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ABSTRACT
Statistical analysis of shape evolution during cell migration is
important for gaining insights into biological processes. This
paper develops a time-series model for temporal evolution of
cellular shapes during cell motility. It uses elastic shape anal-
ysis to represent and analyze shapes of cell boundaries (as pla-
nar closed curves), thus separating cell shape changes from
cell kinematics. Specifically, it utilizes Transported Square-
Root Velocity Field (TSRVF), to map non-Euclidean shape
sequences into a Euclidean time series. It then uses PCA
to reduce Euclidean dimensions and imposes a Vector Auto-
Regression (VAR) model on the resulting low-dimensional
time series. Finally, it presents some results from VAR-based
statistical analysis: estimation of model parameters and diag-
nostics, synthesis of new shape sequences, and predictions of
future shapes given past shapes.

Index Terms— cell migration, shape dynamics, elastic
shape model, amoeboid motion

1. INTRODUCTION

Cell migration is a crucial process in various biological phe-
nomenon such as embryonic development, wound healing,
cancer metastasis and others. Diverse biological and chem-
ical reactions of the intra-cellular as well as extracellular en-
vironments invoke rearrangement of cytoskeleton, which in
turn leads to cell migration. This migration usually has two
components: (1) kinematics, relating to the overall motion
of the cell, and (2) morphology, relating to the change in its
shape. Quantifying characteristics of cellular deformation –
both kinematic and morphological – can provide interesting
insights into the cell migration process. In this paper, we
are particularly interested in the motility patterns of amoeba,
which exhibits a certain type of cell migration. The amoeboid
migration is characterized by formation of small membrane
protrusion (a.k.a. blebs) with sequential contraction and re-
traction of the cell membrane, thus making it an interesting
example for studying the membrane dynamics involved in cell
motility. Furthermore, we are mainly interested in isolating
and modeling dynamic evolution of shapes of amoeba over
time, while discarding their kinematics or global motions.
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Fig. 1: Segmentations (in green) in bright-field image sequences.

The field of biological shape analysis, using precise math-
ematical representations and statistical modeling, is an active
area of research. While past research has mainly dealt with
static shapes [1, 2], our interest lies in dynamics of shape evo-
lution, i.e. How to mathematically and statistically model a
shape changing over time? We will consider amoeba as 2D
objects represented by their boundaries (simple closed, pla-
nar curves) in video frames. We extract these cell boundaries
from bright field microscopy images, as these images pro-
vide better visibility of cell membrane deformation (see Fig.
1). The cell boundaries are extracted using a deep learning
based method [3], tailored specifically to segment cells from
bright field microscopy images. An example of segmenta-
tion of cells from an image sequence is shown in Fig. 1 (in
green). The outer contours extracted from these segmenta-
tions are then used in shape modeling.

There exists an extensive literature on quantifying kine-
matics of single cell motility [4, 5], but few have explored
shape evolutions involved in cell motility. A few papers have
investigated the dynamics of cell membrane during migra-
tion. albeit from a biological perspective [6, 7]. In [8], the
authors mainly analyze membrane protrusion characteristics
which guide cell motion, while in [9] the authors temporally
associate cell boundaries to analyze a wave-like propagation
of cell membrane. Tweedy et al. [2] analyze different motil-
ity modes adopted by a cell in the migration process using
principal components of Fourier shape descriptors. In [1], the
authors use various shape features to classify and interpret dif-
ferences between amoeba populations. However, these works
have not accounted for the temporal correlation in shape evo-
lution (a crucial aspect in amoeboid motion), while comput-
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ing shape features. This calls for employing a more sophisti-
cated model of dynamic shape evolution, a model that is able
to characterize complex shapes involved in cell motility.

The main challenge in statistical modeling of shape dy-
namics comes from infinite-dimensionality and nonlinearity
of shape spaces. Classical time series models are usually de-
fined for finite-dimensional Euclidean state spaces. We will
use the geometry of shape spaces to flatten nonlinear repre-
sentations of cell shapes into Euclidean variables, and will
then utilize PCA to reach finite-dimensionality. Specifically,
we will use a combination of exponential, inverse exponential
maps and parallel translations on shape spaces, to represent a
shape time series by a Euclidean time series. Then, we model
this Euclidean time series using a standard vector autoregres-
sive (VAR) model, and perform parameter estimation. The
estimated parameters are then used to analyze and compare
shape evolutions across observations.

