, 3, integrating the imaginary part, 

using (3.26) and Proposition 3.3, we obtain

|X ′
j(t)| = O

(
δ + e−|X(t)|

|X(t)| + δ∗(δ + e−|X(t)|

|X(t)| )
)
, j = 1, 2, 3. (3.29)

Multiplying (3.24) by Δ(Q−XΨ), integrating the imaginary part, and using (3.27)
and Proposition 3.3, we get

|ρ′| = O

(
δ + e−|X(t)|

+ δ∗(δ + e−|X(t)|
)
)
. (3.30)
|X(t)| |X(t)|
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Summing up (3.28), (3.29) and (3.30), we obtain

δ∗ = O

(
δ + e−|X(t)|

|X(t)| + δ∗(δ + e−|X(t)|

|X(t)| )
)
,

which concludes the proof by choosing δ0 sufficiently small. �
4. Scattering

In this section, we prove Theorem 1. We start by proving, in §4.1, that the extension 
u of a non-scattering solution u(t) to the NLSΩ equation, satisfying (1.2) and (1.3), is 
compact in H1(R3), up to a spatial translation parameter x(t). In §4.2, we prove that x(t)
is bounded using an auxiliary translation parameter (obtained by ignoring the obstacle), 
a local virial identity and the estimates from Section 3 for the modulation parameters. 
In §4.3, we prove that the parameter δ(t) converges to 0 in mean. Finally, combining the 
compactness properties with the control of the space translation parameter x(t) and the 
convergence in mean, we obtain a contradiction from the existence of a non-scattering 
solution, thus, concluding the proof of Theorem 1.

4.1. Compactness properties

Proposition 4.1. Let u(t) be a solution of (NLSΩ) such that

M [u] = MR3 [Q], E[u] = ER3 [Q] and ‖u0‖L2(Ω) < ‖∇Q‖L2(R3) , (4.1)

which does not scatters in positive time. Then there exists a continuous function x(t)
such that

K = {u(x + x(t), t), t ∈ [0,+∞)} (4.2)

has a compact closure in H1(R3).

Proof. We first recall that it is sufficient to show that for every sequence of time τn ≥ 0, 
there exists (extracting if necessary) a sequence (xn)n such that u(x +xn, τn) has a limit 
in H1

0 (Ω). This fact is proved in the case Ω = R3 in the appendix of [6]. We give a proof 
in Appendix B for the sake of completeness.

By the profile decomposition in Theorem 2.10, we have

un := u(x, τn) =
J∑

j=1
φj
n(x) + ωJ

n(x), (4.3)

where φj
n are defined in Theorem 2.10, and ωJ

n satisfies (2.19). We need to show that 
J∗ = 1, ω1

n → 0 in H1
0 (Ω), and tjn ≡ 0. By the Pythagorean expansion properties of the 

profile decomposition we have
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J∑
j=1

lim
n→∞

M [φj
n] + lim

n→∞
M [ωJ

n ] = lim
n→∞

M [un] = M [Q], (4.4)

J∑
j=1

lim
n→∞

E[φj
n] + lim

n→∞
E[ωJ

n ] = lim
n→∞

E[un] = E[Q]. (4.5)

We consider two possibilities.
Scenario I: More than one profile are nonzero, i.e., J∗ ≥ 2. Thus, there exists an ε > 0
such that for all j,

M [φj
n]E[φj

n] ≤ MR3 [Q]ER3 [Q] − ε, (4.6)∥∥φj
n

∥∥
L2(Ω)

∥∥∇φj
n

∥∥
L2(Ω) ≤ ‖Q‖L2(R3 ‖∇Q‖L2(R3) − ε. (4.7)

Recall that by [21, Theorem 3.2], if v0 ∈ H1
0 (Ω) satisfies

‖v0‖L2(Ω) ‖∇v0‖L2(Ω) < ‖Q‖L2(R3) ‖∇Q‖L2(R3) , (4.8)

M [v0]E[v0] < MR3 [Q]ER3 [Q], (4.9)

then the corresponding solution v(t) of (NLSΩ) scatters in both time directions.

• Suppose j is as in Case 1 (Theorem 2.10), i.e., xj
n = 0 for all n:

When tjn ≡ 0, we define vj as the solution to (NLSΩ) with initial data vj(0) = φj .
When tjn → ±∞, we define vj as the solution to (NLSΩ), which scatters to eitΔΩφj

as t → ±∞:

lim
t→±∞

∥∥vj(t) − eitΔΩφj
∥∥
H1

0 (Ω) = 0.

In both cases, we have

lim
n→∞

∥∥vj(tjn) − φj
n

∥∥
H1

0 (Ω) = 0. (4.10)

Thus, by (4.6) and (4.7), vj satisfies (4.8) and (4.9), and we see that vj is a global 
solution with finite scattering size. Therefore, we can approximate vj in L5H1, 3011 (R ×Ω)
by C∞

c (R ×R3) functions. More precisely, for any ε > 0, there exists ψj
ε ∈ C∞

c (R ×R3)
such that ∥∥vj − ψj

ε

∥∥
L5H1, 3011 (R×Ω)

≤ ε

2 .

Let vjn(t, x) = vj(t + tjn, x). Then from above vjn is a global and scattering solution and 
by changing variables in time, for any ε > 0, there exists ψj

ε ∈ C∞
c (R × R3) such that, 

for n sufficiently large, we have∥∥vjn(t, x) − ψj
ε(t + tjn, x)

∥∥
5 1, 30 < ε. (4.11)
L H 11 (R×Ω)
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• Suppose j is as in Case 2 (Theorem 2.10):
We apply Theorem 2.11 to obtain a global solution vjn with vjn(0) = φj

n. Furthermore, 
this solution has finite scattering size and satisfies, for n sufficiently large,∥∥vjn(t, x) − ψj

ε(t + tjn, x− xj
n)
∥∥
L5H1, 3011 (R×R3)

< ε. (4.12)

In all cases, we can find ψj
ε ∈ C∞

c such that (4.12) holds, and there exists Cj > 0, 
independent of n, such that

‖vjn‖X1(R×Ω) ≤ Cj . (4.13)

Note that for large j, by the small data theory, we have ‖vjn‖X1(R×Ω) � ‖φj
n‖H1

0 (Ω).
Combining this with (4.4), (4.5), we deduce

lim sup
n→+∞

J∑
j=1

∥∥vjn∥∥2
X1(R×Ω) ≤ C uniformly for finite J ≤ J	. (4.14)

We first prove the asymptotic decoupling of the nonlinear profile, using the orthogo-
nality properties (2.22).

Lemma 4.2 (Decoupling of nonlinear profiles). For k �= j, we have

lim
n→+∞

∥∥vjnvkn∥∥
L

5
2 H

1, 1511
0 (R×Ω)

+
∥∥∇vjn∇vkn

∥∥
L

5
2 L

15
11 (R×Ω)

+
∥∥vjnvkn∥∥L 5

2 L
30
17 (R×Ω)

+
∥∥∇vjnv

k
n

∥∥
L

5
2 L

30
17 (R×Ω)

= 0. (4.15)

Proof. We only prove ‖vjnvkn‖
L

5
2 H

1, 1511
0 (R×Ω)

+ ‖vjnvkn‖L 5
2 L

30
17 (R×Ω)

= on(1). The other 
proofs are analogous. Recall that by (4.12), for any ε > 0, there exists Nε ∈ N and 
ψj
ε, ψ

k
ε ∈ C∞

c (R ×R3) such that for all n ≥ Nε we have

∥∥vkn(t, x) − ψk
ε (t + tkn, x− xk

n)
∥∥
L5H1, 3011 (R×R3)

+
∥∥vjn(t, x) − ψj

ε(t + tjn, x− xj
n)
∥∥
L5H1, 3011 (R×R3)

< ε. (4.16)

Using (2.22), one can see that the supports of ψj
ε(t, x) and ψk

ε (· + tkn − tjn, · −xk
n +xj

n)
are disjoint for n sufficiently large (if j, k as in Case 1, then ψj

ε(·, ·) and ψk
ε (· + tkn − tjn, ·)

have disjoint time supports), and similarly, for the derivatives. Hence,

lim
n→+∞

∥∥ψj
ε(t, x)ψk

ε (· + tkn − tjn, · − xk
n + xj

n)
∥∥
L

5
2 H1, 1511 (R×R3)

= 0, (4.17)

lim
n→+∞

∥∥ψj
ε(t, x)ψk

ε (· + tkn − tjn, · − xk
n + xj

n)
∥∥
L

5
2 H1, 3017 (R×R3)

= 0. (4.18)
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Combining (4.16), (4.17) and (4.13), we have

∥∥vjnvkn∥∥
L

5
2 H

1, 1511
0 (R×Ω)

≤
∥∥vjn − ψj

ε(· + tjn, · − xj
n)
∥∥
L5H1, 3011 (R×R3)

‖vkn‖L5H1, 3011 (R×R3)

+
∥∥ψj

ε

∥∥
L5H1, 3011 (R×R3)

∥∥vkn − ψk
ε (· + tkn, · − xk

n)
∥∥
L5H1, 3011 (R×R3)

+
∥∥ψj

ε(t, x)ψk
ε (· + tkn − tjn, · − xk

n + xj
n)
∥∥
L

5
2 H1, 1511 (R×R3)

≤ Cε,

provided n is large enough, since the last term goes to 0 as n goes to infinity.
Next, we estimate 

∥∥vjnvkn∥∥L 5
2 L

30
17 (R×Ω)

as follows

∥∥vjnvkn∥∥L 5
2 L

30
17 (R×Ω)

≤
∥∥vjn − ψj

ε(· + tjn, · − xj
n)
∥∥
L5

t,x(R×R3) ‖v
k
n‖L5L

30
11 (R×R3)

+
∥∥ψj

ε

∥∥
L5L

30
11

∥∥vkn − ψk
ε (· + tkn, · − xk

n)
∥∥
L5

t,x(R×R3)

+
∥∥ψj

ε(t, x)ψk
ε (· + tkn − tjn, · − xk

n + xj
n)
∥∥
L

5
2 H1, 3017 (R×R3)

.

