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Abstract

The problem of using covariates to predict shapes of ob-
jects in a regression setting is important in many fields.
A formal statistical approach, termed Geodesic regression
model, is commonly used for modeling and analyzing re-
lationships between Euclidean predictors and shape re-
sponses. Despite its popularity, this model faces several
key challenges, including (i) misalignment of shapes due
to pre-processing steps, (ii) difficulties in shape alignment
due to imaging heterogeneity, and (iii) lack of spatial cor-
relation in shape structures. This paper proposes a com-
prehensive geodesic factor regression model that addresses
all these challenges. Instead of using shapes as extracted
from pre-registered data, it takes a more fundamental ap-
proach, incorporating alignment step within the proposed
regression model and learns them using both pre-shape and
covariate data. Additionally, it specifies spatial correla-
tion structures using low-dimensional representations, in-
cluding latent factors on the tangent space and isotropic
error terms. The proposed framework results in substantial
improvements in regression performance, as demonstrated
through simulation studies and a real data analysis on Cor-
pus Callosum contour data obtained from the ADNI study.

1. Introduction

The field of statistical analysis and modeling of shapes
has seen tremendous research and progress. This research is
driven by strong applications in computer vision, bioinfor-
matics, computational anatomy, forensics, computer graph-
ics, and so on. Numerous important scientific endeavors
have sought to analyze the shapes of objects and investi-
gate their correlations with objects’ functionality in large-
scale datasets [10, 36, 40, 29]. Shape is broadly defined
to be a characteristic that is left after certain nuisance or
shape-preserving transformations, such as rotations, trans-

lations and scale, have been removed [0, 34, 21], with the
result that shape representation spaces are nonlinear, high-
dimensional, and have quotient space geometry. The last
property stems from the need to be invariant to certain
shape-preserving transformations as rotations, translations
and scale. Consequently, shapes are represented by orbits
under transformation groups, rather than as points in a pre-
shape space. Together, these properties make shape spaces
as non-traditional domains for statistical formulations, in-
cluding definitions of shape statistics (e.g. mean and vari-
ability) [15], clustering analysis [35], classification [£], test-
ing differences in populations [2] and some others.

In recent years, shape regression analysis — the use of
shape variables in statistical regression models — has at-
tracted considerable attention. Consequently several ap-
proaches have been developed to model the relationships
between shape responses and some Euclidean covariates of
interest [25, 24, 32, 14, 17,22,7, 42,33, 43]. The past ap-
proaches can be classified in two broad categories: extrinsic
regression and intrinsic regression. In the extrinsic regres-
sion framework, the shape responses are usually embedded
onto a higher dimensional Euclidean space, where classi-
cal regression models in that space are applied, and then
the estimated models and predictions are projected back
onto the original shape space [25, 24]. However, these ap-
proaches face some drawbacks including (i) lack in preser-
vation the local shape geometry and (ii) non-guaranteed ex-
istence of an inverse and continuous embedding map to the
shape space [37].

In contrast, the intrinsic approaches are natural gener-
alizations of regression models from Euclidean spaces to
non-Euclidean shape geometries, typically using exponen-
tial maps and tangent space representations [32, 14, 17,

, 7,42, 33, 43]. To understand this approach better, let
{fY,z;}I, be the observed data, where f/ is an element
of Kendall’s shape space S, and x; € RP is a Euclidean
variable. Ideally f/, representing a shape, should be an
orbit [f!] of a pre-shape space under the rotation group.
However, the use of quotient space geometry in specifiy-
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ing regression models is difficult and has not been pursued.
Instead, the common approach is to take a representative
element of the pre-shape space, aligned or rotated appropri-
ately through some pre-processing steps. The presumption
is that through this pre-processing the nuisance transforma-
tions have been filtered out. Then, one can apply a com-
monly used geodesic regression model:

f? =Exp(k(zi), &), k(z:) €S,6 € TS, (1

where Exp(x(z;),-) : Tau@)S — & is the exponen-
tial map at x(2;), and T} (,,)S is the corresponding tan-
gent space (some useful concepts from differential geom-
etry can be found in Appendix A). Model (1) involves two
key terms: the conditional mean shape k(z;) and the error
€ € Ty(z,)S. The conditional mean shape x(z;) can be
treated as a link function including the typical parametric
setting, i.e., Exp(p, Bx;), [14, 22, 43] and some other non-
parametric settings [32, 7]. Similarly, the error term €; can
be specified using parametric [14], semi-parametric [7], or
completely nonparametric models [22].

The main issue here lies in using (pre-aligned) elements
of pre-shape space, rather than actual orbits as shape rep-
resentations. It is a well-known mathematical fact that op-
timal rotations alignments of objects can not be achieved
via pre-processing. For instance, the optimal alignments
of objects A and B to object C, respectively, do not re-
sult in optimal alignments between objects A and B them-
selves! Rotations have to be solved for during pairwise
shape comparisons. That is why shape spaces are typi-
cally quotient spaces, and not subsets, of pre-shape spaces.
This fundamental issue leads to three key limitations of
geodesic regression models: (i) Misalignment issue in pre-
aligned responses. In practice one observes raw images
rather than getting the shape data directly. The shapes are
extracted from the images using a pre-processing step —
these steps are increasingly being performed using deep
learning networks. Even when the image data are pre-
registered and assumed to be well aligned, the shapes ex-
tracted from this image data exhibit mis-alignment and can
even be noisy [1, 42, 33], which negatively affects regres-
sion performance. To illustrate this issue, we fitted the pop-
ular geodesic regression model to some simulated data later
in the paper (detailed simulation settings can be found in
Section 3.2), and reached an estimated “baseline shape”
presented in Figure 1, where the estimate is found to be
biased when the shape data contains misalignment variabil-
ity. (ii) Non-optimal alignment due to imaging hetero-
geneity. Since most pre-alignment approaches are imple-
mented on imaging data, the presence of imaging hetero-
geneity [19] causes the nuisance transformations to be cor-
related with some covariates of interest, e.g., gender and
age, which makes the pre-alignment non-optimal and ad-
versely affects the regression performance. (iii) Lack of
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Raw images Misaligned responses