2. MATHEMATICAL REPRESENTATIONS

Here we present some background material on shape analysis
of planar closed contours, and use it to derive Euclidean time-
series representations of shape sequences.

2.1. Elastic Shape Analysis of Contours

In order to develop a mathematical representations of shape
evolutions, we use the elastic shape theory [10, 11, 12]. In this
theory, each closed parametrized curve β : S1 → R

2 is repre-
sented by its Square-Root Velocity Function (SRVF) q : S1 →
R

2 given by: q(t) = β̇(t)√
|β̇(t)|

. The use of SRVF greatly sim-

plifies shape analysis of curves, especially in imposing invari-
ance to rotation, translation, scaling, and re-parameterization
of β. These transformations are shape-preserving and should
not influence shape analysis results.

The SRVF q is already invariant to the translation of β. If
a curve β is rescaled to have length one, then its SRVF q has
L
2 norm of one, i.e. q ∈ S∞, the unit Hilbert sphere. If β

is rotated by a matrix O ∈ SO(2), and re-parameterized by
a diffeomorphism γ, then the new SRVF is given by O(q ◦
γ)
√
γ̇. Since all of these preserve shape of β, the shape of β

is represented by the set [q] = {O(q ◦γ)√γ̇|O ∈ SO(2), γ ∈
Γ}, that contains SRVFs of all possible rotations and repa-
rameterizations of β. The set of all shapes is denoted by
S = {[q]|q ∈ S∞}. S is an infinite-dimensional, nonlinear
space and that limits our ability to perform statistical analy-
sis. (For instance, the average of q1 and q2 does not result
in the average of their shapes.) However, a number of tools
have been developed in past to study shapes as elements of S.
Fig. 2 show some examples of finding the shortest paths in S,
or geodesics, between cell shapes. This geodesic computation
can also be used to compute shooting vectors, defined as fol-
lows. Given any two shapes [q1] and [q2], let ψ : [0, 1] → S
be a geodesic path such that ψ(0) = [q1] and ψ(1) = [q2].

Fig. 2: Examples of shortest paths, or geodesics, between cell shapes
treated as elements of S. First and last curves in each row are
given and the middle shapes represent geodesic interpolations be-
tween them.

Fig. 3: Examples of computing shape velocities α̇(τ) in the shape
space.

Then, the initial velocity ψ̇(0) ∈ T[q1](S) is called the shoot-
ing vector from [q1] to [q2]. These quantities – geodesics,
shape distances, and shooting vector – are invariant to rigid
motions of curves and their parameterizations, and are instru-
mental is removing cell kinematics from its morphology.

Given the shape space S, a video of an evolving cell cor-
responds to a discrete-time shape sequence in S. Next we
develop Euclidean representations for such sequences.

2.2. Transported Velocity Fields

Let α : I → S represent a discrete-time evolution of a shape
over the observed times I = {τ1, τ2, . . . }. What is a use-
ful mathematical representation for comparing and modeling
such processes? As stated earlier, the difficulty comes from
the nonlinearity and infinite dimensionality of S. So, we use
the changes in the shapes, denoted by α̇, instead of shapes α
themselves, to represent the dynamics. Here α̇(τi) stands for
the shooting vector in going from α(τi) to α(τi+1). Figure 3
shows three examples of computing shooting vectors. In each
panel we show two shapes, and the infinitesimal deformation
(shooting vector field) on the first shape that takes the first
shape to the second.

Analyzing shooting vectors is still difficult because
α̇(τ) ∈ Tα(τ)(S) are elements of different tangent spaces
at different times, and we need to bring them to the same
space for comparisons. This is accomplished using parallel
transport.

Definition 1 Transported Square-Root Velocity Field
(TSRVF) [13, 14]: For a shape sequence α : I → S, define its
transported square-root velocity field (TSRVF) according to:
Fα(τ) = (α̇(τ))α(τ)→α(0) ∈ Tα(0)(S), where α(τ) → α(0)
denotes the parallel transport of α̇(τ) from α(τ) to α(0)
along the path α. Similarly, define the integrated TSRVF
(I-TSRVF) to be: Hα(τ) =

∫ τ

0
Fα(τ) dτ .
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Fig. 4: Reconstruction of a shape sequence α from its Euclidean
representations in R

d for different d. Left panel shows the error
associated with each reconstructed shape, while the right column
shows the reconstructed sequences.