Using (4.16), (4.18) and (4.13) and Sobolev embedding ‖·‖L5
t,x

≤ C ‖·‖
L5H1, 3011

, we obtain 
that, for large n,

∥∥vjnvkn∥∥L 5
2 L

30
17 (R×Ω)

≤ Cε,

provided n is large enough, which concludes the proof of Lemma 4.2. �
We return to the proof of Proposition 4.1. As a consequence of the asymptotic decou-

pling of the nonlinear profile in Lemma 4.2, we have

lim sup
n→∞

‖
J∑

j=1
vjn‖X1(R×Ω) ≤ C (4.19)

uniformly for finite J ≤ J∗. Indeed, by (4.14) and (4.15) we obtain

∥∥∥∥∥∥
J∑

j=1
vjn

∥∥∥∥∥∥
2

L5L
30
11 (R×Ω)

=

∥∥∥∥∥∥∥
⎛⎝ J∑

j=1
vjn

⎞⎠2
∥∥∥∥∥∥∥
L

5
2 L

15
11 (R×Ω)

≤
J∑

j=1

∥∥vjn∥∥2
L5

tL
30
11
x (R×Ω)

+ C(J)
∑
j �=k

∥∥vjnvkn∥∥L 5
2 L

15
11 (R×Ω)

≤ C + on(1).

Similarly,
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∥∥∥∥∥∥
J∑

j=1
∇vjn

∥∥∥∥∥∥
2

L5L
30
11 (R×Ω)

=

∥∥∥∥∥∥∥
⎛⎝ J∑

j=1
∇vjn

⎞⎠2
∥∥∥∥∥∥∥
L

5
2 L

15
11 (R×Ω)

≤
J∑

j=1

∥∥∇vjn
∥∥2
L5

tL
30
11 (R×Ω) + C(J)

∑
j �=k

∥∥∇vjn∇vkn
∥∥
L

5
2 L

15
11 (R×Ω)

≤ C.

This completes the proof of (4.19). Using similar argument, one can check that for 
given η > 0, there exists J ′ := J ′(η) such that

∀J ≥ J ′, lim sup
n→∞

‖
J∑

j=J ′

vjn‖X1(R×Ω) ≤ η. (4.20)

For each n and J , we define an approximate solution uJ
n to (NLSΩ) by

uJ
n =

J∑
j=1

vjn + eitΔΩωJ
n . (4.21)

Before continuing with the rest of the proof of Proposition 4.1, we claim that the following 
statements hold true.

Claim 4.3.

lim
n→∞

∥∥uJ
n(0) − un(0)

∥∥
H1

0 (Ω) = 0.

Claim 4.4.

∃C > 0, ∀J, lim sup
n→∞

∥∥uJ
n

∥∥
X1(R×Ω) ≤ C .

Claim 4.5.

lim
J→J∗

lim sup
n→∞

∥∥∥i∂tuJ
n + ΔΩu

J
n +

∣∣uJ
n

∣∣2 uJ
n

∥∥∥
N1(R)

= 0,

with N1 defined in (2.16).

Applying Lemma 2.9, we get that un is a global solution with finite scattering size, 
which yields a contradiction by showing that there is only one profile. Hence, Scenario I
cannot occur.

Proof of Claim 4.3. Using (4.10), if j is as in Case 1, or the fact that vjn(0) = φj
n if j is 

as in Case 2, together with the decomposition of un in (4.3) and uJ
n in (4.21), we obtain
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∥∥uJ
n(0) − un(0)

∥∥
H1

0 (Ω) ≤
J∑

j=1

∥∥vjn(0) − φj
n

∥∥
H1

0 (Ω) −→ 0 as n → ∞. � (4.22)

Proof of Claim 4.4. Using (4.19), Strichartz estimate (2.18) with (2.19), we obtain

lim sup
n→∞

∥∥uJ
n

∥∥
X1(R×Ω) ≤ lim sup

n→∞
‖

J∑
j=1

vjn‖X1(R×Ω) + lim sup
n→+∞

∥∥ωJ
n

∥∥
H1

0 (Ω) ≤ C. �

Proof of Claim 4.5. Let F (z) = −|z|2z, recall 
∑J

j=1 v
j
n = uJ

n − eitΔΩωJ
n , and write

(i∂t + ΔΩ)uJ
n − F (uJ

n) =
J∑

j=1
F (vjn) − F (uJ

n)

=
J∑

j=1
F (vjn) − F (

J∑
j=1

vjn) + F (uJ
n − eitΔΩωJ

n) − F (uJ
n).

We have ∣∣∣∣∣∣
J∑

j=1
F (vjn) − F (

J∑
j=1

vjn)

∣∣∣∣∣∣ ≤ C
∑
j �=k

|vjn|2|vkn|. (4.23)

Taking the derivatives, we get∣∣∣∣∣∣∇
{ J∑

j=1
F (vjn) − F (

J∑
j=1

vjn)
}∣∣∣∣∣∣ ≤ C

∑
j �=k

|∇vjn||vjn||vkn| + C
∑
j �=k

|vjn|2|∇vkn|,

which yields∥∥∥∥∥∥
J∑

j=1
F (vjn) − F (

J∑
j=1

vjn)

∥∥∥∥∥∥
L

5
3 L

30
23

≤ C

⎛⎝∑
j �=k

∥∥vjn∥∥L5
t,x

∥∥vjnvkn∥∥L 5
2 L

30
17

⎞⎠ ,

∥∥∥∥∥∥∇
{ J∑

j=1
F (vjn) − F (

J∑
j=1

vjn)
}∥∥∥∥∥∥

L
5
3 L

30
23

≤ C

(∑
j �=k

∥∥vjnvkn∇vjn
∥∥
L

5
3 L

30
23

+
∑
j �=k

∥∥|vjn|2∇vkn
∥∥
L

5
3 L

30
23

)

≤ C
∑
j �=k

∥∥vjn∥∥L5
t,x

(∥∥∇vjnv
k
n

∥∥
L

5
2 L

30
17

+
∥∥vjn∇vkn

∥∥
L

5
2 L

30
17

)
,

which goes to 0 as n → ∞, in view of Lemma 4.2 and (4.13).
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In addition,∥∥F (uJ
n − eitΔΩωJ

n) − F (uJ
n)
∥∥
L

5
3 H1, 3023

≤
∥∥F (uJ

n − eitΔΩωJ
n) − F (uJ

n)
∥∥
L

5
3 L

30
23

(4.24)

+
∥∥∇ (

F (uJ
n − eitΔΩωJ

n) − F (uJ
n)
)∥∥

L
5
3 L

30
23

.

(4.25)

We estimate the differences as∣∣F (uJ
n − eitΔΩωJ

n) − F (uJ
n)
∣∣ ≤ C

(∣∣eitΔΩωJ
n

∣∣2 ∣∣eitΔΩωJ
n

∣∣+ ∣∣uJ
n

∣∣2 ∣∣eitΔΩωJ
n

∣∣) ,
∣∣∇{

F (uJ
n − eitΔΩωJ

n) − F (uJ
n)
}∣∣ ≤ C

( ∣∣eitΔΩωJ
n

∣∣2 ∣∣∇eitΔΩωJ
n

∣∣+ ∣∣∇uJ
n

∣∣ ∣∣uJ
n

∣∣ ∣∣eitΔΩωJ
n

∣∣
+
∣∣∇uJ

n

∣∣ ∣∣∇eitΔΩωJ
n

∣∣2 +
∣∣uJ

n

∣∣2 ∣∣∇eitΔΩωJ
n

∣∣ ).
Using Claim 4.4, Hölder and Sobolev inequalities, we get

(4.24) ≤
∥∥eitΔΩωJ

n

∥∥
L5

t,x

[∥∥uJ
n

∥∥
L5L

30
11

∥∥uJ
n

∥∥
L5

t,x
+
∥∥eitΔΩωJ

n

∥∥
L5L

30
11

∥∥eitΔΩωJ
n

∥∥
L5

t,x

]
≤
∥∥eitΔΩωJ

n

∥∥
L5

t,x

[∥∥uJ
n

∥∥2
X1 +

∥∥eitΔΩωJ
n

∥∥2
X1

]
+
∥∥eitΔΩωJ

n

∥∥2
L5

t,x

∥∥uJ
n

∥∥
X1

≤ C
∥∥eitΔΩωJ

n

∥∥
L5

t,x
,

which converges to 0 as n → ∞ and J → ∞. Similarly,

(4.25) ≤
∥∥∇uJ

nu
J
n

∥∥
L

5
2 L

30
17

∥∥eitΔΩωJ
n

∥∥
L5

t,x
+
∥∥∇uJ

n

∥∥
L5L

30
11

∥∥∥∣∣eitΔΩωJ
n

∣∣2∥∥∥
L

5
2
t,x

+
∥∥∇(eitΔΩωJ

n)
∥∥
L5L

30
11

∥∥∥∣∣eitΔΩωJ
n

∣∣2∥∥∥
L

5
2
t,x

+
∥∥uJ

n

∥∥
L5

t,x

∥∥uJ
n∇eitΔΩωJ

n

∥∥
L

5
2 L

30
17

≤
∥∥∇uJ

n

∥∥
L5L

30
11

[∥∥uJ
n

∥∥
L5

t,x

∥∥eitΔΩωJ
n

∥∥
L5

t,x
+
∥∥eitΔΩωJ

n

∥∥2
L5

t,x

]
+
∥∥∇eitΔΩωJ

n

∥∥
L5L

30
11

∥∥eitΔΩωJ
n

∥∥2
L5

t,x
+
∥∥uJ

n

∥∥
L5

t,x

∥∥uJ
n∇eitΔΩωJ

n

∥∥
L

5
2 L

30
17

.