Baseline shape estimation

Figure 1. Example of misalignment issue in pre-aligned responses.

spatial correlation structure in modeling. Most existing
methods assume that stochastic terms have isotropic vari-
ability [14, 22]. Although the spatial correlation is con-
sidered in [7] via introduction of a random weighted ma-
trix on the tangent space, its implementation suffered due to
heavy computational burden incurred in choosing the opti-
mal weighted matrix.

This aim of this paper is to propose a Geodesic FActor
Regression Model (Geo-FARM) that addresses all three
challenges. Specifically, the main contributions of this pa-
per are: (i). Instead of treating objects extracted from pre-
aligned functional data as shapes, we treat them as pre-
shapes, i.e., coordinate data after filtering out only the lo-
cation and scale effects. We incorporate full shapes inside
regression models as proper orbits. In practical terms, the
rotational alignments are applied on pre-shapes and learned
inside the regression model itself. (ii). The spatial corre-
lation structure in our Geo-FARM is established as a low-
dimensional representation, including latent factors through
a factor analysis framework on the tangent space and error
term modeled using the isotropic Riemannian Normal (RN)
distribution [28, 14]. (iii). A Monte Carlo Expectation-
Maximization (MCEM) algorithm is used to develop the es-
timation procedure for both parameters and nuisance trans-
formations. In addition, hypothesis testing problems are
discussed to investigate the significance of some covariates
of interest on the shape responses. (iv). The efficacy of our
Geo-FARM is assessed using Monte Carlo simulations and
a real data example on corpus callosum contour data ob-
tained from the ADNI study. A MATLAB-based compan-
ion software will be released to the public through GitHub.

2. Method
2.1. Pre-shape space for planar curves

LetL € £ j be a 2xk matrix whose k columns denote k
landmarks from a 2-dimensional object. After removing the
translation and scaling of elements in L5 j, one reaches the
pre-shape space defined as S5 = {L € Lo, : Z?Zl Li;=
0,7=1,2, |L|| = 1}, where ||-|| 7 is the Frobenius norm.
S¥ is not the shape space since the pre-shape is not invariant
to the action of the rotation group, SO(2). Noting that there
exists an one-to-one map f(-) such that 8§ is equivalent to
the unit hypersphere S™~! with m = 2k —2, one can utilize
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all the geometric properties on hyperspheres to analyze pre-
shapes [36]. Specifically, Let y € L3 and f(y) be a point
on a (m-1)-dimensional sphere S™~!, and v be a tangent
vector at f(y). The exponential map is given by

Exp(f(y),v) = cos(lol) f(») + 2o, (g

For another point f(y') € S™!, the inverse exponential
map, or log map, between f(y) and f(y’) is given by

Log(f(). f(4/)) = m arccos(f(y), 1)), 3)

where P(y,y') = f(y') — f(y){f(), f(¥)). In addi-
tion, the parallel transport of the tangent vector v from

T()S™ ! to Ty, yS™ ! can be derived as
T /
PO =y 20 W) N

2.2. Geo-FARM

Assume that {y;}} , are observed from the pre-shape
space S} and {xl}?zl are from a Euclidean space RP. In
order to simultaneously handle the nuisance transforma-
tions and establish the relationship between pre-shape re-
sponses and Euclidean covariates, a novel geodesic regres-
sion model is proposed as:

= EXp (Exp(f(u), BI?)v 6,’) ) &)

where g; € SO(2) denotes the rotation group action that
forms the individual nuisance transformation. p € S¥ and
f(u) € S™~1 is the base point. All the columns in B,
ie., {B; }?Zl, are tangent vectors at Tf(u)Smfl, represent-
ing the effects from the predictors {z; }7_;.

In order to establish the spatial correlation structure,
our Geo-FARM integrates model (5) with a factor analy-
sis framework generalized from Euclidean space to the pre-
shape space:

J(yi * 94)

f(yi * gi)|xs, zi ~ RN (k(24, 2:),0),

where k(z;,2;) = Exp(f(u),Bx; + Az;) and RN is the
isotropic RN distribution [14]. The proposed factor anal-
ysis framework builds the correlation structure with a low
rank representation (¢ < m) including (i) a low num-
ber of latent factors represented by the columns of A, i.e.,
{aj € Tp(yS™ 1 }i_ ), and (ii) stochastic error term ¢; that
follows the isotropic RN distribution. Then, the joint prob-
ability density function for (f(y; * g;), 2;) is given by

2 ~N(0,1;), (6)

h(f(yi * gi), z) = ¢(2:)C(0) eXp{—i X
[Log (Bxp(f (1), Bz + Az), f(yi % 9:)) |1}, @)

where ¢(-) is the g-dimensional standard normal distribu-
tion density function. In addition, the model identifiability
of our Geo-FARM is guaranteed under certain conditions.