We will represent a sequence α by either the pair (α(0), Fα)
or (α(0), Hα) for the purposes of statistical analysis. These
representations are Euclidean and fully invertible. That is,
given any one of these pairs, one can reconstruct α using co-
variant integration and parallel translation.

The TSRVF Fα and I-TSRVF Hα are time series in a
vector space Tα(0)(S) and can be used for statistical mod-
eling and analysis. Since TSRVF is a parallel transport of
the velocity vector, it represents the velocity of the original
shape sequence, and since I-TSRVF is an integral of TSRVF
it represents the original shapes. The only remaining issue
is that these vector fields are still infinite dimensional. Let
Π : Tα(0)(S) → R

d denote a linear projection to a finite-
dimensional subspace R

d of the tangent space Tα(0)(S).
This projection can come from PCA of observed TSRVFs,
for example. Let xα(τ) = Π(Fα(τ)) (correspondingly
yα(τ) = Π(Hα(τ))) denote the resulting d-dimensional, Eu-
clidean process associated with the original shape sequence
α; we shall call it TSRVF-PCA representation. This forward
mapping is summarized by the steps: α ∈ SI −→ α̇ ∈
(TS)I −→ Fα ∈ Tα(0)(S) Π−→ xα ∈ (Rd)I . Using appro-
priate constraints, one can invert Π for use in mapping the
Euclidean time series xα back to the shape space S; call this
reconstruct sequence α̂. This way one can perform analysis in
(Rd)I and visualize results in the shape space. Fig. 4 shows
reconstruction error (ds(α(τ), α̂d(τ)) versus τ , for a shape
sequence α and different values of d. It also shows some
examples α̂ for different values of d. The reconstruction error
is minimal for d = 10, and very high for d = 1. The value of
d = 5 seems to provide a balance between low dimension and
reconstruction error. (Similarly, one can repeat this process
for yα and reconstruct α.)

3. VAR MODELS IN TSRVF-PCA SPACE

Now we have Euclidean d-dimensional representations xα, yα :
I → R

d associated with a shape sequence α : I → S. We
impose a statistical model on this representation and use it to
analyze given amoeba shape sequences. For this, we can use
one of several existing models involving auto-regression and
moving averages. We will make a notational simplification
that time indices are natural numbers I = {1, 2, 3, . . . , T0}.
A potential model for the resulting discrete-time series is a
VAR(p) model:

xα(τ) = c+

p∑
j=1

Ajxα(τ − j) + εα(τ), τ ∈ I . (1)

where: p is the model lag, c ∈ R
d is a constant, Aj ∈

R
d×d are coefficient matrices, and εα(τ) ∈ R

d is the
observation noise, modeled as i.i.d multivariate normal
with mean zero and covariance Σ. Given an observed se-
quence xα one can estimate model parameters (c, {Aj}
and Σ) using the generalized least square error criterion.
To facilitate estimation, we rewrite the VAR(p) model as
xT
α(τ) = zT (τ)β + εTα(τ), where the superscript T de-

notes transpose, z(τ) .
= (1, xT

α(τ − 1), · · · , xT
α(τ − p)) and

βT .
= [c, A1, · · · , Ap]. Using a vector-matrix notation, we

obtain vec(X) = (Ik ⊗ Z)vec(β) + vec(ε), where ⊗ de-
notes the tensor product. Note that the covariance matrix of
vec(ε) is Σα ⊗ IT0−p. The least-square estimate of β is ob-
tained by minimizing S(β) = tr[(X−Zβ)Σ−1

α (X−Zβ)T ],
resulting in: β̂ = (ZTZ)−1(ZTX) =[

T∑
τ=p+1

z(τ )zT (τ )

]−1 T∑
τ=p+1

z(τ )xT
α(τ ).

Note that this estimator does not depend on Σ. Model selec-
tion (estimation of p) is performed using an information cri-
teria, such as AIC, BIC, or HQ. AIC usually tends to choose
large numbers of lags since it asymptotically overestimates
the order with positive probability, whereas BIC and HQ es-
timate the order consistently under fairly general conditions.
Figure 5 shows a plot of BIC values for VAR(p) model versus
p for 12 different training sequences. These results show that
p = 3, 4 usually provides the best model fit to the data.