Thus, it remains to show that

lim
J→∞

lim sup
n→∞

∥∥uJ
n∇eitΔΩωJ

n

∥∥
L

5
2 L

30
17

= 0. (4.26)

Recall that uJ
n =

∑J
j=1 v

j
n + eitΔΩωJ

n . Then

∥∥uJ
n∇eitΔΩωJ

n

∥∥
L

5
2 L

30
17

≤

∥∥∥∥∥∥
J∑

j=1
vjn∇eitΔΩωJ

n

∥∥∥∥∥∥ 5 30

+
∥∥eitΔΩωJ

n∇eitΔΩωJ
n

∥∥
L

5
2 L

30
17
L 2 L 17
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≤

∥∥∥∥∥∥
J∑

j=1
vjn∇eitΔΩωJ

n

∥∥∥∥∥∥
L

5
2 L

30
17

+
∥∥eitΔΩωJ

n

∥∥
L5

t,x

∥∥∇eitΔΩωJ
n

∥∥
L5L

30
11

.

Hence, Claim 4.5 holds if

lim
J→∞

lim sup
n→∞

∥∥∥∥∥∥
J∑

j=1
vjn∇eitΔΩωJ

n

∥∥∥∥∥∥
L

5
2 L

30
17

= 0.

From (4.20), we have ∀η > 0, ∃J ′ = J ′(η) such that

∀J ≥ J ′, lim sup
n→∞

∥∥∥∥∥∥
J∑

j=J ′

vjn

∥∥∥∥∥∥
X1

< η.

Thus, we have

lim sup
n→∞

∥∥∥∥∥∥
⎛⎝ J∑

j=J ′

vjn

⎞⎠∇eitΔΩωJ
n

∥∥∥∥∥∥
L

5
2 L

30
17

≤ lim sup
n→∞

∥∥∥∥∥∥
J∑

j=J ′

vjn

∥∥∥∥∥∥
X1

∥∥∇eitΔΩωJ
n

∥∥
L5

t,x
≤ η,

where η is arbitrary and J ′ = J ′(η) as in (4.20). Thus, to prove (4.26) it suffices to show 
that

lim
J→∞

lim sup
n→∞

∥∥vjn∇eitΔΩωJ
n

∥∥
L

5
2 L

30
17

= 0 for all 1 ≤ j ≤ J ′. (4.27)

We approximate vjn by C∞
c (R×R3) functions ψj

ε obeying (4.12) with support in [−T, T ] ×
{|x| ≤ R}. From Proposition 2.8 and (2.19), we deduce∥∥vjn∇eitΔΩωJ

n

∥∥
L

5
2 L

30
17

≤
∥∥vjn − ψj

ε(· + tjn, · − xj
n)
∥∥
L5

t,x

∥∥∇eitΔΩωJ
n

∥∥
L5L

30
11

+
∥∥ψj

ε

∥∥
L∞

t,x

∥∥∇eitΔΩωJ
n

∥∥
L

5
2 L

30
17 ({|t|≤T, |x|≤R})

≤ Cε + CR
31
60T

1
5
∥∥eitΔΩωJ

n

∥∥ 1
6
L5

t,x

∥∥ωJ
n

∥∥ 5
6
H1

0 (Ω) .

By taking the limit and choosing ε small, we obtain (4.26). Hence, Claim 4.5 holds. �
Returning to the proof of the Proposition 4.1, we consider the other possibility.

Scenario II: Only one nonzero profile. By (4.3)

un := u(x, τn) = φ1
n + ω1

n,

with

lim
∥∥ω1

n

∥∥
1 = 0. (4.28)
n→∞ H0 (Ω)
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If not, there exists ε > 0 such that ∀n,

E[φ1
n]M [φ1

n] ≤ ER3 [Q]MR3 [Q] − ε,

and one can show by the previous argument that u scatters in H1
0 (Ω).

It remains to show that t1n is bounded and this will prove the convergence, up to a 
subsequence.

• If t1n → +∞ (similarly, t1n → −∞) and φ1
n conforms to Case 1, i.e., φ1

n = eit
1
nΔΩφ1,∥∥eitΔΩun

∥∥
L5

t,x([0,+∞)×Ω) =
∥∥eitΔΩφ1

n + eitΔΩω1
n

∥∥
L5

t,x([0,+∞)×Ω)

≤
∥∥∥ei(t+t1n)ΔΩφ1

∥∥∥
L5

t,x([0,+∞)×Ω)
+
∥∥ω1

n

∥∥
H1

0 (Ω)

≤
∥∥eitΔΩφ1∥∥

L5
t,x([t1n,+∞)×Ω) +

∥∥ω1
n

∥∥
H1

0 (Ω) ,

which goes to 0 as n goes to ∞, showing that un scatters for positive (similarly 
negative) time, a contradiction.

• If t1n → +∞ (similarly, t1n → −∞) and φ1
n conforms to Case 2, i.e.,

φ1
n = eit

1
nΔΩ [(χ1

nφ
1)(x− x1

n)], where χ1
n := χ

(
x

|x1
n|

)
.

We first prove that

lim
n→+∞

∥∥ei tΔΩn (χ1
nφ

1) − ei tΔR3 (χ1
nφ

1)
∥∥
L5

t,x((0,+∞)×R3) = 0, (4.29)

where Ωn := Ω − {xn}. Indeed, by a density argument, for any ε > 0, there exist 
ψε ∈ C∞

c (R3) such that ∥∥φ1 − ψε

∥∥
H1(R3) ≤

ε

4 . (4.30)

By the definition of χn, as |xn| −→ +∞, for any ε > 0 there exists Nε ∈ N such that

∀n ≥ Nε,
∥∥χ1

nφ
1 − φ1∥∥

H1(R3) ≤
ε

4 . (4.31)

Using (4.30) and (4.31), we have

∀n ≥ Nε,
∥∥χ1

nφ
1 − ψε

∥∥
H1(R3) ≤

ε

2 .

Combining this with the Strichartz inequality, we obtain for large n∥∥eitΔΩn
(
χ1
nφ

1 − ψε

)∥∥
L5

t,x((0,+∞)×R3) +
∥∥eitΔR3

(
χ1
nφ

1 − ψε

)∥∥
L5

t,x((0,+∞)×R3) ≤
ε

2 .
(4.32)
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From [21, Proposition 2.13], as |xn| −→ +∞, we have for large n

∥∥eitΔΩnψε − eitΔR3ψε

∥∥
L5

t,x((0,∞)×R3) ≤
ε

2 , (4.33)

which yields (4.29). We now have

∥∥eitΔΩun

∥∥
L5

t,x([0,+∞)×Ω) =
∥∥eitΔΩφ1

n + eitΔΩω1
n

∥∥
L5

t,x([0,+∞)×Ω)

≤
∥∥∥ei(t+t1n)ΔΩ(χ1

nφ
1)(x− x1

n)
∥∥∥
L5

t,x([0,+∞)×Ω)
+
∥∥ω1

n

∥∥
H1

0 (Ω)

≤
∥∥eitΔΩ(χ1

nφ
1)(x− x1

n)
∥∥
L5

t,x([t1n,+∞)×Ω) +
∥∥ω1

n

∥∥
H1

0 (Ω)

≤
∥∥ei tΔΩn (χ1

nφ
1) − ei tΔR3 (χ1

nφ
1)
∥∥
L5

t,x((t1n,+∞)×R3)

+
∥∥ei tΔR3 (χ1

nφ
1)
∥∥
L5

t,x((t1n,+∞)×R3) +
∥∥ω1

n

∥∥
H1

0 (Ω) ,

which goes to 0 as n goes to ∞, by (4.29) and the monotone convergence theorem, 
showing that un scatters for positive (respectively, negative) time, a contradiction. 
This completes the proof of Proposition 4.1. �

Corollary 4.6. Let u be as in Proposition 4.1. Then one can choose the continuous func-
tion x(t) such that X(t) = x(t) for all t ∈ Dδ0 , and the set K has a compact closure in 
H1(R3).