Proposition 2.1 Consider the probability density fimction
of GEO-FARM, i.e., o(f(y * g),0) = [h(f(y * g), z)dz.
Given the nuisance transformatlon g and the number of la-
tent factors q, if the design matrix X = (x1,...,2,)7 is
full row rank, the density function o(f(y x g), ©) is generi-
cally identifiable in the parameter space.

A graphical illustration of our Geo-FARM is presented in
Figure 2. In summary, there are several advantages of our

fixg:) = Exp(vy, €:),

vi = Exp(f(1), §1)

§i = XuPa+ XipPorzintr+ Zipaty
f:Skosmlm=2k-2

y; € S'z‘ : pre-shape response

g; € SO(2) : nuisance transformation

€;€ T,,iS""lz stochastic error term
f(n) € S™1: base point
-1
B1, B2,y @z € Ty S™
: covariates of interest

f(y) m}
gm-1 ¥ f (y.*y.) B

—— == : latent factors

Figure 2. Graphical illustration of Geo-FARM.

Geo-FARM: (i) Compared to the existing geodesic regres-
sion models for well aligned responses [22, 7], our Geo-
FARM can successfully deal with the misalignment issue
in pre-aligned responses via introducing the individual nui-
sance transformation g;. In addition, compared to the tra-
ditional preprocessing approaches, the alignment of each
pre-shape in our Geo-FARM can be refined since the nui-
sance transformation g; is learned based on all the available
information including not only the response y; but also the
other covariates x;. (ii) Through the factor analysis frame in
our Geo-FARM, the variability among pre-shapes in model
(5) can be expressed by two parts: latent variables from
a low dimensional space in the tangent space T'f(,,)S™~ L

and stochastic error terms with isotropic variance structure
in the tangent space Tgxp(f(u), Bz + Azi)Sm_l. Compared to
the general RN distribution [28], the number of parameters
that specify the correlation structure has been reduced a lot
from m(m + 1)/2 to mq + 1, where ¢ < m. (iii) Instead
of considering the nuisance transformation g; € SO(m) for
responses f(y;) € S™~1, our Geo-FARM treats g; as a ro-
tation group action on the pre-shape y; € S¥, which avoids
the computational burden caused by the high dimensional
structure of nuisance transformations in [42], Specifically,
g; can be represented by the 2-dimensional orthogonal ma-

. cos(y) —sin(y

trix: O;(v) = sin((¢)) cos(z(/J))
Therefore, the dimension of the nuisance transformation
group is reduced from m(m — 1)/2to 1.

, where ¢ € [—m,7].
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2.3. Estimation procedure

The maximum likelihood estimate (MLE) of © includ-
ing the parameters of interest, ¥ = {u, B, A}, the nui-
sance parameter, o, and the nuisance transformations, G =
{gi}?_,, can be derived through the following complete log-
likelihood function based optimization problem:

% XDy
inf,, |[Log (Exp(f (1), Bz; + Az), f(yi * 9:))|> - (8)

Noting that the presence of optimization over g; inside the
summation ensures that the nuisance transformation is re-
moved using all available information (e.g., y; and x;) in-
stead of a pre-processing over y;. Since the latent variables
{7}, are unobserved, the objective function in (8) is of-
ten intractable in practice. Here the EM algorithm [9] is
considered by iteratively applying two steps: E-step and M-
step. Specifically, at the ¢-th iteration, instead of the com-
plete log-likelihood function, the optimization problem in
M-step is established based on the Q-function Q(0|0®)
calculated in E-step,

6= argmaxy , nlogC(o) —

ZEzi {log h(f (i * 9:), zi)lyi, 2, ©P |, )
i=1

which is the expectation of complete log-likelihood func-
tion with respect to the latent variables given the observed
data and the current estimate ©(). However, the conditional
expectation in (9) does not yield a closed-form solution,
which brings about difficulties in M-step [41]. To address
this issue, we consider the MCEM algorithm [23], where
the Q-function is approximated via Monte Carlo techniques.
Monte Carlo E-step: at the ¢-th iteration, given the current
estimate ©(), we consider the approximated Q-function:

QO10W) —ZZlogh (yi i), 2)),  (10)
Jj=11i=1

where {z]}

bution p(z;|y;, z;, ©")) via the Hamiltonian Monte Carlo

(HMC) sampling method [26]. According to HMC method,

we set up the Hamiltonian dynamic system first. The
Hamiltonian function can be written as

Z, are generated from the conditional distri-

H(z,r)=U(z)+ %riTri,
U(z) = —log p(zilyi, :, ), (11)

where U(z;) is called the potential energy function. The
other item %T’ZT r; is called the kinetic energy, where r; are
auxiliary momentum variables drawn independently from
N(0,1,). Because of the introduction of r, the Hamiltonian

dynamics can be established as

dZZ‘ dTi

= =t = —VaU(). (12)

Then the approximation solution to (12) can be obtained via
the Leap Frog numerical integration method [26] if the item
V., U(z;) is calculated. In fact, the gradient term V., U (z;)
can be derived as below

2 — a(t)flA(t)TdvExp(u,v)TLog (Exp(u,v)7 fi(t)) , (13)

wherew = f(u®)), v = BOz 4 AWz, £ = flyirg),
and d,Exp(u,v) is the derivative of Exp(u, v) with respect
to v, and T represents the adjoint of a linear operator. For
spheres, the adjoint derivative has an analytical expression,
i.e., dyExp(u,v)tw = sin(||v]|)|lv]| " *w* +w T where wt
and w " denote the components of w that are orthogonal and
tangent to v, respectively.