3.1. Synthesizing Shape Sequences

One of the ways of validating a dynamical model on shapes
is to synthesize new sequences from this model and visualize
the results. Let xα : I → R

d represent Euclidean represen-
tation of an observed shape sequence α. Let β̂, Σ̂ denote pa-
rameters estimated from xα using generalized least squares,
as mentioned above. We can use the model in Eqn. 1, with es-
timated parameters, to generate a new sequence x̃α : I ∈ R

d,
and then map this synthesized sequence back to the original
shape space S.
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Fig. 5: Model selection: BIC values associated with different model
lags (p) for different training sequences.

Fig. 6: Synthesis of shape sequences using estimated VAR(1) model:
Top row shows the original sequence, and the bottom three row show
three random synthesized shape sequences, for d = 5.

We demonstrate this idea using an example in Fig. 6.
The top row shows the original sequence α whose Euclidean
representation is used to fit the VAR(1) model. The bottom
three rows show examples of synthesized, random shape se-
quences, first in R

d (d = 5) and the mapped to S, using the
estimated model. Note that α(0) is kept same in all simula-
tions. The realistic nature of synthesized images underline the
validity of the proposed dynamical model.

3.2. Predict Future Shapes

Another way to test the shape dynamical model is to predict
future shapes using past sequence data. Consider prediction
of xα(T0 + h), for h > 0, using data observed up to time T0.
The best linear predictor of xα(T0 + h) is x̂α(T0 + h|T0) =∑p

j=1 Âj x̂α(T0+h−j|T0), where {Âj} are the estimated pa-
rameter matrices. Note that the h-step prediction also implies
predicting all the intermediate shapes from T0 + 1 to T0 + h.
If the true sequence is known, then one can quantify the pre-
diction error using: 1

h

∑h
i=1 ‖xα(T0 + i)− x̂α(T0 + i|T0)‖2.

We present some experimental results from this prediction
using the estimated VAR model. In this experiment, we use
several long shape-sequences, each corresponding to a differ-
ent movie of amoeba motility. In each case we use d = 5
to form TSRVF-PCA representation of the shape sequence.
The first sequence has time points τ = 1, 2, ..., 179, so the
resulting Euclidean time series xα ∈ R

5×178. We split the
shape sequence into training set (τ = 1, 2, ..., 120) and test-
ing set (τ = 121, ..., 178), estimate parameters for VAR(p)
model using the training set, and then predict elements of
the test sequence recursively. Figure 7 shows some results
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Fig. 7: Top: Prediction errors under the VAR model for different lags
p (left is for one sequence and middle is average over 10 sequences)
and different step sizes h (right). Bottom: The two rows show pre-
dicted sequences associated with VAR model p = 1, 3. The solid
lines denote predicted shapes and dashed lines denote true data.

from this experiment. The top-left plot shows prediction er-
rors for different values of p in the model on the test part of
this sequence. The result indicate that p = 3 provides the
best results. The bottom two rows show examples of pre-
dicted shapes overlaid on the true shape for different values
of p. For each sequence, the first five shapes denote the past
data (shapes at time T0 − 4, T0 − 3, . . . , T0) in dotted lines
and the remaining curves denote the predicted shapes (solid
lines). By visual inspection, one can see that the prediction
error for VAR(3) is smaller than that for VAR(1).

We also compute average prediction error versus p for ten
different test shape sequences. This average is shown in the
top-middle plot of Fig. 7. Similar to the earlier results, the
error is smallest for p = 3. We also study the change in
prediction error versus the step size h, while keeping p = 3
fixed. The resulting curves for individual sequences are in the
top right panel. As expected, the prediction error increases
with h but the increase is different for different sequences.
One can use this prediction error for further statistical analysis
on shape prediction.

Lastly, we note that statistical analysis using TSRVF-PCA
representation outperform those obtained using the I-TSRVF-
PCA representation.

4. SUMMARY

This paper introduces a statistical model for evolution of
amoeba shapes during cell motility, isolating shape changes
from cell kinematics. It represents a shape sequence by its
transported SRVF, which when combined with PCA results in
a low-dimensional Euclidean time-series called TSRVF-PCA.
Then, it imposes a VAR model on TSRVF-PCA to model
temporal evolution of shapes. Finally, it discusses estimation
of model parameters using least squares and BIC. It also val-
idates this model by synthesizing new shape sequences and
using the model to successfully predict future shapes.
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