Proof. Recall that by the definition of Dδ0 , the modulation parameters X(t), θ(t) and 
α(t) are well defined for all t ∈ Dδ0 . Let x(t) be the translation parameter given by 
Proposition 4.1. Let R0 > 0. Then by the decomposition of u in (3.9), Proposition 3.3
and the fact Ψ(x) = 1 for |x| large, there exists C	 > 0 such that

∀t ∈ Dδ0 ,

∫
|x|≤R0

|∇Q|2 + |Q|2 − C	

(
δ(t) + e−|X(t)|

|X(t)|

)
≤

∫
|x−X(t)|≤R0

|∇u|2 + |u|2.

Taking δ0 small if necessary, there exists ε0 > 0 such that

∀t ∈ Dδ0 ,

∫
|x+x(t)−X(t)|≤R0

|∇u(t, x + x(t))|2 + |u(t, x + x(t))|2 ≥ ε0 > 0.

Using the fact that K has a compact closure in H1(R3), we get that |x(t) − X(t)| is 
bounded. Thus, one can modify x(t) such that K remains compact and for all t in Dδ0 , 
x(t) = X(t). �
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4.2. Control of the translation parameters

Proposition 4.7. Consider a solution u of (NLSΩ) such that

M [u] = MR3 [Q], E[u] = ER3 [Q], ‖∇u0‖L2(Ω) < ‖∇Q‖L2(R3) (4.34)

and

K := {u(t, x + x(t)); t ≥ 0} (4.35)

has a compact closure in H1(R3). Then x(t) is bounded.

We start with the following lemma.

Lemma 4.8. Let u be as in the Proposition 4.7. Let {tn} be a sequence of time, such that 
tn −→ +∞. Then |x(tn)| −→ +∞ as n → +∞, if and only if δ(tn) −→ 0 as n goes to 
+∞.

Proof. We first prove that δ(tn) −→ 0 implies that |x(tn)| −→ +∞ as n → +∞. If not, 
x(tn) converges (after extraction) to x∞ in R3. By the compactness of the closure of 
K, u(tn, · + x(tn)) converges in H1(R3) to some v0(· − x∞) ∈ H1(R3). By the assump-
tion (4.34) and the fact that δ(tn) −→ 0, ER3 [v0] = ER3 [Q], MR3 [v0] = MR3(Q) and 
‖∇v0‖L2(R3) = ‖∇Q‖L2(R3). By Proposition 2.1, there exist θ0 ∈ R and x0 ∈ R3 such 
that v0 = eiθ0Q(· −x0). On the other hand, if x +x(tn) ∈ Ω, then u(tn, x +x(tn)) converges 
in H1

0 (Ω), as H1
0 (Ω) is a close subspace of H1(R3). Thus, the restriction of v0(· − x∞)

to Ω belongs to H1
0 (Ω), which contradicts the fact that eiθ0Q(· + x∞ − x0) /∈ H1

0 (Ω).
Next, we prove that |x(tn)| −→ +∞ as n → +∞ implies that δ(tn) −→ 0 as n goes 

to +∞.
We argue by contradiction, assuming (after extraction) that

δ(tn) −−−−−→
n→+∞

δ∞ > 0 and tn −−−−−→
n→+∞

t∞ ∈ R ∪ {±∞}.

By the continuity of x(t), using |x(tn)| → +∞, we must have t∞ ∈ {±∞}.
Assume, say, t∞ = +∞, and let ϕ∞ = lim

n→+∞
u(tn, x + x(tn)) in H1(R3) (after ex-

traction). We have

ER3 [ϕ∞] = ER3 [Q], MR3 [ϕ∞] = MR3 [Q],∫
R3

|∇ϕ∞|2 =
∫
R3

|∇Q|2 − δ∞ <

∫
R3

|∇Q|2 .

Let ϕ be the solution of (NLSR3) with the initial datum ϕ∞ at t = 0. By [8], ϕ is global 
and one of the following holds:
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(1) ϕ scatters in both time directions.
(2) ∃ τ, θ ∈ R and ε ∈ {±1} such that ϕ(t) = eiθU−(ε t + τ), where U−(t) −−−−→

t→+∞
Q and 

U− scatters for negative time.

In case (1) or in the case (2) with ε = −1, one can prove by approximation, following 
the proof of Theorem 4.1 in [21], that u scatters for positive time.

In case (2) with ε = +1, we obtain for large n, with the same argument

‖u‖S(−∞,tn) ≤ C ‖U−‖S(−∞,t∞) , where C is a fixed constant.

Letting n go to +∞, we see that u has a finite Strichartz norm, thus, u scatters also in 
both time directions, which contradicts the fact that u satisfies (4.35) and (4.34). �
Lemma 4.9. Let X(t) be as in (3.8). Taking a smaller δ0 if necessary, there exists C > 0
such that

e−|X(t)|

|X(t)| ≤ Cδ(t) for any t ∈ Dδ0 . (4.36)

Proof. Note that, by Proposition 4.1, taking a smaller δ0 if necessary, we can assume 
|X(t)| ≥ C for an arbitrarily large constant C > 0. The proof consists of 3 steps.

• Step 1: The estimate of δ(t) with respect to an auxiliary modulation parameter X1(t)
on R3. Let u(t) ∈ H1(R3) be the extension of u to R3 defined as in (2.8), we then 
have

MR3 [u] = MR3 [Q], ER3 [u] = ER3 [Q], and
∫
R3

|∇u|2 <

∫
R3

|∇Q|2 . (4.37)

Arguing as in Section 3, but on the whole space R3, see [8, Lemma 4.1 and 4.2], 
there exist θ1(t) and X1(t), C1 functions of t, such that

e−iθ1(t)−itu(t, x + X1(t)) = (1 + ρ1(t))Q(x) + h̃(t, x), (4.38)

where

ρ1(t) = Re
e−iθ1−it

∫
R3 ∇u(t, x + X1(t)).∇Q(x)dx

‖∇Q‖2
L2(R3)

− 1, (4.39)

|ρ1(t)| ≈

∣∣∣∣∣∣
∫
R3

Q h̃ dx

∣∣∣∣∣∣ ≈
∥∥∥h̃∥∥∥

H1(R3)
≈ δ(t). (4.40)

In this step we prove
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e−|X1(t)|

|X1(t)|
≤ Cδ(t). (4.41)

By (4.38), x ∈ Ωc implies (1 + ρ1(t))Q(x −X1(t)) + h̃(t, x −X1(t)) = 0, i.e.,∥∥∥(1 + ρ1(t))Q(x−X1(t)) + h̃(t, x−X1(t))
∥∥∥
L2(Ωc)

= 0.

By (4.40), we have ∫
Ωc

|Q(x−X1(t))|2 dx ≤ C δ(t)2. (4.42)

By (2.9), one can see that |X1(t)| is large. For x ∈ Ωc, we have

1
2 |X1(t)| ≤ |x−X1(t)| ≤ 2|X1(t)|.

From Lemma 2.2, we have

Q(x) = e−|x|

|x|

(
a + O( 1

|x| 12
)
)
, for some a > 0.

Using (4.42), we obtain (4.41).
• Step 2: Comparison of X(t) and X1(t).

We prove that there exists C > 0 such that

|X(t) −X1(t)| ≤ C ∀t ∈ Dδ0 . (4.43)

We fix t ∈ Dδ0 . We can assume

|X(t) −X1(t)| ≥ 1, (4.44)

or else we are done.
Let x ∈ Ω, by (4.38) and (3.9), we have

u(t, x) = eiθ(t)+it(1 + ρ(t))Q(x−X(t))Ψ(x) + eiθ(t)+ith(t, x)

= eiθ1(t)+it(1 + ρ1(t))Q(x−X1(t)) + eiθ1(t)+it h̃(t, x).

Using (4.40) and Proposition 3.3, we have∫
|x−X(t)|<1

∣∣∣Q(x−X(t))Ψ(x)eiθ(t) −Q(x−X1(t))eiθ1(t)
∣∣∣2 ≤ C

(
δ2(t) + e−2|X(t)|

|X(t)|2
)
.

Recall that |X1(t)| and |X(t)| are large and Ψ(x) = 1 for large |x|.
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∫
|x|<1

|Q(x)|2dx ≤ C

∫
|x−X(t)|<1

|Q(x−X1(t))|2dx + Cδ2(t) + C
e−2|X(t)|

|X(t)|2

≤
∫

|x−X(t)|<1

e−2|x−X1(t)|

|x−X1(t)|2
dx + Cδ2(t) + C

e−2|X(t)|

|X(t)|2 .

Using the fact that |x −X1(t)| ≥ |X(t) −X1(t)| − |x −X(t)| ≥ |X(t) −X1(t)| − 1, 
in the support of the integral in the last line, we obtain∫

|x|<1

|Q(x)|2dx ≤ C
e−2|X(t)−X1(t)|

|X(t) −X1(t)|2
+ C δ2(t) + C

e−2|X(t)|

|X(t)|2 .