The performance of standard HMC method is highly
sensitive to two user-specified parameters: a step size € and
a desired number of steps {. In particular, if [ is too small
then the algorithm exhibits undesirable random walk behav-
ior, while if [ is too large the algorithm wastes computation.
Compared with the standard HMC, the No-U-Turn Sampler
(NUTS) [ 18], an extension to standard HMC, can avoid set-
ting the tuning parameter [. Specifically, NUTS uses a re-
cursive algorithm to build a set of likely candidate points
that spans a wide swath of the target distribution, stopping
automatically when it starts to double back and retrace its
steps. Because of this, NUTS is adopted in this paper. The
details of NUTS algorithm is omitted here, and readers can
refer to Section 3 and Algorithm 3 in [18].

M-step: the updated estimate ©(**+1) can be obtained via
maximizing the approximated Q-function Q(©|0®). In
order to solve the optimization problem above, here an itera-
tive approach is adopted, where one updates the estimates of
T, o, or G while keeping the other fixed. Thus, we first fo-
cus on techniques for estimating these quantities separately.

Updating Y(+1) while keeping G*) and ¢ fixed.
Given G and o®, ©(+1) is updated via the proxi-
mal alternating linearized minimization (PALM) algorithm
[4, 42], where Y is iteratively updated through the gradient
functions of Q(©|0")). Specifically, let ¢ be a positive con-
stant while K, K ;s and K, a; be the Lipschitz constants
of Vf(u)Q’ VBJQ, and V%Q, respectively. Given the up-
date ©HF) = {T®F) G 51} at the k-th iteration, the
iterations of PALM algorithm is provided in Algorithm 1.
Finally, ©") in E-step is updated by ©@(¢+1) = @t.k+1)
when certain iteration stopping criterion is satisfied, e.g.,
||T(t,k+1) _ T(t’k)H <1074

Updating G(*+1) while keeping Y(**1) and ¢* fixed.
Since each g; € SO(2) can be written as the orthogonal
matrix O(1);) related to one parameter ¢; € [—m, 7], gftH)
is updated via minimizing the following ObJeCtIVG function:

E(h;| T ¢H1) Z HLOg( (t+1) (Oi(w)yi))’ 27 (14)
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Algorithm 1: PALM algorithm in M-step

while stopping criterion not satisfied do
Update f(u{"*1)) by

Exp (f(u“”“)% —(cKu)‘IVf(m@)?
Update 81"V j =1,....p, by
tk+1 ~
Ff(u( o [B(‘uk) - (CKﬁj)ilvﬁjQ};

F(u(®H) J
Update a;t’kH)J =1,...,q, by
(t,k+1) t.k _ ~
oy o~ ek, 1V, Q)
Setk=k+1.

where fi(tl+1) = Exp(f(p(t+D), B+, + ACTD 1) and
Y; € [—, 7). This univariate minimization problem can be
solved based on the Golden Section Search algorithm [30]
and implemented by the MATLAB function fininbnd.

Updating o+ while keeping Y+ and G(*+1
fixed. We first define that » = —1/20 and () =
—logC(o). Then given Y+ and G+, o(t+1) i5 up-
dated via solving the following problem related to 7:

minp(n) — - Y BTV, (15)
n ng —
where the normalization term (7)) defined for S™~1 can
be derived with a closed form [41]. Noting that ¢(n) is
a strictly convex function with respect to 7, therefore the
solution to problem (15) exists and is unique [31], which
can be solved based on the Newton-Raphson algorithm [5]
and implemented by the MATLAB function fminunc.

Now we summarize the overall estimation procedure for
our Geo-FARM in the following Algorithm 2.

Algorithm 2: MCEM algorithm for Geo-FARM
Data: pre-shapes {y;}!_; and covariates {x;}}_,
Result: estimation of ©
Initialization: ©(*) and t = 0
while stopping criterion not satisfied do

Monte Carlo E-step

Sample {2/ }; ; via HMC method;

Calculate the approximated Q-function in (10);

M-step

Update T(+1) in Algorithm 1;

Update G**1) by minimizing (14);

Update o**+1) by minimizing (15);

Sett=1t+1;

Output: © = (1),

Here we end the estimation procedure with discussions
on some other issues in MCEM algorithm including the ini-

tialization in MCEM algorithm and criterion for choosing
the number of latent factors.

Initialization in MCEM algorithm. Since the MCEM al-
gorithm is an iterative procedure, its performance strongly
depends on starting points. For our Geo-FARM, good ini-
tialization is crucial for finding the estimates due to the
presence of multiple local maxima of the likelihood func-
tion. Here we consider using the random MCEM algo-
rithm, where multiple starting points are chosen and the
point with the highest log-likelihood function is chosen as
the starting point. In simulation studies and real data analy-
sis, the estimation procedure in [22] is considered for initial-
izing base point parameter f(u) and coefficients B, while
the factor analysis method is performed in the tangent space
Tf(#)S””_l to initialize the factor loading matrices A and
the nuisance parameter o.

