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ABSTRACT

We consider the problem of characterizing shape populations
using highly frequent representative shapes. Framing such
shapes as statistical modes — shapes that correspond to (sig-
nificant) local maxima of the underlying pdfs — we develop
a frequency-based, nonparametric approach for estimating
sample modes. Using an elastic shape metric, we define e-
neighborhoods in the shape space and shortlist shapes that
are central and have the most neighbors. A critical issue —
How to automatically select the threshold €? — is resolved
using a combination of ANOVA and empirical mode distri-
bution. The resulting modal set, in turn, helps characterize
the shape population and performs better than the traditional
cluster means. We demonstrate this framework using amoeba
shapes from brightfield microscopy images and highlight its
advantages over existing ideas.

Index Terms— Shape mode, Cell morphology, shape
population, elastic shape analysis, Entamoeba histolytica.

1. INTRODUCTION

Cellular morphogenesis during migration is an exciting topic
of study in various biological phenomena. Various intra- and
extra-cellular physio-chemical changes induce morphological
and positional changes in cells, reflecting the organism’s abil-
ity to sustain itself in it’s micro-environment. Cell migration,
specifically amoeboid migration, is characterized by sequen-
tial protrusion and retraction of the cell membrane due to the
restructuring of the cytoskeleton. This highly dynamic mor-
phology introduces variation in the adopted cellular shapes
during migration. Identifying the more prevalent shapes,
a.k.a. shape modes, can aid in gaining insight into the cellular
response to a particular micro-environment.

In the context of cell migration, shape analysis (using ei-
ther static or dynamic shapes) has primarily been used for
classifying migration patterns under different experimental
conditions [1, 2, 3, 4, 5, 6]. A slightly different problem is
discovering dominant/frequent shapes in a cell population and
their variability across cell populations. This characterization
can provide further insights into cell behavior and dynamics.
However, past research has seldom focused on developing
tools to identify such prevalent morphology.

Characterizing dominant statistical shapes in large data
can be formalized in several ways. In Euclidean spaces, this
can be done using an overall mean [7], or treat the population
as a mixture of probability distributions (taken from a para-
metric family) and use an EM algorithm to estimate mixture
parameters [8]. One can adapt these tools to the geometry of
shape spaces using tangent space PCA, followed by Euclidean
k-means clustering [9, 10, 11]. Due to the nonlinearity of
shapes spaces and a preference for a nonparametric solution,
we take a different approach. We consider the (unknown) un-
derlying probability density function (pdf) on the shape space
and seek its modes [12, 13, 14, 15]. These modes are defined
as significant local maxima of the pdf, and one estimates sam-
ple modes using the observed shapes. We develop an efficient
procedure that bypasses density estimation and seeks sample
modes using a shape metric and e-neighborhoods. This so-
lution is similar in spirit to the k-mode clustering [16], origi-
nally presented for categorical data. Our approach has the fol-
lowing advantages: (1) It uses modes (instead of the means)
as they are better shape representatives and simpler to com-
pute; (2) It solves for “clustering” and modes simultaneously,
rather than sequentially; (3) It does not assume any knowl-
edge of k and is fully nonparametric; and, (4) It is much com-
putationally efficient than the k-mean clustering.

2. DEFINING AND ESTIMATING SHAPE MODES

To set up a formal development, we define a shape space S
and consider a pdf f on S denoting a shape population. Given
a set of closed, planar curves (31, B2, . .., Bn, each represent-
ing an observed cell boundary, we treat their shapes as sam-
ples from f on S. Our goal is to estimate the modes of f from
this sample data and use these modes to characterize domi-
nant shapes in the data. We start with a brief introduction of
elastic shape analysis [17, 18, 19] used for comparing cellular
shapes.

In this approach, a planar closed curve 3 : S! — R2
is represented by its Square-Root Velocity Function (SRVF)
q: S' — R2 given by: ¢(t) = —22—_ The use of SRVF

O]
greatly simplifies shape analysis of curves, especially in im-

posing invariance to kinematics (rotation, translation, scaling,
and re-parameterization of ). Let [g] be the set of all rota-
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Algorithm 1 Mode Estimation using a Discrete Setup

Require: Closed curves 3;, ¢ = 1,...,n. Compute their
shape representations [¢;] € S,i =1,2,...
1: For each shape [g¢;], find it’s neighbors:

Ni={lgj] : ds([ail, [g5]) < e},i #J (1)

Let |\V;| denote the number of neighbors of [g;].

2: Find the k" mode [gps,] as follows: Select the set
A = Algll NI = max(INi])} and set [gnr,] =
min (Siggen dalasl la))-

3. if JNag,| < 2, we label [gps, ] an outlier, else it is called
mode. Remove [gpy, ] and its neighbors Ay, from the
data set.