Recall that, by Lemma 4.8 if |X(t)| is large, then δ(t) and e−2|X(t)|

|X(t)|2 are small. By 
(4.44), we get

1
2

∫
|x|<1

|Q(x)|2 dx ≤ C
e−2|X(t)−X1(t)|

|X(t) −X1(t)|2
≤ Ce−2|X(t)−X1(t)|,

which yields

|X(t) −X1(t)| ≤ C − log

⎛⎜⎝1
2

∫
|x|<1

|Q(x)|2 dx

⎞⎟⎠ .

Thus, |X(t) −X1(t)| is bounded.
• Step 3: Conclusion of the proof.

From Step 2 we have |X(t) −X1(t)| ≤ C, and since |X(t)| is large, we have

1
2 |X(t)| ≤ |X(t)| − |X(t) −X1(t)| ≤ |X1(t)| ≤ |X1(t) −X(t)| + |X(t)| ≤ 2|X(t)|.

(4.45)
By Step 1, we get δ2(t) ≥ C e−2|X1(t)|

|X1(t)|2 , which implies

δ2(t) ≥ C
e−2|X(t)|

|X(t)|2 ,

concluding the proof of Lemma 4.9. �
Lemma 4.10. Let u be a solution of (NLSΩ) satisfying the assumptions of the Proposi-
tion 4.7. Then there exists a constant C > 0 such that if 0 ≤ σ ≤ τ

τ∫
δ(t) ≤ C

[
1 + sup

t∈[σ,τ ]
|x(t)|

]
(δ(σ) + δ(τ)) . (4.46)
σ
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Proof. Let ϕ be a smooth radial function such that

ϕ(x) :=
{
|x|2 if |x| ≤ 1,
0 if |x| ≥ 2.

Consider the localized variance,

YR(t) =
∫
Ω

R2ϕ
( x

R

)
|u(t, x)|2 dx, (4.47)

where R is large positive constant, to be specified later. Then,

Y ′
R(t) = 2R Im

∫
Ω

ū∇ϕ
( x

R

)
· ∇u dx, |Y ′

R(t)| ≤ C R. (4.48)

Furthermore,

Y ′′
R(t) = 8

∫
Ω

|∇u|2 dx− 6
∫
Ω

|u|4 dx + AR(u(t)) − 2
∫
∂Ω

|∇u|2 x · �n dσ(x),

where �n is the outward normal vector and

AR(u(t)) := 4
∑
j �=k

∫
Ω

∂2ϕ

∂xj∂xk

( x

R

) ∂u

∂xj

∂ū

∂xk
+ 4

∑
j

∫
Ω

(
∂2ϕ

∂x2
j

( x

R

)
− 2

)∣∣∂xj
u
∣∣2

− 1
R2

∫
Ω

|u|2Δ2ϕ
( x

R

)
−
∫
Ω

(
Δϕ

( x

R

)
− 6

)
|u|4. (4.49)

As ∂Ω is convex and 0 ∈ Ω, one can see that x · �n ≤ 0, for all x ∈ ∂Ω. Thus,

−2
∫
∂Ω

|∇u|2 x · �n dσ(x) = 2
∫
∂Ω

|∇u|2 |x · �n| dσ(x).

Using the fact ‖Q‖4
L4 = 4

3 ‖∇u‖2
L2 and E[u] = ER3 [Q], we have 8 ‖∇u‖2

L2 − 6 ‖u‖4
L4 =

4δ(t), which yields

Y ′′
R(t) = 4δ(t) + AR(u(t)) + 2

∫
∂Ω

|∇u|2 |x · �n| dσ(x). (4.50)

• Step 1: Bound on AR.
In this step we prove: for ε > 0, there exists a constant Rε > 0 such that

∀t ≥ 0, R ≥ Rε(1 + |x(t)|) =⇒ |AR(u(t))| ≤ εδ(t). (4.51)
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We distinguish two cases: δ small or not. In the first case, we will use the estimate 
on the modulation parameters in Section 3. Consider δ0 > 0, as in the previous 
Section, such that the modulation parameters, Θ(t), X(t), ρ(t) are well defined for 
all t ∈ Dδ0 . Let δ1 to be specified later such that 0 < δ1 < δ0. Assume that t ∈ Dδ1 . 
Let g−X = ρQ−XΨ + h, then from Proposition 3.3 with Lemma 4.9 and (3.8), we 
have

u(t, x) = eiθ(t)+itQ(x−X(t))Ψ(x) + g(t, x−X(t))eiθ(t)+it and

‖g‖H1
0 (Ω) ≤ Cδ(t). (4.52)

We claim that for large R,

∀θ0 ∈ R, ∀x0 ∈ R3, AR

(
eiθ0Q(· + x0)

)
= 0 (4.53)

Indeed, fix R > 0 large enough so that ϕ(x/R) = |x|2 if x is in a neighborhood of 
the obstacle Θ. Consider the solution U(t, x) = ei(t+θ0)Q(x + x0) of (NLS)R3 . We 
note that for this solution,

∀t ∈ R,

∫
R3

R2ϕ
( x

R

)
|U(t, x)|2dx =

∫
R3

R2ϕ
( x

R

)
|Q(x)|2dx

(which is independent of t), and

8‖∇U(t)‖2
L2 − 6‖U(t)‖4

L4 = 0.

By the same explicit computation as the one leading to (4.50), but on the whole 
space R3, we obtain

0 = d2

dt2

∫
R3

R2ϕ
( x

R

)
|U(t, x)|2 = AR(U(t)),

which proves (4.53). Note that we have used that by our assumption on R, all the 
integrands in the definition (4.49) of AR are zero in a neighborhood of the obstacle Θ.
Using the change of variable y = x −X(t) in (4.49), we get

|AR(u(t))| =
∣∣∣AR(u(t)) −AR(eiθ(t)+itQ(x−X(t))

∣∣∣
≤ C

∫
|y+X(t)|≥R

(
|∇Q(y)||∇g(y)| + |∇g(y)|2 + |Q(y)||g(y)| + |Q(y)||g(y)|3

+ |g(y)|2 + |g(y)|4
)
dy
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≤ C

∫
|y+X(t)|≥R

(
e−|y|

|y|
(
|∇g(y)| + |g(y)| + |g(y)|3

)

+ |∇g(y)|2 + |g(y)|2 + |g(y)|4
)
dy.

By (4.52), we have ‖g‖H1
0 (Ω) ≤ Cδ(t), which yields

R ≥ R0 + |X(t)| =⇒ |AR(u(t))| ≤ C
[
e−R0(δ(t) + δ(t)3) + δ(t)2 + δ(t)4

]
≤ C

[
e−R0 + e−R0δ(t)2 + δ(t) + δ(t)3

]
δ(t)

≤ εδ(t),

provided R0 > 0 is such that Ce−R0 ≤ ε
2 and δ1 is such that Ce−R0δ2

1 + δ1 + δ3
1 ≤ ε

2 .
Since 0 < δ1 < δ0 and x(t) = X(t) on Dδ0 , we obtain (4.51) for δ(t) < δ1.
Now consider the second case, i.e., δ(t) ≥ δ1. By (4.49), we have

|AR(u(t))| ≤ C

∫
|x−x(t)|≥R−|x(t)|

|∇u(t)|2 + |u(t)|4 + |u(t)|2dx.

By the compactness of K, there exists R1 > 0 such that

R ≥ |x(t)| + R1 and δ(t) ≥ δ1 =⇒ |AR(u(t))| ≤ εδ1 ≤ εδ(t), (4.54)

which concludes the proof of (4.51) and completes Step 1.
• Step 2: Conclusion of the proof.

By (4.50) and (4.51), we get that there exists R2 > 0 such that,

R ≥ R2(1 + |x(t)|) =⇒ |Y ′′
R(t)| ≥ 2δ(t).

Let R = R2(1 + supσ≤t≤τ |x(t)|). Then

2
τ∫

σ

δ(t)dt ≤
τ∫

σ

Y ′′
R(t) dt ≤ Y ′

R(τ) − Y ′
R(σ). (4.55)

If δ(t) < δ0, then by Step 1, changing the variable y = x −X(t) and since Ψ(x) = 1
for large |x|, we obtain

Y ′
R(t) = 2R Im

∫
ḡ(y) ∇ϕ

(
y + X(t)

R

)
· ∇ (Q(y)Ψ(y + X(t))

+ 2R Im
∫

Q(y)Ψ(y + X(t))∇ϕ

(
y + X(t)

R

)
· ∇g(y) dy

+ 2R Im
∫

ḡ(y)∇ϕ

(
y + X(t)

R

)
· ∇g(y)dy,
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which yields

|Y ′
R(t)| ≤ CR(δ(t) + δ(t)2) ≤ CRδ(t).

This inequality is also valid for δ(t) ≥ δ0, by straightforward estimates. Using (4.55), 
we obtain

τ∫
σ

δ(t)dt ≤ C R(δ(σ) + δ(τ))

≤ C R2

(
1 + sup

σ≤t≤τ
|x(τ)|

)
(δ(σ) + δ(τ)).