Determining the number of latent factors. Since the
number of latent factors, ¢, is unknown, the 2-fold cross pre-
dictive log-likelihood method is considered through an ex-
haustive search as our model selection criterion [20]. How-
ever, according to the simulation results in Section 3.2, our
Geo-FARM is not sensitive to the choice of number of latent
variable. In particular, even when the model is misspecified
(e.g. the values of q is larger than 0 but incorrectly selected),
our Geo-FARM still performs well in terms of its estima-
tion accuracy. Therefore, in our simulation studies and real
data analysis, we prefixed the number of latent factors as 1,
which will release the potential computational burden due
to the large value assigned for q.

2.4. Hypothesis testing

In medical image data analysis, people are interested
in investigating the relationship between the pre-shape re-
sponses and some covariates of interest. This type of scien-
tific questions are formulated into the following hypothesis
testing problem on each 3;,j = 1,...,p:

Hozﬁj:() VS. H1:,Bj7é0. (16)

For this testing problem, we consider using the Wald test
statistic [7]. Specifically, for testing problem (16), the test
statistic is constructed as

T; = eI BT [e; ® 1,]Qple; ® I,) Be;, , (17)

where e; is a p x 1 vector with the j-th element 1 and rest
0. Qg is the corresponding partition of estimated inverse
covariance matrix of all the estimated parameters in Geo-
FARM. It can be shown that 7} is asymptotically x? dis-
tributed with m — 1 degree of free under Hy. In practice,
when the sample size is not on a large scale, the paramet-
ric bootstrap procedure can be used to derive the empirical
distribution of T; and the p-value [11].
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On the other side, since we claim that our Geo-FARM
can help refine the alignment as the nuisance transforma-
tions are learned based on both pre-shapes and covariates,
we would like to check if the mean shape extracted from
our Geo-FARM is significantly different from that extracted
from the pre-aligned data. In order to achieve this goal,
The Hoteling 77 test statistic is adopted and implemented
through a bootstrap hypothesis testing approach [2] and its
R package shapes (http://cran.r-project.org/
web/packages/shapes/index.html).

3. Numerical experiments

The corpus callosum (CC) contains homotopic and het-
erotopic interhemispheric connections and is essential for
communication between the two cerebral hemispheres [27,

]. Connection with most of the cortex has made CC a tar-
get of investigation of brain integrity in Alzheimer’s disease
[3, 12, 7]. In this section, both simulation studies and real
data analysis are conducted to assess the performance of
Geo-GARM using the CC contour data of ADNI-1 study.
In simulation studies, the synthetic data is generated from
the real dataset.

3.1. Data preprocessing

We use FreeSurfer [13] to process each T1-weighted
MRI, including motion correction, non-parametric non-
uniform intensity normalization, affine transform to the
MNI305 atlas, intensity normalization, skullstripping, and
automatic subcortical segmentation. Some quality control
procedures are done on each output image data. Then,
through the package CCSeg [38], each T1-weighted MRI
image and tissue segmentation results are used to extract
the planar CC contour data on the midsagittal slice , which
contains 50 landmarks (See Figure 3).

=

Figure 3. CC contour data preprocessing.

Table 1. Demographic information of preprocessed ADNI-1 CC
contour data, including gender and age (in years).

NC (223) AD (186) All (409)
Gender (F/M) 107/116  88/98  195/214
Avg. Age (Std.) 76.2 (4.9) 75.4 (7.4) 75.9 (6.2)

After the quality control, we obtain CC contour data
from 409 subjects including 223 normal control (NC) and
186 AD. The demographic information of the preprocessed
CC contour data set is presented in Table 1.

3.2. Simulation studies

We generate the data {z;,y;, g; }7_; from the model (6)
as follows. Without special saying, we set n = 100. In
order to mimic the ADNI-1 CC contour data, the true val-
ues of parameters in (6) are learned from the real data itself.
Specifically, we first fit Geo-FARM to the CC contour data
of all the normal controls in ADNI-1, where two predictors,
i.e., gender (x;1) and normalized age (z;2), are included.
Then, we use the obtained parameter estimators of p, B, A,
and o as their true values in our simulation setting. Mean-
while, the number of latent factors is also learned from the
model fitting, i.e., ¢ = 2. Next, the covariates z;; and ;o
are generated according to their data types, i.e., x;1 is gen-
erated from Bernoulli distribution with parameter p = 0.5,
while x;2 is generated from uniform distribution U (0, 1).
In order to generate the sphere data f(y; * g;) from the RN
distribution, the sampling algorithm proposed for spherical
normal distribution [16] is considered. After that, we gen-
erate the nuisance transformations g; via sampling the rota-
tion angle v in orthogonal matrix O; (). Specifically, given
an upper bound 1), the rotation angle 1) for each data point
is uniformly generated from [—1), ]. In order to investigate
the effect of nuisance transformations on the estimation per-
formance, multiple scenarios are considered here via setting
different values of 1), i.e., ¥ € {0, 5, 10, 15, 20, 25, 30}. Fi-
nally, we generate 50 datasets for each simulation scenario.