4: Repeat Step 1 to Step 3 until each curves is defined either
as a mode or a neighbor or an outlier.

tions and re-parameterizations of a normalized SRVF ¢. The
set of all shapes is denoted by S = {[¢]l¢ € Sw}. S is
an infinite-dimensional, nonlinear space, and that limits our
ability to perform traditional statistical analysis. Several tools
have been developed in the past to study shapes as elements
of §. Given any two shapes, one can compute a geodesic path
between them and use the geodesic length as the shape dis-
tance ds. Given a set of shapes, one can compute their mean
(Karcher mean) and perform tangent PCA analysis for dimen-
sion reduction [20, 17]. These quantities — geodesics, shape
distances, PCA, etc. — are invariant to rigid motions of curves
and their parameterizations and are instrumental in removing
cell kinematics from its morphology.

2.1. Nonparametric Mode Estimation - Mean-Shift

Given n closed curves {8;, i = 1, ..., n}, we treat their shapes
{[g;] € S} as samples from an underlying density f on S.
One can choose a parametric or a nonparametric form of f for
statistical analysis. Taking a nonparametric approach, one can
estimate f as follows [21, 14]:AFor a Gaussian kernel, the ker-
nel estimator takes the form: f([g]) o< > ; e~d:(lahlal)/o*
Since we are seeking the modes of f, we can ignore the nor-
malization constant in f and seek its local maxima. These lo-
cal extrema are located at the zeros of the gradient v/, f , and
one can use a gradient search to find them. The full gradient-
based algorithm is termed nonlinear mean-shift [14].

While this gradient-based search for modes of f is the-
oretically sound, it face some practical issues. One is the
choice of the kernel K. The Gaussian kernel mentioned above
is not always positive-definite on nonlinear manifolds. Also,
the selection of the bandwidth ¢ is difficult. The larger prob-
lem of estimating a pdf on an infinite-dimensional, nonlinear
manifold is problematic in itself.
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Fig. 1: Top: Shapes used in the experiment, with the estimated
modes marked by numbers. Their cluster neighbors are drawn in the
same color. Middle Left: 2D MDS plot for visualization of clusters
with each shape shown as a point. Middle Right: Visualized pairwise
distance matrix sorted by the clustering result from mode estimation.
Blue denotes smaller distances and yellow denotes larger distances.
Bottom: Overall Karcher mean (red), overall Karcher median (blue),
modes (black) and cluster means (cyan).

2.2, Discretized Nonparametric Mode Estimation

We develop a discrete, frequency-based approach for finding
shape modes while avoiding the onerous task of estimating
the full pdf. This nonparametric approach is based only on
the shape metric d; mentioned earlier. We choose a scalar
parameter, ¢ > 0, that establishes the notion of a neigh-
borhood under d in S. For any curve [¢;] € S, any other
shape [g;] € S is called its e-neighbor if d,([g;], [¢;]) < e
The shapes with most neighbors are candidates for being the
modes of f . Given a shape dataset, and a fixed ¢ > 0, the
steps for estimating modes are summarized in Algorithm 1.

Selection of e: While Algorithm 1 is straightforward, the
specification of € is non-trivial. Since the value of € can sig-
nificantly influence the results, the choice of ¢ is critical. In
this paper, € is computed using € = 0.5¢ps + 0.5¢p. Here €y
is chosen by maximizing the number of (significant) shape
modes in the data. (We define a significant mode to be the
one that has at least 2% neighbors, otherwise we label it an
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Fig. 2: Plot (a) shows number of modes vs. €. The blue curve refers
to total number of modes, yellow curve shows the outliers and red
indicates significant modes. In (b), the blue curve shows number of
significant modes and orange curve indicates F-statistic W.I.t €.

outlier.) To define €, we use the classical ANOVA (analysis
of variance) but applied to the shape distances rather than
shapes. We treat the pairwise distance y; = ds([gn], [¢i])
between a mode and a shape as the response variable in
ANOVA. Given an ¢, the pairwise distances y;s between a
mode and its e-neighbors are considered as one group. We
apply ANOVA on these y;’s to find the F-statistics as follows:
Let g denote the number of clusters resulting from the chosen
€ (using Algorithm 1). Set s = Y %, y;, where ny, is the
size of the k" cluster, and define:

n n N2 g 9 g )
SStotal = ny_M, SSb = Z s—k—M
=1

n = n

and set SS, = SSiotar — SSp. Finally, compute: F-
SS, -1

statistics = M The F-statistics indicates how
SSw/(n —g)

spread out the clusters are and e is selected as the one that
maximizes F-statistics. Using a fine grid on the interval
[0, max ds([g;], [¢;])], we evaluate the potential eys, e val-
ues and select the optima.