This concludes the proof of Lemma 4.10. �
Lemma 4.11. There exists a constant C > 0 such that

∀σ, τ > 0 with σ + 1 ≤ τ, |x(τ) − x(σ)| ≤ C

τ∫
σ

δ(t)dt. (4.56)

Proof. Let δ0 > 0 be as in Section 3. Let us first show that there exists δ1 > 0 such that,

∀τ ≥ 0 inf
t∈[τ,τ+2]

δ(t) ≥ δ1 or sup
t∈[τ,τ+2]

δ(t) < δ0. (4.57)

If not, there exist tn, t′n ≥ 0 such that

δ(tn) −−−−−→
n→+∞

0, δ(t′n) ≥ δ0, |tn − t′n| ≤ 2, (4.58)

extracting a subsequence if necessary, we may assume

lim
n→+∞

tn − t′n = τ ∈ [−2, 2]. (4.59)

Note that if t′n goes to +∞, then |x(t′n)| converges (after extraction) to a limit X0 ∈ R3. 
If not |x(t′n)| −→ +∞ and by Lemma 4.8, δ(t′n) −→ 0, which contradicts (4.58).

By the compactness of K, we have

u(t′n, · + x(t′n)) −−−−−−→
n−→+∞

w0 ∈ H1(R3).

Denote v0(x) = w0(x −X0). We have

u(t′n, · + x(t′n)) −−−−−−→
n−→+∞

v0(· + X0) ∈ H1(R3). (4.60)
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Thus,

u(t′n) −−−−−−→
n−→+∞

v0 ∈ H1(R3).

In particular, v0 = 0 on Ωc and we obtain,

u(t′n) −−−−−−→
n−→+∞

v0 ∈ H1
0 (Ω). (4.61)

Since δ(t′n) =
∫
|∇Q|2 −

∫
|∇u(t′n, · + x(t′n))|2 ≥ δ0 > 0, we have

‖∇v0‖L2(Ω) < ‖∇Q‖L2(R3) .

Let v(t) be a solution of (NLSΩ) with initial data v0 at t = 0 and maximal time of 
existence I. Then by continuity of the flow of the NLSΩ equation, we have for all t ∈ I,

‖∇v(t)‖L2(Ω) < ‖∇Q‖L2(R3) . (4.62)

As a consequence, I = R and by continuity of the flow of the NLSΩ equation, (4.59) and 
(4.61), we have

u(tn) −−−−−−→
n−→+∞

v(τ) ∈ H1
0 (Ω).

Since δ(tn) → 0, ‖∇v(τ)‖L2(Ω) = ‖∇Q‖L2(R3), which contradicts (4.62).
Now, we prove (4.56) with an additional condition that τ < σ + 2. By (4.57), we may 

assume that

inf
t∈[σ,τ ]

δ(t) ≥ δ1 or sup
t∈[σ,τ ]

δ(t) < δ0.

In the first case, we have 
∫ τ

σ
δ(t) ≥ δ1 and by a straightforward consequence of the 

compactness of K and the continuity of the flow of (NLSΩ) equation, we have

∃C > 0, ∀t, s ≥ 0, |t− s| ≤ 2 =⇒ |X(t) −X(s)| ≤ C

δ1

τ∫
σ

δ(t)dt.

In the second case, by Corollary 4.6 we have, ∀t ∈ Dδ0 , x(t) = X(t), and from Lem-
mas 3.4 and 4.9, we have

|X ′(t)| ≤ Cδ(t). (4.63)

Thus, (4.56) follows from the time integration of (4.63) for τ < σ + 2.
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To conclude the proof of Lemma 4.11, we divide [σ, τ ] into intervals of length at least 
1 and at most 2 and combine together the previous inequalities to get (4.56). �
Proof of the Proposition 4.7. We argue by contradiction. Assume that there exists 
τn −→ +∞ such that |x(τn)| −→ +∞ and |x(τn)| = supt∈[0,τn] |x(t)|. By Lemma 4.8, 
δ(τn) −−−−−→

n→+∞
0.

Let N0 be such that Cδ(τn) ≤ 1
100 for all n ≥ N0. By Lemmas 4.10 and 4.11 we have

|x(τn) − x(τN0)| ≤ C

τn∫
τN0

δ(t)dt

≤ C(1 + |x(τn)|)(δ(τN0) + δ(τn)),

hence,

|x(τn)| ≤ C|x(τN0)|,

which gives a contradiction. This concludes the proof of Proposition 4.7. �
4.3. Convergence in mean

Lemma 4.12. Consider a solution u(t) of (NLSΩ) satisfying assumptions of Proposi-
tion 4.7. Then

lim
T→+∞

1
T

T∫
0

δ(t)dt = 0. (4.64)

Corollary 4.13. Under the assumptions of Proposition 4.7, there exists a sequence of 
times tn such that tn → +∞ and

lim
n−→+∞

δ(tn) = 0.

Proof of Lemma 4.12. Consider the localized variance defined in (4.47) and recall that 
from the proof of Lemma 4.10, we have

Y ′′
R(t) = 4δ(t) + AR(u(t)) + 2

∫
∂Ω

|∇u|2 |x · �n|dσ(x), (4.65)

where �n is outward normal vector and AR is defined in (4.49).
If |y| ≤ 1, (Δ2ϕ)(y) = 0, ∂2

xj
ϕ(y) = 2 and Δϕ(y) = 6. Thus,

|AR(u(t))| ≤ C

∫
|∇u|2 + |u|4 + 1

R2 |u|
2. (4.66)
|x|≥R
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Let x(t) be as in Corollary 4.6 and K be defined by (4.2). Let ε > 0. By the compactness 
of K and Proposition 4.7, there exists R0(ε) > 0 such that

∀t ≥ 0,
∫

|x−X(t)|≥R0(ε)

|∇u|2 + |u|2 + |u|4 ≤ ε. (4.67)

Furthermore, x(t) is bounded, and thus, x(t)
t −−−−→

t→+∞
0. There exists t0(ε) such that

∀t ≥ t0(ε), |x(t)| ≤ εt.

Let

T ≥ t0(ε), R = εT + R0(ε) + 1 for t ∈ [t0(ε), T ].

Next, we use the fact that |x(t)| ≤ εT and R0(ε) + εT ≤ R, to get

∫
|x|≥R

|∇u|2 + |u|4 + 1
R2 |u|

2 ≤
∫

|x−x(t)|+|x(t)|≥R

|∇u|2 + |u|4 + 1
R2 |u|

2

≤
∫

|x−x(t)|≥R0(ε)

|∇u|2 + |u|4 + 1
R2 |u|

2 ≤ ε. (4.68)

By (4.48), we have

T∫
t0(ε)

Y ′′
R(t)dt ≤ |Y ′

R(T )| + |Y ′
R(t0(ε))| ≤ C R.

From (4.65), (4.66) and (4.68) we have

T∫
t0(ε)

δ(t)dt ≤ C(R + Tε) ≤ CR0(ε) + εT + 1,

where C > 0, independent of T and ε.
This yields

1
T

T∫
0

δ(t)dt ≤ 1
T

t0(ε)∫
0

δ(t) dt + C

T
(R0(ε) + 1) + Cε.

Taking first limsup as T → +∞, and letting ε tend to 0, we obtain (4.64). �
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Proposition 4.14. Let u be a solution of (NLSΩ) such that

M [u] = MR3 [Q], E[u] = ER3 [Q], ‖∇u0‖L2(Ω) < ‖∇Q‖L2(R3) (4.69)

and K = {u(t); t ≥ 0} has a compact closure in H1
0 (Ω). Then u ≡ 0.

Proof. If not, there exists a solution u �= 0 such that the assumptions of this Proposition 
are satisfied. From Lemma 4.12, there exists tn such that tn −→ +∞ and δ(tn) tends to 
0. By the compactness of the closure of K, u(tn) converges in H1

0 (Ω) to some v0 ∈ H1
0 (Ω)

and the fact that δ(tn) tends to 0 implies that E[v0] = ER3 [Q], M [v0] = MR3 [Q] and 
‖∇v0‖L2(Ω) = ‖∇Q‖L2(R3). Thus, v0 = eiθ0Q(x − x0) /∈ H1

0 (Ω), for some parameters 
θ0 ∈ R and x0 ∈ R3, which contradicts the fact that v0 ∈ H1

0 (Ω). �
Appendix A. Proof of the existence of initial data covered by Theorem 1

In this appendix, we prove the existence of initial data u0 ∈ H1
0 (Ω) that satisfy

MΩ[u0]EΩ[u0] = MR3 [Q]ER3 [Q] (A.1)

‖u0‖L2(Ω) ‖∇u0‖L2(Ω) < ‖Q‖L2(R3) ‖∇Q‖L2(R3) . (A.2)

Let λ > 0, ϕ ∈ H1
0 (Ω)\{0} and let uλ(t) be a solution of the NLSΩ equation with 

initial data uλ(t0) := u0,λ = λ ϕ ∈ H1
0 (Ω). Let us assume, without loss of generality, 

MΩ[ϕ] = MR3 [Q].
We have

EΩ[uλ]MΩ[uλ] = MR3 [Q]F(λ), where F(λ) := λ4

2

∫
Ω

|∇ϕ|2 − λ6

4

∫
Ω

|ϕ|4 .

One can see that F ′(λ) = 0 for λ0 :=
(

4
∫
|∇ϕ|2

3
∫
|ϕ|4

) 1
2

, F ′(λ) > 0 if λ < λ0 and 

F ′(λ) < 0 if λ > λ0.
Let us recall that we can extend the function ϕ ∈ H1

0 (Ω) by 0 on the obstacle and it 
can be identified to an element of H1(R3), which we have denoted by ϕ. Thus, we can 
apply the Gagliardo-Nirenberg inequality (2.2) to ϕ.