Here two other approaches are considered here for com-
parison: (i) multivariate general linear models (MGLM)
on Riemannian manifolds [22] and (ii) multivariate regres-
sion with gross errors (MRGE) on manifold-valued data
[42].  Specifically, MGLM can be treated as an gener-
alization of multiple linear regression models from Eu-
clidean space to Riemannian space, while MRGE aims to
improve MGLM by considering gross errors on manifold
responses. For comparison, we introduce several loss func-
tions here: (i) the sum of squared geodesic errors (SSGE),
ie. Y7 [Log(Exp(f(u), Ba:), Exp(f (i), Bx:)) % to
assess the prediction accuracy of the pre-shapes; (ii) the

norm ||B — F;EZ%BH F to assess the estimation accuracy

of B; (iii) geodesic distance between f(u) and f(), i.e.,
|[Log(f(w), f(ix))]] to assess the estimation accuracy of fi;
and (iv) the median absolute deviation (MAD) of A=
{|ei — |}, ie., median(A,), to assess the detection
accuracy of nuisance rotations. The simulation results for
all different scenarios are presented in Figure 4. It can be
found that (i) when the pre-shapes are slightly misaligned,
all the three methods perform well; (ii) when the misalign-
ment is getting severe (i.e., 1/3 increases), our Geo-FARM
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is more robust compared to other two approaches in terms
of both prediction accuracy and parameter estimation ac-
curacy; (iii) although MRGE considers detecting and cor-
recting the gross errors on pre-shapes through penalization
approach, its performance is almost as worse as MGLM be-
cause it is very sensitive to the data structure and choice of
tuning parameter; (iv) Geo-FARM shows great performance
in detecting the nuisance rotations for all different scenar-
ios. Therefore, our Geo-FARM shows its great power in
both misalignment detection and parameter estimation.

Next, we compare our Geo-FARM with the typical pro-
cedure that conduct the geodesic regression analysis on pre-
aligned manifold valued data [39]. Specifically, for compar-
ison with our Geo-FARM, the simulated pre-shapes are first
aligned to their Karcher mean, then the MGLM is adopted
to conduct the regression analysis on the pre-aligned data.
Here the individual rotation angle v; is generated through
v, = 1/;z * x;1, where 1@ is uniformly generated from
[—1),1b]. This simulation mechanism indicates that the nui-
sance transformations are correlated to the covariate infor-
mation. The simulation results for all different scenarios are
presented in Figure 5. It can be found that, our Geo-FARM
outperforms the pre-alignment based approach in terms of

B||r; and (c) geodesic distance between f (1) and f (/).

the estimation accuracy, which means that our Geo-FARM
benefits from the fact that the estimate of the nuisance trans-
formation can be refined based on all the available informa-
tion including pre-shapes and covariates.

Finally, we investigate the robustness of our Geo-FARM
in choosing the number of latent factors. Three different
scenarios are considered here: 1) = 0, ¢ = 10, and ¢y = 20.
We manually specified four different values for ¢, i.e., 0,
1, 2, and 3, where 2 is the ground truth in our simulation
settings. The four loss functions defined above are con-
sidered here as well. The simulation results for different
choices of g are presented in Figure 6. Couple of find-
ings are listed here: (i) when no latent factors are speci-
fied in our Geo-FARM (an isotropic covariance structure
used instead), the estimation performance gets worse and
worse when the misalignment is getting severe; (ii) when
the latent factor structure is considered but the number of
factors is misspecified, the estimation performance of our
Geo-FARM almost keeps the same as that when q is set to
the true value. Therefore, the latent factor structure in our
Geo-FARM is of great importance while the choice of the
number of factors is not that critical with respect to the es-
timation performance.
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3.3. Real data analysis

Here we apply Geo-FARM on ADNI CC CC contour
data, where the pre-shape data were extracted by remov-
ing the translation and scaling information from the origi-
nal landmarks. In addition, three covariates of interest are
included in the regression model, i.e., gender, age (stan-
dardized), diagnostic status (AD), and an interaction term
agex AD. Then a sequence of estimated shapes from age
50 to age 95 is presented for each of the four subgroups
(1. Male & NC; 2. Female & NC; 3. Male & AD; and 4.
Female & AD) in Figure 7.

7 D 7 D

p— | —
Male & NC Female & NC
B — \ e ——
Male & AD Female & AD

55 95
Figure 7. Estimated shapes from age 55 (blue) to age 95 (red) is
presented for each of the four subgroups (1. Male & NC; 2. Fe-

male & NC; 3. Male & AD; and 4. Female & AD).

Comparing the sequences of estimated shapes from dif-
ferent sub-groups, some differences can be found between
the normal control groups and AD groups. In order to inves-
tigate the relationship between the pre-shape responses and
all the covariates of interest. The hypothesis testing prob-
lem is (16) considered and the test statistics along with the
p-values are reported in Table 2. It can be found that, there
are strong AD effect and age-dependent AD effect on the
shape responses while the gender effect is not significant.

Finally, we would like to compare the pre-aligned pre-
shapes and the post-aligned pre-shapes derived from Geo-
FARM in terms of the mean shape. Here we adopt the boot-
strap hypothesis testing approach through the R package
shapes, where the number of bootstrap is set to 500. Then
the test statistic is 0.0209 and the related p-value is 0.0412,

3 () geodesic distance between f (1) and f(j2); and (d) MAD of Ay.