Illustrative Example: We demonstrate this approach with
a simple experiment involving 32 shapes from four distinct
classes - eight shapes in each class — as shown at the top
part of Fig. 1. In Fig. 2, we plot the influence of € on the
number of modes and the F-statistic. Fig. 2(a) shows the
values of all-modes, significant modes, and outliers versus €.
Fig. 2(b) displays the influence of € on the number of signif-
icant modes and the F-statistic. The peak of the blue curve
gives €j; = 0.4131 and the peak of the orange curve gives
er = 0.6773, so € = 0.5¢ps + 0.5 = 0.5452 and that
yields four distinct modes. Fig. 1 (top) displays the mode
shapes by labeling them as 1 — 4 and corresponding clus-
ter members in same color. The MDS plot (Fig. 1 (Middle-
left)) shows shapes as planar points with colors denoting clus-
ter memberships. Fig. 1 (middle-right) visualizes the pair-
wise distance matrix D between shapes arranged according
to their clusters, with blue denoting smaller distances. The
bottom row in Fig. 1 shows the overall Karcher mean (red),
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Fig. 3: Experiment 1 Results: layout, description is same as in Fig. 1.
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Fig. 4: Experiment 1 Results: layout, description is same as in Fig. 2.

)

Karcher median (blue), estimated modes (black) and cluster
means (cyan). Due to significant variation within clusters, the
cluster means lose critical shape features while the estimated
modes retain characteristic features.

3. MODE ESTIMATION IN CELL POPULATIONS

In this section, we present some experimental results from
our mode estimation on several sets of shapes of Entamoeba
histolytica [3, 4].

Experiment 1: For this experiment, we select 100 cell shapes
from four different cell migration sequences, i.e., 25 shapes
from each sequence, as shown in the top of Fig. 3. The
plots for selecting ¢ are presented in Fig. 4, with peaks
at epr 0.1655, er 0.2797 and the optimal being
e = 0.2226. For this €, we discover five modes in the data.
The shapes from each migration sequence contribute a mode,
except the third sequence provides two modes. In Fig. 3, the
MBDS plot shows that the five clusters are well separated from
each other. We also find two outliers in this data and they are
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Fig. 5: Experiment 2 Results: layout, description is same as in Fig. 1.

marked with ”A” in the MDS plot. (Keep in mind that the
MBDS plots are only for visualizing the clustering and are not
always accurate in their depictions.)

Experiment 2: Once again we take 100 cell shapes from
four different cell sequences (different from experiment 1)
but the shapes are closer to each other this time. For this
data, we obtain €p; = 0.1655, ez = 0.3111 and the opti-
mal e = 0.2383, resulting in six modes. The largest cluster
contains all shapes from the fourth sequence and some from
the first sequence. Fig. 5 (centre row) shows a 2D-MDS plot
(left) and the distance matrix (right). Fig. 5 also shows the
estimated modes and their improvements over cluster means.

Experiment 3: In this experiment, the dataset contains 100
cell shapes from 20 different cell sequences - five shapes from
each sequence. Here we find €3y = 0.1974, ep = 0.3102
and the optimal ¢ = 0.2538. The data is well spread out
and the algorithm finds seven modes and eight outliers. In
the MDS plot in Fig. 6, data points seem to be distributed
along a circle, pointing to the lack of a clear clustering pattern.
Considering the relatively large variability in this dataset, the
difference between the estimated modes and cluster means is
much larger than earlier.

Table. 1 lists the sum of pairwise distances between a
shape and its e-neighbors. (We choose elements of the largest
cluster in each experiment for this study.) This quantity is
computed for the estimated mode and four randomly chosen
shapes in that cluster. This quantity is the smallest for the
mode shape, highlighting the centrality of modes. The last
column in that table quantifies the agreement between our
clustering and a traditional hierarchical clustering method. A
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Fig. 6: Experiment 3 Results: layout, description is same as in Fig. 1.

. Matchin,
Experiment || [gar] | [aa] | la2] | las] | ladl R

1 6.112 6.152 6.186 6.302 6.353 95.9%

2 6.583 6.800 7.057 7.137 7.761 76.5%

3 10.573 | 11.708 | 11.842 | 11.903 | 12.066 53.3%

Table 1: Left part: Sum of pairwise distances from a shape to the re-
maining shapes in its cluster (for the largest cluster). Smallest values
are for modes highlighting the centrality of modes. Last Column:
The agreement between our clustering and hierarchical clustering.

value of 100% indicates a full agreement between the two ap-
proaches.

These experiments show that shape modes: (1) are su-
perior representatives of shape populations than overall
means/medians or cluster means, (2) provide a reasonable
estimate of the number of clusters, (and 3) are obtained very
efficiently despite shapes being infinite-dimensional and non-
linear. The main cost is in computing the pairwise distances
between the given shapes. Thus, this approach provides a
better solution than previous k-mean clustering or EM-based
mixture solutions for shapes.

4. CONCLUSION

This paper introduces an efficient approach for characteriz-
ing cell populations using their modes. This nonparametric
approach uses only pairwise distances and e-neighborhoods,
with € determined automatically using a combination of
ANOVA and modal distribution. The modal shapes are su-
perior representations of shape populations compared with
overall mean or cluster means.
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