Using (2.2) with the sharp constant CGN = 4
3‖Q‖L2(R3)‖∇Q‖L2(R3)

and the fact that 
MΩ[ϕ] := MR3 [ϕ] = MR3 [Q], we have

∥∥ϕ∥∥4
L4(R3) ≤

4
3

∥∥∇ϕ
∥∥3
L2(R3)

‖∇Q‖L2(R3)
, (A.3)

which yields
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F(λ0) = 8
27

(∫ ∣∣∇ϕ
∣∣2)3

(∫
|ϕ|4

)2 >
1
6

∫
R3

|∇Q|2 = ER3 [Q].

Thus, there exists a unique λ1, λ2 > 0 such that λ1 < λ0 < λ2 and ER3 [Q] = F(λ1) =
F(λ2), i.e., EΩ[u0,λ1,2 ]MΩ[u0,λ1,2 ] = ER3 [Q]MR3 [Q]. It remains to prove that u0,λ1 sat-
isfies (A.2) and u0,λ2 satisfies ‖u0,λ2‖L2(Ω) ‖∇u0,λ2‖L2(Ω) > ‖Q‖L2(R3) ‖∇Q‖L2(R3).

Using (A.3) and the fact that λ4
0
∫ ∣∣∇ϕ

∣∣2 =
(

4
∫ ∣∣∇ϕ

∣∣2
3
∫ ∣∣ϕ∣∣4

)2 ∫ ∣∣∇ϕ
∣∣2, we have

∫
R3

|∇Q|2 < λ4
0

∫
R3

∣∣∇ϕ
∣∣2 .

Thus, there exists λ3 > 0 such that λ3 < λ0, and λ4
3

∫
R3

∣∣∇ϕ
∣∣2 =

∫
R3

|∇Q|2. Next, we show 

that λ1 < λ3 or equivalently that F(λ1) < F(λ3). Using (A.3), we obtain

F(λ3) = 1
2

∫
R3

|∇Q|2 − 1
4

⎛⎝∫
R3

|∇Q|2
⎞⎠

3
2

⎛⎝∫
R3

∣∣∇ϕ
∣∣2⎞⎠

3
2

∫
R3

∣∣ϕ∣∣4 > ER3 [Q] = F(λ1).

Since λ1 < λ3, we have

λ4
1

∫
R3

∣∣∇ϕ
∣∣2 = λ4

1

∫
Ω

|∇ϕ|2 <

∫
R3

|∇Q|2 ,

which implies that u0,λ1 satisfies (A.2) using that MΩ[ϕ] = MR3 [Q]. Similarly, we obtain

∫
R3

|∇Q|2 < λ4
2

∫
R3

∣∣∇ϕ
∣∣2 = λ4

2

∫
Ω

|∇ϕ|2 .

Hence,

‖u0,λ2‖L2(Ω) ‖∇u0,λ2‖L2(Ω) > ‖Q‖L2(R3) ‖∇Q‖L2(R3) .

Then, there exists a unique λ1 > 0, such that u0,λ1 satisfy (A.1) and (A.2).
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Appendix B. Existence of a continuous translation parameter

In this appendix, we prove:

Lemma B.1. Let u(t) be a solution of (NLSΩ) defined for t ≥ 0. Assume that for all 
sequence of times tn ≥ 0, there exists a sequence xn ∈ R3 such that 

(
u(tn, x + xn)

)
n

has 
a subsequence that converges in H1(R3). Then there exists a continuous function x(t)
such that

K = {u(x + x(t), t), t ∈ [0,+∞)} (B.1)

has a compact closure in H1(R3).

Proof. We can of course assume that u is not identically 0. We let χ be a nonincreasing 
radial cutoff function such that χ(x) = 1 if |x| ≤ 1/4 and χ(x) = 0 if |x| ≥ 1/2. We let, 
for t ≥ 0, R > 0,

A(t, R) = sup
y∈R3

∫
χ

(
x− y

R

)
|u(t, x)|2dx.

At fixed t, R �→ A(t, R) is a nondecreasing continuous function such that limR→0 A(t, R)
= 0 and limR→+∞ A(t, R) = ‖u0‖2

L2 . We choose R(t) > 0 such that

A(t, R(t)) = 7
8‖u0‖2

L2 .

• Step 1. In this step, we prove that R(t) is uniformly bounded for t ≥ 0. We argue by 
contradiction, assuming that there exists a sequence (tn)n such

lim
n→∞

R(tn) = ∞. (B.2)

By the assumptions of the lemma, there exists a sequence xn ∈ R3, and ϕ ∈ H1(R3)
such that (after extraction)

lim
n→∞

‖u(t, · + xn) − ϕ‖H1 = 0.

Since ‖ϕ‖2
L2 = ‖u0‖2

L2 , there exists ρ > 0 such that ‖ϕ‖2
L2(B(0,ρ)) ≥ 8

9‖u0‖2
L2 . This 

implies that lim infn→∞ ‖u(tn)‖2
L2(B(xn,ρ) ≥ 8

9‖u0‖2
L2 , and thus, for large n, that 

ρ ≥ R(tn), a contradiction.
• Step 2. By Step 1, taking R = supt≥0 R(t) < ∞, we have

∀t ≥ 0, sup
3

∫
χ

(
x− y

R

)
|u(t, x)|2dx ≥ 7

8‖u0‖2
L2 .
y∈R
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For t ≥ 0, we fix y(t) such that∫
χ

(
x− y(t)

R

)
|u(t, x)|2dx ≥ 4

5‖u0‖2
L2 . (B.3)

We claim that there exists δ > 0 such that

∀t, s ≥ 0, |t− s| ≤ δ =⇒
∫

χ

(
x− y(t)

R

)
|u(s, x)|2dx ≥ 3

4‖u0‖2
L2 (B.4)

∀t, s ≥ 0, |t− s| ≤ δ =⇒ |y(t) − y(s)| ≤ R. (B.5)

Indeed

d

ds

∫
χ

(
x− y(t)

R

)
|u(s, x)|2dx = −2� 1

R

∫
∇χ

(
x− y(t)

R

)
· ∇u(s, x)u(s, x)dx

and (B.4) follows the fact that u is bounded in H1(R3) by the assumptions of the 
lemma. By (B.4), and the definition of y(s),∫

χ

(
x− y(t)

R

)
|u(s, x)|2dx+

∫
χ

(
x− y(s)

R

)
|u(s, x)|2dx ≥ 4

3‖u0‖2
L2 = 4

3‖u(t)‖2
L2 ,

and (B.5) follows from the fact that x �→ χ((x − y(t))/R) and x �→ χ((x − y(s))/R)
have disjoint support if |y(t) − y(s)| > R.

• Step 3. We define x(t) as the function such that for all integer n ≥ 0, x(nδ) = y(nδ)
and x is affine on 

(
nδ, (n + 1)δ

)
. We claim that K defined by (B.1) has compact 

closure in H1(R3). Indeed, using (B.3) and the assumptions of the lemma, it is easy 
to see that

K̃ = {u(x + y(t), t), t ∈ [0,+∞)}

has compact closure in H1(R3). Noting that (B.5) and the definition of x(t) implies 
that |x(t) − y(t)| ≤ 2R for all t ≥ 0, we see that K has compact closure, concluding 
the proof. �

References

[1] R. Anton, Global existence for defocusing cubic NLS and Gross-Pitaevskii equations in three di-
mensional exterior domains, J. Math. Pures Appl. (9) 89 (4) (2008) 335–354.

[2] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. 
Ration. Mech. Anal. 82 (4) (1983) 313–345.

[3] M.D. Blair, H.F. Smith, C.D. Sogge, Strichartz estimates and the nonlinear Schrödinger equation 
on manifolds with boundary, Math. Ann. 354 (4) (2012) 1397–1430.

[4] N. Burq, P. Gérard, N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, Ann. 
Inst. Henri Poincaré, Anal. Non Linéaire 21 (3) (2004) 295–318.

[5] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics. New, 
vol. 10, York University Courant Institute of Mathematical Sciences, New York, 2003.

http://refhub.elsevier.com/S0022-1236(21)00408-0/bib934172A7DE73B728453A317D24227373s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib934172A7DE73B728453A317D24227373s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib6A1CEE37491C8F51C59F376B4085BB78s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib6A1CEE37491C8F51C59F376B4085BB78s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF84E5E6BE1C429F7289953BC148CD827s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF84E5E6BE1C429F7289953BC148CD827s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibA0CE68FF2674240576074661AB17DF09s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibA0CE68FF2674240576074661AB17DF09s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib2A41F28142052F1D65CF2CCB61C15BEDs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib2A41F28142052F1D65CF2CCB61C15BEDs1


54 T. Duyckaerts et al. / Journal of Functional Analysis 282 (2022) 109326
[6] T. Duyckaerts, J. Holmer, S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger 
equation, Math. Res. Lett. 15 (6) (2008) 1233–1250.

[7] T. Duyckaerts, F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. 
Anal. 18 (6) (2009) 1787–1840.

[8] T. Duyckaerts, S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation, 
Rev. Mat. Iberoam. 26 (1) (2010) 1–56.