Table 2. Hypothesis testing results.

gender age AD agexAD
test stat. 101.21 118.37 131.61 128.75
p-value 0.365 0.0693 0.0111 0.0172

which indicates that there is significant difference between
the pre-aligned pre-shapes and the post-aligned pre-shapes
in terms of the mean shape. In other word, our Geo-FARM
does borrow covariate information in learning the nuisance
transformations.

4. Conclusion

This paper proposes a geodesic factor regression model
for misaligned pre-shape responses, where the additional
nuisance rotational effects are built within the proposed
model and learned based on both pre-shapes and covariates
of interest. In addition, the spatial correlation structure is
specified through a low dimensional representation includ-
ing latent variables on the tangent space and isotropic error
terms. Both Monte Carlo simulation studies and real data
analysis on ADNI CC contour data show that the proposed
model outperforms most existing approaches.

A. Preliminaries from differential geometry

Let M be a da-dimensional complete Riemannian
manifold with distance function dist »,. We denote the tan-
gent space at y € M by T, M and the inner product of
u,v € TyM by (u,v). For any v € T, M, there is a
unique geodesic curve v : [0,1] — R, with initial condi-
tions v(0) = y and +/(0) = v. The geodesic is only guar-
anteed to exist in a neighborhood of y, where the largest
neighborhood is denoted by N, € M. The exponen-
tial map at y, Exp(y,-) : Ty,M — N, is locally diffeo-
morphic and defined as Exp(y,v) = ~(1). The log map
Log(y,-) : Ny — Ty M is defined as the inverse of expo-
nential map. For any ' € N, the Riemannian distance

distpm(y,y") = [[Log(y, y')|.

11498

Authorized licensed use limited to: Florida State University. Downloaded on July 11,2022 at 06:30:18 UTC from IEEE Xplore. Restrictions apply.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

K. Ahn, J. Derek Tucker, W. Wu, and A. Srivastava. Elastic
handling of predictor phase in functional regression models.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 324-331, 2018.
GJ A Amaral, IL Dryden, and Andrew T A Wood. Piv-
otal bootstrap methods for k-sample problems in directional
statistics and shape analysis. Journal of the American Statis-
tical Association, 102(478):695-707, 2007.

Alvin H Bachman, Sang Han Lee, John J Sidtis, and Babak A
Ardekani. Corpus callosum shape and size changes in early
alzheimer’s disease: a longitudinal mri study using the oasis
brain database. Journal of Alzheimer’s Disease, 39(1):71—
78,2014.

Jérdme Bolte, Shoham Sabach, and Marc Teboulle. Prox-
imal alternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming, 146(1-
2):459-494, 2014.

Joseph-Frédéric Bonnans, Jean Charles Gilbert, Claude
Lemaréchal, and Claudia A Sagastizdbal. Numerical opti-
mization: theoretical and practical aspects. Springer Sci-
ence & Business Media, 2006.

F. L. Bookstein. Morphometric Tools for Landmark Data:
Geometry and Biology. Cambridge University Press, 1991.

Emil Cornea, Hongtu Zhu, Peter Kim, Joseph G Ibrahim,
and Alzheimer’s Disease Neuroimaging Initiative. Regres-
sion models on riemannian symmetric spaces. Journal of the
Royal Statistical Society: Series B (Statistical Methodology),
79(2):463-482, 2017.

Luciano da Fona Costa and Roberto Marcond Cesar Jr.
Shape classification and analysis: theory and practice. CRC
Press, 2018.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
Maximum likelihood from incomplete data via the em al-
gorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1-22, 1977.

Ian L Dryden and Kanti V Mardia. Statistical shape analysis:
with applications in R, volume 995. John Wiley & Sons,
2016.

Bradley Efron and Robert J Tibshirani. An introduction to
the bootstrap. CRC press, 1994.

Sahar Elahi, Alvin H Bachman, Sang Han Lee, John J Sidtis,
Babak A Ardekani, and Alzheimer’s Disease Neuroimaging
Initiative. Corpus callosum atrophy rate in mild cognitive
impairment and prodromal alzheimer’s disease. Journal of
Alzheimer’s Disease, 45(3):921-931, 2015.

Bruce Fischl. Neuroimage, 62(2):774-781,
2012.

P. T. Fletcher. Geodesic regression and the theory of least
squares on riemannian manifolds. [International journal of
computer vision, 105(2):171-185, 2013.

P Thomas Fletcher, Conglin Lu, Stephen M Pizer, and
Sarang Joshi. Principal geodesic analysis for the study of

nonlinear statistics of shape. [EEE transactions on medical
imaging, 23(8):995-1005, 2004.

Freesurfer.

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

11499

Sg¢ren Hauberg. Directional statistics with the spherical nor-
mal distribution. In 2018 21st International Conference on
Information Fusion (FUSION), pages 704-711. 1EEE, 2018.
Jacob Hinkle, Prasanna Muralidharan, P Thomas Fletcher,
and Sarang Joshi. Polynomial regression on riemannian
manifolds. In European Conference on Computer Vision,
pages 1-14. Springer, 2012.

Matthew D Hoffman and Andrew Gelman. The no-u-
turn sampler: adaptively setting path lengths in hamiltonian
monte carlo. J. Mach. Learn. Res., 15(1):1593-1623, 2014.
Chao Huang. Advanced Statistical Learning Methods for
Heterogeneous Medical Imaging Data. PhD thesis, The Uni-
versity of North Carolina at Chapel Hill, 2019.

Chao Huang, Martin Styner, and Hongtu Zhu. Clus-
tering high-dimensional landmark-based two-dimensional
shape data. Journal of the American Statistical Association,
110(511):946-961, 2015.

D. G. Kendall, D. Barden, T. K. Carne, and H. Le. Shape
and shape theory. Wiley, 1999.

H. J. Kim, N. Adluru, M. D. Collins, M. K. Chung, B. B.
Bendlin, S. C. Johnson, R. J. Davidson, and V. Singh. Multi-
variate general linear models (mglm) on riemannian man-
ifolds with applications to statistical analysis of diffusion
weighted images. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2705—
2712, 2014.

Richard A Levine and George Casella. Implementations of
the monte carlo em algorithm. Journal of Computational and
Graphical Statistics, 10(3):422-439, 2001.

Lizhen Lin, Niu Mu, Pokman Cheung, David Dunson, et al.
Extrinsic gaussian processes for regression and classification
on manifolds. Bayesian Analysis, 14(3):887-906, 2019.
Lizhen Lin, Brian St. Thomas, Hongtu Zhu, and David B
Dunson.  Extrinsic local regression on manifold-valued
data.  Journal of the American Statistical Association,
112(519):1261-1273, 2017.

Radford M. Neal. MCMC using Hamiltonian dynamics. In
Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li
Meng, editors, Handbook of Markov Chain Monte Carlo,
chapter 5, pages 113—-162. Chapman and Hall/CRC, 2011.
Lynn K Paul, Warren S Brown, Ralph Adolphs, J Michael
Tyszka, Linda J Richards, Pratik Mukherjee, and Elliott H
Sherr. Agenesis of the corpus callosum: genetic, develop-
mental and functional aspects of connectivity. Nature Re-
views Neuroscience, 8(4):287-299, 2007.

Xavier Pennec. Intrinsic statistics on riemannian manifolds:
Basic tools for geometric measurements. Journal of Mathe-
matical Imaging and Vision, 25(1):127, 2006.

Xavier Pennec, Stefan Sommer, and Tom Fletcher. Rieman-
nian Geometric Statistics in Medical Image Analysis. Aca-
demic Press, 2019.

William H Press, Saul A Teukolsky, William T Vetterling,
and Brian P Flannery. Numerical recipes 3rd edition: The art
of scientific computing. Cambridge university press, 2007.
Salem Said, Hatem Hajri, Lionel Bombrun, and Baba C
Vemuri. Gaussian distributions on riemannian symmetric

Authorized licensed use limited to: Florida State University. Downloaded on July 11,2022 at 06:30:18 UTC from IEEE Xplore. Restrictions apply.



spaces: statistical learning with structured covariance matri-
ces. IEEE Transactions on Information Theory, 64(2):752—
772, 2017.

[32] Xiaoyan Shi, Martin Styner, Jeffrey Lieberman, Joseph G
Ibrahim, Weili Lin, and Hongtu Zhu. Intrinsic regression
models for manifold-valued data. In International Confer-
ence on Medical Image Computing and Computer-Assisted
Intervention, pages 192-199. Springer, 2009.

[33] Ha-Young Shin and Hee-Seok Oh. Robust geodesic regres-
sion. arXiv preprint arXiv:2007.04518, 2020.

[34] C. G. Small. The Statistical Theory of Shape. Springer,
1996.

[35] Anuj Srivastava, Shantanu H Joshi, Washington Mio, and Xi-
uwen Liu. Statistical shape analysis: Clustering, learning,
and testing. IEEE Transactions on pattern analysis and ma-
chine intelligence, 27(4):590-602, 2005.

[36] A. Srivastava and E. Klassen. Functional and Shape Data
Analysis. Springer Series in Statistics, 2016.

[37] Dimosthenis Tsagkrasoulis and Giovanni Montana. Ran-
dom forest regression for manifold-valued responses. Pat-
tern Recognition Letters, 101:6-13, 2018.

[38] Clement Vachet, Benjamin Yvernault, Kshamta Bhatt,
Rachel G Smith, Guido Gerig, Heather Cody Hazlett, and
Martin Styner. Automatic corpus callosum segmentation us-
ing a deformable active fourier contour model. In SPIE Med-
ical Imaging, volume 8317, pages 831707-831707-7. Inter-
national Society for Optics and Photonics, 2012.

[39] J. L. Wang, J. M. Chiou, and H. G. Miiller. Functional data
analysis. Annual Review of Statistics and Its Application,
3:257-295, 2016.

[40] Laurent Younes. Shapes and diffeomorphisms, volume 171.
Springer, 2010.

[41] Miaomiao Zhang and Tom Fletcher. Probabilistic principal
geodesic analysis. In Advances in Neural Information Pro-
cessing Systems, pages 1178-1186, 2013.

[42] X. Zhang, X. Shi, Y. Sun, and L. Cheng. Multivariate re-
gression with gross errors on manifold-valued data. IEEE
transactions on pattern analysis and machine intelligence,
41(2):444-458, 2018.

[43] Youshan Zhang. Bayesian geodesic regression onriemannian
manifolds. arXiv preprint arXiv:2009.05108, 2020.

11500

Authorized licensed use limited to: Florida State University. Downloaded on July 11,2022 at 06:30:18 UTC from IEEE Xplore. Restrictions apply.