[9] T. Duyckaerts, S. Roudenko, Going beyond the threshold: scattering and blow-up in the focusing 
NLS equation, Commun. Math. Phys. 334 (3) (2015) 1573–1615.

[10] D. Fang, J. Xie, T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger 
equation, Sci. China Math. 54 (10) (2011) 2037–2062.

[11] P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim. 
Calc. Var. 3 (1998) 213–233.

[12] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in 
Rn, in: Mathematical Analysis and Applications, Part A, in: Adv. in Math. Suppl. Stud., vol. 7, 
Academic Press, New York, 1981, pp. 369–402.

[13] C.D. Guevara, Global behavior of finite energy solutions to the d-dimensional focusing nonlinear 
Schrödinger equation, Appl. Math. Res. Express 2 (2014) 177–243.

[14] J. Holmer, S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear 
Schrödinger equation, Commun. Math. Phys. 282 (2) (2008) 435–467.

[15] O. Ivanovici, Precised smoothing effect in the exterior of balls, Asymptot. Anal. 53 (4) (2007) 
189–208.

[16] O. Ivanovici, On the Schrödinger equation outside strictly convex obstacles, Anal. PDE 3 (3) (2010) 
261–293.

[17] O. Ivanovici, F. Planchon, On the energy critical Schrödinger equation in 3D non-trapping domains, 
Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 (5) (2010) 1153–1177.

[18] C.E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, 
non-linear Schrödinger equation in the radial case, Invent. Math. 166 (3) (2006) 645–675.

[19] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, 
J. Differ. Equ. 175 (2) (2001) 353–392.

[20] R. Killip, M. Visan, X. Zhang, Riesz transforms outside a convex obstacle, Int. Math. Res. Not. 
2016 19 (2015) 5875–5921.

[21] R. Killip, M. Visan, X. Zhang, The focusing cubic NLS on exterior domains in three dimensions, 
Appl. Math. Res. Express 1 (2016) 146–180.

[22] R. Killip, M. Visan, X. Zhang, Quintic NLS in the exterior of a strictly convex obstacle, Am. J. 
Math. 138 (5) (2016) 1193–1346.

[23] M.K. Kwong, Uniqueness of positive solutions of Δu −u +up = 0 in Rn, Arch. Ration. Mech. Anal. 
105 (3) (1989) 243–266.

[24] O. Landoulsi, On blow-up solutions of the nonlinear Schrödinger equation in the exterior of a convex 
obstacle, preprint, 2020.

[25] O. Landoulsi, Construction of a solitary wave solution of the nonlinear focusing Schrödinger equation 
outside a strictly convex obstacle in the L2-supercritical case, Discrete Contin. Dyn. Syst., Ser. A 
41 (2) (2021) 701–746.

[26] O. Landoulsi, S. Roudenko, K. Yang, Soliton-obstacle interaction in the 2d focusing NLS equation: 
Numerical study, preprint, 2020.

[27] D. Li, H. Smith, X. Zhang, Global well-posedness and scattering for defocusing energy-critical NLS 
in the exterior of balls with radial data, Math. Res. Lett. 19 (1) (2012) 213–232.

[28] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally com-
pact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (2) (1984) 109–145.

[29] F. Merle, L. Vega, Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger 
equation in 2D, Int. Math. Res. Not. 8 (1998) 399–425.

[30] C.S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave 
equation, Commun. Pure Appl. Math. 14 (1961) 561–568.

[31] C.S. Morawetz, J.V. Ralston, W.A. Strauss, Correction to: “Decay of solutions of the wave equation 
outside nontrapping obstacles”, Commun. Pure Appl. Math. 30 (4) (1977) 447–508, Commun. Pure 
Appl. Math. 31 (6) (1978) 795.

[32] K. Nakanishi, W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation 
in 3D, Calc. Var. Partial Differ. Equ. 44 (1–2) (2012) 1–45.

[33] F. Planchon, L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4) 
42 (2) (2009) 261–290.

http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF4A0E13AABC421BDEC7410B60A2B43A3s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF4A0E13AABC421BDEC7410B60A2B43A3s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib9C7931E6E21EE3190576AB14BD0C53BEs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib9C7931E6E21EE3190576AB14BD0C53BEs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibD41B029F21945B78D8D48E8CB6DD5020s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibD41B029F21945B78D8D48E8CB6DD5020s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibDED887F926E732DBD1AE130DB180293Ds1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibDED887F926E732DBD1AE130DB180293Ds1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibD902C31A0FA842A56BE1A1604CEABED4s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibD902C31A0FA842A56BE1A1604CEABED4s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib9E9AD2269254B2B70E32E6C7DBE34A15s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib9E9AD2269254B2B70E32E6C7DBE34A15s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib8E13587DEC55813A933C0572D3FCF734s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib8E13587DEC55813A933C0572D3FCF734s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib8E13587DEC55813A933C0572D3FCF734s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib3938813F0C0DCCDB4EF3BCFED759007Fs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib3938813F0C0DCCDB4EF3BCFED759007Fs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibDE28C992825E8998583CB6BB3A80F823s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibDE28C992825E8998583CB6BB3A80F823s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib32D827D7B94F5D9FF4DB7529FA881FEAs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib32D827D7B94F5D9FF4DB7529FA881FEAs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib06B9E8C0BF9790E765AD686C8E659C25s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib06B9E8C0BF9790E765AD686C8E659C25s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib95346759CD5A9CE5E28635A14E28F3A2s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib95346759CD5A9CE5E28635A14E28F3A2s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibB716AB8623A1E499C2ECA4F23ED97438s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibB716AB8623A1E499C2ECA4F23ED97438s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib1FC8DAF9D0CEBD474F3CEBE3215FD625s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib1FC8DAF9D0CEBD474F3CEBE3215FD625s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibFCD7EB570EC6ED1D748E18CE4046CBC1s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibFCD7EB570EC6ED1D748E18CE4046CBC1s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibCEF066BDA988C82438818E598ADA40D6s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibCEF066BDA988C82438818E598ADA40D6s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF33F80B7BB49F2196E85AD4114F4C92As1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF33F80B7BB49F2196E85AD4114F4C92As1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibFA518FD8945E8CF4E5252481C7E42907s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibFA518FD8945E8CF4E5252481C7E42907s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibC915255BBBC606EC16BF31864B3C52C8s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibC915255BBBC606EC16BF31864B3C52C8s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibC915255BBBC606EC16BF31864B3C52C8s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib7103190E2689AFF1F3CDB53577E446CFs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib7103190E2689AFF1F3CDB53577E446CFs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib5E9CD97EA6821A9CE4CEE4BEF2107002s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib5E9CD97EA6821A9CE4CEE4BEF2107002s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib8A9FC8949677AF46A08BF01875AB66CDs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib8A9FC8949677AF46A08BF01875AB66CDs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib423947716F6E08BA0A5D55ACAFB4FD1Fs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib423947716F6E08BA0A5D55ACAFB4FD1Fs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib9F115C7D0D9FE70F120BEE1C2960321Es1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib9F115C7D0D9FE70F120BEE1C2960321Es1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib9F115C7D0D9FE70F120BEE1C2960321Es1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibE857C45B3E0F41A471B22EEE6AB1D31Cs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibE857C45B3E0F41A471B22EEE6AB1D31Cs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib93DC8EB49B0E9E9CF4464B7E613F3FC1s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bib93DC8EB49B0E9E9CF4464B7E613F3FC1s1


T. Duyckaerts et al. / Journal of Functional Analysis 282 (2022) 109326 55
[34] T. Tao, Nonlinear dispersive equations, in: Local and Global Analysis, in: CBMS Regional Con-
ference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical 
Sciences, Washington, DC, 2006.

[35] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. 
Phys. 87 (4) (1982/1983) 567–576.

[36] C.H. Wilcox, Spherical means and radiation conditions, Arch. Ration. Mech. Anal. 3 (1959) 133–148.
[37] K. Yang, The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl. Anal. 

16 (6) (2017) 2269–2297.

http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF6CAC9F177737EF59BB589E041CD92F5s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF6CAC9F177737EF59BB589E041CD92F5s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF6CAC9F177737EF59BB589E041CD92F5s1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF7FEDD6BFF295B839D1A024A9CEC312Cs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibF7FEDD6BFF295B839D1A024A9CEC312Cs1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibE3542D69DF1A3E79C35874941DFC3F5As1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibC886B1BEFDEACA9C078D11C36A13358Ds1
http://refhub.elsevier.com/S0022-1236(21)00408-0/bibC886B1BEFDEACA9C078D11C36A13358Ds1

	Threshold solutions in the focusing 3D cubic NLS equation outside a strictly convex obstacle
	1 Introduction
	2 Preliminaries
	2.1 Properties of the ground state
	2.2 Coercivity property
	2.3 Cauchy theory and profile decomposition

	3 Modulation
	4 Scattering
	4.1 Compactness properties
	4.2 Control of the translation parameters
	4.3 Convergence in mean

	Appendix A Proof of the existence of initial data covered by Theorem 1
	Appendix B Existence of a continuous translation parameter
	References


